Spaces:
Configuration error
Configuration error
File size: 7,022 Bytes
cf6ab18 421cded cf6ab18 421cded cf6ab18 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 |
---
language:
- en
license: apache-2.0
library_name: transformers
tags:
- bert
- text-classification
- autotrain
- runashllm
- custom-model
datasets:
- your_dataset_name_here
metrics:
- accuracy
- f1
widget:
- text: I love this model!
- text: This is terrible.
model-index:
- name: RunAshLLM
results:
- task:
type: text-classification
name: Text Classification
dataset:
name: YourDataset
type: your_dataset_name_here
metrics:
- type: accuracy
value: 0.92
- type: f1
value: 0.91
title: 'RunAshLLM '
colorFrom: yellow
pinned: true
short_description: 'Custom BERT Model Fine-Tuned '
---
# π RunAshLLM β Custom BERT Model Fine-Tuned with AutoTrain
**RunAshLLM** is a fine-tuned [BERT-base-uncased](https://huggingface.co/bert-base-uncased) model, optimized for text classification tasks using **Hugging Face AutoTrain**. Designed for speed, accuracy, and adaptability β whether you're classifying sentiment, intent, or custom categories.
---
## π§ͺ Model Details
- **Base Model**: `bert-base-uncased`
- **Fine-tuning Tool**: [AutoTrain Advanced](https://huggingface.co/autotrain)
- **Task**: Text Classification (adjustable)
- **Language**: English
- **Architecture**: `BertForSequenceClassification`
- **Parameters**: ~110M
---
## π‘ Intended Uses
RunAshLLM is ideal for:
- Sentiment analysis (positive/negative/neutral)
- Customer feedback categorization
- Custom domain classification (e.g., medical, legal, finance)
- Educational or research prototyping
> β οΈ Not intended for production without further validation and testing.
---
## π οΈ How to Use
### With `pipeline` (Simplest)
```python
from transformers import pipeline
classifier = pipeline("text-classification", model="your-hf-username/RunAshLLM")
result = classifier("I love using AutoTrain to fine-tune models!")
print(result)
# Output: [{'label': 'POSITIVE', 'score': 0.987}]
### With Automodel (Advance )
from transformers import AutoTokenizer, AutoModelForSequenceClassification
import torch
tokenizer = AutoTokenizer.from_pretrained("your-hf-username/RunAshLLM")
model = AutoModelForSequenceClassification.from_pretrained("your-hf-username/RunAshLLM")
inputs = tokenizer("This model is awesome!", return_tensors="pt")
with torch.no_grad():
logits = model(**inputs).logits
predicted_class_id = logits.argmax().item()
label = model.config.id2label[predicted_class_id]
print(label) # e.g., "POSITIVE"
Absolutely! Below is a complete, ready-to-use **Hugging Face BERT model configuration** and **customized model card** for a model named **`RunAshLLM`**, intended to be fine-tuned using **AutoTrain**.
This includes:
1. β
`config.json` β BERT configuration (you can adjust architecture)
2. β
`README.md` β Custom Model Card for Hugging Face Hub
3. β
Instructions for AutoTrain fine-tuning
---
## π§ 1. `config.json` β BERT Base Configuration (Customizable)
Save this as `config.json` in your model repo or AutoTrain project folder.
```json
{
"architectures": ["BertForSequenceClassification"],
"model_type": "bert",
"attention_probs_dropout_prob": 0.1,
"hidden_act": "gelu",
"hidden_dropout_prob": 0.1,
"hidden_size": 768,
"initializer_range": 0.02,
"intermediate_size": 3072,
"max_position_embeddings": 512,
"num_attention_heads": 12,
"num_hidden_layers": 12,
"type_vocab_size": 2,
"vocab_size": 30522,
"classifier_dropout": 0.1,
"num_labels": 2,
"id2label": {
"0": "NEGATIVE",
"1": "POSITIVE"
},
"label2id": {
"NEGATIVE": 0,
"POSITIVE": 1
}
}
```
> π§ *Customize `num_labels`, `id2label`, `label2id` based on your task (e.g., multiclass, NER, QA).*
---
### With `AutoModel` (Advanced)
```python
from transformers import AutoTokenizer, AutoModelForSequenceClassification
import torch
tokenizer = AutoTokenizer.from_pretrained("your-hf-username/RunAshLLM")
model = AutoModelForSequenceClassification.from_pretrained("your-hf-username/RunAshLLM")
inputs = tokenizer("This model is awesome!", return_tensors="pt")
with torch.no_grad():
logits = model(**inputs).logits
predicted_class_id = logits.argmax().item()
label = model.config.id2label[predicted_class_id]
print(label) # e.g., "POSITIVE"
```
---
## π Evaluation Results
| Metric | Score |
|---------|-------|
| Accuracy | 92% |
| F1-Score | 91% |
> *Results based on held-out test set from `YourDataset`. Your mileage may vary.*
---
## π― Training Details
- **Training Framework**: AutoTrain Advanced
- **Dataset**: [YourDataset](https://huggingface.co/datasets/your_dataset_name_here)
- **Epochs**: 3
- **Batch Size**: 16
- **Learning Rate**: 2e-5
- **Optimizer**: AdamW
- **Hardware**: 1x NVIDIA T4 (via AutoTrain)
---
## π License
Apache 2.0 β Feel free to use, modify, and distribute. See [LICENSE](LICENSE) for details.
---
## π Acknowledgements
- Hugging Face π€ for AutoTrain and Transformers
- Original BERT authors and maintainers
- You β for pushing the boundaries of what fine-tuned models can do!
---
> **Model Name Inspired By**: βRun Ash, Run!β β A playful nod to resilience, speed, and the spirit of experimentation.
---
## β Questions?
Open an Issue on the model repository or reach out on Hugging Face forums.
---
β¨ **Made with AutoTrain. Deployed with confidence.**
```
> βοΈ **Remember to replace**:
> - `your-hf-rammurmu/RunAshLLM` β your actual Hugging Face model repo path
> - `your_dataset_name_here` β your dataset name
> - Evaluation scores β your actual metrics
> - License β if you choose a different one
---
## βοΈ 3. AutoTrain Setup Instructions
### Step 1: Prepare Dataset
- Format: CSV or Hugging Face Dataset
- Required columns: `text`, `label` (for classification)
Example `train.csv`:
```csv
text,label
"I love this!",1
"This is awful.",0
```
### Step 2: Use AutoTrain CLI or Web UI
#### Web UI (Easiest):
1. Go to [https://huggingface.co/autotrain](https://huggingface.co/autotrain)
2. Click βCreate Projectβ
3. Upload dataset
4. Choose βText Classificationβ
5. Select `bert-base-uncased` as base model
6. Set project name: `RunAshLLM`
7. Start training!
#### CLI (Advanced):
```bash
pip install autotrain-advanced
autotrain llm --help # for LLMs, but for BERT classification:
autotrain text-classification \
--model bert-base-uncased \
--data_path ./data \
--project_name RunAshLLM \
--token YOUR_HF_TOKEN \
--push_to_hub
```
---
## π Final Folder Structure (for manual upload)
```
RunAshLLM/
βββ config.json
βββ README.md
βββ LICENSE (optional)
βββ (AutoTrain will generate model weights after training)
```
---
## β
After Training
AutoTrain will automatically:
- Upload model weights (`pytorch_model.bin`, `tf_model.h5`, etc.)
- Push tokenizer files
- Update model card if configured
You just need to ensure your `README.md` and `config.json` are in the repo root.
---
## π Happy fine-tuning! ππ§ π₯ |