Spaces:
Configuration error
Configuration error
| language: | |
| - en | |
| license: apache-2.0 | |
| library_name: transformers | |
| tags: | |
| - bert | |
| - text-classification | |
| - autotrain | |
| - runashllm | |
| - custom-model | |
| datasets: | |
| - your_dataset_name_here | |
| metrics: | |
| - accuracy | |
| - f1 | |
| widget: | |
| - text: I love this model! | |
| - text: This is terrible. | |
| model-index: | |
| - name: RunAshLLM | |
| results: | |
| - task: | |
| type: text-classification | |
| name: Text Classification | |
| dataset: | |
| name: YourDataset | |
| type: your_dataset_name_here | |
| metrics: | |
| - type: accuracy | |
| value: 0.92 | |
| - type: f1 | |
| value: 0.91 | |
| title: 'RunAshLLM ' | |
| colorFrom: yellow | |
| pinned: true | |
| short_description: 'Custom BERT Model Fine-Tuned ' | |
| # π RunAshLLM β Custom BERT Model Fine-Tuned with AutoTrain | |
| **RunAshLLM** is a fine-tuned [BERT-base-uncased](https://huggingface.co/bert-base-uncased) model, optimized for text classification tasks using **Hugging Face AutoTrain**. Designed for speed, accuracy, and adaptability β whether you're classifying sentiment, intent, or custom categories. | |
| --- | |
| ## π§ͺ Model Details | |
| - **Base Model**: `bert-base-uncased` | |
| - **Fine-tuning Tool**: [AutoTrain Advanced](https://huggingface.co/autotrain) | |
| - **Task**: Text Classification (adjustable) | |
| - **Language**: English | |
| - **Architecture**: `BertForSequenceClassification` | |
| - **Parameters**: ~110M | |
| --- | |
| ## π‘ Intended Uses | |
| RunAshLLM is ideal for: | |
| - Sentiment analysis (positive/negative/neutral) | |
| - Customer feedback categorization | |
| - Custom domain classification (e.g., medical, legal, finance) | |
| - Educational or research prototyping | |
| > β οΈ Not intended for production without further validation and testing. | |
| --- | |
| ## π οΈ How to Use | |
| ### With `pipeline` (Simplest) | |
| ```python | |
| from transformers import pipeline | |
| classifier = pipeline("text-classification", model="your-hf-username/RunAshLLM") | |
| result = classifier("I love using AutoTrain to fine-tune models!") | |
| print(result) | |
| # Output: [{'label': 'POSITIVE', 'score': 0.987}] | |
| ### With Automodel (Advance ) | |
| from transformers import AutoTokenizer, AutoModelForSequenceClassification | |
| import torch | |
| tokenizer = AutoTokenizer.from_pretrained("your-hf-username/RunAshLLM") | |
| model = AutoModelForSequenceClassification.from_pretrained("your-hf-username/RunAshLLM") | |
| inputs = tokenizer("This model is awesome!", return_tensors="pt") | |
| with torch.no_grad(): | |
| logits = model(**inputs).logits | |
| predicted_class_id = logits.argmax().item() | |
| label = model.config.id2label[predicted_class_id] | |
| print(label) # e.g., "POSITIVE" | |
| Absolutely! Below is a complete, ready-to-use **Hugging Face BERT model configuration** and **customized model card** for a model named **`RunAshLLM`**, intended to be fine-tuned using **AutoTrain**. | |
| This includes: | |
| 1. β `config.json` β BERT configuration (you can adjust architecture) | |
| 2. β `README.md` β Custom Model Card for Hugging Face Hub | |
| 3. β Instructions for AutoTrain fine-tuning | |
| --- | |
| ## π§ 1. `config.json` β BERT Base Configuration (Customizable) | |
| Save this as `config.json` in your model repo or AutoTrain project folder. | |
| ```json | |
| { | |
| "architectures": ["BertForSequenceClassification"], | |
| "model_type": "bert", | |
| "attention_probs_dropout_prob": 0.1, | |
| "hidden_act": "gelu", | |
| "hidden_dropout_prob": 0.1, | |
| "hidden_size": 768, | |
| "initializer_range": 0.02, | |
| "intermediate_size": 3072, | |
| "max_position_embeddings": 512, | |
| "num_attention_heads": 12, | |
| "num_hidden_layers": 12, | |
| "type_vocab_size": 2, | |
| "vocab_size": 30522, | |
| "classifier_dropout": 0.1, | |
| "num_labels": 2, | |
| "id2label": { | |
| "0": "NEGATIVE", | |
| "1": "POSITIVE" | |
| }, | |
| "label2id": { | |
| "NEGATIVE": 0, | |
| "POSITIVE": 1 | |
| } | |
| } | |
| ``` | |
| > π§ *Customize `num_labels`, `id2label`, `label2id` based on your task (e.g., multiclass, NER, QA).* | |
| --- | |
| ### With `AutoModel` (Advanced) | |
| ```python | |
| from transformers import AutoTokenizer, AutoModelForSequenceClassification | |
| import torch | |
| tokenizer = AutoTokenizer.from_pretrained("your-hf-username/RunAshLLM") | |
| model = AutoModelForSequenceClassification.from_pretrained("your-hf-username/RunAshLLM") | |
| inputs = tokenizer("This model is awesome!", return_tensors="pt") | |
| with torch.no_grad(): | |
| logits = model(**inputs).logits | |
| predicted_class_id = logits.argmax().item() | |
| label = model.config.id2label[predicted_class_id] | |
| print(label) # e.g., "POSITIVE" | |
| ``` | |
| --- | |
| ## π Evaluation Results | |
| | Metric | Score | | |
| |---------|-------| | |
| | Accuracy | 92% | | |
| | F1-Score | 91% | | |
| > *Results based on held-out test set from `YourDataset`. Your mileage may vary.* | |
| --- | |
| ## π― Training Details | |
| - **Training Framework**: AutoTrain Advanced | |
| - **Dataset**: [YourDataset](https://huggingface.co/datasets/your_dataset_name_here) | |
| - **Epochs**: 3 | |
| - **Batch Size**: 16 | |
| - **Learning Rate**: 2e-5 | |
| - **Optimizer**: AdamW | |
| - **Hardware**: 1x NVIDIA T4 (via AutoTrain) | |
| --- | |
| ## π License | |
| Apache 2.0 β Feel free to use, modify, and distribute. See [LICENSE](LICENSE) for details. | |
| --- | |
| ## π Acknowledgements | |
| - Hugging Face π€ for AutoTrain and Transformers | |
| - Original BERT authors and maintainers | |
| - You β for pushing the boundaries of what fine-tuned models can do! | |
| --- | |
| > **Model Name Inspired By**: βRun Ash, Run!β β A playful nod to resilience, speed, and the spirit of experimentation. | |
| --- | |
| ## β Questions? | |
| Open an Issue on the model repository or reach out on Hugging Face forums. | |
| --- | |
| β¨ **Made with AutoTrain. Deployed with confidence.** | |
| ``` | |
| > βοΈ **Remember to replace**: | |
| > - `your-hf-rammurmu/RunAshLLM` β your actual Hugging Face model repo path | |
| > - `your_dataset_name_here` β your dataset name | |
| > - Evaluation scores β your actual metrics | |
| > - License β if you choose a different one | |
| --- | |
| ## βοΈ 3. AutoTrain Setup Instructions | |
| ### Step 1: Prepare Dataset | |
| - Format: CSV or Hugging Face Dataset | |
| - Required columns: `text`, `label` (for classification) | |
| Example `train.csv`: | |
| ```csv | |
| text,label | |
| "I love this!",1 | |
| "This is awful.",0 | |
| ``` | |
| ### Step 2: Use AutoTrain CLI or Web UI | |
| #### Web UI (Easiest): | |
| 1. Go to [https://huggingface.co/autotrain](https://huggingface.co/autotrain) | |
| 2. Click βCreate Projectβ | |
| 3. Upload dataset | |
| 4. Choose βText Classificationβ | |
| 5. Select `bert-base-uncased` as base model | |
| 6. Set project name: `RunAshLLM` | |
| 7. Start training! | |
| #### CLI (Advanced): | |
| ```bash | |
| pip install autotrain-advanced | |
| autotrain llm --help # for LLMs, but for BERT classification: | |
| autotrain text-classification \ | |
| --model bert-base-uncased \ | |
| --data_path ./data \ | |
| --project_name RunAshLLM \ | |
| --token YOUR_HF_TOKEN \ | |
| --push_to_hub | |
| ``` | |
| --- | |
| ## π Final Folder Structure (for manual upload) | |
| ``` | |
| RunAshLLM/ | |
| βββ config.json | |
| βββ README.md | |
| βββ LICENSE (optional) | |
| βββ (AutoTrain will generate model weights after training) | |
| ``` | |
| --- | |
| ## β After Training | |
| AutoTrain will automatically: | |
| - Upload model weights (`pytorch_model.bin`, `tf_model.h5`, etc.) | |
| - Push tokenizer files | |
| - Update model card if configured | |
| You just need to ensure your `README.md` and `config.json` are in the repo root. | |
| --- | |
| ## π Happy fine-tuning! ππ§ π₯ |