Spaces:
Sleeping
Sleeping
| import torch | |
| import torch.nn as nn | |
| import torch.nn.functional as F | |
| import math | |
| class RMSNorm(nn.Module): | |
| def __init__(self, dim, eps=1e-5): | |
| super().__init__() | |
| self.eps = eps | |
| self.weight = nn.Parameter(torch.ones(dim)) | |
| def forward(self, x): | |
| mean_square = (x.pow(2).mean(-1, keepdim=True)) | |
| x = x * torch.rsqrt(mean_square + self.eps) | |
| return self.weight * x | |
| def rotate_half(x): | |
| # Rotates half the hidden dims of the input. | |
| x1 = x[..., : x.shape[-1] // 2] | |
| x2 = x[..., x.shape[-1] // 2 :] | |
| return torch.cat((-x2, x1), dim=-1) | |
| def apply_rotary_pos_emb(q, k, cos, sin): | |
| # q, k: [bsz, heads, seq_len, head_dim] | |
| # cos, sin: [seq_len, head_dim] -> unsqueeze to [1, 1, seq_len, head_dim] | |
| cos = cos.unsqueeze(0).unsqueeze(0) | |
| sin = sin.unsqueeze(0).unsqueeze(0) | |
| q_embed = (q * cos) + (rotate_half(q) * sin) | |
| k_embed = (k * cos) + (rotate_half(k) * sin) | |
| return q_embed, k_embed | |
| class MLP(nn.Module): | |
| def __init__(self, config): | |
| super().__init__() | |
| self.gate_proj = nn.Linear(config.hidden_size, config.intermediate_size, bias=False) | |
| self.up_proj = nn.Linear(config.hidden_size, config.intermediate_size, bias=False) | |
| self.down_proj = nn.Linear(config.intermediate_size, config.hidden_size, bias=False) | |
| self.act_fn = nn.SiLU() | |
| def forward(self, x): | |
| return self.down_proj(self.act_fn(self.gate_proj(x)) * self.up_proj(x)) | |
| class Attention(nn.Module): | |
| def __init__(self, config): | |
| super().__init__() | |
| self.hidden_size = config.hidden_size | |
| self.num_heads = config.num_attention_heads | |
| self.head_dim = config.hidden_size // config.num_attention_heads | |
| self.num_key_value_heads = config.num_key_value_heads | |
| self.num_key_value_groups = self.num_heads // self.num_key_value_heads | |
| self.q_proj = nn.Linear(config.hidden_size, self.num_heads * self.head_dim, bias=False) | |
| self.k_proj = nn.Linear(config.hidden_size, self.num_key_value_heads * self.head_dim, bias=False) | |
| self.v_proj = nn.Linear(config.hidden_size, self.num_key_value_heads * self.head_dim, bias=False) | |
| self.o_proj = nn.Linear(self.num_heads * self.head_dim, config.hidden_size, bias=False) | |
| def forward(self, x, cos, sin, mask=None): | |
| bsz, seq_len, _ = x.shape | |
| q = self.q_proj(x).view(bsz, seq_len, self.num_heads, self.head_dim).transpose(1, 2) | |
| k = self.k_proj(x).view(bsz, seq_len, self.num_key_value_heads, self.head_dim).transpose(1, 2) | |
| v = self.v_proj(x).view(bsz, seq_len, self.num_key_value_heads, self.head_dim).transpose(1, 2) | |
| q, k = apply_rotary_pos_emb(q, k, cos, sin) | |
| k = k.repeat_interleave(self.num_key_value_groups, dim=1) | |
| v = v.repeat_interleave(self.num_key_value_groups, dim=1) | |
| attn_weights = torch.matmul(q, k.transpose(2, 3)) / math.sqrt(self.head_dim) | |
| if mask is not None: | |
| attn_weights = attn_weights + mask | |
| attn_weights = F.softmax(attn_weights, dim=-1) | |
| output = torch.matmul(attn_weights, v) | |
| output = output.transpose(1, 2).contiguous().view(bsz, seq_len, -1) | |
| return self.o_proj(output) | |
| class Block(nn.Module): | |
| def __init__(self, config): | |
| super().__init__() | |
| self.self_attn = Attention(config) | |
| self.mlp = MLP(config) | |
| self.input_layernorm = RMSNorm(config.hidden_size, eps=config.rms_norm_eps) | |
| self.post_attention_layernorm = RMSNorm(config.hidden_size, eps=config.rms_norm_eps) | |
| def forward(self, x, cos, sin, mask=None): | |
| h = x + self.self_attn(self.input_layernorm(x), cos, sin, mask) | |
| out = h + self.mlp(self.post_attention_layernorm(h)) | |
| return out | |
| class SmolLM2(nn.Module): | |
| def __init__(self, config): | |
| super().__init__() | |
| self.config = config | |
| self.embed_tokens = nn.Embedding(config.vocab_size, config.hidden_size) | |
| self.layers = nn.ModuleList([Block(config) for _ in range(config.num_hidden_layers)]) | |
| self.norm = RMSNorm(config.hidden_size, eps=config.rms_norm_eps) | |
| self.lm_head = nn.Linear(config.hidden_size, config.vocab_size, bias=False) | |
| # RoPE setup | |
| self.head_dim = config.hidden_size // config.num_attention_heads | |
| self.rope_theta = getattr(config, "rope_theta", 10000.0) | |
| self.inv_freq = 1.0 / (self.rope_theta ** (torch.arange(0, self.head_dim, 2).float() / self.head_dim)) | |
| self.max_pos = config.max_position_embeddings * 2 | |
| self._set_cos_sin_cache(self.max_pos) | |
| def _set_cos_sin_cache(self, seq_len): | |
| t = torch.arange(seq_len, dtype=torch.float32) | |
| freqs = torch.outer(t, self.inv_freq) | |
| emb = torch.cat((freqs, freqs), dim=-1) | |
| self.register_buffer("cos_cached", emb.cos(), persistent=False) | |
| self.register_buffer("sin_cached", emb.sin(), persistent=False) | |
| def forward(self, input_ids): | |
| bsz, seq_len = input_ids.shape | |
| x = self.embed_tokens(input_ids) | |
| if self.cos_cached.device != x.device or self.cos_cached.shape[0] < seq_len: | |
| self.inv_freq = self.inv_freq.to(x.device) | |
| self._set_cos_sin_cache(max(seq_len, 2048)) | |
| cos = self.cos_cached[:seq_len].to(dtype=x.dtype) | |
| sin = self.sin_cached[:seq_len].to(dtype=x.dtype) | |
| mask = None | |
| if seq_len > 1: | |
| mask = torch.full((seq_len, seq_len), float("-inf"), device=input_ids.device) | |
| mask = torch.triu(mask, diagonal=1) | |
| for layer in self.layers: | |
| x = layer(x, cos, sin, mask) | |
| x = self.norm(x) | |
| logits = self.lm_head(x) | |
| return logits | |