Spaces:
Running
Running
Update app.py
Browse files
app.py
CHANGED
|
@@ -4,25 +4,19 @@ from PIL import Image, ImageDraw, ImageFont
|
|
| 4 |
import io
|
| 5 |
|
| 6 |
def main():
|
| 7 |
-
# Inject custom CSS to change the color of selected tasks
|
| 8 |
st.markdown(
|
| 9 |
"""
|
| 10 |
<style>
|
| 11 |
-
/* Change background color of selected items */
|
| 12 |
.stMultiSelect [data-baseweb="tag"] {
|
| 13 |
-
background-color: #3fa45bff !important;
|
| 14 |
-
color: white !important;
|
| 15 |
font-weight: medium;
|
| 16 |
border-radius: 5px;
|
| 17 |
padding: 5px 10px;
|
| 18 |
}
|
| 19 |
-
|
| 20 |
-
/* Change hover effect */
|
| 21 |
.stMultiSelect [data-baseweb="tag"]:hover {
|
| 22 |
background-color: #358d4d !important;
|
| 23 |
}
|
| 24 |
-
|
| 25 |
-
/* Style the dropdown input field */
|
| 26 |
.stMultiSelect input {
|
| 27 |
color: black !important;
|
| 28 |
}
|
|
@@ -31,55 +25,33 @@ def main():
|
|
| 31 |
unsafe_allow_html=True,
|
| 32 |
)
|
| 33 |
|
| 34 |
-
# Sidebar logo and title
|
| 35 |
with st.sidebar:
|
| 36 |
col1, col2 = st.columns([1, 5])
|
| 37 |
-
|
| 38 |
with col1:
|
| 39 |
logo = Image.open("logo.png")
|
| 40 |
resized_logo = logo.resize((50, 50))
|
| 41 |
st.image(resized_logo)
|
| 42 |
-
|
| 43 |
with col2:
|
| 44 |
st.markdown(
|
| 45 |
"""
|
| 46 |
-
<div style="
|
| 47 |
-
display: flex;
|
| 48 |
-
align-items: center;
|
| 49 |
-
gap: 10px;
|
| 50 |
-
margin: 0;
|
| 51 |
-
padding: 0;
|
| 52 |
-
font-family: 'Inter', sans-serif;
|
| 53 |
-
font-size: 26px;
|
| 54 |
-
font-weight: bold;">
|
| 55 |
AI Energy Score
|
| 56 |
</div>
|
| 57 |
""",
|
| 58 |
unsafe_allow_html=True,
|
| 59 |
)
|
| 60 |
-
|
| 61 |
st.sidebar.markdown("<hr style='border: 1px solid gray; margin: 15px 0;'>", unsafe_allow_html=True)
|
| 62 |
-
|
| 63 |
st.sidebar.write("### Generate Label:")
|
| 64 |
-
|
| 65 |
-
# Define the ordered list of tasks.
|
| 66 |
task_order = [
|
| 67 |
-
"Text Generation",
|
| 68 |
-
"
|
| 69 |
-
"Text Classification",
|
| 70 |
-
"Image Classification",
|
| 71 |
-
"Image Captioning",
|
| 72 |
-
"Summarization",
|
| 73 |
-
"Speech-to-Text (ASR)",
|
| 74 |
-
"Object Detection",
|
| 75 |
-
"Question Answering",
|
| 76 |
-
"Sentence Similarity"
|
| 77 |
]
|
| 78 |
-
|
| 79 |
-
# Task selection
|
| 80 |
st.sidebar.write("#### 1. Select task(s) to view models")
|
| 81 |
selected_tasks = st.sidebar.multiselect("", options=task_order, default=["Text Generation"])
|
| 82 |
-
|
| 83 |
task_to_file = {
|
| 84 |
"Text Generation": "text_gen_energyscore.csv",
|
| 85 |
"Image Generation": "image_generation_energyscore.csv",
|
|
@@ -92,6 +64,7 @@ def main():
|
|
| 92 |
"Question Answering": "question_answering_energyscore.csv",
|
| 93 |
"Sentence Similarity": "sentence_similarity_energyscore.csv"
|
| 94 |
}
|
|
|
|
| 95 |
st.sidebar.write("#### 2. Select a model to generate label")
|
| 96 |
default_model_data = {
|
| 97 |
'provider': "AI Provider",
|
|
@@ -103,6 +76,7 @@ def main():
|
|
| 103 |
'energy': "?",
|
| 104 |
'score': 5
|
| 105 |
}
|
|
|
|
| 106 |
if not selected_tasks:
|
| 107 |
model_data = default_model_data
|
| 108 |
else:
|
|
@@ -120,7 +94,7 @@ def main():
|
|
| 120 |
|
| 121 |
df['full_model'] = df['model']
|
| 122 |
df[['provider', 'model']] = df['model'].str.split(pat='/', n=1, expand=True)
|
| 123 |
-
df['energy'] = df['total_gpu_energy'].round(
|
| 124 |
df['score'] = df['energy_score'].fillna(1).astype(int)
|
| 125 |
df['date'] = "February 2025"
|
| 126 |
df['hardware'] = "NVIDIA H100-80GB"
|
|
@@ -144,7 +118,6 @@ def main():
|
|
| 144 |
model_data = data_df[data_df["full_model"] == selected_model].iloc[0]
|
| 145 |
|
| 146 |
st.sidebar.write("#### 3. Download the label")
|
| 147 |
-
|
| 148 |
try:
|
| 149 |
score = int(model_data["score"])
|
| 150 |
background_path = f"{score}.png"
|
|
@@ -157,8 +130,7 @@ def main():
|
|
| 157 |
return
|
| 158 |
|
| 159 |
final_size = (520, 728)
|
| 160 |
-
generated_label =
|
| 161 |
-
|
| 162 |
st.image(generated_label, caption="Generated Label Preview", width=520)
|
| 163 |
|
| 164 |
img_buffer = io.BytesIO()
|
|
@@ -172,67 +144,5 @@ def main():
|
|
| 172 |
mime="image/png"
|
| 173 |
)
|
| 174 |
|
| 175 |
-
st.sidebar.write("#### 4. Share your label! [Guidelines](https://huggingface.github.io/AIEnergyScore/#labelusage)")
|
| 176 |
-
st.sidebar.markdown("<hr style='border: 1px solid gray; margin: 15px 0;'>", unsafe_allow_html=True)
|
| 177 |
-
st.sidebar.write("### Key Links")
|
| 178 |
-
st.sidebar.markdown(
|
| 179 |
-
"""
|
| 180 |
-
<ul style="margin-top: 0; margin-bottom: 0; padding-left: 20px;">
|
| 181 |
-
<li><a href="https://huggingface.co/spaces/AIEnergyScore/Leaderboard" target="_blank">Leaderboard</a></li>
|
| 182 |
-
<li><a href="https://huggingface.co/spaces/AIEnergyScore/submission_portal" target="_blank">Submission Portal</a></li>
|
| 183 |
-
<li><a href="https://huggingface.github.io/AIEnergyScore/#faq" target="_blank">FAQ</a></li>
|
| 184 |
-
<li><a href="https://huggingface.github.io/AIEnergyScore/#documentation" target="_blank">Documentation</a></li>
|
| 185 |
-
</ul>
|
| 186 |
-
""",
|
| 187 |
-
unsafe_allow_html=True,
|
| 188 |
-
)
|
| 189 |
-
|
| 190 |
-
|
| 191 |
-
def create_label_single_pass(background_image, model_data, final_size=(520, 728)):
|
| 192 |
-
bg_resized = background_image.resize(final_size, Image.Resampling.LANCZOS)
|
| 193 |
-
draw = ImageDraw.Draw(bg_resized)
|
| 194 |
-
|
| 195 |
-
try:
|
| 196 |
-
title_font = ImageFont.truetype("Inter_24pt-Bold.ttf", size=27)
|
| 197 |
-
details_font = ImageFont.truetype("Inter_18pt-Regular.ttf", size=23)
|
| 198 |
-
energy_font = ImageFont.truetype("Inter_18pt-Medium.ttf", size=24)
|
| 199 |
-
except Exception as e:
|
| 200 |
-
st.error(f"Font loading failed: {e}")
|
| 201 |
-
return bg_resized
|
| 202 |
-
|
| 203 |
-
title_x, title_y = 33, 150
|
| 204 |
-
details_x, details_y = 480, 256
|
| 205 |
-
energy_x = 480 # Right margin for the energy value
|
| 206 |
-
energy_y = 472
|
| 207 |
-
|
| 208 |
-
# Capitalize only the first letter of the first word while keeping the rest as is
|
| 209 |
-
def smart_capitalize(text):
|
| 210 |
-
"""Capitalizes the first letter of a string only if it's not already capitalized."""
|
| 211 |
-
if not text:
|
| 212 |
-
return text # Return unchanged if empty
|
| 213 |
-
return text if text[0].isupper() else text[0].upper() + text[1:]
|
| 214 |
-
|
| 215 |
-
# Apply smart capitalization
|
| 216 |
-
provider_text = smart_capitalize(str(model_data['provider']))
|
| 217 |
-
model_text = smart_capitalize(str(model_data['model']))
|
| 218 |
-
|
| 219 |
-
draw.text((title_x, title_y), provider_text, font=title_font, fill="black")
|
| 220 |
-
draw.text((title_x, title_y + 38), model_text, font=title_font, fill="black")
|
| 221 |
-
|
| 222 |
-
details_lines = [str(model_data['date']), str(model_data['task']), str(model_data['hardware'])]
|
| 223 |
-
for i, line in enumerate(details_lines):
|
| 224 |
-
bbox = draw.textbbox((0, 0), line, font=details_font)
|
| 225 |
-
text_width = bbox[2] - bbox[0] # Get text width
|
| 226 |
-
draw.text((details_x - text_width, details_y + i * 47), line, font=details_font, fill="black")
|
| 227 |
-
|
| 228 |
-
# Right-align the energy text
|
| 229 |
-
energy_text = str(model_data['energy'])
|
| 230 |
-
energy_bbox = draw.textbbox((0, 0), energy_text, font=energy_font)
|
| 231 |
-
energy_text_width = energy_bbox[2] - energy_bbox[0]
|
| 232 |
-
|
| 233 |
-
draw.text((energy_x - energy_text_width, energy_y), energy_text, font=energy_font, fill="black")
|
| 234 |
-
|
| 235 |
-
return bg_resized
|
| 236 |
-
|
| 237 |
if __name__ == "__main__":
|
| 238 |
-
main()
|
|
|
|
| 4 |
import io
|
| 5 |
|
| 6 |
def main():
|
|
|
|
| 7 |
st.markdown(
|
| 8 |
"""
|
| 9 |
<style>
|
|
|
|
| 10 |
.stMultiSelect [data-baseweb="tag"] {
|
| 11 |
+
background-color: #3fa45bff !important;
|
| 12 |
+
color: white !important;
|
| 13 |
font-weight: medium;
|
| 14 |
border-radius: 5px;
|
| 15 |
padding: 5px 10px;
|
| 16 |
}
|
|
|
|
|
|
|
| 17 |
.stMultiSelect [data-baseweb="tag"]:hover {
|
| 18 |
background-color: #358d4d !important;
|
| 19 |
}
|
|
|
|
|
|
|
| 20 |
.stMultiSelect input {
|
| 21 |
color: black !important;
|
| 22 |
}
|
|
|
|
| 25 |
unsafe_allow_html=True,
|
| 26 |
)
|
| 27 |
|
|
|
|
| 28 |
with st.sidebar:
|
| 29 |
col1, col2 = st.columns([1, 5])
|
|
|
|
| 30 |
with col1:
|
| 31 |
logo = Image.open("logo.png")
|
| 32 |
resized_logo = logo.resize((50, 50))
|
| 33 |
st.image(resized_logo)
|
|
|
|
| 34 |
with col2:
|
| 35 |
st.markdown(
|
| 36 |
"""
|
| 37 |
+
<div style="display: flex; align-items: center; gap: 10px; margin: 0; padding: 0; font-family: 'Inter', sans-serif; font-size: 26px; font-weight: bold;">
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 38 |
AI Energy Score
|
| 39 |
</div>
|
| 40 |
""",
|
| 41 |
unsafe_allow_html=True,
|
| 42 |
)
|
| 43 |
+
|
| 44 |
st.sidebar.markdown("<hr style='border: 1px solid gray; margin: 15px 0;'>", unsafe_allow_html=True)
|
|
|
|
| 45 |
st.sidebar.write("### Generate Label:")
|
| 46 |
+
|
|
|
|
| 47 |
task_order = [
|
| 48 |
+
"Text Generation", "Image Generation", "Text Classification", "Image Classification", "Image Captioning",
|
| 49 |
+
"Summarization", "Speech-to-Text (ASR)", "Object Detection", "Question Answering", "Sentence Similarity"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 50 |
]
|
| 51 |
+
|
|
|
|
| 52 |
st.sidebar.write("#### 1. Select task(s) to view models")
|
| 53 |
selected_tasks = st.sidebar.multiselect("", options=task_order, default=["Text Generation"])
|
| 54 |
+
|
| 55 |
task_to_file = {
|
| 56 |
"Text Generation": "text_gen_energyscore.csv",
|
| 57 |
"Image Generation": "image_generation_energyscore.csv",
|
|
|
|
| 64 |
"Question Answering": "question_answering_energyscore.csv",
|
| 65 |
"Sentence Similarity": "sentence_similarity_energyscore.csv"
|
| 66 |
}
|
| 67 |
+
|
| 68 |
st.sidebar.write("#### 2. Select a model to generate label")
|
| 69 |
default_model_data = {
|
| 70 |
'provider': "AI Provider",
|
|
|
|
| 76 |
'energy': "?",
|
| 77 |
'score': 5
|
| 78 |
}
|
| 79 |
+
|
| 80 |
if not selected_tasks:
|
| 81 |
model_data = default_model_data
|
| 82 |
else:
|
|
|
|
| 94 |
|
| 95 |
df['full_model'] = df['model']
|
| 96 |
df[['provider', 'model']] = df['model'].str.split(pat='/', n=1, expand=True)
|
| 97 |
+
df['energy'] = (df['total_gpu_energy'] * 1000).round(2) # Convert to Wh and round to 2 decimal places
|
| 98 |
df['score'] = df['energy_score'].fillna(1).astype(int)
|
| 99 |
df['date'] = "February 2025"
|
| 100 |
df['hardware'] = "NVIDIA H100-80GB"
|
|
|
|
| 118 |
model_data = data_df[data_df["full_model"] == selected_model].iloc[0]
|
| 119 |
|
| 120 |
st.sidebar.write("#### 3. Download the label")
|
|
|
|
| 121 |
try:
|
| 122 |
score = int(model_data["score"])
|
| 123 |
background_path = f"{score}.png"
|
|
|
|
| 130 |
return
|
| 131 |
|
| 132 |
final_size = (520, 728)
|
| 133 |
+
generated_label = background.resize(final_size, Image.Resampling.LANCZOS)
|
|
|
|
| 134 |
st.image(generated_label, caption="Generated Label Preview", width=520)
|
| 135 |
|
| 136 |
img_buffer = io.BytesIO()
|
|
|
|
| 144 |
mime="image/png"
|
| 145 |
)
|
| 146 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 147 |
if __name__ == "__main__":
|
| 148 |
+
main()
|