Spaces:
Running
Running
Update app.py
Browse files
app.py
CHANGED
|
@@ -2,107 +2,157 @@ import streamlit as st
|
|
| 2 |
import pandas as pd
|
| 3 |
from PIL import Image, ImageDraw, ImageFont
|
| 4 |
import io
|
| 5 |
-
import os
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 6 |
|
| 7 |
-
#
|
|
|
|
|
|
|
| 8 |
TASK_TO_CSV = {
|
| 9 |
-
"
|
| 10 |
-
"
|
| 11 |
-
"Image
|
| 12 |
-
"
|
| 13 |
-
"
|
| 14 |
-
"
|
| 15 |
-
"
|
|
|
|
|
|
|
|
|
|
|
|
|
| 16 |
}
|
| 17 |
-
|
| 18 |
-
# Back-compat so old code like task_to_file[task] keeps working
|
| 19 |
task_to_file = TASK_TO_CSV
|
| 20 |
|
| 21 |
-
|
| 22 |
-
|
| 23 |
-
|
| 24 |
-
HF_REPO_TYPE = "space"
|
| 25 |
-
HF_DATA_PREFIX = "data/energy" # where the CSVs live in the Space
|
| 26 |
-
|
| 27 |
def read_csv_from_hub(file_name: str) -> pd.DataFrame:
|
| 28 |
"""
|
| 29 |
-
Download a CSV from
|
| 30 |
-
|
| 31 |
-
Falls back to local file if Hub is unavailable.
|
| 32 |
"""
|
| 33 |
hub_path = f"{HF_DATA_PREFIX}/{file_name}"
|
| 34 |
try:
|
| 35 |
-
#
|
| 36 |
socket.gethostbyname("huggingface.co")
|
| 37 |
-
|
| 38 |
local_path = hf_hub_download(
|
| 39 |
repo_id=HF_REPO_ID,
|
| 40 |
repo_type=HF_REPO_TYPE,
|
| 41 |
filename=hub_path,
|
| 42 |
-
revision="main",
|
| 43 |
resume_download=True
|
| 44 |
)
|
| 45 |
return pd.read_csv(local_path)
|
| 46 |
except Exception as e:
|
| 47 |
-
# Fallback to local file if present
|
| 48 |
try:
|
| 49 |
return pd.read_csv(file_name)
|
| 50 |
except Exception:
|
| 51 |
-
# re-raise with context so it surfaces nicely in Streamlit
|
| 52 |
raise RuntimeError(
|
| 53 |
f"Unable to load '{file_name}' from Hub path '{hub_path}' or locally. "
|
| 54 |
f"Original error: {e}"
|
| 55 |
)
|
| 56 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 57 |
def main():
|
| 58 |
-
#
|
| 59 |
st.markdown(
|
| 60 |
"""
|
| 61 |
<style>
|
| 62 |
-
/* Change background color of selected items */
|
| 63 |
.stMultiSelect [data-baseweb="tag"] {
|
| 64 |
-
background-color: #3fa45bff !important;
|
| 65 |
-
color: white !important;
|
| 66 |
-
font-weight:
|
| 67 |
border-radius: 5px;
|
| 68 |
padding: 5px 10px;
|
| 69 |
}
|
| 70 |
-
|
| 71 |
-
|
| 72 |
-
.stMultiSelect [data-baseweb="tag"]:hover {
|
| 73 |
-
background-color: #358d4d !important;
|
| 74 |
-
}
|
| 75 |
-
|
| 76 |
-
/* Style the dropdown input field */
|
| 77 |
-
.stMultiSelect input {
|
| 78 |
-
color: black !important;
|
| 79 |
-
}
|
| 80 |
</style>
|
| 81 |
""",
|
| 82 |
unsafe_allow_html=True,
|
| 83 |
)
|
| 84 |
|
| 85 |
-
# Sidebar logo
|
| 86 |
with st.sidebar:
|
| 87 |
col1, col2 = st.columns([1, 5])
|
| 88 |
-
|
| 89 |
with col1:
|
| 90 |
logo = Image.open("logo.png")
|
| 91 |
-
|
| 92 |
-
st.image(resized_logo)
|
| 93 |
-
|
| 94 |
with col2:
|
| 95 |
st.markdown(
|
| 96 |
"""
|
| 97 |
-
<div style="
|
| 98 |
-
|
| 99 |
-
align-items: center;
|
| 100 |
-
gap: 10px;
|
| 101 |
-
margin: 0;
|
| 102 |
-
padding: 0;
|
| 103 |
-
font-family: 'Inter', sans-serif;
|
| 104 |
-
font-size: 26px;
|
| 105 |
-
font-weight: medium;">
|
| 106 |
AI Energy Score
|
| 107 |
</div>
|
| 108 |
""",
|
|
@@ -111,38 +161,27 @@ def main():
|
|
| 111 |
|
| 112 |
st.sidebar.markdown("<hr style='border: 1px solid gray; margin: 15px 0;'>", unsafe_allow_html=True)
|
| 113 |
st.sidebar.write("### Generate Label:")
|
| 114 |
-
|
|
|
|
| 115 |
task_order = [
|
| 116 |
-
"Text Generation",
|
| 117 |
-
"Reasoning",
|
| 118 |
-
"Image Generation",
|
| 119 |
-
"Text Classification",
|
| 120 |
-
"Image Classification",
|
| 121 |
-
"Image Captioning",
|
| 122 |
-
"Summarization",
|
| 123 |
-
"Speech-to-Text (ASR)",
|
| 124 |
-
"Object Detection",
|
| 125 |
-
"Question Answering",
|
| 126 |
-
"Sentence Similarity"
|
| 127 |
]
|
| 128 |
-
|
|
|
|
| 129 |
st.sidebar.write("#### 1. Select task(s) to view models")
|
| 130 |
selected_tasks = st.sidebar.multiselect("", options=task_order, default=["Text Generation"])
|
| 131 |
-
|
| 132 |
-
|
| 133 |
-
"Text Generation": "text_generation.csv",
|
| 134 |
-
"Reasoning": "reasoning.csv",
|
| 135 |
-
"Image Generation": "image_generation.csv",
|
| 136 |
-
"Text Classification": "text_classification.csv",
|
| 137 |
-
"Image Classification": "image_classification.csv",
|
| 138 |
-
"Image Captioning": "image_captioning.csv",
|
| 139 |
-
"Summarization": "summarization.csv",
|
| 140 |
-
"Speech-to-Text (ASR)": "asr.csv",
|
| 141 |
-
"Object Detection": "object_detection.csv",
|
| 142 |
-
"Question Answering": "question_answering.csv",
|
| 143 |
-
"Sentence Similarity": "sentence_similarity.csv"
|
| 144 |
-
}
|
| 145 |
-
st.sidebar.write("#### 2. Select a model to generate label")
|
| 146 |
default_model_data = {
|
| 147 |
'provider': "AI Provider",
|
| 148 |
'model': "Model Name",
|
|
@@ -150,15 +189,20 @@ def main():
|
|
| 150 |
'date': "",
|
| 151 |
'task': "",
|
| 152 |
'hardware': "",
|
| 153 |
-
'energy':
|
| 154 |
'score': 5
|
| 155 |
}
|
|
|
|
| 156 |
if not selected_tasks:
|
| 157 |
model_data = default_model_data
|
| 158 |
else:
|
| 159 |
dfs = []
|
| 160 |
for task in selected_tasks:
|
| 161 |
-
file_name =
|
|
|
|
|
|
|
|
|
|
|
|
|
| 162 |
try:
|
| 163 |
df = read_csv_from_hub(file_name)
|
| 164 |
except FileNotFoundError:
|
|
@@ -168,15 +212,31 @@ def main():
|
|
| 168 |
st.sidebar.error(f"Error reading '{file_name}' for task {task}: {e}")
|
| 169 |
continue
|
| 170 |
|
|
|
|
| 171 |
df['full_model'] = df['model']
|
| 172 |
df[['provider', 'model']] = df['model'].str.split(pat='/', n=1, expand=True)
|
| 173 |
-
|
|
|
|
| 174 |
df['energy'] = (df['total_gpu_energy'] * 1000).round(2)
|
|
|
|
|
|
|
| 175 |
df['score'] = df['energy_score'].fillna(1).astype(int)
|
| 176 |
-
|
|
|
|
| 177 |
df['hardware'] = "NVIDIA H100-80GB"
|
| 178 |
df['task'] = task
|
| 179 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 180 |
dfs.append(df)
|
| 181 |
|
| 182 |
if not dfs:
|
|
@@ -195,7 +255,7 @@ def main():
|
|
| 195 |
model_data = data_df[data_df["full_model"] == selected_model].iloc[0]
|
| 196 |
|
| 197 |
st.sidebar.write("#### 3. Download the label")
|
| 198 |
-
|
| 199 |
try:
|
| 200 |
score = int(model_data["score"])
|
| 201 |
background_path = f"{score}.png"
|
|
@@ -228,21 +288,21 @@ def main():
|
|
| 228 |
st.sidebar.markdown("<hr style='border: 1px solid gray; margin: 15px 0;'>", unsafe_allow_html=True)
|
| 229 |
st.sidebar.write("### Key Links")
|
| 230 |
st.sidebar.markdown(
|
| 231 |
-
|
| 232 |
-
|
| 233 |
-
|
| 234 |
-
|
| 235 |
-
|
| 236 |
-
|
| 237 |
-
|
| 238 |
-
|
| 239 |
-
|
| 240 |
)
|
| 241 |
|
| 242 |
def create_label_single_pass(background_image, model_data, final_size=(520, 728)):
|
| 243 |
bg_resized = background_image.resize(final_size, Image.Resampling.LANCZOS)
|
| 244 |
|
| 245 |
-
# If no task is selected (i.e
|
| 246 |
if not model_data.get("task"):
|
| 247 |
return bg_resized
|
| 248 |
|
|
@@ -258,34 +318,33 @@ def create_label_single_pass(background_image, model_data, final_size=(520, 728)
|
|
| 258 |
|
| 259 |
title_x, title_y = 33, 150
|
| 260 |
details_x, details_y = 480, 256
|
| 261 |
-
energy_x = 480 #
|
| 262 |
-
energy_y = 472
|
| 263 |
|
| 264 |
-
# Capitalize only the first letter of the first word while keeping the rest as is
|
| 265 |
-
def smart_capitalize(text):
|
| 266 |
-
"""Capitalizes the first letter of a string only if it's not already capitalized."""
|
| 267 |
-
if not text:
|
| 268 |
-
return text # Return unchanged if empty
|
| 269 |
-
return text if text[0].isupper() else text[0].upper() + text[1:]
|
| 270 |
-
|
| 271 |
-
# Apply smart capitalization
|
| 272 |
provider_text = smart_capitalize(str(model_data['provider']))
|
| 273 |
model_text = smart_capitalize(str(model_data['model']))
|
| 274 |
-
|
| 275 |
draw.text((title_x, title_y), provider_text, font=title_font, fill="black")
|
| 276 |
draw.text((title_x, title_y + 38), model_text, font=title_font, fill="black")
|
| 277 |
|
| 278 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 279 |
for i, line in enumerate(details_lines):
|
| 280 |
bbox = draw.textbbox((0, 0), line, font=details_font)
|
| 281 |
-
text_width = bbox[2] - bbox[0]
|
| 282 |
draw.text((details_x - text_width, details_y + i * 47), line, font=details_font, fill="black")
|
| 283 |
|
| 284 |
-
#
|
| 285 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
| 286 |
energy_bbox = draw.textbbox((0, 0), energy_text, font=energy_font)
|
| 287 |
energy_text_width = energy_bbox[2] - energy_bbox[0]
|
| 288 |
-
|
| 289 |
draw.text((energy_x - energy_text_width, energy_y), energy_text, font=energy_font, fill="black")
|
| 290 |
|
| 291 |
return bg_resized
|
|
|
|
| 2 |
import pandas as pd
|
| 3 |
from PIL import Image, ImageDraw, ImageFont
|
| 4 |
import io
|
| 5 |
+
import os
|
| 6 |
+
import socket
|
| 7 |
+
import calendar
|
| 8 |
+
import re
|
| 9 |
+
from typing import Optional
|
| 10 |
+
from huggingface_hub import hf_hub_download
|
| 11 |
+
|
| 12 |
+
# =========================
|
| 13 |
+
# Hugging Face Space config
|
| 14 |
+
# =========================
|
| 15 |
+
HF_REPO_ID = "AIEnergyScore/Leaderboard" # Space slug
|
| 16 |
+
HF_REPO_TYPE = "space"
|
| 17 |
+
HF_DATA_PREFIX = "data/energy" # path within the Space
|
| 18 |
|
| 19 |
+
# =========================
|
| 20 |
+
# Task -> CSV mapping
|
| 21 |
+
# =========================
|
| 22 |
TASK_TO_CSV = {
|
| 23 |
+
"Text Generation": "text_generation.csv",
|
| 24 |
+
"Reasoning": "reasoning.csv", # now exists in your Space
|
| 25 |
+
"Image Generation": "image_generation.csv",
|
| 26 |
+
"Text Classification": "text_classification.csv",
|
| 27 |
+
"Image Classification": "image_classification.csv",
|
| 28 |
+
"Image Captioning": "image_captioning.csv",
|
| 29 |
+
"Summarization": "summarization.csv",
|
| 30 |
+
"Speech-to-Text (ASR)": "asr.csv",
|
| 31 |
+
"Object Detection": "object_detection.csv",
|
| 32 |
+
"Question Answering": "question_answering.csv",
|
| 33 |
+
"Sentence Similarity": "sentence_similarity.csv",
|
| 34 |
}
|
| 35 |
+
# Back-compat if parts of the code still reference this name:
|
|
|
|
| 36 |
task_to_file = TASK_TO_CSV
|
| 37 |
|
| 38 |
+
# =========================
|
| 39 |
+
# Helpers
|
| 40 |
+
# =========================
|
|
|
|
|
|
|
|
|
|
| 41 |
def read_csv_from_hub(file_name: str) -> pd.DataFrame:
|
| 42 |
"""
|
| 43 |
+
Download a CSV from HF Space path data/energy/<file_name>,
|
| 44 |
+
return a pandas DataFrame. Falls back to local if hub unavailable.
|
|
|
|
| 45 |
"""
|
| 46 |
hub_path = f"{HF_DATA_PREFIX}/{file_name}"
|
| 47 |
try:
|
| 48 |
+
# helpful DNS check
|
| 49 |
socket.gethostbyname("huggingface.co")
|
|
|
|
| 50 |
local_path = hf_hub_download(
|
| 51 |
repo_id=HF_REPO_ID,
|
| 52 |
repo_type=HF_REPO_TYPE,
|
| 53 |
filename=hub_path,
|
| 54 |
+
revision="main",
|
| 55 |
resume_download=True
|
| 56 |
)
|
| 57 |
return pd.read_csv(local_path)
|
| 58 |
except Exception as e:
|
|
|
|
| 59 |
try:
|
| 60 |
return pd.read_csv(file_name)
|
| 61 |
except Exception:
|
|
|
|
| 62 |
raise RuntimeError(
|
| 63 |
f"Unable to load '{file_name}' from Hub path '{hub_path}' or locally. "
|
| 64 |
f"Original error: {e}"
|
| 65 |
)
|
| 66 |
|
| 67 |
+
def _normalize(col: str) -> str:
|
| 68 |
+
return re.sub(r"[^a-z0-9]", "", col.strip().lower())
|
| 69 |
+
|
| 70 |
+
def find_test_date_column(df: pd.DataFrame) -> Optional[str]:
|
| 71 |
+
"""
|
| 72 |
+
Locate a 'test date' column. Strategy:
|
| 73 |
+
1) Exact case-insensitive match 'test date'
|
| 74 |
+
2) Any header whose normalized form contains both 'test' and 'date'
|
| 75 |
+
3) Fallback to column E (index 4) if present
|
| 76 |
+
"""
|
| 77 |
+
# (1) exact "test date"
|
| 78 |
+
for c in df.columns:
|
| 79 |
+
if c.strip().lower() == "test date":
|
| 80 |
+
return c
|
| 81 |
+
# (2) flexible match
|
| 82 |
+
for c in df.columns:
|
| 83 |
+
cn = _normalize(c)
|
| 84 |
+
if "test" in cn and "date" in cn:
|
| 85 |
+
return c
|
| 86 |
+
# (3) fallback to E (0-based index 4)
|
| 87 |
+
if len(df.columns) >= 5:
|
| 88 |
+
return df.columns[4]
|
| 89 |
+
return None
|
| 90 |
+
|
| 91 |
+
def month_abbrev_to_full(abbrev: str) -> Optional[str]:
|
| 92 |
+
"""
|
| 93 |
+
Map 'Feb' -> 'February', 'Oct' -> 'October'. Returns None if unknown.
|
| 94 |
+
"""
|
| 95 |
+
if not isinstance(abbrev, str) or not abbrev:
|
| 96 |
+
return None
|
| 97 |
+
abbr = abbrev.strip()[:3].title() # normalize to 3-letter case 'Oct'
|
| 98 |
+
for m in range(1, 13):
|
| 99 |
+
if calendar.month_abbr[m] == abbr:
|
| 100 |
+
return calendar.month_name[m]
|
| 101 |
+
return None
|
| 102 |
+
|
| 103 |
+
def render_date_from_test_date(value: str) -> str:
|
| 104 |
+
"""
|
| 105 |
+
Accepts 'Oct 2025', 'Feb 2025' and returns 'October 2025', 'February 2025'.
|
| 106 |
+
Returns '' if it can’t parse.
|
| 107 |
+
"""
|
| 108 |
+
if not isinstance(value, str):
|
| 109 |
+
return ""
|
| 110 |
+
s = value.strip()
|
| 111 |
+
m = re.match(r"^([A-Za-z]+)\s+(\d{4})$", s)
|
| 112 |
+
if not m:
|
| 113 |
+
return ""
|
| 114 |
+
month_full = month_abbrev_to_full(m.group(1))
|
| 115 |
+
return f"{month_full} {m.group(2)}" if month_full else ""
|
| 116 |
+
|
| 117 |
+
def smart_capitalize(text):
|
| 118 |
+
"""Capitalize first letter only if not already; leave rest unchanged."""
|
| 119 |
+
if not text:
|
| 120 |
+
return text
|
| 121 |
+
return text if text[0].isupper() else text[0].upper() + text[1:]
|
| 122 |
+
|
| 123 |
+
# =========================
|
| 124 |
+
# UI / App
|
| 125 |
+
# =========================
|
| 126 |
def main():
|
| 127 |
+
# Tag styling
|
| 128 |
st.markdown(
|
| 129 |
"""
|
| 130 |
<style>
|
|
|
|
| 131 |
.stMultiSelect [data-baseweb="tag"] {
|
| 132 |
+
background-color: #3fa45bff !important;
|
| 133 |
+
color: white !important;
|
| 134 |
+
font-weight: 500;
|
| 135 |
border-radius: 5px;
|
| 136 |
padding: 5px 10px;
|
| 137 |
}
|
| 138 |
+
.stMultiSelect [data-baseweb="tag"]:hover { background-color: #358d4d !important; }
|
| 139 |
+
.stMultiSelect input { color: black !important; }
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 140 |
</style>
|
| 141 |
""",
|
| 142 |
unsafe_allow_html=True,
|
| 143 |
)
|
| 144 |
|
| 145 |
+
# Sidebar logo & title
|
| 146 |
with st.sidebar:
|
| 147 |
col1, col2 = st.columns([1, 5])
|
|
|
|
| 148 |
with col1:
|
| 149 |
logo = Image.open("logo.png")
|
| 150 |
+
st.image(logo.resize((50, 50)))
|
|
|
|
|
|
|
| 151 |
with col2:
|
| 152 |
st.markdown(
|
| 153 |
"""
|
| 154 |
+
<div style="display:flex;align-items:center;gap:10px;margin:0;padding:0;
|
| 155 |
+
font-family:'Inter',sans-serif;font-size:26px;font-weight:500;">
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 156 |
AI Energy Score
|
| 157 |
</div>
|
| 158 |
""",
|
|
|
|
| 161 |
|
| 162 |
st.sidebar.markdown("<hr style='border: 1px solid gray; margin: 15px 0;'>", unsafe_allow_html=True)
|
| 163 |
st.sidebar.write("### Generate Label:")
|
| 164 |
+
|
| 165 |
+
# Task order
|
| 166 |
task_order = [
|
| 167 |
+
"Text Generation",
|
| 168 |
+
"Reasoning",
|
| 169 |
+
"Image Generation",
|
| 170 |
+
"Text Classification",
|
| 171 |
+
"Image Classification",
|
| 172 |
+
"Image Captioning",
|
| 173 |
+
"Summarization",
|
| 174 |
+
"Speech-to-Text (ASR)",
|
| 175 |
+
"Object Detection",
|
| 176 |
+
"Question Answering",
|
| 177 |
+
"Sentence Similarity",
|
| 178 |
]
|
| 179 |
+
|
| 180 |
+
# 1) Select task(s)
|
| 181 |
st.sidebar.write("#### 1. Select task(s) to view models")
|
| 182 |
selected_tasks = st.sidebar.multiselect("", options=task_order, default=["Text Generation"])
|
| 183 |
+
|
| 184 |
+
# Default when nothing selected
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 185 |
default_model_data = {
|
| 186 |
'provider': "AI Provider",
|
| 187 |
'model': "Model Name",
|
|
|
|
| 189 |
'date': "",
|
| 190 |
'task': "",
|
| 191 |
'hardware': "",
|
| 192 |
+
'energy': 0.0,
|
| 193 |
'score': 5
|
| 194 |
}
|
| 195 |
+
|
| 196 |
if not selected_tasks:
|
| 197 |
model_data = default_model_data
|
| 198 |
else:
|
| 199 |
dfs = []
|
| 200 |
for task in selected_tasks:
|
| 201 |
+
file_name = TASK_TO_CSV.get(task)
|
| 202 |
+
if not file_name:
|
| 203 |
+
st.sidebar.error(f"Unknown task '{task}'.")
|
| 204 |
+
continue
|
| 205 |
+
|
| 206 |
try:
|
| 207 |
df = read_csv_from_hub(file_name)
|
| 208 |
except FileNotFoundError:
|
|
|
|
| 212 |
st.sidebar.error(f"Error reading '{file_name}' for task {task}: {e}")
|
| 213 |
continue
|
| 214 |
|
| 215 |
+
# Split provider/model if combined as "Provider/Model"
|
| 216 |
df['full_model'] = df['model']
|
| 217 |
df[['provider', 'model']] = df['model'].str.split(pat='/', n=1, expand=True)
|
| 218 |
+
|
| 219 |
+
# Convert kWh -> Wh (total_gpu_energy is in kWh); keep 2 decimals
|
| 220 |
df['energy'] = (df['total_gpu_energy'] * 1000).round(2)
|
| 221 |
+
|
| 222 |
+
# Score
|
| 223 |
df['score'] = df['energy_score'].fillna(1).astype(int)
|
| 224 |
+
|
| 225 |
+
# Hardware placeholder (adjust if you have a specific column)
|
| 226 |
df['hardware'] = "NVIDIA H100-80GB"
|
| 227 |
df['task'] = task
|
| 228 |
|
| 229 |
+
# --- DATE: Use CSV 'test date' for Text Generation & Reasoning ---
|
| 230 |
+
if task in {"Text Generation", "Reasoning"}:
|
| 231 |
+
td_col = find_test_date_column(df)
|
| 232 |
+
if td_col:
|
| 233 |
+
df['date'] = df[td_col].apply(render_date_from_test_date)
|
| 234 |
+
df['date'] = df['date'].fillna("").astype(str)
|
| 235 |
+
else:
|
| 236 |
+
df['date'] = ""
|
| 237 |
+
else:
|
| 238 |
+
df['date'] = ""
|
| 239 |
+
|
| 240 |
dfs.append(df)
|
| 241 |
|
| 242 |
if not dfs:
|
|
|
|
| 255 |
model_data = data_df[data_df["full_model"] == selected_model].iloc[0]
|
| 256 |
|
| 257 |
st.sidebar.write("#### 3. Download the label")
|
| 258 |
+
|
| 259 |
try:
|
| 260 |
score = int(model_data["score"])
|
| 261 |
background_path = f"{score}.png"
|
|
|
|
| 288 |
st.sidebar.markdown("<hr style='border: 1px solid gray; margin: 15px 0;'>", unsafe_allow_html=True)
|
| 289 |
st.sidebar.write("### Key Links")
|
| 290 |
st.sidebar.markdown(
|
| 291 |
+
"""
|
| 292 |
+
<ul style="margin-top:0;margin-bottom:0;padding-left:20px;">
|
| 293 |
+
<li><a href="https://huggingface.co/spaces/AIEnergyScore/Leaderboard" target="_blank">Leaderboard</a></li>
|
| 294 |
+
<li><a href="https://huggingface.co/spaces/AIEnergyScore/submission_portal" target="_blank">Submission Portal</a></li>
|
| 295 |
+
<li><a href="https://huggingface.github.io/AIEnergyScore/#faq" target="_blank">FAQ</a></li>
|
| 296 |
+
<li><a href="https://huggingface.github.io/AIEnergyScore/#documentation" target="_blank">Documentation</a></li>
|
| 297 |
+
</ul>
|
| 298 |
+
""",
|
| 299 |
+
unsafe_allow_html=True,
|
| 300 |
)
|
| 301 |
|
| 302 |
def create_label_single_pass(background_image, model_data, final_size=(520, 728)):
|
| 303 |
bg_resized = background_image.resize(final_size, Image.Resampling.LANCZOS)
|
| 304 |
|
| 305 |
+
# If no task is selected (i.e., using default model_data), return background
|
| 306 |
if not model_data.get("task"):
|
| 307 |
return bg_resized
|
| 308 |
|
|
|
|
| 318 |
|
| 319 |
title_x, title_y = 33, 150
|
| 320 |
details_x, details_y = 480, 256
|
| 321 |
+
energy_x, energy_y = 480, 472 # right-aligned anchors
|
|
|
|
| 322 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 323 |
provider_text = smart_capitalize(str(model_data['provider']))
|
| 324 |
model_text = smart_capitalize(str(model_data['model']))
|
| 325 |
+
|
| 326 |
draw.text((title_x, title_y), provider_text, font=title_font, fill="black")
|
| 327 |
draw.text((title_x, title_y + 38), model_text, font=title_font, fill="black")
|
| 328 |
|
| 329 |
+
# Right-align details lines (date, task, hardware)
|
| 330 |
+
details_lines = [
|
| 331 |
+
str(model_data.get('date', "")),
|
| 332 |
+
str(model_data.get('task', "")),
|
| 333 |
+
str(model_data.get('hardware', "")),
|
| 334 |
+
]
|
| 335 |
for i, line in enumerate(details_lines):
|
| 336 |
bbox = draw.textbbox((0, 0), line, font=details_font)
|
| 337 |
+
text_width = bbox[2] - bbox[0]
|
| 338 |
draw.text((details_x - text_width, details_y + i * 47), line, font=details_font, fill="black")
|
| 339 |
|
| 340 |
+
# Energy value (two decimals) right-aligned
|
| 341 |
+
try:
|
| 342 |
+
energy_value = float(model_data.get('energy', 0.0))
|
| 343 |
+
except Exception:
|
| 344 |
+
energy_value = 0.0
|
| 345 |
+
energy_text = f"{energy_value:.2f}"
|
| 346 |
energy_bbox = draw.textbbox((0, 0), energy_text, font=energy_font)
|
| 347 |
energy_text_width = energy_bbox[2] - energy_bbox[0]
|
|
|
|
| 348 |
draw.text((energy_x - energy_text_width, energy_y), energy_text, font=energy_font, fill="black")
|
| 349 |
|
| 350 |
return bg_resized
|