rammurmu's picture
Update README.md (#3)
cf6ab18 verified
---
language:
- en
license: apache-2.0
library_name: transformers
tags:
- bert
- text-classification
- autotrain
- runashllm
- custom-model
datasets:
- your_dataset_name_here
metrics:
- accuracy
- f1
widget:
- text: I love this model!
- text: This is terrible.
model-index:
- name: RunAshLLM
results:
- task:
type: text-classification
name: Text Classification
dataset:
name: YourDataset
type: your_dataset_name_here
metrics:
- type: accuracy
value: 0.92
- type: f1
value: 0.91
title: 'RunAshLLM '
colorFrom: yellow
pinned: true
short_description: 'Custom BERT Model Fine-Tuned '
---
# πŸš€ RunAshLLM β€” Custom BERT Model Fine-Tuned with AutoTrain
**RunAshLLM** is a fine-tuned [BERT-base-uncased](https://huggingface.co/bert-base-uncased) model, optimized for text classification tasks using **Hugging Face AutoTrain**. Designed for speed, accuracy, and adaptability β€” whether you're classifying sentiment, intent, or custom categories.
---
## πŸ§ͺ Model Details
- **Base Model**: `bert-base-uncased`
- **Fine-tuning Tool**: [AutoTrain Advanced](https://huggingface.co/autotrain)
- **Task**: Text Classification (adjustable)
- **Language**: English
- **Architecture**: `BertForSequenceClassification`
- **Parameters**: ~110M
---
## πŸ’‘ Intended Uses
RunAshLLM is ideal for:
- Sentiment analysis (positive/negative/neutral)
- Customer feedback categorization
- Custom domain classification (e.g., medical, legal, finance)
- Educational or research prototyping
> ⚠️ Not intended for production without further validation and testing.
---
## πŸ› οΈ How to Use
### With `pipeline` (Simplest)
```python
from transformers import pipeline
classifier = pipeline("text-classification", model="your-hf-username/RunAshLLM")
result = classifier("I love using AutoTrain to fine-tune models!")
print(result)
# Output: [{'label': 'POSITIVE', 'score': 0.987}]
### With Automodel (Advance )
from transformers import AutoTokenizer, AutoModelForSequenceClassification
import torch
tokenizer = AutoTokenizer.from_pretrained("your-hf-username/RunAshLLM")
model = AutoModelForSequenceClassification.from_pretrained("your-hf-username/RunAshLLM")
inputs = tokenizer("This model is awesome!", return_tensors="pt")
with torch.no_grad():
logits = model(**inputs).logits
predicted_class_id = logits.argmax().item()
label = model.config.id2label[predicted_class_id]
print(label) # e.g., "POSITIVE"
Absolutely! Below is a complete, ready-to-use **Hugging Face BERT model configuration** and **customized model card** for a model named **`RunAshLLM`**, intended to be fine-tuned using **AutoTrain**.
This includes:
1. βœ… `config.json` β€” BERT configuration (you can adjust architecture)
2. βœ… `README.md` β€” Custom Model Card for Hugging Face Hub
3. βœ… Instructions for AutoTrain fine-tuning
---
## 🧠 1. `config.json` β€” BERT Base Configuration (Customizable)
Save this as `config.json` in your model repo or AutoTrain project folder.
```json
{
"architectures": ["BertForSequenceClassification"],
"model_type": "bert",
"attention_probs_dropout_prob": 0.1,
"hidden_act": "gelu",
"hidden_dropout_prob": 0.1,
"hidden_size": 768,
"initializer_range": 0.02,
"intermediate_size": 3072,
"max_position_embeddings": 512,
"num_attention_heads": 12,
"num_hidden_layers": 12,
"type_vocab_size": 2,
"vocab_size": 30522,
"classifier_dropout": 0.1,
"num_labels": 2,
"id2label": {
"0": "NEGATIVE",
"1": "POSITIVE"
},
"label2id": {
"NEGATIVE": 0,
"POSITIVE": 1
}
}
```
> πŸ”§ *Customize `num_labels`, `id2label`, `label2id` based on your task (e.g., multiclass, NER, QA).*
---
### With `AutoModel` (Advanced)
```python
from transformers import AutoTokenizer, AutoModelForSequenceClassification
import torch
tokenizer = AutoTokenizer.from_pretrained("your-hf-username/RunAshLLM")
model = AutoModelForSequenceClassification.from_pretrained("your-hf-username/RunAshLLM")
inputs = tokenizer("This model is awesome!", return_tensors="pt")
with torch.no_grad():
logits = model(**inputs).logits
predicted_class_id = logits.argmax().item()
label = model.config.id2label[predicted_class_id]
print(label) # e.g., "POSITIVE"
```
---
## πŸ“Š Evaluation Results
| Metric | Score |
|---------|-------|
| Accuracy | 92% |
| F1-Score | 91% |
> *Results based on held-out test set from `YourDataset`. Your mileage may vary.*
---
## 🎯 Training Details
- **Training Framework**: AutoTrain Advanced
- **Dataset**: [YourDataset](https://huggingface.co/datasets/your_dataset_name_here)
- **Epochs**: 3
- **Batch Size**: 16
- **Learning Rate**: 2e-5
- **Optimizer**: AdamW
- **Hardware**: 1x NVIDIA T4 (via AutoTrain)
---
## πŸ“œ License
Apache 2.0 β€” Feel free to use, modify, and distribute. See [LICENSE](LICENSE) for details.
---
## πŸ™Œ Acknowledgements
- Hugging Face πŸ€— for AutoTrain and Transformers
- Original BERT authors and maintainers
- You β€” for pushing the boundaries of what fine-tuned models can do!
---
> **Model Name Inspired By**: β€œRun Ash, Run!” β€” A playful nod to resilience, speed, and the spirit of experimentation.
---
## ❓ Questions?
Open an Issue on the model repository or reach out on Hugging Face forums.
---
✨ **Made with AutoTrain. Deployed with confidence.**
```
> ✏️ **Remember to replace**:
> - `your-hf-rammurmu/RunAshLLM` β†’ your actual Hugging Face model repo path
> - `your_dataset_name_here` β†’ your dataset name
> - Evaluation scores β†’ your actual metrics
> - License β†’ if you choose a different one
---
## βš™οΈ 3. AutoTrain Setup Instructions
### Step 1: Prepare Dataset
- Format: CSV or Hugging Face Dataset
- Required columns: `text`, `label` (for classification)
Example `train.csv`:
```csv
text,label
"I love this!",1
"This is awful.",0
```
### Step 2: Use AutoTrain CLI or Web UI
#### Web UI (Easiest):
1. Go to [https://huggingface.co/autotrain](https://huggingface.co/autotrain)
2. Click β€œCreate Project”
3. Upload dataset
4. Choose β€œText Classification”
5. Select `bert-base-uncased` as base model
6. Set project name: `RunAshLLM`
7. Start training!
#### CLI (Advanced):
```bash
pip install autotrain-advanced
autotrain llm --help # for LLMs, but for BERT classification:
autotrain text-classification \
--model bert-base-uncased \
--data_path ./data \
--project_name RunAshLLM \
--token YOUR_HF_TOKEN \
--push_to_hub
```
---
## πŸ“ Final Folder Structure (for manual upload)
```
RunAshLLM/
β”œβ”€β”€ config.json
β”œβ”€β”€ README.md
β”œβ”€β”€ LICENSE (optional)
└── (AutoTrain will generate model weights after training)
```
---
## βœ… After Training
AutoTrain will automatically:
- Upload model weights (`pytorch_model.bin`, `tf_model.h5`, etc.)
- Push tokenizer files
- Update model card if configured
You just need to ensure your `README.md` and `config.json` are in the repo root.
---
## πŸŽ‰ Happy fine-tuning! πŸš€πŸ§ πŸ”₯