import torch import torch.nn as nn import torch.nn.functional as F import math class RMSNorm(nn.Module): def __init__(self, dim, eps=1e-5): super().__init__() self.eps = eps self.weight = nn.Parameter(torch.ones(dim)) def forward(self, x): mean_square = (x.pow(2).mean(-1, keepdim=True)) x = x * torch.rsqrt(mean_square + self.eps) return self.weight * x def rotate_half(x): # Rotates half the hidden dims of the input. x1 = x[..., : x.shape[-1] // 2] x2 = x[..., x.shape[-1] // 2 :] return torch.cat((-x2, x1), dim=-1) def apply_rotary_pos_emb(q, k, cos, sin): # q, k: [bsz, heads, seq_len, head_dim] # cos, sin: [seq_len, head_dim] -> unsqueeze to [1, 1, seq_len, head_dim] cos = cos.unsqueeze(0).unsqueeze(0) sin = sin.unsqueeze(0).unsqueeze(0) q_embed = (q * cos) + (rotate_half(q) * sin) k_embed = (k * cos) + (rotate_half(k) * sin) return q_embed, k_embed class MLP(nn.Module): def __init__(self, config): super().__init__() self.gate_proj = nn.Linear(config.hidden_size, config.intermediate_size, bias=False) self.up_proj = nn.Linear(config.hidden_size, config.intermediate_size, bias=False) self.down_proj = nn.Linear(config.intermediate_size, config.hidden_size, bias=False) self.act_fn = nn.SiLU() def forward(self, x): return self.down_proj(self.act_fn(self.gate_proj(x)) * self.up_proj(x)) class Attention(nn.Module): def __init__(self, config): super().__init__() self.hidden_size = config.hidden_size self.num_heads = config.num_attention_heads self.head_dim = config.hidden_size // config.num_attention_heads self.num_key_value_heads = config.num_key_value_heads self.num_key_value_groups = self.num_heads // self.num_key_value_heads self.q_proj = nn.Linear(config.hidden_size, self.num_heads * self.head_dim, bias=False) self.k_proj = nn.Linear(config.hidden_size, self.num_key_value_heads * self.head_dim, bias=False) self.v_proj = nn.Linear(config.hidden_size, self.num_key_value_heads * self.head_dim, bias=False) self.o_proj = nn.Linear(self.num_heads * self.head_dim, config.hidden_size, bias=False) def forward(self, x, cos, sin, mask=None): bsz, seq_len, _ = x.shape q = self.q_proj(x).view(bsz, seq_len, self.num_heads, self.head_dim).transpose(1, 2) k = self.k_proj(x).view(bsz, seq_len, self.num_key_value_heads, self.head_dim).transpose(1, 2) v = self.v_proj(x).view(bsz, seq_len, self.num_key_value_heads, self.head_dim).transpose(1, 2) q, k = apply_rotary_pos_emb(q, k, cos, sin) k = k.repeat_interleave(self.num_key_value_groups, dim=1) v = v.repeat_interleave(self.num_key_value_groups, dim=1) attn_weights = torch.matmul(q, k.transpose(2, 3)) / math.sqrt(self.head_dim) if mask is not None: attn_weights = attn_weights + mask attn_weights = F.softmax(attn_weights, dim=-1) output = torch.matmul(attn_weights, v) output = output.transpose(1, 2).contiguous().view(bsz, seq_len, -1) return self.o_proj(output) class Block(nn.Module): def __init__(self, config): super().__init__() self.self_attn = Attention(config) self.mlp = MLP(config) self.input_layernorm = RMSNorm(config.hidden_size, eps=config.rms_norm_eps) self.post_attention_layernorm = RMSNorm(config.hidden_size, eps=config.rms_norm_eps) def forward(self, x, cos, sin, mask=None): h = x + self.self_attn(self.input_layernorm(x), cos, sin, mask) out = h + self.mlp(self.post_attention_layernorm(h)) return out class SmolLM2(nn.Module): def __init__(self, config): super().__init__() self.config = config self.embed_tokens = nn.Embedding(config.vocab_size, config.hidden_size) self.layers = nn.ModuleList([Block(config) for _ in range(config.num_hidden_layers)]) self.norm = RMSNorm(config.hidden_size, eps=config.rms_norm_eps) self.lm_head = nn.Linear(config.hidden_size, config.vocab_size, bias=False) # RoPE setup self.head_dim = config.hidden_size // config.num_attention_heads self.rope_theta = getattr(config, "rope_theta", 10000.0) self.inv_freq = 1.0 / (self.rope_theta ** (torch.arange(0, self.head_dim, 2).float() / self.head_dim)) self.max_pos = config.max_position_embeddings * 2 self._set_cos_sin_cache(self.max_pos) def _set_cos_sin_cache(self, seq_len): t = torch.arange(seq_len, dtype=torch.float32) freqs = torch.outer(t, self.inv_freq) emb = torch.cat((freqs, freqs), dim=-1) self.register_buffer("cos_cached", emb.cos(), persistent=False) self.register_buffer("sin_cached", emb.sin(), persistent=False) def forward(self, input_ids): bsz, seq_len = input_ids.shape x = self.embed_tokens(input_ids) if self.cos_cached.device != x.device or self.cos_cached.shape[0] < seq_len: self.inv_freq = self.inv_freq.to(x.device) self._set_cos_sin_cache(max(seq_len, 2048)) cos = self.cos_cached[:seq_len].to(dtype=x.dtype) sin = self.sin_cached[:seq_len].to(dtype=x.dtype) mask = None if seq_len > 1: mask = torch.full((seq_len, seq_len), float("-inf"), device=input_ids.device) mask = torch.triu(mask, diagonal=1) for layer in self.layers: x = layer(x, cos, sin, mask) x = self.norm(x) logits = self.lm_head(x) return logits