Spaces:
Running
Running
Update app.py
Browse files
app.py
CHANGED
|
@@ -8,7 +8,27 @@ def main():
|
|
| 8 |
st.sidebar.image("logo.png", use_container_width=True) # Display the logo at the top
|
| 9 |
st.sidebar.title("Label Generator")
|
| 10 |
|
| 11 |
-
#
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 12 |
st.sidebar.write("### Instructions:")
|
| 13 |
st.sidebar.write("1. Select a model from the dropdown below:")
|
| 14 |
model_options = data_df["model"].unique().tolist() # Get model options
|
|
@@ -18,9 +38,38 @@ def main():
|
|
| 18 |
|
| 19 |
# Add step 2 instructions and move the Download button
|
| 20 |
st.sidebar.write("2. Review the label preview and download your label below:")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 21 |
img_buffer = io.BytesIO()
|
| 22 |
generated_label.save(img_buffer, format="PNG")
|
| 23 |
img_buffer.seek(0)
|
|
|
|
| 24 |
st.sidebar.download_button(
|
| 25 |
label="Download Label as PNG",
|
| 26 |
data=img_buffer,
|
|
@@ -32,24 +81,6 @@ def main():
|
|
| 32 |
st.sidebar.write("3. Share your label in technical reports, announcements, etc.")
|
| 33 |
st.sidebar.markdown("[AI Energy Score Leaderboard](https://huggingface.co/spaces/AIEnergyScore/Leaderboard)")
|
| 34 |
|
| 35 |
-
# Read Data from CSV
|
| 36 |
-
try:
|
| 37 |
-
data_df = pd.read_csv("data.csv")
|
| 38 |
-
except FileNotFoundError:
|
| 39 |
-
st.sidebar.error("Could not find 'data.csv'! Please make sure it's present.")
|
| 40 |
-
return
|
| 41 |
-
|
| 42 |
-
# Ensure the CSV has required columns
|
| 43 |
-
required_columns = ["model", "provider", "date", "task", "hardware", "energy", "score"]
|
| 44 |
-
for col in required_columns:
|
| 45 |
-
if col not in data_df.columns:
|
| 46 |
-
st.sidebar.error(f"The CSV file must contain a column named '{col}'.")
|
| 47 |
-
return
|
| 48 |
-
|
| 49 |
-
# Dropdown for selecting a model
|
| 50 |
-
model_options = data_df["model"].unique().tolist()
|
| 51 |
-
selected_model = st.sidebar.selectbox("Select a Model:", model_options)
|
| 52 |
-
|
| 53 |
# Filter the data for the selected model
|
| 54 |
model_data = data_df[data_df["model"] == selected_model].iloc[0]
|
| 55 |
|
|
|
|
| 8 |
st.sidebar.image("logo.png", use_container_width=True) # Display the logo at the top
|
| 9 |
st.sidebar.title("Label Generator")
|
| 10 |
|
| 11 |
+
# Initialize data_df
|
| 12 |
+
data_df = None
|
| 13 |
+
|
| 14 |
+
# Read Data from CSV
|
| 15 |
+
try:
|
| 16 |
+
data_df = pd.read_csv("data.csv")
|
| 17 |
+
except FileNotFoundError:
|
| 18 |
+
st.sidebar.error("Could not find 'data.csv'! Please make sure it's present.")
|
| 19 |
+
return
|
| 20 |
+
except Exception as e:
|
| 21 |
+
st.sidebar.error(f"Error reading 'data.csv': {e}")
|
| 22 |
+
return
|
| 23 |
+
|
| 24 |
+
# Ensure the CSV has required columns
|
| 25 |
+
required_columns = ["model", "provider", "date", "task", "hardware", "energy", "score"]
|
| 26 |
+
for col in required_columns:
|
| 27 |
+
if col not in data_df.columns:
|
| 28 |
+
st.sidebar.error(f"The CSV file must contain a column named '{col}'.")
|
| 29 |
+
return
|
| 30 |
+
|
| 31 |
+
# Dropdown for selecting a model
|
| 32 |
st.sidebar.write("### Instructions:")
|
| 33 |
st.sidebar.write("1. Select a model from the dropdown below:")
|
| 34 |
model_options = data_df["model"].unique().tolist() # Get model options
|
|
|
|
| 38 |
|
| 39 |
# Add step 2 instructions and move the Download button
|
| 40 |
st.sidebar.write("2. Review the label preview and download your label below:")
|
| 41 |
+
|
| 42 |
+
# Dynamically select the background image and generate label (this part assumes data_df is valid)
|
| 43 |
+
model_data = data_df[data_df["model"] == selected_model].iloc[0]
|
| 44 |
+
|
| 45 |
+
try:
|
| 46 |
+
score = int(model_data["score"]) # Convert to int
|
| 47 |
+
background_path = f"{score}.png" # E.g., "1.png", "2.png"
|
| 48 |
+
background = Image.open(background_path).convert("RGBA")
|
| 49 |
+
|
| 50 |
+
# Proportional scaling to fit within the target size
|
| 51 |
+
target_size = (800, 600) # Maximum width and height
|
| 52 |
+
background.thumbnail(target_size, Image.Resampling.LANCZOS)
|
| 53 |
+
|
| 54 |
+
except FileNotFoundError:
|
| 55 |
+
st.sidebar.error(f"Could not find background image '{score}.png'. Using default background.")
|
| 56 |
+
background = Image.open("default_background.png").convert("RGBA")
|
| 57 |
+
background.thumbnail(target_size, Image.Resampling.LANCZOS) # Resize default image proportionally
|
| 58 |
+
except ValueError:
|
| 59 |
+
st.sidebar.error(f"Invalid score '{model_data['score']}'. Score must be an integer.")
|
| 60 |
+
return
|
| 61 |
+
|
| 62 |
+
# Generate the label with text
|
| 63 |
+
generated_label = create_label(background, model_data)
|
| 64 |
+
|
| 65 |
+
# Display the label
|
| 66 |
+
st.image(generated_label, caption="Generated Label Preview")
|
| 67 |
+
|
| 68 |
+
# Download button for the label
|
| 69 |
img_buffer = io.BytesIO()
|
| 70 |
generated_label.save(img_buffer, format="PNG")
|
| 71 |
img_buffer.seek(0)
|
| 72 |
+
|
| 73 |
st.sidebar.download_button(
|
| 74 |
label="Download Label as PNG",
|
| 75 |
data=img_buffer,
|
|
|
|
| 81 |
st.sidebar.write("3. Share your label in technical reports, announcements, etc.")
|
| 82 |
st.sidebar.markdown("[AI Energy Score Leaderboard](https://huggingface.co/spaces/AIEnergyScore/Leaderboard)")
|
| 83 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 84 |
# Filter the data for the selected model
|
| 85 |
model_data = data_df[data_df["model"] == selected_model].iloc[0]
|
| 86 |
|