File size: 7,022 Bytes
cf6ab18
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
421cded
cf6ab18
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
421cded
cf6ab18
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
---

language:
- en
license: apache-2.0
library_name: transformers
tags:
- bert
- text-classification
- autotrain
- runashllm
- custom-model
datasets:
- your_dataset_name_here
metrics:
- accuracy
- f1
widget:
- text: I love this model!
- text: This is terrible.
model-index:
- name: RunAshLLM
  results:
  - task:
      type: text-classification
      name: Text Classification
    dataset:
      name: YourDataset
      type: your_dataset_name_here
    metrics:
    - type: accuracy
      value: 0.92
    - type: f1
      value: 0.91
title: 'RunAshLLM '
colorFrom: yellow
pinned: true
short_description: 'Custom BERT Model Fine-Tuned '
---



# πŸš€ RunAshLLM β€” Custom BERT Model Fine-Tuned with AutoTrain

**RunAshLLM** is a fine-tuned [BERT-base-uncased](https://huggingface.co/bert-base-uncased) model, optimized for text classification tasks using **Hugging Face AutoTrain**. Designed for speed, accuracy, and adaptability β€” whether you're classifying sentiment, intent, or custom categories.

---

## πŸ§ͺ Model Details

- **Base Model**: `bert-base-uncased`
- **Fine-tuning Tool**: [AutoTrain Advanced](https://huggingface.co/autotrain)
- **Task**: Text Classification (adjustable)
- **Language**: English
- **Architecture**: `BertForSequenceClassification`
- **Parameters**: ~110M

---

## πŸ’‘ Intended Uses

RunAshLLM is ideal for:

- Sentiment analysis (positive/negative/neutral)
- Customer feedback categorization
- Custom domain classification (e.g., medical, legal, finance)
- Educational or research prototyping

> ⚠️ Not intended for production without further validation and testing.

---

## πŸ› οΈ How to Use

### With `pipeline` (Simplest)

```python
from transformers import pipeline

classifier = pipeline("text-classification", model="your-hf-username/RunAshLLM")

result = classifier("I love using AutoTrain to fine-tune models!")
print(result)
# Output: [{'label': 'POSITIVE', 'score': 0.987}]

### With Automodel (Advance )

from transformers import AutoTokenizer, AutoModelForSequenceClassification
import torch

tokenizer = AutoTokenizer.from_pretrained("your-hf-username/RunAshLLM")
model = AutoModelForSequenceClassification.from_pretrained("your-hf-username/RunAshLLM")

inputs = tokenizer("This model is awesome!", return_tensors="pt")
with torch.no_grad():
    logits = model(**inputs).logits

predicted_class_id = logits.argmax().item()
label = model.config.id2label[predicted_class_id]
print(label)  # e.g., "POSITIVE"


Absolutely! Below is a complete, ready-to-use **Hugging Face BERT model configuration** and **customized model card** for a model named **`RunAshLLM`**, intended to be fine-tuned using **AutoTrain**.

This includes:

1. βœ… `config.json` β€” BERT configuration (you can adjust architecture)
2. βœ… `README.md` β€” Custom Model Card for Hugging Face Hub
3. βœ… Instructions for AutoTrain fine-tuning

---

## 🧠 1. `config.json` β€” BERT Base Configuration (Customizable)

Save this as `config.json` in your model repo or AutoTrain project folder.

```json
{
  "architectures": ["BertForSequenceClassification"],
  "model_type": "bert",
  "attention_probs_dropout_prob": 0.1,
  "hidden_act": "gelu",
  "hidden_dropout_prob": 0.1,
  "hidden_size": 768,
  "initializer_range": 0.02,
  "intermediate_size": 3072,
  "max_position_embeddings": 512,
  "num_attention_heads": 12,
  "num_hidden_layers": 12,
  "type_vocab_size": 2,
  "vocab_size": 30522,
  "classifier_dropout": 0.1,
  "num_labels": 2,
  "id2label": {
    "0": "NEGATIVE",
    "1": "POSITIVE"
  },
  "label2id": {
    "NEGATIVE": 0,
    "POSITIVE": 1
  }
}
```

> πŸ”§ *Customize `num_labels`, `id2label`, `label2id` based on your task (e.g., multiclass, NER, QA).*

---

### With `AutoModel` (Advanced)

```python
from transformers import AutoTokenizer, AutoModelForSequenceClassification
import torch

tokenizer = AutoTokenizer.from_pretrained("your-hf-username/RunAshLLM")
model = AutoModelForSequenceClassification.from_pretrained("your-hf-username/RunAshLLM")

inputs = tokenizer("This model is awesome!", return_tensors="pt")
with torch.no_grad():
    logits = model(**inputs).logits

predicted_class_id = logits.argmax().item()
label = model.config.id2label[predicted_class_id]
print(label)  # e.g., "POSITIVE"
```

---

## πŸ“Š Evaluation Results

| Metric  | Score |
|---------|-------|
| Accuracy | 92%   |
| F1-Score | 91%   |

> *Results based on held-out test set from `YourDataset`. Your mileage may vary.*

---

## 🎯 Training Details

- **Training Framework**: AutoTrain Advanced
- **Dataset**: [YourDataset](https://huggingface.co/datasets/your_dataset_name_here)
- **Epochs**: 3
- **Batch Size**: 16
- **Learning Rate**: 2e-5
- **Optimizer**: AdamW
- **Hardware**: 1x NVIDIA T4 (via AutoTrain)

---

## πŸ“œ License

Apache 2.0 β€” Feel free to use, modify, and distribute. See [LICENSE](LICENSE) for details.

---

## πŸ™Œ Acknowledgements

- Hugging Face πŸ€— for AutoTrain and Transformers
- Original BERT authors and maintainers
- You β€” for pushing the boundaries of what fine-tuned models can do!

---

> **Model Name Inspired By**: β€œRun Ash, Run!” β€” A playful nod to resilience, speed, and the spirit of experimentation.

---

## ❓ Questions?

Open an Issue on the model repository or reach out on Hugging Face forums.

---

✨ **Made with AutoTrain. Deployed with confidence.**
```

> ✏️ **Remember to replace**:
> - `your-hf-rammurmu/RunAshLLM` β†’ your actual Hugging Face model repo path
> - `your_dataset_name_here` β†’ your dataset name
> - Evaluation scores β†’ your actual metrics
> - License β†’ if you choose a different one

---

## βš™οΈ 3. AutoTrain Setup Instructions

### Step 1: Prepare Dataset
- Format: CSV or Hugging Face Dataset
- Required columns: `text`, `label` (for classification)

Example `train.csv`:
```csv
text,label
"I love this!",1
"This is awful.",0
```

### Step 2: Use AutoTrain CLI or Web UI

#### Web UI (Easiest):
1. Go to [https://huggingface.co/autotrain](https://huggingface.co/autotrain)
2. Click β€œCreate Project”
3. Upload dataset
4. Choose β€œText Classification”
5. Select `bert-base-uncased` as base model
6. Set project name: `RunAshLLM`
7. Start training!

#### CLI (Advanced):
```bash
pip install autotrain-advanced

autotrain llm --help  # for LLMs, but for BERT classification:

autotrain text-classification \
  --model bert-base-uncased \
  --data_path ./data \
  --project_name RunAshLLM \
  --token YOUR_HF_TOKEN \
  --push_to_hub
```

---

## πŸ“ Final Folder Structure (for manual upload)

```
RunAshLLM/
β”œβ”€β”€ config.json
β”œβ”€β”€ README.md
β”œβ”€β”€ LICENSE (optional)
└── (AutoTrain will generate model weights after training)
```

---

## βœ… After Training

AutoTrain will automatically:

- Upload model weights (`pytorch_model.bin`, `tf_model.h5`, etc.)
- Push tokenizer files
- Update model card if configured

You just need to ensure your `README.md` and `config.json` are in the repo root.

---

## πŸŽ‰ Happy fine-tuning! πŸš€πŸ§ πŸ”₯