Spaces:
Sleeping
Sleeping
File size: 5,812 Bytes
f7e37b5 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 |
import torch
import torch.nn as nn
import torch.nn.functional as F
import math
class RMSNorm(nn.Module):
def __init__(self, dim, eps=1e-5):
super().__init__()
self.eps = eps
self.weight = nn.Parameter(torch.ones(dim))
def forward(self, x):
mean_square = (x.pow(2).mean(-1, keepdim=True))
x = x * torch.rsqrt(mean_square + self.eps)
return self.weight * x
def rotate_half(x):
# Rotates half the hidden dims of the input.
x1 = x[..., : x.shape[-1] // 2]
x2 = x[..., x.shape[-1] // 2 :]
return torch.cat((-x2, x1), dim=-1)
def apply_rotary_pos_emb(q, k, cos, sin):
# q, k: [bsz, heads, seq_len, head_dim]
# cos, sin: [seq_len, head_dim] -> unsqueeze to [1, 1, seq_len, head_dim]
cos = cos.unsqueeze(0).unsqueeze(0)
sin = sin.unsqueeze(0).unsqueeze(0)
q_embed = (q * cos) + (rotate_half(q) * sin)
k_embed = (k * cos) + (rotate_half(k) * sin)
return q_embed, k_embed
class MLP(nn.Module):
def __init__(self, config):
super().__init__()
self.gate_proj = nn.Linear(config.hidden_size, config.intermediate_size, bias=False)
self.up_proj = nn.Linear(config.hidden_size, config.intermediate_size, bias=False)
self.down_proj = nn.Linear(config.intermediate_size, config.hidden_size, bias=False)
self.act_fn = nn.SiLU()
def forward(self, x):
return self.down_proj(self.act_fn(self.gate_proj(x)) * self.up_proj(x))
class Attention(nn.Module):
def __init__(self, config):
super().__init__()
self.hidden_size = config.hidden_size
self.num_heads = config.num_attention_heads
self.head_dim = config.hidden_size // config.num_attention_heads
self.num_key_value_heads = config.num_key_value_heads
self.num_key_value_groups = self.num_heads // self.num_key_value_heads
self.q_proj = nn.Linear(config.hidden_size, self.num_heads * self.head_dim, bias=False)
self.k_proj = nn.Linear(config.hidden_size, self.num_key_value_heads * self.head_dim, bias=False)
self.v_proj = nn.Linear(config.hidden_size, self.num_key_value_heads * self.head_dim, bias=False)
self.o_proj = nn.Linear(self.num_heads * self.head_dim, config.hidden_size, bias=False)
def forward(self, x, cos, sin, mask=None):
bsz, seq_len, _ = x.shape
q = self.q_proj(x).view(bsz, seq_len, self.num_heads, self.head_dim).transpose(1, 2)
k = self.k_proj(x).view(bsz, seq_len, self.num_key_value_heads, self.head_dim).transpose(1, 2)
v = self.v_proj(x).view(bsz, seq_len, self.num_key_value_heads, self.head_dim).transpose(1, 2)
q, k = apply_rotary_pos_emb(q, k, cos, sin)
k = k.repeat_interleave(self.num_key_value_groups, dim=1)
v = v.repeat_interleave(self.num_key_value_groups, dim=1)
attn_weights = torch.matmul(q, k.transpose(2, 3)) / math.sqrt(self.head_dim)
if mask is not None:
attn_weights = attn_weights + mask
attn_weights = F.softmax(attn_weights, dim=-1)
output = torch.matmul(attn_weights, v)
output = output.transpose(1, 2).contiguous().view(bsz, seq_len, -1)
return self.o_proj(output)
class Block(nn.Module):
def __init__(self, config):
super().__init__()
self.self_attn = Attention(config)
self.mlp = MLP(config)
self.input_layernorm = RMSNorm(config.hidden_size, eps=config.rms_norm_eps)
self.post_attention_layernorm = RMSNorm(config.hidden_size, eps=config.rms_norm_eps)
def forward(self, x, cos, sin, mask=None):
h = x + self.self_attn(self.input_layernorm(x), cos, sin, mask)
out = h + self.mlp(self.post_attention_layernorm(h))
return out
class SmolLM2(nn.Module):
def __init__(self, config):
super().__init__()
self.config = config
self.embed_tokens = nn.Embedding(config.vocab_size, config.hidden_size)
self.layers = nn.ModuleList([Block(config) for _ in range(config.num_hidden_layers)])
self.norm = RMSNorm(config.hidden_size, eps=config.rms_norm_eps)
self.lm_head = nn.Linear(config.hidden_size, config.vocab_size, bias=False)
# RoPE setup
self.head_dim = config.hidden_size // config.num_attention_heads
self.rope_theta = getattr(config, "rope_theta", 10000.0)
self.inv_freq = 1.0 / (self.rope_theta ** (torch.arange(0, self.head_dim, 2).float() / self.head_dim))
self.max_pos = config.max_position_embeddings * 2
self._set_cos_sin_cache(self.max_pos)
def _set_cos_sin_cache(self, seq_len):
t = torch.arange(seq_len, dtype=torch.float32)
freqs = torch.outer(t, self.inv_freq)
emb = torch.cat((freqs, freqs), dim=-1)
self.register_buffer("cos_cached", emb.cos(), persistent=False)
self.register_buffer("sin_cached", emb.sin(), persistent=False)
def forward(self, input_ids):
bsz, seq_len = input_ids.shape
x = self.embed_tokens(input_ids)
if self.cos_cached.device != x.device or self.cos_cached.shape[0] < seq_len:
self.inv_freq = self.inv_freq.to(x.device)
self._set_cos_sin_cache(max(seq_len, 2048))
cos = self.cos_cached[:seq_len].to(dtype=x.dtype)
sin = self.sin_cached[:seq_len].to(dtype=x.dtype)
mask = None
if seq_len > 1:
mask = torch.full((seq_len, seq_len), float("-inf"), device=input_ids.device)
mask = torch.triu(mask, diagonal=1)
for layer in self.layers:
x = layer(x, cos, sin, mask)
x = self.norm(x)
logits = self.lm_head(x)
return logits
|