Spaces:
Configuration error
language:
- en
license: apache-2.0
library_name: transformers
tags:
- bert
- text-classification
- autotrain
- runashllm
- custom-model
datasets:
- your_dataset_name_here
metrics:
- accuracy
- f1
widget:
- text: I love this model!
- text: This is terrible.
model-index:
- name: RunAshLLM
results:
- task:
type: text-classification
name: Text Classification
dataset:
name: YourDataset
type: your_dataset_name_here
metrics:
- type: accuracy
value: 0.92
- type: f1
value: 0.91
title: 'RunAshLLM '
colorFrom: yellow
pinned: true
short_description: 'Custom BERT Model Fine-Tuned '
π RunAshLLM β Custom BERT Model Fine-Tuned with AutoTrain
RunAshLLM is a fine-tuned BERT-base-uncased model, optimized for text classification tasks using Hugging Face AutoTrain. Designed for speed, accuracy, and adaptability β whether you're classifying sentiment, intent, or custom categories.
π§ͺ Model Details
- Base Model:
bert-base-uncased - Fine-tuning Tool: AutoTrain Advanced
- Task: Text Classification (adjustable)
- Language: English
- Architecture:
BertForSequenceClassification - Parameters: ~110M
π‘ Intended Uses
RunAshLLM is ideal for:
- Sentiment analysis (positive/negative/neutral)
- Customer feedback categorization
- Custom domain classification (e.g., medical, legal, finance)
- Educational or research prototyping
β οΈ Not intended for production without further validation and testing.
π οΈ How to Use
With pipeline (Simplest)
from transformers import pipeline
classifier = pipeline("text-classification", model="your-hf-username/RunAshLLM")
result = classifier("I love using AutoTrain to fine-tune models!")
print(result)
# Output: [{'label': 'POSITIVE', 'score': 0.987}]
### With Automodel (Advance )
from transformers import AutoTokenizer, AutoModelForSequenceClassification
import torch
tokenizer = AutoTokenizer.from_pretrained("your-hf-username/RunAshLLM")
model = AutoModelForSequenceClassification.from_pretrained("your-hf-username/RunAshLLM")
inputs = tokenizer("This model is awesome!", return_tensors="pt")
with torch.no_grad():
logits = model(**inputs).logits
predicted_class_id = logits.argmax().item()
label = model.config.id2label[predicted_class_id]
print(label) # e.g., "POSITIVE"
Absolutely! Below is a complete, ready-to-use **Hugging Face BERT model configuration** and **customized model card** for a model named **`RunAshLLM`**, intended to be fine-tuned using **AutoTrain**.
This includes:
1. β
`config.json` β BERT configuration (you can adjust architecture)
2. β
`README.md` β Custom Model Card for Hugging Face Hub
3. β
Instructions for AutoTrain fine-tuning
---
## π§ 1. `config.json` β BERT Base Configuration (Customizable)
Save this as `config.json` in your model repo or AutoTrain project folder.
```json
{
"architectures": ["BertForSequenceClassification"],
"model_type": "bert",
"attention_probs_dropout_prob": 0.1,
"hidden_act": "gelu",
"hidden_dropout_prob": 0.1,
"hidden_size": 768,
"initializer_range": 0.02,
"intermediate_size": 3072,
"max_position_embeddings": 512,
"num_attention_heads": 12,
"num_hidden_layers": 12,
"type_vocab_size": 2,
"vocab_size": 30522,
"classifier_dropout": 0.1,
"num_labels": 2,
"id2label": {
"0": "NEGATIVE",
"1": "POSITIVE"
},
"label2id": {
"NEGATIVE": 0,
"POSITIVE": 1
}
}
π§ Customize
num_labels,id2label,label2idbased on your task (e.g., multiclass, NER, QA).
With AutoModel (Advanced)
from transformers import AutoTokenizer, AutoModelForSequenceClassification
import torch
tokenizer = AutoTokenizer.from_pretrained("your-hf-username/RunAshLLM")
model = AutoModelForSequenceClassification.from_pretrained("your-hf-username/RunAshLLM")
inputs = tokenizer("This model is awesome!", return_tensors="pt")
with torch.no_grad():
logits = model(**inputs).logits
predicted_class_id = logits.argmax().item()
label = model.config.id2label[predicted_class_id]
print(label) # e.g., "POSITIVE"
π Evaluation Results
| Metric | Score |
|---|---|
| Accuracy | 92% |
| F1-Score | 91% |
Results based on held-out test set from
YourDataset. Your mileage may vary.
π― Training Details
- Training Framework: AutoTrain Advanced
- Dataset: YourDataset
- Epochs: 3
- Batch Size: 16
- Learning Rate: 2e-5
- Optimizer: AdamW
- Hardware: 1x NVIDIA T4 (via AutoTrain)
π License
Apache 2.0 β Feel free to use, modify, and distribute. See LICENSE for details.
π Acknowledgements
- Hugging Face π€ for AutoTrain and Transformers
- Original BERT authors and maintainers
- You β for pushing the boundaries of what fine-tuned models can do!
Model Name Inspired By: βRun Ash, Run!β β A playful nod to resilience, speed, and the spirit of experimentation.
β Questions?
Open an Issue on the model repository or reach out on Hugging Face forums.
β¨ Made with AutoTrain. Deployed with confidence.
> βοΈ **Remember to replace**:
> - `your-hf-rammurmu/RunAshLLM` β your actual Hugging Face model repo path
> - `your_dataset_name_here` β your dataset name
> - Evaluation scores β your actual metrics
> - License β if you choose a different one
---
## βοΈ 3. AutoTrain Setup Instructions
### Step 1: Prepare Dataset
- Format: CSV or Hugging Face Dataset
- Required columns: `text`, `label` (for classification)
Example `train.csv`:
```csv
text,label
"I love this!",1
"This is awful.",0
Step 2: Use AutoTrain CLI or Web UI
Web UI (Easiest):
- Go to https://huggingface.co/autotrain
- Click βCreate Projectβ
- Upload dataset
- Choose βText Classificationβ
- Select
bert-base-uncasedas base model - Set project name:
RunAshLLM - Start training!
CLI (Advanced):
pip install autotrain-advanced
autotrain llm --help # for LLMs, but for BERT classification:
autotrain text-classification \
--model bert-base-uncased \
--data_path ./data \
--project_name RunAshLLM \
--token YOUR_HF_TOKEN \
--push_to_hub
π Final Folder Structure (for manual upload)
RunAshLLM/
βββ config.json
βββ README.md
βββ LICENSE (optional)
βββ (AutoTrain will generate model weights after training)
β After Training
AutoTrain will automatically:
- Upload model weights (
pytorch_model.bin,tf_model.h5, etc.) - Push tokenizer files
- Update model card if configured
You just need to ensure your README.md and config.json are in the repo root.