File size: 13,280 Bytes
0687bfd
 
 
 
b643c60
 
 
 
 
 
 
 
 
 
 
 
 
dc19d3a
b643c60
 
 
dc19d3a
b643c60
 
 
 
 
 
 
 
 
 
 
dc19d3a
b643c60
dc19d3a
 
b643c60
 
 
c97b0fa
 
b643c60
 
c97b0fa
 
 
b643c60
c97b0fa
 
 
 
 
b643c60
c97b0fa
 
 
 
 
 
 
 
 
 
 
0687bfd
13836f6
 
 
 
 
 
 
 
 
 
b643c60
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
13836f6
 
 
 
b643c60
 
 
 
13836f6
 
b643c60
13836f6
 
 
 
 
 
 
 
 
 
 
 
 
b643c60
 
 
 
 
 
 
 
 
 
0687bfd
b643c60
70db274
 
 
 
b643c60
 
 
70db274
 
 
b643c60
 
70db274
 
 
 
 
b643c60
82ed661
70db274
82ed661
 
b643c60
82ed661
 
 
b643c60
 
82ed661
 
 
 
 
5bc24b7
3139444
83432dd
b643c60
 
5b8e533
b643c60
 
 
 
 
 
 
 
 
 
 
5b8e533
b643c60
 
70db274
dbb7425
b643c60
 
83432dd
70db274
 
 
 
 
 
b643c60
70db274
83432dd
b643c60
83432dd
 
 
 
 
b643c60
 
 
 
 
83432dd
c97b0fa
83432dd
 
 
 
 
 
 
b643c60
83432dd
 
b643c60
 
5bc24b7
b643c60
 
83432dd
b643c60
 
83432dd
 
 
b643c60
 
 
 
4928504
b643c60
4928504
b643c60
4928504
 
b643c60
 
 
83432dd
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b643c60
bd369fc
ea74654
 
bd369fc
 
 
 
 
 
 
 
2dab0f4
5bc24b7
 
2dab0f4
bd369fc
4575207
 
 
bd369fc
4575207
f76ab84
4575207
 
 
 
 
0edfeb8
74e8cff
5bc24b7
 
 
b643c60
 
 
 
 
 
 
 
 
5bc24b7
 
 
 
d0dc64e
b643c60
d0dc64e
 
 
5bc24b7
 
 
 
 
 
 
 
 
 
 
 
b643c60
5bc24b7
bb0fad9
 
b643c60
5bc24b7
 
 
b643c60
 
 
 
 
 
5bc24b7
 
b643c60
5bc24b7
 
b643c60
 
 
 
 
13836f6
5bc24b7
 
 
 
 
 
0687bfd
541593d
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
import streamlit as st
import pandas as pd
from PIL import Image, ImageDraw, ImageFont
import io
import os
import socket
import calendar
import re
from typing import Optional
from huggingface_hub import hf_hub_download

# =========================
# Hugging Face Space config
# =========================
HF_REPO_ID = "AIEnergyScore/Leaderboard"   # Space slug
HF_REPO_TYPE = "space"
HF_DATA_PREFIX = "data/energy"             # path within the Space

# =========================
# Task -> CSV mapping
# =========================
TASK_TO_CSV = {
    "Text Generation":        "text_generation.csv",
    "Reasoning":              "reasoning.csv",           # now exists in your Space
    "Image Generation":       "image_generation.csv",
    "Text Classification":    "text_classification.csv",
    "Image Classification":   "image_classification.csv",
    "Image Captioning":       "image_captioning.csv",
    "Summarization":          "summarization.csv",
    "Speech-to-Text (ASR)":   "asr.csv",
    "Object Detection":       "object_detection.csv",
    "Question Answering":     "question_answering.csv",
    "Sentence Similarity":    "sentence_similarity.csv",
}
# Back-compat if parts of the code still reference this name:
task_to_file = TASK_TO_CSV

# =========================
# Helpers
# =========================
def read_csv_from_hub(file_name: str) -> pd.DataFrame:
    """
    Download a CSV from HF Space path data/energy/<file_name>,
    return a pandas DataFrame. Falls back to local if hub unavailable.
    """
    hub_path = f"{HF_DATA_PREFIX}/{file_name}"
    try:
        # helpful DNS check
        socket.gethostbyname("huggingface.co")
        local_path = hf_hub_download(
            repo_id=HF_REPO_ID,
            repo_type=HF_REPO_TYPE,
            filename=hub_path,
            revision="main",
            resume_download=True
        )
        return pd.read_csv(local_path)
    except Exception as e:
        try:
            return pd.read_csv(file_name)
        except Exception:
            raise RuntimeError(
                f"Unable to load '{file_name}' from Hub path '{hub_path}' or locally. "
                f"Original error: {e}"
            )

def format_with_commas(value) -> str:
    """
    Format numeric values with commas and two decimals.
    Example: 12345.678 -> '12,345.68'
    """
    try:
        return f"{float(value):,.2f}"
    except Exception:
        return str(value)

def _normalize(col: str) -> str:
    return re.sub(r"[^a-z0-9]", "", col.strip().lower())

def find_test_date_column(df: pd.DataFrame) -> Optional[str]:
    """
    Locate a 'test date' column. Strategy:
    1) Exact case-insensitive match 'test date'
    2) Any header whose normalized form contains both 'test' and 'date'
    3) Fallback to column E (index 4) if present
    """
    # (1) exact "test date"
    for c in df.columns:
        if c.strip().lower() == "test date":
            return c
    # (2) flexible match
    for c in df.columns:
        cn = _normalize(c)
        if "test" in cn and "date" in cn:
            return c
    # (3) fallback to E (0-based index 4)
    if len(df.columns) >= 5:
        return df.columns[4]
    return None

def month_abbrev_to_full(abbrev: str) -> Optional[str]:
    """
    Map 'Feb' -> 'February', 'Oct' -> 'October'. Returns None if unknown.
    """
    if not isinstance(abbrev, str) or not abbrev:
        return None
    abbr = abbrev.strip()[:3].title()  # normalize to 3-letter case 'Oct'
    for m in range(1, 13):
        if calendar.month_abbr[m] == abbr:
            return calendar.month_name[m]
    return None

def render_date_from_test_date(value: str) -> str:
    """
    Accepts formats:
      - 'Oct 2025'
      - 'Dec 25'  (2-digit year)
    Returns 'October 2025' or 'December 2025'.
    """
    if not isinstance(value, str):
        return ""
    s = value.strip()

    # Case 1: 'Oct 2025'
    m = re.match(r"^([A-Za-z]+)\s+(\d{4})$", s)
    if m:
        month_full = month_abbrev_to_full(m.group(1))
        return f"{month_full} {m.group(2)}" if month_full else ""

    # Case 2: 'Dec 25'  (map 25 -> 2025)
    m2 = re.match(r"^([A-Za-z]+)\s+(\d{2})$", s)
    if m2:
        month_full = month_abbrev_to_full(m2.group(1))
        year_full = f"20{m2.group(2)}"
        return f"{month_full} {year_full}" if month_full else ""

    return ""


def smart_capitalize(text):
    """Capitalize first letter only if not already; leave rest unchanged."""
    if not text:
        return text
    return text if text[0].isupper() else text[0].upper() + text[1:]

# =========================
# UI / App
# =========================
def main():
    # Tag styling
    st.markdown(
        """
        <style>
            .stMultiSelect [data-baseweb="tag"] {
                background-color: #3fa45bff !important;
                color: white !important;
                font-weight: 500;
                border-radius: 5px;
                padding: 5px 10px;
            }
            .stMultiSelect [data-baseweb="tag"]:hover { background-color: #358d4d !important; }
            .stMultiSelect input { color: black !important; }
        </style>
        """,
        unsafe_allow_html=True,
    )

    # Sidebar logo & title
    with st.sidebar:
        col1, col2 = st.columns([1, 5])
        with col1:
            logo = Image.open("logo.png")
            st.image(logo.resize((50, 50)))
        with col2:
            st.markdown(
                """
                <div style="display:flex;align-items:center;gap:10px;margin:0;padding:0;
                            font-family:'Inter',sans-serif;font-size:26px;font-weight:500;">
                    AI Energy Score
                </div>
                """,
                unsafe_allow_html=True,
            )

    st.sidebar.markdown("<hr style='border: 1px solid gray; margin: 15px 0;'>", unsafe_allow_html=True)
    st.sidebar.write("### Generate Label:")

    # Task order
    task_order = [
        "Text Generation",
        "Reasoning",
        "Image Generation",
        "Text Classification",
        "Image Classification",
        "Image Captioning",
        "Summarization",
        "Speech-to-Text (ASR)",
        "Object Detection",
        "Question Answering",
        "Sentence Similarity",
    ]

    # 1) Select task(s)
    st.sidebar.write("#### 1. Select task(s) to view models")
    selected_tasks = st.sidebar.multiselect("", options=task_order, default=["Text Generation"])

    # Default when nothing selected
    default_model_data = {
        'provider': "AI Provider",
        'model': "Model Name",
        'full_model': "AI Provider/Model Name",
        'date': "",
        'task': "",
        'hardware': "",
        'energy': 0.0,
        'score': 5
    }

    if not selected_tasks:
        model_data = default_model_data
    else:
        dfs = []
        for task in selected_tasks:
            file_name = TASK_TO_CSV.get(task)
            if not file_name:
                st.sidebar.error(f"Unknown task '{task}'.")
                continue

            try:
                df = read_csv_from_hub(file_name)
            except FileNotFoundError:
                st.sidebar.error(f"Could not find '{file_name}' for task {task}!")
                continue
            except Exception as e:
                st.sidebar.error(f"Error reading '{file_name}' for task {task}: {e}")
                continue

            # Split provider/model if combined as "Provider/Model"
            df['full_model'] = df['model']
            df[['provider', 'model']] = df['model'].str.split(pat='/', n=1, expand=True)

            # Convert kWh -> Wh (total_gpu_energy is in kWh); keep 2 decimals
            df['energy'] = (df['total_gpu_energy'] * 1000).round(2)

            # Score
            df['score'] = df['energy_score'].fillna(1).astype(int)

            # Hardware placeholder (adjust if you have a specific column)
            df['hardware'] = "NVIDIA H100-80GB"
            df['task'] = task

            # --- DATE: Use CSV 'test date' for Text Generation & Reasoning ---
            if task in {"Text Generation", "Reasoning"}:
                td_col = find_test_date_column(df)
                if td_col:
                    # Try to render; if empty/unparsable, fall back to "February 2025"
                    df['date'] = df[td_col].apply(render_date_from_test_date)
                    df['date'] = df['date'].where(df['date'].str.len() > 0, "February 2025")
                else:
                    # If column is missing, explicitly print "February 2025"
                    df['date'] = "February 2025"
            else:
                df['date'] = ""

            dfs.append(df)

        if not dfs:
            model_data = default_model_data
        else:
            data_df = pd.concat(dfs, ignore_index=True)
            if data_df.empty:
                model_data = default_model_data
            else:
                model_options = data_df["full_model"].unique().tolist()
                selected_model = st.sidebar.selectbox(
                    "Scored Models",
                    model_options,
                    help="Start typing to search for a model"
                )
                model_data = data_df[data_df["full_model"] == selected_model].iloc[0]

    st.sidebar.write("#### 3. Download the label")

    try:
        score = int(model_data["score"])
        background_path = f"{score}.png"
        background = Image.open(background_path).convert("RGBA")
    except FileNotFoundError:
        st.sidebar.error(f"Could not find background image '{score}.png'. Using default background.")
        background = Image.open("default_background.png").convert("RGBA")
    except ValueError:
        st.sidebar.error(f"Invalid score '{model_data['score']}'. Score must be an integer.")
        return

    final_size = (520, 728)
    generated_label = create_label_single_pass(background, model_data, final_size)

    st.image(generated_label, caption="Generated Label Preview", width=520)

    img_buffer = io.BytesIO()
    generated_label.save(img_buffer, format="PNG")
    img_buffer.seek(0)

    st.sidebar.download_button(
        label="Download",
        data=img_buffer,
        file_name="AIEnergyScore.png",
        mime="image/png"
    )

    st.sidebar.write("#### 4. Share your label!")
    st.sidebar.write("[Guidelines](https://huggingface.github.io/AIEnergyScore/#transparency-and-guidelines-for-label-use)")    
    st.sidebar.markdown("<hr style='border: 1px solid gray; margin: 15px 0;'>", unsafe_allow_html=True)
    st.sidebar.write("### Key Links")
    st.sidebar.markdown(
        """
        <ul style="margin-top:0;margin-bottom:0;padding-left:20px;">
            <li><a href="https://huggingface.co/spaces/AIEnergyScore/Leaderboard" target="_blank">Leaderboard</a></li>
            <li><a href="https://huggingface.co/spaces/AIEnergyScore/submission_portal" target="_blank">Submission Portal</a></li>
            <li><a href="https://huggingface.github.io/AIEnergyScore/#faq" target="_blank">FAQ</a></li>
            <li><a href="https://huggingface.github.io/AIEnergyScore/#documentation" target="_blank">Documentation</a></li>
        </ul>
        """,
        unsafe_allow_html=True,
    )

def create_label_single_pass(background_image, model_data, final_size=(520, 728)):
    bg_resized = background_image.resize(final_size, Image.Resampling.LANCZOS)

    # If no task is selected (i.e., using default model_data), return background
    if not model_data.get("task"):
        return bg_resized

    draw = ImageDraw.Draw(bg_resized)

    try:
        title_font = ImageFont.truetype("Inter_24pt-Bold.ttf", size=27)
        details_font = ImageFont.truetype("Inter_18pt-Regular.ttf", size=23)
        energy_font = ImageFont.truetype("Inter_18pt-Medium.ttf", size=24)
    except Exception as e:
        st.error(f"Font loading failed: {e}")
        return bg_resized

    title_x, title_y = 33, 150
    details_x, details_y = 480, 256
    energy_x, energy_y = 480, 472  # right-aligned anchors

    provider_text = str(model_data['provider'])
    model_text = str(model_data['model'])

    draw.text((title_x, title_y), provider_text, font=title_font, fill="black")
    draw.text((title_x, title_y + 38), model_text, font=title_font, fill="black")

    # Right-align details lines (date, task, hardware)
    details_lines = [
        str(model_data.get('date', "")),
        str(model_data.get('task', "")),
        str(model_data.get('hardware', "")),
    ]
    for i, line in enumerate(details_lines):
        bbox = draw.textbbox((0, 0), line, font=details_font)
        text_width = bbox[2] - bbox[0]
        draw.text((details_x - text_width, details_y + i * 47), line, font=details_font, fill="black")

    # Energy value (two decimals) right-aligned
    try:
        energy_value = float(model_data.get('energy', 0.0))
    except Exception:
        energy_value = 0.0
    energy_text = format_with_commas(energy_value)
    energy_bbox = draw.textbbox((0, 0), energy_text, font=energy_font)
    energy_text_width = energy_bbox[2] - energy_bbox[0]
    draw.text((energy_x - energy_text_width, energy_y), energy_text, font=energy_font, fill="black")

    return bg_resized

if __name__ == "__main__":
    main()