hexsha
string
size
int64
ext
string
lang
string
max_stars_repo_path
string
max_stars_repo_name
string
max_stars_repo_head_hexsha
string
max_stars_repo_licenses
list
max_stars_count
int64
max_stars_repo_stars_event_min_datetime
string
max_stars_repo_stars_event_max_datetime
string
max_issues_repo_path
string
max_issues_repo_name
string
max_issues_repo_head_hexsha
string
max_issues_repo_licenses
list
max_issues_count
int64
max_issues_repo_issues_event_min_datetime
string
max_issues_repo_issues_event_max_datetime
string
max_forks_repo_path
string
max_forks_repo_name
string
max_forks_repo_head_hexsha
string
max_forks_repo_licenses
list
max_forks_count
int64
max_forks_repo_forks_event_min_datetime
string
max_forks_repo_forks_event_max_datetime
string
content
string
avg_line_length
float64
max_line_length
int64
alphanum_fraction
float64
qsc_code_num_words_quality_signal
int64
qsc_code_num_chars_quality_signal
float64
qsc_code_mean_word_length_quality_signal
float64
qsc_code_frac_words_unique_quality_signal
float64
qsc_code_frac_chars_top_2grams_quality_signal
float64
qsc_code_frac_chars_top_3grams_quality_signal
float64
qsc_code_frac_chars_top_4grams_quality_signal
float64
qsc_code_frac_chars_dupe_5grams_quality_signal
float64
qsc_code_frac_chars_dupe_6grams_quality_signal
float64
qsc_code_frac_chars_dupe_7grams_quality_signal
float64
qsc_code_frac_chars_dupe_8grams_quality_signal
float64
qsc_code_frac_chars_dupe_9grams_quality_signal
float64
qsc_code_frac_chars_dupe_10grams_quality_signal
float64
qsc_code_frac_chars_replacement_symbols_quality_signal
float64
qsc_code_frac_chars_digital_quality_signal
float64
qsc_code_frac_chars_whitespace_quality_signal
float64
qsc_code_size_file_byte_quality_signal
float64
qsc_code_num_lines_quality_signal
float64
qsc_code_num_chars_line_max_quality_signal
float64
qsc_code_num_chars_line_mean_quality_signal
float64
qsc_code_frac_chars_alphabet_quality_signal
float64
qsc_code_frac_chars_comments_quality_signal
float64
qsc_code_cate_xml_start_quality_signal
float64
qsc_code_frac_lines_dupe_lines_quality_signal
float64
qsc_code_cate_autogen_quality_signal
float64
qsc_code_frac_lines_long_string_quality_signal
float64
qsc_code_frac_chars_string_length_quality_signal
float64
qsc_code_frac_chars_long_word_length_quality_signal
float64
qsc_code_frac_lines_string_concat_quality_signal
float64
qsc_code_cate_encoded_data_quality_signal
float64
qsc_code_frac_chars_hex_words_quality_signal
float64
qsc_code_frac_lines_prompt_comments_quality_signal
float64
qsc_code_frac_lines_assert_quality_signal
float64
qsc_codepython_cate_ast_quality_signal
float64
qsc_codepython_frac_lines_func_ratio_quality_signal
float64
qsc_codepython_cate_var_zero_quality_signal
bool
qsc_codepython_frac_lines_pass_quality_signal
float64
qsc_codepython_frac_lines_import_quality_signal
float64
qsc_codepython_frac_lines_simplefunc_quality_signal
float64
qsc_codepython_score_lines_no_logic_quality_signal
float64
qsc_codepython_frac_lines_print_quality_signal
float64
qsc_code_num_words
int64
qsc_code_num_chars
int64
qsc_code_mean_word_length
int64
qsc_code_frac_words_unique
null
qsc_code_frac_chars_top_2grams
int64
qsc_code_frac_chars_top_3grams
int64
qsc_code_frac_chars_top_4grams
int64
qsc_code_frac_chars_dupe_5grams
int64
qsc_code_frac_chars_dupe_6grams
int64
qsc_code_frac_chars_dupe_7grams
int64
qsc_code_frac_chars_dupe_8grams
int64
qsc_code_frac_chars_dupe_9grams
int64
qsc_code_frac_chars_dupe_10grams
int64
qsc_code_frac_chars_replacement_symbols
int64
qsc_code_frac_chars_digital
int64
qsc_code_frac_chars_whitespace
int64
qsc_code_size_file_byte
int64
qsc_code_num_lines
int64
qsc_code_num_chars_line_max
int64
qsc_code_num_chars_line_mean
int64
qsc_code_frac_chars_alphabet
int64
qsc_code_frac_chars_comments
int64
qsc_code_cate_xml_start
int64
qsc_code_frac_lines_dupe_lines
int64
qsc_code_cate_autogen
int64
qsc_code_frac_lines_long_string
int64
qsc_code_frac_chars_string_length
int64
qsc_code_frac_chars_long_word_length
int64
qsc_code_frac_lines_string_concat
null
qsc_code_cate_encoded_data
int64
qsc_code_frac_chars_hex_words
int64
qsc_code_frac_lines_prompt_comments
int64
qsc_code_frac_lines_assert
int64
qsc_codepython_cate_ast
int64
qsc_codepython_frac_lines_func_ratio
int64
qsc_codepython_cate_var_zero
int64
qsc_codepython_frac_lines_pass
int64
qsc_codepython_frac_lines_import
int64
qsc_codepython_frac_lines_simplefunc
int64
qsc_codepython_score_lines_no_logic
int64
qsc_codepython_frac_lines_print
int64
effective
string
hits
int64
e7b35b10fd121d0b29cd1d39fc4c75e4f568a1f4
25
py
Python
chapter2_ws/devel/lib/python3/dist-packages/mastering_ros_demo_pkg/srv/__init__.py
Rajat-Arora/ros_packt_book
a715485ea6e36d298bc6f6f306af0595d89e1174
[ "MIT" ]
null
null
null
chapter2_ws/devel/lib/python3/dist-packages/mastering_ros_demo_pkg/srv/__init__.py
Rajat-Arora/ros_packt_book
a715485ea6e36d298bc6f6f306af0595d89e1174
[ "MIT" ]
null
null
null
chapter2_ws/devel/lib/python3/dist-packages/mastering_ros_demo_pkg/srv/__init__.py
Rajat-Arora/ros_packt_book
a715485ea6e36d298bc6f6f306af0595d89e1174
[ "MIT" ]
null
null
null
from ._demo_srv import *
12.5
24
0.76
4
25
4.25
1
0
0
0
0
0
0
0
0
0
0
0
0.16
25
1
25
25
0.809524
0
0
0
0
0
0
0
0
0
0
0
0
1
0
true
0
1
0
1
0
1
1
0
null
0
0
0
0
0
0
0
0
0
0
0
0
0
1
0
0
0
0
0
0
0
0
0
0
null
0
0
0
0
0
0
1
0
1
0
1
0
0
6
e7bf5114270c4c1ba3fa4db47d240b4427db5d56
31
py
Python
is_ipfs/__init__.py
Barabazs/py-is_ipfs
c8ac622879b2223e298d9cc4a59ae7da89eb0479
[ "MIT" ]
1
2022-03-09T14:23:44.000Z
2022-03-09T14:23:44.000Z
is_ipfs/__init__.py
Barabazs/py-is_ipfs
c8ac622879b2223e298d9cc4a59ae7da89eb0479
[ "MIT" ]
null
null
null
is_ipfs/__init__.py
Barabazs/py-is_ipfs
c8ac622879b2223e298d9cc4a59ae7da89eb0479
[ "MIT" ]
null
null
null
from .is_ipfs import Validator
15.5
30
0.83871
5
31
5
1
0
0
0
0
0
0
0
0
0
0
0
0.129032
31
1
31
31
0.925926
0
0
0
0
0
0
0
0
0
0
0
0
1
0
true
0
1
0
1
0
1
1
0
null
0
0
0
0
0
0
0
0
0
0
0
0
0
1
0
0
0
0
0
0
0
0
0
0
null
0
0
0
0
0
0
1
0
1
0
1
0
0
6
99b7f2669bc39124ccbb858ced46317dfc7b5280
7,789
py
Python
packages/dinesti/python/_grab.py
USEPA/Water-Security-Toolkit
6b6b68e0e1b3dcc8023b453ab48a64f7fd740feb
[ "BSD-3-Clause" ]
3
2019-06-10T18:04:14.000Z
2020-12-05T18:11:40.000Z
packages/dinesti/python/_grab.py
USEPA/Water-Security-Toolkit
6b6b68e0e1b3dcc8023b453ab48a64f7fd740feb
[ "BSD-3-Clause" ]
null
null
null
packages/dinesti/python/_grab.py
USEPA/Water-Security-Toolkit
6b6b68e0e1b3dcc8023b453ab48a64f7fd740feb
[ "BSD-3-Clause" ]
2
2020-09-24T19:04:14.000Z
2020-12-05T18:11:43.000Z
# Copyright (2013) Sandia Corporation. Under the terms of Contract # DE-AC04-94AL85000 with Sandia Corporation, the U.S. Government # retains certain rights in this software. # # This software is released under the FreeBSD license as described # in License.txt import time import string import subprocess import os import tempfile from multiprocessing import Process import _gui from _gui import FakeFile import json # Python 2.6 or later def createYmlFile(fINP, fWQM, fSCN, fTSG, fSEN, fNodes, dSampleTime, nSampleCount, sOutputPrefix): file = tempfile.NamedTemporaryFile(delete=False, suffix='.yml') _gui.writeLine(file,"# written using dinesti web gui") _gui.writeLine(file,"") _gui.writeLine(file,"network:") _gui.writeLine(file," epanet file: " + fINP.name) #_gui.writeLine(file," wqm file: " + fWQM.name) # moved to grabsample section #_gui.writeLine(file," hydraulic timestep: None") # no longer available _gui.writeLine(file," water quality timestep: None") _gui.writeLine(file," simulation duration: None") _gui.writeLine(file,"") _gui.writeLine(file,"scenario:") # used to be called 'events' _gui.writeLine(file," scn file: " + fSCN.name) # for _inversion LP (optimization) _gui.writeLine(file," tsg file: " + fTSG.name) # for _inversion STEP (optmization) _gui.writeLine(file," ignore merlion warnings: False") # moved from network section _gui.writeLine(file,"") #_gui.writeLine(file,"solver:") #_gui.writeLine(file," cplex:") #_gui.writeLine(file," mipgap: 0.02") #_gui.writeLine(file," threads: 1") _gui.writeLine(file,"") #_gui.writeLine(file,"samplelocation:") _gui.writeLine(file,"grabsample:") _gui.writeLine(file," wqm file: " + fWQM.name) # moved from network section _gui.writeLine(file," model format: PYOMO") # AMPL or PYOMO _gui.writeLine(file," sample time: " + str(dSampleTime / 60)) # minutes _gui.writeLine(file," threshold: 0.01") # default = 0.001 _gui.writeLine(file," fixed sensor file: " + fSEN.name) #_gui.writeLine(file," not allowed locations file: None") # no longer available _gui.writeLine(file," allowed locations file: " + fNodes.name) # TODO _gui.writeLine(file," N samples: " + str(nSampleCount)) # default = 3 _gui.writeLine(file," greedy selection: True") _gui.writeLine(file,"") _gui.writeLine(file,"configure:") _gui.writeLine(file," ampl executable: ampl")#" + sInstallDir + "bin/ampl") _gui.writeLine(file," pyomo executable: pyomo")#" + sInstallDir + "bin/pyomo") _gui.writeLine(file," output prefix: " + sOutputPrefix) _gui.writeLine(file,"") #_gui.writeLine(file,"internal:") #_gui.writeLine(file," nodeNames: None") #_gui.writeLine(file," nodeIndices: None") return file def createInpFile(data): text = _gui.getFile(data["docId"], data["fileName"]) temp = tempfile.NamedTemporaryFile(delete=False, suffix='.inp') temp.write(text) return temp def createScnFile(uuid): return FakeFile() def createTsgFile(uuid): temp = tempfile.NamedTemporaryFile(delete=False, suffix='.tsg') data = _gui.getView("m_ScenariosList?key=\"" + uuid + "\"") for row in data["rows"]: text = _gui.getFile(row["id"], row["value"]["fileName"]) temp.write(text + "\n") return temp def createSenFile(uuid): temp = tempfile.NamedTemporaryFile(delete=False, suffix='.sen') doc = _gui.getDoc(uuid) sensors = _gui.getValue(doc, "sensors", "") sensors = sensors.split("\n") bFirst = True for line in sensors: s = line.strip() if len(s) > 0: if not bFirst: temp.write("\n") bFirst = False temp.write(s) return temp def createNodesFile(Nodes): temp = tempfile.NamedTemporaryFile(delete=False, suffix='.nodes') for node in Nodes: temp.write(node + "\n") return temp def runWst(fINP, fWQM, fSCN, fTSG, fSEN, fNodes, fYML, sUuid, sOutputPrefix): nStart = time.time() sInstallDir = _gui.getInstallDir() args = [sInstallDir + "python/bin/wst", "grabsample", fYML.name] # p = subprocess.Popen(args, stdout=subprocess.PIPE) doc = _gui.getDoc(sUuid) sampleTime = doc.get("sampleTime") inp_info = doc.get("docFile_INP") duration = inp_info.get("duration") bErrorOverTime = False if sampleTime <> None and duration <> None: if sampleTime > duration: bErrorOverTime = True doc["pid"] = str(p.pid) doc["status"] = "Running" res = _gui.setDoc(doc) #doc = _gui.getDoc(sUuid) com = p.communicate() sOut = com[0] # sFile = sOutputPrefix + "_grabsample_results.json" results = _gui.readJsonFile(sFile, {"Error": "output file was not created: " + sFile}) sOUT = sOutputPrefix + "_samplelocation.out" debug_text_out_file = _gui.readFile(sOUT) doc = _gui.getDoc(sUuid) bError = False if bErrorOverTime: sError = "the sample time is after the end of the simulation." results = {"Error": sError} doc["Error"] = sError bError = True elif results.get("Error") <> None: doc["Error"] = results["Error"] bError = True doc["results"] = results doc["results"]["sampleTime"] = results.get("sampleTime", 0) * 60 # TODO - this should be changed in the grabsample executable doc["debug_fileSCN"] = fSCN.name doc["debug_fileTSG"] = fTSG.name doc["debug_stdout"] = com[0] doc["returnCode"] = p.returncode doc["debug_text_out_file"] = debug_text_out_file # if com[1] == None: doc["debug_stderr"] = "\0" else: doc["debug_stderr"] = com[1] # sKill = "Signal handler called from" index = string.find(sOut, sKill) doc["debug_stdout_find_error_index"] = index # if _gui.bDeleteTempFiles(override=None): _gui.removeFiles([fWQM, fTSG, fSCN, fINP, fSEN, fNodes, fYML]) _gui.removeFile(sOutputPrefix + "_epanet.rpt") _gui.removeFile(sOutputPrefix + "_samplelocation.out") _gui.removeFile(sOutputPrefix + "_samplelocation.log") _gui.removeFile(sOutputPrefix + "_MERLION_LABEL_MAP.txt") _gui.removeFile(sOutputPrefix + "_GSP.dat") _gui.removeFile(sOutputPrefix + "_ampl.run") _gui.removeFile(sOutputPrefix + "_ampl.out") _gui.removeFile(sOutputPrefix + "_grabsample_results.dat") _gui.removeFile(sOutputPrefix + "_grabsample_results.json") # if index == -1 and p.returncode == 0: doc["status"] = "Complete" elif index == -1 or bError: doc["status"] = "Error" else: doc["status"] = "Stopped" # doc["timer"] = time.time() - nStart _gui.setDoc(sUuid, doc) return doc def runThreaded(doc, sOutputPrefix, bThreaded=True): sUuid = doc["_id"] dSampleTime = doc.get("sampleTime", 0) nSampleCount = doc.get("sampleCount", 3) docFile_INP = doc.get("docFile_INP") Nodes = doc.get("Nodes" ) fWQM = _gui.createWqmFile(docFile_INP) if fWQM == None: fINP = createInpFile(docFile_INP) fWQM = FakeFile() else: fINP = FakeFile() fSCN = createScnFile(sUuid) # FakeFile fTSG = createTsgFile(sUuid) fSEN = createSenFile(sUuid) if Nodes == None: fNodes = FakeFile() else: fNodes = createNodesFile(Nodes) fYML = createYmlFile(fINP, fWQM, fSCN, fTSG, fSEN, fNodes, dSampleTime, nSampleCount, sOutputPrefix) _gui.closeFiles([fINP, fWQM, fSCN, fTSG, fSEN, fNodes, fYML]) # if bThreaded: p = Process(target=runWst, args=(fINP, fWQM, fSCN, fTSG, fSEN, fNodes, fYML, sUuid, sOutputPrefix, )) p.start() else: return runWst(fINP, fWQM, fSCN, fTSG, fSEN, fNodes, fYML, sUuid, sOutputPrefix) return def run(sCall, sUuid, bThreaded=True): if sCall == "delete": return False if sCall == "rename": return False sDir = tempfile.gettempdir() os.chdir(sDir) doc = _gui.getDoc(sUuid) runThreaded(doc, sUuid, True) return _gui.respondJSON(json.dumps({})) def main(): _gui.setHost() for req in _gui.getRequests(): sDb = _gui.getQuery(req, "db") _gui.setDatabase(sDb) sCall = _gui.getQuery(req, "call") sUuid = _gui.getQuery(req, "uuid") bRetVal = run(sCall, sUuid, True) if bRetVal: continue _gui.respondJSON(json.dumps({})) if __name__ == "__main__": main()
7,789
7,789
0.705867
999
7,789
5.374374
0.269269
0.087167
0.116223
0.01788
0.196685
0.172658
0.122369
0.070404
0.056994
0.048054
0
0.00646
0.145462
7,789
1
7,789
7,789
0.80018
0.993966
0
0.117021
0
0
0.177388
0.021644
0
0
0
1
0
0
null
null
0
0.047872
null
null
0
0
0
0
null
0
0
0
0
0
0
0
0
0
0
0
0
0
1
1
1
0
1
0
0
0
0
0
0
null
0
0
1
0
1
0
0
0
0
0
0
0
0
6
99cfce15f277b305b1d6cfb0628ad6ec4ccc88f5
16,919
py
Python
pybind/slxos/v17r_2_00/qos_mpls/map_apply/apply_traffic_class_exp_map_name/__init__.py
extremenetworks/pybind
44c467e71b2b425be63867aba6e6fa28b2cfe7fb
[ "Apache-2.0" ]
null
null
null
pybind/slxos/v17r_2_00/qos_mpls/map_apply/apply_traffic_class_exp_map_name/__init__.py
extremenetworks/pybind
44c467e71b2b425be63867aba6e6fa28b2cfe7fb
[ "Apache-2.0" ]
null
null
null
pybind/slxos/v17r_2_00/qos_mpls/map_apply/apply_traffic_class_exp_map_name/__init__.py
extremenetworks/pybind
44c467e71b2b425be63867aba6e6fa28b2cfe7fb
[ "Apache-2.0" ]
1
2021-11-05T22:15:42.000Z
2021-11-05T22:15:42.000Z
from operator import attrgetter import pyangbind.lib.xpathhelper as xpathhelper from pyangbind.lib.yangtypes import RestrictedPrecisionDecimalType, RestrictedClassType, TypedListType from pyangbind.lib.yangtypes import YANGBool, YANGListType, YANGDynClass, ReferenceType from pyangbind.lib.base import PybindBase from decimal import Decimal from bitarray import bitarray import __builtin__ class apply_traffic_class_exp_map_name(PybindBase): """ This class was auto-generated by the PythonClass plugin for PYANG from YANG module brocade-qos-mpls - based on the path /qos-mpls/map-apply/apply-traffic-class-exp-map-name. Each member element of the container is represented as a class variable - with a specific YANG type. """ __slots__ = ('_pybind_generated_by', '_path_helper', '_yang_name', '_rest_name', '_extmethods', '__map_name_cmd2','__all_zero_map_cmd2','__default_map_cmd2','__All_cmd2',) _yang_name = 'apply-traffic-class-exp-map-name' _rest_name = 'traffic-class-exp' _pybind_generated_by = 'container' def __init__(self, *args, **kwargs): path_helper_ = kwargs.pop("path_helper", None) if path_helper_ is False: self._path_helper = False elif path_helper_ is not None and isinstance(path_helper_, xpathhelper.YANGPathHelper): self._path_helper = path_helper_ elif hasattr(self, "_parent"): path_helper_ = getattr(self._parent, "_path_helper", False) self._path_helper = path_helper_ else: self._path_helper = False extmethods = kwargs.pop("extmethods", None) if extmethods is False: self._extmethods = False elif extmethods is not None and isinstance(extmethods, dict): self._extmethods = extmethods elif hasattr(self, "_parent"): extmethods = getattr(self._parent, "_extmethods", None) self._extmethods = extmethods else: self._extmethods = False self.__default_map_cmd2 = YANGDynClass(base=YANGBool, is_leaf=True, yang_name="default-map-cmd2", rest_name="default-map", parent=self, choice=(u'apply-traffic-class-exp', u'ca-default-map-cmd2'), path_helper=self._path_helper, extmethods=self._extmethods, register_paths=True, extensions={u'tailf-common': {u'info': u'Map traffic-class and drop prec to EXP based on default map', u'alt-name': u'default-map', u'cli-incomplete-command': None}}, namespace='urn:brocade.com:mgmt:brocade-apply-qos-mpls', defining_module='brocade-apply-qos-mpls', yang_type='empty', is_config=True) self.__map_name_cmd2 = YANGDynClass(base=RestrictedClassType(base_type=unicode, restriction_dict={'pattern': u'[a-zA-Z]{1}([-a-zA-Z0-9_]{0,63})'}), is_leaf=True, yang_name="map-name-cmd2", rest_name="map-name-cmd2", parent=self, choice=(u'apply-traffic-class-exp', u'ca-map-name-cmd2'), path_helper=self._path_helper, extmethods=self._extmethods, register_paths=True, extensions={u'tailf-common': {u'info': u'<MAP NAME>;;Name for the MAP(Max 64)', u'cli-drop-node-name': None, u'cli-incomplete-command': None}}, namespace='urn:brocade.com:mgmt:brocade-apply-qos-mpls', defining_module='brocade-apply-qos-mpls', yang_type='map-name-type', is_config=True) self.__All_cmd2 = YANGDynClass(base=YANGBool, is_leaf=True, yang_name="All-cmd2", rest_name="All", parent=self, path_helper=self._path_helper, extmethods=self._extmethods, register_paths=True, extensions={u'tailf-common': {u'info': u'Apply globally on all interface', u'alt-name': u'All'}}, namespace='urn:brocade.com:mgmt:brocade-apply-qos-mpls', defining_module='brocade-apply-qos-mpls', yang_type='empty', is_config=True) self.__all_zero_map_cmd2 = YANGDynClass(base=YANGBool, is_leaf=True, yang_name="all-zero-map-cmd2", rest_name="all-zero-map", parent=self, choice=(u'apply-traffic-class-exp', u'ca-all-zero-map-cmd2'), path_helper=self._path_helper, extmethods=self._extmethods, register_paths=True, extensions={u'tailf-common': {u'info': u'Map traffic-class and drop prec to EXP 0', u'alt-name': u'all-zero-map', u'cli-incomplete-command': None}}, namespace='urn:brocade.com:mgmt:brocade-apply-qos-mpls', defining_module='brocade-apply-qos-mpls', yang_type='empty', is_config=True) load = kwargs.pop("load", None) if args: if len(args) > 1: raise TypeError("cannot create a YANG container with >1 argument") all_attr = True for e in self._pyangbind_elements: if not hasattr(args[0], e): all_attr = False break if not all_attr: raise ValueError("Supplied object did not have the correct attributes") for e in self._pyangbind_elements: nobj = getattr(args[0], e) if nobj._changed() is False: continue setmethod = getattr(self, "_set_%s" % e) if load is None: setmethod(getattr(args[0], e)) else: setmethod(getattr(args[0], e), load=load) def _path(self): if hasattr(self, "_parent"): return self._parent._path()+[self._yang_name] else: return [u'qos-mpls', u'map-apply', u'apply-traffic-class-exp-map-name'] def _rest_path(self): if hasattr(self, "_parent"): if self._rest_name: return self._parent._rest_path()+[self._rest_name] else: return self._parent._rest_path() else: return [u'qos-mpls', u'map-apply', u'traffic-class-exp'] def _get_map_name_cmd2(self): """ Getter method for map_name_cmd2, mapped from YANG variable /qos_mpls/map_apply/apply_traffic_class_exp_map_name/map_name_cmd2 (map-name-type) """ return self.__map_name_cmd2 def _set_map_name_cmd2(self, v, load=False): """ Setter method for map_name_cmd2, mapped from YANG variable /qos_mpls/map_apply/apply_traffic_class_exp_map_name/map_name_cmd2 (map-name-type) If this variable is read-only (config: false) in the source YANG file, then _set_map_name_cmd2 is considered as a private method. Backends looking to populate this variable should do so via calling thisObj._set_map_name_cmd2() directly. """ if hasattr(v, "_utype"): v = v._utype(v) try: t = YANGDynClass(v,base=RestrictedClassType(base_type=unicode, restriction_dict={'pattern': u'[a-zA-Z]{1}([-a-zA-Z0-9_]{0,63})'}), is_leaf=True, yang_name="map-name-cmd2", rest_name="map-name-cmd2", parent=self, choice=(u'apply-traffic-class-exp', u'ca-map-name-cmd2'), path_helper=self._path_helper, extmethods=self._extmethods, register_paths=True, extensions={u'tailf-common': {u'info': u'<MAP NAME>;;Name for the MAP(Max 64)', u'cli-drop-node-name': None, u'cli-incomplete-command': None}}, namespace='urn:brocade.com:mgmt:brocade-apply-qos-mpls', defining_module='brocade-apply-qos-mpls', yang_type='map-name-type', is_config=True) except (TypeError, ValueError): raise ValueError({ 'error-string': """map_name_cmd2 must be of a type compatible with map-name-type""", 'defined-type': "brocade-apply-qos-mpls:map-name-type", 'generated-type': """YANGDynClass(base=RestrictedClassType(base_type=unicode, restriction_dict={'pattern': u'[a-zA-Z]{1}([-a-zA-Z0-9_]{0,63})'}), is_leaf=True, yang_name="map-name-cmd2", rest_name="map-name-cmd2", parent=self, choice=(u'apply-traffic-class-exp', u'ca-map-name-cmd2'), path_helper=self._path_helper, extmethods=self._extmethods, register_paths=True, extensions={u'tailf-common': {u'info': u'<MAP NAME>;;Name for the MAP(Max 64)', u'cli-drop-node-name': None, u'cli-incomplete-command': None}}, namespace='urn:brocade.com:mgmt:brocade-apply-qos-mpls', defining_module='brocade-apply-qos-mpls', yang_type='map-name-type', is_config=True)""", }) self.__map_name_cmd2 = t if hasattr(self, '_set'): self._set() def _unset_map_name_cmd2(self): self.__map_name_cmd2 = YANGDynClass(base=RestrictedClassType(base_type=unicode, restriction_dict={'pattern': u'[a-zA-Z]{1}([-a-zA-Z0-9_]{0,63})'}), is_leaf=True, yang_name="map-name-cmd2", rest_name="map-name-cmd2", parent=self, choice=(u'apply-traffic-class-exp', u'ca-map-name-cmd2'), path_helper=self._path_helper, extmethods=self._extmethods, register_paths=True, extensions={u'tailf-common': {u'info': u'<MAP NAME>;;Name for the MAP(Max 64)', u'cli-drop-node-name': None, u'cli-incomplete-command': None}}, namespace='urn:brocade.com:mgmt:brocade-apply-qos-mpls', defining_module='brocade-apply-qos-mpls', yang_type='map-name-type', is_config=True) def _get_all_zero_map_cmd2(self): """ Getter method for all_zero_map_cmd2, mapped from YANG variable /qos_mpls/map_apply/apply_traffic_class_exp_map_name/all_zero_map_cmd2 (empty) """ return self.__all_zero_map_cmd2 def _set_all_zero_map_cmd2(self, v, load=False): """ Setter method for all_zero_map_cmd2, mapped from YANG variable /qos_mpls/map_apply/apply_traffic_class_exp_map_name/all_zero_map_cmd2 (empty) If this variable is read-only (config: false) in the source YANG file, then _set_all_zero_map_cmd2 is considered as a private method. Backends looking to populate this variable should do so via calling thisObj._set_all_zero_map_cmd2() directly. """ if hasattr(v, "_utype"): v = v._utype(v) try: t = YANGDynClass(v,base=YANGBool, is_leaf=True, yang_name="all-zero-map-cmd2", rest_name="all-zero-map", parent=self, choice=(u'apply-traffic-class-exp', u'ca-all-zero-map-cmd2'), path_helper=self._path_helper, extmethods=self._extmethods, register_paths=True, extensions={u'tailf-common': {u'info': u'Map traffic-class and drop prec to EXP 0', u'alt-name': u'all-zero-map', u'cli-incomplete-command': None}}, namespace='urn:brocade.com:mgmt:brocade-apply-qos-mpls', defining_module='brocade-apply-qos-mpls', yang_type='empty', is_config=True) except (TypeError, ValueError): raise ValueError({ 'error-string': """all_zero_map_cmd2 must be of a type compatible with empty""", 'defined-type': "empty", 'generated-type': """YANGDynClass(base=YANGBool, is_leaf=True, yang_name="all-zero-map-cmd2", rest_name="all-zero-map", parent=self, choice=(u'apply-traffic-class-exp', u'ca-all-zero-map-cmd2'), path_helper=self._path_helper, extmethods=self._extmethods, register_paths=True, extensions={u'tailf-common': {u'info': u'Map traffic-class and drop prec to EXP 0', u'alt-name': u'all-zero-map', u'cli-incomplete-command': None}}, namespace='urn:brocade.com:mgmt:brocade-apply-qos-mpls', defining_module='brocade-apply-qos-mpls', yang_type='empty', is_config=True)""", }) self.__all_zero_map_cmd2 = t if hasattr(self, '_set'): self._set() def _unset_all_zero_map_cmd2(self): self.__all_zero_map_cmd2 = YANGDynClass(base=YANGBool, is_leaf=True, yang_name="all-zero-map-cmd2", rest_name="all-zero-map", parent=self, choice=(u'apply-traffic-class-exp', u'ca-all-zero-map-cmd2'), path_helper=self._path_helper, extmethods=self._extmethods, register_paths=True, extensions={u'tailf-common': {u'info': u'Map traffic-class and drop prec to EXP 0', u'alt-name': u'all-zero-map', u'cli-incomplete-command': None}}, namespace='urn:brocade.com:mgmt:brocade-apply-qos-mpls', defining_module='brocade-apply-qos-mpls', yang_type='empty', is_config=True) def _get_default_map_cmd2(self): """ Getter method for default_map_cmd2, mapped from YANG variable /qos_mpls/map_apply/apply_traffic_class_exp_map_name/default_map_cmd2 (empty) """ return self.__default_map_cmd2 def _set_default_map_cmd2(self, v, load=False): """ Setter method for default_map_cmd2, mapped from YANG variable /qos_mpls/map_apply/apply_traffic_class_exp_map_name/default_map_cmd2 (empty) If this variable is read-only (config: false) in the source YANG file, then _set_default_map_cmd2 is considered as a private method. Backends looking to populate this variable should do so via calling thisObj._set_default_map_cmd2() directly. """ if hasattr(v, "_utype"): v = v._utype(v) try: t = YANGDynClass(v,base=YANGBool, is_leaf=True, yang_name="default-map-cmd2", rest_name="default-map", parent=self, choice=(u'apply-traffic-class-exp', u'ca-default-map-cmd2'), path_helper=self._path_helper, extmethods=self._extmethods, register_paths=True, extensions={u'tailf-common': {u'info': u'Map traffic-class and drop prec to EXP based on default map', u'alt-name': u'default-map', u'cli-incomplete-command': None}}, namespace='urn:brocade.com:mgmt:brocade-apply-qos-mpls', defining_module='brocade-apply-qos-mpls', yang_type='empty', is_config=True) except (TypeError, ValueError): raise ValueError({ 'error-string': """default_map_cmd2 must be of a type compatible with empty""", 'defined-type': "empty", 'generated-type': """YANGDynClass(base=YANGBool, is_leaf=True, yang_name="default-map-cmd2", rest_name="default-map", parent=self, choice=(u'apply-traffic-class-exp', u'ca-default-map-cmd2'), path_helper=self._path_helper, extmethods=self._extmethods, register_paths=True, extensions={u'tailf-common': {u'info': u'Map traffic-class and drop prec to EXP based on default map', u'alt-name': u'default-map', u'cli-incomplete-command': None}}, namespace='urn:brocade.com:mgmt:brocade-apply-qos-mpls', defining_module='brocade-apply-qos-mpls', yang_type='empty', is_config=True)""", }) self.__default_map_cmd2 = t if hasattr(self, '_set'): self._set() def _unset_default_map_cmd2(self): self.__default_map_cmd2 = YANGDynClass(base=YANGBool, is_leaf=True, yang_name="default-map-cmd2", rest_name="default-map", parent=self, choice=(u'apply-traffic-class-exp', u'ca-default-map-cmd2'), path_helper=self._path_helper, extmethods=self._extmethods, register_paths=True, extensions={u'tailf-common': {u'info': u'Map traffic-class and drop prec to EXP based on default map', u'alt-name': u'default-map', u'cli-incomplete-command': None}}, namespace='urn:brocade.com:mgmt:brocade-apply-qos-mpls', defining_module='brocade-apply-qos-mpls', yang_type='empty', is_config=True) def _get_All_cmd2(self): """ Getter method for All_cmd2, mapped from YANG variable /qos_mpls/map_apply/apply_traffic_class_exp_map_name/All_cmd2 (empty) """ return self.__All_cmd2 def _set_All_cmd2(self, v, load=False): """ Setter method for All_cmd2, mapped from YANG variable /qos_mpls/map_apply/apply_traffic_class_exp_map_name/All_cmd2 (empty) If this variable is read-only (config: false) in the source YANG file, then _set_All_cmd2 is considered as a private method. Backends looking to populate this variable should do so via calling thisObj._set_All_cmd2() directly. """ if hasattr(v, "_utype"): v = v._utype(v) try: t = YANGDynClass(v,base=YANGBool, is_leaf=True, yang_name="All-cmd2", rest_name="All", parent=self, path_helper=self._path_helper, extmethods=self._extmethods, register_paths=True, extensions={u'tailf-common': {u'info': u'Apply globally on all interface', u'alt-name': u'All'}}, namespace='urn:brocade.com:mgmt:brocade-apply-qos-mpls', defining_module='brocade-apply-qos-mpls', yang_type='empty', is_config=True) except (TypeError, ValueError): raise ValueError({ 'error-string': """All_cmd2 must be of a type compatible with empty""", 'defined-type': "empty", 'generated-type': """YANGDynClass(base=YANGBool, is_leaf=True, yang_name="All-cmd2", rest_name="All", parent=self, path_helper=self._path_helper, extmethods=self._extmethods, register_paths=True, extensions={u'tailf-common': {u'info': u'Apply globally on all interface', u'alt-name': u'All'}}, namespace='urn:brocade.com:mgmt:brocade-apply-qos-mpls', defining_module='brocade-apply-qos-mpls', yang_type='empty', is_config=True)""", }) self.__All_cmd2 = t if hasattr(self, '_set'): self._set() def _unset_All_cmd2(self): self.__All_cmd2 = YANGDynClass(base=YANGBool, is_leaf=True, yang_name="All-cmd2", rest_name="All", parent=self, path_helper=self._path_helper, extmethods=self._extmethods, register_paths=True, extensions={u'tailf-common': {u'info': u'Apply globally on all interface', u'alt-name': u'All'}}, namespace='urn:brocade.com:mgmt:brocade-apply-qos-mpls', defining_module='brocade-apply-qos-mpls', yang_type='empty', is_config=True) map_name_cmd2 = __builtin__.property(_get_map_name_cmd2, _set_map_name_cmd2) all_zero_map_cmd2 = __builtin__.property(_get_all_zero_map_cmd2, _set_all_zero_map_cmd2) default_map_cmd2 = __builtin__.property(_get_default_map_cmd2, _set_default_map_cmd2) All_cmd2 = __builtin__.property(_get_All_cmd2, _set_All_cmd2) __choices__ = {u'apply-traffic-class-exp': {u'ca-map-name-cmd2': [u'map_name_cmd2'], u'ca-default-map-cmd2': [u'default_map_cmd2'], u'ca-all-zero-map-cmd2': [u'all_zero_map_cmd2']}} _pyangbind_elements = {'map_name_cmd2': map_name_cmd2, 'all_zero_map_cmd2': all_zero_map_cmd2, 'default_map_cmd2': default_map_cmd2, 'All_cmd2': All_cmd2, }
74.20614
665
0.729594
2,602
16,919
4.49731
0.071868
0.035891
0.032473
0.053581
0.843275
0.803367
0.780636
0.770723
0.760554
0.749103
0
0.010823
0.126249
16,919
227
666
74.53304
0.780762
0.137242
0
0.422819
0
0.04698
0.41266
0.196012
0
0
0
0
0
1
0.100671
false
0
0.053691
0
0.288591
0
0
0
0
null
0
0
0
1
1
1
1
1
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
null
0
0
0
0
0
0
0
0
0
0
0
0
0
6
99ef4c4300edcee0f21908e1a69183d6ec7a6f37
44
py
Python
seq2seq/seq2seq/loss/__init__.py
qbetterk/user-simulator
77caca30ff67b9112b1fe5e65e191c6b5e25532c
[ "Apache-2.0" ]
20
2019-11-08T02:28:28.000Z
2022-02-07T09:20:21.000Z
seq2seq/seq2seq/loss/__init__.py
qbetterk/user-simulator
77caca30ff67b9112b1fe5e65e191c6b5e25532c
[ "Apache-2.0" ]
21
2019-11-08T02:27:40.000Z
2022-03-12T00:02:54.000Z
seq2seq/seq2seq/loss/__init__.py
qbetterk/user-simulator
77caca30ff67b9112b1fe5e65e191c6b5e25532c
[ "Apache-2.0" ]
8
2020-02-10T07:28:37.000Z
2021-09-23T09:42:14.000Z
from .loss import Loss, NLLLoss, Perplexity
22
43
0.795455
6
44
5.833333
0.833333
0
0
0
0
0
0
0
0
0
0
0
0.136364
44
1
44
44
0.921053
0
0
0
0
0
0
0
0
0
0
0
0
1
0
true
0
1
0
1
0
1
1
0
null
0
0
0
0
0
0
0
0
0
0
0
0
0
1
0
0
0
0
0
0
0
0
0
0
null
0
0
0
0
0
0
1
0
1
0
1
0
0
6
416bf5d355c191581abaaf5baae4b6d02f53cd4e
4,338
py
Python
src/tools/files.py
cowboysmall/rosalind
021e4392a8fc946b97bbf86bbb8227b28bb5e462
[ "MIT" ]
null
null
null
src/tools/files.py
cowboysmall/rosalind
021e4392a8fc946b97bbf86bbb8227b28bb5e462
[ "MIT" ]
null
null
null
src/tools/files.py
cowboysmall/rosalind
021e4392a8fc946b97bbf86bbb8227b28bb5e462
[ "MIT" ]
null
null
null
def write_lines(file_path, lines): with open(file_path, 'w') as file: for line in lines: file.write(line + '\n') def read_line(file_path): with open(file_path) as file: return file.readline().strip() def read_lines(file_path): lines = [] with open(file_path) as file: for line in file: line = line.strip() if line: lines.append(line) return lines def read_float(file_path): with open(file_path) as file: return float(file.readline().strip()) def read_floats(file_path): floats = [] with open(file_path) as file: for line in file: line = line.strip() if line: floats.append(float(line)) return floats def read_int(file_path): with open(file_path) as file: return int(file.readline().strip()) def read_ints(file_path): ints = [] with open(file_path) as file: for line in file: line = line.strip() if line: ints.append(int(line)) return ints def read_line_of_words(file_path): with open(file_path) as file: return [word for word in file.readline().split()] def read_lines_of_words(file_path): lines = [] with open(file_path) as file: for line in file: line = line.strip() if line: lines.append([word for word in line.split()]) return lines def read_line_of_floats(file_path): with open(file_path) as file: return [float(i) for i in file.readline().split()] def read_lines_of_floats(file_path): lines = [] with open(file_path) as file: for line in file: line = line.strip() if line: lines.append([float(i) for i in line.split()]) return lines def read_line_of_ints(file_path): with open(file_path) as file: return [int(i) for i in file.readline().split()] def read_lines_of_ints(file_path): lines = [] with open(file_path) as file: for line in file: line = line.strip() if line: lines.append([int(i) for i in line.split()]) return lines def read_graph(file_path): with open(file_path) as file: graph = [int(i) for i in file.readline().split()] edges = [] for line in file: tail, head = line.strip().split() edges.append((int(tail), int(head))) graph.append(edges) return graph def read_weighted_graph(file_path): with open(file_path) as file: graph = [int(i) for i in file.readline().split()] edges = [] for line in file: tail, head, weight = line.strip().split() edges.append((int(tail), int(head), int(weight))) graph.append(edges) return graph def read_graphs(file_path): with open(file_path) as file: k = int(file.readline().strip()) graph_count = 0 graphs = [] while graph_count < k: line = file.readline().strip() while not line: line = file.readline().strip() graph = [int(i) for i in line.split()] edge_count = 0 edges = [] while edge_count < graph[1]: tail, head = file.readline().strip().split() edges.append((int(tail), int(head))) edge_count += 1 graph.append(edges) graphs.append(graph) graph_count += 1 return k, graphs def read_weighted_graphs(file_path): with open(file_path) as file: k = int(file.readline().strip()) graph_count = 0 graphs = [] while graph_count < k: line = file.readline().strip() while not line: line = file.readline().strip() graph = [int(i) for i in line.split()] edge_count = 0 edges = [] while edge_count < graph[1]: tail, head, weight = file.readline().strip().split() edges.append((int(tail), int(head), int(weight))) edge_count += 1 graph.append(edges) graphs.append(graph) graph_count += 1 return k, graphs
22.59375
68
0.542416
562
4,338
4.049822
0.074733
0.119508
0.089631
0.119508
0.880492
0.84007
0.84007
0.808875
0.777241
0.708699
0
0.003511
0.343476
4,338
191
69
22.712042
0.795646
0
0
0.6875
0
0
0.000692
0
0
0
0
0
0
1
0.132813
false
0
0
0
0.257813
0
0
0
0
null
0
0
0
1
1
1
1
1
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
null
0
0
0
0
0
0
0
0
0
0
0
0
0
6
41801ea050275d49201c9b87f491278b3faaa4f9
23
py
Python
mGdi32/__init__.py
SkyLined/mWindowsSDK
931cc9d30316893662a3dc4e200dabe97122d216
[ "CC-BY-4.0" ]
2
2019-08-01T15:08:25.000Z
2021-01-30T07:29:34.000Z
mGdi32/__init__.py
SkyLined/mWindowsSDK
931cc9d30316893662a3dc4e200dabe97122d216
[ "CC-BY-4.0" ]
null
null
null
mGdi32/__init__.py
SkyLined/mWindowsSDK
931cc9d30316893662a3dc4e200dabe97122d216
[ "CC-BY-4.0" ]
null
null
null
from .mGdi32 import *;
11.5
22
0.695652
3
23
5.333333
1
0
0
0
0
0
0
0
0
0
0
0.105263
0.173913
23
1
23
23
0.736842
0
0
0
0
0
0
0
0
0
0
0
0
1
0
true
0
1
0
1
0
1
1
0
null
0
0
0
0
0
0
0
0
0
0
0
0
0
1
0
0
0
0
0
0
0
0
0
0
null
0
0
0
0
0
0
1
0
1
0
1
0
0
6
68c9514528013da4b21120807688c8993cf15c6d
28
py
Python
__init__.py
AbhiK002/Matrix
2d83f08877dccba9e4c710bd5fb65f613848d63f
[ "MIT" ]
2
2022-02-11T04:39:21.000Z
2022-02-12T15:50:35.000Z
__init__.py
AbhiK002/Matrix
2d83f08877dccba9e4c710bd5fb65f613848d63f
[ "MIT" ]
null
null
null
__init__.py
AbhiK002/Matrix
2d83f08877dccba9e4c710bd5fb65f613848d63f
[ "MIT" ]
null
null
null
from .matrix import Matrix
9.333333
26
0.785714
4
28
5.5
0.75
0
0
0
0
0
0
0
0
0
0
0
0.178571
28
2
27
14
0.956522
0
0
0
0
0
0
0
0
0
0
0
0
1
0
true
0
1
0
1
0
1
1
0
null
0
0
0
0
0
0
0
0
0
0
0
0
0
1
0
0
0
0
0
0
0
0
0
0
null
0
0
0
0
0
0
1
0
1
0
1
0
0
6
68d9429f6da9f4047b22ecae607eeab851aaf188
253,493
py
Python
glasses/__init__.py
tonyfast/metallic-glasses
7ce019d0c8406e990836b88b9661839c3f1928cf
[ "BSD-3-Clause" ]
null
null
null
glasses/__init__.py
tonyfast/metallic-glasses
7ce019d0c8406e990836b88b9661839c3f1928cf
[ "BSD-3-Clause" ]
null
null
null
glasses/__init__.py
tonyfast/metallic-glasses
7ce019d0c8406e990836b88b9661839c3f1928cf
[ "BSD-3-Clause" ]
null
null
null
# coding: utf-8 # In[325]: __version__ = "0.0.1" __all__ = [] # In[8]: from time import sleep # In[22]: get_ipython().magic('ls /Users/tfast/Desktop/SLAC_MG_0716/') # In[23]: get_ipython().magic('ls /Users/tfast/Desktop/SLAC_MG_0716/Sample1/') # In[14]: get_ipython().magic( 'cat /Users/tfast/Desktop/SLAC_MG_0716/Sample1/Sample1_24x24_t30_0001.txt*') # * Turn metadata into a dataframe # # /Users/tfast/Desktop/SLAC_MG_0716/Sample1/Sample1_24x24_t30_0001.txt* # In[15]: from IPython import display # In[19]: import skimage.io # In[ ]: # In[27]: # In[33]: im = skimage.io.imread( '/Users/tfast/Desktop/SLAC_MG_0716/Sample1/Sample1_24x24_t30_0010.tif') skimage.io.imshow(im) # In[29]: get_ipython().magic('matplotlib inline') # In[34]: import dask.dataframe as dd # In[38]: from whatever import * # In[40]: import glob # In[42]: import pandas # In[ ]: pandas.read_csv # In[49]: from toolz.curried import * # In[ ]: # In[ ]: for the_file in glob.glob( "/Users/tfast/Desktop/SLAC_MG_0716/Sample1/Processed/*_1D.csv" ): pandas.read_csv( the_file, names=['Q', 'I'], header=None ).iloc[:1000].set_index('Q') # In[102]: # In[228]: metadata = pandas.read_csv( "/Users/tfast/Desktop/SLAC_MG_0716/Sample1/Processed/Sample1_24x24_t30_14715979master_metadata.csv") metadata = metadata.rename(columns={'scan#.1': 'scan'}).set_index('scan') for c in 'xy': metadata['plate_' + c] = metadata['plate_' + c].apply(compose( first, lambda x: x.split('e', 1) )).astype(float) # In[106]: baselines = [209, 233] # In[346]: dfs = [] for i, the_file in enumerate(glob.glob( "/Users/tfast/Desktop/SLAC_MG_0716/Sample[1-5]/Processed/*_1D.csv" )): s = pandas.read_csv( the_file, header=None, names=['Q', str(i) + '_' + str(the_file.split('_')[-2])] ).set_index('Q').iloc[:1000] dfs.append(s) signals = pandas.concat(dfs, axis=1) signals.plot(legend=None) # In[319]: get_ipython().magic('matplotlib notebook') # > _hypothesis_ - The rolling _standard deviation_. It will exentuate the # crystalline patterns because they have larger information entropy. The # rolling deviations are then used to identify non-crystalline patterns, by # some thresholding technique, that can be automated later. # In[333]: get_ipython().magic('matplotlib notebook') # In[353]: roll = signals.rolling(31, center=True).std().fillna(0).sum(axis=0) # > Identify non-crystalline states using the thresholding below. # In[350]: from magical import register_jinja2_magic env = register_jinja2_magic() # In[351]: threshold = 13e3 # In[352]: get_ipython().run_cell_magic('jinja2', '', '\n> The threshold we using is `{{threshold}}`. This value was identified using the image below.\n\n<img src=""/>') # In[360]: noncrystalline = signals[roll[roll < threshold].index].columns # In[376]: get_ipython().magic('matplotlib notebook') # In[390]: xtal = signals.rolling(25).sum() xtal.plot(legend=False) # In[380]: xtal_threshold = 31e3 # In[381]: get_ipython().run_cell_magic('jinja2', '', '\nThe rolling sum of the signals to find some crystalling examples. {{xtal_threshold}}\n\n![]()') # In[402]: xtal_features = xtal.columns[(xtal > xtal_threshold).any(axis=0)] # In[474]: trainer = pandas.concat( [ signals[xtal_features].transpose().reset_index(drop=True).set_index( np.array([0] * len(xtal_features))), signals[noncrystalline].transpose().reset_index(drop=True).set_index( np.array([1] * len(noncrystalline))), ], axis=0) # In[479]: h = signals.rolling(25).std().fillna(0) # In[485]: train = trainer.transpose().rolling(25).std().fillna(0).transpose() # In[491]: X = pipeline.make_pipeline( preprocessing.RobustScaler(), ensemble.RandomForestClassifier(), ).fit(train.values, train.index) # In[493]: signals.transpose()[X.predict(h.transpose().values) == 0].transpose().plot(legend=False) # In[494]: signals.transpose()[X.predict(h.transpose().values) == 1].transpose().plot(legend=False) # In[448]: clf = tree.DecisionTreeClassifier().fit(trainer.values, trainer.index) # In[ ]: # In[303]: roll.iloc[roll.rolling(25, center=True).std().fillna(0).sum(axis=0) < 3e5] # In[199]: model = pipeline.make_pipeline( preprocessing.MaxAbsScaler(), decomposition.PCA(), a ).fit(roll[(roll != 0).all(axis=1)].transpose().values) pandas.DataFrame( model.transform(roll[(roll != 0).all(axis=1)].transpose().values) ).plot(x=0, y=1, kind='scatter') # In[146]: r = signals.rolling(20, center=True) # In[161]: (signals.rolling(50, center=True).std().fillna(0) * signals).plot(legend=False) # In[142]: get_ipython().magic('matplotlib notebook') # In[134]: signals[baselines].plot() # In[89]: pandas.concat(l, axis=1, join='inner').plot(legend=None) # In[36]: df = dd.read_csv( "/Users/tfast/Desktop/SLAC_MG_0716/Sample1/Processed/*_1D.csv")
823.029221
239,848
0.962326
8,194
253,493
29.75958
0.908103
0.00041
0.000627
0.000775
0.004429
0.003678
0.003018
0.002661
0.001993
0.001649
0
0.1506
0.003089
253,493
307
239,849
825.710098
0.814341
0.003511
0
0.065934
0
0.021978
0.987337
0.985979
0
1
0
0
0
1
0
false
0
0.098901
0
0.098901
0
0
0
1
null
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
1
0
0
0
0
0
0
1
1
null
1
0
0
0
0
0
0
0
0
0
0
0
0
6
68ef832af775f775cdb4bb4048470a320e163217
10,396
py
Python
module/cek_tanda_tangan_bap.py
riandakarizal/ITeung
2d3fc7e4974c9a9b67ff61f2a77a528988b55820
[ "MIT" ]
null
null
null
module/cek_tanda_tangan_bap.py
riandakarizal/ITeung
2d3fc7e4974c9a9b67ff61f2a77a528988b55820
[ "MIT" ]
37
2020-03-22T23:21:14.000Z
2020-09-16T15:07:06.000Z
module/cek_tanda_tangan_bap.py
riandakarizal/ITeung
2d3fc7e4974c9a9b67ff61f2a77a528988b55820
[ "MIT" ]
1
2020-09-08T11:31:30.000Z
2020-09-08T11:31:30.000Z
from module import kelas from lib import numbers, wa, reply, message import subprocess, config, os def getMateriFromJadwalID(jadwalid): db = kelas.dbConnectSiap() sql = f"select MP from simak_trn_presensi_dosen WHERE `JadwalID` = {jadwalid} ORDER BY Pertemuan ASC" with db: cur = db.cursor() cur.execute(sql) rows=cur.fetchall() if rows is not None: return rows else: return None def materiToList(materiTuple): materiData=[] for i in materiTuple: materiData.append(i[0]) return materiData def getListJadwalIDfromKaprodi(prodiID): db=kelas.dbConnectSiap() sql=f"select JadwalID from simak_trn_jadwal where TahunID={kelas.getTahunID()} and ProdiID='{prodiID}'" with db: cur = db.cursor() cur.execute(sql) rows=cur.fetchall() if rows is not None: return rows else: return None def getListJadwalIDfromDeputi(status, prodiid): db=kelas.dbConnectSiap() if status: sql=f"select JadwalID from simak_trn_jadwal where TahunID={kelas.getTahunID()} and ProdiID='{prodiid}'" else: sql=f"select JadwalID from simak_trn_jadwal where TahunID={kelas.getTahunID()}" with db: cur = db.cursor() cur.execute(sql) rows=cur.fetchall() if rows is not None: return rows else: return None def cekMateriPerkuliahan(jadwalid): MateriTuple = getMateriFromJadwalID(jadwalid) MateriToList = materiToList(MateriTuple) if None in MateriToList or '' in MateriToList: ret = False else: ret = True return ret def cekStatusBKDKaprodi(jadwalid): db=kelas.dbConnectSiap() sql=f'select BKD_Prodi from simak_trn_jadwal where JadwalID={jadwalid}' with db: cur=db.cursor() cur.execute(sql) row=cur.fetchone() if row[0] == 'true': return True else: return False def cekStatusBKDDeputi(jadwalid): db=kelas.dbConnectSiap() sql=f'select BKD_Deputi from simak_trn_jadwal where JadwalID={jadwalid}' with db: cur=db.cursor() cur.execute(sql) row=cur.fetchone() if row[0] == 'true': return True else: return False def infoBAPKaprodi(prodiid): JadwalIDDataProdi=getListJadwalIDfromKaprodi(prodiid) sudah=[] siap=[] belum=[] for jadwalid in JadwalIDDataProdi: statusmateri=cekMateriPerkuliahan(jadwalid[0]) statusttd=cekStatusBKDKaprodi(jadwalid[0]) if statusmateri == False and statusttd == False: belum.append(jadwalid[0]) elif statusmateri == True and statusttd == False: siap.append(jadwalid[0]) else: sudah.append(jadwalid[0]) msgsudah = '' for i in sudah: kelas_info = kelas.getMatakuliahInfowithJadwalID(i) msgsudah += f'{config.whatsapp_api_lineBreak}{kelas_info[0]} | {getNamaProdiFromProdiID(kelas_info[5].split(".")[1])} | {kelas_info[12]} | {kelas.getNamaDosen(kelas_info[21])}' msgsudah += f'{config.whatsapp_api_lineBreak}{config.whatsapp_api_lineBreak}' msgsiap = '' for i in siap: kelas_info = kelas.getMatakuliahInfowithJadwalID(i) msgsiap += f'{config.whatsapp_api_lineBreak}{kelas_info[0]} | {getNamaProdiFromProdiID(kelas_info[5].split(".")[1])} | {kelas_info[12]} | {kelas.getNamaDosen(kelas_info[21])}' msgsiap += f'{config.whatsapp_api_lineBreak}{config.whatsapp_api_lineBreak}' msgbelum = '' for i in belum: kelas_info = kelas.getMatakuliahInfowithJadwalID(i) msgbelum += f'{config.whatsapp_api_lineBreak}{kelas_info[0]} | {getNamaProdiFromProdiID(kelas_info[5].split(".")[1])} | {kelas_info[12]} | {kelas.getNamaDosen(kelas_info[21])}' msgbelum += f'{config.whatsapp_api_lineBreak}{config.whatsapp_api_lineBreak}' msgreply = f"BAP yang sudah ditandatangani ada: {len(sudah)} berkas{msgsudah}BAP yang siap ditandatangani ada: {len(siap)} berkas{msgsiap}BAP yang belum siap ditandatangani ada: {len(belum)} berkas{msgbelum}" return msgreply, sudah, siap, belum def infoBAPDeputi(msg): msgs=msg.split(' ')[-1] if msgs == 'all': JadwalIDDataDeputi=getListJadwalIDfromDeputi(False, '') else: JadwalIDDataDeputi=getListJadwalIDfromDeputi(True, getProdiIDfromSingkatan(msgs)) sudah=[] siap=[] belum=[] for jadwalid in JadwalIDDataDeputi: statusmateri=cekMateriPerkuliahan(jadwalid[0]) statusttd=cekStatusBKDDeputi(jadwalid[0]) if statusmateri == False and statusttd == False: belum.append(jadwalid[0]) elif statusmateri == True and statusttd == False: siap.append(jadwalid[0]) else: sudah.append(jadwalid[0]) msgsudah='' for i in sudah: kelas_info=kelas.getMatakuliahInfowithJadwalID(i) msgsudah+=f'{config.whatsapp_api_lineBreak}{kelas_info[0]} | {getNamaProdiFromProdiID(kelas_info[5].split(".")[1])} | {kelas_info[12]} | {kelas.getNamaDosen(kelas_info[21])}' msgsudah+=f'{config.whatsapp_api_lineBreak}{config.whatsapp_api_lineBreak}' msgsiap='' for i in siap: kelas_info=kelas.getMatakuliahInfowithJadwalID(i) msgsiap+=f'{config.whatsapp_api_lineBreak}{kelas_info[0]} | {getNamaProdiFromProdiID(kelas_info[5].split(".")[1])} | {kelas_info[12]} | {kelas.getNamaDosen(kelas_info[21])}' msgsiap += f'{config.whatsapp_api_lineBreak}{config.whatsapp_api_lineBreak}' msgbelum='' for i in belum: kelas_info=kelas.getMatakuliahInfowithJadwalID(i) msgbelum+=f'{config.whatsapp_api_lineBreak}{kelas_info[0]} | {getNamaProdiFromProdiID(kelas_info[5].split(".")[1])} | {kelas_info[12]} | {kelas.getNamaDosen(kelas_info[21])}' msgbelum += f'{config.whatsapp_api_lineBreak}{config.whatsapp_api_lineBreak}' msgreply=f"BAP yang sudah ditandatangani ada: {len(sudah)} berkas{msgsudah}BAP yang siap ditandatangani ada: {len(siap)} berkas{msgsiap}BAP yang belum siap ditandatangani ada: {len(belum)} berkas{msgbelum}" return msgreply, sudah, siap, belum def approveBAPDeputi(msg): msgs=msg.split(' ')[-1] if msgs == 'all': JadwalIDDataDeputi=getListJadwalIDfromDeputi(False, '') else: JadwalIDDataDeputi=getListJadwalIDfromDeputi(True, getProdiIDfromSingkatan(msgs)) sudah=[] siap=[] belum=[] for jadwalid in JadwalIDDataDeputi: statusmateri=cekMateriPerkuliahan(jadwalid[0]) statusttd=cekStatusBKDDeputi(jadwalid[0]) if statusmateri == False and statusttd == False: belum.append(jadwalid[0]) elif statusmateri == True and statusttd == False: siap.append(jadwalid[0]) else: sudah.append(jadwalid[0]) msgreply = f"BAP yang sudah ditandatangani ada: {len(sudah)} berkas%0ABAP yang siap ditandatangani ada: {len(siap)} berkas%0ABAP yang belum siap ditandatangani ada: {len(belum)} berkas" return msgreply, sudah, siap, belum def approveBAPKaprodi(prodiid): JadwalIDDataProdi=getListJadwalIDfromKaprodi(prodiid) sudah=[] siap=[] belum=[] for jadwalid in JadwalIDDataProdi: statusmateri=cekMateriPerkuliahan(jadwalid[0]) statusttd=cekStatusBKDKaprodi(jadwalid[0]) if statusmateri == False and statusttd == False: belum.append(jadwalid[0]) elif statusmateri == True and statusttd == False: siap.append(jadwalid[0]) else: sudah.append(jadwalid[0]) msgreply = f"BAP yang sudah ditandatangani ada: {len(sudah)} berkas%0ABAP yang siap ditandatangani ada: {len(siap)} berkas%0ABAP yang belum siap ditandatangani ada: {len(belum)} berkas" return msgreply, sudah, siap, belum def getNIPYfromHandphone(num): num=numbers.normalize(num) db=kelas.dbConnectSiap() sql=f'select NIPY from simak_mst_dosen where Handphone="{num}"' with db: cur=db.cursor() cur.execute(sql) row=cur.fetchone() if row is not None: return row[0] else: return None def getNamaProdiFromProdiID(prodiid): db=kelas.dbConnectSiap() sql=f'select Nama from simak_mst_prodi where ProdiID={prodiid}' with db: cur=db.cursor() cur.execute(sql) row=cur.fetchone() if row is not None: return row[0] else: return None def isDeputiAkademik(NIPY): db=kelas.dbConnectSiap() sql=f'select * from simak_mst_pejabat where NIPY="{NIPY}" and JenisJabatanID=9' with db: cur=db.cursor() cur.execute(sql) row=cur.fetchone() if row is not None: return True else: return False def isKaprodi(NIPY): db = kelas.dbConnectSiap() sql = f'select * from simak_mst_pejabat where NIPY="{NIPY}" and JenisJabatanID=5' with db: cur = db.cursor() cur.execute(sql) row = cur.fetchone() if row is not None: return True else: return False def auth(data): if isKaprodi(getNIPYfromHandphone(data[0])) or isDeputiAkademik(getNIPYfromHandphone(data[0])): return True else: return False def replymsg(driver, data): num=numbers.normalize(data[0]) msg=message.normalize(data[3]) data=f'{num};{msg}' wmsg = reply.getWaitingMessage(os.path.basename(__file__).split('.')[0]) wmsg = wmsg.replace('#BOTNAME#', config.bot_name) subprocess.Popen(["python", "run.py", os.path.basename(__file__).split('.')[0], data], cwd=config.cwd) return wmsg def run(data): num=data.split(';')[0] msg=data.split(';')[1] if isKaprodi(getNIPYfromHandphone(num)): status='kaprodi' else: status='deputi' if status == 'kaprodi': msgreply=infoBAPKaprodi(f'.{kelas.getAllDataDosens(kelas.getKodeDosen(num))[20]}.') else: msgreply=infoBAPDeputi(msg) wa.setOutbox(numbers.normalize(num), msgreply[0]) def getProdiIDfromSingkatan(singkatan): db=kelas.dbConnectSiap() sql=f"select ProdiID from simak_mst_prodi where Singkatan = '{singkatan}'" with db: cur=db.cursor() cur.execute(sql) row = cur.fetchone() if row: return f".{row[0]}." else: return None
35.60274
212
0.653905
1,184
10,396
5.657095
0.123311
0.040311
0.045685
0.069872
0.797104
0.787847
0.767543
0.752314
0.740072
0.740072
0
0.010833
0.227491
10,396
292
213
35.60274
0.823185
0
0
0.750973
0
0.038911
0.289795
0.129941
0
0
0
0
0
1
0.07393
false
0
0.011673
0
0.198444
0
0
0
0
null
0
0
0
0
1
1
1
1
1
0
0
0
0
0
0
0
0
0
0
1
0
0
0
0
null
0
0
0
0
0
0
0
0
0
0
0
0
0
6
68f9926a1a6cee5c7b3808e4d3e51e60201ff9cc
122
py
Python
pycantonese/tests/__init__.py
chaaklau/pycantonese
94694fea2f3c3405d3b6bb6d504a56bb05a6496c
[ "MIT" ]
124
2019-08-12T13:10:43.000Z
2022-03-24T18:35:58.000Z
pycantonese/tests/__init__.py
chaaklau/pycantonese
94694fea2f3c3405d3b6bb6d504a56bb05a6496c
[ "MIT" ]
13
2019-09-03T17:08:49.000Z
2021-12-28T21:37:17.000Z
pycantonese/tests/__init__.py
chaaklau/pycantonese
94694fea2f3c3405d3b6bb6d504a56bb05a6496c
[ "MIT" ]
15
2019-08-09T04:03:01.000Z
2022-03-17T10:18:21.000Z
import os _THIS_DIR = os.path.dirname(os.path.realpath(__file__)) REPO_DIR = os.path.dirname(os.path.dirname(_THIS_DIR))
24.4
55
0.778689
21
122
4.095238
0.428571
0.27907
0.453488
0.372093
0.511628
0.511628
0
0
0
0
0
0
0.07377
122
4
56
30.5
0.761062
0
0
0
0
0
0
0
0
0
0
0
0
1
0
false
0
0.333333
0
0.333333
0
1
0
0
null
1
1
1
0
0
0
0
0
0
0
0
0
0
1
0
0
0
0
0
0
0
0
0
0
null
0
0
0
0
0
0
0
0
1
0
0
0
0
6
ec431f839118040109012d9dbffe4ec8364d62fb
3,700
py
Python
bglcapi/bgapi/sm/cmd.py
edgebr/python-bgapi
0aeb525edf605e892b20f5c3fb11269cce0c5bdf
[ "MIT" ]
null
null
null
bglcapi/bgapi/sm/cmd.py
edgebr/python-bgapi
0aeb525edf605e892b20f5c3fb11269cce0c5bdf
[ "MIT" ]
null
null
null
bglcapi/bgapi/sm/cmd.py
edgebr/python-bgapi
0aeb525edf605e892b20f5c3fb11269cce0c5bdf
[ "MIT" ]
null
null
null
from struct import pack from bglcapi.base_command import command from bglcapi.types import (MessageType, MessageClass) def bonding_confirm(connection, confirm): MSG_TYPE = MessageType.COMMAND_RESPONSE.value MSG_CLASS = MessageClass.SM.value MSG_ID = 0x0e payload = pack('<BB', connection, confirm) return command(MSG_TYPE, MSG_CLASS, MSG_ID, payload) def configure(flags, io_capabilities): MSG_TYPE = MessageType.COMMAND_RESPONSE.value MSG_CLASS = MessageClass.SM.value MSG_ID = 0x01 payload = pack('<BB', flags, io_capabilities) return command(MSG_TYPE, MSG_CLASS, MSG_ID, payload) def delete_bonding(bonding): MSG_TYPE = MessageType.COMMAND_RESPONSE.value MSG_CLASS = MessageClass.SM.value MSG_ID = 0x06 payload = pack('<B', bonding) return command(MSG_TYPE, MSG_CLASS, MSG_ID, payload) def delete_bondings(): MSG_TYPE = MessageType.COMMAND_RESPONSE.value MSG_CLASS = MessageClass.SM.value MSG_ID = 0x07 payload = b'' return command(MSG_TYPE, MSG_CLASS, MSG_ID, payload) def enter_passkey(connection, passkey): MSG_TYPE = MessageType.COMMAND_RESPONSE.value MSG_CLASS = MessageClass.SM.value MSG_ID = 0x08 payload = pack('<Bi', connection, passkey) return command(MSG_TYPE, MSG_CLASS, MSG_ID, payload) def increase_security(connection): MSG_TYPE = MessageType.COMMAND_RESPONSE.value MSG_CLASS = MessageClass.SM.value MSG_ID = 0x04 payload = pack('<B', connection) return command(MSG_TYPE, MSG_CLASS, MSG_ID, payload) def list_all_bondings(): MSG_TYPE = MessageType.COMMAND_RESPONSE.value MSG_CLASS = MessageClass.SM.value MSG_ID = 0x0b payload = b'' return command(MSG_TYPE, MSG_CLASS, MSG_ID, payload) def passkey_confirm(connection, confirm): MSG_TYPE = MessageType.COMMAND_RESPONSE.value MSG_CLASS = MessageClass.SM.value MSG_ID = 0x09 payload = pack('<BB', connection, confirm) return command(MSG_TYPE, MSG_CLASS, MSG_ID, payload) def set_bondable_mode(bondable): MSG_TYPE = MessageType.COMMAND_RESPONSE.value MSG_CLASS = MessageClass.SM.value MSG_ID = 0x00 payload = pack('<B', bondable) return command(MSG_TYPE, MSG_CLASS, MSG_ID, payload) def set_debug_mode(): MSG_TYPE = MessageType.COMMAND_RESPONSE.value MSG_CLASS = MessageClass.SM.value MSG_ID = 0x0f payload = b'' return command(MSG_TYPE, MSG_CLASS, MSG_ID, payload) def set_oob_data(oob_data): MSG_TYPE = MessageType.COMMAND_RESPONSE.value MSG_CLASS = MessageClass.SM.value MSG_ID = 0x0a payload = pack('<B', len(oob_data)) + bytes(oob_data) return command(MSG_TYPE, MSG_CLASS, MSG_ID, payload) def set_passkey(passkey): MSG_TYPE = MessageType.COMMAND_RESPONSE.value MSG_CLASS = MessageClass.SM.value MSG_ID = 0x10 payload = pack('<i', passkey) return command(MSG_TYPE, MSG_CLASS, MSG_ID, payload) def set_sc_remote_oob_data(oob_data): MSG_TYPE = MessageType.COMMAND_RESPONSE.value MSG_CLASS = MessageClass.SM.value MSG_ID = 0x12 payload = pack('<B', len(oob_data)) + bytes(oob_data) return command(MSG_TYPE, MSG_CLASS, MSG_ID, payload) def store_bonding_configuration(max_bonding_count, policy_flags): MSG_TYPE = MessageType.COMMAND_RESPONSE.value MSG_CLASS = MessageClass.SM.value MSG_ID = 0x02 payload = pack('<BB', max_bonding_count, policy_flags) return command(MSG_TYPE, MSG_CLASS, MSG_ID, payload) def use_sc_oob(enable): MSG_TYPE = MessageType.COMMAND_RESPONSE.value MSG_CLASS = MessageClass.SM.value MSG_ID = 0x11 payload = pack('<B', enable) return command(MSG_TYPE, MSG_CLASS, MSG_ID, payload)
29.6
65
0.73027
510
3,700
5.017647
0.139216
0.082063
0.10551
0.146542
0.798359
0.778038
0.778038
0.778038
0.778038
0.762407
0
0.013465
0.177027
3,700
124
66
29.83871
0.826929
0
0
0.55914
0
0
0.007838
0
0
0
0.016216
0
0
1
0.16129
false
0.053763
0.032258
0
0.354839
0
0
0
0
null
0
0
0
0
1
1
1
1
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
null
0
0
0
0
0
0
0
1
0
0
0
0
0
6
6b637d51ee53d130d2f22a3cc30f1efdedb53487
445
py
Python
douyinspider/structures/__init__.py
MisterZhouZhou/pythonThreeSpider
0e120350402f690158c89b7431f243cb462ae12f
[ "Apache-2.0" ]
3
2019-11-05T01:00:05.000Z
2021-03-16T03:56:46.000Z
douyinspider/structures/__init__.py
bingwin/pythonThreeSpider
0e120350402f690158c89b7431f243cb462ae12f
[ "Apache-2.0" ]
null
null
null
douyinspider/structures/__init__.py
bingwin/pythonThreeSpider
0e120350402f690158c89b7431f243cb462ae12f
[ "Apache-2.0" ]
1
2020-05-16T12:45:36.000Z
2020-05-16T12:45:36.000Z
from douyinspider.structures.hot import * from douyinspider.structures.base import Base from douyinspider.structures.music import Music from douyinspider.structures.user import User from douyinspider.structures.video import Video from douyinspider.structures.address import Address from douyinspider.structures.topic import Topic from douyinspider.structures.word import Word from douyinspider.structures.music_collection import MusicCollection
44.5
68
0.876404
54
445
7.203704
0.259259
0.37018
0.601542
0.159383
0
0
0
0
0
0
0
0
0.080899
445
9
69
49.444444
0.9511
0
0
0
0
0
0
0
0
0
0
0
0
1
0
true
0
1
0
1
0
0
0
0
null
1
1
0
0
0
0
0
0
0
0
0
0
0
1
0
0
0
0
0
0
0
0
0
0
null
0
0
0
0
0
0
1
0
1
0
1
0
0
6
6b7d62abec208b5d28e43bdb68af22c4c8b92da6
43,769
py
Python
test/augmentation/test_augmentation_3d.py
prcaaf/kornia
a3eca7400e6da89b313549bbae751ff23a0e7bc5
[ "ECL-2.0", "Apache-2.0" ]
1
2020-12-13T16:13:08.000Z
2020-12-13T16:13:08.000Z
test/augmentation/test_augmentation_3d.py
ZhiyuanChen/kornia
87a0ead264ce5fc97997071acb9fe2286d6c425c
[ "ECL-2.0", "Apache-2.0" ]
null
null
null
test/augmentation/test_augmentation_3d.py
ZhiyuanChen/kornia
87a0ead264ce5fc97997071acb9fe2286d6c425c
[ "ECL-2.0", "Apache-2.0" ]
null
null
null
from typing import Union, Tuple import pytest import torch import torch.nn as nn from torch.testing import assert_allclose from torch.autograd import gradcheck import kornia import kornia.testing as utils # test utils from kornia.constants import pi from kornia.augmentation import ( RandomDepthicalFlip3D, RandomHorizontalFlip3D, RandomVerticalFlip3D, RandomAffine3D, RandomRotation3D, RandomCrop3D, CenterCrop3D, RandomEqualize3D ) class TestRandomHorizontalFlip3D: # TODO: improve and implement more meaningful smoke tests e.g check for a consistent # return values such a torch.Tensor variable. @pytest.mark.xfail(reason="might fail under windows OS due to printing preicision.") def test_smoke(self): f = RandomHorizontalFlip3D(0.5) repr = "RandomHorizontalFlip3D(p=0.5, p_batch=1.0, same_on_batch=False, return_transform=0.5)" assert str(f) == repr def test_random_hflip(self, device): f = RandomHorizontalFlip3D(p=1.0, return_transform=True) f1 = RandomHorizontalFlip3D(p=0., return_transform=True) f2 = RandomHorizontalFlip3D(p=1.) f3 = RandomHorizontalFlip3D(p=0.) input = torch.tensor([[[0., 0., 0., 0.], [0., 0., 0., 0.], [0., 0., 1., 2.]], [[0., 0., 0., 0.], [0., 0., 0., 0.], [0., 0., 1., 2.]]]) # 2 x 3 x 4 input = input.to(device) expected = torch.tensor([[[0., 0., 0., 0.], [0., 0., 0., 0.], [2., 1., 0., 0.]], [[0., 0., 0., 0.], [0., 0., 0., 0.], [2., 1., 0., 0.]]]) # 2 x 3 x 4 expected = expected.to(device) expected_transform = torch.tensor([[-1., 0., 0., 3.], [0., 1., 0., 0.], [0., 0., 1., 0.], [0., 0., 0., 1.]]) # 4 x 4 expected_transform = expected_transform.to(device) identity = torch.tensor([[1., 0., 0., 0.], [0., 1., 0., 0.], [0., 0., 1., 0.], [0., 0., 0., 1.]]) # 4 x 4 identity = identity.to(device) assert (f(input)[0] == expected).all() assert (f(input)[1] == expected_transform).all() assert (f1(input)[0] == input).all() assert (f1(input)[1] == identity).all() assert (f2(input) == expected).all() assert (f3(input) == input).all() def test_batch_random_hflip(self, device): f = RandomHorizontalFlip3D(p=1.0, return_transform=True) f1 = RandomHorizontalFlip3D(p=0.0, return_transform=True) input = torch.tensor([[[[[0., 0., 0.], [0., 0., 0.], [0., 1., 1.]]]]]) # 1 x 1 x 1 x 3 x 3 input = input.to(device) expected = torch.tensor([[[[[0., 0., 0.], [0., 0., 0.], [1., 1., 0.]]]]]) # 1 x 1 x 1 x 3 x 3 expected = expected.to(device) expected_transform = torch.tensor([[[-1., 0., 0., 2.], [0., 1., 0., 0.], [0., 0., 1., 0.], [0., 0., 0., 1.]]]) # 1 x 4 x 4 expected_transform = expected_transform.to(device) identity = torch.tensor([[[1., 0., 0., 0.], [0., 1., 0., 0.], [0., 0., 1., 0.], [0., 0., 0., 1.]]]) # 1 x 4 x 4 identity = identity.to(device) input = input.repeat(5, 3, 1, 1, 1) # 5 x 3 x 3 x 3 x 3 expected = expected.repeat(5, 3, 1, 1, 1) # 5 x 3 x 3 x 3 x 3 expected_transform = expected_transform.repeat(5, 1, 1) # 5 x 4 x 4 identity = identity.repeat(5, 1, 1) # 5 x 4 x 4 assert (f(input)[0] == expected).all() assert (f(input)[1] == expected_transform).all() assert (f1(input)[0] == input).all() assert (f1(input)[1] == identity).all() def test_same_on_batch(self, device): f = RandomHorizontalFlip3D(p=0.5, same_on_batch=True) input = torch.eye(3).unsqueeze(dim=0).unsqueeze(dim=0).repeat(2, 1, 1, 1, 1) res = f(input) assert (res[0] == res[1]).all() def test_sequential(self, device): f = nn.Sequential( RandomHorizontalFlip3D(p=1.0, return_transform=True), RandomHorizontalFlip3D(p=1.0, return_transform=True), ) f1 = nn.Sequential( RandomHorizontalFlip3D(p=1.0, return_transform=True), RandomHorizontalFlip3D(p=1.0), ) input = torch.tensor([[[[0., 0., 0.], [0., 0., 0.], [0., 1., 1.]]]]) # 1 x 1 x 3 x 3 input = input.to(device) expected_transform = torch.tensor([[[-1., 0., 0., 2.], [0., 1., 0., 0.], [0., 0., 1., 0.], [0., 0., 0., 1.]]]) # 1 x 4 x 4 expected_transform = expected_transform.to(device) expected_transform_1 = expected_transform @ expected_transform expected_transform_1 = expected_transform_1.to(device) assert(f(input)[0] == input).all() assert(f(input)[1] == expected_transform_1).all() assert(f1(input)[0] == input).all() assert(f1(input)[1] == expected_transform).all() @pytest.mark.skip(reason="turn off all jit for a while") def test_jit(self, device): @torch.jit.script def op_script(data: torch.Tensor) -> Union[torch.Tensor, Tuple[torch.Tensor, torch.Tensor]]: return kornia.random_hflip(data) input = torch.tensor([[[0., 0., 0.], [0., 0., 0.], [0., 1., 1.]]]) # 1 x 3 x 3 # Build jit trace op_trace = torch.jit.trace(op_script, (input, )) # Create new inputs input = torch.tensor([[0., 0., 0.], [5., 5., 0.], [0., 0., 0.]]) # 3 x 3 input = input.repeat(2, 1, 1) # 2 x 3 x 3 expected = torch.tensor([[[0., 0., 0.], [0., 5., 5.], [0., 0., 0.]]]) # 3 x 3 expected = expected.repeat(2, 1, 1) actual = op_trace(input) assert_allclose(actual, expected) def test_gradcheck(self, device): input = torch.rand((1, 3, 3)).to(device) # 3 x 3 input = utils.tensor_to_gradcheck_var(input) # to var assert gradcheck(RandomHorizontalFlip3D(p=1.), (input, ), raise_exception=True) class TestRandomVerticalFlip3D: # TODO: improve and implement more meaningful smoke tests e.g check for a consistent # return values such a torch.Tensor variable. @pytest.mark.xfail(reason="might fail under windows OS due to printing preicision.") def test_smoke(self): f = RandomVerticalFlip3D(0.5) repr = "RandomVerticalFlip3D(p=0.5, p_batch=1.0, same_on_batch=False, return_transform=0.5)" assert str(f) == repr def test_random_vflip(self, device): f = RandomVerticalFlip3D(p=1.0, return_transform=True) f1 = RandomVerticalFlip3D(p=0., return_transform=True) f2 = RandomVerticalFlip3D(p=1.) f3 = RandomVerticalFlip3D(p=0.) input = torch.tensor([[[0., 0., 0.], [0., 0., 0.], [0., 1., 1.]], [[0., 0., 0.], [0., 0., 0.], [0., 1., 1.]]]) # 2 x 3 x 3 input = input.to(device) expected = torch.tensor([[[0., 1., 1.], [0., 0., 0.], [0., 0., 0.]], [[0., 1., 1.], [0., 0., 0.], [0., 0., 0.]]]) # 2 x 3 x 3 expected = expected.to(device) expected_transform = torch.tensor([[1., 0., 0., 0.], [0., -1., 0., 2.], [0., 0., 1., 0.], [0., 0., 0., 1.]]) # 4 x 4 expected_transform = expected_transform.to(device) identity = torch.tensor([[1., 0., 0., 0.], [0., 1., 0., 0.], [0., 0., 1., 0.], [0., 0., 0., 1.]]) # 4 x 4 identity = identity.to(device) assert_allclose(f(input)[0], expected) assert_allclose(f(input)[1], expected_transform) assert_allclose(f1(input)[0], input) assert_allclose(f1(input)[1], identity) assert_allclose(f2(input), expected) assert_allclose(f3(input), input) def test_batch_random_vflip(self, device): f = RandomVerticalFlip3D(p=1.0, return_transform=True) f1 = RandomVerticalFlip3D(p=0.0, return_transform=True) input = torch.tensor([[[[[0., 0., 0.], [0., 0., 0.], [0., 1., 1.]]]]]) # 1 x 1 x 1 x 3 x 3 input = input.to(device) expected = torch.tensor([[[[[0., 1., 1.], [0., 0., 0.], [0., 0., 0.]]]]]) # 1 x 1 x 1 x 3 x 3 expected = expected.to(device) expected_transform = torch.tensor([[[1., 0., 0., 0.], [0., -1., 0., 2.], [0., 0., 1., 0.], [0., 0., 0., 1.]]]) # 1 x 4 x 4 expected_transform = expected_transform.to(device) identity = torch.tensor([[[1., 0., 0., 0.], [0., 1., 0., 0.], [0., 0., 1., 0.], [0., 0., 0., 1.]]]) # 1 x 4 x 4 identity = identity.to(device) input = input.repeat(5, 3, 1, 1, 1) # 5 x 3 x 3 x 3 x 3 expected = expected.repeat(5, 3, 1, 1, 1) # 5 x 3 x 3 x 3 x 3 expected_transform = expected_transform.repeat(5, 1, 1) # 5 x 4 x 4 identity = identity.repeat(5, 1, 1) # 5 x 4 x 4 assert_allclose(f(input)[0], expected) assert_allclose(f(input)[1], expected_transform) assert_allclose(f1(input)[0], input) assert_allclose(f1(input)[1], identity) def test_same_on_batch(self, device): f = RandomVerticalFlip3D(p=0.5, same_on_batch=True) input = torch.eye(3).unsqueeze(dim=0).unsqueeze(dim=0).repeat(2, 1, 1, 1, 1) res = f(input) assert (res[0] == res[1]).all() def test_sequential(self, device): f = nn.Sequential( RandomVerticalFlip3D(p=1.0, return_transform=True), RandomVerticalFlip3D(p=1.0, return_transform=True), ) f1 = nn.Sequential( RandomVerticalFlip3D(p=1.0, return_transform=True), RandomVerticalFlip3D(p=1.0), ) input = torch.tensor([[[[[0., 0., 0.], [0., 0., 0.], [0., 1., 1.]]]]]) # 1 x 1 x 1 x 4 x 4 input = input.to(device) expected_transform = torch.tensor([[[1., 0., 0., 0.], [0., -1., 0., 2.], [0., 0., 1., 0.], [0., 0., 0., 1.]]]) # 1 x 4 x 4 expected_transform = expected_transform.to(device) expected_transform_1 = expected_transform @ expected_transform assert_allclose(f(input)[0], input.squeeze()) assert_allclose(f(input)[1], expected_transform_1) assert_allclose(f1(input)[0], input.squeeze()) assert_allclose(f1(input)[1], expected_transform) @pytest.mark.skip(reason="turn off all jit for a while") def test_jit(self, device): @torch.jit.script def op_script(data: torch.Tensor) -> Union[torch.Tensor, Tuple[torch.Tensor, torch.Tensor]]: return kornia.random_vflip(data) input = torch.tensor([[[0., 0., 0.], [0., 0., 0.], [0., 1., 1.]]]) # 4 x 4 # Build jit trace op_trace = torch.jit.trace(op_script, (input, )) # Create new inputs input = torch.tensor([[[0., 0., 0.], [5., 5., 0.], [0., 0., 0.]]]) # 1 x 4 x 4 input = input.repeat(2, 1, 1) # 2 x 4 x 4 expected = torch.tensor([[[[0., 0., 0.], [5., 5., 0.], [0., 0., 0.]]]]) # 1 x 4 x 4 expected = expected.repeat(2, 1, 1) actual = op_trace(input) assert_allclose(actual, expected) def test_gradcheck(self, device): input = torch.rand((1, 3, 3)).to(device) # 4 x 4 input = utils.tensor_to_gradcheck_var(input) # to var assert gradcheck(RandomVerticalFlip3D(p=1.), (input, ), raise_exception=True) class TestRandomDepthicalFlip3D: # TODO: improve and implement more meaningful smoke tests e.g check for a consistent # return values such a torch.Tensor variable. @pytest.mark.xfail(reason="might fail under windows OS due to printing preicision.") def test_smoke(self): f = RandomDepthicalFlip3D(0.5) repr = "RandomDepthicalFlip3D(p=0.5, p_batch=1.0, same_on_batch=False, return_transform=0.5)" assert str(f) == repr def test_random_dflip(self, device): f = RandomDepthicalFlip3D(p=1.0, return_transform=True) f1 = RandomDepthicalFlip3D(p=0., return_transform=True) f2 = RandomDepthicalFlip3D(p=1.) f3 = RandomDepthicalFlip3D(p=0.) input = torch.tensor([[[0., 0., 0., 0.], [0., 0., 0., 0.], [0., 0., 0., 1.]], [[0., 0., 0., 0.], [0., 0., 0., 0.], [0., 0., 0., 2.]]]) # 2 x 3 x 4 input = input.to(device) expected = torch.tensor([[[0., 0., 0., 0.], [0., 0., 0., 0.], [0., 0., 0., 2.]], [[0., 0., 0., 0.], [0., 0., 0., 0.], [0., 0., 0., 1.]]]) # 2 x 3 x 4 expected = expected.to(device) expected_transform = torch.tensor([[1., 0., 0., 0.], [0., 1., 0., 0.], [0., 0., -1., 1.], [0., 0., 0., 1.]]) # 4 x 4 expected_transform = expected_transform.to(device) identity = torch.tensor([[1., 0., 0., 0.], [0., 1., 0., 0.], [0., 0., 1., 0.], [0., 0., 0., 1.]]) # 4 x 4 identity = identity.to(device) assert_allclose(f(input)[0], expected) assert_allclose(f(input)[1], expected_transform) assert_allclose(f1(input)[0], input) assert_allclose(f1(input)[1], identity) assert_allclose(f2(input), expected) assert_allclose(f3(input), input) def test_batch_random_dflip(self, device): f = RandomDepthicalFlip3D(p=1.0, return_transform=True) f1 = RandomDepthicalFlip3D(p=0.0, return_transform=True) input = torch.tensor([[[0., 0., 0., 0.], [0., 0., 0., 0.], [0., 0., 0., 1.]], [[0., 0., 0., 0.], [0., 0., 0., 0.], [0., 0., 0., 2.]]]) # 2 x 3 x 4 input = input.to(device) expected = torch.tensor([[[0., 0., 0., 0.], [0., 0., 0., 0.], [0., 0., 0., 2.]], [[0., 0., 0., 0.], [0., 0., 0., 0.], [0., 0., 0., 1.]]]) # 2 x 3 x 4 expected = expected.to(device) expected_transform = torch.tensor([[[1., 0., 0., 0.], [0., 1., 0., 0.], [0., 0., -1., 1.], [0., 0., 0., 1.]]]) # 1 x 4 x 4 expected_transform = expected_transform.to(device) identity = torch.tensor([[[1., 0., 0., 0.], [0., 1., 0., 0.], [0., 0., 1., 0.], [0., 0., 0., 1.]]]) # 1 x 4 x 4 identity = identity.to(device) input = input.repeat(5, 3, 1, 1, 1) # 5 x 3 x 3 x 3 x 3 expected = expected.repeat(5, 3, 1, 1, 1) # 5 x 3 x 3 x 3 x 3 expected_transform = expected_transform.repeat(5, 1, 1) # 5 x 4 x 4 identity = identity.repeat(5, 1, 1) # 5 x 4 x 4 assert_allclose(f(input)[0], expected) assert_allclose(f(input)[1], expected_transform) assert_allclose(f1(input)[0], input) assert_allclose(f1(input)[1], identity) def test_same_on_batch(self, device): f = RandomDepthicalFlip3D(p=0.5, same_on_batch=True) input = torch.eye(3).unsqueeze(dim=0).unsqueeze(dim=0).repeat(2, 1, 2, 1, 1) res = f(input) assert (res[0] == res[1]).all() def test_sequential(self, device): f = nn.Sequential( RandomDepthicalFlip3D(p=1.0, return_transform=True), RandomDepthicalFlip3D(p=1.0, return_transform=True), ) f1 = nn.Sequential( RandomDepthicalFlip3D(p=1.0, return_transform=True), RandomDepthicalFlip3D(p=1.0), ) input = torch.tensor([[[0., 0., 0., 0.], [0., 0., 0., 0.], [0., 0., 0., 1.]], [[0., 0., 0., 0.], [0., 0., 0., 0.], [0., 0., 0., 2.]]]) # 2 x 3 x 4 input = input.to(device) expected_transform = torch.tensor([[[1., 0., 0., 0.], [0., 1., 0., 0.], [0., 0., -1., 1.], [0., 0., 0., 1.]]]) # 1 x 4 x 4 expected_transform = expected_transform.to(device) expected_transform_1 = expected_transform @ expected_transform assert_allclose(f(input)[0], input.squeeze()) assert_allclose(f(input)[1], expected_transform_1) assert_allclose(f1(input)[0], input.squeeze()) assert_allclose(f1(input)[1], expected_transform) @pytest.mark.skip(reason="turn off all jit for a while") def test_jit(self, device): @torch.jit.script def op_script(data: torch.Tensor) -> Union[torch.Tensor, Tuple[torch.Tensor, torch.Tensor]]: return kornia.random_vflip(data) input = torch.tensor([[[0., 0., 0.], [0., 0., 0.], [0., 1., 1.]]]) # 4 x 4 # Build jit trace op_trace = torch.jit.trace(op_script, (input, )) # Create new inputs input = torch.tensor([[[0., 0., 0.], [5., 5., 0.], [0., 0., 0.]]]) # 1 x 4 x 4 input = input.repeat(2, 1, 1) # 2 x 4 x 4 expected = torch.tensor([[[[0., 0., 0.], [5., 5., 0.], [0., 0., 0.]]]]) # 1 x 4 x 4 expected = expected.repeat(2, 1, 1) actual = op_trace(input) assert_allclose(actual, expected) def test_gradcheck(self, device): input = torch.rand((1, 3, 3)).to(device) # 4 x 4 input = utils.tensor_to_gradcheck_var(input) # to var assert gradcheck(RandomDepthicalFlip3D(p=1.), (input, ), raise_exception=True) class TestRandomRotation3D: torch.manual_seed(0) # for random reproductibility # TODO: improve and implement more meaningful smoke tests e.g check for a consistent # return values such a torch.Tensor variable. @pytest.mark.xfail(reason="might fail under windows OS due to printing preicision.") def test_smoke(self): f = RandomRotation3D(degrees=45.5) repr = """RandomRotation3D(degrees=tensor([[-45.5000, 45.5000], [-45.5000, 45.5000], [-45.5000, 45.5000]]), resample=BILINEAR, align_corners=False, p=0.5, """\ """p_batch=1.0, same_on_batch=False, return_transform=False)""" assert str(f) == repr def test_random_rotation(self, device, dtype): # This is included in doctest torch.manual_seed(0) # for random reproductibility f = RandomRotation3D(degrees=45.0, return_transform=True) f1 = RandomRotation3D(degrees=45.0) input = torch.tensor([[[1., 0., 0., 2.], [0., 0., 0., 0.], [0., 1., 2., 0.], [0., 0., 1., 2.]], [[1., 0., 0., 2.], [0., 0., 0., 0.], [0., 1., 2., 0.], [0., 0., 1., 2.]], [[1., 0., 0., 2.], [0., 0., 0., 0.], [0., 1., 2., 0.], [0., 0., 1., 2.]]], device=device, dtype=dtype) # 3 x 4 x 4 expected = torch.tensor([[[[[0.2771, 0.0000, 0.0036, 0.0000], [0.5751, 0.0183, 0.7505, 0.4702], [0.0262, 0.2591, 0.5776, 0.4764], [0.0000, 0.0093, 0.0000, 0.0393]], [[0.0000, 0.0000, 0.0583, 0.0222], [0.1665, 0.0000, 1.0424, 1.0224], [0.1296, 0.4846, 1.4200, 1.2287], [0.0078, 0.3851, 0.3965, 0.3612]], [[0.0000, 0.7704, 0.6704, 0.0000], [0.0000, 0.0332, 0.2414, 0.0524], [0.0000, 0.3349, 1.4545, 1.3689], [0.0000, 0.0312, 0.5874, 0.8702]]]]], device=device, dtype=dtype) expected_transform = torch.tensor([[[0.5784, 0.7149, -0.3929, -0.0471], [-0.3657, 0.6577, 0.6585, 0.4035], [0.7292, -0.2372, 0.6419, -0.3799], [0.0000, 0.0000, 0.0000, 1.0000]]], device=device, dtype=dtype) expected_2 = torch.tensor([[[[[1., 0., 0., 2.], [0., 0., 0., 0.], [0., 1., 2., 0.], [0., 0., 1., 2.]], [[1., 0., 0., 2.], [0., 0., 0., 0.], [0., 1., 2., 0.], [0., 0., 1., 2.]], [[1., 0., 0., 2.], [0., 0., 0., 0.], [0., 1., 2., 0.], [0., 0., 1., 2.]]]]], device=device, dtype=dtype) out, mat = f(input) assert_allclose(out, expected, rtol=1e-6, atol=1e-4) assert_allclose(mat, expected_transform, rtol=1e-6, atol=1e-4) assert_allclose(f1(input), expected_2, rtol=1e-6, atol=1e-4) def test_batch_random_rotation(self, device, dtype): torch.manual_seed(0) # for random reproductibility f = RandomRotation3D(degrees=45.0, return_transform=True) input = torch.tensor([[[[1., 0., 0., 2.], [0., 0., 0., 0.], [0., 1., 2., 0.], [0., 0., 1., 2.]], [[1., 0., 0., 2.], [0., 0., 0., 0.], [0., 1., 2., 0.], [0., 0., 1., 2.]], [[1., 0., 0., 2.], [0., 0., 0., 0.], [0., 1., 2., 0.], [0., 0., 1., 2.]]]], device=device, dtype=dtype) # 1 x 1 x 4 x 4 expected = torch.tensor([[[[[0.0000, 0.5106, 0.1146, 0.0000], [0.0000, 0.1261, 0.0000, 0.4723], [0.1714, 0.9931, 0.5442, 0.4684], [0.0193, 0.5802, 0.4195, 0.0000]], [[0.0000, 0.2386, 0.0000, 0.0000], [0.0187, 0.3527, 0.0000, 0.6119], [0.1294, 1.2251, 0.9130, 0.0942], [0.0962, 1.0769, 0.8448, 0.0000]], [[0.0000, 0.0202, 0.0000, 0.0000], [0.1092, 0.5845, 0.1038, 0.4598], [0.0000, 1.1218, 1.0796, 0.0000], [0.0780, 0.9513, 1.1278, 0.0000]]]], [[[[1.0000, 0.0000, 0.0000, 2.0000], [0.0000, 0.0000, 0.0000, 0.0000], [0.0000, 1.0000, 2.0000, 0.0000], [0.0000, 0.0000, 1.0000, 2.0000]], [[1.0000, 0.0000, 0.0000, 2.0000], [0.0000, 0.0000, 0.0000, 0.0000], [0.0000, 1.0000, 2.0000, 0.0000], [0.0000, 0.0000, 1.0000, 2.0000]], [[1.0000, 0.0000, 0.0000, 2.0000], [0.0000, 0.0000, 0.0000, 0.0000], [0.0000, 1.0000, 2.0000, 0.0000], [0.0000, 0.0000, 1.0000, 2.0000]]]]], device=device, dtype=dtype) expected_transform = torch.tensor([[[0.7894, -0.6122, 0.0449, 1.1892], [0.5923, 0.7405, -0.3176, -0.1816], [0.1612, 0.2773, 0.9472, -0.6049], [0.0000, 0.0000, 0.0000, 1.0000]], [[1.0000, 0.0000, 0.0000, 0.0000], [0.0000, 1.0000, 0.0000, 0.0000], [0.0000, 0.0000, 1.0000, 0.0000], [0.0000, 0.0000, 0.0000, 1.0000]]], device=device, dtype=dtype) input = input.repeat(2, 1, 1, 1, 1) # 5 x 4 x 4 x 3 out, mat = f(input) assert_allclose(out, expected, rtol=1e-6, atol=1e-4) assert_allclose(mat, expected_transform, rtol=1e-6, atol=1e-4) def test_same_on_batch(self, device, dtype): f = RandomRotation3D(degrees=40, same_on_batch=True) input = torch.eye(6, device=device, dtype=dtype).unsqueeze(dim=0).unsqueeze(dim=0).repeat(2, 3, 1, 1, 1) res = f(input) assert (res[0] == res[1]).all() def test_sequential(self, device, dtype): torch.manual_seed(0) # for random reproductibility f = nn.Sequential( RandomRotation3D(torch.tensor([-45.0, 90]), return_transform=True), RandomRotation3D(10.4, return_transform=True), ) f1 = nn.Sequential( RandomRotation3D(torch.tensor([-45.0, 90]), return_transform=True), RandomRotation3D(10.4), ) input = torch.tensor([[[1., 0., 0., 2.], [0., 0., 0., 0.], [0., 1., 2., 0.], [0., 0., 1., 2.]], [[1., 0., 0., 2.], [0., 0., 0., 0.], [0., 1., 2., 0.], [0., 0., 1., 2.]], [[1., 0., 0., 2.], [0., 0., 0., 0.], [0., 1., 2., 0.], [0., 0., 1., 2.]]], device=device, dtype=dtype) # 3 x 4 x 4 expected = torch.tensor([[[[[0.2752, 0.0000, 0.0000, 0.0000], [0.5767, 0.0059, 0.6440, 0.4307], [0.0000, 0.2793, 0.6638, 0.5716], [0.0000, 0.0049, 0.0000, 0.0685]], [[0.0000, 0.0000, 0.1806, 0.0000], [0.2138, 0.0000, 0.9061, 0.7966], [0.0657, 0.5395, 1.4299, 1.2912], [0.0000, 0.3600, 0.3088, 0.3655]], [[0.0000, 0.6515, 0.8861, 0.0000], [0.0000, 0.0000, 0.2278, 0.0000], [0.0027, 0.4403, 1.5462, 1.3480], [0.0000, 0.1182, 0.6297, 0.8623]]]]], device=device, dtype=dtype) expected_transform = torch.tensor([[[0.6306, 0.6496, -0.4247, 0.0044], [-0.3843, 0.7367, 0.5563, 0.4151], [0.6743, -0.1876, 0.7142, -0.4443], [0.0000, 0.0000, 0.0000, 1.0000]]], device=device, dtype=dtype) expected_transform_2 = torch.tensor([[[0.9611, 0.0495, -0.2717, 0.2557], [0.1255, 0.7980, 0.5894, -0.4747], [0.2460, -0.6006, 0.7608, 0.7710], [0.0000, 0.0000, 0.0000, 1.0000]]], device=device, dtype=dtype) out, mat = f(input) _, mat_2 = f1(input) assert_allclose(out, expected, rtol=1e-6, atol=1e-4) assert_allclose(mat, expected_transform, rtol=1e-6, atol=1e-4) assert_allclose(mat_2, expected_transform_2, rtol=1e-6, atol=1e-4) @pytest.mark.skip(reason="turn off all jit for a while") def test_jit(self, device): torch.manual_seed(0) # for random reproductibility @torch.jit.script def op_script(data: torch.Tensor) -> Union[torch.Tensor, Tuple[torch.Tensor, torch.Tensor]]: return kornia.random_rotation(data, degrees=45.0) input = torch.tensor([[[1., 0., 0., 2.], [0., 0., 0., 0.], [0., 1., 2., 0.], [0., 0., 1., 2.]], [[1., 0., 0., 2.], [0., 0., 0., 0.], [0., 1., 2., 0.], [0., 0., 1., 2.]], [[1., 0., 0., 2.], [0., 0., 0., 0.], [0., 1., 2., 0.], [0., 0., 1., 2.]]]) # 3 x 4 x 4 # Build jit trace op_trace = torch.jit.trace(op_script, (input, )) # Create new inputs input = torch.tensor([[[0., 0., 0.], [5., 5., 0.], [0., 0., 0.]], [[0., 0., 0.], [5., 5., 0.], [0., 0., 0.]], [[0., 0., 0.], [5., 5., 0.], [0., 0., 0.]]]) # 3 x 3 x 3 expected = torch.tensor([[[0.0000, 0.2584, 0.0000], [2.9552, 5.0000, 0.2584], [1.6841, 0.4373, 0.0000]]]) actual = op_trace(input) assert_allclose(actual, expected, rtol=1e-6, atol=1e-4) def test_gradcheck(self, device): torch.manual_seed(0) # for random reproductibility input = torch.rand((3, 3, 3)).to(device) # 3 x 3 x 3 input = utils.tensor_to_gradcheck_var(input) # to var assert gradcheck(RandomRotation3D(degrees=(15.0, 15.0), p=1.), (input, ), raise_exception=True) class TestRandomCrop3D: # TODO: improve and implement more meaningful smoke tests e.g check for a consistent # return values such a torch.Tensor variable. @pytest.mark.xfail(reason="might fail under windows OS due to printing preicision.") def test_smoke(self): f = RandomCrop3D(size=(2, 3, 4), padding=(0, 1, 2), fill=10, pad_if_needed=False, p=1.) repr = "RandomCrop3D(crop_size=(2, 3, 4), padding=(0, 1, 2), fill=10, pad_if_needed=False, "\ "padding_mode=constant, resample=BILINEAR, p=1.0, p_batch=1.0, same_on_batch=False, "\ "return_transform=False)" assert str(f) == repr @pytest.mark.parametrize("batch_size", [1, 2]) def test_no_padding(self, batch_size, device, dtype): torch.manual_seed(0) inp = torch.tensor([[[[ [0., 1., 2., 3., 4.], [5., 6., 7., 8., 9.], [10, 11, 12, 13, 14], [15, 16, 17, 18, 19], [20, 21, 22, 23, 24] ]]]], device=device, dtype=dtype).repeat(batch_size, 1, 5, 1, 1) f = RandomCrop3D(size=(2, 3, 4), padding=None, align_corners=True, p=1.) out = f(inp) if batch_size == 1: expected = torch.tensor([[[[ [11, 12, 13, 14], [16, 17, 18, 19], [21, 22, 23, 24] ]]]], device=device, dtype=dtype).repeat(batch_size, 1, 2, 1, 1) if batch_size == 2: expected = torch.tensor([ [[[[6.0000, 7.0000, 8.0000, 9.0000], [11.0000, 12.0000, 13.0000, 14.0000], [16.0000, 17.0000, 18.0000, 19.0000]], [[6.0000, 7.0000, 8.0000, 9.0000], [11.0000, 12.0000, 13.0000, 14.0000], [16.0000, 17.0000, 18.0000, 19.0000]]]], [[[[11.0000, 12.0000, 13.0000, 14.0000], [16.0000, 17.0000, 18.0000, 19.0000], [21.0000, 22.0000, 23.0000, 24.0000]], [[11.0000, 12.0000, 13.0000, 14.0000], [16.0000, 17.0000, 18.0000, 19.0000], [21.0000, 22.0000, 23.0000, 24.0000]]]]], device=device, dtype=dtype) assert_allclose(out, expected, atol=1e-4, rtol=1e-4) def test_same_on_batch(self, device, dtype): f = RandomCrop3D(size=(2, 3, 4), padding=None, align_corners=True, p=1., same_on_batch=True) input = torch.eye(6).unsqueeze(dim=0).unsqueeze(dim=0).unsqueeze(dim=0).repeat(2, 3, 5, 1, 1) res = f(input) assert (res[0] == res[1]).all() @pytest.mark.parametrize("padding", [1, (1, 1, 1), (1, 1, 1, 1, 1, 1)]) def test_padding_batch(self, padding, device, dtype): torch.manual_seed(0) batch_size = 2 inp = torch.tensor([[[ [0., 1., 2.], [3., 4., 5.], [6., 7., 8.] ]]], device=device, dtype=dtype).repeat(batch_size, 1, 3, 1, 1) expected = torch.tensor([[[ [[0., 1., 2., 10.], [3., 4., 5., 10.], [6., 7., 8., 10.]], [[0., 1., 2., 10.], [3., 4., 5., 10.], [6., 7., 8., 10.]], ]], [[ [[3., 4., 5., 10.], [6., 7., 8., 10.], [10, 10, 10, 10.]], [[10, 10, 10, 10.], [10, 10, 10, 10.], [10, 10, 10, 10.]], ]]], device=device, dtype=dtype) f = RandomCrop3D(size=(2, 3, 4), fill=10., padding=padding, align_corners=True, p=1.) out = f(inp) assert_allclose(out, expected, atol=1e-4, rtol=1e-4) def test_pad_if_needed(self, device, dtype): torch.manual_seed(0) inp = torch.tensor([[ [0., 1., 2.], ]], device=device, dtype=dtype) expected = torch.tensor([[[ [[9., 9., 9., 9.], [9., 9., 9., 9.], [9., 9., 9., 9.]], [[0., 1., 2., 9.], [9., 9., 9., 9.], [9., 9., 9., 9.]], ]]], device=device, dtype=dtype) rc = RandomCrop3D(size=(2, 3, 4), pad_if_needed=True, fill=9, align_corners=True, p=1.) out = rc(inp) assert_allclose(out, expected, atol=1e-4, rtol=1e-4) def test_gradcheck(self, device, dtype): torch.manual_seed(0) # for random reproductibility inp = torch.rand((3, 3, 3), device=device, dtype=dtype) # 3 x 3 inp = utils.tensor_to_gradcheck_var(inp) # to var assert gradcheck(RandomCrop3D(size=(3, 3, 3), p=1.), (inp, ), raise_exception=True) @pytest.mark.skip("Need to fix Union type") def test_jit(self, device, dtype): # Define script op = RandomCrop(size=(3, 3), p=1.).forward op_script = torch.jit.script(op) img = torch.ones(1, 1, 5, 6, device=device, dtype=dtype) actual = op_script(img) expected = kornia.center_crop3d(img) assert_allclose(actual, expected) @pytest.mark.skip("Need to fix Union type") def test_jit_trace(self, device, dtype): # Define script op = RandomCrop(size=(3, 3), p=1.).forward op_script = torch.jit.script(op) # 1. Trace op img = torch.ones(1, 1, 5, 6, device=device, dtype=dtype) op_trace = torch.jit.trace(op_script, (img,)) # 2. Generate new input img = torch.ones(1, 1, 5, 6, device=device, dtype=dtype) # 3. Evaluate actual = op_trace(img) expected = op(img) assert_allclose(actual, expected) class TestCenterCrop3D: def test_no_transform(self, device, dtype): inp = torch.rand(1, 2, 4, 4, 4, device=device, dtype=dtype) out = kornia.augmentation.CenterCrop3D(2)(inp) assert out.shape == (1, 2, 2, 2, 2) def test_transform(self, device, dtype): inp = torch.rand(1, 2, 5, 4, 8, device=device, dtype=dtype) out = kornia.augmentation.CenterCrop3D(2, return_transform=True)(inp) assert len(out) == 2 assert out[0].shape == (1, 2, 2, 2, 2) assert out[1].shape == (1, 4, 4) def test_no_transform_tuple(self, device, dtype): inp = torch.rand(1, 2, 5, 4, 8, device=device, dtype=dtype) out = kornia.augmentation.CenterCrop3D((3, 4, 5))(inp) assert out.shape == (1, 2, 3, 4, 5) def test_gradcheck(self, device, dtype): input = torch.rand(1, 2, 3, 4, 5, device=device, dtype=dtype) input = utils.tensor_to_gradcheck_var(input) # to var assert gradcheck(kornia.augmentation.CenterCrop3D(3), (input,), raise_exception=True) class TestRandomEqualize3D: # TODO: improve and implement more meaningful smoke tests e.g check for a consistent # return values such a torch.Tensor variable. @pytest.mark.xfail(reason="might fail under windows OS due to printing preicision.") def test_smoke(self, device, dtype): f = RandomEqualize3D(p=0.5) repr = "RandomEqualize3D(p=0.5, p_batch=1.0, same_on_batch=False, return_transform=False)" assert str(f) == repr def test_random_equalize(self, device, dtype): f = RandomEqualize3D(p=1.0, return_transform=True) f1 = RandomEqualize3D(p=0., return_transform=True) f2 = RandomEqualize3D(p=1.) f3 = RandomEqualize3D(p=0.) bs, channels, depth, height, width = 1, 3, 6, 10, 10 inputs3d = self.build_input(channels, depth, height, width, device=device, dtype=dtype).squeeze(dim=0) row_expected = torch.tensor([ 0.0000, 0.11764, 0.2353, 0.3529, 0.4706, 0.5882, 0.7059, 0.8235, 0.9412, 1.0000 ], device=device, dtype=dtype) expected = self.build_input(channels, depth, height, width, bs=1, row=row_expected, device=device, dtype=dtype) identity = kornia.eye_like(4, expected) assert_allclose(f(inputs3d)[0], expected, rtol=1e-4, atol=1e-4) assert_allclose(f(inputs3d)[1], identity, rtol=1e-4, atol=1e-4) assert_allclose(f1(inputs3d)[0], inputs3d, rtol=1e-4, atol=1e-4) assert_allclose(f1(inputs3d)[1], identity, rtol=1e-4, atol=1e-4) assert_allclose(f2(inputs3d), expected, rtol=1e-4, atol=1e-4) assert_allclose(f3(inputs3d), inputs3d, rtol=1e-4, atol=1e-4) def test_batch_random_equalize(self, device, dtype): f = RandomEqualize3D(p=1.0, return_transform=True) f1 = RandomEqualize3D(p=0., return_transform=True) f2 = RandomEqualize3D(p=1.) f3 = RandomEqualize3D(p=0.) bs, channels, depth, height, width = 2, 3, 6, 10, 10 inputs3d = self.build_input(channels, depth, height, width, bs, device=device, dtype=dtype) row_expected = torch.tensor([ 0.0000, 0.11764, 0.2353, 0.3529, 0.4706, 0.5882, 0.7059, 0.8235, 0.9412, 1.0000 ]) expected = self.build_input(channels, depth, height, width, bs, row=row_expected, device=device, dtype=dtype) identity = kornia.eye_like(4, expected) # 2 x 4 x 4 assert_allclose(f(inputs3d)[0], expected, rtol=1e-4, atol=1e-4) assert_allclose(f(inputs3d)[1], identity, rtol=1e-4, atol=1e-4) assert_allclose(f1(inputs3d)[0], inputs3d, rtol=1e-4, atol=1e-4) assert_allclose(f1(inputs3d)[1], identity, rtol=1e-4, atol=1e-4) assert_allclose(f2(inputs3d), expected, rtol=1e-4, atol=1e-4) assert_allclose(f3(inputs3d), inputs3d, rtol=1e-4, atol=1e-4) def test_same_on_batch(self, device, dtype): f = RandomEqualize3D(p=0.5, same_on_batch=True) input = torch.eye(4, device=device, dtype=dtype) input = input.unsqueeze(dim=0).unsqueeze(dim=0).repeat(2, 1, 2, 1, 1) res = f(input) assert (res[0] == res[1]).all() def test_gradcheck(self, device, dtype): torch.manual_seed(0) # for random reproductibility inputs3d = torch.rand((3, 3, 3), device=device, dtype=dtype) # 3 x 3 x 3 inputs3d = utils.tensor_to_gradcheck_var(inputs3d) # to var assert gradcheck(RandomEqualize3D(p=0.5), (inputs3d,), raise_exception=True) @staticmethod def build_input(channels, depth, height, width, bs=1, row=None, device='cpu', dtype=torch.float32): if row is None: row = torch.arange(width, device=device, dtype=dtype) / float(width) channel = torch.stack([row] * height) image = torch.stack([channel] * channels) image3d = torch.stack([image] * depth).transpose(0, 1) batch = torch.stack([image3d] * bs) return batch.to(device, dtype)
43.378593
112
0.448125
5,403
43,769
3.559504
0.069036
0.050437
0.054285
0.049085
0.835847
0.806
0.789621
0.767887
0.74662
0.712666
0
0.144954
0.393018
43,769
1,008
113
43.421627
0.578951
0.045626
0
0.648408
0
0.008917
0.028655
0.00738
0
0
0
0.000992
0.122293
1
0.063694
false
0
0.012739
0.005096
0.09172
0.007643
0
0
0
null
0
0
0
1
1
1
1
1
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
null
0
0
0
0
0
0
0
0
0
0
0
0
0
6
6bbdd01acf71fc3e4336063b1dbd03093b010571
6,037
py
Python
baselines/ppo2/defaults.py
jinala/RLbaselines
3594c1edae49e1bb997057912cfb9b07531d41f4
[ "MIT" ]
null
null
null
baselines/ppo2/defaults.py
jinala/RLbaselines
3594c1edae49e1bb997057912cfb9b07531d41f4
[ "MIT" ]
null
null
null
baselines/ppo2/defaults.py
jinala/RLbaselines
3594c1edae49e1bb997057912cfb9b07531d41f4
[ "MIT" ]
1
2021-04-27T17:21:28.000Z
2021-04-27T17:21:28.000Z
import random import numpy as np def unif_range(a, b): return random.random() * (b - a) + a def rand_elem(xs): return xs[random.randrange(len(xs))] def rand_int_linspace(start, stop, num = 50): return rand_elem([int(x) for x in np.linspace(start, stop, num)]) def mujoco(): return dict( nsteps=2048, nminibatches=32, lam=0.95, gamma=0.99, noptepochs=10, log_interval=1, ent_coef=0.0, lr=lambda f: 3e-4 * f, cliprange=0.2, value_network='copy' ) def atari(): return dict( nsteps=128, nminibatches=4, lam=0.95, gamma=0.99, noptepochs=4, log_interval=1, ent_coef=.01, lr=lambda f : f * 2.5e-4, cliprange=0.1, ) def retro(): return atari() def car_retrieval_train(): lr = unif_range(0.003, 5e-6) print("lr: ", lr) return dict( # horizon = rand_int_linspace(32, 500), #nminibatches = rand_elem([1, 2, 4, 8, 16, 32, 64, 128, 256]), nminibatches = 1, # for lstm ent_coef = rand_elem([0.0, 0.01, 0.05, 0.1]), noptepochs = rand_int_linspace(3, 36), cliprange = rand_elem([0.1, 0.2, 0.3]), gamma = 0.99, lr = lambda f : f * lr ) ''' # best params for car retrieval bench def car_retrieval_train(): lr = 0.002 print("lr: ", lr) return dict( # horizon = rand_int_linspace(32, 500), nminibatches = 128, ent_coef = 0.01, noptepochs = 33, cliprange = 0.1, gamma = 0.99, lr = lambda f : f * lr ) def car_retrieval_train1(): lr = 0.002 print("lr: ", lr) return dict( # horizon = rand_int_linspace(32, 500), nminibatches = 128, ent_coef = 0.01, noptepochs = 33, cliprange = 0.1, gamma = 0.99, lr = lambda f : f * lr ) def car_retrieval_train2(): lr = 0.002 print("lr: ", lr) return dict( # horizon = rand_int_linspace(32, 500), nminibatches = 128, ent_coef = 0.01, noptepochs = 33, cliprange = 0.1, gamma = 0.99, lr = lambda f : f * lr ) def car_retrieval_train3(): lr = 0.002 print("lr: ", lr) return dict( # horizon = rand_int_linspace(32, 500), nminibatches = 128, ent_coef = 0.01, noptepochs = 33, cliprange = 0.1, gamma = 0.99, lr = lambda f : f * lr ) def car_retrieval_train4(): lr = 0.002 print("lr: ", lr) return dict( # horizon = rand_int_linspace(32, 500), nminibatches = 128, ent_coef = 0.01, noptepochs = 33, cliprange = 0.1, gamma = 0.99, lr = lambda f : f * lr ) def car_retrieval_train5(): lr = 0.002 print("lr: ", lr) return dict( # horizon = rand_int_linspace(32, 500), nminibatches = 128, ent_coef = 0.01, noptepochs = 33, cliprange = 0.1, gamma = 0.99, lr = lambda f : f * lr )''' def pendulum_train(): lr = unif_range(0.003, 5e-6) print("lr: ", lr) return dict( # horizon = rand_int_linspace(32, 500), #nminibatches = rand_elem([1, 2, 4, 8, 16, 32, 64, 128, 256, 512, 1024, 2048]), nminibatches = 1, #for lstm ent_coef = rand_elem([0.0, 0.01, 0.05, 0.1]), noptepochs = rand_int_linspace(3, 36), cliprange = rand_elem([0.1, 0.2, 0.3]), gamma = 0.99, lr = lambda f : f * lr ) ''' # best version for pendulum def pendulum_train(): lr = 0.0003 return dict( # horizon = rand_int_linspace(32, 500), nminibatches = 1, ent_coef = 0.01, noptepochs = 28, cliprange = 0.1, gamma = 0.99, lr = lambda f : f * lr )''' def mountain_car_train(): lr = unif_range(0.003, 5e-6) print("lr: ", lr) return dict( # horizon = rand_int_linspace(32, 500), nminibatches = 1, #rand_elem([1, 2, 4, 8, 16, 32, 64, 128, 256, 512, 1024, 2048]), ent_coef = rand_elem([0.0, 0.01, 0.05, 0.1]), noptepochs = rand_int_linspace(3, 36), cliprange = rand_elem([0.1, 0.2, 0.3]), gamma = 0.99, lr = lambda f : f * lr ) def quad_train(): lr = unif_range(0.003, 5e-6) print("lr: ", lr) return dict( # horizon = rand_int_linspace(32, 500), #nminibatches = rand_elem([1, 2, 4, 8, 16, 32, 64, 128, 256]), nminibatches=1, # for lstm ent_coef = rand_elem([0.0, 0.01, 0.05, 0.1]), noptepochs = rand_int_linspace(3, 36), cliprange = rand_elem([0.1, 0.2, 0.3]), gamma = 0.99, lr = lambda f : f * lr ) def quad_r_train(): lr = unif_range(0.003, 5e-6) print("lr: ", lr) return dict( # horizon = rand_int_linspace(32, 500), nminibatches = 1, #rand_elem([1, 2, 4, 8, 16, 32, 64, 128, 256]), ent_coef = rand_elem([0.0, 0.01, 0.05, 0.1]), noptepochs = rand_int_linspace(3, 36), cliprange = rand_elem([0.1, 0.2, 0.3]), gamma = 0.99, lr = lambda f : f * lr ) def acrobot_train(): lr = unif_range(0.003, 5e-6) print("lr: ", lr) return dict( # horizon = rand_int_linspace(32, 500), nminibatches = 1, #rand_elem([1, 2, 4, 8, 16, 32, 64, 128, 256, 512, 1024, 2048]), ent_coef = rand_elem([0.0, 0.01, 0.05, 0.1]), noptepochs = rand_int_linspace(3, 36), cliprange = rand_elem([0.1, 0.2, 0.3]), gamma = 0.99, lr = lambda f : f * lr ) def cartpole_train(): lr = unif_range(0.003, 5e-6) print("lr: ", lr) return dict( # horizon = rand_int_linspace(32, 500), nminibatches = 1, #rand_elem([1, 2, 4, 8, 16, 32, 64, 128, 256, 512, 1024, 2048]), ent_coef = rand_elem([0.0, 0.01, 0.05, 0.1]), noptepochs = rand_int_linspace(3, 36), cliprange = rand_elem([0.1, 0.2, 0.3]), gamma = 0.99, lr = lambda f : f * lr )
27.193694
90
0.525427
891
6,037
3.428732
0.106622
0.060229
0.10802
0.0491
0.839935
0.809493
0.809493
0.793781
0.793781
0.793781
0
0.145982
0.32599
6,037
222
91
27.193694
0.604817
0.120258
0
0.611111
0
0
0.009997
0
0
0
0
0
0
1
0.12037
false
0
0.018519
0.055556
0.259259
0.064815
0
0
0
null
0
0
0
1
1
1
1
1
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
null
0
0
0
0
0
0
0
0
0
0
0
0
0
6
d40859cfcfbe9d41075f18e967f903d43551b1c9
43
py
Python
tests/distributed/test_dir_structures/src5/executors/utils/data.py
vishalbelsare/jina
ae72cc5ce1f7e7f4c662e72e96ea21dddc28bf43
[ "Apache-2.0" ]
3
2021-12-06T08:10:02.000Z
2021-12-06T14:50:11.000Z
tests/distributed/test_dir_structures/src5/executors/utils/data.py
vishalbelsare/jina
ae72cc5ce1f7e7f4c662e72e96ea21dddc28bf43
[ "Apache-2.0" ]
2
2021-12-17T15:22:12.000Z
2021-12-18T07:19:06.000Z
tests/distributed/test_dir_structures/src5/executors/utils/data.py
vishalbelsare/jina
ae72cc5ce1f7e7f4c662e72e96ea21dddc28bf43
[ "Apache-2.0" ]
1
2022-02-03T08:30:53.000Z
2022-02-03T08:30:53.000Z
def dataops(): print('doing data ops')
14.333333
27
0.627907
6
43
4.5
1
0
0
0
0
0
0
0
0
0
0
0
0.209302
43
2
28
21.5
0.794118
0
0
0
0
0
0.325581
0
0
0
0
0
0
1
0.5
true
0
0
0
0.5
0.5
1
1
0
null
0
0
0
0
0
0
0
0
0
0
0
0
0
1
0
0
0
0
0
0
0
0
0
0
null
0
0
0
0
0
1
1
0
0
0
0
1
0
6
d40c0bad03a56999b23c54f3b491a32e5393de51
196
py
Python
aggregationtools/__init__.py
alexandria-julius/plttools
0feb298e5f0d52c73b926bd127f32339bda4a62e
[ "MIT" ]
null
null
null
aggregationtools/__init__.py
alexandria-julius/plttools
0feb298e5f0d52c73b926bd127f32339bda4a62e
[ "MIT" ]
null
null
null
aggregationtools/__init__.py
alexandria-julius/plttools
0feb298e5f0d52c73b926bd127f32339bda4a62e
[ "MIT" ]
2
2021-11-15T14:20:52.000Z
2022-01-07T06:27:48.000Z
""" PLT tools module imports to create a better module interface """ from aggregationtools.ep_curve import EPCurve, EPType from aggregationtools.plt import PLT from aggregationtools.elt import ELT
49
68
0.826531
27
196
5.962963
0.62963
0.372671
0
0
0
0
0
0
0
0
0
0
0.122449
196
4
69
49
0.936047
0.306122
0
0
0
0
0
0
0
0
0
0
0
1
0
true
0
1
0
1
0
1
0
0
null
1
0
0
0
0
0
0
0
0
0
0
0
0
1
0
0
0
0
0
0
0
0
0
0
null
0
0
0
0
0
0
1
0
1
0
1
0
0
6
d443a92b3d66d3399c8c6a3006c5303d8c1121f2
2,512
py
Python
test/test_loader.py
miguelgf/flask-pypendency
44f1ab9ab65a4cc5951ba3ce9e3cf332ea44a23d
[ "MIT" ]
4
2020-03-30T07:40:26.000Z
2020-05-24T12:30:07.000Z
test/test_loader.py
miguelgf/flask-pypendency
44f1ab9ab65a4cc5951ba3ce9e3cf332ea44a23d
[ "MIT" ]
null
null
null
test/test_loader.py
miguelgf/flask-pypendency
44f1ab9ab65a4cc5951ba3ce9e3cf332ea44a23d
[ "MIT" ]
null
null
null
import os from unittest import TestCase from unittest.mock import patch, call from flask import Flask from flask_pypendency import Pypendency class TestLoader(TestCase): def setUp(self) -> None: self.test_folder = os.path.dirname(os.path.abspath(__file__)) @patch("flask_pypendency.YamlLoader") @patch("flask_pypendency.PyLoader") def test_loader_default_values(self, py_loader, yaml_loader): app = Flask(__name__) Pypendency(app) py_loader.return_value.load_dir.assert_has_calls([ call(f"{self.test_folder}/resources/test_loader/autodiscover1/_dependency_injection"), call(f"{self.test_folder}/resources/test_loader/autodiscover2/_dependency_injection"), ]) yaml_loader.return_value.load_dir.assert_has_calls([ call(f"{self.test_folder}/resources/test_loader/autodiscover1/_dependency_injection"), call(f"{self.test_folder}/resources/test_loader/autodiscover2/_dependency_injection"), ]) @patch("flask_pypendency.YamlLoader") @patch("flask_pypendency.PyLoader") def test_loader_configured_di_folder(self, py_loader, yaml_loader): """ Specifying the folder's name loads different routes """ app = Flask(__name__) app.config.from_mapping( PYPENDENCY_DI_FOLDER_NAME="_di_folder1", ) Pypendency(app) py_loader.return_value.load_dir.assert_has_calls([ call(f"{self.test_folder}/resources/test_loader/autodiscover1/_di_folder1"), ]) yaml_loader.return_value.load_dir.assert_has_calls([ call(f"{self.test_folder}/resources/test_loader/autodiscover1/_di_folder1"), ]) @patch("flask_pypendency.YamlLoader") @patch("flask_pypendency.PyLoader") def test_loader_configured_di_discover_paths(self, py_loader, yaml_loader): """ Specifying the folder's name loads different routes """ app = Flask(__name__) app.config.from_mapping( PYPENDENCY_DISCOVER_PATHS=[f"{self.test_folder}/resources/test_loader/autodiscover2"] ) Pypendency(app) py_loader.return_value.load_dir.assert_has_calls([ call(f"{self.test_folder}/resources/test_loader/autodiscover2/_dependency_injection"), ]) yaml_loader.return_value.load_dir.assert_has_calls([ call(f"{self.test_folder}/resources/test_loader/autodiscover2/_dependency_injection"), ])
35.885714
98
0.693869
293
2,512
5.556314
0.194539
0.07371
0.085995
0.082924
0.827396
0.813882
0.813882
0.813882
0.785012
0.785012
0
0.005988
0.202229
2,512
69
99
36.405797
0.806387
0.041003
0
0.693878
0
0
0.342651
0.337992
0
0
0
0
0.122449
1
0.081633
false
0
0.102041
0
0.204082
0
0
0
0
null
0
0
0
1
1
1
1
1
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
null
0
0
0
0
0
0
0
0
0
0
0
0
0
6
2e096b561d4731bab44bbf1d9a49e8a4523798e5
3,027
py
Python
tests/policies/discrete_random/test_discrete_random_policy.py
AGI-Labs/continual_rl
bcf17d879e8a983340be233ff8f740c424d0f303
[ "MIT" ]
19
2021-07-27T05:20:09.000Z
2022-02-27T07:12:05.000Z
tests/policies/discrete_random/test_discrete_random_policy.py
AGI-Labs/continual_rl
bcf17d879e8a983340be233ff8f740c424d0f303
[ "MIT" ]
2
2021-11-05T07:36:50.000Z
2022-03-11T00:21:50.000Z
tests/policies/discrete_random/test_discrete_random_policy.py
AGI-Labs/continual_rl
bcf17d879e8a983340be233ff8f740c424d0f303
[ "MIT" ]
3
2021-10-20T06:04:35.000Z
2022-03-06T22:59:36.000Z
import os from pathlib import Path from continual_rl.experiments.experiment import Experiment from continual_rl.experiments.tasks.image_task import ImageTask from continual_rl.policies.discrete_random.discrete_random_policy_config import DiscreteRandomPolicyConfig from continual_rl.policies.discrete_random.discrete_random_policy import DiscreteRandomPolicy class TestDiscreteRandomPolicy(object): def test_end_to_end_batch(self, set_tmp_directory, cleanup_experiment, request): """ Not a unit test - a full (very short) run with Discrete Random for a sanity check that it's working. This is testing: DiscreteRandomPolicy, ImageTask """ # Arrange experiment = Experiment(tasks=[ ImageTask(task_id="some_id", action_space_id=0, env_spec='BreakoutDeterministic-v4', num_timesteps=10, time_batch_size=4, eval_mode=False, image_size=[84, 84], grayscale=True) ]) config = DiscreteRandomPolicyConfig() config.num_parallel_envs = 2 # To make it batched # Make a subfolder of the output directory that only this experiment is using, to avoid conflict output_dir = Path(request.node.experiment_output_dir, "discrete_random_batch") os.makedirs(output_dir) experiment.set_output_dir(output_dir) config.set_output_dir(output_dir) policy = DiscreteRandomPolicy(config, experiment.observation_space, experiment.action_spaces) # Act experiment.try_run(policy, summary_writer=None) # Assert assert Path(policy._config.output_dir, "core_process.log").is_file(), "Log file not created" def test_end_to_end_sync(self, set_tmp_directory, cleanup_experiment, request): """ Not a unit test - a full (very short) run with Discrete Random for a sanity check that it's working. This is testing: DiscreteRandomPolicy, ImageTask """ # Arrange experiment = Experiment(tasks=[ ImageTask(task_id="end_to_end_sync", action_space_id=0, env_spec='BreakoutDeterministic-v4', num_timesteps=10, time_batch_size=4, eval_mode=False, image_size=[84, 84], grayscale=True) ]) config = DiscreteRandomPolicyConfig() config.num_parallel_envs = None # To make it sync # Make a subfolder of the output directory that only this experiment is using, to avoid conflict output_dir = Path(request.node.experiment_output_dir, "discrete_random_sync") os.makedirs(output_dir) experiment.set_output_dir(output_dir) config.set_output_dir(output_dir) policy = DiscreteRandomPolicy(config, experiment.observation_space, experiment.action_spaces) # Act experiment.try_run(policy, summary_writer=None) # Assert assert Path(policy._config.output_dir, "core_process.log").is_file(), "Log file not created"
44.514706
108
0.693426
366
3,027
5.483607
0.284153
0.071749
0.029895
0.035874
0.849028
0.834081
0.834081
0.834081
0.834081
0.77728
0
0.008186
0.233234
3,027
67
109
45.179104
0.856527
0.185993
0
0.615385
0
0
0.076505
0.028846
0
0
0
0
0.051282
1
0.051282
false
0
0.153846
0
0.230769
0
0
0
0
null
0
0
0
1
1
1
1
1
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
null
0
0
0
0
0
0
0
0
0
0
0
0
0
6
2e3ad4d7cf10b8564049ab45fe9d5fd486d4fd14
150
py
Python
my_utils/send_mail.py
Yookyiss/segmentfault
8fb7890c8b650ac34541a8fb14c3cd9bef98d120
[ "MIT" ]
null
null
null
my_utils/send_mail.py
Yookyiss/segmentfault
8fb7890c8b650ac34541a8fb14c3cd9bef98d120
[ "MIT" ]
12
2020-02-12T01:14:42.000Z
2022-03-11T23:54:43.000Z
my_utils/send_mail.py
Yookyiss/segmentfault
8fb7890c8b650ac34541a8fb14c3cd9bef98d120
[ "MIT" ]
null
null
null
# -*- coding:utf-8 -*- # @Time : 2019/7/30 9:00 PM # @Author : __wutonghe__ from django.core.mail import send_mail def send_email(): pass
13.636364
38
0.626667
23
150
3.826087
0.913043
0
0
0
0
0
0
0
0
0
0
0.094017
0.22
150
10
39
15
0.65812
0.486667
0
0
0
0
0
0
0
0
0
0
0
1
0.333333
true
0.333333
0.333333
0
0.666667
0
1
0
0
null
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
null
0
0
0
0
0
1
1
1
1
0
1
0
0
6
cf0dd9eac4b7a622418f1535040a8fa0ae6f0b9d
50,168
py
Python
experiment_extra.py
Shihab-Shahriar/500-miles
49fc9c6d037521f454da4bc02cccd62117c0ac5f
[ "MIT" ]
null
null
null
experiment_extra.py
Shihab-Shahriar/500-miles
49fc9c6d037521f454da4bc02cccd62117c0ac5f
[ "MIT" ]
null
null
null
experiment_extra.py
Shihab-Shahriar/500-miles
49fc9c6d037521f454da4bc02cccd62117c0ac5f
[ "MIT" ]
1
2018-10-03T21:17:27.000Z
2018-10-03T21:17:27.000Z
from __future__ import division, print_function import pickle import pdb import os import time from sklearn.cross_validation import StratifiedKFold from sklearn import svm from sklearn import metrics import gensim import random from learners import SK_SVM,SK_KNN,SK_LDA from tuner import DE_Tune_ML from model import PaperData from utility import study from results import results_process import numpy as np #import wget import zipfile from sklearn import neighbors from sklearn.neighbors import KNeighborsClassifier from sklearn import metrics import threading from threading import Barrier import timeit import multiprocessing from sklearn.discriminant_analysis import LinearDiscriminantAnalysis from sklearn.lda import LDA from sklearn.decomposition import NMF, LatentDirichletAllocation from sklearn.neighbors import NearestNeighbors from sklearn.cluster import KMeans from sklearn.cluster import AffinityPropagation import collections from multiprocessing import Queue import pandas as pd def tune_learner(learner, train_X, train_Y, tune_X, tune_Y, goal, target_class=None): """ :param learner: :param train_X: :param train_Y: :param tune_X: :param tune_Y: :param goal: :param target_class: :return: """ if not target_class: target_class = goal clf = learner(train_X, train_Y, tune_X, tune_Y, goal) tuner = DE_Tune_ML(clf, clf.get_param(), goal, target_class) return tuner.Tune() def load_vec(d, data, use_pkl=False, file_name=None): if use_pkl: if os.path.isfile(file_name): with open(file_name, "rb") as my_pickle: return pickle.load(my_pickle) else: # print("call get_document_vec") return d.get_document_vec(data, file_name) def print_results(clfs): file_name = time.strftime(os.path.sep.join([".", "results", "%Y%m%d_%H:%M:%S.txt"])) file_name = os.path.sep.join(["20171103.txt"]) content = "" for each in clfs: content += each.confusion print(content) with open(file_name, "w") as f: f.write(content) results_process.reports(file_name) def get_acc(cm): out = [] for i in range(4): out.append(cm[i][i] / 400) return out @study def run_tuning_SVM(word2vec_src, repeats=1, fold=10, tuning=True): """ :param word2vec_src:str, path of word2vec model :param repeats:int, number of repeats :param fold: int,number of folds :param tuning: boolean, tuning or not. :return: None """ print("# word2vec:", word2vec_src) word2vec_model = gensim.models.Word2Vec.load(word2vec_src) data = PaperData(word2vec=word2vec_model) train_pd = load_vec(data, data.train_data, file_name=False) print(train_pd) test_pd = load_vec(data, data.test_data, file_name=False) learner = [SK_SVM][0] goal = {0: "PD", 1: "PF", 2: "PREC", 3: "ACC", 4: "F", 5: "G", 6: "Macro_F", 7: "Micro_F"}[6] print(goal) F = {} clfs = [] start = timeit.default_timer() for i in range(repeats): # repeat n times here kf = StratifiedKFold(train_pd.loc[:, "LinkTypeId"].values, fold, shuffle=True) for train_index, tune_index in kf: print(train_pd) print(train_index) train_data = train_pd.ix[train_index] print(train_data) tune_data = train_pd.ix[tune_index] train_X = train_data.loc[:, "Output"].values train_Y = train_data.loc[:, "LinkTypeId"].values tune_X = tune_data.loc[:, "Output"].values tune_Y = tune_data.loc[:, "LinkTypeId"].values test_X = test_pd.loc[:, "Output"].values test_Y = test_pd.loc[:, "LinkTypeId"].values params, evaluation = tune_learner(learner, train_X, train_Y, tune_X, tune_Y, goal) if tuning else ({}, 0) clf = learner(train_X, train_Y, test_X, test_Y, goal) F = clf.learn(F, **params) clfs.append(clf) stop = timeit.default_timer() print("Model training time: ", stop - start) print_results(clfs) @study def run_tuning_KNN(word2vec_src, repeats=1, fold=10, tuning=True): """ :param word2vec_src:str, path of word2vec model :param repeats:int, number of repeats :param fold: int,number of folds :param tuning: boolean, tuning or not. :return: None """ print("# word2vec:", word2vec_src) word2vec_model = gensim.models.Word2Vec.load(word2vec_src) data = PaperData(word2vec=word2vec_model) train_pd = load_vec(data, data.train_data, file_name=False) test_pd = load_vec(data, data.test_data, file_name=False) learner = [SK_KNN][0] goal = {0: "PD", 1: "PF", 2: "PREC", 3: "ACC", 4: "F", 5: "G", 6: "Macro_F", 7: "Micro_F"}[6] F = {} clfs = [] start = timeit.default_timer() for i in range(repeats): # repeat n times here kf = StratifiedKFold(train_pd.loc[:, "LinkTypeId"].values, fold, shuffle=True) for train_index, tune_index in kf: train_data = train_pd.ix[train_index] tune_data = train_pd.ix[tune_index] train_X = train_data.loc[:, "Output"].values train_Y = train_data.loc[:, "LinkTypeId"].values tune_X = tune_data.loc[:, "Output"].values tune_Y = tune_data.loc[:, "LinkTypeId"].values test_X = test_pd.loc[:, "Output"].values test_Y = test_pd.loc[:, "LinkTypeId"].values params, evaluation = tune_learner(learner, train_X, train_Y, tune_X, tune_Y, goal) if tuning else ({}, 0) clf = learner(train_X, train_Y, test_X, test_Y, goal) F = clf.learn(F, **params) clfs.append(clf) stop = timeit.default_timer() print("Model training time: ", stop - start) print_results(clfs) @study def run_tuning_LDA(word2vec_src, repeats=1, fold=10, tuning=True): """ :param word2vec_src:str, path of word2vec model :param repeats:int, number of repeats :param fold: int,number of folds :param tuning: boolean, tuning or not. :return: None """ print("# word2vec:", word2vec_src) word2vec_model = gensim.models.Word2Vec.load(word2vec_src) data = PaperData(word2vec=word2vec_model) train_pd = load_vec(data, data.train_data, file_name=False) test_pd = load_vec(data, data.test_data, file_name=False) learner = [SK_LDA][0] goal = {0: "PD", 1: "PF", 2: "PREC", 3: "ACC", 4: "F", 5: "G", 6: "Macro_F", 7: "Micro_F"}[6] F = {} clfs = [] for i in range(repeats): # repeat n times here kf = StratifiedKFold(train_pd.loc[:, "LinkTypeId"].values, fold, shuffle=True) for train_index, tune_index in kf: print(train_index) train_data = train_pd.ix[train_index] print(train_data) tune_data = train_pd.ix[tune_index] train_X = train_data.loc[:, "Output"].values train_Y = train_data.loc[:, "LinkTypeId"].values tune_X = tune_data.loc[:, "Output"].values tune_Y = tune_data.loc[:, "LinkTypeId"].values test_X = test_pd.loc[:, "Output"].values test_Y = test_pd.loc[:, "LinkTypeId"].values params, evaluation = tune_learner(learner, train_X, train_Y, tune_X, tune_Y, goal) if tuning else ({}, 0) clf = learner(train_X, train_Y, test_X, test_Y, goal) F = clf.learn(F, **params) clfs.append(clf) print_results(clfs) @study def run_SVM_baseline(word2vec_src): """ Run SVM+word embedding experiment ! This is the baseline method. :return:None """ # Create a subplot with 1 row and 2 columns print("# word2vec:", word2vec_src) clf = svm.SVC(kernel="rbf", gamma=0.005) word2vec_model = gensim.models.Word2Vec.load(word2vec_src) data = PaperData(word2vec=word2vec_model) train_pd = load_vec(data, data.train_data, use_pkl=False) test_pd = load_vec(data, data.test_data, use_pkl=False) train_X = train_pd.loc[:, "Output"].tolist() train_Y = train_pd.loc[:, "LinkTypeId"].tolist() test_X = test_pd.loc[:, "Output"].tolist() test_Y = test_pd.loc[:, "LinkTypeId"].tolist() start = timeit.default_timer() clf.fit(train_X, train_Y) stop = timeit.default_timer() predicted = clf.predict(test_X) print(metrics.classification_report(test_Y, predicted, labels=["1", "2", "3", "4"], digits=3)) cm=metrics.confusion_matrix(test_Y, predicted, labels=["1", "2", "3", "4"]) print("accuracy ", get_acc(cm)) print("Model training time: ", stop - start) @study def run_LDA(word2vec_src): """ Run LDA+word embedding experiment ! This is the baseline method. :return:None """ # Create a subplot with 1 row and 2 columns print("# word2vec:", word2vec_src) clf = LDA(solver='lsqr', shrinkage='auto') word2vec_model = gensim.models.Word2Vec.load(word2vec_src) data = PaperData(word2vec=word2vec_model) train_pd = load_vec(data, data.train_data, use_pkl=False) test_pd = load_vec(data, data.test_data, use_pkl=False) train_X = train_pd.loc[:, "Output"].tolist() train_Y = train_pd.loc[:, "LinkTypeId"].tolist() test_X = test_pd.loc[:, "Output"].tolist() test_Y = test_pd.loc[:, "LinkTypeId"].tolist() start = timeit.default_timer() clf.fit(train_X, train_Y) stop = timeit.default_timer() predicted = clf.predict(test_X) print(metrics.classification_report(test_Y, predicted, labels=["1", "2", "3", "4"], digits=3)) cm=metrics.confusion_matrix(test_Y, predicted, labels=["1", "2", "3", "4"]) print("accuracy ", get_acc(cm)) print("Model training time: ", stop - start) @study def run_LinearDiscriminantAnalysis(word2vec_src): """ Run LinearDiscriminantAnalysis+word embedding experiment ! This is the baseline method. :return:None """ # Create a subplot with 1 row and 2 columns def select_n_components(var_ratio, goal_var: float) -> int: # Set initial variance explained so far total_variance = 0.0 # Set initial number of features n_components = 0 # For the explained variance of each feature: for explained_variance in var_ratio: # Add the explained variance to the total total_variance += explained_variance # Add one to the number of components n_components += 1 # If we reach our goal level of explained variance if total_variance >= goal_var: # End the loop break # Return the number of components return n_components print("# word2vec:", word2vec_src) clf = LinearDiscriminantAnalysis(n_components=None) word2vec_model = gensim.models.Word2Vec.load(word2vec_src) data = PaperData(word2vec=word2vec_model) train_pd = load_vec(data, data.train_data, use_pkl=False) test_pd = load_vec(data, data.test_data, use_pkl=False) train_X = train_pd.loc[:, "Output"].tolist() train_Y = train_pd.loc[:, "LinkTypeId"].tolist() test_X = test_pd.loc[:, "Output"].tolist() test_Y = test_pd.loc[:, "LinkTypeId"].tolist() start = timeit.default_timer() clf.fit(train_X, train_Y) lda_var_ratios = clf.explained_variance_ratio_ n_com = select_n_components(lda_var_ratios, 0.99) clf = LinearDiscriminantAnalysis(n_components=n_com) clf.fit(train_X, train_Y) stop = timeit.default_timer() predicted = clf.predict(test_X) print(metrics.classification_report(test_Y, predicted, labels=["1", "2", "3", "4"], digits=3)) cm=metrics.confusion_matrix(test_Y, predicted, labels=["1", "2", "3", "4"]) print("accuracy ", get_acc(cm)) print("Model training time: ", stop - start) @study def run_KNN(word2vec_src): """ Run KNN+word embedding experiment ! This is the baseline method. :return:None """ # Create a subplot with 1 row and 2 columns print("# word2vec:", word2vec_src) clf = neighbors.KNeighborsClassifier(n_neighbors = 5) word2vec_model = gensim.models.Word2Vec.load(word2vec_src) data = PaperData(word2vec=word2vec_model) train_pd = load_vec(data, data.train_data, use_pkl=False) test_pd = load_vec(data, data.test_data, use_pkl=False) train_X = train_pd.loc[:, "Output"].tolist() train_Y = train_pd.loc[:, "LinkTypeId"].tolist() test_X = test_pd.loc[:, "Output"].tolist() test_Y = test_pd.loc[:, "LinkTypeId"].tolist() start = timeit.default_timer() clf.fit(train_X, train_Y) stop = timeit.default_timer() predicted = clf.predict(test_X) print(metrics.classification_report(test_Y, predicted, labels=["1", "2", "3", "4"], digits=3)) cm=metrics.confusion_matrix(test_Y, predicted, labels=["1", "2", "3", "4"]) print("accuracy ", get_acc(cm)) print("Model training time: ", stop - start) @study def run_RNN(word2vec_src): """ Run KNN+word embedding experiment ! This is the baseline method. :return:None """ # Create a subplot with 1 row and 2 columns print("# word2vec:", word2vec_src) clf = neighbors.RadiusNeighborsClassifier(radius=5.0) word2vec_model = gensim.models.Word2Vec.load(word2vec_src) data = PaperData(word2vec=word2vec_model) train_pd = load_vec(data, data.train_data, use_pkl=False) test_pd = load_vec(data, data.test_data, use_pkl=False) train_X = train_pd.loc[:, "Output"].tolist() train_Y = train_pd.loc[:, "LinkTypeId"].tolist() test_X = test_pd.loc[:, "Output"].tolist() test_Y = test_pd.loc[:, "LinkTypeId"].tolist() start = timeit.default_timer() clf.fit(train_X, train_Y) stop = timeit.default_timer() predicted = clf.predict(test_X) print(metrics.classification_report(test_Y, predicted, labels=["1", "2", "3", "4"], digits=3)) cm=metrics.confusion_matrix(test_Y, predicted, labels=["1", "2", "3", "4"]) print("accuracy ", get_acc(cm)) print("Model training time: ", stop - start) @study def run_SVM_KNN(word2vec_src): """ Run SVM->KNN+word embedding experiment ! This is the baseline method. :return:None """ classX1 = [] classX2 = [] classX3 = [] classX4 = [] classY1 = [] classY2 = [] classY3 = [] classY4 = [] classTX1 = [] classTX2 = [] classTX3 = [] classTX4 = [] classTY1 = [] classTY2 = [] classTY3 = [] classTY4 = [] predicted_F = [] finalY = [] # Create a subplot with 1 row and 2 columns print("# word2vec:", word2vec_src) clf = svm.SVC(kernel="rbf", gamma=0.005) word2vec_model = gensim.models.Word2Vec.load(word2vec_src) data = PaperData(word2vec=word2vec_model) train_pd = load_vec(data, data.train_data, use_pkl=False) test_pd = load_vec(data, data.test_data, use_pkl=False) train_X = train_pd.loc[:, "Output"].tolist() train_Y = train_pd.loc[:, "LinkTypeId"].tolist() test_X = test_pd.loc[:, "Output"].tolist() test_Y = test_pd.loc[:, "LinkTypeId"].tolist() start = timeit.default_timer() clf.fit(train_X, train_Y) predicted = clf.predict(train_X) # predicted = pd.DataFrame(predicted) # train_X = pd.DataFrame(train_X) # t = predicted.index[predicted.loc[1] == 1].tolist() # print(predicted.axes) # print(t) for i in range(len(predicted)): if predicted[i] == '1': classX1.append(train_X[i]) classY1.append(train_Y[i]) elif predicted[i] == '2': classX2.append(train_X[i]) classY2.append(train_Y[i]) elif predicted[i] == '3': classX3.append(train_X[i]) classY3.append(train_Y[i]) elif predicted[i] == '4': classX4.append(train_X[i]) classY4.append(train_Y[i]) clf2 = neighbors.KNeighborsClassifier(n_neighbors = 5) clf3 = neighbors.KNeighborsClassifier(n_neighbors = 5) clf4 = neighbors.KNeighborsClassifier(n_neighbors = 5) clf5 = neighbors.KNeighborsClassifier(n_neighbors = 5) clf2.fit(classX1,classY1) clf3.fit(classX2,classY2) clf4.fit(classX3,classY3) clf5.fit(classX4,classY4) stop = timeit.default_timer() predicted0 = clf.predict(test_X) for i in range(len(predicted0)): if predicted0[i] == '1': classTX1.append(test_X[i]) classTY1.append(test_Y[i]) elif predicted0[i] == '2': classTX2.append(test_X[i]) classTY2.append(test_Y[i]) elif predicted0[i] == '3': classTX3.append(test_X[i]) classTY3.append(test_Y[i]) elif predicted0[i] == '4': classTX4.append(test_X[i]) classTY4.append(test_Y[i]) predicted1 = clf2.predict(classTX1) predicted2 = clf3.predict(classTX2) predicted3 = clf4.predict(classTX3) predicted4 = clf5.predict(classTX4) finalY = np.append(classTY1, classTY2) finalY = np.append(finalY, classTY3) finalY = np.append(finalY, classTY4) predicted_F = np.append(predicted1, predicted2) predicted_F = np.append(predicted_F, predicted3) predicted_F = np.append(predicted_F, predicted4) print("+++++++++++++++++++Original Predcition Result+++++++++++++++++++++++++") print(metrics.classification_report(test_Y, predicted0, labels=["1", "2", "3", "4"], digits=3)) #print("print classification data") cm=metrics.confusion_matrix(test_Y, predicted0, labels=["1", "2", "3", "4"]) print("accuracy ", get_acc(cm)) print("+++++++++++++++++++2nd Layer 1st Prediction Model+++++++++++++++++++++++++") print(metrics.classification_report(classTY1, predicted1, labels=["1", "2", "3", "4"], digits=3)) #print("print classification data") cm=metrics.confusion_matrix(classTY1, predicted1, labels=["1", "2", "3", "4"]) print("+++++++++++++++++++2nd Layer 2nd Prediction Model+++++++++++++++++++++++++") print(metrics.classification_report(classTY2, predicted2, labels=["1", "2", "3", "4"], digits=3)) #print("print classification data") cm=metrics.confusion_matrix(classTY2, predicted2, labels=["1", "2", "3", "4"]) print("+++++++++++++++++++2nd Layer 3rd Prediction Model+++++++++++++++++++++++++") print(metrics.classification_report(classTY3, predicted3, labels=["1", "2", "3", "4"], digits=3)) #print("print classification data") cm=metrics.confusion_matrix(classTY3, predicted3, labels=["1", "2", "3", "4"]) print("+++++++++++++++++++2nd Layer 4th Prediction Model+++++++++++++++++++++++++") print(metrics.classification_report(classTY4, predicted4, labels=["1", "2", "3", "4"], digits=3)) #print("print classification data") cm=metrics.confusion_matrix(classTY4, predicted4, labels=["1", "2", "3", "4"]) print("+++++++++++++++++++combined result+++++++++++++++++++++++++") print(metrics.classification_report(finalY, predicted_F, labels=["1", "2", "3", "4"], digits=3)) cm=metrics.confusion_matrix(finalY, predicted_F, labels=["1", "2", "3", "4"]) print("accuracy ", get_acc(cm)) print("Model training time: ", stop - start) @study def run_SVM_KNN_thread(word2vec_src): """ Run SVM->KNN+word embedding experiment ! This is the baseline method. :return:None """ classX1 = [] classX2 = [] classX3 = [] classX4 = [] classY1 = [] classY2 = [] classY3 = [] classY4 = [] classTX1 = [] classTX2 = [] classTX3 = [] classTX4 = [] classTY1 = [] classTY2 = [] classTY3 = [] classTY4 = [] TrainingSamplesX = [] TrainingSamplesY = [] models = [] predicted_F = [] finalY = [] # Create a subplot with 1 row and 2 columns print("# word2vec:", word2vec_src) clf = svm.SVC(kernel="rbf", gamma=0.005) word2vec_model = gensim.models.Word2Vec.load(word2vec_src) data = PaperData(word2vec=word2vec_model) train_pd = load_vec(data, data.train_data, use_pkl=False) test_pd = load_vec(data, data.test_data, use_pkl=False) train_X = train_pd.loc[:, "Output"].tolist() train_Y = train_pd.loc[:, "LinkTypeId"].tolist() test_X = test_pd.loc[:, "Output"].tolist() test_Y = test_pd.loc[:, "LinkTypeId"].tolist() start0 = timeit.default_timer() clf.fit(train_X, train_Y) stop0 = timeit.default_timer() predicted = clf.predict(train_X) for i in range(len(predicted)): if predicted[i] == '1': classX1.append(train_X[i]) classY1.append(train_Y[i]) elif predicted[i] == '2': classX2.append(train_X[i]) classY2.append(train_Y[i]) elif predicted[i] == '3': classX3.append(train_X[i]) classY3.append(train_Y[i]) elif predicted[i] == '4': classX4.append(train_X[i]) classY4.append(train_Y[i]) TrainingSamplesX.append(classX1) TrainingSamplesY.append(classY1) TrainingSamplesX.append(classX2) TrainingSamplesY.append(classY2) TrainingSamplesX.append(classX3) TrainingSamplesY.append(classY3) TrainingSamplesX.append(classX4) TrainingSamplesY.append(classY4) clf2 = neighbors.KNeighborsClassifier(n_neighbors = 5) clf3 = neighbors.KNeighborsClassifier(n_neighbors = 5) clf4 = neighbors.KNeighborsClassifier(n_neighbors = 5) clf5 = neighbors.KNeighborsClassifier(n_neighbors = 5) models.append(clf2) models.append(clf3) models.append(clf4) models.append(clf5) start1 = timeit.default_timer() for i in range((len(TrainingSamplesX))): t = threading.Thread(target= models[i].fit, args = [TrainingSamplesX[i],TrainingSamplesY[i]]) threads.append(t) t.start() stop1 = timeit.default_timer() predicted0 = clf.predict(test_X) for i in range(len(predicted0)): if predicted0[i] == '1': classTX1.append(test_X[i]) classTY1.append(test_Y[i]) elif predicted0[i] == '2': classTX2.append(test_X[i]) classTY2.append(test_Y[i]) elif predicted0[i] == '3': classTX3.append(test_X[i]) classTY3.append(test_Y[i]) elif predicted0[i] == '4': classTX4.append(test_X[i]) classTY4.append(test_Y[i]) predicted1 = clf2.predict(classTX1) predicted2 = clf3.predict(classTX2) predicted3 = clf4.predict(classTX3) predicted4 = clf5.predict(classTX4) finalY = np.append(classTY1, classTY2) finalY = np.append(finalY, classTY3) finalY = np.append(finalY, classTY4) predicted_F = np.append(predicted1, predicted2) predicted_F = np.append(predicted_F, predicted3) predicted_F = np.append(predicted_F, predicted4) print("+++++++++++++++++++Original Predcition Result+++++++++++++++++++++++++") print(metrics.classification_report(test_Y, predicted0, labels=["1", "2", "3", "4"], digits=3)) #print("print classification data") cm=metrics.confusion_matrix(test_Y, predicted0, labels=["1", "2", "3", "4"]) print("accuracy ", get_acc(cm)) print("+++++++++++++++++++2nd Layer 1st Prediction Model+++++++++++++++++++++++++") print(metrics.classification_report(classTY1, predicted1, labels=["1", "2", "3", "4"], digits=3)) #print("print classification data") cm=metrics.confusion_matrix(classTY1, predicted1, labels=["1", "2", "3", "4"]) print("+++++++++++++++++++2nd Layer 2nd Prediction Model+++++++++++++++++++++++++") print(metrics.classification_report(classTY2, predicted2, labels=["1", "2", "3", "4"], digits=3)) #print("print classification data") cm=metrics.confusion_matrix(classTY2, predicted2, labels=["1", "2", "3", "4"]) print("+++++++++++++++++++2nd Layer 3rd Prediction Model+++++++++++++++++++++++++") print(metrics.classification_report(classTY3, predicted3, labels=["1", "2", "3", "4"], digits=3)) #print("print classification data") cm=metrics.confusion_matrix(classTY3, predicted3, labels=["1", "2", "3", "4"]) print("+++++++++++++++++++2nd Layer 4th Prediction Model+++++++++++++++++++++++++") print(metrics.classification_report(classTY4, predicted4, labels=["1", "2", "3", "4"], digits=3)) #print("print classification data") cm=metrics.confusion_matrix(classTY4, predicted4, labels=["1", "2", "3", "4"]) print("+++++++++++++++++++combined result+++++++++++++++++++++++++") print(metrics.classification_report(finalY, predicted_F, labels=["1", "2", "3", "4"], digits=3)) cm=metrics.confusion_matrix(finalY, predicted_F, labels=["1", "2", "3", "4"]) print("accuracy ", get_acc(cm)) print("1st Model training time: ", (stop0 - start0)) print("layer 2 Models training time: ", (stop1 - start1)) print("Total Model training time: ", (stop1 - start0)) @study def run_KNN_SVM(word2vec_src): """ Run KNN -> SVM+word embedding experiment ! This is the baseline method. :return:None """ classX1 = [] classX2 = [] classX3 = [] classX4 = [] classY1 = [] classY2 = [] classY3 = [] classY4 = [] classTX1 = [] classTX2 = [] classTX3 = [] classTX4 = [] classTY1 = [] classTY2 = [] classTY3 = [] classTY4 = [] TrainingSamplesX = [] TrainingSamplesY = [] models = [] predicted_F = [] finalY = [] # Create a subplot with 1 row and 2 columns print("# word2vec:", word2vec_src) clf = neighbors.KNeighborsClassifier(n_neighbors = 5) word2vec_model = gensim.models.Word2Vec.load(word2vec_src) data = PaperData(word2vec=word2vec_model) train_pd = load_vec(data, data.train_data, use_pkl=False) test_pd = load_vec(data, data.test_data, use_pkl=False) train_X = train_pd.loc[:, "Output"].tolist() train_Y = train_pd.loc[:, "LinkTypeId"].tolist() test_X = test_pd.loc[:, "Output"].tolist() test_Y = test_pd.loc[:, "LinkTypeId"].tolist() #print("before train") start0 = timeit.default_timer() clf.fit(train_X, train_Y) stop0 = timeit.default_timer() predicted = clf.predict(train_X) for i in range(len(predicted)): if predicted[i] == '1': classX1.append(train_X[i]) classY1.append(train_Y[i]) elif predicted[i] == '2': classX2.append(train_X[i]) classY2.append(train_Y[i]) elif predicted[i] == '3': classX3.append(train_X[i]) classY3.append(train_Y[i]) elif predicted[i] == '4': classX4.append(train_X[i]) classY4.append(train_Y[i]) TrainingSamplesX.append(classX1) TrainingSamplesY.append(classY1) TrainingSamplesX.append(classX2) TrainingSamplesY.append(classY2) TrainingSamplesX.append(classX3) TrainingSamplesY.append(classY3) TrainingSamplesX.append(classX4) TrainingSamplesY.append(classY4) clf2 = svm.SVC(kernel="rbf", gamma=0.005) clf3 = svm.SVC(kernel="rbf", gamma=0.005) clf4 = svm.SVC(kernel="rbf", gamma=0.005) clf5 = svm.SVC(kernel="rbf", gamma=0.005) models.append(clf2) models.append(clf3) models.append(clf4) models.append(clf5) start1 = timeit.default_timer() for i in range((len(TrainingSamplesX))): t = threading.Thread(target= models[i].fit, args = [TrainingSamplesX[i],TrainingSamplesY[i]]) threads.append(t) t.start() stop1 = timeit.default_timer() predicted0 = clf.predict(test_X) for i in range(len(predicted0)): if predicted0[i] == '1': classTX1.append(test_X[i]) classTY1.append(test_Y[i]) elif predicted0[i] == '2': classTX2.append(test_X[i]) classTY2.append(test_Y[i]) elif predicted0[i] == '3': classTX3.append(test_X[i]) classTY3.append(test_Y[i]) elif predicted0[i] == '4': classTX4.append(test_X[i]) classTY4.append(test_Y[i]) predicted1 = clf2.predict(classTX1) predicted2 = clf3.predict(classTX2) predicted3 = clf4.predict(classTX3) predicted4 = clf5.predict(classTX4) finalY = np.append(classTY1, classTY2) finalY = np.append(finalY, classTY3) finalY = np.append(finalY, classTY4) predicted_F = np.append(predicted1, predicted2) predicted_F = np.append(predicted_F, predicted3) predicted_F = np.append(predicted_F, predicted4) print("+++++++++++++++++++Original Predcition Result+++++++++++++++++++++++++") print(metrics.classification_report(test_Y, predicted0, labels=["1", "2", "3", "4"], digits=3)) #print("print classification data") cm=metrics.confusion_matrix(test_Y, predicted0, labels=["1", "2", "3", "4"]) print("accuracy ", get_acc(cm)) print("+++++++++++++++++++2nd Layer 1st Prediction Model+++++++++++++++++++++++++") print(metrics.classification_report(classTY1, predicted1, labels=["1", "2", "3", "4"], digits=3)) #print("print classification data") cm=metrics.confusion_matrix(classTY1, predicted1, labels=["1", "2", "3", "4"]) print("+++++++++++++++++++2nd Layer 2nd Prediction Model+++++++++++++++++++++++++") print(metrics.classification_report(classTY2, predicted2, labels=["1", "2", "3", "4"], digits=3)) #print("print classification data") cm=metrics.confusion_matrix(classTY2, predicted2, labels=["1", "2", "3", "4"]) print("+++++++++++++++++++2nd Layer 3rd Prediction Model+++++++++++++++++++++++++") print(metrics.classification_report(classTY3, predicted3, labels=["1", "2", "3", "4"], digits=3)) #print("print classification data") cm=metrics.confusion_matrix(classTY3, predicted3, labels=["1", "2", "3", "4"]) print("+++++++++++++++++++2nd Layer 4th Prediction Model+++++++++++++++++++++++++") print(metrics.classification_report(classTY4, predicted4, labels=["1", "2", "3", "4"], digits=3)) #print("print classification data") cm=metrics.confusion_matrix(classTY4, predicted4, labels=["1", "2", "3", "4"]) print("+++++++++++++++++++combined result+++++++++++++++++++++++++") print(metrics.classification_report(finalY, predicted_F, labels=["1", "2", "3", "4"], digits=3)) cm=metrics.confusion_matrix(finalY, predicted_F, labels=["1", "2", "3", "4"]) print("accuracy ", get_acc(cm)) print("1st Model training time: ", (stop0 - start0)) print("layer 2 Models training time: ", (stop1 - start1)) print("Total Model training time: ", (stop1 - start0)) @study def run_KNN_KNN(word2vec_src): """ Run KNN+word embedding experiment ! This is the baseline method. :return:None """ classX1 = [] classX2 = [] classX3 = [] classX4 = [] classY1 = [] classY2 = [] classY3 = [] classY4 = [] classTX1 = [] classTX2 = [] classTX3 = [] classTX4 = [] classTY1 = [] classTY2 = [] classTY3 = [] classTY4 = [] TrainingSamplesX = [] TrainingSamplesY = [] models = [] predicted_F = [] finalY = [] # Create a subplot with 1 row and 2 columns print("# word2vec:", word2vec_src) #clf = svm.SVC(kernel="rbf", gamma=0.005) clf = neighbors.KNeighborsClassifier(n_neighbors = 5) #clf = KMeans(n_clusters=4, init='k-means++', max_iter=100, n_init=1) word2vec_model = gensim.models.Word2Vec.load(word2vec_src) data = PaperData(word2vec=word2vec_model) train_pd = load_vec(data, data.train_data, use_pkl=False) test_pd = load_vec(data, data.test_data, use_pkl=False) train_X = train_pd.loc[:, "Output"].tolist() train_Y = train_pd.loc[:, "LinkTypeId"].tolist() test_X = test_pd.loc[:, "Output"].tolist() test_Y = test_pd.loc[:, "LinkTypeId"].tolist() #print("before train") start0 = timeit.default_timer() clf.fit(train_X, train_Y) stop0 = timeit.default_timer() predicted = clf.predict(train_X) for i in range(len(predicted)): if predicted[i] == '1': classX1.append(train_X[i]) classY1.append(train_Y[i]) elif predicted[i] == '2': classX2.append(train_X[i]) classY2.append(train_Y[i]) elif predicted[i] == '3': classX3.append(train_X[i]) classY3.append(train_Y[i]) elif predicted[i] == '4': classX4.append(train_X[i]) classY4.append(train_Y[i]) #print(classX1) TrainingSamplesX.append(classX1) TrainingSamplesY.append(classY1) TrainingSamplesX.append(classX2) TrainingSamplesY.append(classY2) TrainingSamplesX.append(classX3) TrainingSamplesY.append(classY3) TrainingSamplesX.append(classX4) TrainingSamplesY.append(classY4) clf2 = neighbors.KNeighborsClassifier(n_neighbors = 10) clf3 = neighbors.KNeighborsClassifier(n_neighbors = 10) clf4 = neighbors.KNeighborsClassifier(n_neighbors = 10) clf5 = neighbors.KNeighborsClassifier(n_neighbors = 10) models.append(clf2) models.append(clf3) models.append(clf4) models.append(clf5) start1 = timeit.default_timer() for i in range((len(TrainingSamplesX))): t = threading.Thread(target= models[i].fit, args = [TrainingSamplesX[i],TrainingSamplesY[i]]) threads.append(t) t.start() stop1 = timeit.default_timer() predicted0 = clf.predict(test_X) for i in range(len(predicted0)): if predicted0[i] == '1': classTX1.append(test_X[i]) classTY1.append(test_Y[i]) elif predicted0[i] == '2': classTX2.append(test_X[i]) classTY2.append(test_Y[i]) elif predicted0[i] == '3': classTX3.append(test_X[i]) classTY3.append(test_Y[i]) elif predicted0[i] == '4': classTX4.append(test_X[i]) classTY4.append(test_Y[i]) predicted1 = clf2.predict(classTX1) predicted2 = clf3.predict(classTX2) predicted3 = clf4.predict(classTX3) predicted4 = clf5.predict(classTX4) finalY = np.append(classTY1, classTY2) finalY = np.append(finalY, classTY3) finalY = np.append(finalY, classTY4) predicted_F = np.append(predicted1, predicted2) predicted_F = np.append(predicted_F, predicted3) predicted_F = np.append(predicted_F, predicted4) print("+++++++++++++++++++Original Predcition Result+++++++++++++++++++++++++") print(metrics.classification_report(test_Y, predicted0, labels=["1", "2", "3", "4"], digits=3)) #print("print classification data") cm=metrics.confusion_matrix(test_Y, predicted0, labels=["1", "2", "3", "4"]) print("accuracy ", get_acc(cm)) print("+++++++++++++++++++2nd Layer 1st Prediction Model+++++++++++++++++++++++++") print(metrics.classification_report(classTY1, predicted1, labels=["1", "2", "3", "4"], digits=3)) #print("print classification data") cm=metrics.confusion_matrix(classTY1, predicted1, labels=["1", "2", "3", "4"]) print("+++++++++++++++++++2nd Layer 2nd Prediction Model+++++++++++++++++++++++++") print(metrics.classification_report(classTY2, predicted2, labels=["1", "2", "3", "4"], digits=3)) #print("print classification data") cm=metrics.confusion_matrix(classTY2, predicted2, labels=["1", "2", "3", "4"]) print("+++++++++++++++++++2nd Layer 3rd Prediction Model+++++++++++++++++++++++++") print(metrics.classification_report(classTY3, predicted3, labels=["1", "2", "3", "4"], digits=3)) #print("print classification data") cm=metrics.confusion_matrix(classTY3, predicted3, labels=["1", "2", "3", "4"]) print("+++++++++++++++++++2nd Layer 4th Prediction Model+++++++++++++++++++++++++") print(metrics.classification_report(classTY4, predicted4, labels=["1", "2", "3", "4"], digits=3)) #print("print classification data") cm=metrics.confusion_matrix(classTY4, predicted4, labels=["1", "2", "3", "4"]) print("+++++++++++++++++++combined result+++++++++++++++++++++++++") print(metrics.classification_report(finalY, predicted_F, labels=["1", "2", "3", "4"], digits=3)) cm=metrics.confusion_matrix(finalY, predicted_F, labels=["1", "2", "3", "4"]) print("accuracy ", get_acc(cm)) print("1st Model training time: ", (stop0 - start0)) print("layer 2 Models training time: ", (stop1 - start1)) print("Total Model training time: ", (stop1 - start0)) @study def run_KMeans_Wpair(word2vec_src): """ Run KMeans+word embedding experiment ! This is the baseline method. :return:None """ # Create a subplot with 1 row and 2 columns print("# word2vec:", word2vec_src) #clf = svm.SVC(kernel="rbf", gamma=0.005) #clf = neighbors.KNeighborsClassifier(n_neighbors = 5) clf = KMeans(n_clusters=4, init='k-means++', max_iter=100, n_init=1) word2vec_model = gensim.models.Word2Vec.load(word2vec_src) data = PaperData(word2vec=word2vec_model) train_pd = load_vec(data, data.train_data, use_pkl=False) test_pd = load_vec(data, data.test_data, use_pkl=False) train_X = train_pd.loc[:, "PostIdVec"].tolist() train_Y = train_pd.loc[:, "LinkTypeId"].tolist() train_X1 = train_pd.loc[:, "RelatedPostIdVec"].tolist() train_Y1 = train_pd.loc[:, "LinkTypeId"].tolist() np.append(train_X,train_X1) np.append(train_Y,train_Y1) test_X = test_pd.loc[:, "PostIdVec"].tolist() test_Y = test_pd.loc[:, "LinkTypeId"].tolist() clf.fit(train_X, train_Y) predicted = clf.predict(test_X) print(predicted) x = list(np.asarray(clf.labels_) + 1) print("Homogeneity: %0.3f" % metrics.homogeneity_score(train_Y, x)) print("Completeness: %0.3f" % metrics.completeness_score(train_Y, clf.labels_)) print("V-measure: %0.3f" % metrics.v_measure_score(train_Y, clf.labels_)) print("Adjusted Rand-Index: %.3f" % metrics.adjusted_rand_score(train_Y, clf.labels_)) print("Silhouette Coefficient: %0.3f" % metrics.silhouette_score(train_X, clf.labels_, sample_size=1000)) #################Katie's Code +++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ # returns the svm model def run_SVM(word2vec_src, train_pd, queue): clf = svm.SVC(kernel="rbf", gamma=0.005) # word2vec_model = gensim.models.Word2Vec.load(word2vec_src) # data = PaperData(word2vec=word2vec_model) # print("Train data: " + str(train_pd.shape)) # if train_pd is None: train_pd = load_vec( # data, data.train_data, use_pkl=False) train_X = train_pd.loc[:, "Output"].tolist() train_Y = train_pd.loc[:, "LinkTypeId"].tolist() start = timeit.default_timer() clf.fit(train_X, train_Y) stop = timeit.default_timer() print("SVM Model Train Time", (stop-start)) queue.put(clf) return clf def run_KNN_clustering(word2vec_src, train_pd, queue): print("# word2vec:", word2vec_src) clf = neighbors.KNeighborsClassifier(n_neighbors = 10) # word2vec_model = gensim.models.Word2Vec.load(word2vec_src) # data = PaperData(word2vec=word2vec_model) # print("Train data: " + str(train_pd.shape)) # if train_pd is None: train_pd = load_vec( # data, data.train_data, use_pkl=False) train_X = train_pd.loc[:, "Output"].tolist() train_Y = train_pd.loc[:, "LinkTypeId"].tolist() start = timeit.default_timer() clf.fit(train_X, train_Y) stop = timeit.default_timer() print("SVM Model Train Time", (stop-start)) queue.put(clf) return clf @study def run_tuning_SVM_C(word2vec_src,train_pd_c,queue, repeats=1, fold=10, tuning=True): """ :param word2vec_src:str, path of word2vec model :param repeats:int, number of repeats :param fold: int,number of folds :param tuning: boolean, tuning or not. :return: None """ print("# word2vec:", word2vec_src) word2vec_model = gensim.models.Word2Vec.load(word2vec_src) data = PaperData(word2vec=word2vec_model) train_pd_c = train_pd_c.reset_index() train_pd = train_pd_c test_pd = load_vec(data, data.test_data, file_name=False) learner = [SK_SVM][0] goal = {0: "PD", 1: "PF", 2: "PREC", 3: "ACC", 4: "F", 5: "G", 6: "Macro_F", 7: "Micro_F"}[6] print(goal) F = {} clfs = [] for i in range(repeats): # repeat n times here kf = StratifiedKFold(train_pd.loc[:, "LinkTypeId"].values, fold, shuffle=True) for train_index, tune_index in kf: print(train_pd) train_data = train_pd.ix[train_index] print(train_index) print(train_data) tune_data = train_pd.ix[tune_index] train_X = train_data.loc[:, "Output"].values print(train_X) train_Y = train_data.loc[:, "LinkTypeId"].values print(train_Y) tune_X = tune_data.loc[:, "Output"].values tune_Y = tune_data.loc[:, "LinkTypeId"].values test_X = test_pd.loc[:, "Output"].values test_Y = test_pd.loc[:, "LinkTypeId"].values params, evaluation = tune_learner(learner, train_X, train_Y, tune_X, tune_Y, goal) if tuning else ({}, 0) clf = learner(train_X, train_Y, test_X, test_Y, goal) F = clf.learn(F, **params) clfs.append(clf) queue.put(clfs) print_results(clfs) # parses and returns a given svm in the format of dictionary - # [class](precision, recall, f1score, support) def results_SVM(clf, test_X, test_Y): predicted = clf.predict(test_X) # labels: ["Duplicates", "DirectLink","IndirectLink", "Isolated"] report_gen = metrics.classification_report( test_Y, predicted, labels=["1", "2", "3", "4"], digits=3) parsed_report = parse_classification_report(report_gen) return parsed_report #cm=metrics.confusion_matrix(test_Y, predicted, labels=["1", "2", "3", "4"]) #print("accuracy ", get_acc(cm) def total_summary(result_set, num_rows, start0,start1,stop0,stop1): weightedAvgs = [0, 0, 0] for l in result_set: avg_list = l['avg'] for i in range(3): support_count = avg_list[3] weightedAvgs[i] += (avg_list[i] * support_count)/num_rows result = {} result['precision'] = weightedAvgs[0] result['recall'] = weightedAvgs[1] result['f1'] = weightedAvgs[2] print(result) print("1st Model training time: ", (stop0 - start0)) print("layer 2 Models training time: ", (stop1 - start1)) print("Total Model training time: ", (stop1 - start0)) def run_kmeans(word2vec_src): print("# word2vec:", word2vec_src) word2vec_model = gensim.models.Word2Vec.load(word2vec_src) data = PaperData(word2vec=word2vec_model) train_pd = load_vec(data, data.train_data, use_pkl=False) test_pd = load_vec(data, data.test_data, use_pkl=False) train_X = train_pd.loc[:, "Output"].tolist() queue = Queue() numClusters = optimalK(train_X) #numClusters = 5 print("Found optimal k: " + str(numClusters)) clf = KMeans(n_clusters=numClusters, init='k-means++', max_iter=200, n_init=1) start0 = timeit.default_timer() clf.fit(train_X) stop0 = timeit.default_timer() svm_models = [] # maintain a list of svms s1 = timeit.default_timer() data.train_data['clabel'] = clf.labels_ s2 = timeit.default_timer() print("Inter - ", (s2-s1)) start1 = timeit.default_timer() #b = Barrier(numClusters-1) for l in range(numClusters): cluster = data.train_data.loc[data.train_data['clabel'] == l] t = threading.Thread(target=run_tuning_SVM_C, args = [word2vec_src,cluster,queue]) threads.append(t) t.start() response = queue.get() svm_models.append(response) #b.wait() t.join() stop1 = timeit.default_timer() svm_results = [] # maintain a list of svm results test_X = test_pd.loc[:, "Output"].tolist() predicted = clf.predict(test_X) data.test_data['clabel'] = predicted for l in range(numClusters): #print("Label " + str(l)) cluster = data.test_data.loc[data.test_data['clabel'] == l] svm_model = svm_models[l] cluster_X = cluster.loc[:, "Output"].tolist() cluster_Y = cluster.loc[:, "LinkTypeId"].tolist() svm_results.append(results_SVM(svm_model, cluster_X, cluster_Y))# store all the SVM result report in a dictionary # call the helper method to summarize the svm results total_summary(svm_results, test_pd.shape[0],start0,start1,stop0,stop1) # Source: https://anaconda.org/milesgranger/gap-statistic/notebook def optimalK(data, nrefs=3, maxClusters=15): """ Calculates KMeans optimal K using Gap Statistic from Tibshirani, Walther, Hastie Params: data: ndarry of shape (n_samples, n_features) nrefs: number of sample reference datasets to create maxClusters: Maximum number of clusters to test for Returns: (gaps, optimalK) """ gaps = np.zeros((len(range(1, maxClusters)),)) resultsdf = pd.DataFrame({'clusterCount': [], 'gap': []}) for gap_index, k in enumerate(range(1, maxClusters)): # Holder for reference dispersion results refDisps = np.zeros(nrefs) # For n references, generate random sample and perform kmeans getting resulting dispersion of each loop for i in range(nrefs): # Create new random reference set # randomReference = np.random.random_sample(size=data.shape) # Fit to it km = KMeans(n_clusters=k, init='k-means++', max_iter=200, n_init=1) km.fit(data) refDisp = km.inertia_ refDisps[i] = refDisp # Fit cluster to original data and create dispersion km = KMeans(k) km.fit(data) origDisp = km.inertia_ # print(str(i+1) + ": " + str(origDisp)) # Calculate gap statistic gap = np.log(np.mean(refDisps)) - np.log(origDisp) # Assign this loop's gap statistic to gaps gaps[gap_index] = gap resultsdf = resultsdf.append( {'clusterCount': k, 'gap': gap}, ignore_index=True) # return (gaps.argmax() + 1, resultsdf) # Plus 1 because index of 0 means 1 cluster is optimal, index 2 = 3 clusters are optimal return gaps.argmax() # Not used, but wanted to put this code somewhere def results_kmeans(clf, train_X, train_Y, test_X, test_Y): predicted = clf.predict(test_X) print("Homogeneity: %0.3f" % metrics.homogeneity_score(train_Y, clf.labels_)) print("Completeness: %0.3f" % metrics.completeness_score(train_Y, clf.labels_)) print("V-measure: %0.3f" % metrics.v_measure_score(train_Y, clf.labels_)) print("Adjusted Rand-Index: %.3f" % metrics.adjusted_rand_score(train_Y, clf.labels_)) print("Silhouette Coefficient: %0.3f" % metrics.silhouette_score(train_X, clf.labels_, sample_size=1000)) """ Parse a sklearn classification report into a dict keyed by class name and containing a tuple (precision, recall, fscore, support) for each class Reference: https://gist.github.com/julienr/6b9b9a03bd8224db7b4f """ def parse_classification_report(clfreport): lines = clfreport.split('\n') # Remove empty lines lines = list(filter(lambda l: not len(l.strip()) == 0, lines)) # Starts with a header, then score for each class and finally an average header = lines[0] cls_lines = lines[1:-1] avg_line = lines[-1] assert header.split() == ['precision', 'recall', 'f1-score', 'support'] assert avg_line.split()[0] == 'avg' # class names can have spaces - figure the width of the class field # using indentation of the precision header cls_field_width = len(header) - len(header.lstrip()) # Now, collect all the class names and score in a dict def parse_line(l): """Parse a line of classification_report""" cls_name = l[:cls_field_width].strip() precision, recall, fscore, support = l[cls_field_width:].split() precision = float(precision) recall = float(recall) fscore = float(fscore) support = int(support) return (cls_name, precision, recall, fscore, support) data = collections.OrderedDict() for l in cls_lines: ret = parse_line(l) cls_name = ret[0] scores = ret[1:] data[cls_name] = scores data['avg'] = parse_line(avg_line)[1:] # average return data #################Katie's Code +++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ def prepare_word2vec(): print("Downloading pretrained word2vec models") url = "https://zenodo.org/record/807727/files/word2vecs_models.zip" file_name = wget.download(url) with zipfile.ZipFile(file_name, "r") as zip_ref: zip_ref.extractall() if __name__ == "__main__": word_src = "word2vecs_models" threads = [] if not os.path.exists(word_src): prepare_word2vec() elif len(os.listdir(word_src)) == 0: os.rmdir(word_src) prepare_word2vec() for x in range(1): random.seed(x) np.random.seed(x) myword2vecs = [os.path.join(word_src, i) for i in os.listdir(word_src) if "syn" not in i] # t = threading.Thread(target=run_tuning_SVM_KNN, args = [myword2vecs[x]]) # threads.append(t) # t.start() run_SVM_baseline(myword2vecs[x]) #run_SVM_KNN_thread(myword2vecs[x]) #run_LinearDiscriminantAnalysis(myword2vecs[x]) #run_KNN(myword2vecs[x]) #run_SVM_KNN(myword2vecs[x]) #run_KMeans_Wpair(myword2vecs[x]) #run_kmeans(myword2vecs[x]) #run_KNN_SVM(myword2vecs[x]) #run_KNN_KNN(myword2vecs[x]) #Srun_LDA(myword2vecs[x]) #run_RNN(myword2vecs[x]) #print("Run completed for baseline model--------------------------------------------------") #run_tuning_SVM(myword2vecs[x]) #run_tuning_LDA(myword2vecs[x]) #run_tuning_KNN(myword2vecs[x]) #print("Run completed for DE model--------------------------------------------------")
38.296183
131
0.62514
6,349
50,168
4.77335
0.074815
0.013859
0.015838
0.017818
0.771167
0.754207
0.750808
0.742163
0.738138
0.725896
0
0.030163
0.212287
50,168
1,310
132
38.296183
0.736728
0.131917
0
0.777126
0
0
0.096464
0.030205
0
0
0
0
0.001955
1
0.028348
false
0
0.032258
0
0.071359
0.135875
0
0
0
null
0
0
0
0
1
1
1
1
1
0
0
0
0
0
0
0
0
0
0
1
0
0
0
0
null
0
0
0
0
0
0
0
0
0
0
0
0
0
6
cf3ffee88a76c631b85e7a5469a248333708be1a
34
py
Python
src/superfit/mainwindow/__init__.py
awacha/superfit
a95d346c4b38f61173c7434eb7389e2cf1ccae9c
[ "BSD-3-Clause" ]
null
null
null
src/superfit/mainwindow/__init__.py
awacha/superfit
a95d346c4b38f61173c7434eb7389e2cf1ccae9c
[ "BSD-3-Clause" ]
null
null
null
src/superfit/mainwindow/__init__.py
awacha/superfit
a95d346c4b38f61173c7434eb7389e2cf1ccae9c
[ "BSD-3-Clause" ]
null
null
null
from .mainwindow import MainWindow
34
34
0.882353
4
34
7.5
0.75
0
0
0
0
0
0
0
0
0
0
0
0.088235
34
1
34
34
0.967742
0
0
0
0
0
0
0
0
0
0
0
0
1
0
true
0
1
0
1
0
1
1
0
null
0
0
0
0
0
0
0
0
0
0
0
0
0
1
0
0
0
0
0
0
0
0
0
0
null
0
0
0
0
0
0
1
0
1
0
1
0
0
6
cf44da1421ffcad816c602ccc4edb40367643818
199
py
Python
prof_school/__init__.py
mohamedmelsayed/erp-school
6da9bc4c4634e3b362be18f55300aacf147c32a3
[ "MIT" ]
null
null
null
prof_school/__init__.py
mohamedmelsayed/erp-school
6da9bc4c4634e3b362be18f55300aacf147c32a3
[ "MIT" ]
null
null
null
prof_school/__init__.py
mohamedmelsayed/erp-school
6da9bc4c4634e3b362be18f55300aacf147c32a3
[ "MIT" ]
null
null
null
from .models import stage from .models import level from .models import class_name from .models import student from .models import parent from .models import study_year from .models import enrollment
28.428571
30
0.829146
30
199
5.433333
0.4
0.429448
0.687117
0
0
0
0
0
0
0
0
0
0.135678
199
7
31
28.428571
0.947674
0
0
0
0
0
0
0
0
0
0
0
0
1
0
true
0
1
0
1
0
0
0
0
null
1
1
0
0
0
0
0
0
0
0
0
0
0
1
0
0
0
0
0
0
0
0
0
0
null
0
0
0
0
0
0
1
0
1
0
1
0
0
6
cf68743af20103a597b92c1707121c418cb28844
34
py
Python
myscript.py
kRituraj/learnGIt
dad92da290d1aab0713d99af722e86140507e9ab
[ "MIT" ]
null
null
null
myscript.py
kRituraj/learnGIt
dad92da290d1aab0713d99af722e86140507e9ab
[ "MIT" ]
null
null
null
myscript.py
kRituraj/learnGIt
dad92da290d1aab0713d99af722e86140507e9ab
[ "MIT" ]
null
null
null
print("My name is Rituraj Khare")
17
33
0.735294
6
34
4.166667
1
0
0
0
0
0
0
0
0
0
0
0
0.147059
34
1
34
34
0.862069
0
0
0
0
0
0.705882
0
0
0
0
0
0
1
0
true
0
0
0
0
1
1
1
0
null
0
0
0
0
0
0
0
0
0
0
0
0
0
1
0
0
0
0
0
0
0
0
1
0
null
0
0
0
0
0
0
1
0
0
0
0
1
0
6
cf7897f04a99a685cf752ce25bde96a1bd963ec7
183
py
Python
dist/micropy-cli/frozen/uasyncio/funcs.py
kevindawson/Pico-Stub
6f9112779d4d81f821a3af273a450b9329ccdbab
[ "Apache-2.0" ]
19
2021-01-25T23:56:09.000Z
2022-02-21T13:55:16.000Z
dist/micropy-cli/frozen/uasyncio/funcs.py
kevindawson/Pico-Stub
6f9112779d4d81f821a3af273a450b9329ccdbab
[ "Apache-2.0" ]
18
2021-02-06T09:03:09.000Z
2021-10-04T16:36:35.000Z
dist/micropy-cli/frozen/uasyncio/funcs.py
kevindawson/Pico-Stub
6f9112779d4d81f821a3af273a450b9329ccdbab
[ "Apache-2.0" ]
6
2021-01-26T08:41:47.000Z
2021-04-27T11:33:33.000Z
from typing import Any def wait_for_ms(aw: Any, timeout: int) -> Any: ... # 0: return wait_for(aw,timeout,core.sleep_ms) # ? 0: return wait_for(aw, timeout, core.sleep_ms)
30.5
54
0.672131
31
183
3.774194
0.483871
0.179487
0.188034
0.239316
0.581197
0.581197
0.581197
0.581197
0.581197
0
0
0.013423
0.185792
183
5
55
36.6
0.771812
0.508197
0
0
0
0
0
0
0
0
0
0
0
1
0.5
false
0
0.5
0
1
0
0
0
0
null
0
1
1
0
0
0
0
0
0
0
0
0
0
1
0
0
0
0
0
0
0
0
0
0
null
0
0
0
0
0
1
0
0
1
0
1
0
0
6
d8d46c16be9da8396527eb259a0965644da2d48d
37
py
Python
veintitres/__init__.py
joelalejandro/veintitres-python
18fa7aa66688cce3f2c42ebc96ddb780bcd6d4bf
[ "MIT" ]
null
null
null
veintitres/__init__.py
joelalejandro/veintitres-python
18fa7aa66688cce3f2c42ebc96ddb780bcd6d4bf
[ "MIT" ]
null
null
null
veintitres/__init__.py
joelalejandro/veintitres-python
18fa7aa66688cce3f2c42ebc96ddb780bcd6d4bf
[ "MIT" ]
null
null
null
from .client import VeintitresClient
18.5
36
0.864865
4
37
8
1
0
0
0
0
0
0
0
0
0
0
0
0.108108
37
1
37
37
0.969697
0
0
0
0
0
0
0
0
0
0
0
0
1
0
true
0
1
0
1
0
1
1
0
null
0
0
0
0
0
0
0
0
0
0
0
0
0
1
0
0
0
0
0
0
0
0
0
0
null
0
0
0
0
0
0
1
0
1
0
1
0
0
6
d8e1c9d0e3a88657f33d1a06132b17c2fdbfdca9
40
py
Python
cs-224n/assn2/utils/__init__.py
PranjalGupta2199/nlp-dl
7e2290c82602cb2ff863f2513c54dfb0412affd0
[ "MIT" ]
null
null
null
cs-224n/assn2/utils/__init__.py
PranjalGupta2199/nlp-dl
7e2290c82602cb2ff863f2513c54dfb0412affd0
[ "MIT" ]
null
null
null
cs-224n/assn2/utils/__init__.py
PranjalGupta2199/nlp-dl
7e2290c82602cb2ff863f2513c54dfb0412affd0
[ "MIT" ]
null
null
null
from . import gradcheck, treebank, utils
40
40
0.8
5
40
6.4
1
0
0
0
0
0
0
0
0
0
0
0
0.125
40
1
40
40
0.914286
0
0
0
0
0
0
0
0
0
0
0
0
1
0
true
0
1
0
1
0
1
1
0
null
0
0
0
0
0
0
0
0
0
0
0
0
0
1
0
0
0
0
0
0
0
0
0
0
null
0
0
0
0
0
0
1
0
1
0
1
0
0
6
d8fbe81e9f1a510748c80f8dc8a1b42b637b2f92
207
py
Python
kartverket_tide_api/exceptions/__init__.py
matsjp/kartverket_tide_api
b4be15e9c8f077ef6ec0747fe67f0a64383cfa30
[ "MIT" ]
null
null
null
kartverket_tide_api/exceptions/__init__.py
matsjp/kartverket_tide_api
b4be15e9c8f077ef6ec0747fe67f0a64383cfa30
[ "MIT" ]
null
null
null
kartverket_tide_api/exceptions/__init__.py
matsjp/kartverket_tide_api
b4be15e9c8f077ef6ec0747fe67f0a64383cfa30
[ "MIT" ]
null
null
null
from .apierrorexception import NoTideDataErrorException, UnknownApiErrorException,\ ApiErrorException, InvalidStationTypeErrorException from .cannotfindelementexception import CannotFindElementException
51.75
83
0.898551
11
207
16.909091
0.636364
0
0
0
0
0
0
0
0
0
0
0
0.072464
207
3
84
69
0.96875
0
0
0
0
0
0
0
0
0
0
0
0
1
0
true
0
0.666667
0
0.666667
0
1
0
1
null
0
0
0
0
0
0
0
0
0
0
0
0
0
1
0
0
0
0
0
0
0
0
0
0
null
0
0
0
0
0
0
1
0
1
0
1
0
0
6
2b1231e92f21f35984d0911fe8b686f6f0ee27b3
4,272
py
Python
python/tests/wind_settings_test.py
anth-dj/geog5003m_project
51caa4255a04cc7043dde9ff94e654c41fc1620c
[ "MIT" ]
null
null
null
python/tests/wind_settings_test.py
anth-dj/geog5003m_project
51caa4255a04cc7043dde9ff94e654c41fc1620c
[ "MIT" ]
null
null
null
python/tests/wind_settings_test.py
anth-dj/geog5003m_project
51caa4255a04cc7043dde9ff94e654c41fc1620c
[ "MIT" ]
null
null
null
#!/usr/bin/env python3 # -*- coding: utf-8 -*- """ Wind Settings unit tests @author: Anthony Jarrett """ import unittest from python.src.simulation import particleframework class WindSettingsTestCase(unittest.TestCase): def test_init(self): # Initialize parameters north_percentage = 5 east_percentage = 10 south_percentage = 20 west_percentage = 65 # Create wind settings wind_settings = particleframework.WindSettings( north_percentage, east_percentage, south_percentage, west_percentage ) # Verify the wind settings self.assertIsNotNone(wind_settings) self.assertEqual(wind_settings.north_percentage, north_percentage) self.assertEqual(wind_settings.east_percentage, east_percentage) self.assertEqual(wind_settings.south_percentage, south_percentage) self.assertEqual(wind_settings.west_percentage, west_percentage) def test_sum_too_large(self): # Initialize parameters north_percentage = 5 east_percentage = 10 south_percentage = 20 west_percentage = 75 try: # Create wind settings particleframework.WindSettings( north_percentage, east_percentage, south_percentage, west_percentage ) self.fail() except Exception as e: self.assertIsNotNone(e) def test_sum_too_small(self): # Initialize parameters north_percentage = 5 east_percentage = 10 south_percentage = 20 west_percentage = 15 try: # Create wind settings particleframework.WindSettings( north_percentage, east_percentage, south_percentage, west_percentage ) self.fail() except Exception as e: self.assertIsNotNone(e) def test_get_next_north(self): # Initialize parameters north_percentage = 100 east_percentage = 0 south_percentage = 0 west_percentage = 0 # Create wind settings wind_settings = particleframework.WindSettings( north_percentage, east_percentage, south_percentage, west_percentage ) # Verify the next direction next_direction = wind_settings.get_next() self.assertEqual(next_direction, particleframework.Direction.NORTH) def test_get_next_east(self): # Initialize parameters north_percentage = 0 east_percentage = 100 south_percentage = 0 west_percentage = 0 # Create wind settings wind_settings = particleframework.WindSettings( north_percentage, east_percentage, south_percentage, west_percentage ) # Verify the next direction next_direction = wind_settings.get_next() self.assertEqual(next_direction, particleframework.Direction.EAST) def test_get_next_south(self): # Initialize parameters north_percentage = 0 east_percentage = 0 south_percentage = 100 west_percentage = 0 # Create wind settings wind_settings = particleframework.WindSettings( north_percentage, east_percentage, south_percentage, west_percentage ) # Verify the next direction next_direction = wind_settings.get_next() self.assertEqual(next_direction, particleframework.Direction.SOUTH) def test_get_next_west(self): # Initialize parameters north_percentage = 0 east_percentage = 0 south_percentage = 0 west_percentage = 100 # Create wind settings wind_settings = particleframework.WindSettings( north_percentage, east_percentage, south_percentage, west_percentage ) # Verify the next direction next_direction = wind_settings.get_next() self.assertEqual(next_direction, particleframework.Direction.WEST)
27.037975
75
0.617041
393
4,272
6.430025
0.157761
0.10922
0.075979
0.080332
0.815196
0.755837
0.755837
0.755837
0.722596
0.722596
0
0.016445
0.330993
4,272
157
76
27.210191
0.86774
0.122659
0
0.673267
0
0
0
0
0
0
0
0
0.108911
1
0.069307
false
0
0.019802
0
0.09901
0
0
0
0
null
0
0
0
1
1
1
1
1
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
null
0
0
0
0
0
0
0
0
0
0
0
0
0
6
2b4a876ac0b876943151201b66e9e6e75e65f68a
4,953
py
Python
tests/features/test_decryption.py
ratschlab/tools-project-archives
a42ef1d3d60b24ff39ce5aa73a8fb332b4f25056
[ "MIT" ]
1
2021-12-02T15:13:47.000Z
2021-12-02T15:13:47.000Z
tests/features/test_decryption.py
ratschlab/tools-project-archives
a42ef1d3d60b24ff39ce5aa73a8fb332b4f25056
[ "MIT" ]
null
null
null
tests/features/test_decryption.py
ratschlab/tools-project-archives
a42ef1d3d60b24ff39ce5aa73a8fb332b4f25056
[ "MIT" ]
null
null
null
import os import shutil import re import pytest from archiver.extract import decrypt_existing_archive from archiver.helpers import get_absolute_path_string from .archiving_helpers import assert_successful_archive_creation, assert_successful_action_to_destination, add_prefix_to_list_elements, compare_listing_files, valid_md5_hash_in_file, compare_text_file_ignoring_order, compare_hash_files from tests import helpers ENCRYPTION_PUBLIC_KEY_A = "public.gpg" ENCRYPTION_PUBLIC_KEY_B = "public_second.pub" def test_decrypt_regular_archive(tmp_path, setup_gpg): folder_name = "test-folder" archive_path = helpers.get_directory_with_name("encrypted-archive") copied_archive_path = tmp_path / folder_name shutil.copytree(archive_path, copied_archive_path) decrypt_existing_archive(copied_archive_path) assert_successful_archive_creation(copied_archive_path, archive_path, folder_name, encrypted="all", unencrypted="all") def test_decrypt_regular_archive_remove_unencrypted(tmp_path, setup_gpg): folder_name = "test-folder" archive_path = helpers.get_directory_with_name("encrypted-archive") copied_archive_path = tmp_path / folder_name shutil.copytree(archive_path, copied_archive_path) decrypt_existing_archive(copied_archive_path, remove_unencrypted=True) assert_successful_archive_creation(copied_archive_path, archive_path, folder_name, encrypted="hash", unencrypted="all") def test_decrypt_regular_archive_to_destination(tmp_path, setup_gpg): folder_name = "test-folder" archive_path = helpers.get_directory_with_name("encrypted-archive") destination_path = tmp_path / folder_name decrypt_existing_archive(archive_path, destination_path) assert_successful_action_to_destination(destination_path, archive_path, folder_name, encrypted=False) def test_decrypt_regular_archive_error_existing(tmp_path, setup_gpg): folder_name = "test-folder" archive_path = helpers.get_directory_with_name("encrypted-archive") destination_path = tmp_path / folder_name destination_path.mkdir() with pytest.raises(SystemExit) as error: decrypt_existing_archive(archive_path, destination_path) assert error.type == SystemExit def test_decrypt_regular_archive_force_override_existing(tmp_path, setup_gpg): folder_name = "test-folder" archive_path = helpers.get_directory_with_name("encrypted-archive") destination_path = tmp_path / folder_name destination_path.mkdir() decrypt_existing_archive(archive_path, destination_path, force=True) assert_successful_action_to_destination(destination_path, archive_path, folder_name, encrypted=False) def test_decrypt_regular_file(tmp_path, setup_gpg): folder_name = "test-folder" archive_path = helpers.get_directory_with_name("encrypted-archive") copied_archive_path = tmp_path / folder_name archive_file = copied_archive_path / f"{folder_name}.tar.lz.gpg" shutil.copytree(archive_path, copied_archive_path) decrypt_existing_archive(archive_file) assert_successful_archive_creation(copied_archive_path, archive_path, folder_name, encrypted="all", unencrypted="all") def test_decrypt_regular_file_to_destination(tmp_path, setup_gpg): folder_name = "test-folder" archive_path = helpers.get_directory_with_name("encrypted-archive") archive_file = archive_path / f"{folder_name}.tar.lz.gpg" destination_path = tmp_path / folder_name decrypt_existing_archive(archive_file, destination_path) assert_successful_action_to_destination(destination_path, archive_path, folder_name, encrypted=False) def test_decrypt_archive_split(tmp_path, setup_gpg): folder_name = "large-folder" archive_path = helpers.get_directory_with_name("split-encrypted-archive") copied_archive_path = tmp_path / folder_name shutil.copytree(archive_path, copied_archive_path) decrypt_existing_archive(copied_archive_path) assert_successful_archive_creation(copied_archive_path, archive_path, folder_name, encrypted="all", unencrypted="all", split=3) def test_decrypt_archive_split_remove_unencrypted(tmp_path, setup_gpg): folder_name = "large-folder" archive_path = helpers.get_directory_with_name("split-encrypted-archive") copied_archive_path = tmp_path / folder_name shutil.copytree(archive_path, copied_archive_path) decrypt_existing_archive(copied_archive_path, remove_unencrypted=True) assert_successful_archive_creation(copied_archive_path, archive_path, folder_name, encrypted="hash", unencrypted="all", split=3) def test_decrypt_archive_split_to_destination(tmp_path): folder_name = "large-folder" archive_path = helpers.get_directory_with_name("split-encrypted-archive") destination_path = tmp_path / folder_name decrypt_existing_archive(archive_path, destination_path) assert_successful_action_to_destination(destination_path, archive_path, folder_name, encrypted=False, split=3)
43.447368
236
0.816475
652
4,953
5.722393
0.119632
0.144465
0.091128
0.050121
0.862503
0.826856
0.826856
0.80461
0.764942
0.747789
0
0.000908
0.11064
4,953
113
237
43.831858
0.846084
0
0
0.6125
0
0
0.082374
0.023622
0
0
0
0
0.1375
1
0.125
false
0
0.1
0
0.225
0
0
0
0
null
0
0
0
1
1
1
1
1
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
null
0
0
0
0
0
0
0
0
0
0
0
0
0
6
992d31ef563a84f77f44d14348541fc61f975cc8
11,799
py
Python
tests/test_extractors/body/test_form_fields_extractor.py
dantownsend/xpresso
a4c4dbe96972a6f0339f30d7d794932f70510eea
[ "MIT" ]
4
2022-02-07T05:12:51.000Z
2022-02-28T12:34:57.000Z
tests/test_extractors/body/test_form_fields_extractor.py
dantownsend/xpresso
a4c4dbe96972a6f0339f30d7d794932f70510eea
[ "MIT" ]
2
2022-01-25T02:05:02.000Z
2022-01-25T02:38:59.000Z
tests/test_extractors/body/test_form_fields_extractor.py
dantownsend/xpresso
a4c4dbe96972a6f0339f30d7d794932f70510eea
[ "MIT" ]
null
null
null
import sys import typing from dataclasses import dataclass if sys.version_info < (3, 9): from typing_extensions import Annotated else: from typing import Annotated from pydantic import BaseModel from starlette.responses import Response from starlette.testclient import TestClient from xpresso import App, Form, FormEncodedField, FromFormData, FromFormField, Path def test_form_field_scalar_defaults() -> None: @dataclass(frozen=True) class FormModel: field: FromFormField[int] async def endpoint(form: FromFormData[FormModel]) -> Response: assert form.field == 2 return Response() app = App([Path("/", post=endpoint)]) with TestClient(app) as client: resp = client.post("/", data={"field": "2"}) assert resp.status_code == 200, resp.content def test_form_field_scalar_style_form_explode_true() -> None: @dataclass(frozen=True) class FormModel: field: Annotated[int, FormEncodedField(style="form", explode=True)] async def endpoint(form: FromFormData[FormModel]) -> Response: assert form.field == 2 return Response() app = App([Path("/", post=endpoint)]) with TestClient(app) as client: resp = client.post("/", data={"field": "2"}) assert resp.status_code == 200, resp.content def test_form_field_scalar_style_form_explode_false() -> None: @dataclass(frozen=True) class FormModel: field: Annotated[int, FormEncodedField(style="form", explode=False)] async def endpoint(form: FromFormData[FormModel]) -> Response: assert form.field == 2 return Response() app = App([Path("/", post=endpoint)]) with TestClient(app) as client: resp = client.post("/", data={"field": "2"}) assert resp.status_code == 200, resp.content def test_form_field_array_defaults() -> None: @dataclass(frozen=True) class FormModel: field: FromFormField[typing.List[int]] async def endpoint(form: FromFormData[FormModel]) -> Response: assert form.field == [1, 2] return Response() app = App([Path("/", post=endpoint)]) app = App([Path("/", post=endpoint)]) with TestClient(app) as client: resp = client.post("/", data=[("field", "1"), ("field", "2")]) assert resp.status_code == 200, resp.content def test_form_field_array_style_form_explode_true() -> None: @dataclass(frozen=True) class FormModel: field: Annotated[typing.List[int], FormEncodedField(explode=True)] async def endpoint(form: FromFormData[FormModel]) -> Response: assert form.field == [1, 2] return Response() app = App([Path("/", post=endpoint)]) with TestClient(app) as client: resp = client.post("/", data=[("field", "1"), ("field", "2")]) assert resp.status_code == 200, resp.content def test_form_field_array_style_form_explode_false() -> None: @dataclass(frozen=True) class FormModel: field: Annotated[typing.List[int], FormEncodedField(explode=False)] async def endpoint(form: FromFormData[FormModel]) -> Response: assert form.field == [1, 2] return Response() app = App([Path("/", post=endpoint)]) with TestClient(app) as client: resp = client.post("/", data=[("field", "1,2")]) assert resp.status_code == 200, resp.content def test_form_field_array_style_spaceDelimited_explode_true() -> None: @dataclass(frozen=True) class FormModel: field: Annotated[ typing.List[int], FormEncodedField(style="spaceDelimited", explode=True) ] async def endpoint(form: FromFormData[FormModel]) -> Response: assert form.field == [1, 2] return Response() app = App([Path("/", post=endpoint)]) with TestClient(app) as client: resp = client.post("/", data=[("field", "1"), ("field", "2")]) assert resp.status_code == 200, resp.content def test_form_field_array_style_spaceDelimited_explode_false() -> None: @dataclass(frozen=True) class FormModel: field: Annotated[ typing.List[int], FormEncodedField(style="spaceDelimited", explode=False) ] async def endpoint(form: FromFormData[FormModel]) -> Response: assert form.field == [1, 2] return Response() app = App([Path("/", post=endpoint)]) with TestClient(app) as client: resp = client.post("/", data=[("field", "1 2")]) assert resp.status_code == 200, resp.content def test_form_field_array_style_pipeDelimited_explode_true() -> None: @dataclass(frozen=True) class FormModel: field: Annotated[ typing.List[int], FormEncodedField(style="pipeDelimited", explode=True) ] async def endpoint(form: FromFormData[FormModel]) -> Response: assert form.field == [1, 2] return Response() app = App([Path("/", post=endpoint)]) with TestClient(app) as client: resp = client.post("/", data=[("field", "1"), ("field", "2")]) assert resp.status_code == 200, resp.content def test_form_field_array_style_pipeDelimited_explode_false() -> None: @dataclass(frozen=True) class FormModel: field: Annotated[ typing.List[int], FormEncodedField(style="pipeDelimited", explode=False) ] async def endpoint(form: FromFormData[FormModel]) -> Response: assert form.field == [1, 2] return Response() app = App([Path("/", post=endpoint)]) with TestClient(app) as client: resp = client.post("/", data=[("field", "1|2")]) assert resp.status_code == 200, resp.content class ShallowObject(BaseModel): a: int b: str def test_form_field_shallow_object_defaults() -> None: @dataclass(frozen=True) class FormModel: field: FromFormField[ShallowObject] async def endpoint(form: FromFormData[FormModel]) -> Response: assert form.field == ShallowObject(a=1, b="2") return Response() app = App([Path("/", post=endpoint)]) with TestClient(app) as client: resp = client.post("/", data=[("a", "1"), ("b", "2")]) assert resp.status_code == 200, resp.content def test_form_field_shallow_object_style_form_explode_true() -> None: @dataclass(frozen=True) class FormModel: field: Annotated[ShallowObject, FormEncodedField(explode=True)] async def endpoint(form: FromFormData[FormModel]) -> Response: assert form.field == ShallowObject(a=1, b="2") return Response() app = App([Path("/", post=endpoint)]) with TestClient(app) as client: resp = client.post("/", data=[("a", "1"), ("b", "2")]) assert resp.status_code == 200, resp.content def test_form_field_shallow_object_style_form_explode_false() -> None: @dataclass(frozen=True) class FormModel: field: Annotated[ShallowObject, FormEncodedField(explode=False)] async def endpoint(form: FromFormData[FormModel]) -> Response: assert form.field == ShallowObject(a=1, b="2") return Response() app = App([Path("/", post=endpoint)]) with TestClient(app) as client: resp = client.post("/", data=[("field", "a,1,b,2")]) assert resp.status_code == 200, resp.content def test_form_field_shallow_object_style_deepObject_explode_true() -> None: @dataclass(frozen=True) class FormModel: field: Annotated[ ShallowObject, FormEncodedField(style="deepObject", explode=True) ] async def endpoint(form: FromFormData[FormModel]) -> Response: assert form.field == ShallowObject(a=1, b="2") return Response() app = App([Path("/", post=endpoint)]) with TestClient(app) as client: resp = client.post("/", data=[("field[a]", "1"), ("field[b]", "2")]) assert resp.status_code == 200, resp.content def test_form_field_deep_object_style_deepObject_explode_true() -> None: @dataclass(frozen=True) class FormModel: field: Annotated[ ShallowObject, FormEncodedField(style="deepObject", explode=True) ] async def endpoint(form: FromFormData[FormModel]) -> Response: assert form.field == ShallowObject(a=1, b="2") return Response() app = App([Path("/", post=endpoint)]) with TestClient(app) as client: resp = client.post( "/", data=[ ("field[a]", "1"), ("field[b]", "2"), ], ) assert resp.status_code == 200, resp.content def test_form_field_alias_scalar() -> None: class FormModel(BaseModel): field: Annotated[int, FormEncodedField(alias="realFieldName")] async def endpoint(form: FromFormData[FormModel]) -> Response: assert form.field == 2 return Response() app = App([Path("/", post=endpoint)]) with TestClient(app) as client: resp = client.post("/", data={"realFieldName": "2"}) assert resp.status_code == 200, resp.content def test_form_field_alias_array() -> None: class FormModel(BaseModel): field: Annotated[typing.List[int], FormEncodedField(alias="realFieldName")] async def endpoint(form: FromFormData[FormModel]) -> Response: assert form.field == [1, 2] return Response() app = App([Path("/", post=endpoint)]) with TestClient(app) as client: resp = client.post("/", data=[("realFieldName", "1"), ("realFieldName", "2")]) assert resp.status_code == 200, resp.content def test_form_field_alias_deepObject() -> None: @dataclass(frozen=True) class FormModel: field: Annotated[ ShallowObject, FormEncodedField(style="deepObject", alias="readlFieldName") ] async def endpoint(form: FromFormData[FormModel]) -> Response: assert form.field == ShallowObject(a=1, b="2") return Response() app = App([Path("/", post=endpoint)]) with TestClient(app) as client: resp = client.post( "/", data=[ ("readlFieldName[a]", "1"), ("readlFieldName[b]", "2"), ], ) assert resp.status_code == 200, resp.content def test_invalid_serialization() -> None: @dataclass(frozen=True) class FormModel: field: Annotated[ShallowObject, FormEncodedField(explode=False)] async def endpoint(form: FromFormData[FormModel]) -> Response: raise AssertionError("Should not be called") # pragma: no cover app = App([Path("/", post=endpoint)]) with TestClient(app) as client: # fields cannot be repeated if explode=False # this is just an arbitrary example of a malformed serialzition resp = client.post("/", data=[("field", "a,1"), ("field", "b,2")]) assert resp.status_code == 422, resp.content assert resp.json() == { "detail": [ { "loc": ["body", "field"], "msg": "Data is not a valid URL encoded form", "type": "type_error", } ] } def test_form_field_from_file() -> None: @dataclass(frozen=True) class FormModel: field: FromFormField[str] async def endpoint( form: Annotated[FormModel, Form(enforce_media_type=False)] ) -> Response: raise AssertionError("Should not be called") # pragma: no cover app = App([Path("/", post=endpoint)]) with TestClient(app) as client: resp = client.post("/", files=[("field", ("file.txt", b"abcd"))]) assert resp.status_code == 422, resp.content assert resp.json() == { "detail": [ { "loc": ["body", "field"], "msg": "Expected a string form field but received a file", "type": "type_error.unexpectedfilereceived", } ] }
30.567358
87
0.625053
1,335
11,799
5.41573
0.08764
0.047303
0.029046
0.040664
0.892946
0.889903
0.873167
0.873167
0.86556
0.839419
0
0.014111
0.231206
11,799
385
88
30.646753
0.782935
0.011696
0
0.685921
0
0
0.056023
0.002831
0
0
0
0
0.151625
1
0.072202
false
0
0.032491
0
0.32491
0
0
0
0
null
0
0
0
1
1
1
1
1
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
null
0
0
0
0
0
0
0
0
0
0
0
0
0
6
993dcfa2a570da9e634a847c20c71d05390a7639
260,269
py
Python
instances/passenger_demand/pas-20210422-1717-int18e/37.py
LHcau/scheduling-shared-passenger-and-freight-transport-on-a-fixed-infrastructure
bba1e6af5bc8d9deaa2dc3b83f6fe9ddf15d2a11
[ "BSD-3-Clause" ]
null
null
null
instances/passenger_demand/pas-20210422-1717-int18e/37.py
LHcau/scheduling-shared-passenger-and-freight-transport-on-a-fixed-infrastructure
bba1e6af5bc8d9deaa2dc3b83f6fe9ddf15d2a11
[ "BSD-3-Clause" ]
null
null
null
instances/passenger_demand/pas-20210422-1717-int18e/37.py
LHcau/scheduling-shared-passenger-and-freight-transport-on-a-fixed-infrastructure
bba1e6af5bc8d9deaa2dc3b83f6fe9ddf15d2a11
[ "BSD-3-Clause" ]
null
null
null
""" PASSENGERS """ numPassengers = 34483 passenger_arriving = ( (6, 8, 12, 6, 7, 5, 6, 1, 4, 0, 1, 2, 0, 14, 9, 4, 3, 9, 4, 3, 1, 7, 3, 5, 0, 0), # 0 (6, 15, 6, 15, 7, 6, 2, 5, 3, 0, 1, 3, 0, 8, 8, 5, 7, 6, 6, 7, 5, 4, 2, 2, 1, 0), # 1 (10, 7, 9, 8, 8, 6, 5, 8, 3, 4, 0, 2, 0, 7, 17, 3, 9, 10, 7, 2, 2, 3, 7, 0, 1, 0), # 2 (6, 8, 11, 9, 6, 3, 5, 5, 5, 5, 3, 5, 0, 11, 14, 11, 4, 13, 5, 3, 6, 2, 7, 2, 2, 0), # 3 (13, 14, 11, 12, 9, 6, 8, 5, 6, 2, 3, 0, 0, 10, 15, 11, 8, 7, 9, 3, 1, 1, 2, 3, 0, 0), # 4 (11, 12, 18, 18, 8, 7, 3, 3, 7, 6, 2, 4, 0, 14, 8, 7, 4, 12, 9, 8, 1, 5, 4, 3, 0, 0), # 5 (10, 13, 9, 15, 6, 5, 5, 11, 6, 3, 4, 2, 0, 13, 7, 9, 6, 9, 5, 7, 2, 4, 1, 2, 0, 0), # 6 (16, 14, 15, 10, 10, 6, 2, 6, 8, 2, 1, 0, 0, 23, 6, 18, 7, 17, 5, 9, 6, 9, 4, 2, 2, 0), # 7 (24, 11, 8, 14, 12, 8, 7, 3, 7, 3, 2, 0, 0, 12, 15, 11, 4, 14, 3, 4, 2, 5, 5, 3, 4, 0), # 8 (19, 20, 16, 9, 6, 5, 8, 3, 4, 3, 1, 2, 0, 11, 18, 7, 4, 12, 9, 1, 2, 7, 3, 1, 3, 0), # 9 (21, 21, 15, 19, 7, 9, 9, 7, 5, 1, 3, 3, 0, 14, 15, 9, 6, 15, 6, 10, 2, 4, 9, 3, 2, 0), # 10 (16, 14, 9, 17, 8, 6, 2, 5, 7, 3, 4, 2, 0, 13, 19, 7, 7, 11, 7, 5, 4, 2, 6, 6, 0, 0), # 11 (14, 18, 19, 20, 12, 6, 6, 2, 4, 1, 2, 1, 0, 15, 17, 15, 12, 6, 8, 9, 5, 6, 6, 2, 4, 0), # 12 (12, 14, 18, 13, 17, 6, 5, 3, 10, 1, 1, 1, 0, 19, 14, 12, 13, 12, 7, 4, 4, 6, 5, 1, 1, 0), # 13 (13, 16, 12, 10, 22, 3, 4, 10, 10, 3, 5, 1, 0, 13, 19, 7, 16, 12, 6, 3, 6, 3, 3, 3, 3, 0), # 14 (21, 13, 14, 22, 11, 5, 4, 5, 8, 3, 1, 1, 0, 11, 29, 11, 10, 19, 4, 7, 4, 8, 5, 4, 0, 0), # 15 (13, 17, 15, 12, 10, 7, 10, 3, 9, 4, 2, 1, 0, 24, 16, 9, 9, 13, 9, 7, 4, 9, 4, 4, 1, 0), # 16 (23, 13, 13, 13, 14, 8, 5, 9, 8, 5, 3, 2, 0, 17, 17, 10, 11, 9, 8, 7, 4, 5, 5, 2, 3, 0), # 17 (16, 12, 14, 13, 10, 5, 5, 7, 7, 1, 3, 4, 0, 22, 21, 10, 9, 9, 9, 6, 7, 8, 4, 1, 1, 0), # 18 (22, 13, 17, 12, 8, 9, 6, 5, 8, 2, 2, 3, 0, 17, 14, 10, 14, 17, 9, 6, 4, 9, 5, 4, 4, 0), # 19 (14, 16, 8, 18, 18, 6, 12, 10, 7, 1, 2, 1, 0, 17, 15, 19, 10, 23, 3, 8, 3, 8, 10, 1, 0, 0), # 20 (14, 12, 23, 14, 16, 3, 10, 6, 9, 1, 3, 1, 0, 20, 15, 12, 16, 12, 9, 7, 9, 9, 6, 2, 4, 0), # 21 (18, 21, 16, 17, 11, 5, 7, 9, 3, 4, 1, 2, 0, 15, 20, 12, 6, 12, 9, 15, 2, 7, 6, 3, 2, 0), # 22 (15, 15, 17, 16, 9, 8, 11, 7, 8, 7, 2, 3, 0, 15, 19, 13, 11, 17, 6, 11, 5, 5, 4, 2, 3, 0), # 23 (14, 16, 16, 20, 11, 6, 7, 4, 8, 2, 1, 2, 0, 19, 8, 12, 9, 7, 14, 11, 5, 7, 4, 3, 4, 0), # 24 (15, 20, 11, 28, 16, 3, 3, 5, 8, 2, 0, 2, 0, 20, 26, 15, 10, 12, 7, 9, 3, 6, 6, 3, 3, 0), # 25 (17, 24, 22, 22, 15, 3, 7, 4, 3, 5, 1, 3, 0, 21, 17, 13, 13, 11, 10, 4, 4, 4, 4, 4, 4, 0), # 26 (20, 25, 12, 11, 11, 7, 8, 1, 11, 5, 2, 2, 0, 15, 22, 10, 4, 16, 9, 9, 4, 10, 4, 2, 1, 0), # 27 (19, 17, 23, 22, 8, 4, 6, 12, 9, 2, 7, 4, 0, 13, 17, 13, 9, 22, 8, 10, 2, 6, 7, 5, 0, 0), # 28 (24, 21, 13, 13, 16, 5, 8, 9, 7, 5, 2, 0, 0, 26, 12, 16, 10, 13, 11, 6, 5, 9, 3, 2, 2, 0), # 29 (17, 20, 14, 13, 11, 2, 4, 11, 11, 7, 4, 3, 0, 13, 18, 17, 9, 18, 9, 7, 6, 6, 8, 5, 0, 0), # 30 (21, 18, 16, 29, 16, 2, 10, 7, 9, 1, 0, 0, 0, 21, 19, 14, 9, 12, 11, 7, 5, 4, 6, 4, 3, 0), # 31 (24, 17, 16, 13, 17, 10, 9, 7, 3, 1, 3, 5, 0, 21, 18, 9, 12, 17, 9, 4, 4, 7, 7, 3, 3, 0), # 32 (15, 14, 17, 15, 10, 4, 9, 10, 12, 3, 4, 4, 0, 13, 14, 10, 9, 16, 16, 9, 3, 6, 9, 3, 0, 0), # 33 (19, 20, 14, 23, 14, 9, 8, 7, 8, 4, 4, 0, 0, 17, 7, 12, 12, 20, 6, 8, 7, 10, 8, 2, 1, 0), # 34 (14, 12, 13, 19, 15, 7, 9, 7, 6, 6, 2, 2, 0, 18, 7, 12, 11, 8, 15, 9, 5, 7, 2, 3, 0, 0), # 35 (17, 19, 22, 20, 12, 3, 6, 4, 11, 3, 1, 2, 0, 9, 9, 8, 8, 13, 6, 2, 2, 11, 1, 3, 2, 0), # 36 (15, 23, 13, 20, 13, 4, 9, 6, 10, 2, 1, 2, 0, 19, 21, 14, 6, 11, 5, 6, 8, 2, 8, 2, 1, 0), # 37 (13, 21, 18, 16, 7, 4, 8, 7, 5, 4, 1, 0, 0, 19, 12, 15, 5, 16, 9, 5, 4, 5, 7, 2, 0, 0), # 38 (18, 20, 12, 12, 11, 7, 3, 6, 4, 2, 3, 0, 0, 19, 20, 9, 9, 16, 14, 4, 7, 10, 9, 3, 3, 0), # 39 (16, 16, 14, 23, 7, 5, 7, 10, 11, 2, 2, 3, 0, 25, 18, 14, 4, 26, 7, 6, 4, 6, 11, 4, 6, 0), # 40 (14, 15, 18, 24, 16, 4, 3, 5, 8, 4, 4, 2, 0, 21, 15, 9, 15, 10, 7, 4, 3, 3, 2, 1, 1, 0), # 41 (16, 15, 9, 19, 10, 4, 5, 6, 12, 4, 1, 3, 0, 17, 15, 17, 12, 12, 7, 7, 7, 7, 3, 2, 3, 0), # 42 (16, 24, 23, 18, 17, 7, 8, 7, 11, 3, 2, 3, 0, 15, 15, 7, 15, 10, 10, 5, 6, 4, 6, 3, 2, 0), # 43 (18, 19, 17, 17, 5, 4, 1, 4, 8, 4, 3, 2, 0, 19, 21, 8, 17, 17, 4, 5, 3, 4, 10, 3, 0, 0), # 44 (19, 17, 14, 17, 13, 13, 6, 7, 10, 4, 6, 0, 0, 19, 18, 16, 7, 17, 8, 4, 5, 8, 7, 2, 3, 0), # 45 (13, 16, 14, 18, 11, 7, 5, 6, 4, 4, 2, 0, 0, 13, 12, 16, 14, 17, 7, 7, 6, 4, 6, 2, 1, 0), # 46 (20, 16, 17, 16, 12, 10, 7, 7, 7, 3, 3, 0, 0, 17, 19, 13, 6, 14, 10, 11, 2, 9, 2, 1, 2, 0), # 47 (22, 17, 16, 16, 20, 3, 10, 7, 13, 3, 0, 1, 0, 15, 21, 18, 7, 10, 8, 9, 3, 2, 5, 3, 1, 0), # 48 (19, 12, 20, 11, 9, 8, 11, 11, 6, 4, 1, 4, 0, 13, 17, 15, 8, 13, 12, 9, 8, 8, 4, 4, 2, 0), # 49 (18, 17, 23, 13, 16, 10, 7, 2, 9, 1, 4, 0, 0, 19, 18, 19, 10, 9, 11, 7, 4, 7, 2, 4, 2, 0), # 50 (24, 10, 14, 14, 10, 4, 7, 7, 6, 6, 2, 2, 0, 17, 20, 13, 7, 19, 11, 5, 3, 7, 7, 6, 0, 0), # 51 (20, 20, 11, 14, 10, 3, 8, 9, 4, 3, 3, 1, 0, 17, 17, 14, 11, 7, 6, 6, 3, 4, 7, 3, 2, 0), # 52 (22, 23, 11, 15, 16, 4, 5, 6, 4, 4, 2, 0, 0, 22, 19, 9, 10, 19, 7, 4, 4, 10, 6, 5, 0, 0), # 53 (18, 19, 17, 24, 15, 7, 6, 5, 9, 3, 1, 3, 0, 23, 11, 11, 8, 10, 14, 4, 6, 4, 4, 4, 0, 0), # 54 (15, 21, 15, 16, 14, 3, 8, 8, 4, 4, 4, 0, 0, 28, 17, 14, 9, 8, 10, 5, 5, 7, 4, 3, 0, 0), # 55 (16, 17, 16, 13, 9, 5, 10, 4, 4, 6, 0, 3, 0, 19, 14, 11, 8, 9, 5, 6, 4, 8, 6, 6, 1, 0), # 56 (20, 20, 5, 20, 12, 9, 8, 7, 5, 4, 1, 3, 0, 15, 12, 14, 7, 17, 8, 7, 4, 6, 4, 2, 3, 0), # 57 (17, 15, 15, 24, 8, 10, 6, 2, 7, 6, 6, 1, 0, 21, 11, 13, 10, 19, 5, 9, 6, 6, 3, 3, 1, 0), # 58 (16, 21, 14, 6, 18, 6, 12, 4, 4, 4, 1, 0, 0, 10, 10, 10, 12, 16, 9, 6, 3, 12, 7, 5, 0, 0), # 59 (14, 20, 18, 16, 10, 9, 10, 4, 7, 4, 3, 2, 0, 20, 12, 10, 7, 15, 10, 6, 6, 7, 7, 2, 1, 0), # 60 (19, 11, 14, 15, 14, 3, 7, 6, 7, 7, 0, 3, 0, 12, 16, 15, 7, 13, 12, 2, 4, 6, 6, 0, 0, 0), # 61 (36, 16, 17, 13, 17, 4, 9, 5, 11, 4, 0, 0, 0, 11, 15, 14, 14, 19, 13, 13, 3, 9, 3, 3, 2, 0), # 62 (17, 18, 11, 23, 18, 5, 6, 4, 8, 5, 0, 2, 0, 30, 9, 15, 9, 5, 7, 10, 1, 5, 3, 3, 4, 0), # 63 (18, 15, 22, 12, 16, 6, 6, 9, 5, 1, 3, 2, 0, 13, 19, 13, 13, 9, 9, 7, 1, 6, 8, 2, 0, 0), # 64 (14, 8, 20, 13, 17, 2, 7, 10, 5, 5, 1, 1, 0, 20, 20, 18, 14, 11, 9, 8, 5, 6, 8, 0, 1, 0), # 65 (23, 19, 16, 20, 17, 6, 3, 10, 11, 4, 5, 1, 0, 18, 12, 7, 5, 19, 7, 10, 5, 8, 5, 4, 0, 0), # 66 (14, 15, 20, 15, 15, 4, 4, 6, 3, 3, 5, 0, 0, 16, 22, 9, 7, 11, 7, 7, 4, 9, 4, 3, 1, 0), # 67 (14, 12, 17, 15, 14, 4, 8, 3, 8, 4, 1, 0, 0, 17, 19, 16, 8, 15, 8, 5, 4, 12, 8, 2, 1, 0), # 68 (12, 25, 17, 18, 15, 9, 10, 11, 13, 1, 4, 2, 0, 19, 12, 13, 16, 10, 9, 8, 4, 7, 4, 2, 1, 0), # 69 (14, 13, 15, 22, 10, 7, 3, 3, 5, 4, 3, 0, 0, 24, 25, 16, 10, 16, 5, 6, 3, 5, 9, 0, 1, 0), # 70 (16, 16, 20, 19, 17, 7, 6, 6, 6, 2, 2, 2, 0, 8, 15, 7, 9, 15, 5, 6, 4, 7, 5, 3, 2, 0), # 71 (19, 10, 18, 20, 19, 1, 8, 4, 7, 2, 0, 0, 0, 22, 15, 19, 14, 9, 7, 2, 3, 8, 4, 4, 0, 0), # 72 (25, 15, 12, 16, 11, 5, 10, 6, 11, 0, 3, 2, 0, 22, 11, 10, 6, 13, 5, 14, 7, 10, 9, 2, 1, 0), # 73 (21, 14, 12, 15, 13, 8, 8, 7, 9, 4, 0, 0, 0, 22, 17, 11, 9, 18, 7, 10, 3, 6, 6, 5, 0, 0), # 74 (23, 26, 13, 20, 11, 14, 6, 4, 7, 5, 1, 2, 0, 18, 8, 10, 11, 14, 7, 8, 4, 7, 7, 1, 2, 0), # 75 (16, 15, 19, 21, 17, 10, 7, 11, 2, 1, 2, 1, 0, 12, 13, 17, 16, 12, 3, 5, 5, 11, 2, 4, 1, 0), # 76 (13, 21, 19, 16, 12, 6, 4, 4, 9, 3, 4, 0, 0, 18, 15, 19, 12, 12, 5, 8, 3, 7, 3, 3, 1, 0), # 77 (23, 12, 13, 20, 16, 9, 7, 4, 9, 2, 3, 2, 0, 14, 22, 16, 11, 11, 3, 7, 4, 6, 1, 2, 0, 0), # 78 (19, 14, 12, 17, 22, 9, 8, 6, 7, 4, 2, 4, 0, 26, 18, 14, 7, 13, 10, 3, 8, 9, 8, 1, 1, 0), # 79 (22, 11, 20, 13, 16, 6, 4, 3, 5, 6, 1, 1, 0, 29, 13, 10, 10, 14, 4, 4, 4, 5, 4, 2, 0, 0), # 80 (17, 17, 10, 18, 11, 6, 10, 5, 2, 2, 1, 0, 0, 17, 15, 17, 9, 20, 8, 3, 5, 9, 5, 8, 1, 0), # 81 (14, 11, 12, 21, 11, 6, 11, 5, 6, 2, 2, 6, 0, 16, 16, 9, 17, 16, 6, 11, 3, 5, 2, 3, 1, 0), # 82 (14, 12, 15, 22, 14, 3, 6, 4, 3, 3, 2, 2, 0, 22, 12, 14, 9, 14, 6, 4, 4, 6, 5, 3, 1, 0), # 83 (18, 14, 17, 17, 10, 7, 5, 9, 9, 1, 0, 4, 0, 21, 14, 12, 8, 17, 8, 9, 5, 4, 7, 2, 3, 0), # 84 (14, 11, 12, 21, 19, 4, 1, 7, 5, 1, 4, 0, 0, 18, 13, 11, 3, 18, 8, 10, 7, 11, 5, 2, 1, 0), # 85 (16, 10, 17, 15, 13, 1, 4, 2, 12, 4, 2, 4, 0, 13, 10, 13, 8, 24, 8, 5, 4, 7, 2, 6, 1, 0), # 86 (17, 18, 15, 8, 13, 8, 17, 3, 6, 2, 0, 2, 0, 23, 14, 11, 9, 8, 11, 9, 8, 9, 3, 4, 1, 0), # 87 (18, 14, 13, 15, 11, 9, 6, 4, 8, 4, 4, 2, 0, 18, 12, 6, 12, 18, 9, 5, 4, 9, 5, 4, 1, 0), # 88 (20, 18, 13, 14, 13, 6, 7, 2, 2, 2, 2, 0, 0, 14, 10, 7, 9, 14, 3, 4, 6, 6, 3, 4, 0, 0), # 89 (21, 16, 16, 15, 6, 6, 5, 4, 8, 5, 2, 2, 0, 24, 14, 7, 10, 13, 3, 8, 4, 6, 9, 3, 2, 0), # 90 (26, 14, 9, 14, 6, 4, 10, 8, 4, 2, 0, 0, 0, 14, 15, 11, 6, 16, 6, 3, 3, 7, 5, 0, 1, 0), # 91 (13, 15, 12, 20, 13, 5, 3, 7, 4, 5, 1, 0, 0, 18, 17, 12, 7, 8, 13, 5, 5, 5, 5, 0, 2, 0), # 92 (25, 10, 14, 15, 17, 6, 2, 6, 9, 1, 5, 2, 0, 14, 11, 9, 8, 21, 5, 9, 5, 9, 6, 3, 3, 0), # 93 (19, 15, 15, 19, 14, 4, 8, 6, 5, 3, 1, 1, 0, 19, 17, 13, 8, 15, 7, 7, 9, 3, 3, 1, 0, 0), # 94 (17, 11, 8, 21, 15, 4, 9, 2, 10, 1, 1, 2, 0, 12, 16, 5, 7, 14, 7, 7, 4, 6, 5, 1, 2, 0), # 95 (20, 9, 9, 13, 11, 7, 6, 5, 5, 1, 4, 1, 0, 21, 13, 15, 5, 13, 7, 4, 8, 3, 5, 3, 1, 0), # 96 (20, 16, 15, 13, 17, 6, 6, 7, 6, 6, 4, 1, 0, 23, 11, 11, 10, 16, 7, 3, 5, 8, 6, 3, 2, 0), # 97 (10, 14, 6, 13, 13, 9, 9, 3, 8, 3, 3, 2, 0, 22, 9, 9, 11, 10, 12, 2, 5, 7, 2, 3, 0, 0), # 98 (18, 15, 14, 15, 9, 3, 7, 7, 8, 4, 5, 2, 0, 18, 13, 11, 13, 10, 8, 6, 3, 5, 3, 4, 2, 0), # 99 (24, 14, 14, 24, 7, 7, 6, 3, 6, 2, 4, 2, 0, 21, 14, 20, 10, 17, 4, 2, 5, 12, 5, 2, 1, 0), # 100 (22, 11, 17, 10, 12, 4, 4, 3, 8, 4, 2, 0, 0, 14, 13, 12, 9, 15, 10, 6, 3, 7, 9, 2, 0, 0), # 101 (17, 18, 10, 14, 15, 5, 6, 4, 9, 0, 2, 1, 0, 16, 13, 8, 5, 11, 11, 3, 5, 7, 2, 4, 2, 0), # 102 (19, 11, 19, 12, 12, 7, 7, 5, 6, 3, 3, 1, 0, 16, 11, 17, 7, 11, 10, 6, 4, 7, 6, 3, 1, 0), # 103 (12, 17, 13, 23, 13, 6, 6, 4, 6, 10, 1, 1, 0, 21, 14, 16, 9, 17, 8, 7, 8, 5, 4, 1, 1, 0), # 104 (18, 12, 18, 20, 16, 7, 4, 7, 10, 2, 1, 0, 0, 23, 13, 12, 12, 14, 7, 5, 6, 8, 3, 2, 1, 0), # 105 (12, 12, 14, 16, 18, 6, 5, 5, 6, 4, 2, 1, 0, 25, 19, 12, 5, 11, 6, 4, 3, 12, 5, 3, 3, 0), # 106 (15, 8, 20, 13, 12, 11, 10, 1, 6, 1, 2, 0, 0, 11, 18, 15, 12, 12, 8, 5, 4, 7, 3, 3, 0, 0), # 107 (17, 18, 16, 13, 6, 7, 10, 4, 9, 2, 6, 1, 0, 11, 16, 10, 5, 15, 6, 8, 7, 5, 6, 2, 1, 0), # 108 (18, 14, 12, 14, 9, 3, 4, 5, 5, 3, 4, 3, 0, 17, 13, 8, 9, 15, 4, 4, 7, 6, 4, 2, 1, 0), # 109 (11, 12, 12, 18, 18, 8, 7, 0, 5, 4, 0, 2, 0, 16, 13, 14, 8, 15, 5, 5, 4, 7, 3, 0, 0, 0), # 110 (20, 9, 20, 15, 15, 6, 8, 6, 7, 1, 4, 2, 0, 20, 14, 7, 3, 12, 6, 4, 2, 2, 3, 1, 0, 0), # 111 (18, 7, 18, 13, 18, 7, 8, 1, 6, 2, 0, 2, 0, 19, 13, 10, 4, 13, 7, 4, 6, 4, 5, 6, 1, 0), # 112 (20, 16, 17, 19, 12, 7, 5, 6, 11, 1, 3, 0, 0, 18, 10, 8, 3, 14, 4, 5, 4, 2, 6, 5, 0, 0), # 113 (23, 11, 15, 17, 6, 8, 3, 6, 6, 1, 0, 1, 0, 24, 8, 9, 6, 14, 4, 7, 6, 3, 5, 1, 0, 0), # 114 (16, 16, 16, 18, 11, 4, 4, 3, 6, 5, 2, 0, 0, 14, 11, 7, 3, 18, 5, 4, 4, 12, 3, 5, 0, 0), # 115 (14, 15, 10, 18, 10, 3, 6, 3, 6, 2, 3, 1, 0, 19, 15, 9, 11, 9, 6, 4, 4, 6, 7, 2, 0, 0), # 116 (18, 14, 15, 19, 9, 3, 4, 3, 7, 3, 2, 1, 0, 24, 15, 8, 3, 22, 6, 2, 6, 8, 3, 3, 1, 0), # 117 (8, 11, 8, 9, 16, 7, 6, 7, 4, 1, 3, 1, 0, 18, 8, 8, 7, 13, 3, 5, 3, 4, 4, 2, 1, 0), # 118 (14, 8, 10, 11, 10, 7, 9, 6, 7, 5, 2, 0, 0, 22, 12, 10, 8, 11, 6, 2, 3, 10, 5, 6, 1, 0), # 119 (13, 9, 14, 15, 11, 12, 10, 4, 7, 4, 3, 1, 0, 16, 16, 12, 7, 17, 9, 4, 2, 4, 4, 2, 1, 0), # 120 (14, 17, 8, 19, 13, 1, 3, 2, 6, 2, 4, 0, 0, 17, 17, 12, 4, 14, 6, 6, 1, 9, 3, 0, 3, 0), # 121 (19, 14, 16, 16, 11, 8, 6, 4, 5, 1, 0, 0, 0, 19, 14, 13, 5, 13, 5, 2, 4, 2, 4, 7, 1, 0), # 122 (11, 13, 21, 17, 14, 3, 4, 5, 7, 2, 0, 3, 0, 12, 17, 16, 9, 15, 10, 7, 2, 10, 6, 2, 0, 0), # 123 (15, 16, 8, 19, 7, 4, 0, 8, 6, 2, 2, 3, 0, 20, 11, 9, 6, 14, 4, 4, 5, 3, 6, 3, 1, 0), # 124 (17, 12, 15, 21, 9, 11, 5, 4, 5, 2, 3, 1, 0, 24, 14, 10, 9, 14, 3, 6, 5, 9, 5, 2, 1, 0), # 125 (20, 9, 19, 13, 18, 3, 3, 6, 5, 1, 0, 3, 0, 11, 11, 9, 3, 8, 8, 5, 3, 7, 6, 3, 0, 0), # 126 (21, 12, 7, 18, 8, 7, 3, 4, 6, 0, 2, 1, 0, 10, 8, 12, 9, 6, 7, 4, 5, 11, 6, 3, 1, 0), # 127 (18, 21, 11, 13, 15, 0, 9, 5, 8, 3, 0, 4, 0, 21, 13, 5, 7, 10, 4, 7, 2, 2, 4, 4, 0, 0), # 128 (20, 12, 11, 17, 9, 3, 8, 5, 4, 4, 2, 0, 0, 18, 12, 6, 8, 20, 7, 5, 5, 8, 5, 2, 3, 0), # 129 (11, 7, 11, 16, 18, 8, 8, 5, 4, 4, 1, 2, 0, 16, 9, 7, 8, 13, 5, 3, 5, 12, 3, 6, 1, 0), # 130 (13, 11, 6, 8, 10, 2, 6, 4, 8, 2, 0, 3, 0, 14, 6, 14, 11, 9, 7, 7, 5, 5, 2, 7, 1, 0), # 131 (10, 13, 9, 11, 12, 7, 9, 5, 9, 4, 1, 1, 0, 25, 13, 11, 11, 13, 3, 4, 3, 7, 3, 1, 0, 0), # 132 (10, 13, 9, 13, 8, 2, 3, 3, 4, 4, 4, 3, 0, 27, 13, 11, 11, 14, 6, 5, 3, 11, 2, 2, 0, 0), # 133 (22, 8, 17, 14, 13, 3, 9, 5, 9, 7, 4, 2, 0, 27, 13, 11, 9, 16, 5, 8, 1, 6, 1, 5, 2, 0), # 134 (16, 10, 11, 11, 15, 4, 4, 4, 4, 4, 1, 0, 0, 14, 15, 11, 4, 16, 11, 3, 5, 8, 4, 5, 4, 0), # 135 (22, 16, 14, 10, 13, 7, 3, 2, 4, 0, 1, 1, 0, 12, 15, 9, 9, 12, 9, 5, 3, 12, 5, 0, 0, 0), # 136 (17, 13, 10, 15, 14, 5, 3, 5, 9, 0, 2, 1, 0, 12, 16, 7, 9, 13, 3, 4, 4, 6, 3, 0, 0, 0), # 137 (21, 17, 13, 18, 14, 5, 6, 6, 6, 2, 3, 1, 0, 13, 14, 10, 8, 9, 3, 4, 2, 3, 7, 4, 1, 0), # 138 (13, 9, 17, 15, 15, 2, 7, 2, 6, 3, 1, 0, 0, 13, 11, 9, 8, 7, 5, 4, 2, 8, 3, 5, 2, 0), # 139 (18, 6, 11, 14, 7, 5, 8, 3, 7, 3, 4, 1, 0, 13, 13, 9, 8, 9, 9, 2, 3, 1, 4, 2, 1, 0), # 140 (16, 9, 9, 17, 8, 4, 7, 6, 5, 4, 2, 0, 0, 11, 12, 5, 8, 11, 6, 3, 5, 7, 2, 3, 0, 0), # 141 (16, 11, 5, 14, 15, 6, 5, 5, 7, 3, 3, 2, 0, 15, 20, 8, 5, 10, 7, 7, 1, 5, 9, 4, 0, 0), # 142 (16, 12, 20, 17, 11, 8, 8, 5, 7, 6, 2, 0, 0, 23, 13, 12, 5, 11, 8, 4, 4, 7, 6, 4, 0, 0), # 143 (18, 11, 15, 11, 12, 4, 5, 3, 11, 5, 3, 1, 0, 18, 9, 9, 8, 8, 8, 3, 5, 3, 4, 3, 0, 0), # 144 (17, 12, 16, 11, 9, 6, 6, 5, 5, 3, 1, 2, 0, 18, 14, 12, 6, 14, 8, 7, 5, 10, 6, 9, 0, 0), # 145 (21, 8, 13, 12, 16, 7, 4, 1, 7, 1, 0, 1, 0, 19, 9, 8, 7, 15, 13, 7, 4, 2, 3, 1, 2, 0), # 146 (15, 8, 15, 10, 15, 2, 5, 3, 9, 5, 2, 2, 0, 11, 10, 9, 5, 7, 10, 4, 2, 6, 3, 1, 1, 0), # 147 (17, 11, 9, 12, 14, 6, 4, 3, 10, 1, 0, 0, 0, 16, 6, 8, 9, 10, 7, 5, 2, 3, 2, 2, 0, 0), # 148 (18, 7, 16, 13, 10, 9, 2, 5, 9, 3, 0, 1, 0, 9, 18, 11, 7, 13, 5, 5, 2, 12, 7, 3, 2, 0), # 149 (13, 14, 10, 10, 9, 8, 1, 3, 3, 1, 1, 1, 0, 14, 12, 7, 8, 12, 7, 2, 5, 5, 6, 4, 1, 0), # 150 (17, 7, 19, 16, 10, 6, 4, 3, 3, 3, 2, 1, 0, 14, 7, 7, 9, 8, 4, 1, 2, 9, 4, 2, 0, 0), # 151 (12, 11, 14, 10, 12, 5, 7, 4, 9, 3, 2, 1, 0, 15, 6, 8, 7, 11, 5, 4, 4, 4, 2, 4, 0, 0), # 152 (17, 8, 17, 20, 15, 2, 4, 2, 6, 2, 1, 0, 0, 19, 10, 6, 9, 15, 3, 3, 6, 9, 6, 3, 1, 0), # 153 (19, 16, 14, 17, 12, 7, 6, 5, 4, 1, 2, 0, 0, 12, 18, 11, 7, 16, 5, 0, 4, 4, 3, 5, 1, 0), # 154 (6, 17, 18, 9, 5, 8, 2, 2, 4, 2, 0, 2, 0, 18, 8, 5, 3, 15, 4, 4, 6, 7, 2, 4, 0, 0), # 155 (10, 10, 12, 11, 6, 5, 2, 5, 6, 0, 3, 1, 0, 13, 15, 7, 6, 15, 7, 3, 6, 8, 4, 2, 2, 0), # 156 (15, 8, 7, 10, 16, 8, 2, 5, 5, 2, 1, 0, 0, 19, 11, 8, 4, 11, 8, 2, 2, 3, 3, 4, 0, 0), # 157 (9, 7, 7, 11, 11, 7, 6, 1, 5, 1, 0, 1, 0, 17, 14, 7, 4, 8, 3, 2, 5, 9, 4, 1, 0, 0), # 158 (10, 8, 12, 12, 11, 8, 6, 5, 7, 1, 0, 1, 0, 12, 10, 4, 6, 11, 4, 1, 0, 2, 0, 2, 1, 0), # 159 (14, 6, 10, 8, 4, 4, 3, 6, 3, 0, 1, 0, 0, 22, 10, 3, 6, 9, 3, 3, 5, 8, 5, 1, 0, 0), # 160 (5, 13, 11, 11, 8, 3, 8, 2, 7, 3, 1, 1, 0, 15, 11, 7, 11, 10, 5, 7, 2, 7, 6, 1, 2, 0), # 161 (12, 9, 15, 7, 15, 9, 4, 6, 5, 1, 1, 1, 0, 21, 7, 9, 6, 12, 4, 10, 3, 11, 2, 4, 1, 0), # 162 (15, 7, 12, 12, 7, 8, 7, 2, 3, 0, 2, 3, 0, 10, 9, 11, 4, 7, 4, 5, 5, 1, 4, 3, 2, 0), # 163 (12, 3, 16, 9, 11, 4, 2, 3, 5, 0, 0, 3, 0, 11, 7, 7, 8, 6, 3, 2, 3, 4, 2, 5, 0, 0), # 164 (11, 12, 7, 12, 14, 4, 5, 3, 7, 3, 1, 1, 0, 7, 11, 8, 3, 10, 6, 2, 2, 8, 5, 1, 3, 0), # 165 (13, 10, 12, 12, 14, 4, 4, 4, 9, 0, 2, 1, 0, 14, 17, 15, 3, 4, 3, 9, 3, 6, 4, 2, 1, 0), # 166 (22, 6, 5, 6, 12, 4, 2, 5, 8, 1, 0, 0, 0, 3, 8, 7, 3, 10, 4, 2, 4, 5, 2, 1, 0, 0), # 167 (11, 9, 13, 10, 10, 5, 5, 3, 6, 3, 1, 0, 0, 11, 16, 9, 4, 7, 9, 3, 1, 7, 4, 3, 2, 0), # 168 (1, 11, 15, 13, 12, 4, 5, 4, 6, 0, 0, 0, 0, 14, 6, 5, 6, 15, 3, 4, 9, 8, 4, 1, 0, 0), # 169 (12, 7, 9, 9, 10, 10, 3, 1, 6, 3, 0, 1, 0, 5, 8, 2, 5, 6, 6, 3, 3, 3, 3, 4, 0, 0), # 170 (9, 9, 9, 7, 17, 2, 4, 5, 4, 0, 0, 0, 0, 14, 6, 3, 5, 9, 6, 4, 1, 3, 1, 3, 3, 0), # 171 (9, 8, 10, 12, 5, 2, 4, 4, 5, 1, 2, 0, 0, 9, 7, 1, 4, 12, 7, 2, 2, 2, 4, 2, 0, 0), # 172 (13, 7, 9, 16, 6, 5, 0, 1, 3, 1, 0, 0, 0, 10, 7, 3, 7, 8, 6, 2, 2, 1, 3, 2, 0, 0), # 173 (6, 2, 14, 5, 9, 2, 1, 2, 3, 1, 1, 3, 0, 16, 9, 5, 8, 6, 7, 1, 1, 1, 5, 0, 1, 0), # 174 (7, 6, 10, 7, 6, 2, 5, 3, 3, 1, 0, 1, 0, 7, 8, 5, 3, 5, 3, 2, 1, 5, 1, 0, 0, 0), # 175 (6, 4, 7, 4, 6, 4, 2, 2, 1, 2, 0, 1, 0, 4, 9, 5, 4, 12, 2, 7, 3, 4, 2, 2, 0, 0), # 176 (6, 5, 6, 7, 1, 0, 3, 4, 3, 1, 1, 1, 0, 9, 5, 4, 7, 3, 2, 2, 1, 2, 1, 2, 3, 0), # 177 (6, 7, 6, 4, 4, 3, 1, 4, 4, 4, 0, 1, 0, 10, 4, 3, 5, 7, 2, 2, 1, 4, 5, 0, 1, 0), # 178 (0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0), # 179 ) station_arriving_intensity = ( (9.037558041069182, 9.9455194074477, 9.380309813302512, 11.18640199295418, 9.998434093697302, 5.64957887766721, 7.462864107673047, 8.375717111362961, 10.962178311902413, 7.124427027940266, 7.569477294994085, 8.816247140951113, 9.150984382641052), # 0 (9.637788873635953, 10.602109249460566, 9.999623864394273, 11.925259655897909, 10.660482607453627, 6.0227704512766005, 7.955044094274649, 8.927124701230275, 11.686041587399236, 7.59416524609887, 8.069573044721038, 9.398189989465838, 9.755624965391739), # 1 (10.236101416163518, 11.256093307603763, 10.616476113985344, 12.66117786839663, 11.320133352749538, 6.3944732061224006, 8.445273314329269, 9.476325446227955, 12.407016252379588, 8.062044795036982, 8.567681667797364, 9.9778187736955, 10.357856690777442), # 2 (10.830164027663812, 11.904876903485604, 11.228419564775738, 13.391237533557733, 11.974791016803424, 6.763213120653203, 8.93160655496632, 10.021142083490112, 13.122243289657968, 8.526208857167125, 9.061827141289289, 10.55283423287483, 10.955291051257605), # 3 (11.417645067148767, 12.545865358714394, 11.833007219465467, 14.112519554488625, 12.621860286833686, 7.127516173317602, 9.412098603315226, 10.559397350150848, 13.828863682048873, 8.984800614901822, 9.550033442263036, 11.120937106238575, 11.54553953929167), # 4 (11.996212893630318, 13.176463994898459, 12.427792080754532, 14.822104834296708, 13.258745850058704, 7.485908342564186, 9.884804246505404, 11.088913983344266, 14.524018412366805, 9.435963250653593, 10.030324547784838, 11.679828133021466, 12.126213647339089), # 5 (12.5635358661204, 13.794078133646101, 13.010327151342958, 15.517074276089375, 13.882852393696878, 7.836915606841555, 10.347778271666273, 11.60751472020448, 15.204848463426268, 9.877839946834966, 10.500724434920908, 12.227208052458254, 12.694924867859292), # 6 (13.117282343630944, 14.396113096565637, 13.578165433930742, 16.194508782974033, 14.491584604966597, 8.179063944598298, 10.799075465927253, 12.113022297865593, 15.868494818041759, 10.308573885858456, 10.959257080737483, 12.760777603783673, 13.249284693311735), # 7 (13.655120685173882, 14.979974205265378, 14.128859931217914, 16.85148925805807, 15.082347171086255, 8.510879334283002, 11.236750616417757, 12.603259453461705, 16.512098459027772, 10.726308250136594, 11.403946462300778, 13.278237526232465, 13.786904616155851), # 8 (14.174719249761154, 15.543066781353641, 14.659963645904467, 17.485096604448906, 15.652544779274237, 8.830887754344271, 11.658858510267216, 13.076048924126933, 17.132800369198815, 11.129186222081895, 11.83281655667702, 13.777288559039365, 14.305396128851092), # 9 (14.673746396404677, 16.082796146438728, 15.169029580690424, 18.092411725253918, 16.199582116748942, 9.137615183230693, 12.063453934605038, 13.52921344699538, 17.727741531369386, 11.515350984106886, 12.243891340932432, 14.255631441439114, 14.802370723856898), # 10 (15.149870484116411, 16.596567622128973, 15.653610738275788, 18.670515523580516, 16.72086387072876, 9.429587599390864, 12.44859167656065, 13.960575759201147, 18.294062928353988, 11.882945718624095, 12.635194792133248, 14.710966912666459, 15.2754398936327), # 11 (15.600759871908263, 17.081786530032655, 16.111260121360573, 19.216488902536103, 17.21379472843208, 9.705330981273365, 12.812326523263462, 14.367958597878339, 18.82890554296712, 12.23011360804603, 13.004750887345683, 15.140995711956123, 15.722215130637963), # 12 (16.02408291879218, 17.535858191758116, 16.539530732644792, 19.727412765228078, 17.675779377077284, 9.963371307326803, 13.152713261842901, 14.749184700161067, 19.329410358023278, 12.554997834785228, 13.350583603635965, 15.543418578542857, 16.140307927332124), # 13 (16.41750798378009, 17.95618792891366, 16.935975574828465, 20.20036801476383, 18.10422250388278, 10.202234555999762, 13.46780667942839, 15.102076803183444, 19.79271835633696, 12.855741581254202, 13.670716918070312, 15.915936251661408, 16.527329776174614), # 14 (16.77870342588394, 18.34018106310759, 17.298147650611575, 20.632435554250776, 18.496528796066954, 10.420446705740842, 13.755661563149326, 15.424457644079562, 20.215970520722674, 13.130488029865482, 13.963174807714955, 16.256249470546507, 16.880892169624886), # 15 (17.10533760411564, 18.685242915948237, 17.623599962694165, 21.02069628679629, 18.8501029408482, 10.616533734998628, 14.014332700135158, 15.71414995998353, 20.596307833994917, 13.377380363031593, 14.225981249636122, 16.56205897443289, 17.198606600142384), # 16 (17.395078877487137, 18.988778809043904, 17.909885513776235, 21.362231115507804, 19.162349625444907, 10.789021622221714, 14.24187487751528, 15.968976488029472, 20.930871278968173, 13.594561763165041, 14.457160220900038, 16.8310655025553, 17.47808456018655), # 17 (17.645595605010367, 19.248194064002895, 18.154557306557784, 21.654120943492703, 19.43067353707546, 10.936436345858706, 14.436342882419133, 16.18675996535147, 21.216801838456973, 13.780175412678366, 14.654735698572916, 17.060969794148487, 17.716937542216822), # 18 (17.85455614569726, 19.46089400243354, 18.355168343738843, 21.893446673858367, 19.65247936295826, 11.057303884358175, 14.59579150197611, 16.36532312908364, 21.4512404952758, 13.93236449398409, 14.81673165972098, 17.249472588447173, 17.912777038692653), # 19 (18.01962885855975, 19.624283945944132, 18.509271628019405, 22.077289209712237, 19.8251717903117, 11.150150216168733, 14.718275523315652, 16.50248871636009, 21.631328232239156, 14.049272189494726, 14.94117208141047, 17.394274624686105, 18.063214542073485), # 20 (18.13848210260976, 19.735769216143005, 18.614420162099496, 22.202729454161673, 19.94615550635416, 11.213501319738963, 14.801849733567167, 16.596079464314922, 21.754206032161537, 14.1290416816228, 15.026080940707608, 17.49307664210003, 18.165861544818743), # 21 (18.20878423685924, 19.792755134638462, 18.668166948679115, 22.266848310314106, 20.012835198304035, 11.245883173517461, 14.844568919860079, 16.643918110082247, 21.81701487785745, 14.169816152780836, 15.069482214678613, 17.54357937992368, 18.218329539387888), # 22 (18.23470805401675, 19.799502469135803, 18.674861728395065, 22.274875462962967, 20.029917700858675, 11.25, 14.84964720406681, 16.64908888888889, 21.824867222222224, 14.17462609053498, 15.074924466891131, 17.549815637860082, 18.225), # 23 (18.253822343461476, 19.79556666666667, 18.673766666666666, 22.273887500000004, 20.039593704506736, 11.25, 14.8468568627451, 16.6419, 21.823815, 14.17167111111111, 15.074324242424245, 17.548355555555556, 18.225), # 24 (18.272533014380844, 19.78780864197531, 18.671604938271606, 22.27193287037037, 20.049056902070106, 11.25, 14.841358024691358, 16.62777777777778, 21.82173611111111, 14.16585390946502, 15.073134118967452, 17.545473251028806, 18.225), # 25 (18.290838634286462, 19.776346913580248, 18.668406172839507, 22.269033796296295, 20.05830696315799, 11.25, 14.833236092955698, 16.60698888888889, 21.81865722222222, 14.157271275720165, 15.07136487093154, 17.54120823045268, 18.225), # 26 (18.308737770689945, 19.7613, 18.6642, 22.265212499999997, 20.067343557379587, 11.25, 14.822576470588237, 16.579800000000002, 21.814605, 14.146019999999998, 15.069027272727272, 17.535600000000002, 18.225), # 27 (18.3262289911029, 19.742786419753084, 18.659016049382718, 22.260491203703705, 20.076166354344124, 11.25, 14.809464560639071, 16.54647777777778, 21.809606111111112, 14.132196872427985, 15.066132098765433, 17.528688065843625, 18.225), # 28 (18.34331086303695, 19.720924691358025, 18.652883950617287, 22.25489212962963, 20.084775023660796, 11.25, 14.793985766158318, 16.507288888888887, 21.803687222222223, 14.115898683127574, 15.06269012345679, 17.520511934156378, 18.225), # 29 (18.359981954003697, 19.695833333333333, 18.645833333333332, 22.2484375, 20.093169234938827, 11.25, 14.776225490196078, 16.4625, 21.796875, 14.097222222222223, 15.058712121212121, 17.51111111111111, 18.225), # 30 (18.376240831514746, 19.667630864197534, 18.637893827160497, 22.241149537037035, 20.101348657787415, 11.25, 14.756269135802471, 16.412377777777778, 21.78919611111111, 14.07626427983539, 15.054208866442199, 17.500525102880662, 18.225), # 31 (18.392086063081717, 19.636435802469137, 18.629095061728393, 22.233050462962964, 20.10931296181577, 11.25, 14.734202106027599, 16.357188888888892, 21.780677222222224, 14.053121646090535, 15.0491911335578, 17.48879341563786, 18.225), # 32 (18.407516216216216, 19.602366666666665, 18.619466666666668, 22.2241625, 20.117061816633115, 11.25, 14.710109803921569, 16.2972, 21.771345, 14.027891111111112, 15.043669696969696, 17.475955555555554, 18.225), # 33 (18.422529858429858, 19.56554197530864, 18.609038271604938, 22.21450787037037, 20.12459489184864, 11.25, 14.684077632534496, 16.232677777777777, 21.761226111111114, 14.000669465020577, 15.037655331088663, 17.462051028806584, 18.225), # 34 (18.437125557234253, 19.52608024691358, 18.597839506172843, 22.204108796296293, 20.131911857071568, 11.25, 14.656190994916486, 16.163888888888888, 21.750347222222224, 13.971553497942386, 15.031158810325476, 17.447119341563788, 18.225), # 35 (18.45130188014101, 19.484099999999998, 18.5859, 22.192987499999997, 20.139012381911105, 11.25, 14.626535294117646, 16.0911, 21.738735, 13.94064, 15.024190909090908, 17.431200000000004, 18.225), # 36 (18.46505739466174, 19.43971975308642, 18.57324938271605, 22.181166203703704, 20.145896135976457, 11.25, 14.595195933188089, 16.014577777777777, 21.72641611111111, 13.908025761316873, 15.016762401795738, 17.414332510288066, 18.225), # 37 (18.47839066830806, 19.39305802469136, 18.559917283950615, 22.168667129629632, 20.152562788876843, 11.25, 14.562258315177923, 15.934588888888891, 21.713417222222223, 13.873807572016462, 15.00888406285073, 17.396556378600824, 18.225), # 38 (18.491300268591576, 19.34423333333333, 18.545933333333334, 22.1555125, 20.159012010221467, 11.25, 14.527807843137257, 15.8514, 21.699765000000003, 13.838082222222223, 15.000566666666668, 17.37791111111111, 18.225), # 39 (18.503784763023894, 19.293364197530863, 18.531327160493827, 22.14172453703704, 20.165243469619533, 11.25, 14.491929920116196, 15.765277777777781, 21.685486111111114, 13.800946502057615, 14.99182098765432, 17.358436213991773, 18.225), # 40 (18.51584271911663, 19.24056913580247, 18.51612839506173, 22.127325462962965, 20.171256836680264, 11.25, 14.454709949164851, 15.67648888888889, 21.67060722222222, 13.76249720164609, 14.982657800224468, 17.338171193415636, 18.225), # 41 (18.527472704381402, 19.18596666666667, 18.500366666666668, 22.112337500000002, 20.177051781012857, 11.25, 14.416233333333333, 15.5853, 21.655155000000004, 13.72283111111111, 14.97308787878788, 17.317155555555555, 18.225), # 42 (18.538673286329807, 19.12967530864198, 18.484071604938272, 22.096782870370372, 20.182627972226527, 11.25, 14.37658547567175, 15.491977777777779, 21.63915611111111, 13.682045020576133, 14.96312199775533, 17.295428806584365, 18.225), # 43 (18.54944303247347, 19.071813580246914, 18.467272839506176, 22.0806837962963, 20.18798507993048, 11.25, 14.335851779230211, 15.396788888888892, 21.62263722222222, 13.64023572016461, 14.952770931537597, 17.2730304526749, 18.225), # 44 (18.55978051032399, 19.0125, 18.45, 22.064062500000002, 20.193122773733933, 11.25, 14.294117647058824, 15.3, 21.605625, 13.597500000000002, 14.942045454545454, 17.25, 18.225), # 45 (18.569684287392985, 18.951853086419753, 18.432282716049382, 22.046941203703703, 20.198040723246088, 11.25, 14.251468482207699, 15.20187777777778, 21.588146111111108, 13.553934650205761, 14.930956341189674, 17.226376954732512, 18.225), # 46 (18.579152931192063, 18.88999135802469, 18.41415061728395, 22.02934212962963, 20.202738598076163, 11.25, 14.207989687726945, 15.102688888888888, 21.570227222222226, 13.50963646090535, 14.919514365881032, 17.20220082304527, 18.225), # 47 (18.588185009232834, 18.827033333333333, 18.395633333333333, 22.0112875, 20.20721606783336, 11.25, 14.163766666666668, 15.0027, 21.551895000000002, 13.464702222222222, 14.907730303030302, 17.177511111111112, 18.225), # 48 (18.596779089026917, 18.763097530864197, 18.376760493827163, 21.99279953703704, 20.211472802126895, 11.25, 14.118884822076978, 14.902177777777778, 21.53317611111111, 13.419228724279836, 14.895614927048262, 17.152347325102884, 18.225), # 49 (18.604933738085908, 18.698302469135808, 18.357561728395066, 21.973900462962963, 20.21550847056597, 11.25, 14.073429557007989, 14.801388888888889, 21.514097222222222, 13.373312757201646, 14.883179012345678, 17.126748971193418, 18.225), # 50 (18.61264752392144, 18.63276666666667, 18.338066666666666, 21.9546125, 20.219322742759797, 11.25, 14.027486274509805, 14.7006, 21.494685000000004, 13.32705111111111, 14.870433333333335, 17.10075555555556, 18.225), # 51 (18.619919014045102, 18.56660864197531, 18.318304938271606, 21.934957870370372, 20.222915288317584, 11.25, 13.981140377632535, 14.600077777777777, 21.47496611111111, 13.280540576131688, 14.857388664421999, 17.074406584362144, 18.225), # 52 (18.626746775968517, 18.49994691358025, 18.29830617283951, 21.914958796296297, 20.226285776848552, 11.25, 13.93447726942629, 14.50008888888889, 21.454967222222226, 13.233877942386831, 14.844055780022448, 17.04774156378601, 18.225), # 53 (18.63312937720329, 18.432900000000004, 18.2781, 21.8946375, 20.229433877961906, 11.25, 13.887582352941177, 14.400899999999998, 21.434715, 13.18716, 14.830445454545453, 17.0208, 18.225), # 54 (18.63906538526104, 18.365586419753086, 18.25771604938272, 21.874016203703704, 20.232359261266843, 11.25, 13.840541031227307, 14.302777777777777, 21.414236111111112, 13.140483539094651, 14.816568462401795, 16.993621399176956, 18.225), # 55 (18.64455336765337, 18.298124691358026, 18.237183950617286, 21.85311712962963, 20.235061596372585, 11.25, 13.793438707334786, 14.20598888888889, 21.393557222222224, 13.09394534979424, 14.802435578002246, 16.96624526748971, 18.225), # 56 (18.649591891891887, 18.230633333333333, 18.216533333333334, 21.8319625, 20.23754055288834, 11.25, 13.746360784313726, 14.110800000000001, 21.372705, 13.047642222222223, 14.788057575757577, 16.93871111111111, 18.225), # 57 (18.654179525488225, 18.163230864197534, 18.195793827160493, 21.810574537037034, 20.239795800423316, 11.25, 13.699392665214235, 14.017477777777778, 21.35170611111111, 13.001670946502058, 14.773445230078567, 16.91105843621399, 18.225), # 58 (18.658314835953966, 18.096035802469135, 18.174995061728396, 21.788975462962963, 20.24182700858672, 11.25, 13.65261975308642, 13.92628888888889, 21.330587222222224, 12.956128312757203, 14.758609315375981, 16.883326748971193, 18.225), # 59 (18.661996390800738, 18.02916666666667, 18.154166666666665, 21.767187500000002, 20.243633846987766, 11.25, 13.606127450980392, 13.8375, 21.309375000000003, 12.911111111111111, 14.743560606060607, 16.855555555555558, 18.225), # 60 (18.665222757540146, 17.962741975308646, 18.13333827160494, 21.74523287037037, 20.24521598523566, 11.25, 13.560001161946259, 13.751377777777778, 21.288096111111113, 12.866716131687244, 14.728309876543209, 16.82778436213992, 18.225), # 61 (18.66799250368381, 17.89688024691358, 18.112539506172844, 21.7231337962963, 20.246573092939624, 11.25, 13.514326289034132, 13.66818888888889, 21.266777222222224, 12.823040164609054, 14.712867901234567, 16.80005267489712, 18.225), # 62 (18.670304196743327, 17.831699999999998, 18.0918, 21.7009125, 20.24770483970884, 11.25, 13.469188235294117, 13.5882, 21.245445, 12.78018, 14.697245454545456, 16.7724, 18.225), # 63 (18.672156404230314, 17.767319753086422, 18.071149382716047, 21.678591203703704, 20.24861089515255, 11.25, 13.424672403776325, 13.511677777777779, 21.22412611111111, 12.738232427983538, 14.681453310886642, 16.7448658436214, 18.225), # 64 (18.67354769365639, 17.703858024691357, 18.05061728395062, 21.65619212962963, 20.24929092887994, 11.25, 13.380864197530865, 13.438888888888888, 21.202847222222225, 12.697294238683126, 14.665502244668913, 16.717489711934153, 18.225), # 65 (18.674476632533153, 17.641433333333335, 18.030233333333335, 21.6337375, 20.249744610500233, 11.25, 13.337849019607843, 13.3701, 21.181635000000004, 12.657462222222222, 14.649403030303029, 16.690311111111114, 18.225), # 66 (18.674941788372227, 17.580164197530863, 18.010027160493827, 21.611249537037036, 20.249971609622634, 11.25, 13.29571227305737, 13.30557777777778, 21.16051611111111, 12.618833168724281, 14.633166442199778, 16.6633695473251, 18.225), # 67 (18.674624906065485, 17.519847550776582, 17.989930709876543, 21.588555132850242, 20.249780319535223, 11.24979122085048, 13.254327350693364, 13.245018930041153, 21.13935812757202, 12.5813167949649, 14.616514779372677, 16.636554039419536, 18.22477527006173), # 68 (18.671655072463768, 17.458641935483872, 17.969379166666666, 21.564510326086953, 20.248039215686273, 11.248140740740741, 13.212482726423904, 13.185177777777778, 21.11723611111111, 12.543851503267971, 14.597753110047847, 16.608994152046783, 18.222994791666668), # 69 (18.665794417606012, 17.39626642771804, 17.948283179012343, 21.538956823671498, 20.244598765432098, 11.244890260631001, 13.169988242210465, 13.125514403292183, 21.09402520576132, 12.506255144032922, 14.576667995746943, 16.580560970327056, 18.219478202160495), # 70 (18.657125389157272, 17.332758303464754, 17.92665015432099, 21.51193230676329, 20.239502541757446, 11.240092455418381, 13.12686298717018, 13.066048559670783, 21.06975997942387, 12.46852864681675, 14.553337267410951, 16.551275286982886, 18.21427179783951), # 71 (18.64573043478261, 17.268154838709677, 17.9044875, 21.48347445652174, 20.23279411764706, 11.2338, 13.083126050420168, 13.0068, 21.044475000000002, 12.43067294117647, 14.527838755980863, 16.52115789473684, 18.207421875), # 72 (18.631692002147076, 17.20249330943847, 17.88180262345679, 21.45362095410628, 20.224517066085692, 11.226065569272976, 13.038796521077565, 12.947788477366256, 21.01820483539095, 12.392688956669087, 14.50025029239766, 16.490229586311454, 18.198974729938275), # 73 (18.61509253891573, 17.1358109916368, 17.858602932098762, 21.42240948067633, 20.214714960058096, 11.216941838134431, 12.9938934882595, 12.889033744855967, 20.990984053497943, 12.354577622851611, 14.470649707602341, 16.45851115442928, 18.18897665895062), # 74 (18.59601449275362, 17.06814516129032, 17.83489583333333, 21.389877717391304, 20.203431372549023, 11.206481481481482, 12.9484360410831, 12.830555555555556, 20.96284722222222, 12.316339869281046, 14.439114832535884, 16.426023391812866, 18.177473958333334), # 75 (18.57454031132582, 16.99953309438471, 17.8106887345679, 21.35606334541063, 20.19070987654321, 11.19473717421125, 12.902443268665492, 12.772373662551441, 20.93382890946502, 12.277976625514404, 14.405723498139285, 16.392787091184747, 18.164512924382716), # 76 (18.55075244229737, 16.93001206690562, 17.785989043209874, 21.32100404589372, 20.176594045025414, 11.18176159122085, 12.855934260123803, 12.714507818930043, 20.90396368312757, 12.239488821108692, 14.370553535353537, 16.358823045267492, 18.150139853395064), # 77 (18.524733333333334, 16.859619354838713, 17.760804166666667, 21.2847375, 20.16112745098039, 11.167607407407406, 12.808928104575164, 12.65697777777778, 20.87328611111111, 12.200877385620915, 14.333682775119618, 16.324152046783627, 18.134401041666667), # 78 (18.496565432098766, 16.788392234169656, 17.735141512345677, 21.24730138888889, 20.144353667392885, 11.152327297668037, 12.761443891136702, 12.59980329218107, 20.84183076131687, 12.162143248608086, 14.29518904837852, 16.28879488845571, 18.117342785493825), # 79 (18.466331186258724, 16.71636798088411, 17.70900848765432, 21.208733393719807, 20.126316267247642, 11.135973936899862, 12.713500708925546, 12.543004115226339, 20.809632201646092, 12.123287339627208, 14.255150186071239, 16.252772363006283, 18.09901138117284), # 80 (18.434113043478263, 16.643583870967742, 17.682412499999998, 21.169071195652176, 20.10705882352941, 11.118599999999999, 12.665117647058823, 12.486600000000001, 20.776725, 12.084310588235295, 14.213644019138757, 16.216105263157896, 18.079453124999997), # 81 (18.399993451422436, 16.570077180406216, 17.655360956790126, 21.12835247584541, 20.086624909222948, 11.10025816186557, 12.616313794653665, 12.430610699588478, 20.743143724279836, 12.045213923989348, 14.170748378522063, 16.178814381633096, 18.058714313271608), # 82 (18.364054857756308, 16.495885185185184, 17.6278612654321, 21.086614915458934, 20.065058097313, 11.08100109739369, 12.567108240827196, 12.37505596707819, 20.70892294238683, 12.00599827644638, 14.12654109516215, 16.14092051115443, 18.036841242283952), # 83 (18.326379710144927, 16.421045161290323, 17.599920833333332, 21.043896195652174, 20.042401960784314, 11.060881481481482, 12.517520074696545, 12.319955555555556, 20.674097222222223, 11.9666645751634, 14.0811, 16.102444444444444, 18.013880208333333), # 84 (18.287050456253354, 16.345594384707287, 17.571547067901232, 21.000233997584544, 20.01870007262164, 11.039951989026063, 12.467568385378843, 12.265329218106997, 20.63870113168724, 11.92721374969741, 14.034502923976609, 16.06340697422569, 17.989877507716052), # 85 (18.246149543746643, 16.269570131421744, 17.54274737654321, 20.955666002415462, 19.99399600580973, 11.018265294924555, 12.417272261991217, 12.21119670781893, 20.60276923868313, 11.887646729605423, 13.986827698032961, 16.02382889322071, 17.964879436728395), # 86 (18.203759420289852, 16.193009677419354, 17.513529166666665, 20.910229891304347, 19.968333333333337, 10.995874074074074, 12.366650793650793, 12.157577777777778, 20.566336111111116, 11.847964444444443, 13.938152153110048, 15.983730994152046, 17.938932291666667), # 87 (18.159962533548043, 16.11595029868578, 17.483899845679012, 20.86396334541063, 19.941755628177198, 10.972831001371743, 12.315723069474704, 12.104492181069958, 20.52943631687243, 11.808167823771482, 13.888554120148857, 15.943134069742257, 17.912082368827164), # 88 (18.11484133118626, 16.03842927120669, 17.453866820987656, 20.81690404589372, 19.91430646332607, 10.94918875171468, 12.264508178580074, 12.051959670781894, 20.492104423868312, 11.76825779714355, 13.838111430090379, 15.902058912713883, 17.884375964506173), # 89 (18.068478260869565, 15.960483870967742, 17.423437500000002, 20.769089673913047, 19.886029411764707, 10.925, 12.213025210084034, 12.0, 20.454375000000002, 11.728235294117647, 13.786901913875598, 15.860526315789475, 17.855859375), # 90 (18.020955770263015, 15.8821513739546, 17.392619290123456, 20.720557910628024, 19.85696804647785, 10.900317421124829, 12.161293253103711, 11.9486329218107, 20.41628261316873, 11.688101244250786, 13.735003402445509, 15.818557071691574, 17.826578896604936), # 91 (17.97235630703167, 15.80346905615293, 17.361419598765433, 20.671346437198068, 19.827165940450254, 10.875193689986283, 12.109331396756236, 11.897878189300412, 20.377861831275723, 11.647856577099976, 13.682493726741095, 15.776171973142736, 17.796580825617283), # 92 (17.92276231884058, 15.724474193548389, 17.329845833333334, 20.621492934782612, 19.796666666666667, 10.84968148148148, 12.057158730158731, 11.847755555555556, 20.339147222222223, 11.607502222222221, 13.62945071770335, 15.733391812865497, 17.76591145833333), # 93 (17.872256253354806, 15.645204062126643, 17.29790540123457, 20.571035084541062, 19.765513798111837, 10.823833470507545, 12.00479434242833, 11.798284773662553, 20.300173353909464, 11.567039109174534, 13.575952206273259, 15.690237383582414, 17.734617091049383), # 94 (17.820920558239397, 15.56569593787336, 17.265605709876546, 20.52001056763285, 19.733750907770517, 10.797702331961592, 11.95225732268216, 11.749485596707821, 20.260974794238685, 11.526468167513919, 13.522076023391813, 15.646729478016026, 17.70274402006173), # 95 (17.76883768115942, 15.485987096774197, 17.23295416666667, 20.468457065217393, 19.701421568627453, 10.77134074074074, 11.899566760037347, 11.701377777777779, 20.221586111111108, 11.485790326797385, 13.4679, 15.602888888888891, 17.67033854166667), # 96 (17.716090069779927, 15.406114814814819, 17.199958179012345, 20.416412258454105, 19.668569353667394, 10.744801371742112, 11.846741743611025, 11.65398106995885, 20.182041872427984, 11.445006516581941, 13.413501967038808, 15.558736408923545, 17.637446952160495), # 97 (17.66276017176597, 15.326116367980884, 17.166625154320986, 20.363913828502415, 19.635237835875095, 10.718136899862827, 11.793801362520316, 11.607315226337448, 20.142376646090533, 11.404117666424595, 13.35895975544923, 15.514292830842535, 17.604115547839505), # 98 (17.608930434782607, 15.246029032258065, 17.1329625, 20.31099945652174, 19.601470588235298, 10.6914, 11.740764705882354, 11.5614, 20.102625, 11.363124705882353, 13.304351196172249, 15.469578947368422, 17.570390625), # 99 (17.5546833064949, 15.165890083632016, 17.09897762345679, 20.257706823671498, 19.567311183732752, 10.664643347050754, 11.687650862814262, 11.516255144032922, 20.062821502057616, 11.322028564512225, 13.249754120148857, 15.42461555122374, 17.536318479938274), # 100 (17.500101234567904, 15.085736798088412, 17.064677932098768, 20.204073611111113, 19.532803195352216, 10.637919615912208, 11.634478922433171, 11.471900411522633, 20.02300072016461, 11.280830171871218, 13.195246358320043, 15.379423435131034, 17.501945408950615), # 101 (17.44526666666667, 15.005606451612904, 17.030070833333333, 20.1501375, 19.497990196078433, 10.611281481481482, 11.58126797385621, 11.428355555555555, 19.98319722222222, 11.239530457516341, 13.140905741626794, 15.334023391812867, 17.467317708333336), # 102 (17.390262050456254, 14.92553632019116, 16.9951637345679, 20.095936171497584, 19.462915758896152, 10.584781618655693, 11.528037106200506, 11.385640329218107, 19.943445576131687, 11.1981303510046, 13.086810101010101, 15.28843621399177, 17.432481674382714), # 103 (17.335169833601718, 14.845563679808842, 16.959964043209876, 20.041507306763286, 19.427623456790123, 10.558472702331962, 11.474805408583187, 11.343774485596708, 19.90378034979424, 11.156630781893005, 13.03303726741095, 15.242682694390297, 17.397483603395063), # 104 (17.280072463768114, 14.765725806451613, 16.924479166666668, 19.98688858695652, 19.392156862745097, 10.532407407407408, 11.421591970121383, 11.302777777777779, 19.86423611111111, 11.115032679738563, 12.979665071770334, 15.196783625730996, 17.362369791666666), # 105 (17.225052388620504, 14.686059976105138, 16.888716512345678, 19.932117693236716, 19.356559549745825, 10.50663840877915, 11.36841587993222, 11.262669958847736, 19.82484742798354, 11.07333697409828, 12.92677134502924, 15.15075980073641, 17.327186535493826), # 106 (17.17019205582394, 14.606603464755079, 16.852683487654325, 19.877232306763286, 19.32087509077705, 10.48121838134431, 11.31529622713283, 11.223470781893006, 19.78564886831276, 11.03154459452917, 12.874433918128654, 15.104632012129088, 17.29198013117284), # 107 (17.11557391304348, 14.5273935483871, 16.8163875, 19.822270108695655, 19.28514705882353, 10.4562, 11.262252100840335, 11.185200000000002, 19.746675000000003, 10.989656470588237, 12.82273062200957, 15.05842105263158, 17.256796875000003), # 108 (17.061280407944178, 14.448467502986858, 16.779835956790127, 19.767268780193234, 19.249419026870008, 10.431635939643346, 11.209302590171871, 11.147877366255145, 19.707960390946504, 10.947673531832486, 12.771739287612972, 15.012147714966428, 17.221683063271605), # 109 (17.007393988191087, 14.369862604540026, 16.743036265432103, 19.71226600241546, 19.213734567901238, 10.407578875171467, 11.15646678424456, 11.111522633744855, 19.669539609053498, 10.90559670781893, 12.72153774587985, 14.965832791856185, 17.18668499228395), # 110 (16.953997101449275, 14.29161612903226, 16.705995833333336, 19.65729945652174, 19.178137254901962, 10.384081481481482, 11.103763772175537, 11.076155555555555, 19.631447222222224, 10.863426928104575, 12.672203827751195, 14.919497076023394, 17.151848958333336), # 111 (16.90117219538379, 14.213765352449222, 16.66872206790124, 19.602406823671497, 19.142670660856936, 10.361196433470509, 11.051212643081925, 11.041795884773663, 19.593717798353907, 10.821165122246429, 12.623815364167996, 14.873161360190599, 17.11722125771605), # 112 (16.84890760266548, 14.136477513814715, 16.631312090853726, 19.547700988485673, 19.10731622431267, 10.338965584586125, 10.998946734582185, 11.00853462380509, 19.556483060265517, 10.778948525902914, 12.57646303107516, 14.826947285707972, 17.0827990215178), # 113 (16.796665616220118, 14.060514930345965, 16.594282215038913, 19.493620958299207, 19.071708038219388, 10.317338295353823, 10.947632775139043, 10.976780267109216, 19.52031426428351, 10.73756730224301, 12.530239806803754, 14.781441909803354, 17.048295745488062), # 114 (16.744292825407193, 13.985904957629483, 16.55765447887317, 19.440152109327204, 19.035733820199482, 10.296258322497776, 10.89730737034481, 10.946524777701677, 19.485224961603823, 10.697085590378538, 12.485078120568769, 14.736667648605932, 17.013611936988678), # 115 (16.691723771827743, 13.912538906325063, 16.521357941970972, 19.38719907047953, 18.999339347490803, 10.275675979116777, 10.847888671550209, 10.917684563218188, 19.451126410610094, 10.657428045209185, 12.440890676288666, 14.692541755477222, 16.978693067560602), # 116 (16.63889299708279, 13.840308087092497, 16.485321663946774, 19.33466647066604, 18.9624703973312, 10.255541578309604, 10.799294830105955, 10.890176031294454, 19.417929869685967, 10.618519321634633, 12.39759017788191, 14.64898148377875, 16.943484608744804), # 117 (16.58573504277338, 13.769103810591583, 16.44947470441506, 19.2824589387966, 18.925072746958516, 10.235805433175049, 10.751443997362767, 10.863915589566174, 19.385546597215082, 10.580284074554568, 12.355089329266963, 14.60590408687203, 16.907932032082243), # 118 (16.532184450500534, 13.698817387482112, 16.413746122990304, 19.23048110378107, 18.887092173610597, 10.2164178568119, 10.70425432467136, 10.838819645669062, 19.353887851581078, 10.54264695886867, 12.31330083436229, 14.563226818118581, 16.87198080911388), # 119 (16.47817576186529, 13.629340128423884, 16.37806497928697, 19.17863759452931, 18.848474454525295, 10.197329162318939, 10.657643963382455, 10.814804607238818, 19.322864891167605, 10.50553262947663, 12.272137397086349, 14.520866930879935, 16.835576411380675), # 120 (16.423643518468683, 13.560563344076693, 16.342360332919537, 19.12683303995118, 18.809165366940455, 10.178489662794956, 10.611531064846766, 10.791786881911152, 19.2923889743583, 10.468865741278133, 12.23151172135761, 14.4787416785176, 16.79866431042359), # 121 (16.36852226191174, 13.49237834510033, 16.30656124350248, 19.07497206895654, 18.76911068809392, 10.159849671338735, 10.565833780415012, 10.769682877321769, 19.2623713595368, 10.43257094917286, 12.191336511094532, 14.436768314393102, 16.761189977783587), # 122 (16.312746533795494, 13.424676442154594, 16.270596770650265, 19.02295931045525, 18.728256195223544, 10.141359501049065, 10.52047026143791, 10.74840900110637, 19.232723305086758, 10.396572908060497, 12.151524470215579, 14.394864091867959, 16.72309888500163), # 123 (16.256250875720976, 13.357348945899277, 16.234395973977367, 18.970699393357176, 18.68654766556717, 10.12296946502473, 10.475358659266176, 10.727881660900668, 19.20335606939181, 10.36079627284073, 12.111988302639215, 14.352946264303695, 16.68433650361868), # 124 (16.198969829289226, 13.290287166994178, 16.197887913098263, 18.91809694657217, 18.643930876362642, 10.104629876364521, 10.43041712525053, 10.708017264340365, 19.174180910835588, 10.32516569841324, 12.072640712283903, 14.310932085061827, 16.644848305175692), # 125 (16.14083793610127, 13.22338241609909, 16.16100164762742, 18.8650565990101, 18.60035160484781, 10.086291048167222, 10.385563810741687, 10.688732219061166, 19.145109087801753, 10.289605839677717, 12.033394403068103, 14.268738807503881, 16.604579761213643), # 126 (16.08178973775815, 13.156526003873804, 16.123666237179307, 18.81148297958082, 18.555755628260517, 10.067903293531618, 10.34071686709037, 10.669942932698781, 19.116051858673934, 10.254041351533843, 11.994162078910282, 14.226283684991369, 16.56347634327348), # 127 (16.021759775860883, 13.089609240978122, 16.08581074136841, 18.7572807171942, 18.51008872383862, 10.0494169255565, 10.295794445647289, 10.651565812888913, 19.086920481835772, 10.218396888881303, 11.954856443728904, 14.183483970885819, 16.521483522896165), # 128 (15.960682592010507, 13.022523438071834, 16.047364219809193, 18.702354440760086, 18.46329666881996, 10.03078225734065, 10.250714697763163, 10.633517267267269, 19.057626215670915, 10.182597106619781, 11.915390201442428, 14.140256918548745, 16.478546771622668), # 129 (15.89849272780806, 12.955159905814739, 16.008255732116123, 18.646608779188355, 18.415325240442385, 10.011949601982854, 10.205395774788713, 10.61571370346955, 19.028080318563003, 10.146566659648963, 11.87567605596932, 14.096519781341675, 16.434611560993947), # 130 (15.83512472485457, 12.887409954866628, 15.968414337903685, 18.589948361388856, 18.36612021594374, 9.992869272581904, 10.159755828074656, 10.59807152913147, 18.998194048895677, 10.110230202868534, 11.835626711228041, 14.052189812626125, 16.38962336255096), # 131 (15.770513124751067, 12.8191648958873, 15.927769096786342, 18.532277816271456, 18.315627372561877, 9.973491582236585, 10.113713008971706, 10.580507151888732, 18.967878665052577, 10.073512391178177, 11.795154871137056, 14.007184265763614, 16.343527647834676), # 132 (15.704592469098595, 12.750316039536544, 15.88624906837857, 18.473501772746012, 18.263792487534637, 9.95376684404568, 10.06718546883058, 10.562936979377039, 18.93704542541735, 10.036337879477578, 11.754173239614829, 13.961420394115667, 16.296269888386057), # 133 (15.63729729949817, 12.68075469647416, 15.843783312294848, 18.413524859722386, 18.210561338099865, 9.933645371107978, 10.020091359002002, 10.545277419232098, 18.905605588373632, 9.998631322666423, 11.712594520579822, 13.914815451043799, 16.24779555574605), # 134 (15.568562157550836, 12.610372177359944, 15.800300888149636, 18.352251706110444, 18.15587970149542, 9.913077476522266, 9.972348830836681, 10.527444879089616, 18.873470412305064, 9.960317375644397, 11.670331417950496, 13.867286689909534, 16.198050121455637), # 135 (15.498321584857623, 12.539059792853687, 15.755730855557415, 18.28958694082003, 18.09969335495913, 9.892013473387332, 9.923876035685343, 10.509355766585298, 18.840551155595293, 9.92132069331118, 11.627296635645319, 13.818751364074394, 16.146979057055766), # 136 (15.426510123019561, 12.466708853615184, 15.710002274132659, 18.225435192761026, 18.04194807572886, 9.870403674801956, 9.8745911248987, 10.490926489354854, 18.80675907662796, 9.881565930566463, 11.583402877582751, 13.769126726899895, 16.094527834087398), # 137 (15.353062313637686, 12.393210670304235, 15.66304420348983, 18.159701090843274, 17.982589641042455, 9.848198393864935, 9.824412249827468, 10.472073455033982, 18.772005433786706, 9.840977742309924, 11.538562847681254, 13.718330031747561, 16.040641924091503), # 138 (15.277912698313022, 12.31845655358063, 15.614785703243411, 18.092289263976646, 17.921563828137746, 9.825347943675048, 9.773257561822367, 10.452713071258394, 18.73620148545517, 9.799480783441254, 11.492689249859293, 13.66627853197891, 15.985266798609034), # 139 (15.200995818646616, 12.242337814104165, 15.565155833007877, 18.023104341071, 17.858816414252605, 9.801802637331082, 9.721045212234115, 10.432761745663793, 18.699258490016998, 9.756999708860134, 11.445694788035329, 13.612889480955465, 15.928347929180966), # 140 (15.122246216239494, 12.164745762534638, 15.514083652397689, 17.952050951036195, 17.794293176624855, 9.777512787931828, 9.667693352413432, 10.412135885885887, 18.661087705855824, 9.713459173466253, 11.39749216612783, 13.558080132038745, 15.869830787348244), # 141 (15.041598432692682, 12.08557170953184, 15.461498221027327, 17.879033722782097, 17.727939892492355, 9.752428708576069, 9.613120133711027, 10.39075189956038, 18.621600391355297, 9.66878383215929, 11.347994088055255, 13.50176773859027, 15.80966084465184), # 142 (14.958987009607215, 12.004706965755565, 15.407328598511267, 17.803957285218555, 17.659702339092952, 9.726500712362592, 9.557243707477623, 10.368526194322978, 18.580707804899063, 9.622898339838935, 11.297113257736068, 13.443869553971561, 15.747783572632711), # 143 (14.874346488584132, 11.922042841865615, 15.35150384446397, 17.72672626725544, 17.58952629366449, 9.699679112390184, 9.499982225063938, 10.34537517780939, 18.53832120487076, 9.575727351404868, 11.244762379088732, 13.384302831544138, 15.684144442831826), # 144 (14.787611411224459, 11.837470648521778, 15.29395301849992, 17.64724529780261, 17.51735753344482, 9.671914221757634, 9.441253837820689, 10.321215257655316, 18.494351849654016, 9.527195521756779, 11.190854156031712, 13.322984824669524, 15.618688926790139), # 145 (14.69871631912923, 11.750881696383855, 15.23460518023359, 17.565419005769925, 17.443141835671785, 9.643156353563725, 9.380976697098594, 10.295962841496468, 18.448710997632492, 9.477227505794348, 11.135301292483467, 13.259832786709236, 15.551362496048613), # 146 (14.607595753899481, 11.662167296111635, 15.173389389279437, 17.481152020067245, 17.36682497758323, 9.613355820907245, 9.319068954248365, 10.269534336968547, 18.401309907189823, 9.425747958417263, 11.078016492362465, 13.194763971024798, 15.482110622148213), # 147 (14.51418425713624, 11.571218758364918, 15.11023470525195, 17.394348969604433, 17.28835273641701, 9.582462936886982, 9.255448760620729, 10.241846151707264, 18.352059836709653, 9.372681534525205, 11.018912459587169, 13.127695630977726, 15.410878776629895), # 148 (14.418416370440541, 11.477927393803494, 15.045070187765598, 17.304914483291345, 17.207670889410966, 9.550428014601719, 9.190034267566393, 10.21281469334832, 18.30087204457561, 9.317952889017864, 10.957901898076038, 13.058545019929545, 15.337612431034628), # 149 (14.320226635413416, 11.382184513087163, 14.97782489643485, 17.212753190037848, 17.124725213802947, 9.517201367150248, 9.122743626436081, 10.182356369527422, 18.247657789171353, 9.261486676794918, 10.894897511747537, 12.987229391241772, 15.262257056903364), # 150 (14.219549593655895, 11.283881426875716, 14.908427890874176, 17.117769718753795, 17.0394614868308, 9.48273330763135, 9.05349498858051, 10.150387587880278, 18.19232832888052, 9.20320755275606, 10.829812004520129, 12.91366599827593, 15.184758125777073), # 151 (14.116319786769019, 11.182909445828951, 14.836808230698063, 17.019868698349054, 16.951825485732364, 9.446974149143815, 8.982206505350396, 10.116824756042595, 18.134794922086748, 9.143040171800969, 10.762558080312278, 12.837772094393538, 15.105061109196717), # 152 (14.010471756353809, 11.079159880606662, 14.762894975520963, 16.91895475773348, 16.8617629877455, 9.409874204786428, 8.908796328096455, 10.081584281650072, 18.07496882717368, 9.080909188829333, 10.693048443042448, 12.759464932956115, 15.02311147870325), # 153 (13.901940044011312, 10.972524041868644, 14.686617184957365, 16.81493252581694, 16.769219770108045, 9.371383787657978, 8.83318260816941, 10.044582572338422, 18.01276130252496, 9.016739258740834, 10.6211957966291, 12.678661767325185, 14.938854705837642), # 154 (13.790659191342543, 10.86289324027469, 14.607903918621735, 16.707706631509282, 16.674141610057855, 9.331453210857248, 8.75528349691997, 10.005736035743345, 17.948083606524232, 8.950455036435159, 10.5469128449907, 12.595279850862267, 14.852236262140847), # 155 (13.676563739948545, 10.750158786484597, 14.526684236128547, 16.597181703720377, 16.576474284832766, 9.29003278748303, 8.67501714569886, 9.964961079500554, 17.88084699755513, 8.88198117681199, 10.470112292045709, 12.50923643692888, 14.763201619153833), # 156 (13.559588231430352, 10.634211991158162, 14.442887197092272, 16.483262371360087, 16.476163571670632, 9.247072830634105, 8.592301705856794, 9.922174111245749, 17.8109627340013, 8.811242334771014, 10.39070684171259, 12.420448778886547, 14.671696248417557), # 157 (13.43642570352943, 10.512815617390064, 14.352465517024239, 16.36158524697224, 16.368625990567796, 9.199844057370798, 8.505192097670143, 9.87443451422887, 17.732991764878374, 8.73605864932406, 10.306072354570096, 12.32567921554981, 14.573674546947622), # 158 (13.288116180561124, 10.37351757527906, 14.232128073125379, 16.207158885819215, 16.22734435760693, 9.132641366412786, 8.40278297409429, 9.804984358975888, 17.61556907019986, 8.644105789377742, 10.20135048411419, 12.206452542629595, 14.445769764456351), # 159 (13.112769770827757, 10.215174111373285, 14.0794577243206, 16.017439518735948, 16.04955623642423, 9.043814332885832, 8.284038747090811, 9.712078541149223, 17.455365409011574, 8.534170173353209, 10.075067115497172, 12.060903507998123, 14.285557096008445), # 160 (12.911799698254727, 10.038817562544844, 13.896084549438555, 15.79423050676211, 15.837107623707803, 8.934439034826566, 8.149826602812377, 9.596880959597605, 17.254493580598233, 8.407184747707687, 9.928334978279473, 11.890381444033627, 14.094673280674375), # 161 (12.686619186767443, 9.84548026566583, 13.683638627307893, 15.539335210937388, 15.591844516145768, 8.80559155027162, 8.001013727411657, 9.460555513169764, 17.015066384244545, 8.264082458898416, 9.762266802021516, 11.696235683114327, 13.874755057524599), # 162 (12.438641460291295, 9.636194557608343, 13.443750036757264, 15.254556992301481, 15.315612910426239, 8.65834795725763, 7.838467307041322, 9.304266100714425, 16.73919661923523, 8.105796253382625, 9.577975316283736, 11.479815557618458, 13.627439165629584), # 163 (12.16927974275169, 9.411992775244478, 13.178048856615318, 14.941699211894072, 15.01025880323734, 8.493784333821234, 7.663054527854039, 9.129176621080324, 16.428997084855002, 7.933259077617543, 9.376573250626553, 11.242470399924246, 13.35436234405979), # 164 (11.879947258074031, 9.173907255446338, 12.888165165710705, 14.602565230754854, 14.677628191267182, 8.312976757999055, 7.475642576002479, 8.936450973116184, 16.086580580388564, 7.747403878060404, 9.1591733346104, 10.985549542409915, 13.057161331885686), # 165 (11.572057230183715, 8.922970335086019, 12.57572904287207, 14.238958409923503, 14.319567071203886, 8.117001307827735, 7.277098637639315, 8.727253055670738, 15.714059905120632, 7.549163601168441, 8.926888297795703, 10.710402317453703, 12.737472868177733), # 166 (11.24702288300614, 8.660214351035616, 12.242370566928068, 13.852682110439718, 13.937921439735565, 7.906934061343905, 7.0682898989172145, 8.502746767592717, 15.31354785833592, 7.339471193398886, 8.680830869742888, 10.418378057433825, 12.396933692006392), # 167 (10.906257440466712, 8.386671640167231, 11.889719816707347, 13.445539693343184, 13.534537293550335, 7.683851096584198, 6.850083545988848, 8.264096007730847, 14.887157239319139, 7.11925960120897, 8.422113780012385, 10.11082609472852, 12.037180542442131), # 168 (10.551174126490828, 8.103374539352963, 11.519406871038555, 13.019334519673588, 13.111260629336316, 7.4488284915852505, 6.623346765006885, 8.012464674933861, 14.437000847355009, 6.889461771055926, 8.151849758164623, 9.78909576171601, 11.659850158555415), # 169 (10.18318616500389, 7.811355385464907, 11.133061808750343, 12.575869950470615, 12.66993744378162, 7.2029423243836925, 6.388946742123995, 7.749016668050485, 13.96519148172823, 6.6510106493969845, 7.871151533760029, 9.454536390774527, 11.2665792794167), # 170 (9.8037067799313, 7.511646515375161, 10.73231470867136, 12.116949346773964, 12.21241373357437, 6.947268673016157, 6.147750663492849, 7.47491588592945, 13.47384194172352, 6.404839182689379, 7.581131836359027, 9.108497314282296, 10.859004644096458), # 171 (9.414149195198457, 7.205280265955825, 10.318795649630257, 11.644376069623315, 11.740535495402677, 6.682883615519281, 5.900625715266118, 7.191326227419487, 12.965065026625595, 6.151880317390344, 7.282903395522049, 8.752327864617548, 10.438762991665145), # 172 (9.015926634730764, 6.893288974078996, 9.894134710455681, 11.159953480058356, 11.256148725954663, 6.410863229929695, 5.64843908359647, 6.899411591369322, 12.440973535719161, 5.893066999957107, 6.97757894080952, 8.387377374158506, 10.007491061193234), # 173 (8.610452322453618, 6.576704976616772, 9.459961969976282, 10.665484939118773, 10.76109942191844, 6.132283594284034, 5.3920579546365754, 6.600335876627689, 11.903680268288936, 5.629332176846904, 6.66627120178187, 8.014995175283403, 9.566825591751181), # 174 (8.19913948229242, 6.256560610441251, 9.017907507020714, 10.162773807844262, 10.257233579982124, 5.848220786618931, 5.132349514539104, 6.295262982043313, 11.35529802361963, 5.361608794516964, 6.3500929079995245, 7.636530600370466, 9.118403322409455), # 175 (7.783401338172574, 5.933888212424531, 8.569601400417621, 9.653623447274505, 9.746397196833835, 5.55975088497102, 4.870180949456727, 5.985356806464928, 10.797939600995955, 5.090829799424521, 6.0301567890229135, 7.253332981797922, 8.663860992238513), # 176 (7.364651114019479, 5.6097201194387125, 8.116673728995655, 9.13983721844919, 9.230436269161691, 5.267949967376934, 4.606419445542112, 5.671781248741259, 10.233717799702626, 4.817928138026804, 5.7075755744124645, 6.866751651944002, 8.204835340308824), # 177 (6.944302033758534, 5.285088668355891, 7.660754571583465, 8.623218482408008, 8.711196793653805, 4.973894111873309, 4.341932188947932, 5.355700207721038, 9.664745419024355, 4.54383675678105, 5.383461993728603, 6.478135943186929, 7.742963105690853), # 178 (0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0), # 179 ) passenger_arriving_acc = ( (6, 8, 12, 6, 7, 5, 6, 1, 4, 0, 1, 2, 0, 14, 9, 4, 3, 9, 4, 3, 1, 7, 3, 5, 0, 0), # 0 (12, 23, 18, 21, 14, 11, 8, 6, 7, 0, 2, 5, 0, 22, 17, 9, 10, 15, 10, 10, 6, 11, 5, 7, 1, 0), # 1 (22, 30, 27, 29, 22, 17, 13, 14, 10, 4, 2, 7, 0, 29, 34, 12, 19, 25, 17, 12, 8, 14, 12, 7, 2, 0), # 2 (28, 38, 38, 38, 28, 20, 18, 19, 15, 9, 5, 12, 0, 40, 48, 23, 23, 38, 22, 15, 14, 16, 19, 9, 4, 0), # 3 (41, 52, 49, 50, 37, 26, 26, 24, 21, 11, 8, 12, 0, 50, 63, 34, 31, 45, 31, 18, 15, 17, 21, 12, 4, 0), # 4 (52, 64, 67, 68, 45, 33, 29, 27, 28, 17, 10, 16, 0, 64, 71, 41, 35, 57, 40, 26, 16, 22, 25, 15, 4, 0), # 5 (62, 77, 76, 83, 51, 38, 34, 38, 34, 20, 14, 18, 0, 77, 78, 50, 41, 66, 45, 33, 18, 26, 26, 17, 4, 0), # 6 (78, 91, 91, 93, 61, 44, 36, 44, 42, 22, 15, 18, 0, 100, 84, 68, 48, 83, 50, 42, 24, 35, 30, 19, 6, 0), # 7 (102, 102, 99, 107, 73, 52, 43, 47, 49, 25, 17, 18, 0, 112, 99, 79, 52, 97, 53, 46, 26, 40, 35, 22, 10, 0), # 8 (121, 122, 115, 116, 79, 57, 51, 50, 53, 28, 18, 20, 0, 123, 117, 86, 56, 109, 62, 47, 28, 47, 38, 23, 13, 0), # 9 (142, 143, 130, 135, 86, 66, 60, 57, 58, 29, 21, 23, 0, 137, 132, 95, 62, 124, 68, 57, 30, 51, 47, 26, 15, 0), # 10 (158, 157, 139, 152, 94, 72, 62, 62, 65, 32, 25, 25, 0, 150, 151, 102, 69, 135, 75, 62, 34, 53, 53, 32, 15, 0), # 11 (172, 175, 158, 172, 106, 78, 68, 64, 69, 33, 27, 26, 0, 165, 168, 117, 81, 141, 83, 71, 39, 59, 59, 34, 19, 0), # 12 (184, 189, 176, 185, 123, 84, 73, 67, 79, 34, 28, 27, 0, 184, 182, 129, 94, 153, 90, 75, 43, 65, 64, 35, 20, 0), # 13 (197, 205, 188, 195, 145, 87, 77, 77, 89, 37, 33, 28, 0, 197, 201, 136, 110, 165, 96, 78, 49, 68, 67, 38, 23, 0), # 14 (218, 218, 202, 217, 156, 92, 81, 82, 97, 40, 34, 29, 0, 208, 230, 147, 120, 184, 100, 85, 53, 76, 72, 42, 23, 0), # 15 (231, 235, 217, 229, 166, 99, 91, 85, 106, 44, 36, 30, 0, 232, 246, 156, 129, 197, 109, 92, 57, 85, 76, 46, 24, 0), # 16 (254, 248, 230, 242, 180, 107, 96, 94, 114, 49, 39, 32, 0, 249, 263, 166, 140, 206, 117, 99, 61, 90, 81, 48, 27, 0), # 17 (270, 260, 244, 255, 190, 112, 101, 101, 121, 50, 42, 36, 0, 271, 284, 176, 149, 215, 126, 105, 68, 98, 85, 49, 28, 0), # 18 (292, 273, 261, 267, 198, 121, 107, 106, 129, 52, 44, 39, 0, 288, 298, 186, 163, 232, 135, 111, 72, 107, 90, 53, 32, 0), # 19 (306, 289, 269, 285, 216, 127, 119, 116, 136, 53, 46, 40, 0, 305, 313, 205, 173, 255, 138, 119, 75, 115, 100, 54, 32, 0), # 20 (320, 301, 292, 299, 232, 130, 129, 122, 145, 54, 49, 41, 0, 325, 328, 217, 189, 267, 147, 126, 84, 124, 106, 56, 36, 0), # 21 (338, 322, 308, 316, 243, 135, 136, 131, 148, 58, 50, 43, 0, 340, 348, 229, 195, 279, 156, 141, 86, 131, 112, 59, 38, 0), # 22 (353, 337, 325, 332, 252, 143, 147, 138, 156, 65, 52, 46, 0, 355, 367, 242, 206, 296, 162, 152, 91, 136, 116, 61, 41, 0), # 23 (367, 353, 341, 352, 263, 149, 154, 142, 164, 67, 53, 48, 0, 374, 375, 254, 215, 303, 176, 163, 96, 143, 120, 64, 45, 0), # 24 (382, 373, 352, 380, 279, 152, 157, 147, 172, 69, 53, 50, 0, 394, 401, 269, 225, 315, 183, 172, 99, 149, 126, 67, 48, 0), # 25 (399, 397, 374, 402, 294, 155, 164, 151, 175, 74, 54, 53, 0, 415, 418, 282, 238, 326, 193, 176, 103, 153, 130, 71, 52, 0), # 26 (419, 422, 386, 413, 305, 162, 172, 152, 186, 79, 56, 55, 0, 430, 440, 292, 242, 342, 202, 185, 107, 163, 134, 73, 53, 0), # 27 (438, 439, 409, 435, 313, 166, 178, 164, 195, 81, 63, 59, 0, 443, 457, 305, 251, 364, 210, 195, 109, 169, 141, 78, 53, 0), # 28 (462, 460, 422, 448, 329, 171, 186, 173, 202, 86, 65, 59, 0, 469, 469, 321, 261, 377, 221, 201, 114, 178, 144, 80, 55, 0), # 29 (479, 480, 436, 461, 340, 173, 190, 184, 213, 93, 69, 62, 0, 482, 487, 338, 270, 395, 230, 208, 120, 184, 152, 85, 55, 0), # 30 (500, 498, 452, 490, 356, 175, 200, 191, 222, 94, 69, 62, 0, 503, 506, 352, 279, 407, 241, 215, 125, 188, 158, 89, 58, 0), # 31 (524, 515, 468, 503, 373, 185, 209, 198, 225, 95, 72, 67, 0, 524, 524, 361, 291, 424, 250, 219, 129, 195, 165, 92, 61, 0), # 32 (539, 529, 485, 518, 383, 189, 218, 208, 237, 98, 76, 71, 0, 537, 538, 371, 300, 440, 266, 228, 132, 201, 174, 95, 61, 0), # 33 (558, 549, 499, 541, 397, 198, 226, 215, 245, 102, 80, 71, 0, 554, 545, 383, 312, 460, 272, 236, 139, 211, 182, 97, 62, 0), # 34 (572, 561, 512, 560, 412, 205, 235, 222, 251, 108, 82, 73, 0, 572, 552, 395, 323, 468, 287, 245, 144, 218, 184, 100, 62, 0), # 35 (589, 580, 534, 580, 424, 208, 241, 226, 262, 111, 83, 75, 0, 581, 561, 403, 331, 481, 293, 247, 146, 229, 185, 103, 64, 0), # 36 (604, 603, 547, 600, 437, 212, 250, 232, 272, 113, 84, 77, 0, 600, 582, 417, 337, 492, 298, 253, 154, 231, 193, 105, 65, 0), # 37 (617, 624, 565, 616, 444, 216, 258, 239, 277, 117, 85, 77, 0, 619, 594, 432, 342, 508, 307, 258, 158, 236, 200, 107, 65, 0), # 38 (635, 644, 577, 628, 455, 223, 261, 245, 281, 119, 88, 77, 0, 638, 614, 441, 351, 524, 321, 262, 165, 246, 209, 110, 68, 0), # 39 (651, 660, 591, 651, 462, 228, 268, 255, 292, 121, 90, 80, 0, 663, 632, 455, 355, 550, 328, 268, 169, 252, 220, 114, 74, 0), # 40 (665, 675, 609, 675, 478, 232, 271, 260, 300, 125, 94, 82, 0, 684, 647, 464, 370, 560, 335, 272, 172, 255, 222, 115, 75, 0), # 41 (681, 690, 618, 694, 488, 236, 276, 266, 312, 129, 95, 85, 0, 701, 662, 481, 382, 572, 342, 279, 179, 262, 225, 117, 78, 0), # 42 (697, 714, 641, 712, 505, 243, 284, 273, 323, 132, 97, 88, 0, 716, 677, 488, 397, 582, 352, 284, 185, 266, 231, 120, 80, 0), # 43 (715, 733, 658, 729, 510, 247, 285, 277, 331, 136, 100, 90, 0, 735, 698, 496, 414, 599, 356, 289, 188, 270, 241, 123, 80, 0), # 44 (734, 750, 672, 746, 523, 260, 291, 284, 341, 140, 106, 90, 0, 754, 716, 512, 421, 616, 364, 293, 193, 278, 248, 125, 83, 0), # 45 (747, 766, 686, 764, 534, 267, 296, 290, 345, 144, 108, 90, 0, 767, 728, 528, 435, 633, 371, 300, 199, 282, 254, 127, 84, 0), # 46 (767, 782, 703, 780, 546, 277, 303, 297, 352, 147, 111, 90, 0, 784, 747, 541, 441, 647, 381, 311, 201, 291, 256, 128, 86, 0), # 47 (789, 799, 719, 796, 566, 280, 313, 304, 365, 150, 111, 91, 0, 799, 768, 559, 448, 657, 389, 320, 204, 293, 261, 131, 87, 0), # 48 (808, 811, 739, 807, 575, 288, 324, 315, 371, 154, 112, 95, 0, 812, 785, 574, 456, 670, 401, 329, 212, 301, 265, 135, 89, 0), # 49 (826, 828, 762, 820, 591, 298, 331, 317, 380, 155, 116, 95, 0, 831, 803, 593, 466, 679, 412, 336, 216, 308, 267, 139, 91, 0), # 50 (850, 838, 776, 834, 601, 302, 338, 324, 386, 161, 118, 97, 0, 848, 823, 606, 473, 698, 423, 341, 219, 315, 274, 145, 91, 0), # 51 (870, 858, 787, 848, 611, 305, 346, 333, 390, 164, 121, 98, 0, 865, 840, 620, 484, 705, 429, 347, 222, 319, 281, 148, 93, 0), # 52 (892, 881, 798, 863, 627, 309, 351, 339, 394, 168, 123, 98, 0, 887, 859, 629, 494, 724, 436, 351, 226, 329, 287, 153, 93, 0), # 53 (910, 900, 815, 887, 642, 316, 357, 344, 403, 171, 124, 101, 0, 910, 870, 640, 502, 734, 450, 355, 232, 333, 291, 157, 93, 0), # 54 (925, 921, 830, 903, 656, 319, 365, 352, 407, 175, 128, 101, 0, 938, 887, 654, 511, 742, 460, 360, 237, 340, 295, 160, 93, 0), # 55 (941, 938, 846, 916, 665, 324, 375, 356, 411, 181, 128, 104, 0, 957, 901, 665, 519, 751, 465, 366, 241, 348, 301, 166, 94, 0), # 56 (961, 958, 851, 936, 677, 333, 383, 363, 416, 185, 129, 107, 0, 972, 913, 679, 526, 768, 473, 373, 245, 354, 305, 168, 97, 0), # 57 (978, 973, 866, 960, 685, 343, 389, 365, 423, 191, 135, 108, 0, 993, 924, 692, 536, 787, 478, 382, 251, 360, 308, 171, 98, 0), # 58 (994, 994, 880, 966, 703, 349, 401, 369, 427, 195, 136, 108, 0, 1003, 934, 702, 548, 803, 487, 388, 254, 372, 315, 176, 98, 0), # 59 (1008, 1014, 898, 982, 713, 358, 411, 373, 434, 199, 139, 110, 0, 1023, 946, 712, 555, 818, 497, 394, 260, 379, 322, 178, 99, 0), # 60 (1027, 1025, 912, 997, 727, 361, 418, 379, 441, 206, 139, 113, 0, 1035, 962, 727, 562, 831, 509, 396, 264, 385, 328, 178, 99, 0), # 61 (1063, 1041, 929, 1010, 744, 365, 427, 384, 452, 210, 139, 113, 0, 1046, 977, 741, 576, 850, 522, 409, 267, 394, 331, 181, 101, 0), # 62 (1080, 1059, 940, 1033, 762, 370, 433, 388, 460, 215, 139, 115, 0, 1076, 986, 756, 585, 855, 529, 419, 268, 399, 334, 184, 105, 0), # 63 (1098, 1074, 962, 1045, 778, 376, 439, 397, 465, 216, 142, 117, 0, 1089, 1005, 769, 598, 864, 538, 426, 269, 405, 342, 186, 105, 0), # 64 (1112, 1082, 982, 1058, 795, 378, 446, 407, 470, 221, 143, 118, 0, 1109, 1025, 787, 612, 875, 547, 434, 274, 411, 350, 186, 106, 0), # 65 (1135, 1101, 998, 1078, 812, 384, 449, 417, 481, 225, 148, 119, 0, 1127, 1037, 794, 617, 894, 554, 444, 279, 419, 355, 190, 106, 0), # 66 (1149, 1116, 1018, 1093, 827, 388, 453, 423, 484, 228, 153, 119, 0, 1143, 1059, 803, 624, 905, 561, 451, 283, 428, 359, 193, 107, 0), # 67 (1163, 1128, 1035, 1108, 841, 392, 461, 426, 492, 232, 154, 119, 0, 1160, 1078, 819, 632, 920, 569, 456, 287, 440, 367, 195, 108, 0), # 68 (1175, 1153, 1052, 1126, 856, 401, 471, 437, 505, 233, 158, 121, 0, 1179, 1090, 832, 648, 930, 578, 464, 291, 447, 371, 197, 109, 0), # 69 (1189, 1166, 1067, 1148, 866, 408, 474, 440, 510, 237, 161, 121, 0, 1203, 1115, 848, 658, 946, 583, 470, 294, 452, 380, 197, 110, 0), # 70 (1205, 1182, 1087, 1167, 883, 415, 480, 446, 516, 239, 163, 123, 0, 1211, 1130, 855, 667, 961, 588, 476, 298, 459, 385, 200, 112, 0), # 71 (1224, 1192, 1105, 1187, 902, 416, 488, 450, 523, 241, 163, 123, 0, 1233, 1145, 874, 681, 970, 595, 478, 301, 467, 389, 204, 112, 0), # 72 (1249, 1207, 1117, 1203, 913, 421, 498, 456, 534, 241, 166, 125, 0, 1255, 1156, 884, 687, 983, 600, 492, 308, 477, 398, 206, 113, 0), # 73 (1270, 1221, 1129, 1218, 926, 429, 506, 463, 543, 245, 166, 125, 0, 1277, 1173, 895, 696, 1001, 607, 502, 311, 483, 404, 211, 113, 0), # 74 (1293, 1247, 1142, 1238, 937, 443, 512, 467, 550, 250, 167, 127, 0, 1295, 1181, 905, 707, 1015, 614, 510, 315, 490, 411, 212, 115, 0), # 75 (1309, 1262, 1161, 1259, 954, 453, 519, 478, 552, 251, 169, 128, 0, 1307, 1194, 922, 723, 1027, 617, 515, 320, 501, 413, 216, 116, 0), # 76 (1322, 1283, 1180, 1275, 966, 459, 523, 482, 561, 254, 173, 128, 0, 1325, 1209, 941, 735, 1039, 622, 523, 323, 508, 416, 219, 117, 0), # 77 (1345, 1295, 1193, 1295, 982, 468, 530, 486, 570, 256, 176, 130, 0, 1339, 1231, 957, 746, 1050, 625, 530, 327, 514, 417, 221, 117, 0), # 78 (1364, 1309, 1205, 1312, 1004, 477, 538, 492, 577, 260, 178, 134, 0, 1365, 1249, 971, 753, 1063, 635, 533, 335, 523, 425, 222, 118, 0), # 79 (1386, 1320, 1225, 1325, 1020, 483, 542, 495, 582, 266, 179, 135, 0, 1394, 1262, 981, 763, 1077, 639, 537, 339, 528, 429, 224, 118, 0), # 80 (1403, 1337, 1235, 1343, 1031, 489, 552, 500, 584, 268, 180, 135, 0, 1411, 1277, 998, 772, 1097, 647, 540, 344, 537, 434, 232, 119, 0), # 81 (1417, 1348, 1247, 1364, 1042, 495, 563, 505, 590, 270, 182, 141, 0, 1427, 1293, 1007, 789, 1113, 653, 551, 347, 542, 436, 235, 120, 0), # 82 (1431, 1360, 1262, 1386, 1056, 498, 569, 509, 593, 273, 184, 143, 0, 1449, 1305, 1021, 798, 1127, 659, 555, 351, 548, 441, 238, 121, 0), # 83 (1449, 1374, 1279, 1403, 1066, 505, 574, 518, 602, 274, 184, 147, 0, 1470, 1319, 1033, 806, 1144, 667, 564, 356, 552, 448, 240, 124, 0), # 84 (1463, 1385, 1291, 1424, 1085, 509, 575, 525, 607, 275, 188, 147, 0, 1488, 1332, 1044, 809, 1162, 675, 574, 363, 563, 453, 242, 125, 0), # 85 (1479, 1395, 1308, 1439, 1098, 510, 579, 527, 619, 279, 190, 151, 0, 1501, 1342, 1057, 817, 1186, 683, 579, 367, 570, 455, 248, 126, 0), # 86 (1496, 1413, 1323, 1447, 1111, 518, 596, 530, 625, 281, 190, 153, 0, 1524, 1356, 1068, 826, 1194, 694, 588, 375, 579, 458, 252, 127, 0), # 87 (1514, 1427, 1336, 1462, 1122, 527, 602, 534, 633, 285, 194, 155, 0, 1542, 1368, 1074, 838, 1212, 703, 593, 379, 588, 463, 256, 128, 0), # 88 (1534, 1445, 1349, 1476, 1135, 533, 609, 536, 635, 287, 196, 155, 0, 1556, 1378, 1081, 847, 1226, 706, 597, 385, 594, 466, 260, 128, 0), # 89 (1555, 1461, 1365, 1491, 1141, 539, 614, 540, 643, 292, 198, 157, 0, 1580, 1392, 1088, 857, 1239, 709, 605, 389, 600, 475, 263, 130, 0), # 90 (1581, 1475, 1374, 1505, 1147, 543, 624, 548, 647, 294, 198, 157, 0, 1594, 1407, 1099, 863, 1255, 715, 608, 392, 607, 480, 263, 131, 0), # 91 (1594, 1490, 1386, 1525, 1160, 548, 627, 555, 651, 299, 199, 157, 0, 1612, 1424, 1111, 870, 1263, 728, 613, 397, 612, 485, 263, 133, 0), # 92 (1619, 1500, 1400, 1540, 1177, 554, 629, 561, 660, 300, 204, 159, 0, 1626, 1435, 1120, 878, 1284, 733, 622, 402, 621, 491, 266, 136, 0), # 93 (1638, 1515, 1415, 1559, 1191, 558, 637, 567, 665, 303, 205, 160, 0, 1645, 1452, 1133, 886, 1299, 740, 629, 411, 624, 494, 267, 136, 0), # 94 (1655, 1526, 1423, 1580, 1206, 562, 646, 569, 675, 304, 206, 162, 0, 1657, 1468, 1138, 893, 1313, 747, 636, 415, 630, 499, 268, 138, 0), # 95 (1675, 1535, 1432, 1593, 1217, 569, 652, 574, 680, 305, 210, 163, 0, 1678, 1481, 1153, 898, 1326, 754, 640, 423, 633, 504, 271, 139, 0), # 96 (1695, 1551, 1447, 1606, 1234, 575, 658, 581, 686, 311, 214, 164, 0, 1701, 1492, 1164, 908, 1342, 761, 643, 428, 641, 510, 274, 141, 0), # 97 (1705, 1565, 1453, 1619, 1247, 584, 667, 584, 694, 314, 217, 166, 0, 1723, 1501, 1173, 919, 1352, 773, 645, 433, 648, 512, 277, 141, 0), # 98 (1723, 1580, 1467, 1634, 1256, 587, 674, 591, 702, 318, 222, 168, 0, 1741, 1514, 1184, 932, 1362, 781, 651, 436, 653, 515, 281, 143, 0), # 99 (1747, 1594, 1481, 1658, 1263, 594, 680, 594, 708, 320, 226, 170, 0, 1762, 1528, 1204, 942, 1379, 785, 653, 441, 665, 520, 283, 144, 0), # 100 (1769, 1605, 1498, 1668, 1275, 598, 684, 597, 716, 324, 228, 170, 0, 1776, 1541, 1216, 951, 1394, 795, 659, 444, 672, 529, 285, 144, 0), # 101 (1786, 1623, 1508, 1682, 1290, 603, 690, 601, 725, 324, 230, 171, 0, 1792, 1554, 1224, 956, 1405, 806, 662, 449, 679, 531, 289, 146, 0), # 102 (1805, 1634, 1527, 1694, 1302, 610, 697, 606, 731, 327, 233, 172, 0, 1808, 1565, 1241, 963, 1416, 816, 668, 453, 686, 537, 292, 147, 0), # 103 (1817, 1651, 1540, 1717, 1315, 616, 703, 610, 737, 337, 234, 173, 0, 1829, 1579, 1257, 972, 1433, 824, 675, 461, 691, 541, 293, 148, 0), # 104 (1835, 1663, 1558, 1737, 1331, 623, 707, 617, 747, 339, 235, 173, 0, 1852, 1592, 1269, 984, 1447, 831, 680, 467, 699, 544, 295, 149, 0), # 105 (1847, 1675, 1572, 1753, 1349, 629, 712, 622, 753, 343, 237, 174, 0, 1877, 1611, 1281, 989, 1458, 837, 684, 470, 711, 549, 298, 152, 0), # 106 (1862, 1683, 1592, 1766, 1361, 640, 722, 623, 759, 344, 239, 174, 0, 1888, 1629, 1296, 1001, 1470, 845, 689, 474, 718, 552, 301, 152, 0), # 107 (1879, 1701, 1608, 1779, 1367, 647, 732, 627, 768, 346, 245, 175, 0, 1899, 1645, 1306, 1006, 1485, 851, 697, 481, 723, 558, 303, 153, 0), # 108 (1897, 1715, 1620, 1793, 1376, 650, 736, 632, 773, 349, 249, 178, 0, 1916, 1658, 1314, 1015, 1500, 855, 701, 488, 729, 562, 305, 154, 0), # 109 (1908, 1727, 1632, 1811, 1394, 658, 743, 632, 778, 353, 249, 180, 0, 1932, 1671, 1328, 1023, 1515, 860, 706, 492, 736, 565, 305, 154, 0), # 110 (1928, 1736, 1652, 1826, 1409, 664, 751, 638, 785, 354, 253, 182, 0, 1952, 1685, 1335, 1026, 1527, 866, 710, 494, 738, 568, 306, 154, 0), # 111 (1946, 1743, 1670, 1839, 1427, 671, 759, 639, 791, 356, 253, 184, 0, 1971, 1698, 1345, 1030, 1540, 873, 714, 500, 742, 573, 312, 155, 0), # 112 (1966, 1759, 1687, 1858, 1439, 678, 764, 645, 802, 357, 256, 184, 0, 1989, 1708, 1353, 1033, 1554, 877, 719, 504, 744, 579, 317, 155, 0), # 113 (1989, 1770, 1702, 1875, 1445, 686, 767, 651, 808, 358, 256, 185, 0, 2013, 1716, 1362, 1039, 1568, 881, 726, 510, 747, 584, 318, 155, 0), # 114 (2005, 1786, 1718, 1893, 1456, 690, 771, 654, 814, 363, 258, 185, 0, 2027, 1727, 1369, 1042, 1586, 886, 730, 514, 759, 587, 323, 155, 0), # 115 (2019, 1801, 1728, 1911, 1466, 693, 777, 657, 820, 365, 261, 186, 0, 2046, 1742, 1378, 1053, 1595, 892, 734, 518, 765, 594, 325, 155, 0), # 116 (2037, 1815, 1743, 1930, 1475, 696, 781, 660, 827, 368, 263, 187, 0, 2070, 1757, 1386, 1056, 1617, 898, 736, 524, 773, 597, 328, 156, 0), # 117 (2045, 1826, 1751, 1939, 1491, 703, 787, 667, 831, 369, 266, 188, 0, 2088, 1765, 1394, 1063, 1630, 901, 741, 527, 777, 601, 330, 157, 0), # 118 (2059, 1834, 1761, 1950, 1501, 710, 796, 673, 838, 374, 268, 188, 0, 2110, 1777, 1404, 1071, 1641, 907, 743, 530, 787, 606, 336, 158, 0), # 119 (2072, 1843, 1775, 1965, 1512, 722, 806, 677, 845, 378, 271, 189, 0, 2126, 1793, 1416, 1078, 1658, 916, 747, 532, 791, 610, 338, 159, 0), # 120 (2086, 1860, 1783, 1984, 1525, 723, 809, 679, 851, 380, 275, 189, 0, 2143, 1810, 1428, 1082, 1672, 922, 753, 533, 800, 613, 338, 162, 0), # 121 (2105, 1874, 1799, 2000, 1536, 731, 815, 683, 856, 381, 275, 189, 0, 2162, 1824, 1441, 1087, 1685, 927, 755, 537, 802, 617, 345, 163, 0), # 122 (2116, 1887, 1820, 2017, 1550, 734, 819, 688, 863, 383, 275, 192, 0, 2174, 1841, 1457, 1096, 1700, 937, 762, 539, 812, 623, 347, 163, 0), # 123 (2131, 1903, 1828, 2036, 1557, 738, 819, 696, 869, 385, 277, 195, 0, 2194, 1852, 1466, 1102, 1714, 941, 766, 544, 815, 629, 350, 164, 0), # 124 (2148, 1915, 1843, 2057, 1566, 749, 824, 700, 874, 387, 280, 196, 0, 2218, 1866, 1476, 1111, 1728, 944, 772, 549, 824, 634, 352, 165, 0), # 125 (2168, 1924, 1862, 2070, 1584, 752, 827, 706, 879, 388, 280, 199, 0, 2229, 1877, 1485, 1114, 1736, 952, 777, 552, 831, 640, 355, 165, 0), # 126 (2189, 1936, 1869, 2088, 1592, 759, 830, 710, 885, 388, 282, 200, 0, 2239, 1885, 1497, 1123, 1742, 959, 781, 557, 842, 646, 358, 166, 0), # 127 (2207, 1957, 1880, 2101, 1607, 759, 839, 715, 893, 391, 282, 204, 0, 2260, 1898, 1502, 1130, 1752, 963, 788, 559, 844, 650, 362, 166, 0), # 128 (2227, 1969, 1891, 2118, 1616, 762, 847, 720, 897, 395, 284, 204, 0, 2278, 1910, 1508, 1138, 1772, 970, 793, 564, 852, 655, 364, 169, 0), # 129 (2238, 1976, 1902, 2134, 1634, 770, 855, 725, 901, 399, 285, 206, 0, 2294, 1919, 1515, 1146, 1785, 975, 796, 569, 864, 658, 370, 170, 0), # 130 (2251, 1987, 1908, 2142, 1644, 772, 861, 729, 909, 401, 285, 209, 0, 2308, 1925, 1529, 1157, 1794, 982, 803, 574, 869, 660, 377, 171, 0), # 131 (2261, 2000, 1917, 2153, 1656, 779, 870, 734, 918, 405, 286, 210, 0, 2333, 1938, 1540, 1168, 1807, 985, 807, 577, 876, 663, 378, 171, 0), # 132 (2271, 2013, 1926, 2166, 1664, 781, 873, 737, 922, 409, 290, 213, 0, 2360, 1951, 1551, 1179, 1821, 991, 812, 580, 887, 665, 380, 171, 0), # 133 (2293, 2021, 1943, 2180, 1677, 784, 882, 742, 931, 416, 294, 215, 0, 2387, 1964, 1562, 1188, 1837, 996, 820, 581, 893, 666, 385, 173, 0), # 134 (2309, 2031, 1954, 2191, 1692, 788, 886, 746, 935, 420, 295, 215, 0, 2401, 1979, 1573, 1192, 1853, 1007, 823, 586, 901, 670, 390, 177, 0), # 135 (2331, 2047, 1968, 2201, 1705, 795, 889, 748, 939, 420, 296, 216, 0, 2413, 1994, 1582, 1201, 1865, 1016, 828, 589, 913, 675, 390, 177, 0), # 136 (2348, 2060, 1978, 2216, 1719, 800, 892, 753, 948, 420, 298, 217, 0, 2425, 2010, 1589, 1210, 1878, 1019, 832, 593, 919, 678, 390, 177, 0), # 137 (2369, 2077, 1991, 2234, 1733, 805, 898, 759, 954, 422, 301, 218, 0, 2438, 2024, 1599, 1218, 1887, 1022, 836, 595, 922, 685, 394, 178, 0), # 138 (2382, 2086, 2008, 2249, 1748, 807, 905, 761, 960, 425, 302, 218, 0, 2451, 2035, 1608, 1226, 1894, 1027, 840, 597, 930, 688, 399, 180, 0), # 139 (2400, 2092, 2019, 2263, 1755, 812, 913, 764, 967, 428, 306, 219, 0, 2464, 2048, 1617, 1234, 1903, 1036, 842, 600, 931, 692, 401, 181, 0), # 140 (2416, 2101, 2028, 2280, 1763, 816, 920, 770, 972, 432, 308, 219, 0, 2475, 2060, 1622, 1242, 1914, 1042, 845, 605, 938, 694, 404, 181, 0), # 141 (2432, 2112, 2033, 2294, 1778, 822, 925, 775, 979, 435, 311, 221, 0, 2490, 2080, 1630, 1247, 1924, 1049, 852, 606, 943, 703, 408, 181, 0), # 142 (2448, 2124, 2053, 2311, 1789, 830, 933, 780, 986, 441, 313, 221, 0, 2513, 2093, 1642, 1252, 1935, 1057, 856, 610, 950, 709, 412, 181, 0), # 143 (2466, 2135, 2068, 2322, 1801, 834, 938, 783, 997, 446, 316, 222, 0, 2531, 2102, 1651, 1260, 1943, 1065, 859, 615, 953, 713, 415, 181, 0), # 144 (2483, 2147, 2084, 2333, 1810, 840, 944, 788, 1002, 449, 317, 224, 0, 2549, 2116, 1663, 1266, 1957, 1073, 866, 620, 963, 719, 424, 181, 0), # 145 (2504, 2155, 2097, 2345, 1826, 847, 948, 789, 1009, 450, 317, 225, 0, 2568, 2125, 1671, 1273, 1972, 1086, 873, 624, 965, 722, 425, 183, 0), # 146 (2519, 2163, 2112, 2355, 1841, 849, 953, 792, 1018, 455, 319, 227, 0, 2579, 2135, 1680, 1278, 1979, 1096, 877, 626, 971, 725, 426, 184, 0), # 147 (2536, 2174, 2121, 2367, 1855, 855, 957, 795, 1028, 456, 319, 227, 0, 2595, 2141, 1688, 1287, 1989, 1103, 882, 628, 974, 727, 428, 184, 0), # 148 (2554, 2181, 2137, 2380, 1865, 864, 959, 800, 1037, 459, 319, 228, 0, 2604, 2159, 1699, 1294, 2002, 1108, 887, 630, 986, 734, 431, 186, 0), # 149 (2567, 2195, 2147, 2390, 1874, 872, 960, 803, 1040, 460, 320, 229, 0, 2618, 2171, 1706, 1302, 2014, 1115, 889, 635, 991, 740, 435, 187, 0), # 150 (2584, 2202, 2166, 2406, 1884, 878, 964, 806, 1043, 463, 322, 230, 0, 2632, 2178, 1713, 1311, 2022, 1119, 890, 637, 1000, 744, 437, 187, 0), # 151 (2596, 2213, 2180, 2416, 1896, 883, 971, 810, 1052, 466, 324, 231, 0, 2647, 2184, 1721, 1318, 2033, 1124, 894, 641, 1004, 746, 441, 187, 0), # 152 (2613, 2221, 2197, 2436, 1911, 885, 975, 812, 1058, 468, 325, 231, 0, 2666, 2194, 1727, 1327, 2048, 1127, 897, 647, 1013, 752, 444, 188, 0), # 153 (2632, 2237, 2211, 2453, 1923, 892, 981, 817, 1062, 469, 327, 231, 0, 2678, 2212, 1738, 1334, 2064, 1132, 897, 651, 1017, 755, 449, 189, 0), # 154 (2638, 2254, 2229, 2462, 1928, 900, 983, 819, 1066, 471, 327, 233, 0, 2696, 2220, 1743, 1337, 2079, 1136, 901, 657, 1024, 757, 453, 189, 0), # 155 (2648, 2264, 2241, 2473, 1934, 905, 985, 824, 1072, 471, 330, 234, 0, 2709, 2235, 1750, 1343, 2094, 1143, 904, 663, 1032, 761, 455, 191, 0), # 156 (2663, 2272, 2248, 2483, 1950, 913, 987, 829, 1077, 473, 331, 234, 0, 2728, 2246, 1758, 1347, 2105, 1151, 906, 665, 1035, 764, 459, 191, 0), # 157 (2672, 2279, 2255, 2494, 1961, 920, 993, 830, 1082, 474, 331, 235, 0, 2745, 2260, 1765, 1351, 2113, 1154, 908, 670, 1044, 768, 460, 191, 0), # 158 (2682, 2287, 2267, 2506, 1972, 928, 999, 835, 1089, 475, 331, 236, 0, 2757, 2270, 1769, 1357, 2124, 1158, 909, 670, 1046, 768, 462, 192, 0), # 159 (2696, 2293, 2277, 2514, 1976, 932, 1002, 841, 1092, 475, 332, 236, 0, 2779, 2280, 1772, 1363, 2133, 1161, 912, 675, 1054, 773, 463, 192, 0), # 160 (2701, 2306, 2288, 2525, 1984, 935, 1010, 843, 1099, 478, 333, 237, 0, 2794, 2291, 1779, 1374, 2143, 1166, 919, 677, 1061, 779, 464, 194, 0), # 161 (2713, 2315, 2303, 2532, 1999, 944, 1014, 849, 1104, 479, 334, 238, 0, 2815, 2298, 1788, 1380, 2155, 1170, 929, 680, 1072, 781, 468, 195, 0), # 162 (2728, 2322, 2315, 2544, 2006, 952, 1021, 851, 1107, 479, 336, 241, 0, 2825, 2307, 1799, 1384, 2162, 1174, 934, 685, 1073, 785, 471, 197, 0), # 163 (2740, 2325, 2331, 2553, 2017, 956, 1023, 854, 1112, 479, 336, 244, 0, 2836, 2314, 1806, 1392, 2168, 1177, 936, 688, 1077, 787, 476, 197, 0), # 164 (2751, 2337, 2338, 2565, 2031, 960, 1028, 857, 1119, 482, 337, 245, 0, 2843, 2325, 1814, 1395, 2178, 1183, 938, 690, 1085, 792, 477, 200, 0), # 165 (2764, 2347, 2350, 2577, 2045, 964, 1032, 861, 1128, 482, 339, 246, 0, 2857, 2342, 1829, 1398, 2182, 1186, 947, 693, 1091, 796, 479, 201, 0), # 166 (2786, 2353, 2355, 2583, 2057, 968, 1034, 866, 1136, 483, 339, 246, 0, 2860, 2350, 1836, 1401, 2192, 1190, 949, 697, 1096, 798, 480, 201, 0), # 167 (2797, 2362, 2368, 2593, 2067, 973, 1039, 869, 1142, 486, 340, 246, 0, 2871, 2366, 1845, 1405, 2199, 1199, 952, 698, 1103, 802, 483, 203, 0), # 168 (2798, 2373, 2383, 2606, 2079, 977, 1044, 873, 1148, 486, 340, 246, 0, 2885, 2372, 1850, 1411, 2214, 1202, 956, 707, 1111, 806, 484, 203, 0), # 169 (2810, 2380, 2392, 2615, 2089, 987, 1047, 874, 1154, 489, 340, 247, 0, 2890, 2380, 1852, 1416, 2220, 1208, 959, 710, 1114, 809, 488, 203, 0), # 170 (2819, 2389, 2401, 2622, 2106, 989, 1051, 879, 1158, 489, 340, 247, 0, 2904, 2386, 1855, 1421, 2229, 1214, 963, 711, 1117, 810, 491, 206, 0), # 171 (2828, 2397, 2411, 2634, 2111, 991, 1055, 883, 1163, 490, 342, 247, 0, 2913, 2393, 1856, 1425, 2241, 1221, 965, 713, 1119, 814, 493, 206, 0), # 172 (2841, 2404, 2420, 2650, 2117, 996, 1055, 884, 1166, 491, 342, 247, 0, 2923, 2400, 1859, 1432, 2249, 1227, 967, 715, 1120, 817, 495, 206, 0), # 173 (2847, 2406, 2434, 2655, 2126, 998, 1056, 886, 1169, 492, 343, 250, 0, 2939, 2409, 1864, 1440, 2255, 1234, 968, 716, 1121, 822, 495, 207, 0), # 174 (2854, 2412, 2444, 2662, 2132, 1000, 1061, 889, 1172, 493, 343, 251, 0, 2946, 2417, 1869, 1443, 2260, 1237, 970, 717, 1126, 823, 495, 207, 0), # 175 (2860, 2416, 2451, 2666, 2138, 1004, 1063, 891, 1173, 495, 343, 252, 0, 2950, 2426, 1874, 1447, 2272, 1239, 977, 720, 1130, 825, 497, 207, 0), # 176 (2866, 2421, 2457, 2673, 2139, 1004, 1066, 895, 1176, 496, 344, 253, 0, 2959, 2431, 1878, 1454, 2275, 1241, 979, 721, 1132, 826, 499, 210, 0), # 177 (2872, 2428, 2463, 2677, 2143, 1007, 1067, 899, 1180, 500, 344, 254, 0, 2969, 2435, 1881, 1459, 2282, 1243, 981, 722, 1136, 831, 499, 211, 0), # 178 (2872, 2428, 2463, 2677, 2143, 1007, 1067, 899, 1180, 500, 344, 254, 0, 2969, 2435, 1881, 1459, 2282, 1243, 981, 722, 1136, 831, 499, 211, 0), # 179 ) passenger_arriving_rate = ( (9.037558041069182, 9.116726123493724, 7.81692484441876, 8.389801494715634, 6.665622729131535, 3.295587678639206, 3.7314320538365235, 3.4898821297345672, 3.654059437300804, 1.781106756985067, 1.261579549165681, 0.7346872617459261, 0.0, 9.150984382641052, 8.081559879205185, 6.307897745828405, 5.3433202709552, 7.308118874601608, 4.885834981628395, 3.7314320538365235, 2.3539911990280045, 3.3328113645657673, 2.7966004982385453, 1.5633849688837522, 0.828793283953975, 0.0), # 0 (9.637788873635953, 9.718600145338852, 8.333019886995228, 8.943944741923431, 7.106988404969084, 3.5132827632446837, 3.9775220471373247, 3.7196352921792815, 3.8953471957997454, 1.8985413115247178, 1.3449288407868398, 0.7831824991221532, 0.0, 9.755624965391739, 8.615007490343684, 6.724644203934198, 5.695623934574153, 7.790694391599491, 5.207489409050994, 3.9775220471373247, 2.509487688031917, 3.553494202484542, 2.9813149139744777, 1.6666039773990458, 0.883509104121714, 0.0), # 1 (10.236101416163518, 10.318085531970116, 8.847063428321121, 9.495883401297473, 7.546755568499692, 3.7301093702380674, 4.222636657164634, 3.948468935928315, 4.135672084126529, 2.015511198759246, 1.4279469446328943, 0.8314848978079584, 0.0, 10.357856690777442, 9.14633387588754, 7.13973472316447, 6.046533596277737, 8.271344168253059, 5.527856510299641, 4.222636657164634, 2.6643638358843336, 3.773377784249846, 3.1652944670991583, 1.7694126856642243, 0.938007775633647, 0.0), # 2 (10.830164027663812, 10.912803828195138, 9.357016303979782, 10.0434281501683, 7.983194011202283, 3.9452076537143688, 4.46580327748316, 4.175475868120881, 4.374081096552656, 2.1315522142917818, 1.5103045235482149, 0.8794028527395692, 0.0, 10.955291051257605, 9.67343138013526, 7.551522617741075, 6.3946566428753435, 8.748162193105312, 5.845666215369232, 4.46580327748316, 2.818005466938835, 3.9915970056011414, 3.3478093833894342, 1.8714032607959565, 0.9920730752904672, 0.0), # 3 (11.417645067148767, 11.500376578821527, 9.860839349554556, 10.584389665866468, 8.41457352455579, 4.1577177677686015, 4.706049301657613, 4.399748895896186, 4.609621227349624, 2.246200153725456, 1.5916722403771728, 0.9267447588532147, 0.0, 11.54553953929167, 10.19419234738536, 7.958361201885864, 6.738600461176366, 9.219242454699248, 6.159648454254661, 4.706049301657613, 2.969798405549001, 4.207286762277895, 3.528129888622157, 1.9721678699109113, 1.0454887798928663, 0.0), # 4 (11.996212893630318, 12.07842532865692, 10.356493400628777, 11.11657862572253, 8.839163900039136, 4.366779866495776, 4.942402123252702, 4.620380826393444, 4.841339470788935, 2.3589908126633987, 1.67172075796414, 0.9733190110851223, 0.0, 12.126213647339089, 10.706509121936344, 8.358603789820698, 7.076972437990195, 9.68267894157787, 6.468533156950822, 4.942402123252702, 3.119128476068411, 4.419581950019568, 3.705526208574178, 2.071298680125756, 1.0980386662415385, 0.0), # 5 (12.5635358661204, 12.644571622508925, 10.8419392927858, 11.63780570706703, 9.255234929131252, 4.571534103990907, 5.173889135833137, 4.836464466751867, 5.068282821142089, 2.469459986708742, 1.750120739153485, 1.0189340043715214, 0.0, 12.694924867859292, 11.208274048086732, 8.750603695767424, 7.408379960126224, 10.136565642284179, 6.771050253452613, 5.173889135833137, 3.265381502850648, 4.627617464565626, 3.8792685690223445, 2.16838785855716, 1.1495065111371752, 0.0), # 6 (13.117282343630944, 13.196437005185167, 11.315137861608953, 12.145881587230525, 9.661056403311065, 4.771120634349007, 5.399537732963626, 5.047092624110664, 5.289498272680586, 2.5771434714646144, 1.8265428467895808, 1.0633981336486396, 0.0, 13.249284693311735, 11.697379470135033, 9.132714233947903, 7.7314304143938415, 10.578996545361171, 7.06592967375493, 5.399537732963626, 3.4079433102492906, 4.830528201655532, 4.048627195743509, 2.2630275723217905, 1.1996760913804698, 0.0), # 7 (13.655120685173882, 13.731643021493262, 11.774049942681595, 12.638616943543553, 10.054898114057503, 4.964679611665085, 5.618375308208878, 5.251358105609044, 5.504032819675924, 2.681577062534149, 1.9006577437167966, 1.1065197938527056, 0.0, 13.786904616155851, 12.171717732379758, 9.503288718583983, 8.044731187602444, 11.008065639351848, 7.351901347852662, 5.618375308208878, 3.5461997226179176, 5.027449057028751, 4.212872314514518, 2.3548099885363194, 1.248331183772115, 0.0), # 8 (14.174719249761154, 14.247811216240837, 12.216636371587056, 13.11382245333668, 10.43502985284949, 5.151351190034158, 5.829429255133608, 5.4483537183862225, 5.710933456399605, 2.782296555520474, 1.9721360927795035, 1.1481073799199473, 0.0, 14.305396128851092, 12.629181179119417, 9.860680463897518, 8.34688966656142, 11.42186691279921, 7.627695205740712, 5.829429255133608, 3.679536564310113, 5.217514926424745, 4.371274151112227, 2.4433272743174115, 1.2952555651128035, 0.0), # 9 (14.673746396404677, 14.7425631342355, 12.640857983908687, 13.569308793940438, 10.799721411165962, 5.330275523551238, 6.031726967302519, 5.637172269581408, 5.909247177123128, 2.878837746026722, 2.0406485568220725, 1.187969286786593, 0.0, 14.802370723856898, 13.06766215465252, 10.20324278411036, 8.636513238080164, 11.818494354246257, 7.892041177413972, 6.031726967302519, 3.8073396596794558, 5.399860705582981, 4.52310293131348, 2.5281715967817378, 1.3402330122032275, 0.0), # 10 (15.149870484116411, 15.213520320284891, 13.044675615229824, 14.002886642685386, 11.14724258048584, 5.500592766311337, 6.224295838280325, 5.816906566333811, 6.098020976117995, 2.970736429656024, 2.105865798688875, 1.2259139093888718, 0.0, 15.2754398936327, 13.485053003277587, 10.529328993444373, 8.912209288968072, 12.19604195223599, 8.143669192867335, 6.224295838280325, 3.9289948330795266, 5.57362129024292, 4.66762888089513, 2.6089351230459648, 1.3830473018440812, 0.0), # 11 (15.600759871908263, 15.6583043191966, 13.42605010113381, 14.412366676902078, 11.475863152288053, 5.6614430724094635, 6.406163261631731, 5.986649415782641, 6.276301847655707, 3.0575284020115086, 2.1674584812242808, 1.2617496426630104, 0.0, 15.722215130637963, 13.879246069293112, 10.837292406121403, 9.172585206034523, 12.552603695311413, 8.381309182095698, 6.406163261631731, 4.043887908863902, 5.737931576144026, 4.804122225634027, 2.6852100202267626, 1.4234822108360548, 0.0), # 12 (16.02408291879218, 16.074536675778273, 13.782942277203993, 14.795559573921057, 11.783852918051522, 5.8119665959406355, 6.576356630921451, 6.145493625067111, 6.443136786007759, 3.138749458696308, 2.225097267272661, 1.2952848815452382, 0.0, 16.140307927332124, 14.248133696997618, 11.125486336363304, 9.416248376088921, 12.886273572015519, 8.603691075093955, 6.576356630921451, 4.151404711386168, 5.891926459025761, 4.93185319130702, 2.756588455440799, 1.4613215159798432, 0.0), # 13 (16.41750798378009, 16.45983893483752, 14.113312979023721, 15.150276011072872, 12.069481669255186, 5.9513034909998614, 6.733903339714195, 6.292532001326435, 6.597572785445653, 3.2139353953135514, 2.2784528196783858, 1.3263280209717843, 0.0, 16.527329776174614, 14.589608230689624, 11.392264098391927, 9.641806185940652, 13.195145570891306, 8.80954480185701, 6.733903339714195, 4.250931064999901, 6.034740834627593, 5.050092003690958, 2.8226625958047444, 1.4963489940761385, 0.0), # 14 (16.77870342588394, 16.811832641181958, 14.415123042176313, 15.474326665688082, 12.33101919737797, 6.078593911682158, 6.877830781574663, 6.426857351699818, 6.738656840240891, 3.2826220074663714, 2.3271958012858263, 1.3546874558788757, 0.0, 16.880892169624886, 14.90156201466763, 11.63597900642913, 9.847866022399112, 13.477313680481782, 8.997600292379746, 6.877830781574663, 4.341852794058684, 6.165509598688985, 5.158108888562695, 2.883024608435263, 1.5283484219256327, 0.0), # 15 (17.10533760411564, 17.128139339619217, 14.686333302245139, 15.765522215097217, 12.566735293898798, 6.192978012082533, 7.007166350067579, 6.547562483326471, 6.865435944664972, 3.344345090757899, 2.370996874939354, 1.380171581202741, 0.0, 17.198606600142384, 15.181887393230149, 11.85498437469677, 10.033035272273695, 13.730871889329944, 9.16658747665706, 7.007166350067579, 4.423555722916095, 6.283367646949399, 5.255174071699074, 2.9372666604490276, 1.55710357632902, 0.0), # 16 (17.395078877487137, 17.406380574956913, 14.92490459481353, 16.021673336630855, 12.774899750296605, 6.2935959462960005, 7.12093743875764, 6.653740203345614, 6.976957092989391, 3.398640440791261, 2.40952670348334, 1.4025887918796085, 0.0, 17.47808456018655, 15.428476710675692, 12.047633517416699, 10.195921322373781, 13.953914185978782, 9.31523628468386, 7.12093743875764, 4.4954256759257145, 6.387449875148302, 5.340557778876952, 2.984980918962706, 1.5823982340869922, 0.0), # 17 (17.645595605010367, 17.644177892002652, 15.12879775546482, 16.24059070761953, 12.953782358050306, 6.379587868417579, 7.2181714412095666, 6.744483318896446, 7.072267279485658, 3.4450438531695924, 2.4424559497621527, 1.4217474828457075, 0.0, 17.716937542216822, 15.63922231130278, 12.212279748810763, 10.335131559508774, 14.144534558971316, 9.442276646455024, 7.2181714412095666, 4.556848477441128, 6.476891179025153, 5.413530235873177, 3.0257595510929645, 1.6040161720002415, 0.0), # 18 (17.85455614569726, 17.83915283556408, 15.29597361978237, 16.420085005393776, 13.10165290863884, 6.450093932542269, 7.297895750988055, 6.818884637118185, 7.150413498425267, 3.4830911234960236, 2.4694552766201636, 1.4374560490372645, 0.0, 17.912777038692653, 15.812016539409907, 12.347276383100818, 10.449273370488068, 14.300826996850533, 9.546438491965459, 7.297895750988055, 4.607209951815906, 6.55082645431942, 5.473361668464593, 3.059194723956474, 1.621741166869462, 0.0), # 19 (18.01962885855975, 17.988926950448786, 15.424393023349506, 16.55796690728418, 13.216781193541133, 6.504254292765094, 7.359137761657826, 6.876036965150038, 7.210442744079718, 3.5123180473736824, 2.490195346901745, 1.4495228853905089, 0.0, 18.063214542073485, 15.944751739295596, 12.450976734508725, 10.536954142121044, 14.420885488159437, 9.626451751210054, 7.359137761657826, 4.645895923403639, 6.608390596770566, 5.51932230242806, 3.084878604669901, 1.6353569954953444, 0.0), # 20 (18.13848210260976, 18.09112178146442, 15.51201680174958, 16.652047090621256, 13.297437004236105, 6.541209103181062, 7.400924866783583, 6.915033110131218, 7.251402010720512, 3.532260420405701, 2.5043468234512685, 1.4577563868416692, 0.0, 18.165861544818743, 16.03532025525836, 12.52173411725634, 10.5967812612171, 14.502804021441024, 9.681046354183705, 7.400924866783583, 4.672292216557902, 6.648718502118053, 5.550682363540419, 3.1024033603499164, 1.644647434678584, 0.0), # 21 (18.20878423685924, 18.143358873418588, 15.55680579056593, 16.70013623273558, 13.341890132202689, 6.560098517885186, 7.422284459930039, 6.934965879200936, 7.27233829261915, 3.54245403819521, 2.5115803691131027, 1.4619649483269737, 0.0, 18.218329539387888, 16.08161443159671, 12.557901845565512, 10.627362114585626, 14.5446765852383, 9.70895223088131, 7.422284459930039, 4.6857846556322755, 6.6709450661013445, 5.5667120775785275, 3.111361158113186, 1.649396261219872, 0.0), # 22 (18.23470805401675, 18.14954393004115, 15.562384773662554, 16.706156597222225, 13.353278467239116, 6.5625, 7.424823602033405, 6.937120370370371, 7.274955740740741, 3.543656522633746, 2.512487411148522, 1.4624846364883404, 0.0, 18.225, 16.08733100137174, 12.56243705574261, 10.630969567901236, 14.549911481481482, 9.71196851851852, 7.424823602033405, 4.6875, 6.676639233619558, 5.568718865740743, 3.1124769547325113, 1.6499585390946503, 0.0), # 23 (18.253822343461476, 18.145936111111112, 15.561472222222221, 16.705415625000004, 13.359729136337823, 6.5625, 7.42342843137255, 6.934125, 7.274604999999999, 3.5429177777777783, 2.5123873737373743, 1.462362962962963, 0.0, 18.225, 16.085992592592593, 12.561936868686871, 10.628753333333332, 14.549209999999999, 9.707775, 7.42342843137255, 4.6875, 6.679864568168911, 5.568471875000002, 3.1122944444444447, 1.649630555555556, 0.0), # 24 (18.272533014380844, 18.138824588477366, 15.559670781893006, 16.70394965277778, 13.366037934713404, 6.5625, 7.420679012345679, 6.928240740740742, 7.273912037037037, 3.541463477366256, 2.512189019827909, 1.4621227709190674, 0.0, 18.225, 16.08335048010974, 12.560945099139545, 10.624390432098766, 14.547824074074073, 9.69953703703704, 7.420679012345679, 4.6875, 6.683018967356702, 5.567983217592594, 3.1119341563786014, 1.6489840534979427, 0.0), # 25 (18.290838634286462, 18.128318004115226, 15.557005144032923, 16.70177534722222, 13.372204642105325, 6.5625, 7.416618046477849, 6.919578703703704, 7.27288574074074, 3.539317818930042, 2.511894145155257, 1.4617673525377233, 0.0, 18.225, 16.079440877914955, 12.559470725776283, 10.617953456790124, 14.54577148148148, 9.687410185185186, 7.416618046477849, 4.6875, 6.686102321052663, 5.567258449074075, 3.111401028806585, 1.648028909465021, 0.0), # 26 (18.308737770689945, 18.114524999999997, 15.553500000000001, 16.698909375, 13.378229038253057, 6.5625, 7.411288235294118, 6.908250000000002, 7.271535, 3.5365050000000005, 2.5115045454545455, 1.4613000000000003, 0.0, 18.225, 16.0743, 12.557522727272728, 10.609514999999998, 14.54307, 9.671550000000002, 7.411288235294118, 4.6875, 6.689114519126528, 5.566303125, 3.1107000000000005, 1.646775, 0.0), # 27 (18.3262289911029, 18.097554218106993, 15.549180041152265, 16.695368402777778, 13.384110902896083, 6.5625, 7.404732280319536, 6.894365740740742, 7.269868703703704, 3.533049218106997, 2.5110220164609056, 1.4607240054869688, 0.0, 18.225, 16.067964060356655, 12.555110082304529, 10.599147654320989, 14.539737407407408, 9.652112037037039, 7.404732280319536, 4.6875, 6.6920554514480415, 5.565122800925927, 3.1098360082304533, 1.6452322016460905, 0.0), # 28 (18.34331086303695, 18.077514300411522, 15.54406995884774, 16.69116909722222, 13.389850015773863, 6.5625, 7.396992883079159, 6.8780370370370365, 7.267895740740741, 3.5289746707818943, 2.510448353909465, 1.4600426611796984, 0.0, 18.225, 16.06046927297668, 12.552241769547326, 10.58692401234568, 14.535791481481482, 9.629251851851851, 7.396992883079159, 4.6875, 6.694925007886932, 5.563723032407409, 3.1088139917695483, 1.6434103909465023, 0.0), # 29 (18.359981954003697, 18.054513888888888, 15.538194444444445, 16.686328125000003, 13.395446156625884, 6.5625, 7.388112745098039, 6.859375, 7.265625, 3.5243055555555567, 2.509785353535354, 1.4592592592592593, 0.0, 18.225, 16.05185185185185, 12.548926767676768, 10.572916666666668, 14.53125, 9.603125, 7.388112745098039, 4.6875, 6.697723078312942, 5.562109375000001, 3.107638888888889, 1.6413194444444446, 0.0), # 30 (18.376240831514746, 18.028661625514406, 15.531578189300415, 16.680862152777777, 13.400899105191609, 6.5625, 7.378134567901236, 6.838490740740741, 7.26306537037037, 3.5190660699588485, 2.5090348110737, 1.458377091906722, 0.0, 18.225, 16.04214801097394, 12.5451740553685, 10.557198209876542, 14.52613074074074, 9.573887037037037, 7.378134567901236, 4.6875, 6.7004495525958045, 5.56028738425926, 3.106315637860083, 1.638969238683128, 0.0), # 31 (18.392086063081717, 18.000066152263376, 15.524245884773661, 16.674787847222223, 13.406208641210513, 6.5625, 7.3671010530137995, 6.815495370370372, 7.260225740740741, 3.5132804115226346, 2.5081985222596335, 1.4573994513031552, 0.0, 18.225, 16.031393964334704, 12.540992611298167, 10.539841234567902, 14.520451481481482, 9.541693518518521, 7.3671010530137995, 4.6875, 6.703104320605257, 5.558262615740742, 3.1048491769547324, 1.6363696502057616, 0.0), # 32 (18.407516216216216, 17.96883611111111, 15.516222222222224, 16.668121874999997, 13.411374544422076, 6.5625, 7.355054901960784, 6.790500000000001, 7.257115, 3.506972777777779, 2.507278282828283, 1.4563296296296298, 0.0, 18.225, 16.019625925925926, 12.536391414141413, 10.520918333333334, 14.51423, 9.5067, 7.355054901960784, 4.6875, 6.705687272211038, 5.5560406250000005, 3.103244444444445, 1.6335305555555555, 0.0), # 33 (18.422529858429858, 17.93508014403292, 15.507531893004115, 16.660880902777777, 13.41639659456576, 6.5625, 7.342038816267248, 6.7636157407407405, 7.253742037037037, 3.500167366255145, 2.5062758885147773, 1.4551709190672155, 0.0, 18.225, 16.006880109739367, 12.531379442573886, 10.500502098765432, 14.507484074074075, 9.469062037037038, 7.342038816267248, 4.6875, 6.70819829728288, 5.553626967592593, 3.1015063786008232, 1.6304618312757202, 0.0), # 34 (18.437125557234253, 17.898906893004114, 15.49819958847737, 16.65308159722222, 13.421274571381044, 6.5625, 7.328095497458243, 6.734953703703703, 7.250115740740741, 3.4928883744855974, 2.5051931350542462, 1.4539266117969825, 0.0, 18.225, 15.993192729766804, 12.52596567527123, 10.47866512345679, 14.500231481481482, 9.428935185185185, 7.328095497458243, 4.6875, 6.710637285690522, 5.551027199074074, 3.099639917695474, 1.627173353909465, 0.0), # 35 (18.45130188014101, 17.860424999999996, 15.488249999999999, 16.644740624999997, 13.426008254607403, 6.5625, 7.313267647058823, 6.704625000000001, 7.246244999999999, 3.485160000000001, 2.504031818181818, 1.4526000000000006, 0.0, 18.225, 15.978600000000004, 12.520159090909091, 10.45548, 14.492489999999998, 9.386475, 7.313267647058823, 4.6875, 6.7130041273037016, 5.548246875, 3.0976500000000002, 1.623675, 0.0), # 36 (18.46505739466174, 17.819743106995883, 15.477707818930043, 16.63587465277778, 13.430597423984304, 6.5625, 7.2975979665940445, 6.672740740740741, 7.242138703703703, 3.477006440329219, 2.502793733632623, 1.451194375857339, 0.0, 18.225, 15.963138134430727, 12.513968668163116, 10.431019320987655, 14.484277407407406, 9.341837037037038, 7.2975979665940445, 4.6875, 6.715298711992152, 5.545291550925927, 3.0955415637860084, 1.619976646090535, 0.0), # 37 (18.47839066830806, 17.776969855967078, 15.466597736625513, 16.626500347222226, 13.435041859251228, 6.5625, 7.281129157588961, 6.639412037037038, 7.237805740740741, 3.4684518930041164, 2.5014806771417883, 1.4497130315500688, 0.0, 18.225, 15.946843347050754, 12.507403385708942, 10.405355679012347, 14.475611481481481, 9.295176851851854, 7.281129157588961, 4.6875, 6.717520929625614, 5.542166782407409, 3.0933195473251027, 1.61608816872428, 0.0), # 38 (18.491300268591576, 17.732213888888886, 15.454944444444445, 16.616634375, 13.439341340147644, 6.5625, 7.2639039215686285, 6.60475, 7.233255000000001, 3.4595205555555566, 2.500094444444445, 1.4481592592592594, 0.0, 18.225, 15.92975185185185, 12.500472222222223, 10.378561666666666, 14.466510000000001, 9.24665, 7.2639039215686285, 4.6875, 6.719670670073822, 5.538878125000001, 3.0909888888888895, 1.6120194444444444, 0.0), # 39 (18.503784763023894, 17.685583847736623, 15.442772633744857, 16.60629340277778, 13.443495646413021, 6.5625, 7.245964960058098, 6.568865740740742, 7.228495370370371, 3.4502366255144046, 2.49863683127572, 1.4465363511659812, 0.0, 18.225, 15.911899862825791, 12.4931841563786, 10.350709876543212, 14.456990740740743, 9.196412037037039, 7.245964960058098, 4.6875, 6.721747823206511, 5.535431134259261, 3.0885545267489714, 1.6077803497942387, 0.0), # 40 (18.51584271911663, 17.637188374485596, 15.430106995884776, 16.595494097222222, 13.447504557786843, 6.5625, 7.2273549745824255, 6.531870370370371, 7.22353574074074, 3.4406243004115233, 2.4971096333707448, 1.4448475994513033, 0.0, 18.225, 15.893323593964332, 12.485548166853723, 10.321872901234567, 14.44707148148148, 9.14461851851852, 7.2273549745824255, 4.6875, 6.723752278893421, 5.531831365740742, 3.0860213991769556, 1.6033807613168727, 0.0), # 41 (18.527472704381402, 17.587136111111114, 15.416972222222224, 16.584253125000004, 13.45136785400857, 6.5625, 7.208116666666666, 6.493875, 7.218385000000001, 3.4307077777777786, 2.4955146464646467, 1.4430962962962963, 0.0, 18.225, 15.874059259259258, 12.477573232323234, 10.292123333333333, 14.436770000000003, 9.091425000000001, 7.208116666666666, 4.6875, 6.725683927004285, 5.5280843750000015, 3.083394444444445, 1.598830555555556, 0.0), # 42 (18.538673286329807, 17.53553569958848, 15.403393004115227, 16.57258715277778, 13.455085314817683, 6.5625, 7.188292737835875, 6.454990740740741, 7.213052037037036, 3.420511255144034, 2.4938536662925554, 1.4412857338820306, 0.0, 18.225, 15.854143072702334, 12.469268331462775, 10.2615337654321, 14.426104074074072, 9.036987037037038, 7.188292737835875, 4.6875, 6.727542657408842, 5.524195717592594, 3.080678600823046, 1.5941396090534983, 0.0), # 43 (18.54944303247347, 17.482495781893004, 15.389394032921814, 16.560512847222224, 13.458656719953654, 6.5625, 7.1679258896151055, 6.415328703703706, 7.2075457407407395, 3.4100589300411532, 2.4921284885895996, 1.439419204389575, 0.0, 18.225, 15.833611248285322, 12.460642442947998, 10.230176790123457, 14.415091481481479, 8.981460185185188, 7.1679258896151055, 4.6875, 6.729328359976827, 5.520170949074076, 3.077878806584363, 1.5893177983539097, 0.0), # 44 (18.55978051032399, 17.428124999999998, 15.375, 16.548046875, 13.462081849155954, 6.5625, 7.147058823529412, 6.375000000000001, 7.201874999999999, 3.3993750000000014, 2.4903409090909094, 1.4375000000000002, 0.0, 18.225, 15.8125, 12.451704545454545, 10.198125000000001, 14.403749999999999, 8.925, 7.147058823529412, 4.6875, 6.731040924577977, 5.516015625000001, 3.075, 1.584375, 0.0), # 45 (18.569684287392985, 17.372531995884774, 15.360235596707819, 16.535205902777776, 13.465360482164058, 6.5625, 7.125734241103849, 6.334115740740741, 7.196048703703703, 3.388483662551441, 2.4884927235316128, 1.4355314128943761, 0.0, 18.225, 15.790845541838134, 12.442463617658062, 10.16545098765432, 14.392097407407405, 8.86776203703704, 7.125734241103849, 4.6875, 6.732680241082029, 5.511735300925927, 3.072047119341564, 1.5793210905349795, 0.0), # 46 (18.579152931192063, 17.31582541152263, 15.345125514403293, 16.522006597222223, 13.46849239871744, 6.5625, 7.103994843863473, 6.292787037037037, 7.190075740740742, 3.3774091152263384, 2.486585727646839, 1.4335167352537728, 0.0, 18.225, 15.768684087791497, 12.432928638234193, 10.132227345679013, 14.380151481481484, 8.809901851851851, 7.103994843863473, 4.6875, 6.73424619935872, 5.507335532407408, 3.069025102880659, 1.5741659465020577, 0.0), # 47 (18.588185009232834, 17.258113888888886, 15.329694444444444, 16.508465625, 13.471477378555573, 6.5625, 7.081883333333334, 6.251125000000001, 7.183965000000001, 3.3661755555555564, 2.4846217171717173, 1.4314592592592594, 0.0, 18.225, 15.746051851851853, 12.423108585858586, 10.098526666666666, 14.367930000000001, 8.751575, 7.081883333333334, 4.6875, 6.735738689277786, 5.502821875000001, 3.065938888888889, 1.5689194444444445, 0.0), # 48 (18.596779089026917, 17.199506069958847, 15.313967078189304, 16.49459965277778, 13.47431520141793, 6.5625, 7.059442411038489, 6.209240740740741, 7.17772537037037, 3.35480718106996, 2.4826024878413775, 1.4293622770919072, 0.0, 18.225, 15.722985048010976, 12.413012439206886, 10.064421543209878, 14.35545074074074, 8.692937037037037, 7.059442411038489, 4.6875, 6.737157600708965, 5.498199884259261, 3.0627934156378607, 1.5635914609053498, 0.0), # 49 (18.604933738085908, 17.140110596707824, 15.297968106995889, 16.480425347222223, 13.477005647043978, 6.5625, 7.0367147785039945, 6.16724537037037, 7.1713657407407405, 3.3433281893004123, 2.480529835390947, 1.427229080932785, 0.0, 18.225, 15.699519890260632, 12.402649176954732, 10.029984567901234, 14.342731481481481, 8.634143518518519, 7.0367147785039945, 4.6875, 6.738502823521989, 5.4934751157407415, 3.059593621399178, 1.5581918724279842, 0.0), # 50 (18.61264752392144, 17.080036111111113, 15.281722222222223, 16.465959375, 13.479548495173198, 6.5625, 7.013743137254902, 6.12525, 7.164895000000001, 3.3317627777777785, 2.478405555555556, 1.4250629629629634, 0.0, 18.225, 15.675692592592595, 12.392027777777779, 9.995288333333333, 14.329790000000003, 8.57535, 7.013743137254902, 4.6875, 6.739774247586599, 5.488653125000001, 3.0563444444444445, 1.552730555555556, 0.0), # 51 (18.619919014045102, 17.019391255144033, 15.26525411522634, 16.45121840277778, 13.481943525545056, 6.5625, 6.9905701888162675, 6.08336574074074, 7.158322037037037, 3.320135144032923, 2.4762314440703332, 1.4228672153635122, 0.0, 18.225, 15.651539368998632, 12.381157220351666, 9.960405432098767, 14.316644074074073, 8.516712037037037, 6.9905701888162675, 4.6875, 6.740971762772528, 5.483739467592594, 3.0530508230452678, 1.547217386831276, 0.0), # 52 (18.626746775968517, 16.958284670781893, 15.248588477366258, 16.43621909722222, 13.484190517899034, 6.5625, 6.967238634713145, 6.041703703703704, 7.1516557407407415, 3.3084694855967087, 2.4740092966704084, 1.4206451303155008, 0.0, 18.225, 15.627096433470507, 12.37004648335204, 9.925408456790123, 14.303311481481483, 8.458385185185186, 6.967238634713145, 4.6875, 6.742095258949517, 5.478739699074075, 3.049717695473252, 1.5416622427983542, 0.0), # 53 (18.63312937720329, 16.896825000000003, 15.23175, 16.420978125, 13.486289251974604, 6.5625, 6.943791176470588, 6.000374999999999, 7.144905, 3.296790000000001, 2.4717409090909093, 1.4184000000000003, 0.0, 18.225, 15.602400000000001, 12.358704545454545, 9.89037, 14.28981, 8.400525, 6.943791176470588, 4.6875, 6.743144625987302, 5.473659375000001, 3.04635, 1.5360750000000005, 0.0), # 54 (18.63906538526104, 16.835120884773662, 15.2147633744856, 16.405512152777778, 13.488239507511228, 6.5625, 6.9202705156136535, 5.9594907407407405, 7.1380787037037035, 3.2851208847736637, 2.4694280770669663, 1.4161351165980798, 0.0, 18.225, 15.577486282578874, 12.34714038533483, 9.855362654320988, 14.276157407407407, 8.343287037037037, 6.9202705156136535, 4.6875, 6.744119753755614, 5.468504050925927, 3.04295267489712, 1.530465534979424, 0.0), # 55 (18.64455336765337, 16.77328096707819, 15.197653292181073, 16.389837847222225, 13.49004106424839, 6.5625, 6.896719353667393, 5.9191620370370375, 7.131185740740741, 3.2734863374485608, 2.467072596333708, 1.4138537722908093, 0.0, 18.225, 15.5523914951989, 12.335362981668538, 9.82045901234568, 14.262371481481482, 8.286826851851853, 6.896719353667393, 4.6875, 6.745020532124195, 5.463279282407409, 3.0395306584362145, 1.5248437242798356, 0.0), # 56 (18.649591891891887, 16.711413888888888, 15.180444444444445, 16.373971875, 13.49169370192556, 6.5625, 6.873180392156863, 5.879500000000001, 7.124235, 3.2619105555555565, 2.4646762626262633, 1.4115592592592594, 0.0, 18.225, 15.527151851851851, 12.323381313131314, 9.785731666666667, 14.24847, 8.231300000000001, 6.873180392156863, 4.6875, 6.74584685096278, 5.457990625000001, 3.0360888888888895, 1.5192194444444447, 0.0), # 57 (18.654179525488225, 16.64962829218107, 15.163161522633745, 16.357930902777774, 13.49319720028221, 6.5625, 6.849696332607118, 5.840615740740741, 7.11723537037037, 3.2504177366255154, 2.4622408716797612, 1.4092548696844995, 0.0, 18.225, 15.501803566529492, 12.311204358398806, 9.751253209876543, 14.23447074074074, 8.176862037037038, 6.849696332607118, 4.6875, 6.746598600141105, 5.4526436342592595, 3.032632304526749, 1.5136025720164612, 0.0), # 58 (18.658314835953966, 16.58803281893004, 15.145829218106996, 16.34173159722222, 13.494551339057814, 6.5625, 6.82630987654321, 5.802620370370371, 7.110195740740741, 3.2390320781893016, 2.4597682192293306, 1.4069438957475995, 0.0, 18.225, 15.476382853223592, 12.298841096146651, 9.717096234567903, 14.220391481481482, 8.12366851851852, 6.82630987654321, 4.6875, 6.747275669528907, 5.447243865740742, 3.0291658436213997, 1.5080029835390947, 0.0), # 59 (18.661996390800738, 16.526736111111113, 15.128472222222221, 16.325390625, 13.495755897991843, 6.5625, 6.803063725490196, 5.765625, 7.103125, 3.2277777777777787, 2.4572601010101014, 1.40462962962963, 0.0, 18.225, 15.450925925925928, 12.286300505050505, 9.683333333333334, 14.20625, 8.071875, 6.803063725490196, 4.6875, 6.747877948995922, 5.441796875000001, 3.0256944444444445, 1.502430555555556, 0.0), # 60 (18.665222757540146, 16.465846810699592, 15.111115226337452, 16.308924652777776, 13.496810656823772, 6.5625, 6.780000580973129, 5.729740740740741, 7.0960320370370376, 3.216679032921812, 2.4547183127572016, 1.40231536351166, 0.0, 18.225, 15.425468998628258, 12.273591563786008, 9.650037098765434, 14.192064074074075, 8.021637037037038, 6.780000580973129, 4.6875, 6.748405328411886, 5.436308217592593, 3.0222230452674905, 1.496895164609054, 0.0), # 61 (18.66799250368381, 16.40547355967078, 15.093782921810703, 16.292350347222225, 13.497715395293081, 6.5625, 6.757163144517066, 5.695078703703705, 7.088925740740741, 3.2057600411522644, 2.4521446502057613, 1.4000043895747603, 0.0, 18.225, 15.40004828532236, 12.260723251028807, 9.61728012345679, 14.177851481481483, 7.973110185185186, 6.757163144517066, 4.6875, 6.748857697646541, 5.430783449074076, 3.018756584362141, 1.4914066872427985, 0.0), # 62 (18.670304196743327, 16.345724999999998, 15.0765, 16.275684375, 13.498469893139227, 6.5625, 6.734594117647059, 5.6617500000000005, 7.081815, 3.195045000000001, 2.4495409090909095, 1.3977000000000002, 0.0, 18.225, 15.3747, 12.247704545454548, 9.585135, 14.16363, 7.926450000000001, 6.734594117647059, 4.6875, 6.749234946569613, 5.425228125000001, 3.0153000000000003, 1.485975, 0.0), # 63 (18.672156404230314, 16.286709773662555, 15.059291152263373, 16.258943402777778, 13.499073930101698, 6.5625, 6.712336201888163, 5.629865740740741, 7.0747087037037035, 3.1845581069958855, 2.446908885147774, 1.3954054869684502, 0.0, 18.225, 15.34946035665295, 12.23454442573887, 9.553674320987653, 14.149417407407407, 7.881812037037038, 6.712336201888163, 4.6875, 6.749536965050849, 5.419647800925927, 3.011858230452675, 1.4806099794238687, 0.0), # 64 (18.67354769365639, 16.228536522633743, 15.042181069958849, 16.242144097222223, 13.49952728591996, 6.5625, 6.690432098765433, 5.599537037037037, 7.067615740740742, 3.1743235596707824, 2.4442503741114856, 1.3931241426611796, 0.0, 18.225, 15.324365569272972, 12.221251870557428, 9.522970679012344, 14.135231481481483, 7.839351851851852, 6.690432098765433, 4.6875, 6.74976364295998, 5.4140480324074085, 3.00843621399177, 1.4753215020576131, 0.0), # 65 (18.674476632533153, 16.17131388888889, 15.025194444444447, 16.225303125, 13.499829740333489, 6.5625, 6.668924509803921, 5.570875000000001, 7.060545000000001, 3.1643655555555563, 2.4415671717171716, 1.3908592592592597, 0.0, 18.225, 15.299451851851854, 12.207835858585858, 9.493096666666666, 14.121090000000002, 7.799225000000001, 6.668924509803921, 4.6875, 6.749914870166744, 5.408434375000001, 3.0050388888888895, 1.4701194444444448, 0.0), # 66 (18.674941788372227, 16.11515051440329, 15.00835596707819, 16.208437152777776, 13.499981073081756, 6.5625, 6.647856136528685, 5.543990740740742, 7.05350537037037, 3.154708292181071, 2.438861073699963, 1.3886141289437586, 0.0, 18.225, 15.274755418381341, 12.194305368499816, 9.464124876543211, 14.10701074074074, 7.761587037037039, 6.647856136528685, 4.6875, 6.749990536540878, 5.40281238425926, 3.001671193415638, 1.465013683127572, 0.0), # 67 (18.674624906065485, 16.059860254878533, 14.99160892489712, 16.19141634963768, 13.499853546356814, 6.56237821216278, 6.627163675346682, 5.518757887517148, 7.046452709190673, 3.145329198741226, 2.436085796562113, 1.3863795032849615, 0.0, 18.22477527006173, 15.250174536134574, 12.180428982810565, 9.435987596223676, 14.092905418381346, 7.726261042524007, 6.627163675346682, 4.6874130086877, 6.749926773178407, 5.3971387832125615, 2.998321784979424, 1.4599872958980487, 0.0), # 68 (18.671655072463768, 16.00375510752688, 14.974482638888889, 16.173382744565217, 13.498692810457515, 6.561415432098766, 6.606241363211952, 5.493824074074074, 7.039078703703703, 3.1359628758169937, 2.4329588516746417, 1.3840828460038987, 0.0, 18.222994791666668, 15.224911306042884, 12.164794258373206, 9.407888627450978, 14.078157407407407, 7.6913537037037045, 6.606241363211952, 4.686725308641976, 6.749346405228757, 5.391127581521739, 2.994896527777778, 1.4548868279569895, 0.0), # 69 (18.665794417606012, 15.946577558741536, 14.956902649176953, 16.154217617753623, 13.496399176954732, 6.559519318701418, 6.5849941211052325, 5.468964334705077, 7.031341735253773, 3.1265637860082314, 2.429444665957824, 1.3817134141939216, 0.0, 18.219478202160495, 15.198847556133135, 12.147223329789119, 9.379691358024692, 14.062683470507546, 7.656550068587107, 6.5849941211052325, 4.685370941929584, 6.748199588477366, 5.384739205917875, 2.9913805298353906, 1.4496888689765035, 0.0), # 70 (18.657125389157272, 15.888361778176023, 14.938875128600824, 16.133949230072467, 13.493001694504963, 6.556720598994056, 6.56343149358509, 5.444186899862826, 7.023253326474624, 3.1171321617041885, 2.425556211235159, 1.3792729405819073, 0.0, 18.21427179783951, 15.172002346400978, 12.127781056175793, 9.351396485112563, 14.046506652949247, 7.621861659807958, 6.56343149358509, 4.683371856424325, 6.746500847252482, 5.377983076690823, 2.987775025720165, 1.4443965252887296, 0.0), # 71 (18.64573043478261, 15.82914193548387, 14.92040625, 16.112605842391304, 13.488529411764706, 6.553050000000001, 6.541563025210084, 5.4195, 7.014825, 3.1076682352941183, 2.421306459330144, 1.376763157894737, 0.0, 18.207421875, 15.144394736842104, 12.10653229665072, 9.323004705882353, 14.02965, 7.587300000000001, 6.541563025210084, 4.680750000000001, 6.744264705882353, 5.370868614130436, 2.98408125, 1.4390129032258066, 0.0), # 72 (18.631692002147076, 15.768952200318596, 14.90150218621399, 16.09021571557971, 13.483011377390461, 6.548538248742569, 6.519398260538782, 5.394911865569274, 7.006068278463649, 3.0981722391672726, 2.4167083820662767, 1.374185798859288, 0.0, 18.198974729938275, 15.116043787452165, 12.083541910331384, 9.294516717501814, 14.012136556927299, 7.552876611796983, 6.519398260538782, 4.677527320530407, 6.741505688695231, 5.363405238526571, 2.9803004372427986, 1.4335411091198726, 0.0), # 73 (18.61509253891573, 15.707826742333731, 14.882169110082302, 16.06680711050725, 13.47647664003873, 6.543216072245086, 6.49694674412975, 5.37043072702332, 6.996994684499314, 3.0886444057129037, 2.411774951267057, 1.3715425962024403, 0.0, 18.18897665895062, 15.086968558226841, 12.058874756335285, 9.26593321713871, 13.993989368998628, 7.518603017832648, 6.49694674412975, 4.673725765889347, 6.738238320019365, 5.355602370169083, 2.976433822016461, 1.4279842493030668, 0.0), # 74 (18.59601449275362, 15.645799731182793, 14.862413194444443, 16.04240828804348, 13.468954248366014, 6.537114197530865, 6.47421802054155, 5.346064814814815, 6.98761574074074, 3.0790849673202625, 2.406519138755981, 1.3688352826510723, 0.0, 18.177473958333334, 15.057188109161793, 12.032595693779903, 9.237254901960785, 13.97523148148148, 7.484490740740742, 6.47421802054155, 4.669367283950618, 6.734477124183007, 5.347469429347827, 2.9724826388888888, 1.422345430107527, 0.0), # 75 (18.57454031132582, 15.582905336519316, 14.842240612139918, 16.01704750905797, 13.460473251028805, 6.53026335162323, 6.451221634332746, 5.321822359396434, 6.977942969821673, 3.069494156378602, 2.400953916356548, 1.3660655909320625, 0.0, 18.164512924382716, 15.026721500252684, 12.004769581782737, 9.208482469135802, 13.955885939643347, 7.450551303155008, 6.451221634332746, 4.664473822588021, 6.730236625514403, 5.339015836352658, 2.9684481224279837, 1.4166277578653925, 0.0), # 76 (18.55075244229737, 15.519177727996816, 14.821657536008228, 15.99075303442029, 13.451062696683609, 6.522694261545496, 6.4279671300619015, 5.2977115912208514, 6.967987894375857, 3.059872205277174, 2.3950922558922563, 1.3632352537722912, 0.0, 18.150139853395064, 14.9955877914952, 11.975461279461282, 9.179616615831518, 13.935975788751714, 7.416796227709193, 6.4279671300619015, 4.659067329675354, 6.725531348341804, 5.330251011473431, 2.964331507201646, 1.4108343389088016, 0.0), # 77 (18.524733333333334, 15.45465107526882, 14.80067013888889, 15.963553124999999, 13.440751633986928, 6.514437654320987, 6.404464052287582, 5.273740740740742, 6.957762037037036, 3.0502193464052296, 2.388947129186603, 1.3603460038986357, 0.0, 18.134401041666667, 14.963806042884991, 11.944735645933015, 9.150658039215687, 13.915524074074073, 7.383237037037039, 6.404464052287582, 4.653169753086419, 6.720375816993464, 5.3211843750000005, 2.960134027777778, 1.404968279569893, 0.0), # 78 (18.496565432098766, 15.389359547988851, 14.779284593621398, 15.935476041666668, 13.429569111595256, 6.505524256973022, 6.380721945568351, 5.249918038408779, 6.947276920438957, 3.0405358121520223, 2.382531508063087, 1.3573995740379758, 0.0, 18.117342785493825, 14.931395314417731, 11.912657540315433, 9.121607436456063, 13.894553840877913, 7.349885253772292, 6.380721945568351, 4.646803040695016, 6.714784555797628, 5.311825347222223, 2.95585691872428, 1.399032686180805, 0.0), # 79 (18.466331186258724, 15.323337315810434, 14.757507073045266, 15.906550045289855, 13.417544178165095, 6.49598479652492, 6.356750354462773, 5.226251714677641, 6.9365440672153635, 3.030821834906803, 2.375858364345207, 1.3543976969171905, 0.0, 18.09901138117284, 14.898374666089092, 11.879291821726033, 9.092465504720405, 13.873088134430727, 7.316752400548698, 6.356750354462773, 4.639989140374943, 6.708772089082547, 5.302183348429953, 2.9515014146090537, 1.3930306650736761, 0.0), # 80 (18.434113043478263, 15.256618548387095, 14.735343749999998, 15.876803396739131, 13.404705882352939, 6.48585, 6.3325588235294115, 5.202750000000001, 6.925574999999999, 3.0210776470588248, 2.36894066985646, 1.3513421052631582, 0.0, 18.079453124999997, 14.864763157894737, 11.844703349282298, 9.063232941176471, 13.851149999999999, 7.283850000000001, 6.3325588235294115, 4.63275, 6.7023529411764695, 5.292267798913045, 2.94706875, 1.3869653225806453, 0.0), # 81 (18.399993451422436, 15.189237415372364, 14.712800797325105, 15.846264356884058, 13.391083272815298, 6.475150594421583, 6.308156897326833, 5.179421124828533, 6.914381241426612, 3.011303480997338, 2.3617913964203443, 1.3482345318027582, 0.0, 18.058714313271608, 14.830579849830338, 11.80895698210172, 9.03391044299201, 13.828762482853223, 7.2511895747599455, 6.308156897326833, 4.625107567443988, 6.695541636407649, 5.2820881189613536, 2.9425601594650215, 1.3808397650338515, 0.0), # 82 (18.364054857756308, 15.121228086419752, 14.689884387860083, 15.8149611865942, 13.376705398208665, 6.463917306812986, 6.283554120413598, 5.156273319615913, 6.902974314128944, 3.001499569111596, 2.3544235158603586, 1.3450767092628693, 0.0, 18.036841242283952, 14.79584380189156, 11.772117579301792, 9.004498707334786, 13.805948628257887, 7.218782647462278, 6.283554120413598, 4.617083790580704, 6.688352699104333, 5.2716537288647345, 2.9379768775720168, 1.374657098765432, 0.0), # 83 (18.326379710144927, 15.052624731182796, 14.666600694444444, 15.78292214673913, 13.361601307189542, 6.452180864197532, 6.258760037348273, 5.133314814814815, 6.89136574074074, 2.9916661437908503, 2.3468500000000003, 1.3418703703703705, 0.0, 18.013880208333333, 14.760574074074073, 11.73425, 8.97499843137255, 13.78273148148148, 7.186640740740741, 6.258760037348273, 4.608700617283951, 6.680800653594771, 5.260974048913044, 2.933320138888889, 1.3684204301075271, 0.0), # 84 (18.287050456253354, 14.983461519315012, 14.642955889917694, 15.750175498188408, 13.345800048414427, 6.439971993598538, 6.233784192689422, 5.110553840877915, 6.879567043895747, 2.981803437424353, 2.3390838206627684, 1.338617247852141, 0.0, 17.989877507716052, 14.724789726373547, 11.69541910331384, 8.945410312273058, 13.759134087791494, 7.154775377229082, 6.233784192689422, 4.5999799954275264, 6.672900024207213, 5.250058499396137, 2.928591177983539, 1.362132865392274, 0.0), # 85 (18.246149543746643, 14.913772620469931, 14.618956147119343, 15.716749501811597, 13.32933067053982, 6.427321422039324, 6.208636130995608, 5.087998628257887, 6.86758974622771, 2.9719116824013563, 2.3311379496721605, 1.3353190744350594, 0.0, 17.964879436728395, 14.68850981878565, 11.655689748360802, 8.915735047204068, 13.73517949245542, 7.123198079561043, 6.208636130995608, 4.590943872885232, 6.66466533526991, 5.2389165006038665, 2.923791229423869, 1.3557975109518121, 0.0), # 86 (18.203759420289852, 14.843592204301075, 14.594607638888888, 15.68267241847826, 13.312222222222225, 6.41425987654321, 6.1833253968253965, 5.065657407407408, 6.855445370370372, 2.9619911111111112, 2.323025358851675, 1.3319775828460039, 0.0, 17.938932291666667, 14.651753411306041, 11.615126794258373, 8.885973333333332, 13.710890740740744, 7.091920370370371, 6.1833253968253965, 4.581614197530865, 6.656111111111112, 5.227557472826088, 2.9189215277777776, 1.3494174731182798, 0.0), # 87 (18.159962533548043, 14.772954440461966, 14.569916538065844, 15.647972509057974, 13.294503752118132, 6.400818084133517, 6.157861534737352, 5.043538408779149, 6.843145438957476, 2.952041955942871, 2.31475902002481, 1.328594505811855, 0.0, 17.912082368827164, 14.614539563930402, 11.573795100124048, 8.856125867828611, 13.686290877914953, 7.06095377229081, 6.157861534737352, 4.572012917238227, 6.647251876059066, 5.215990836352659, 2.913983307613169, 1.3429958582238153, 0.0), # 88 (18.11484133118626, 14.701893498606132, 14.544889017489714, 15.612678034420288, 13.276204308884047, 6.387026771833563, 6.132254089290037, 5.0216498628257895, 6.830701474622771, 2.942064449285888, 2.3063519050150636, 1.3251715760594904, 0.0, 17.884375964506173, 14.576887336654393, 11.531759525075316, 8.826193347857663, 13.661402949245542, 7.0303098079561055, 6.132254089290037, 4.562161979881116, 6.638102154442024, 5.2042260114734304, 2.908977803497943, 1.3365357726005578, 0.0), # 89 (18.068478260869565, 14.630443548387097, 14.519531250000002, 15.576817255434786, 13.257352941176471, 6.372916666666668, 6.106512605042017, 5.0, 6.818125, 2.9320588235294123, 2.2978169856459334, 1.3217105263157898, 0.0, 17.855859375, 14.538815789473684, 11.489084928229666, 8.796176470588236, 13.63625, 7.0, 6.106512605042017, 4.552083333333334, 6.6286764705882355, 5.192272418478263, 2.903906250000001, 1.3300403225806454, 0.0), # 90 (18.020955770263015, 14.558638759458383, 14.493849408436214, 15.540418432971018, 13.237978697651899, 6.35851849565615, 6.0806466265518555, 4.978597050754459, 6.80542753772291, 2.922025311062697, 2.2891672337409186, 1.3182130893076314, 0.0, 17.826578896604936, 14.500343982383942, 11.445836168704592, 8.76607593318809, 13.61085507544582, 6.9700358710562424, 6.0806466265518555, 4.541798925468679, 6.6189893488259495, 5.180139477657007, 2.898769881687243, 1.3235126144962168, 0.0), # 91 (17.97235630703167, 14.486513301473519, 14.467849665637862, 15.50350982789855, 13.218110626966835, 6.343862985825332, 6.054665698378118, 4.957449245541839, 6.7926206104252405, 2.9119641442749944, 2.2804156211235163, 1.3146809977618947, 0.0, 17.796580825617283, 14.46149097538084, 11.40207810561758, 8.735892432824983, 13.585241220850481, 6.940428943758574, 6.054665698378118, 4.531330704160951, 6.609055313483418, 5.167836609299518, 2.8935699331275724, 1.3169557546794108, 0.0), # 92 (17.92276231884058, 14.414101344086022, 14.441538194444446, 15.46611970108696, 13.197777777777777, 6.328980864197531, 6.0285793650793655, 4.936564814814815, 6.779715740740741, 2.9018755555555558, 2.2715751196172254, 1.3111159844054583, 0.0, 17.76591145833333, 14.422275828460037, 11.357875598086125, 8.705626666666666, 13.559431481481482, 6.911190740740742, 6.0285793650793655, 4.520700617283951, 6.598888888888888, 5.155373233695654, 2.888307638888889, 1.3103728494623659, 0.0), # 93 (17.872256253354806, 14.341437056949422, 14.414921167695475, 15.428276313405796, 13.177009198741224, 6.313902857796068, 6.002397171214165, 4.915951989026064, 6.766724451303155, 2.891759777293634, 2.2626587010455435, 1.3075197819652014, 0.0, 17.734617091049383, 14.382717601617212, 11.313293505227715, 8.675279331880901, 13.53344890260631, 6.88233278463649, 6.002397171214165, 4.509930612711477, 6.588504599370612, 5.1427587711352665, 2.882984233539095, 1.3037670051772203, 0.0), # 94 (17.820920558239397, 14.268554609717246, 14.388004758230455, 15.390007925724635, 13.155833938513677, 6.298659693644262, 5.97612866134108, 4.895618998628259, 6.753658264746228, 2.88161704187848, 2.253679337231969, 1.3038941231680024, 0.0, 17.70274402006173, 14.342835354848022, 11.268396686159845, 8.644851125635439, 13.507316529492456, 6.853866598079563, 5.97612866134108, 4.49904263831733, 6.577916969256838, 5.130002641908213, 2.8776009516460914, 1.2971413281561135, 0.0), # 95 (17.76883768115942, 14.195488172043014, 14.360795138888891, 15.351342798913045, 13.134281045751635, 6.283282098765432, 5.9497833800186735, 4.875574074074075, 6.740528703703703, 2.8714475816993468, 2.2446500000000005, 1.300240740740741, 0.0, 17.67033854166667, 14.30264814814815, 11.22325, 8.614342745098039, 13.481057407407405, 6.825803703703705, 5.9497833800186735, 4.488058641975309, 6.5671405228758175, 5.117114266304349, 2.8721590277777787, 1.2904989247311833, 0.0), # 96 (17.716090069779927, 14.12227191358025, 14.333298482510289, 15.31230919384058, 13.112379569111596, 6.267800800182899, 5.9233708718055125, 4.855825445816188, 6.727347290809328, 2.8612516291454857, 2.235583661173135, 1.2965613674102956, 0.0, 17.637446952160495, 14.262175041513249, 11.177918305865674, 8.583754887436456, 13.454694581618655, 6.798155624142662, 5.9233708718055125, 4.477000571559214, 6.556189784555798, 5.104103064613527, 2.8666596965020577, 1.2838429012345685, 0.0), # 97 (17.66276017176597, 14.048940003982477, 14.305520961934155, 15.27293537137681, 13.090158557250064, 6.252246524919983, 5.896900681260158, 4.83638134430727, 6.714125548696844, 2.851029416606149, 2.226493292574872, 1.2928577359035447, 0.0, 17.604115547839505, 14.22143509493899, 11.13246646287436, 8.553088249818446, 13.428251097393687, 6.770933882030178, 5.896900681260158, 4.465890374942845, 6.545079278625032, 5.090978457125605, 2.8611041923868314, 1.277176363998407, 0.0), # 98 (17.608930434782607, 13.975526612903225, 14.277468750000002, 15.233249592391303, 13.067647058823532, 6.23665, 5.870382352941177, 4.8172500000000005, 6.700875, 2.8407811764705886, 2.2173918660287084, 1.2891315789473687, 0.0, 17.570390625, 14.180447368421053, 11.086959330143541, 8.522343529411764, 13.40175, 6.744150000000001, 5.870382352941177, 4.45475, 6.533823529411766, 5.0777498641304355, 2.8554937500000004, 1.2705024193548389, 0.0), # 99 (17.5546833064949, 13.902065909996015, 14.249148019547325, 15.193280117753623, 13.044874122488501, 6.2210419524462734, 5.843825431407131, 4.798439643347051, 6.687607167352539, 2.8305071411280567, 2.2082923533581433, 1.285384629268645, 0.0, 17.536318479938274, 14.139230921955095, 11.041461766790714, 8.49152142338417, 13.375214334705078, 6.717815500685871, 5.843825431407131, 4.443601394604481, 6.522437061244251, 5.064426705917875, 2.8498296039094653, 1.2638241736360014, 0.0), # 100 (17.500101234567904, 13.828592064914377, 14.22056494341564, 15.153055208333335, 13.021868796901476, 6.205453109282122, 5.817239461216586, 4.7799585048010975, 6.674333573388203, 2.820207542967805, 2.1992077263866743, 1.281618619594253, 0.0, 17.501945408950615, 14.097804815536781, 10.99603863193337, 8.460622628903414, 13.348667146776407, 6.691941906721536, 5.817239461216586, 4.432466506630087, 6.510934398450738, 5.051018402777779, 2.8441129886831282, 1.2571447331740344, 0.0), # 101 (17.44526666666667, 13.755139247311828, 14.191725694444445, 15.112603125, 12.998660130718955, 6.189914197530865, 5.790633986928105, 4.761814814814815, 6.66106574074074, 2.809882614379086, 2.1901509569377993, 1.2778352826510724, 0.0, 17.467317708333336, 14.056188109161795, 10.950754784688995, 8.429647843137257, 13.32213148148148, 6.666540740740741, 5.790633986928105, 4.421367283950618, 6.499330065359477, 5.037534375000001, 2.838345138888889, 1.2504672043010754, 0.0), # 102 (17.390262050456254, 13.681741626841896, 14.16263644547325, 15.071952128623188, 12.975277172597433, 6.174455944215821, 5.764018553100253, 4.7440168038408785, 6.647815192043895, 2.7995325877511505, 2.181135016835017, 1.2740363511659811, 0.0, 17.432481674382714, 14.014399862825789, 10.905675084175085, 8.39859776325345, 13.29563038408779, 6.64162352537723, 5.764018553100253, 4.410325674439872, 6.487638586298717, 5.023984042874397, 2.8325272890946502, 1.2437946933492634, 0.0), # 103 (17.335169833601718, 13.608433373158105, 14.133303369341563, 15.031130480072465, 12.951748971193414, 6.159109076360311, 5.737402704291593, 4.7265727023319615, 6.634593449931413, 2.7891576954732518, 2.1721728779018252, 1.2702235578658583, 0.0, 17.397483603395063, 13.972459136524439, 10.860864389509127, 8.367473086419754, 13.269186899862826, 6.617201783264746, 5.737402704291593, 4.399363625971651, 6.475874485596707, 5.010376826690822, 2.826660673868313, 1.237130306650737, 0.0), # 104 (17.280072463768114, 13.535248655913978, 14.103732638888891, 14.99016644021739, 12.928104575163397, 6.143904320987655, 5.710795985060692, 4.709490740740741, 6.621412037037037, 2.7787581699346413, 2.1632775119617227, 1.2663986354775831, 0.0, 17.362369791666666, 13.930384990253412, 10.816387559808613, 8.336274509803923, 13.242824074074074, 6.5932870370370384, 5.710795985060692, 4.388503086419754, 6.464052287581699, 4.996722146739131, 2.820746527777778, 1.2304771505376346, 0.0), # 105 (17.225052388620504, 13.462221644763043, 14.073930426954732, 14.949088269927536, 12.904373033163882, 6.128872405121171, 5.68420793996611, 4.6927791495198905, 6.608282475994512, 2.7683342435245706, 2.1544618908382067, 1.2625633167280343, 0.0, 17.327186535493826, 13.888196484008375, 10.772309454191033, 8.30500273057371, 13.216564951989024, 6.5698908093278465, 5.68420793996611, 4.377766003657979, 6.452186516581941, 4.98302942330918, 2.8147860853909465, 1.223838331342095, 0.0), # 106 (17.17019205582394, 13.389386509358822, 14.043902906378605, 14.907924230072464, 12.880583393851367, 6.114044055784181, 5.657648113566415, 4.6764461591220865, 6.595216289437586, 2.7578861486322928, 2.145738986354776, 1.2587193343440908, 0.0, 17.29198013117284, 13.845912677784996, 10.728694931773878, 8.273658445896878, 13.190432578875171, 6.547024622770921, 5.657648113566415, 4.367174325560129, 6.440291696925684, 4.969308076690822, 2.808780581275721, 1.2172169553962566, 0.0), # 107 (17.11557391304348, 13.31677741935484, 14.013656250000002, 14.866702581521741, 12.856764705882352, 6.099450000000001, 5.631126050420168, 4.660500000000001, 6.582225000000001, 2.7474141176470597, 2.1371217703349283, 1.2548684210526317, 0.0, 17.256796875000003, 13.803552631578947, 10.685608851674642, 8.242242352941178, 13.164450000000002, 6.524700000000001, 5.631126050420168, 4.356750000000001, 6.428382352941176, 4.955567527173915, 2.8027312500000003, 1.2106161290322583, 0.0), # 108 (17.061280407944178, 13.24442854440462, 13.983196630658439, 14.825451585144926, 12.832946017913338, 6.085120964791952, 5.604651295085936, 4.644948902606311, 6.569320130315501, 2.736918382958122, 2.1286232146021624, 1.2510123095805359, 0.0, 17.221683063271605, 13.761135405385891, 10.64311607301081, 8.210755148874364, 13.138640260631002, 6.502928463648835, 5.604651295085936, 4.346514974851394, 6.416473008956669, 4.941817195048309, 2.796639326131688, 1.2040389585822384, 0.0), # 109 (17.007393988191087, 13.17237405416169, 13.95253022119342, 14.784199501811596, 12.809156378600825, 6.071087677183356, 5.57823339212228, 4.62980109739369, 6.556513203017833, 2.726399176954733, 2.120256290979975, 1.2471527326546823, 0.0, 17.18668499228395, 13.718680059201501, 10.601281454899876, 8.179197530864197, 13.113026406035665, 6.4817215363511655, 5.57823339212228, 4.336491197988112, 6.404578189300413, 4.928066500603866, 2.790506044238684, 1.1974885503783357, 0.0), # 110 (16.953997101449275, 13.10064811827957, 13.921663194444447, 14.742974592391306, 12.785424836601308, 6.0573808641975315, 5.551881886087768, 4.615064814814815, 6.543815740740741, 2.715856732026144, 2.1120339712918663, 1.2432914230019496, 0.0, 17.151848958333336, 13.676205653021444, 10.56016985645933, 8.147570196078432, 13.087631481481482, 6.461090740740741, 5.551881886087768, 4.326700617283951, 6.392712418300654, 4.914324864130436, 2.78433263888889, 1.1909680107526885, 0.0), # 111 (16.90117219538379, 13.029284906411787, 13.890601723251033, 14.701805117753622, 12.76178044057129, 6.044031252857797, 5.5256063215409625, 4.60074828532236, 6.531239266117969, 2.7052912805616076, 2.103969227361333, 1.2394301133492167, 0.0, 17.11722125771605, 13.633731246841382, 10.519846136806663, 8.115873841684822, 13.062478532235938, 6.441047599451304, 5.5256063215409625, 4.3171651806127125, 6.380890220285645, 4.900601705917875, 2.778120344650207, 1.1844804460374354, 0.0), # 112 (16.84890760266548, 12.958437720996821, 13.859426742378105, 14.660775741364255, 12.738210816208445, 6.03106325767524, 5.499473367291093, 4.586889426585454, 6.518827686755172, 2.694737131475729, 2.0960771718458604, 1.2355789404756645, 0.0, 17.0827990215178, 13.591368345232306, 10.480385859229301, 8.084211394427186, 13.037655373510344, 6.421645197219636, 5.499473367291093, 4.307902326910885, 6.369105408104223, 4.886925247121419, 2.7718853484756214, 1.178039792817893, 0.0), # 113 (16.796665616220118, 12.888805352817133, 13.828568512532428, 14.620215718724406, 12.71447202547959, 6.018447338956397, 5.473816387569522, 4.57365844462884, 6.506771421427836, 2.684391825560753, 2.0883733011339594, 1.2317868258169462, 0.0, 17.048295745488062, 13.549655083986407, 10.441866505669795, 8.053175476682258, 13.013542842855673, 6.403121822480377, 5.473816387569522, 4.298890956397426, 6.357236012739795, 4.873405239574803, 2.7657137025064857, 1.1717095775288306, 0.0), # 114 (16.744292825407193, 12.820412877827026, 13.798045399060976, 14.580114081995404, 12.690489213466321, 6.006150688123703, 5.448653685172405, 4.561051990709032, 6.495074987201274, 2.674271397594635, 2.0808463534281283, 1.2280556373838278, 0.0, 17.013611936988678, 13.508612011222104, 10.404231767140642, 8.022814192783905, 12.990149974402549, 6.385472786992645, 5.448653685172405, 4.290107634374073, 6.345244606733161, 4.860038027331802, 2.7596090798121957, 1.165492079802457, 0.0), # 115 (16.691723771827743, 12.753160664131308, 13.767798284975811, 14.540399302859647, 12.666226231660534, 5.994144321151453, 5.423944335775104, 4.549035234674245, 6.483708803536698, 2.6643570113022967, 2.0734817793814444, 1.224378479623102, 0.0, 16.978693067560602, 13.46816327585412, 10.367408896907222, 7.9930710339068884, 12.967417607073395, 6.368649328543944, 5.423944335775104, 4.281531657965324, 6.333113115830267, 4.846799767619883, 2.7535596569951624, 1.1593782421937553, 0.0), # 116 (16.63889299708279, 12.686949079834788, 13.73776805328898, 14.50099985299953, 12.641646931554131, 5.982399254013936, 5.399647415052978, 4.537573346372689, 6.472643289895322, 2.6546298304086586, 2.0662650296469853, 1.2207484569815625, 0.0, 16.943484608744804, 13.428233026797187, 10.331325148234924, 7.963889491225975, 12.945286579790643, 6.352602684921765, 5.399647415052978, 4.2731423242956685, 6.320823465777066, 4.833666617666511, 2.747553610657796, 1.1533590072577082, 0.0), # 117 (16.58573504277338, 12.621678493042284, 13.707895587012551, 14.461844204097451, 12.616715164639011, 5.970886502685445, 5.375721998681383, 4.526631495652572, 6.461848865738361, 2.6450710186386424, 2.0591815548778274, 1.2171586739060027, 0.0, 16.907932032082243, 13.388745412966028, 10.295907774389137, 7.935213055915925, 12.923697731476722, 6.337284093913602, 5.375721998681383, 4.264918930489604, 6.3083575823195055, 4.820614734699151, 2.74157911740251, 1.1474253175492988, 0.0), # 118 (16.532184450500534, 12.557249271858602, 13.678121769158587, 14.422860827835802, 12.591394782407065, 5.9595770831402755, 5.35212716233568, 4.516174852362109, 6.451295950527026, 2.6356617397171678, 2.0522168057270487, 1.2136022348432152, 0.0, 16.87198080911388, 13.349624583275366, 10.261084028635242, 7.906985219151502, 12.902591901054052, 6.322644793306953, 5.35212716233568, 4.256840773671625, 6.295697391203532, 4.807620275945268, 2.7356243538317178, 1.1415681156235096, 0.0), # 119 (16.47817576186529, 12.49356178438856, 13.648387482739144, 14.383978195896983, 12.565649636350196, 5.948442011352714, 5.3288219816912274, 4.506168586349507, 6.440954963722534, 2.626383157369158, 2.045356232847725, 1.2100722442399947, 0.0, 16.835576411380675, 13.31079468663994, 10.226781164238623, 7.879149472107472, 12.881909927445069, 6.308636020889311, 5.3288219816912274, 4.248887150966224, 6.282824818175098, 4.794659398632328, 2.7296774965478288, 1.1357783440353237, 0.0), # 120 (16.423643518468683, 12.430516398736968, 13.618633610766281, 14.345124779963385, 12.539443577960302, 5.937452303297058, 5.305765532423383, 4.49657786746298, 6.430796324786099, 2.6172164353195337, 2.038585286892935, 1.2065618065431336, 0.0, 16.79866431042359, 13.272179871974467, 10.192926434464676, 7.8516493059586, 12.861592649572199, 6.295209014448172, 5.305765532423383, 4.2410373594978985, 6.269721788980151, 4.781708259987796, 2.7237267221532564, 1.1300469453397246, 0.0), # 121 (16.36852226191174, 12.368013483008635, 13.588801036252066, 14.306229051717406, 12.51274045872928, 5.926578974947596, 5.282916890207506, 4.487367865550737, 6.420790453178933, 2.6081427372932153, 2.0318894185157554, 1.2030640261994254, 0.0, 16.761189977783587, 13.233704288193676, 10.159447092578777, 7.824428211879645, 12.841580906357866, 6.282315011771032, 5.282916890207506, 4.2332706963911395, 6.25637022936464, 4.768743017239136, 2.7177602072504135, 1.1243648620916942, 0.0), # 122 (16.312746533795494, 12.305953405308378, 13.558830642208555, 14.267219482841437, 12.485504130149028, 5.915793042278621, 5.260235130718955, 4.478503750460988, 6.410907768362252, 2.5991432270151247, 2.0252540783692634, 1.1995720076556633, 0.0, 16.72309888500163, 13.195292084212294, 10.126270391846315, 7.797429681045372, 12.821815536724504, 6.269905250645383, 5.260235130718955, 4.225566458770444, 6.242752065074514, 4.755739827613813, 2.711766128441711, 1.1187230368462162, 0.0), # 123 (16.256250875720976, 12.244236533741004, 13.528663311647806, 14.228024545017881, 12.457698443711445, 5.905065521264426, 5.237679329633088, 4.469950692041945, 6.401118689797269, 2.590199068210183, 2.018664717106536, 1.1960788553586414, 0.0, 16.68433650361868, 13.156867408945052, 10.09332358553268, 7.770597204630548, 12.802237379594539, 6.257930968858723, 5.237679329633088, 4.217903943760304, 6.2288492218557225, 4.742674848339295, 2.7057326623295617, 1.1131124121582732, 0.0), # 124 (16.198969829289226, 12.18276323641133, 13.498239927581887, 14.188572709929128, 12.429287250908427, 5.894367427879304, 5.215208562625265, 4.461673860141818, 6.391393636945196, 2.5812914246033105, 2.012106785380651, 1.1925776737551523, 0.0, 16.644848305175692, 13.118354411306674, 10.060533926903252, 7.74387427380993, 12.782787273890392, 6.246343404198546, 5.215208562625265, 4.210262448485217, 6.2146436254542134, 4.7295242366430434, 2.6996479855163775, 1.1075239305828484, 0.0), # 125 (16.14083793610127, 12.121433881424165, 13.46750137302285, 14.148792449257574, 12.400234403231872, 5.883669778097547, 5.192781905370843, 4.453638424608819, 6.381703029267251, 2.57240145991943, 2.005565733844684, 1.1890615672919902, 0.0, 16.604579761213643, 13.079677240211891, 10.02782866922342, 7.717204379758288, 12.763406058534501, 6.235093794452347, 5.192781905370843, 4.202621270069677, 6.200117201615936, 4.716264149752526, 2.69350027460457, 1.1019485346749243, 0.0), # 126 (16.08178973775815, 12.06014883688432, 13.436388530982757, 14.108612234685616, 12.370503752173677, 5.872943587893444, 5.170358433545185, 4.445809555291159, 6.3720172862246445, 2.563510337883461, 1.9990270131517138, 1.1855236404159475, 0.0, 16.56347634327348, 13.040760044575421, 9.99513506575857, 7.690531013650382, 12.744034572449289, 6.224133377407623, 5.170358433545185, 4.194959705638174, 6.185251876086839, 4.702870744895206, 2.6872777061965514, 1.0963771669894837, 0.0), # 127 (16.021759775860883, 11.998808470896611, 13.404842284473675, 14.06796053789565, 12.340059149225747, 5.862159873241292, 5.147897222823644, 4.438152422037048, 6.362306827278591, 2.554599222220326, 1.9924760739548175, 1.1819569975738184, 0.0, 16.521483522896165, 13.001526973312, 9.962380369774086, 7.663797666660978, 12.724613654557182, 6.2134133908518665, 5.147897222823644, 4.187257052315209, 6.170029574612873, 4.689320179298551, 2.680968456894735, 1.0908007700815103, 0.0), # 128 (15.960682592010507, 11.937313151565847, 13.37280351650766, 14.026765830570064, 12.308864445879973, 5.85128965011538, 5.125357348881582, 4.430632194694696, 6.352542071890305, 2.5456492766549457, 1.9858983669070716, 1.1783547432123955, 0.0, 16.478546771622668, 12.96190217533635, 9.929491834535357, 7.636947829964836, 12.70508414378061, 6.202885072572574, 5.125357348881582, 4.179492607225272, 6.154432222939986, 4.675588610190022, 2.6745607033015326, 1.0852102865059863, 0.0), # 129 (15.89849272780806, 11.875563246996844, 13.34021311009677, 13.984956584391266, 12.276883493628256, 5.840303934489999, 5.102697887394356, 4.423214043112313, 6.342693439521001, 2.536641664912241, 1.9792793426615536, 1.174709981778473, 0.0, 16.434611560993947, 12.921809799563201, 9.896396713307768, 7.609924994736723, 12.685386879042001, 6.192499660357238, 5.102697887394356, 4.171645667492856, 6.138441746814128, 4.66165219479709, 2.668042622019354, 1.0795966588178951, 0.0), # 130 (15.83512472485457, 11.81345912529441, 13.307011948253072, 13.942461271041642, 12.244080143962494, 5.829173742339445, 5.079877914037328, 4.415863137138113, 6.332731349631892, 2.527557550717134, 1.9726044518713404, 1.1710158177188439, 0.0, 16.38962336255096, 12.88117399490728, 9.863022259356702, 7.5826726521514, 12.665462699263784, 6.182208391993358, 5.079877914037328, 4.16369553024246, 6.122040071981247, 4.647487090347215, 2.6614023896506143, 1.073950829572219, 0.0), # 131 (15.770513124751067, 11.750901154563357, 13.27314091398862, 13.899208362203591, 12.210418248374584, 5.817870089638008, 5.056856504485853, 4.408544646620305, 6.322626221684192, 2.5183780977945447, 1.9658591451895095, 1.1672653554803014, 0.0, 16.343527647834676, 12.839918910283313, 9.829295725947548, 7.555134293383633, 12.645252443368385, 6.171962505268427, 5.056856504485853, 4.155621492598577, 6.105209124187292, 4.633069454067865, 2.654628182797724, 1.0682637413239418, 0.0), # 132 (15.704592469098595, 11.687789702908498, 13.238540890315475, 13.855126329559509, 12.175861658356425, 5.80636399235998, 5.03359273441529, 4.4012237414071, 6.312348475139116, 2.509084469869395, 1.9590288732691383, 1.1634516995096391, 0.0, 16.296269888386057, 12.797968694606027, 9.795144366345692, 7.527253409608184, 12.624696950278231, 6.1617132379699395, 5.03359273441529, 4.1474028516857, 6.087930829178212, 4.618375443186504, 2.647708178063095, 1.0625263366280455, 0.0), # 133 (15.63729729949817, 11.624025138434646, 13.203152760245707, 13.81014364479179, 12.14037422539991, 5.794626466479654, 5.010045679501001, 4.3938655913467075, 6.301868529457877, 2.499657830666606, 1.952099086763304, 1.1595679542536501, 0.0, 16.24779555574605, 12.755247496790147, 9.76049543381652, 7.498973491999817, 12.603737058915755, 6.151411827885391, 5.010045679501001, 4.139018904628324, 6.070187112699955, 4.6033812149305975, 2.6406305520491418, 1.0567295580395135, 0.0), # 134 (15.568562157550836, 11.559507829246614, 13.166917406791363, 13.764188779582833, 12.103919800996945, 5.7826285279713225, 4.986174415418341, 4.3864353662873405, 6.291156804101687, 2.4900793439110998, 1.945055236325083, 1.155607224159128, 0.0, 16.198050121455637, 12.711679465750406, 9.725276181625414, 7.470238031733298, 12.582313608203375, 6.141009512802277, 4.986174415418341, 4.130448948550945, 6.051959900498472, 4.588062926527612, 2.633383481358273, 1.0508643481133288, 0.0), # 135 (15.498321584857623, 11.494138143449213, 13.129775712964513, 13.717190205615022, 12.066462236639419, 5.770341192809277, 4.961938017842671, 4.378898236077208, 6.280183718531764, 2.4803301733277956, 1.9378827726075534, 1.1515626136728663, 0.0, 16.146979057055766, 12.667188750401527, 9.689413863037766, 7.4409905199833855, 12.560367437063528, 6.130457530508091, 4.961938017842671, 4.121672280578055, 6.033231118319709, 4.572396735205008, 2.6259551425929026, 1.044921649404474, 0.0), # 136 (15.426510123019561, 11.427816449147253, 13.091668561777217, 13.66907639457077, 12.02796538381924, 5.757735476967808, 4.93729556244935, 4.371219370564522, 6.2689196922093195, 2.4703914826416162, 1.930567146263792, 1.1474272272416581, 0.0, 16.094527834087398, 12.621699499658236, 9.652835731318959, 7.411174447924847, 12.537839384418639, 6.119707118790331, 4.93729556244935, 4.112668197834148, 6.01398269190962, 4.556358798190257, 2.6183337123554433, 1.0388924044679322, 0.0), # 137 (15.353062313637686, 11.360443114445548, 13.052536836241526, 13.619775818132457, 11.988393094028304, 5.744782396421213, 4.912206124913734, 4.363363939597493, 6.257335144595569, 2.4602444355774815, 1.9230938079468758, 1.143194169312297, 0.0, 16.040641924091503, 12.575135862435264, 9.615469039734378, 7.380733306732443, 12.514670289191137, 6.10870951543649, 4.912206124913734, 4.103415997443723, 5.994196547014152, 4.5399252727108195, 2.6105073672483052, 1.0327675558586864, 0.0), # 138 (15.277912698313022, 11.29191850744891, 13.01232141936951, 13.569216947982484, 11.947709218758497, 5.731452967143778, 4.886628780911184, 4.355297113024331, 6.245400495151722, 2.449870195860314, 1.9154482083098823, 1.1388565443315761, 0.0, 15.985266798609034, 12.527421987647335, 9.577241041549412, 7.3496105875809405, 12.490800990303445, 6.0974159582340635, 4.886628780911184, 4.093894976531271, 5.973854609379249, 4.523072315994162, 2.602464283873902, 1.0265380461317193, 0.0), # 139 (15.200995818646616, 11.22214299626215, 12.970963194173232, 13.51732825580325, 11.905877609501736, 5.717718205109798, 4.860522606117057, 4.346984060693248, 6.233086163338999, 2.439249927215034, 1.9076157980058883, 1.134407456746289, 0.0, 15.928347929180966, 12.478482024209175, 9.538078990029442, 7.3177497816451, 12.466172326677999, 6.085777684970546, 4.860522606117057, 4.084084432221284, 5.952938804750868, 4.505776085267751, 2.5941926388346466, 1.020194817842014, 0.0), # 140 (15.122246216239494, 11.151016948990085, 12.92840304366474, 13.464038213277146, 11.862862117749902, 5.7035491262935665, 4.833846676206716, 4.338389952452453, 6.220362568618608, 2.4283647933665637, 1.8995820276879718, 1.129840011003229, 0.0, 15.869830787348244, 12.428240121035515, 9.497910138439858, 7.2850943800996895, 12.440725137237216, 6.073745933433434, 4.833846676206716, 4.0739636616382615, 5.931431058874951, 4.48801273775905, 2.5856806087329485, 1.0137288135445532, 0.0), # 141 (15.041598432692682, 11.07844073373752, 12.884581850856106, 13.409275292086573, 11.818626594994903, 5.688916746669374, 4.806560066855513, 4.329479958150158, 6.207200130451765, 2.417195958039823, 1.8913323480092095, 1.1251473115491895, 0.0, 15.80966084465184, 12.37662042704108, 9.456661740046046, 7.251587874119467, 12.41440026090353, 6.061271941410222, 4.806560066855513, 4.063511961906696, 5.909313297497452, 4.469758430695525, 2.5769163701712214, 1.00713097579432, 0.0), # 142 (14.958987009607215, 11.004314718609267, 12.839440498759389, 13.352967963913915, 11.773134892728635, 5.673792082211512, 4.778621853738811, 4.320219247634575, 6.1935692682996875, 2.405724584959734, 1.8828522096226783, 1.1203224628309636, 0.0, 15.747783572632711, 12.323547091140597, 9.41426104811339, 7.217173754879202, 12.387138536599375, 6.048306946688404, 4.778621853738811, 4.05270863015108, 5.886567446364317, 4.45098932130464, 2.5678880997518783, 1.0003922471462972, 0.0), # 143 (14.874346488584132, 10.928539271710147, 12.792919870386642, 13.29504470044158, 11.726350862442994, 5.658146148894274, 4.749991112531969, 4.310572990753912, 6.1794404016235855, 2.3939318378512175, 1.8741270631814555, 1.115358569295345, 0.0, 15.684144442831826, 12.268944262248793, 9.370635315907277, 7.181795513553651, 12.358880803247171, 6.034802187055478, 4.749991112531969, 4.04153296349591, 5.863175431221497, 4.431681566813861, 2.5585839740773286, 0.993503570155468, 0.0), # 144 (14.787611411224459, 10.851014761144963, 12.744960848749933, 13.235433973351956, 11.67823835562988, 5.641949962691953, 4.7206269189103445, 4.300506357356382, 6.164783949884672, 2.381798880439195, 1.865142359338619, 1.110248735389127, 0.0, 15.618688926790139, 12.212736089280396, 9.325711796693094, 7.145396641317584, 12.329567899769344, 6.020708900298935, 4.7206269189103445, 4.029964259065681, 5.83911917781494, 4.411811324450653, 2.548992169749987, 0.986455887376815, 0.0), # 145 (14.69871631912923, 10.771641555018533, 12.695504316861326, 13.174064254327444, 11.62876122378119, 5.62517453957884, 4.690488348549297, 4.289984517290195, 6.1495703325441635, 2.3693068764485874, 1.8558835487472447, 1.104986065559103, 0.0, 15.551362496048613, 12.154846721150133, 9.279417743736223, 7.107920629345761, 12.299140665088327, 6.005978324206273, 4.690488348549297, 4.0179818139848855, 5.814380611890595, 4.391354751442482, 2.539100863372265, 0.9792401413653213, 0.0), # 146 (14.607595753899481, 10.690320021435666, 12.644491157732865, 13.110864015050435, 11.577883318388821, 5.607790895529226, 4.659534477124183, 4.278972640403562, 6.133769969063274, 2.3564369896043162, 1.846336082060411, 1.0995636642520668, 0.0, 15.482110622148213, 12.095200306772732, 9.231680410302054, 7.069310968812948, 12.267539938126548, 5.990561696564987, 4.659534477124183, 4.005564925378019, 5.7889416591944105, 4.370288005016812, 2.5288982315465733, 0.9718472746759697, 0.0), # 147 (14.51418425713624, 10.606950528501175, 12.591862254376625, 13.045761727203324, 11.525568490944673, 5.5897700465174065, 4.627724380310364, 4.2674358965446935, 6.1173532789032175, 2.3431703836313016, 1.836485409931195, 1.0939746359148106, 0.0, 15.410878776629895, 12.033720995062914, 9.182427049655974, 7.029511150893903, 12.234706557806435, 5.974410255162571, 4.627724380310364, 3.9926928903695758, 5.762784245472337, 4.348587242401109, 2.5183724508753254, 0.9642682298637433, 0.0), # 148 (14.418416370440541, 10.52143344431987, 12.537558489804665, 12.97868586246851, 11.471780592940643, 5.57108300851767, 4.595017133783196, 4.255339455561801, 6.100290681525203, 2.3294882222544664, 1.8263169830126733, 1.0882120849941288, 0.0, 15.337612431034628, 11.970332934935415, 9.131584915063366, 6.988464666763398, 12.200581363050405, 5.957475237786521, 4.595017133783196, 3.9793450060840496, 5.735890296470322, 4.326228620822837, 2.507511697960933, 0.9564939494836247, 0.0), # 149 (14.320226635413416, 10.433669136996565, 12.481520747029043, 12.909564892528387, 11.416483475868631, 5.551700797504312, 4.561371813218041, 4.242648487303093, 6.0825525963904505, 2.31537166919873, 1.815816251957923, 1.0822691159368145, 0.0, 15.262257056903364, 11.904960275304958, 9.079081259789614, 6.946115007596189, 12.165105192780901, 5.93970788222433, 4.561371813218041, 3.9655005696459367, 5.7082417379343156, 4.303188297509463, 2.4963041494058085, 0.948515376090597, 0.0), # 150 (14.219549593655895, 10.343557974636072, 12.423689909061814, 12.838327289065347, 11.359640991220532, 5.531594429451621, 4.526747494290255, 4.229328161616783, 6.064109442960174, 2.3008018881890155, 1.8049686674200216, 1.0761388331896609, 0.0, 15.184758125777073, 11.837527165086268, 9.024843337100108, 6.902405664567045, 12.128218885920347, 5.921059426263496, 4.526747494290255, 3.951138878179729, 5.679820495610266, 4.27944242968845, 2.484737981812363, 0.9403234522396431, 0.0), # 151 (14.116319786769019, 10.251000325343204, 12.364006858915053, 12.76490152376179, 11.301216990488243, 5.510734920333892, 4.491103252675198, 4.215343648351081, 6.044931640695582, 2.2857600429502427, 1.7937596800520466, 1.0698143411994616, 0.0, 15.105061109196717, 11.767957753194075, 8.968798400260232, 6.857280128850727, 12.089863281391164, 5.901481107691514, 4.491103252675198, 3.936239228809923, 5.650608495244121, 4.254967174587264, 2.4728013717830106, 0.931909120485746, 0.0), # 152 (14.010471756353809, 10.155896557222773, 12.302412479600802, 12.68921606830011, 11.241175325163667, 5.489093286125417, 4.454398164048228, 4.200660117354197, 6.024989609057894, 2.2702272972073336, 1.782174740507075, 1.0632887444130097, 0.0, 15.02311147870325, 11.696176188543106, 8.910873702535374, 6.810681891622, 12.049979218115787, 5.880924164295876, 4.454398164048228, 3.920780918661012, 5.620587662581833, 4.229738689433371, 2.4604824959201608, 0.9232633233838886, 0.0), # 153 (13.901940044011312, 10.05814703837959, 12.238847654131138, 12.611199394362703, 11.179479846738696, 5.466640542800487, 4.416591304084705, 4.185242738474343, 6.00425376750832, 2.254184814685209, 1.7701992994381837, 1.0565551472770989, 0.0, 14.938854705837642, 11.622106620048086, 8.850996497190918, 6.762554444055626, 12.00850753501664, 5.85933983386408, 4.416591304084705, 3.904743244857491, 5.589739923369348, 4.203733131454236, 2.447769530826228, 0.9143770034890537, 0.0), # 154 (13.790659191342543, 9.957652136918465, 12.173253265518113, 12.530779973631962, 11.116094406705237, 5.443347706333395, 4.377641748459985, 4.169056681559727, 5.982694535508077, 2.23761375910879, 1.7578188074984502, 1.0496066542385225, 0.0, 14.852236262140847, 11.545673196623744, 8.789094037492251, 6.712841277326369, 11.965389071016155, 5.836679354183619, 4.377641748459985, 3.8881055045238533, 5.5580472033526185, 4.176926657877321, 2.4346506531036227, 0.9052411033562243, 0.0), # 155 (13.676563739948545, 9.854312220944214, 12.10557019677379, 12.447886277790282, 11.050982856555176, 5.419185792698435, 4.33750857284943, 4.152067116458564, 5.960282332518376, 2.220495294202998, 1.7450187153409518, 1.0424363697440735, 0.0, 14.763201619153833, 11.466800067184806, 8.725093576704758, 6.661485882608993, 11.920564665036752, 5.81289396304199, 4.33750857284943, 3.870846994784596, 5.525491428277588, 4.149295425930095, 2.4211140393547583, 0.8958465655403832, 0.0), # 156 (13.559588231430352, 9.748027658561648, 12.035739330910227, 12.362446778520066, 10.984109047780422, 5.394125817869895, 4.296150852928397, 4.134239213019062, 5.9369875780004335, 2.202810583692754, 1.731784473618765, 1.0350373982405456, 0.0, 14.671696248417557, 11.385411380646001, 8.658922368093824, 6.60843175107826, 11.873975156000867, 5.787934898226687, 4.296150852928397, 3.8529470127642105, 5.492054523890211, 4.120815592840023, 2.407147866182046, 0.8861843325965136, 0.0), # 157 (13.43642570352943, 9.636747649274225, 11.960387930853534, 12.27118893522918, 10.912417327045198, 5.366575700132966, 4.252596048835072, 4.1143477142620295, 5.910997254959458, 2.1840146623310153, 1.717678725761683, 1.027139934629151, 0.0, 14.573674546947622, 11.298539280920659, 8.588393628808413, 6.552043986993045, 11.821994509918916, 5.7600867999668415, 4.252596048835072, 3.833268357237833, 5.456208663522599, 4.090396311743061, 2.3920775861707066, 0.8760679681158388, 0.0), # 158 (13.288116180561124, 9.509057777339137, 11.860106727604483, 12.155369164364412, 10.818229571737954, 5.327374130407459, 4.201391487047145, 4.085410149573287, 5.871856356733287, 2.161026447344436, 1.7002250806856987, 1.0172043785524665, 0.0, 14.445769764456351, 11.189248164077128, 8.501125403428492, 6.483079342033307, 11.743712713466573, 5.719574209402602, 4.201391487047145, 3.8052672360053275, 5.409114785868977, 4.051789721454805, 2.372021345520897, 0.8644597979399218, 0.0), # 159 (13.112769770827757, 9.363909602092178, 11.732881436933834, 12.013079639051961, 10.699704157616154, 5.275558360850069, 4.142019373545406, 4.04669939214551, 5.818455136337191, 2.1335425433383026, 1.6791778525828622, 1.0050752923331772, 0.0, 14.285557096008445, 11.055828215664945, 8.39588926291431, 6.400627630014906, 11.636910272674381, 5.665379149003714, 4.142019373545406, 3.7682559720357633, 5.349852078808077, 4.004359879683988, 2.346576287386767, 0.8512645092811072, 0.0), # 160 (12.911799698254727, 9.202249432332774, 11.580070457865464, 11.845672880071582, 10.558071749138534, 5.21175610364883, 4.0749133014061885, 3.9987003998323356, 5.751497860199411, 2.101796186926922, 1.6547224963799123, 0.9908651203361357, 0.0, 14.094673280674375, 10.899516323697492, 8.273612481899562, 6.305388560780765, 11.502995720398822, 5.59818055976527, 4.0749133014061885, 3.722682931177736, 5.279035874569267, 3.9485576266905285, 2.3160140915730927, 0.8365681302120704, 0.0), # 161 (12.686619186767443, 9.025023576860344, 11.403032189423245, 11.654501408203041, 10.394563010763845, 5.1365950709917785, 4.000506863705828, 3.941898130487402, 5.6716887947481816, 2.0660206147246045, 1.6270444670035862, 0.9746863069261941, 0.0, 13.874755057524599, 10.721549376188133, 8.13522233501793, 6.198061844173813, 11.343377589496363, 5.518657382682362, 4.000506863705828, 3.668996479279842, 5.197281505381922, 3.884833802734348, 2.280606437884649, 0.8204566888054858, 0.0), # 162 (12.438641460291295, 8.833178344474314, 11.203125030631053, 11.44091774422611, 10.210408606950825, 5.050702975066952, 3.919233653520661, 3.876777541964344, 5.579732206411743, 2.0264490633456567, 1.5963292193806227, 0.956651296468205, 0.0, 13.627439165629584, 10.523164261150253, 7.9816460969031136, 6.079347190036969, 11.159464412823485, 5.427488558750082, 3.919233653520661, 3.6076449821906795, 5.105204303475412, 3.813639248075371, 2.2406250061262107, 0.8030162131340287, 0.0), # 163 (12.16927974275169, 8.627660043974105, 10.981707380512765, 11.206274408920553, 10.006839202158226, 4.954707528062387, 3.8315272639270197, 3.8038235921168018, 5.476332361618334, 1.9833147694043862, 1.562762208437759, 0.9368725333270206, 0.0, 13.35436234405979, 10.305597866597225, 7.813811042188794, 5.949944308213158, 10.952664723236667, 5.325353028963523, 3.8315272639270197, 3.5390768057588473, 5.003419601079113, 3.735424802973519, 2.1963414761025533, 0.7843327312703733, 0.0), # 164 (11.879947258074031, 8.409414984159142, 10.740137638092254, 10.95192392306614, 9.785085460844787, 4.849236442166116, 3.7378212880012396, 3.7235212387984102, 5.3621935267961875, 1.9368509695151015, 1.5265288891017337, 0.915462461867493, 0.0, 13.057161331885686, 10.070087080542422, 7.632644445508667, 5.810552908545303, 10.724387053592375, 5.2129297343177745, 3.7378212880012396, 3.4637403158329394, 4.892542730422393, 3.6506413076887143, 2.148027527618451, 0.7644922712871949, 0.0), # 165 (11.572057230183715, 8.17938947382885, 10.479774202393392, 10.679218807442627, 9.546378047469258, 4.734917429566179, 3.6385493188196576, 3.636355439862808, 5.2380199683735436, 1.8872909002921108, 1.4878147162992839, 0.8925335264544754, 0.0, 12.737472868177733, 9.817868790999228, 7.4390735814964195, 5.661872700876331, 10.476039936747087, 5.090897615807931, 3.6385493188196576, 3.3820838782615565, 4.773189023734629, 3.5597396024808767, 2.0959548404786785, 0.7435808612571683, 0.0), # 166 (11.24702288300614, 7.938529821782648, 10.201975472440058, 10.389511582829789, 9.291947626490376, 4.6123782024506115, 3.5341449494586072, 3.542811153163632, 5.104515952778639, 1.834867798349722, 1.4468051449571482, 0.8681981714528189, 0.0, 12.396933692006392, 9.550179885981006, 7.23402572478574, 5.504603395049164, 10.209031905557278, 4.959935614429085, 3.5341449494586072, 3.2945558588932937, 4.645973813245188, 3.4631705276099303, 2.040395094488012, 0.7216845292529681, 0.0), # 167 (10.906257440466712, 7.687782336819962, 9.908099847256123, 10.084154770007387, 9.023024862366888, 4.482246473007449, 3.425041772994424, 3.44337333655452, 4.962385746439713, 1.779814900302243, 1.4036856300020644, 0.8425688412273767, 0.0, 12.037180542442131, 9.268257253501142, 7.018428150010321, 5.339444700906728, 9.924771492879426, 4.820722671176328, 3.425041772994424, 3.2016046235767495, 4.511512431183444, 3.361384923335797, 1.9816199694512246, 0.6988893033472693, 0.0), # 168 (10.551174126490828, 7.428093327740216, 9.599505725865463, 9.76450088975519, 8.740840419557543, 4.3451499534247295, 3.3116733825034426, 3.338526947889109, 4.812333615785002, 1.7223654427639818, 1.3586416263607706, 0.8157579801430009, 0.0, 11.659850158555415, 8.97333778157301, 6.793208131803853, 5.167096328291944, 9.624667231570005, 4.673937727044753, 3.3116733825034426, 3.103678538160521, 4.370420209778771, 3.254833629918398, 1.9199011451730927, 0.675281211612747, 0.0), # 169 (10.18318616500389, 7.160409103342831, 9.277551507291953, 9.43190246285296, 8.44662496252108, 4.201716355890488, 3.1944733710619975, 3.228756945021036, 4.655063827242743, 1.6627526623492466, 1.311858588960005, 0.7878780325645439, 0.0, 11.2665792794167, 8.666658358209983, 6.559292944800025, 4.988257987047739, 9.310127654485486, 4.52025972302945, 3.1944733710619975, 3.0012259684932054, 4.22331248126054, 3.1439674876176547, 1.8555103014583907, 0.6509462821220756, 0.0), # 170 (9.8037067799313, 6.88567597242723, 8.943595590559468, 9.087712010080473, 8.141609155716246, 4.052573392592758, 3.0738753317464247, 3.1145482858039375, 4.491280647241173, 1.6012097956723452, 1.2635219727265048, 0.759041442856858, 0.0, 10.859004644096458, 8.349455871425437, 6.317609863632523, 4.803629387017034, 8.982561294482347, 4.360367600125513, 3.0738753317464247, 2.8946952804233987, 4.070804577858123, 3.029237336693492, 1.7887191181118935, 0.6259705429479302, 0.0), # 171 (9.414149195198457, 6.604840243792839, 8.59899637469188, 8.733282052217486, 7.827023663601784, 3.898348775719581, 2.950312857633059, 2.996385928091453, 4.321688342208532, 1.5379700793475863, 1.2138172325870082, 0.7293606553847958, 0.0, 10.438762991665145, 8.022967209232752, 6.069086162935041, 4.613910238042758, 8.643376684417063, 4.194940299328034, 2.950312857633059, 2.7845348397997007, 3.913511831800892, 2.911094017405829, 1.7197992749383764, 0.6004400221629854, 0.0), # 172 (9.015926634730764, 6.31884822623908, 8.245112258713068, 8.369965110043767, 7.504099150636442, 3.739670217458989, 2.824219541798235, 2.874754829737218, 4.146991178573053, 1.4732667499892769, 1.1629298234682535, 0.6989481145132089, 0.0, 10.007491061193234, 7.6884292596452966, 5.8146491173412675, 4.41980024996783, 8.293982357146106, 4.024656761632105, 2.824219541798235, 2.6711930124707064, 3.752049575318221, 2.7899883700145893, 1.6490224517426137, 0.5744407478399164, 0.0), # 173 (8.610452322453618, 6.028646228565374, 7.883301641646902, 7.99911370433908, 7.174066281278959, 3.57716542999902, 2.6960289773182877, 2.7501399485948705, 3.9678934227629785, 1.4073330442117262, 1.1110452002969786, 0.6679162646069503, 0.0, 9.566825591751181, 7.347078910676452, 5.555226001484892, 4.221999132635178, 7.935786845525957, 3.850195928032819, 2.6960289773182877, 2.5551181642850143, 3.5870331406394795, 2.6663712347796937, 1.5766603283293805, 0.5480587480513978, 0.0), # 174 (8.19913948229242, 5.7351805595711465, 7.514922922517262, 7.622080355883197, 6.838155719988082, 3.41146212552771, 2.566174757269552, 2.623026242518047, 3.7850993412065432, 1.3404021986292411, 1.058348817999921, 0.6363775500308723, 0.0, 9.118403322409455, 7.000153050339593, 5.291744089999604, 4.021206595887723, 7.5701986824130865, 3.6722367395252657, 2.566174757269552, 2.4367586610912215, 3.419077859994041, 2.540693451961066, 1.5029845845034526, 0.5213800508701043, 0.0), # 175 (7.783401338172574, 5.43939752805582, 7.141334500348018, 7.240217585455879, 6.497598131222556, 3.2431880162330953, 2.4350904747283635, 2.493898669360387, 3.5993132003319848, 1.2727074498561304, 1.0050261315038191, 0.6044444151498269, 0.0, 8.663860992238513, 6.648888566648095, 5.025130657519095, 3.8181223495683905, 7.1986264006639695, 3.4914581371045417, 2.4350904747283635, 2.3165628687379254, 3.248799065611278, 2.4134058618186267, 1.4282669000696038, 0.49449068436871096, 0.0), # 176 (7.364651114019479, 5.1422434428188195, 6.763894774163046, 6.8548779138368925, 6.1536241794411275, 3.0729708143032117, 2.303209722771056, 2.3632421869755245, 3.411239266567542, 1.2044820345067013, 0.9512625957354108, 0.5722293043286669, 0.0, 8.204835340308824, 6.2945223476153345, 4.756312978677054, 3.6134461035201033, 6.822478533135084, 3.3085390617657344, 2.303209722771056, 2.1949791530737226, 3.0768120897205637, 2.284959304612298, 1.3527789548326095, 0.4674766766198928, 0.0), # 177 (6.944302033758534, 4.8446646126595665, 6.383962142986221, 6.467413861806007, 5.807464529102536, 2.901438231926097, 2.170966094473966, 2.2315417532170994, 3.2215818063414514, 1.1359591891952627, 0.897243665621434, 0.5398446619322442, 0.0, 7.742963105690853, 5.938291281254685, 4.486218328107169, 3.4078775675857873, 6.443163612682903, 3.1241584545039394, 2.170966094473966, 2.072455879947212, 2.903732264551268, 2.1558046206020025, 1.2767924285972443, 0.44042405569632426, 0.0), # 178 (0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0), # 179 ) passenger_allighting_rate = ( (0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1, 0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1), # 0 (0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1, 0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1), # 1 (0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1, 0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1), # 2 (0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1, 0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1), # 3 (0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1, 0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1), # 4 (0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1, 0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1), # 5 (0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1, 0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1), # 6 (0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1, 0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1), # 7 (0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1, 0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1), # 8 (0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1, 0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1), # 9 (0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1, 0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1), # 10 (0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1, 0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1), # 11 (0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1, 0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1), # 12 (0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1, 0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1), # 13 (0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1, 0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1), # 14 (0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1, 0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1), # 15 (0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1, 0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1), # 16 (0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1, 0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1), # 17 (0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1, 0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1), # 18 (0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1, 0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1), # 19 (0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1, 0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1), # 20 (0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1, 0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1), # 21 (0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1, 0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1), # 22 (0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1, 0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1), # 23 (0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1, 0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1), # 24 (0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1, 0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1), # 25 (0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1, 0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1), # 26 (0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1, 0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1), # 27 (0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1, 0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1), # 28 (0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1, 0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1), # 29 (0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1, 0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1), # 30 (0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1, 0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1), # 31 (0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1, 0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1), # 32 (0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1, 0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1), # 33 (0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1, 0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1), # 34 (0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1, 0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1), # 35 (0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1, 0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1), # 36 (0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1, 0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1), # 37 (0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1, 0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1), # 38 (0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1, 0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1), # 39 (0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1, 0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1), # 40 (0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1, 0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1), # 41 (0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1, 0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1), # 42 (0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1, 0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1), # 43 (0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1, 0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1), # 44 (0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1, 0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1), # 45 (0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1, 0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1), # 46 (0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1, 0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1), # 47 (0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1, 0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1), # 48 (0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1, 0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1), # 49 (0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1, 0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1), # 50 (0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1, 0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1), # 51 (0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1, 0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1), # 52 (0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1, 0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1), # 53 (0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1, 0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1), # 54 (0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1, 0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1), # 55 (0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1, 0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1), # 56 (0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1, 0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1), # 57 (0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1, 0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1), # 58 (0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1, 0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1), # 59 (0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1, 0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1), # 60 (0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1, 0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1), # 61 (0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1, 0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1), # 62 (0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1, 0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1), # 63 (0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1, 0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1), # 64 (0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1, 0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1), # 65 (0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1, 0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1), # 66 (0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1, 0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1), # 67 (0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1, 0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1), # 68 (0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1, 0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1), # 69 (0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1, 0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1), # 70 (0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1, 0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1), # 71 (0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1, 0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1), # 72 (0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1, 0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1), # 73 (0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1, 0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1), # 74 (0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1, 0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1), # 75 (0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1, 0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1), # 76 (0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1, 0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1), # 77 (0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1, 0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1), # 78 (0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1, 0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1), # 79 (0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1, 0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1), # 80 (0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1, 0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1), # 81 (0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1, 0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1), # 82 (0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1, 0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1), # 83 (0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1, 0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1), # 84 (0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1, 0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1), # 85 (0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1, 0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1), # 86 (0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1, 0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1), # 87 (0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1, 0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1), # 88 (0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1, 0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1), # 89 (0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1, 0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1), # 90 (0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1, 0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1), # 91 (0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1, 0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1), # 92 (0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1, 0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1), # 93 (0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1, 0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1), # 94 (0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1, 0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1), # 95 (0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1, 0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1), # 96 (0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1, 0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1), # 97 (0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1, 0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1), # 98 (0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1, 0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1), # 99 (0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1, 0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1), # 100 (0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1, 0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1), # 101 (0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1, 0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1), # 102 (0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1, 0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1), # 103 (0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1, 0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1), # 104 (0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1, 0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1), # 105 (0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1, 0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1), # 106 (0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1, 0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1), # 107 (0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1, 0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1), # 108 (0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1, 0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1), # 109 (0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1, 0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1), # 110 (0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1, 0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1), # 111 (0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1, 0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1), # 112 (0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1, 0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1), # 113 (0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1, 0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1), # 114 (0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1, 0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1), # 115 (0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1, 0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1), # 116 (0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1, 0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1), # 117 (0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1, 0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1), # 118 (0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1, 0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1), # 119 (0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1, 0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1), # 120 (0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1, 0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1), # 121 (0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1, 0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1), # 122 (0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1, 0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1), # 123 (0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1, 0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1), # 124 (0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1, 0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1), # 125 (0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1, 0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1), # 126 (0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1, 0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1), # 127 (0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1, 0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1), # 128 (0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1, 0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1), # 129 (0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1, 0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1), # 130 (0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1, 0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1), # 131 (0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1, 0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1), # 132 (0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1, 0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1), # 133 (0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1, 0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1), # 134 (0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1, 0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1), # 135 (0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1, 0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1), # 136 (0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1, 0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1), # 137 (0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1, 0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1), # 138 (0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1, 0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1), # 139 (0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1, 0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1), # 140 (0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1, 0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1), # 141 (0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1, 0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1), # 142 (0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1, 0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1), # 143 (0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1, 0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1), # 144 (0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1, 0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1), # 145 (0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1, 0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1), # 146 (0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1, 0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1), # 147 (0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1, 0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1), # 148 (0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1, 0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1), # 149 (0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1, 0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1), # 150 (0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1, 0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1), # 151 (0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1, 0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1), # 152 (0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1, 0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1), # 153 (0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1, 0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1), # 154 (0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1, 0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1), # 155 (0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1, 0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1), # 156 (0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1, 0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1), # 157 (0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1, 0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1), # 158 (0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1, 0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1), # 159 (0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1, 0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1), # 160 (0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1, 0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1), # 161 (0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1, 0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1), # 162 (0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1, 0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1), # 163 (0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1, 0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1), # 164 (0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1, 0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1), # 165 (0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1, 0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1), # 166 (0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1, 0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1), # 167 (0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1, 0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1), # 168 (0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1, 0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1), # 169 (0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1, 0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1), # 170 (0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1, 0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1), # 171 (0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1, 0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1), # 172 (0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1, 0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1), # 173 (0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1, 0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1), # 174 (0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1, 0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1), # 175 (0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1, 0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1), # 176 (0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1, 0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1), # 177 (0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1, 0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1), # 178 (0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1, 0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1), # 179 ) """ parameters for reproducibiliy. More information: https://numpy.org/doc/stable/reference/random/parallel.html """ #initial entropy entropy = 8991598675325360468762009371570610170 #index for seed sequence child child_seed_index = ( 1, # 0 36, # 1 )
278.362567
490
0.771298
32,987
260,269
6.085246
0.235062
0.355097
0.340749
0.645631
0.366161
0.361105
0.360646
0.360577
0.360577
0.360577
0
0.851062
0.095032
260,269
934
491
278.6606
0.001185
0.015411
0
0.200873
0
0
0
0
0
0
0
0
0
1
0
false
0.005459
0
0
0
0
0
0
0
null
1
1
1
0
0
0
0
0
0
0
1
0
0
0
0
1
1
0
0
0
0
0
0
0
null
0
0
0
0
0
0
0
0
0
0
0
0
0
6
9941155b73b50825f4c22e8bd60744aecb14e706
38
py
Python
savecode/threeyears/idownserver/dnsreq/__init__.py
Octoberr/swm0920
8f05a6b91fc205960edd57f9076facec04f49a1a
[ "Apache-2.0" ]
2
2019-05-19T11:54:26.000Z
2019-05-19T12:03:49.000Z
savecode/threeyears/idownserver/dnsreq/__init__.py
Octoberr/swm0920
8f05a6b91fc205960edd57f9076facec04f49a1a
[ "Apache-2.0" ]
1
2020-11-27T07:55:15.000Z
2020-11-27T07:55:15.000Z
savecode/threeyears/idownserver/dnsreq/__init__.py
Octoberr/swm0920
8f05a6b91fc205960edd57f9076facec04f49a1a
[ "Apache-2.0" ]
2
2021-09-06T18:06:12.000Z
2021-12-31T07:44:43.000Z
from .dnsreqdealer import DnsReqDealer
38
38
0.894737
4
38
8.5
0.75
0
0
0
0
0
0
0
0
0
0
0
0.078947
38
1
38
38
0.971429
0
0
0
0
0
0
0
0
0
0
0
0
1
0
true
0
1
0
1
0
1
1
0
null
0
0
0
0
0
0
0
0
0
0
0
0
0
1
0
0
0
0
0
0
0
0
0
0
null
0
0
0
0
0
0
1
0
1
0
1
0
0
6
9969702168eaa2a803a9b22907df963ef3cbab6f
143
py
Python
mail_alias_manager/api/v1_api/__init__.py
stuvusIT/mail_alias_manager
260b6d1da4db03079afee159c23c3f83f4e75937
[ "MIT" ]
null
null
null
mail_alias_manager/api/v1_api/__init__.py
stuvusIT/mail_alias_manager
260b6d1da4db03079afee159c23c3f83f4e75937
[ "MIT" ]
null
null
null
mail_alias_manager/api/v1_api/__init__.py
stuvusIT/mail_alias_manager
260b6d1da4db03079afee159c23c3f83f4e75937
[ "MIT" ]
null
null
null
"""Module containing the v1 API.""" from .root import API_V1 # noqa from . import recipient_alias # noqa from . import sender_alias # noqa
23.833333
37
0.72028
21
143
4.761905
0.571429
0.16
0.28
0
0
0
0
0
0
0
0
0.017241
0.188811
143
5
38
28.6
0.844828
0.314685
0
0
0
0
0
0
0
0
0
0
0
1
0
true
0
1
0
1
0
1
0
0
null
0
1
0
0
0
0
0
0
0
0
0
0
0
1
0
0
0
0
0
0
0
0
0
0
null
0
0
0
0
0
0
1
0
1
0
1
0
0
6
9984268e196c7b6f74d5fc4959e1fab66773f0d3
1,471
py
Python
chempy/properties/tests/test_water_viscosity_korson_1969.py
bertiewooster/chempy
115adc1d570aa1631baff4374f3128ce23fa7776
[ "BSD-2-Clause" ]
340
2015-10-30T03:41:05.000Z
2022-03-31T05:01:17.000Z
chempy/properties/tests/test_water_viscosity_korson_1969.py
bertiewooster/chempy
115adc1d570aa1631baff4374f3128ce23fa7776
[ "BSD-2-Clause" ]
80
2015-11-03T13:31:23.000Z
2022-03-31T16:46:19.000Z
chempy/properties/tests/test_water_viscosity_korson_1969.py
bertiewooster/chempy
115adc1d570aa1631baff4374f3128ce23fa7776
[ "BSD-2-Clause" ]
75
2016-06-06T19:55:48.000Z
2022-03-19T23:39:13.000Z
import warnings from ..water_viscosity_korson_1969 import water_viscosity def test_water_viscosity(): warnings.filterwarnings("error") # Table II (p. 38): assert abs(water_viscosity(273.15 + 0) - 1.7916) < 5e-4 assert abs(water_viscosity(273.15 + 5) - 1.5192) < 5e-4 assert abs(water_viscosity(273.15 + 10) - 1.3069) < 5e-4 assert abs(water_viscosity(273.15 + 15) - 1.1382) < 5e-4 assert abs(water_viscosity(273.15 + 20) - 1.0020) < 5e-4 assert abs(water_viscosity(273.15 + 25) - 0.8903) < 5e-4 assert abs(water_viscosity(273.15 + 30) - 0.7975) < 5e-4 assert abs(water_viscosity(273.15 + 35) - 0.7195) < 5e-4 assert abs(water_viscosity(273.15 + 40) - 0.6532) < 5e-4 assert abs(water_viscosity(273.15 + 45) - 0.5963) < 5e-4 assert abs(water_viscosity(273.15 + 50) - 0.5471) < 5e-4 assert abs(water_viscosity(273.15 + 55) - 0.5042) < 5e-4 assert abs(water_viscosity(273.15 + 60) - 0.4666) < 5e-4 assert abs(water_viscosity(273.15 + 65) - 0.4334) < 5e-4 assert abs(water_viscosity(273.15 + 70) - 0.4039) < 5e-4 assert abs(water_viscosity(273.15 + 75) - 0.3775) < 5e-4 assert abs(water_viscosity(273.15 + 80) - 0.3538) < 5e-4 assert abs(water_viscosity(273.15 + 85) - 0.3323) < 5e-4 assert abs(water_viscosity(273.15 + 90) - 0.3128) < 5e-4 assert abs(water_viscosity(273.15 + 95) - 0.2949) < 6e-4 assert abs(water_viscosity(273.15 + 100) - 0.2783) < 2e-3 warnings.resetwarnings()
50.724138
61
0.656016
254
1,471
3.692913
0.26378
0.358209
0.313433
0.514925
0.688699
0.688699
0.658849
0.627932
0
0
0
0.250629
0.188987
1,471
28
62
52.535714
0.535624
0.011557
0
0
0
0
0.003444
0
0
0
0
0
0.807692
1
0.038462
true
0
0.076923
0
0.115385
0
0
0
0
null
1
1
1
0
0
0
0
0
0
0
1
0
0
0
0
0
0
0
0
0
0
0
0
0
null
0
0
0
1
0
0
1
0
0
0
0
0
0
6
41e2290afea8242f9b3ad627b8896fc8296f5d30
110
py
Python
basis/cli/commands/logout.py
kvh/basis
8d109ff5ccf2c30b1a11406827d2c1620691ad95
[ "BSD-3-Clause" ]
11
2020-05-29T20:56:48.000Z
2021-09-22T15:44:42.000Z
basis/cli/commands/logout.py
kvh/basis
8d109ff5ccf2c30b1a11406827d2c1620691ad95
[ "BSD-3-Clause" ]
null
null
null
basis/cli/commands/logout.py
kvh/basis
8d109ff5ccf2c30b1a11406827d2c1620691ad95
[ "BSD-3-Clause" ]
null
null
null
from basis.cli.services import auth def logout(): """Log out of your Basis account""" auth.logout()
15.714286
39
0.663636
16
110
4.5625
0.8125
0
0
0
0
0
0
0
0
0
0
0
0.209091
110
6
40
18.333333
0.83908
0.263636
0
0
0
0
0
0
0
0
0
0
0
1
0.333333
true
0
0.333333
0
0.666667
0
1
0
0
null
0
0
0
0
0
0
0
0
0
0
0
0
0
1
0
0
0
0
0
0
0
0
0
0
null
0
0
0
0
0
1
1
0
1
0
1
0
0
6
5146d58c84bb7104d16ee9a9d1a76b8231e89082
224
py
Python
nyaggle/experiment/__init__.py
harupy/nyaggle
132a93079e364d60b5598de77ab636a603ec06a4
[ "MIT" ]
null
null
null
nyaggle/experiment/__init__.py
harupy/nyaggle
132a93079e364d60b5598de77ab636a603ec06a4
[ "MIT" ]
null
null
null
nyaggle/experiment/__init__.py
harupy/nyaggle
132a93079e364d60b5598de77ab636a603ec06a4
[ "MIT" ]
null
null
null
from nyaggle.experiment.experiment import Experiment, add_leaderboard_score from nyaggle.experiment.averaging import average_results from nyaggle.experiment.run import autoprep_gbdt, run_experiment, find_best_lgbm_parameter
56
90
0.892857
29
224
6.62069
0.586207
0.171875
0.328125
0
0
0
0
0
0
0
0
0
0.066964
224
3
91
74.666667
0.91866
0
0
0
0
0
0
0
0
0
0
0
0
1
0
true
0
1
0
1
0
1
0
0
null
0
1
0
0
0
0
0
0
0
0
0
0
0
1
0
0
0
0
0
0
0
0
0
0
null
0
0
0
0
0
0
1
0
1
0
1
0
0
6
515d5f82ce87af195121b8847cb3e553f85bb1c4
194
py
Python
src/Lexer/run.py
PetukhovVictor/compiler2
0bf87393ce9ecdd421393165fc14cb7f03f5e3b8
[ "MIT" ]
3
2017-09-08T21:35:31.000Z
2019-04-24T11:48:59.000Z
src/Lexer/run.py
PetukhovVictor/compiler2
0bf87393ce9ecdd421393165fc14cb7f03f5e3b8
[ "MIT" ]
1
2018-11-19T15:34:00.000Z
2018-11-19T15:35:52.000Z
src/Lexer/run.py
PetukhovVictor/compiler2
0bf87393ce9ecdd421393165fc14cb7f03f5e3b8
[ "MIT" ]
4
2017-03-13T06:16:48.000Z
2019-04-24T11:49:00.000Z
from .rules import token_expressions from .lex import lex def run(code): """ Wrapper to run the Lexer (with the token expressions listed here). """ return lex(code, token_expressions)
24.25
78
0.726804
28
194
4.964286
0.607143
0.345324
0
0
0
0
0
0
0
0
0
0
0.185567
194
7
79
27.714286
0.879747
0.340206
0
0
0
0
0
0
0
0
0
0
0
1
0.25
false
0
0.5
0
1
0
1
0
0
null
1
0
0
0
0
0
0
0
0
0
0
0
0
1
0
0
0
0
0
0
0
0
0
0
null
0
0
0
0
0
1
0
0
1
0
1
0
0
6
5acf6a6ed2a18dd015b90e514e7a54da35d4ea24
34,367
py
Python
agoora-profiler-service/quality_inspection/tests/quality_inspector_test.py
spoud/agoora-agents
918602d428b6cd9918d1ade682fa54e85a9a2df3
[ "MIT" ]
8
2021-03-25T13:49:31.000Z
2021-08-19T04:09:14.000Z
agoora-profiler-service/quality_inspection/tests/quality_inspector_test.py
spoud/agoora-agents
918602d428b6cd9918d1ade682fa54e85a9a2df3
[ "MIT" ]
18
2021-03-31T11:38:45.000Z
2022-02-16T05:00:09.000Z
agoora-profiler-service/quality_inspection/tests/quality_inspector_test.py
spoud/agoora-agents
918602d428b6cd9918d1ade682fa54e85a9a2df3
[ "MIT" ]
null
null
null
import unittest from quality_inspection.quality_inspector import QualityInspector from quality_inspection.schema_definition import SchemaDefinition from quality_inspection.tests.data_loader import DataLoader class QualityInspectorTest(unittest.TestCase): def setUp(self) -> None: self.inspector = QualityInspector() def test_inspect_inferred(self) -> None: # arrange samples = DataLoader.load_samples() # act schema_definition = SchemaDefinition.create(DataLoader.load_schema()) result = self.inspector.inspect(samples, schema_definition) # assert self.assertEqual(1.0, result.attribute_integrity) self.assertEqual(.0, result.attribute_specification) self.assertEqual(.5, result.attribute_quality_index) def test_inspect_avro(self) -> None: # arrange samples = DataLoader.load_samples() # act schema_definition = SchemaDefinition.create(DataLoader.load_schema(), False) result = self.inspector.inspect(samples, schema_definition) # assert self.assertEqual(1.0, result.attribute_integrity) self.assertEqual(.625, result.attribute_specification) self.assertEqual(.8125, result.attribute_quality_index) def test_inspect_json(self) -> None: # arrange samples = DataLoader.load_samples() # act schema_definition = SchemaDefinition.create(DataLoader.load_schema_json(), False) result = self.inspector.inspect(samples, schema_definition) # assert self.assertEqual(1.0, result.attribute_integrity) self.assertEqual(.625, result.attribute_specification) self.assertEqual(.8125, result.attribute_quality_index) def test_inspect_with_specified_field(self): # arrange samples = [ {"random_int": 1}, ] schema_definition = DataLoader.expand_schema( [("random_int", "integer")], ["random_int"] ) # act result = self.inspector.inspect_attributes(samples, schema_definition) # assert self.assertEqual(.5, result.attribute_specification) self.assertEqual(1, result.attribute_integrity) self.assertEqual(.75, result.attribute_quality_index) def test_inspect_with_unspecified_field(self): # arrange samples = [ {"random_int": 1}, ] schema_definition = DataLoader.expand_schema( [], [] ) # act result = self.inspector.inspect_attributes(samples, schema_definition) # assert self.assertEqual(0, result.attribute_specification) self.assertEqual(1, result.attribute_integrity) self.assertEqual(.5, result.attribute_quality_index) def test_inspect_with_missing_field(self): # arrange samples = [ {"random_other": "other"}, ] schema_definition = DataLoader.expand_schema( [("random_int", "integer")], ["random_int"] ) # act result = self.inspector.inspect_attributes(samples, schema_definition) # assert expected_specification = (0 + 1) / 2 expected_integrity = (1 + 0) / 2 self.assertEqual(expected_specification, result.attribute_specification, "Attribute specification is not correct") self.assertEqual(expected_integrity, result.attribute_integrity, "Attribute integrity is not correct") self.assertEqual((expected_specification + expected_integrity) / 2, result.attribute_quality_index, "Attribute quality is not correct") def test_specification_with_only_type_specification(self) -> None: # arrange samples = [ {"random_int": 1, "random_string": "foo"}, {"random_int": 2, "random_string": "bar"} ] schema_definition = DataLoader.expand_schema( [("random_int", "integer"), ("random_string", "string")], ["random_string", "random_int"], ) # act result = self.inspector.inspect_attributes(samples, schema_definition) # assert self.assertEqual(.5, result.attribute_specification) def test_specification_with_complete_specification(self) -> None: # arrange samples = [ {"random_int": 1, "random_string": "foo"}, {"random_int": 2, "random_string": "bar"} ] schema_definition = DataLoader.expand_schema( [("random_int", "integer"), ("random_string", "string")], ["random_string", "random_int"], ) # act result = self.inspector.inspect_attributes(samples, schema_definition) # assert self.assertEqual(.5, result.attribute_specification) def test_specification_with_inferred_schema(self) -> None: # arrange samples = [ {"random_int": 1, "random_string": "foo"}, {"random_int": 2, "random_string": "bar"} ] schema = ''' { "$schema": "http://json-schema.org/schema#", "type": "object", "properties": { "random_string": { "type": "string" }, "random_integer": { "type": "integer" } }, "required": [ "random_integer", "random_string" ] } ''' schema_definition = SchemaDefinition.create(schema, True) # act result = self.inspector.inspect(samples, schema_definition) # assert self.assertEqual(.0, result.attribute_specification, "Attribute specification is considered 0% when schema is inferred") def test_specification_with_empty_schema(self) -> None: # arrange samples = [ {"random_int": 1, "random_string": "foo"}, {"random_int": 2, "random_string": "bar"} ] schema_definition = DataLoader.expand_schema( [], [] ) # act result = self.inspector.inspect_attributes(samples, schema_definition) # assert self.assertEqual(0, result.attribute_specification) def test_specification_with_partial_specification(self) -> None: # arrange samples = [ {"random_int": 1, "random_string": "foo"}, {"random_int": 2, "random_string": "bar"} ] schema_definition = DataLoader.expand_schema( [("random_string", "string")], [] ) # act result = self.inspector.inspect_attributes(samples, schema_definition) # assert (half of the data is specified to .5) self.assertEqual(.25, result.attribute_specification, "Specification must be 25% because only half of the data is specified in schema") def test_specification_with_irrelevant_specification(self) -> None: # arrange samples = [ {"random_int": 1, "random_string": "foo"}, {"random_int": 2, "random_string": "bar"} ] schema_definition = DataLoader.expand_schema( [("random_other", "string")], [] ) # act result = self.inspector.inspect_attributes(samples, schema_definition) # assert self.assertEqual(0, result.attribute_specification, "Specification must be 0% because none of the attributes are specified") def test_quality_with_complete_specification(self) -> None: # arrange samples = [ {"random_int": 1, "random_string": "foo"}, # random_string does not match {"random_int": 2, "random_string": "bar"} ] schema_definition = DataLoader.expand_schema( [("random_string", "string"), ("random_int", "number")], [], {"random_string": {"pattern": "bar"}, "random_int": {"minimum": 0, "maximum": 100}} ) # act result = self.inspector.inspect_attributes(samples, schema_definition) # assert self.assertEqual(.75, result.attribute_integrity) self.assertEqual(1.0, result.attribute_specification) self.assertEqual(.875, result.attribute_quality_index) def test_quality_with_partial_specification(self) -> None: # arrange samples = [ {"random_int": 1, "random_string": "foo"}, {"random_int": 2, "random_string": "bar"} ] schema_definition = DataLoader.expand_schema( [("random_string", "string"), ("random_int", "int")], [] ) # act result = self.inspector.inspect_attributes(samples, schema_definition) # assert self.assertEqual(1.0, result.attribute_integrity) self.assertEqual(.5, result.attribute_specification) self.assertEqual(.75, result.attribute_quality_index) def test_quality_without_specification(self): # arrange samples = [ {"random_int": 1, "random_string": "foo"}, {"random_int": 2, "random_string": "bar"} ] schema_definition = DataLoader.expand_schema( [], [] ) # act result = self.inspector.inspect_attributes(samples, schema_definition) # assert self.assertEqual(.5, result.attribute_quality_index) def test_specification_with_partial_schema_and_inferred(self) -> None: # arrange samples = [ {"random_int": 1, "random_string": "foo"}, {"random_int": 2, "random_string": "bar"} ] schema = ''' { "$schema": "http://json-schema.org/schema#", "type": "object", "properties": { "random_string": { "type": "string" }, "random_integer": { "type": "integer" } }, "required": [ "random_integer", "random_string" ] } ''' schema_definition = SchemaDefinition.create(schema, True) # act result = self.inspector.inspect(samples, schema_definition) # assert self.assertEqual(.0, result.attribute_specification, "Attribute specification is considered 0% when the schema is inferred") def test_integrity_with_missing_required(self) -> None: # arrange samples = [ {"random_int": 1}, {"random_int": None}, {"random_int": 2} ] schema_definition = DataLoader.expand_schema( [("random_int", "integer")], ["random_int"] ) # act result = self.inspector.inspect_attributes(samples, schema_definition) # assert self.assertAlmostEqual(2 / 3, result.attribute_integrity, 3, "Attribute integrity must be 66%") def test_integrity_for_complex_type(self): # arrange schema = DataLoader.load_schema_with_name("schema_registry_avro.json") samples = [ {"timestamp": 1595601702, "iss_position": {"longitude": "-42.2948", "latitude": "-40.3670"}, "message": "success"}, {"timestamp": 1595601702, "iss_position": {"latitude": "-40.3670"}, "message": "success"}, {"timestamp": "wrong", "iss_position": {"longitude": 666, "latitude": "-40.0283"}, "message": "success"}, ] # act result = self.inspector.inspect_attributes(samples, SchemaDefinition.create(schema, False)) # assert - only message is not mandatory so 3 out of 12 (3*4) are missing or wrong invalid_elements = 3 all_elements = 12 expected_integrity = (all_elements - invalid_elements) / all_elements self.assertAlmostEqual(expected_integrity, result.attribute_integrity, 3, f"Integrity must be {expected_integrity * 100}%") def test_integrity_with_missing_not_required(self) -> None: # arrange samples = [ {"random_int": 1}, {"random_int": None}, {"random_int": 2} ] schema_definition = DataLoader.expand_schema( [("random_int", "integer")], [] ) # act result = self.inspector.inspect_attributes(samples, schema_definition) # assert self.assertEqual(1.0, result.attribute_integrity) def test_integrity_without_specified_optional_field(self) -> None: # arrange samples = [ {"random_int": 1}, {"random_int": 2}, {"random_int": 3} ] schema_definition = DataLoader.expand_schema( [("random_int", "integer"), ("random_string", "string")], ["random_int"] ) # act result = self.inspector.inspect_attributes(samples, schema_definition) # assert self.assertEqual(1.0, result.attribute_integrity) def test_integrity_without_specified_required_field(self) -> None: # arrange samples = [ {"random_int": 1}, {"random_int": 2}, {"random_int": 3} ] schema_definition = DataLoader.expand_schema( [("random_int", "integer"), ("random_string", "string")], ["random_string"] ) # act result = self.inspector.inspect_attributes(samples, schema_definition) # assert self.assertEqual(.5, result.attribute_integrity) def test_integrity_with_additional_field(self) -> None: # arrange samples = [ {"random_int": 1, "random_string": "abc"}, {"random_int": 2, "random_string": "efg"}, {"random_int": 3, "random_string": "hij"} ] schema_definition = DataLoader.expand_schema( [("random_int", "integer")], [] ) # act result = self.inspector.inspect_attributes(samples, schema_definition) # assert self.assertEqual(1.0, result.attribute_integrity) def test_integrity_with_numeric_as_string(self) -> None: # arrange samples = [ {"random_int": "10000001.023"}, {"random_int": "1"} ] schema_definition = DataLoader.expand_schema( [("random_int", "number")], [] ) # act result = self.inspector.inspect_attributes(samples, schema_definition) # assert self.assertEqual(.0, result.attribute_integrity) def test_integrity_with_float_as_int(self) -> None: # arrange samples = [{"random_int": "10000001.023"}] schema_definition = DataLoader.expand_schema( [("random_int", "integer")], [] ) # act result = self.inspector.inspect_attributes(samples, schema_definition) # assert self.assertEqual(0.0, result.attribute_integrity) def test_integrity_on_attribute_level_with_not_specified_partial_field(self) -> None: # arrange samples = [ {"random_int": 1002, "random_string": 1}, {"random_int": 1003, "random_string": 2}, {"random_int": 1004}, ] schema_definition = DataLoader.expand_schema( [("random_int", "integer")], [] ) # act result = self.inspector.inspect_attributes(samples, schema_definition) # assert attribute_details = result.attribute_details self.assertTrue('random_string' in attribute_details.keys(), "Missing integrity for attribute random_string") self.assertAlmostEqual(1, attribute_details['random_string'].attribute_integrity, 3, "Integrity of random_string is not correct") def test_integrity_on_attribute_level_with_missing_value(self) -> None: # arrange samples = [ {"random_int": 1002, "random_string": 1}, {"random_int": 1003, "random_string": 2}, {"random_int": "foo", "random_string": 3}, {"random_int": 1005, "random_string": "fourth"}, ] schema_definition = DataLoader.expand_schema( [("random_int", "integer"), ("random_string", "string")], [] ) # act result = self.inspector.inspect_attributes(samples, schema_definition) # assert attribute_details = result.attribute_details self.assertTrue('random_int' in attribute_details.keys(), "Missing integrity for attribute random_int") self.assertTrue('random_string' in attribute_details.keys(), "Missing integrity for attribute random_string") self.assertAlmostEqual((3 / 4), attribute_details['random_int'].attribute_integrity, 3, "Integrity of random_int is not correct") self.assertAlmostEqual((1 / 4), attribute_details['random_string'].attribute_integrity, 3, "Integrity of random_string is not correct") def test_integrity_on_attribute_level_with_not_specified_fields(self) -> None: # arrange samples = [ {"random_int": 1002, "random_string": 1}, ] schema_definition = DataLoader.expand_schema( [("random_int", "integer")], [] ) # act result = self.inspector.inspect_attributes(samples, schema_definition) # assert attribute_details = result.attribute_details self.assertTrue('random_string' in attribute_details.keys(), "Even a not specified fields needs to be present in the details.") self.assertEqual(1.0, attribute_details['random_string'].attribute_integrity) def test_specification_on_attribute_level_with_complete_expectations(self) -> None: # arrange samples = [ {"random_int": 1002, "random_string": "1"}, {"random_int": 1003, "random_string": "2"}, ] schema_definition = DataLoader.expand_schema( [("random_int", "integer"), ("random_string", "string")], [], {"random_int": {"minimum": 0, "maximum": 1004}, "random_string": {"pattern": ""}} ) # act result = self.inspector.inspect_attributes(samples, schema_definition) # assert attribute_details = result.attribute_details self.assertTrue('random_int' in attribute_details.keys()) self.assertTrue('random_string' in attribute_details.keys()) self.assertEqual(1.0, attribute_details['random_int'].attribute_specification) self.assertEqual(1.0, attribute_details['random_string'].attribute_specification) def test_specification_on_attribute_level_with_partial_expectations(self) -> None: # arrange samples = [ {"random_int": 1002, "random_string": 1}, {"random_int": 1003, "random_string": 2}, ] schema_definition = DataLoader.expand_schema( [("random_int", "integer"), ("random_string", "string")], [], {"random_int": {"minimum": 0}} ) # act result = self.inspector.inspect_attributes(samples, schema_definition) # assert attribute_details = result.attribute_details self.assertTrue('random_int' in attribute_details.keys()) self.assertEqual(.75, attribute_details['random_int'].attribute_specification) self.assertEqual(.5, attribute_details['random_string'].attribute_specification) def test_specification_on_attribute_level_without_expectations(self) -> None: # arrange samples = [ {"random_int": 1002, "random_string": 1}, {"random_int": 1003, "random_string": 2}, ] schema_definition = DataLoader.expand_schema( [("random_int", "integer"), ("random_string", "string")], ) # act result = self.inspector.inspect_attributes(samples, schema_definition) # assert attribute_details = result.attribute_details self.assertTrue('random_int' in attribute_details.keys()) self.assertEqual(.5, attribute_details['random_int'].attribute_specification) self.assertEqual(.5, attribute_details['random_string'].attribute_specification) def test_specification_on_attribute_level_with_missing_specification(self) -> None: # arrange samples = [ {"random_int": 1002, "random_string": 1}, {"random_int": 1003, "random_string": 2}, ] schema_definition = DataLoader.expand_schema( [("random_int", "integer")], [] ) # act result = self.inspector.inspect_attributes(samples, schema_definition) # assert attribute_details = result.attribute_details self.assertTrue('random_string' in attribute_details.keys()) self.assertEqual(0.0, attribute_details['random_string'].attribute_specification) def test_quality_on_attribute_level(self) -> None: # arrange samples = [ {"random_int": 2, "random_string": "one"}, {"random_int": 55, "random_string": "two"}, {"random_int": 101, "random_string": "three"}, ] schema_definition = DataLoader.expand_schema( [("random_int", "integer")], [], {"random_int": {"minimum": 50, "maximum": 100}} ) # act result = self.inspector.inspect(samples, schema_definition) # assert attribute_details = result.attribute_details self.assertTrue('random_int' in attribute_details.keys()) self.assertTrue('random_string' in attribute_details.keys()) self.assertAlmostEquals(((1 / 3) + 1) / 2, attribute_details['random_int'].attribute_quality_index, 3) self.assertAlmostEquals((1 + 0) / 2, attribute_details['random_string'].attribute_quality_index, 3) def test_inspect_with_non_unique_types_does_not_throw_exception(self) -> None: # arrange samples = [ {"random_int": 1002}, {"random_int": "1003"}, {"random_int": "1004"}, ] schema_definition = DataLoader.expand_schema( [("random_int", "integer")], [], {"random_int": {"minimum": 0, "maximum": 100}} ) # act result = self.inspector.inspect(samples, schema_definition) # assert attribute_details = result.attribute_details self.assertAlmostEquals((1 / 3), attribute_details['random_int'].attribute_integrity, 3) def test_integrity_on_attribute_level_with_expectations(self): # arrange schema = ''' { "type": "record", "name": "RandomData", "namespace": "data.producer.random", "fields": [ { "name": "random_integer", "type": "int", "expectations": [ { "kwargs": { "min_value": 0, "max_value": 10 }, "expectation_type": "expect_column_values_to_be_between" } ] }, { "name": "random_string", "type": "string", "expectations": [ { "kwargs": { "regex": "id_" }, "meta": {}, "expectation_type": "expect_column_values_to_match_regex" } ] } ] } ''' samples = [ {'random_integer': 1, 'random_string': 'missing_id'}, {'random_integer': 11, 'random_string': 'id_1'}, {'random_integer': 3, 'random_string': 'missing_id'}, ] # act result = self.inspector.inspect(samples, SchemaDefinition.create(schema, False)) # assert attribute_details = result.attribute_details self.assertAlmostEqual((3 / 6), result.attribute_integrity, 3, "Attribute integrity is not correct") self.assertTrue('random_integer' in attribute_details.keys(), "Missing integrity for attribute random_integer") self.assertTrue('random_string' in attribute_details.keys(), "Missing integrity for attribute random_string") self.assertAlmostEqual((2 / 3), attribute_details['random_integer'].attribute_integrity, 3, "Integrity of random_int is not correct") self.assertAlmostEqual((1 / 3), attribute_details['random_string'].attribute_integrity, 3, "Integrity of random_string is not correct") def test_integrity_with_negative_as_string(self) -> None: # arrange samples = [{"random_int": "-10000"}] schema_definition = DataLoader.expand_schema( [("random_int", "integer")], [] ) # act result = self.inspector.inspect_attributes(samples, schema_definition) # assert self.assertEqual(.0, result.attribute_integrity, "Attribute integrity must be 0% (even if not required, a " "specified value needs to be correct).") def test_integrity_with_wrong_type(self) -> None: # arrange samples, schema = DataLoader.create_dummy_samples() # noinspection PyTypeChecker samples[0]['random_string'] = 123 # act result = self.inspector.inspect_attributes(samples, schema) # assert self.assertEqual(0.5, result.attribute_integrity) def test_integrity_without_provided_schema(self) -> None: # arrange samples, _ = DataLoader.create_dummy_samples() # act empty_schema = SchemaDefinition.empty() result = self.inspector.inspect(samples, empty_schema) # assert self.assertEqual(1.0, result.attribute_integrity) self.assertEqual(.0, result.attribute_specification) self.assertEqual(.5, result.attribute_quality_index) def test_inspect_with_inferred_schemas(self): # arrange schema = DataLoader.load_schema_with_name("schema_registry_json.json") schema_definition = SchemaDefinition.create(schema, True) samples = DataLoader.load_samples() # act result = self.inspector.inspect(samples, schema_definition) # assert self.assertEqual(1.0, result.attribute_integrity) self.assertEqual(.0, result.attribute_specification) self.assertEqual(.5, result.attribute_quality_index) def test_various_types_do_not_throw_exceptions(self): # arrange schema = ''' { "type": "record", "name": "RandomData", "namespace": "data.producer.random", "fields": [ { "name": "random_string", "type": "string" }, { "name": "random_integer", "type": "int" }, { "name": "random_float", "type": "float" }, { "name": "random_boolean", "type": "boolean" } ] } ''' samples = [ {'random_string': 'wheyuugkwi', 'random_integer': 876, 'random_float': 0.2295482, 'random_boolean': False} ] # act metrics = self.inspector.inspect(samples, SchemaDefinition.create(schema, False)) # assert self.assertIsNotNone(metrics) def test_inspect_with_min_max_range_expectation(self): # arrange schema = DataLoader.load_schema_with_name("schema_with_min_max.json") samples = [ {'random_integer': 3}, {'random_integer': 11}, {'random_integer': 3}, {'random_integer': 8}, {'random_integer': 3}, {'random_integer': -5}, {'random_integer': 3}, {'random_integer': 10}, ] # act metrics = self.inspector.inspect(samples, SchemaDefinition.create(schema, False)) # assert self.assertEqual((6 / 8), metrics.attribute_integrity, f"Attribute integrity must be {(6 / 8) * 100}%") def test_inspect_with_min_expectation(self): # arrange schema = DataLoader.load_schema_with_name("schema_with_min.json") samples = [ {'random_integer': 3}, {'random_integer': 11}, {'random_integer': 3}, {'random_integer': 8}, {'random_integer': 3}, {'random_integer': -5}, {'random_integer': 3}, {'random_integer': 10}, ] # act metrics = self.inspector.inspect(samples, SchemaDefinition.create(schema, False)) # assert self.assertEqual((7 / 8), metrics.attribute_integrity, f"Attribute integrity must be {(7 / 8) * 100}%") def test_inspect_with_multiple_expectations_asyncapi_style(self): # arrange schema = DataLoader.load_schema_with_name("schema_expectation_asyncapi_style.json") samples = [ {'random_integer': 1, 'random_string': 'id_1'}, {'random_integer': 2, 'random_string': 'foo'}, # no match (string) {'random_integer': 3, 'random_string': 'id_3'}, {'random_integer': 4, 'random_string': 'id_4'}, # no match (integer) {'random_integer': 5, 'random_string': 'foo'}, # no match (integer, string) ] # act metrics = self.inspector.inspect(samples, SchemaDefinition.create(schema, False)) # assert self.assertAlmostEqual(6 / 10, metrics.attribute_integrity, 3) def test_inspect_with_multiple_expectations_asyncapi_style_json(self): # arrange schema = DataLoader.load_schema_with_name("schema_expectation_asyncapi_style_json.json") samples = [ {'random_integer': 1, 'random_string': 'id_1'}, {'random_integer': 2, 'random_string': 'foo'}, # no match (string) {'random_integer': 3, 'random_string': 'id_3'}, {'random_integer': 4, 'random_string': 'id_4'}, # no match (integer) {'random_integer': 5, 'random_string': 'foo'}, # no match (integer, string) ] # act metrics = self.inspector.inspect(samples, SchemaDefinition.create(schema, False)) # assert self.assertAlmostEqual(6 / 10, metrics.attribute_integrity, 3) def test_inspect_with_both_schema_formats(self): # arrange schema_json = DataLoader.load_schema_with_name("schema_diff_json.json") schema_avro = DataLoader.load_schema_with_name("schema_diff_avro.json") samples = DataLoader.load_samples() # act result_json = self.inspector.inspect(samples, SchemaDefinition.create(schema_json, False)) result_avro = self.inspector.inspect(samples, SchemaDefinition.create(schema_avro, False)) # assert self.assertEqual(result_json, result_avro) def test_specification_from_toeggelomat_json(self): # arrange samples = DataLoader.load_samples_from_file("samples_toeggelomat.json") # act schema = DataLoader.load_schema_with_name("schema_toeggelomat_json.json") result = self.inspector.inspect(samples, SchemaDefinition.create(schema, False)) # assert self.assertEqual(53, len(result.attribute_details.keys()), "There should be 53 keys in the dictionary") for attribute_metric in result.attribute_details.keys(): self.assertEqual(1.0, result.attribute_details[attribute_metric].attribute_specification, f"Attribute specification must be 100% ({attribute_metric})") self.assertEqual(1.0, result.attribute_details[attribute_metric].attribute_integrity, f"Attribute integrity must be 100% ({attribute_metric})") def test_specification_from_toeggelomat(self): # arrange samples = DataLoader.load_samples_from_file("samples_toeggelomat.json") # act schema = DataLoader.load_schema_with_name("schema_toeggelomat.json") result = self.inspector.inspect(samples, SchemaDefinition.create(schema, False)) # assert self.assertEqual(53, len(result.attribute_details.keys()), "There should be 53 keys in the dictionary") for attribute_metric in result.attribute_details.keys(): self.assertEqual(1.0, result.attribute_details[attribute_metric].attribute_specification, f"Attribute specification must be 100% ({attribute_metric})") self.assertEqual(1.0, result.attribute_details[attribute_metric].attribute_integrity, f"Attribute integrity must be 100% ({attribute_metric})")
35.724532
118
0.575407
3,185
34,367
5.929042
0.070016
0.052902
0.049778
0.055073
0.869572
0.830544
0.785798
0.753548
0.731148
0.702764
0
0.020126
0.314691
34,367
961
119
35.761707
0.781675
0.034015
0
0.553292
0
0
0.249864
0.012557
0
0
0
0
0.141066
1
0.073668
false
0
0.00627
0
0.081505
0
0
0
0
null
0
0
0
1
1
1
1
1
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
null
0
0
0
0
0
0
0
0
0
0
0
0
0
6
5ae07991afc23cb7d9a2fd6ee5c2c60cb7e50a1b
2,560
py
Python
unit_tests/test_extract_initial_rules.py
fensta/bracid2019
ad9bf0b4e44c19f66c1597e857ef6cf70f56a646
[ "MIT" ]
null
null
null
unit_tests/test_extract_initial_rules.py
fensta/bracid2019
ad9bf0b4e44c19f66c1597e857ef6cf70f56a646
[ "MIT" ]
null
null
null
unit_tests/test_extract_initial_rules.py
fensta/bracid2019
ad9bf0b4e44c19f66c1597e857ef6cf70f56a646
[ "MIT" ]
null
null
null
from unittest import TestCase import pandas as pd from scripts.utils import extract_initial_rules class TestExtractInitialRules(TestCase): """Tests test_extract_initial_rules() from utils""" def test_extract_initial_rules_numeric(self): """Test that rules are extracted correctly with a single numeric features""" df = pd.DataFrame({"A": [1.0, 2, 3], "Class": ["A", "B", "C"]}) class_col_name = "Class" rules = extract_initial_rules(df, class_col_name) correct = pd.DataFrame({"A": [(1.0, 1.0), (2, 2), (3, 3)], "Class": ["A", "B", "C"]}) self.assertTrue(df.shape == (3, 2) and rules.shape == (3, 2)) self.assertTrue(rules.equals(correct)) def test_extract_initial_rules_nominal(self): """Test that rules are extracted correctly with a single nominal features""" df = pd.DataFrame({"A": ["a", "b", "c"], "Class": ["A", "B", "C"]}) class_col_name = "Class" rules = extract_initial_rules(df, class_col_name) correct = pd.DataFrame({"A": ["a", "b", "c"], "Class": ["A", "B", "C"]}) self.assertTrue(df.shape == (3, 2) and rules.shape == (3, 2)) self.assertTrue(rules.equals(correct)) def test_extract_initial_rules_single_feature_mixed(self): """ Test that rules are extracted correctly with a single numeric and nominal feature """ df = pd.DataFrame({"A": [1.0, 2, 3], "B": ["a", "b", "c"], "Class": ["A", "B", "C"]}) class_col_name = "Class" rules = extract_initial_rules(df, class_col_name) correct = pd.DataFrame({"A": [(1.0, 1.0), (2, 2), (3, 3)], "B": ["a", "b", "c"], "Class": ["A", "B", "C"]}) self.assertTrue(df.shape == (3, 3) and rules.shape == (3, 3)) self.assertTrue(rules.equals(correct)) def test_extract_initial_rules_multiple_features_mixed(self): """ Test that rules are extracted correctly with different numeric and nominal features """ df = pd.DataFrame({"A": [1.0, 2, 3], "B": ["a", "b", "c"], "C": [5, -1, 3], "D": ["t", "t", "e"], "Class": ["A", "B", "C"]}) class_col_name = "Class" rules = extract_initial_rules(df, class_col_name) correct = pd.DataFrame({"A": [(1.0, 1.0), (2, 2), (3, 3)], "B": ["a", "b", "c"], "C": [(5, 5), (-1, -1), (3, 3)], "D": ["t", "t", "e"], "Class": ["A", "B", "C"]}) self.assertTrue(df.shape == (3, 5) and rules.shape == (3, 5)) self.assertTrue(rules.equals(correct))
49.230769
115
0.551563
357
2,560
3.817927
0.142857
0.020543
0.030814
0.046955
0.80044
0.757887
0.740279
0.737344
0.737344
0.644901
0
0.031314
0.239063
2,560
51
116
50.196078
0.668378
0.137891
0
0.411765
0
0
0.057809
0
0
0
0
0
0.235294
1
0.117647
false
0
0.088235
0
0.235294
0
0
0
0
null
0
0
0
1
1
1
1
1
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
null
0
0
0
0
0
0
0
0
0
0
0
0
0
6
5aea87607e71c1fa54637d37748174be3086f680
174
py
Python
core.py
guillaumevincent/keepass-less
03e041b2b49595b421a7b6ca8a0a4e7ae51d7fdc
[ "MIT" ]
1
2015-12-01T21:47:34.000Z
2015-12-01T21:47:34.000Z
core.py
guillaumevincent/keepass-less
03e041b2b49595b421a7b6ca8a0a4e7ae51d7fdc
[ "MIT" ]
null
null
null
core.py
guillaumevincent/keepass-less
03e041b2b49595b421a7b6ca8a0a4e7ae51d7fdc
[ "MIT" ]
null
null
null
def split_entry(entry): entries = entry.split(':') if len(entries) == 3: return entries[0], entries[1], int(entries[2]) return entries[0], entries[1], 10
29
54
0.609195
25
174
4.2
0.52
0.247619
0.266667
0.4
0.419048
0
0
0
0
0
0
0.058394
0.212644
174
5
55
34.8
0.708029
0
0
0
0
0
0.005747
0
0
0
0
0
0
1
0.2
false
0
0
0
0.6
0
1
0
0
null
1
1
1
0
0
0
0
0
0
0
0
0
0
1
0
0
0
0
0
0
0
0
0
0
null
0
0
0
0
0
0
0
0
0
0
1
0
0
6
5af6d73e24f9be5da73ff272a9a33f09624bf320
125
py
Python
daraja_api/clients/b2c_api_client.py
jakhax/python_daraja_api
7584679d0c5eaa2beafbfa221254e6370f40f12d
[ "MIT" ]
4
2019-10-30T09:19:58.000Z
2020-04-18T12:32:09.000Z
daraja_api/clients/b2c_api_client.py
jakhax/python_daraja_api
7584679d0c5eaa2beafbfa221254e6370f40f12d
[ "MIT" ]
2
2019-10-31T20:39:57.000Z
2019-10-31T20:41:32.000Z
daraja_api/clients/b2c_api_client.py
jakhax/python_daraja_api
7584679d0c5eaa2beafbfa221254e6370f40f12d
[ "MIT" ]
3
2020-04-17T23:03:25.000Z
2021-05-14T08:26:07.000Z
from daraja_api.clients.abstract_api_client import AbstractApiClient class AbstractB2CApiClient(AbstractApiClient): pass
31.25
68
0.872
13
125
8.153846
0.846154
0
0
0
0
0
0
0
0
0
0
0.008772
0.088
125
4
69
31.25
0.921053
0
0
0
0
0
0
0
0
0
0
0
0
1
0
true
0.333333
0.333333
0
0.666667
0
1
0
0
null
0
0
0
0
0
0
0
0
0
0
0
0
0
1
0
0
0
0
0
0
0
0
0
0
null
0
0
0
0
0
0
1
1
1
0
1
0
0
6
51e93219bcf0932e974ca77a974c31a6703b7426
159
py
Python
api/app/api/mutations/types/TokenData.py
VidroX/recommdo
fe518158b1a63225816054fb129f680e1d0c7d9c
[ "MIT" ]
null
null
null
api/app/api/mutations/types/TokenData.py
VidroX/recommdo
fe518158b1a63225816054fb129f680e1d0c7d9c
[ "MIT" ]
null
null
null
api/app/api/mutations/types/TokenData.py
VidroX/recommdo
fe518158b1a63225816054fb129f680e1d0c7d9c
[ "MIT" ]
null
null
null
import graphene class TokenData(graphene.ObjectType): access_token = graphene.String(required=False) refresh_token = graphene.String(required=False)
22.714286
51
0.786164
18
159
6.833333
0.611111
0.211382
0.308943
0.439024
0.520325
0
0
0
0
0
0
0
0.125786
159
6
52
26.5
0.884892
0
0
0
0
0
0
0
0
0
0
0
0
1
0
false
0
0.25
0
1
0
1
0
0
null
1
1
1
0
0
0
0
0
0
0
0
0
0
1
0
0
0
0
0
0
0
0
0
0
null
0
0
0
0
0
0
0
0
0
0
1
0
0
6
cf9d43beea070a2999be037ff5c098b3a4dc9ef5
1,173
py
Python
18-04-18-REST APIs with Flask and Python/Section 6 - Simplifying storage with Flask-SQLAlchemy/1_Improving code structure/models/user.py
maraboinavamshi/courses
48f255ffb1903ba20865c2b91b488758d5cb1a09
[ "Apache-2.0" ]
15
2017-09-19T08:09:01.000Z
2019-04-29T00:37:51.000Z
18-04-18-REST APIs with Flask and Python/Section 6 - Simplifying storage with Flask-SQLAlchemy/1_Improving code structure/models/user.py
chitrita/Courses-1
7713267ee5c92e488086588ac41490c44b4f7350
[ "Apache-2.0" ]
null
null
null
18-04-18-REST APIs with Flask and Python/Section 6 - Simplifying storage with Flask-SQLAlchemy/1_Improving code structure/models/user.py
chitrita/Courses-1
7713267ee5c92e488086588ac41490c44b4f7350
[ "Apache-2.0" ]
17
2018-02-27T03:15:54.000Z
2019-04-24T09:26:46.000Z
import sqlite3 class UserModel: def __init__(self, _id, username, password): self.id = _id self.username = username self.password = password @classmethod def find_by_username(cls, username): connection = sqlite3.connect('data.db') cursor = connection.cursor() query = "SELECT * FROM users WHERE username = ?" # Parameters MUST ALWAYS be in form of a TUPLE! result = cursor.execute(query, (username, )) # If the result set does not contain any values row = None row = result.fetchone() if row is not None: # *row is like *args, cls in this example is class User user = cls(*row) else: user = None connection.close() return user @classmethod def find_by_id(cls, id): connection = sqlite3.connect('data.db') cursor = connection.cursor() query = "SELECT * FROM users WHERE id = ?" # Parameters MUST ALWAYS be in form of a TUPLE! result = cursor.execute(query, (id, )) # If the result set does not contain any values row = None row = result.fetchone() if row is not None: # *row is like *args, cls in this example is class User user = cls(*row) else: user = None connection.close() return user
23.938776
60
0.680307
169
1,173
4.662722
0.325444
0.035533
0.045685
0.050761
0.758883
0.758883
0.758883
0.758883
0.758883
0.758883
0
0.003279
0.219949
1,173
49
61
23.938776
0.857924
0.266837
0
0.625
0
0
0.098361
0
0
0
0
0
0
1
0.09375
false
0.0625
0.03125
0
0.21875
0
0
0
0
null
0
0
0
0
1
1
1
1
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
null
0
0
0
0
0
0
0
1
0
0
0
0
0
6
cfdb1d30cc9bd9520aaaaae8ec7fdec44f23d872
38
py
Python
HashableDict/__init__.py
IFcoltransG/HashableDict
d638176db7439e835e777241073433f496cabfcb
[ "Unlicense" ]
null
null
null
HashableDict/__init__.py
IFcoltransG/HashableDict
d638176db7439e835e777241073433f496cabfcb
[ "Unlicense" ]
null
null
null
HashableDict/__init__.py
IFcoltransG/HashableDict
d638176db7439e835e777241073433f496cabfcb
[ "Unlicense" ]
null
null
null
from HashableDict import HashableDict
19
37
0.894737
4
38
8.5
0.75
0
0
0
0
0
0
0
0
0
0
0
0.105263
38
1
38
38
1
0
0
0
0
0
0
0
0
0
0
0
0
1
0
true
0
1
0
1
0
1
1
0
null
0
0
0
0
0
0
0
0
0
0
0
0
0
1
0
0
0
0
0
0
0
0
0
0
null
0
0
0
0
0
0
1
0
1
0
1
0
0
6
cfdb6aea4b5d0ec5643271d0d007024ceb0871a2
7,187
py
Python
tests/emulator/test_line_handler.py
pp81381/nicett6
addace8fbd5350105bf4fb27d1b485bb9cf20236
[ "MIT" ]
null
null
null
tests/emulator/test_line_handler.py
pp81381/nicett6
addace8fbd5350105bf4fb27d1b485bb9cf20236
[ "MIT" ]
1
2021-06-06T20:43:09.000Z
2021-06-06T20:43:09.000Z
tests/emulator/test_line_handler.py
pp81381/nicett6
addace8fbd5350105bf4fb27d1b485bb9cf20236
[ "MIT" ]
null
null
null
import asyncio from nicett6.emulator.cover_emulator import TT6CoverEmulator from nicett6.emulator.line_handler import ( LineHandler, CMD_STOP, CMD_MOVE_DOWN, CMD_MOVE_UP, ) from nicett6.ttbus_device import TTBusDeviceAddress from unittest import IsolatedAsyncioTestCase from unittest.mock import AsyncMock, MagicMock, PropertyMock RCV_EOL = b"\r" class TestHandleWebOnCommands(IsolatedAsyncioTestCase): """Test the behaviour of handle_line for web_on commands with mock controller""" async def test_handle_web_on(self): line_bytes = b"WEB_ON" + RCV_EOL controller = AsyncMock() controller.web_on = False wrapped_writer = AsyncMock() line_handler = LineHandler(wrapped_writer, controller) await line_handler.handle_line(line_bytes) self.assertTrue(controller.web_on) wrapped_writer.write_msg.assert_awaited_once_with( LineHandler.MSG_WEB_COMMANDS_ON ) async def test_handle_web_on_err(self): line_bytes = b"WEB_ON BAD" + RCV_EOL controller = AsyncMock() controller.web_on = False wrapped_writer = AsyncMock() line_handler = LineHandler(wrapped_writer, controller) await line_handler.handle_line(line_bytes) self.assertFalse(controller.web_on) wrapped_writer.write_msg.assert_awaited_once_with( LineHandler.MSG_INVALID_COMMAND_ERROR ) async def test_handle_web_off(self): line_bytes = b"WEB_OFF" + RCV_EOL controller = AsyncMock() controller.web_on = True wrapped_writer = AsyncMock() line_handler = LineHandler(wrapped_writer, controller) await line_handler.handle_line(line_bytes) self.assertFalse(controller.web_on) wrapped_writer.write_msg.assert_awaited_once_with( LineHandler.MSG_WEB_COMMANDS_OFF ) async def test_handle_web_off_whitespace(self): line_bytes = b"\n WEB_OFF " + RCV_EOL controller = AsyncMock() controller.web_on = True wrapped_writer = AsyncMock() line_handler = LineHandler(wrapped_writer, controller) await line_handler.handle_line(line_bytes) self.assertFalse(controller.web_on) wrapped_writer.write_msg.assert_awaited_once_with( LineHandler.MSG_WEB_COMMANDS_OFF ) async def test_handle_web_cmd_while_web_off(self): line_bytes = b"POS < 02 04 FFFF FFFF FF" + RCV_EOL controller = AsyncMock() controller.web_on = False wrapped_writer = AsyncMock() line_handler = LineHandler(wrapped_writer, controller) await line_handler.handle_line(line_bytes) wrapped_writer.write_msg.assert_awaited_once_with( LineHandler.MSG_INVALID_COMMAND_ERROR ) async def test_handle_quit(self): line_bytes = b"QUIT" + RCV_EOL controller = AsyncMock() controller.stop_server = MagicMock() wrapped_writer = AsyncMock() line_handler = LineHandler(wrapped_writer, controller) await line_handler.handle_line(line_bytes) controller.stop_server.assert_called_once_with() wrapped_writer.write_msg.assert_not_awaited() class TestHandleMovementCommands(IsolatedAsyncioTestCase): """Test the behaviour of handle_line for movement commands using mock cover""" async def asyncSetUp(self): self.cover = AsyncMock(spec=TT6CoverEmulator) self.cover.tt_addr = TTBusDeviceAddress(0x02, 0x04) self.cover.name = "test_cover" self.controller = AsyncMock() self.controller.web_on = False self.controller.lookup_device = MagicMock(return_value=self.cover) self.wrapped_writer = AsyncMock() self.line_handler = LineHandler(self.wrapped_writer, self.controller) async def test_handle_move_up(self): line_bytes = b"CMD 02 04 05" + RCV_EOL await self.line_handler.handle_line(line_bytes) self.cover.move_up.assert_awaited_once_with() self.wrapped_writer.write_msg.assert_awaited_once_with("RSP 2 4 5") async def test_handle_read_hex_pos(self): line_bytes = b"CMD 02 04 45" + RCV_EOL percent_pos = PropertyMock(return_value=0xAB / 0xFF) type(self.cover).percent_pos = percent_pos await self.line_handler.handle_line(line_bytes) percent_pos.assert_called_once_with() self.wrapped_writer.write_msg.assert_awaited_once_with("RSP 2 4 45 AB") async def test_handle_move_hex_pos(self): line_bytes = b"CMD 02 04 40 AB" + RCV_EOL await self.line_handler.handle_line(line_bytes) self.cover.move_to_percent_pos.assert_awaited_once_with(0xAB / 0xFF) self.wrapped_writer.write_msg.assert_awaited_once_with("RSP 2 4 40 AB") async def test_handle_read_pct_pos(self): line_bytes = b"POS < 02 04 FFFF FFFF FF" + RCV_EOL self.controller.web_on = True percent_pos = PropertyMock(return_value=0.5) type(self.cover).percent_pos = percent_pos await self.line_handler.handle_line(line_bytes) percent_pos.assert_called_once_with() self.wrapped_writer.write_msg.assert_awaited_once_with( "POS * 02 04 0500 FFFF FF" ) async def test_handle_move_pct_pos(self): line_bytes = b"POS > 02 04 0500 FFFF FF" + RCV_EOL self.controller.web_on = True await self.line_handler.handle_line(line_bytes) self.cover.move_to_percent_pos.assert_awaited_once_with(0.5) class TestMovementCommands(IsolatedAsyncioTestCase): """Test the behaviour of handle_line for movement commands using a cover emulator""" async def asyncSetUp(self): self.cover = TT6CoverEmulator( "test_cover", TTBusDeviceAddress(0x02, 0x04), 0.01, 1.77, 0.08, 1.0 ) self.controller = AsyncMock() self.controller.web_on = False self.controller.lookup_device = MagicMock(return_value=self.cover) self.wrapped_writer = AsyncMock() self.line_handler = LineHandler(self.wrapped_writer, self.controller) async def test_stop(self): mover = asyncio.create_task( self.line_handler.handle_line( f"CMD 02 04 {CMD_MOVE_DOWN:02X}".encode("utf-8") + RCV_EOL ) ) delay = 3 await asyncio.sleep(delay) await self.line_handler.handle_line( f"CMD 02 04 {CMD_STOP:02X}".encode("utf-8") + RCV_EOL ) await mover self.assertGreater(self.cover.drop, 0.19) self.assertLess(self.cover.drop, 0.24) async def test_move_while_moving(self): mover = asyncio.create_task( self.line_handler.handle_line( f"CMD 02 04 {CMD_MOVE_DOWN:02X}".encode("utf-8") + RCV_EOL ) ) delay = 3 await asyncio.sleep(delay) self.assertGreater(self.cover.drop, 0.19) self.assertLess(self.cover.drop, 0.24) await self.line_handler.handle_line( f"CMD 02 04 {CMD_MOVE_UP:02X}".encode("utf-8") + RCV_EOL ) await mover self.assertEqual(self.cover.drop, 0)
39.489011
88
0.685265
927
7,187
5.007551
0.140237
0.072813
0.054933
0.067859
0.821198
0.769496
0.727273
0.722749
0.711116
0.666523
0
0.024182
0.234729
7,187
182
89
39.489011
0.819818
0.031446
0
0.535032
0
0
0.051828
0
0
0
0.004607
0
0.159236
1
0
false
0
0.038217
0
0.057325
0
0
0
0
null
0
0
0
1
1
1
1
1
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
null
0
0
0
0
0
0
0
0
0
0
0
0
0
6
5c7679f7f5b438170113cc7075f9558e13ac35ef
33
py
Python
reporting/__init__.py
4ESoftware/TempRent
822268c787bdd2be6e6c446db8417da24dbb2ec5
[ "MIT" ]
null
null
null
reporting/__init__.py
4ESoftware/TempRent
822268c787bdd2be6e6c446db8417da24dbb2ec5
[ "MIT" ]
null
null
null
reporting/__init__.py
4ESoftware/TempRent
822268c787bdd2be6e6c446db8417da24dbb2ec5
[ "MIT" ]
null
null
null
from .rep_utils import RepEngine
16.5
32
0.848485
5
33
5.4
1
0
0
0
0
0
0
0
0
0
0
0
0.121212
33
1
33
33
0.931034
0
0
0
0
0
0
0
0
0
0
0
0
1
0
true
0
1
0
1
0
1
1
0
null
0
0
0
0
0
0
0
0
0
0
0
0
0
1
0
0
0
0
0
0
0
0
0
0
null
0
0
0
0
0
0
1
0
1
0
1
0
0
6
5c9febd4c5cf40ff34bafdd56f8c84d210e5451c
56
py
Python
easy_differ/__init__.py
FurkanOzkaya/easy_differ
9c81a53447536df006045ea35f264225367c4b61
[ "MIT" ]
1
2020-09-26T21:46:48.000Z
2020-09-26T21:46:48.000Z
easy_differ/__init__.py
FurkanOzkaya/easy_differ
9c81a53447536df006045ea35f264225367c4b61
[ "MIT" ]
null
null
null
easy_differ/__init__.py
FurkanOzkaya/easy_differ
9c81a53447536df006045ea35f264225367c4b61
[ "MIT" ]
null
null
null
from easy_differ.easy_differ import list_diff, text_diff
56
56
0.892857
10
56
4.6
0.7
0.434783
0
0
0
0
0
0
0
0
0
0
0.071429
56
1
56
56
0.884615
0
0
0
0
0
0
0
0
0
0
0
0
1
0
true
0
1
0
1
0
1
0
0
null
1
0
0
0
0
0
0
0
0
0
0
0
0
1
0
0
0
0
0
0
0
0
0
0
null
0
0
0
0
0
0
1
0
1
0
1
0
0
6
5ce52894ee777c761bbe80312dc0afb967f4d975
141
py
Python
homie/models/__init__.py
timpur/homie-discovery-python
f157e3843cae7b1ad3e4fd810b340c35c34473eb
[ "MIT" ]
null
null
null
homie/models/__init__.py
timpur/homie-discovery-python
f157e3843cae7b1ad3e4fd810b340c35c34473eb
[ "MIT" ]
null
null
null
homie/models/__init__.py
timpur/homie-discovery-python
f157e3843cae7b1ad3e4fd810b340c35c34473eb
[ "MIT" ]
null
null
null
"""Homie Models module""" from .homie_device import HomieDevice from .homie_node import HomieNode from .homie_property import HomieProperty
23.5
41
0.822695
18
141
6.277778
0.611111
0.238938
0
0
0
0
0
0
0
0
0
0
0.113475
141
5
42
28.2
0.904
0.134752
0
0
0
0
0
0
0
0
0
0
0
1
0
true
0
1
0
1
0
1
0
0
null
1
0
0
0
0
0
0
0
0
0
0
0
0
1
0
0
0
0
0
0
0
0
0
0
null
0
0
0
0
0
0
1
0
1
0
1
0
0
6
7a3acfc511ddee7da218b4ddb4970a9394b9e44a
5,946
py
Python
venv/lib/python3.7/site-packages/rqdatac/services/orm/financial_indicator_sql.py
CatTiger/vnpy
7901a0fb80a5b44d6fc752bd4b2b64ec62c8f84b
[ "MIT" ]
null
null
null
venv/lib/python3.7/site-packages/rqdatac/services/orm/financial_indicator_sql.py
CatTiger/vnpy
7901a0fb80a5b44d6fc752bd4b2b64ec62c8f84b
[ "MIT" ]
1
2020-04-21T02:42:32.000Z
2020-04-21T02:42:32.000Z
venv/lib/python3.7/site-packages/rqdatac/services/orm/financial_indicator_sql.py
CatTiger/vnpy
7901a0fb80a5b44d6fc752bd4b2b64ec62c8f84b
[ "MIT" ]
null
null
null
# coding: utf-8 from sqlalchemy import Numeric, Column from .fundamental_base_sql import FundamentalBase class AnaStkFinIdx(FundamentalBase): earnings_per_share = Column(Numeric(18, 4)) fully_diluted_earnings_per_share = Column(Numeric(18, 4)) diluted_earnings_per_share = Column(Numeric(18, 4)) adjusted_earnings_per_share = Column(Numeric(18, 4)) adjusted_fully_diluted_earnings_per_share = Column(Numeric(18, 4)) adjusted_diluted_earnings_per_share = Column(Numeric(18, 4)) book_value_per_share = Column(Numeric(18, 4)) operating_cash_flow_per_share = Column(Numeric(18, 4)) operating_total_revenue_per_share = Column(Numeric(18, 4)) operating_revenue_per_share = Column(Numeric(18, 4)) capital_reserve_per_share = Column(Numeric(18, 4)) earned_reserve_per_share = Column(Numeric(18, 4)) undistributed_profit_per_share = Column(Numeric(18, 4)) retained_earnings_per_share = Column(Numeric(18, 4)) cash_flow_from_operations_per_share = Column(Numeric(18, 4)) ebit_per_share = Column(Numeric(18, 4)) free_cash_flow_company_per_share = Column(Numeric(18, 4)) free_cash_flow_equity_per_share = Column(Numeric(18, 4)) dividend_per_share = Column(Numeric(18, 4)) return_on_equity = Column(Numeric(18, 4)) return_on_equity_weighted_average = Column(Numeric(18, 4)) return_on_equity_diluted = Column(Numeric(18, 4)) adjusted_return_on_equity_average = Column(Numeric(18, 4)) adjusted_return_on_equity_weighted_average = Column(Numeric(18, 4)) adjusted_return_on_equity_diluted = Column(Numeric(18, 4)) return_on_asset = Column(Numeric(18, 4)) return_on_asset_net_profit = Column(Numeric(18, 4)) return_on_invested_capital = Column(Numeric(18, 4)) annual_return_on_equity = Column(Numeric(18, 4)) annual_return_on_asset = Column(Numeric(18, 4)) annual_return_on_asset_net_profit = Column(Numeric(18, 4)) net_profit_margin = Column(Numeric(18, 4)) gross_profit_margin = Column(Numeric(18, 4)) cost_to_sales = Column(Numeric(18, 4)) net_profit_to_revenue = Column(Numeric(18, 4)) profit_from_operation_to_revenue = Column(Numeric(18, 4)) ebit_to_revenue = Column(Numeric(18, 4)) expense_to_revenue = Column(Numeric(18, 4)) operating_profit_to_profit_before_tax = Column(Numeric(18, 4)) invesment_profit_to_profit_before_tax = Column(Numeric(18, 4)) non_operating_profit_to_profit_before_tax = Column(Numeric(18, 4)) income_tax_to_profit_before_tax = Column(Numeric(18, 4)) adjusted_profit_to_total_profit = Column(Numeric(18, 4)) debt_to_asset_ratio = Column(Numeric(18, 4)) equity_multiplier = Column(Numeric(18, 4)) current_asset_to_total_asset = Column(Numeric(18, 4)) non_current_asset_to_total_asset = Column(Numeric(18, 4)) interest_bearing_debt_to_capital = Column(Numeric(18, 4)) current_debt_to_total_debt = Column(Numeric(18, 4)) non_current_debt_to_total_debt = Column(Numeric(18, 4)) current_ratio = Column(Numeric(18, 4)) quick_ratio = Column(Numeric(18, 4)) super_quick_ratio = Column(Numeric(18, 4)) debt_to_equity_ratio = Column(Numeric(18, 4)) equity_to_debt_ratio = Column(Numeric(18, 4)) equity_to_interest_bearing_debt = Column(Numeric(18, 4)) ebit_to_debt = Column(Numeric(18, 4)) ocf_to_debt = Column(Numeric(18, 4)) ocf_to_interest_bearing_debt = Column(Numeric(18, 4)) ocf_to_current_ratio = Column(Numeric(18, 4)) ocf_to_net_debt = Column(Numeric(18, 4)) time_interest_earned_ratio = Column(Numeric(18, 4)) long_term_debt_to_working_capital = Column(Numeric(18, 4)) account_payable_turnover_rate = Column(Numeric(18, 4)) account_payable_turnover_days = Column(Numeric(18, 4)) account_receivable_turnover_days = Column(Numeric(18, 4)) inventory_turnover = Column(Numeric(18, 4)) account_receivable_turnover_rate = Column(Numeric(18, 4)) current_asset_turnover = Column(Numeric(18, 4)) fixed_asset_turnover = Column(Numeric(18, 4)) total_asset_turnover = Column(Numeric(18, 4)) inc_earnings_per_share = Column(Numeric(18, 4)) inc_diluted_earnings_per_share = Column(Numeric(18, 4)) inc_revenue = Column(Numeric(18, 4)) inc_operating_revenue = Column(Numeric(18, 4)) inc_gross_profit = Column(Numeric(18, 4)) inc_profit_before_tax = Column(Numeric(18, 4)) inc_net_profit = Column(Numeric(18, 4)) inc_adjusted_net_profit = Column(Numeric(18, 4)) inc_cash_from_operations = Column(Numeric(18, 4)) inc_return_on_equity = Column(Numeric(18, 4)) inc_book_per_share = Column(Numeric(18, 4)) inc_total_asset = Column(Numeric(18, 4)) du_return_on_equity = Column(Numeric(18, 4)) du_equity_multiplier = Column(Numeric(18, 4)) du_asset_turnover_ratio = Column(Numeric(18, 4)) du_profit_margin = Column(Numeric(18, 4)) du_return_on_sales = Column(Numeric(18, 4)) non_recurring_profit_and_loss = Column(Numeric(18, 4)) adjusted_net_profit = Column(Numeric(18, 4)) ebit = Column(Numeric(18, 4)) ebitda = Column(Numeric(18, 4)) invested_capital = Column(Numeric(18, 4)) working_capital = Column(Numeric(18, 4)) net_working_capital = Column(Numeric(18, 4)) retained_earnings = Column(Numeric(18, 4)) interest_bearing_debt = Column(Numeric(18, 4)) net_debt = Column(Numeric(18, 4)) non_interest_bearing_current_debt = Column(Numeric(18, 4)) non_interest_bearing_non_current_debt = Column(Numeric(18, 4)) fcff = Column(Numeric(18, 4)) fcfe = Column(Numeric(18, 4)) depreciation_and_amortization = Column(Numeric(18, 4)) ev = Column(Numeric(21, 4)) ev_2 = Column(Numeric(21, 4)) ev_to_ebit = Column(Numeric(18, 4)) ev_to_ebitda = Column(Numeric(19, 4)) tangible_assets = Column(Numeric(19, 4)) tangible_asset_to_debt = Column(Numeric(19, 4)) tangible_asset_to_interest_bearing_debt = Column(Numeric(19, 4))
50.389831
71
0.736798
881
5,946
4.614075
0.111237
0.351784
0.383764
0.409348
0.868143
0.793604
0.550308
0.308241
0.178352
0.023616
0
0.065756
0.150858
5,946
117
72
50.820513
0.739354
0.002186
0
0
0
0
0
0
0
0
0
0
0
1
0
false
0
0.017699
0
1
0
0
0
0
null
1
1
1
1
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
null
0
0
0
0
0
0
0
0
0
0
1
0
0
6
7a3e3c0c5a227d2ab34cab782fab2492bb8ae99d
35,990
py
Python
teospy/iceliq4.py
jarethholt/teospy
3bb23e67bbb765c0842aa8d4a73c1d55ea395d2f
[ "MIT" ]
null
null
null
teospy/iceliq4.py
jarethholt/teospy
3bb23e67bbb765c0842aa8d4a73c1d55ea395d2f
[ "MIT" ]
null
null
null
teospy/iceliq4.py
jarethholt/teospy
3bb23e67bbb765c0842aa8d4a73c1d55ea395d2f
[ "MIT" ]
null
null
null
"""Ice-liquid water equilibrium functions. This module provides thermodynamic properties of ice and liquid water in equilibrium, e.g. the enthalpy of melting. :Examples: >>> pressure(temp=270.) 39313338.8825 >>> densityliq(temp=270.) 1019.05568894 >>> enthalpymelt(temp=270.) 325166.686739 >>> entropymelt(temp=270.) 1204.32106199 >>> volumemelt(temp=270.) -1.04052121182e-4 >>> temperature(pres=1e7) 272.401648868 >>> densityliq(pres=1e7) 1004.79353660 >>> enthalpymelt(pres=1e7) 331548.910815 >>> entropymelt(pres=1e7) 1217.13254010 >>> volumemelt(pres=1e7) -9.4217890326e-05 :Functions: * :func:`eq_tp`: Calculate ice-liquid water equilibrium properties at either temperature or pressure. * :func:`temperature`: Temperature at ice-liquid water equilibrium. * :func:`pressure`: Pressure at ice-liquid water equilibrium. * :func:`densityliq`: Liquid water density at ice-liquid water equilibrium. * :func:`chempot`: Chemical potential at ice-liquid water equilibrium. * :func:`densityice`: Ice density at ice-liquid water equilibrium. * :func:`enthalpyice`: Ice enthalpy at ice-liquid water equilibrium. * :func:`enthalpyliq`: Liquid water enthalpy at ice-liquid water equilibrium. * :func:`enthalpymelt`: Enthalpy of melting. * :func:`entropyice`: Ice entropy at ice-liquid water equilibrium. * :func:`entropyliq`: Liquid water entropy at ice-liquid water equilibrium. * :func:`entropymelt`: Entropy of melting. * :func:`volumemelt`: Specific volume of melting. """ __all__ = ['eq_tp','temperature','pressure','densityliq','chempot','densityice', 'enthalpyice','enthalpyliq','enthalpymelt','entropyice','entropyliq', 'entropymelt','volumemelt'] import warnings import numpy from teospy import constants0 from teospy import ice1 from teospy import flu2 from teospy import ice2 from teospy import maths3 _CHKTOL = constants0.CHKTOL _TTP = constants0.TTP _PTPI = constants0.PTPI _DLTP = constants0.DLTP _LILTP = constants0.LILTP _chkflubnds = constants0.chkflubnds _chkicebnds = constants0.chkicebnds _ice_g = ice1.ice_g _eq_chempot = flu2.eq_chempot _eq_pressure = flu2.eq_pressure _newton = maths3.newton _C_APPS = ((-1.78582981492113,-12.2325084306734,-52.8236936433529), (-1.67329759176351e-7,-2.02262929999658e-13)) ## Equilibrium functions def _approx_t(temp): """Approximate PDl at T. Approximate the pressure and liquid water density for ice and liquid water in equilibrium at the given temperature. This approximation is based on an empirical polynomial for density. :arg float temp: Temperature in K. :returns: Pressure in Pa and liquid water density in kg/m3. """ tau = temp/_TTP - 1 dta = 0. for (i,a) in enumerate(_C_APPS[0]): dta += a * tau**(i+1) dliq = _DLTP * (1 + dta) pres = flu2.pressure(temp,dliq) return pres, dliq def _approx_p(pres): """Approximate TDl at P. Approximate the temperature and liquid water density for ice and liquid water in equilibrium at the given pressure. This approximation is based on empirical polynomials for temperature and density. :arg float pres: Pressure in Pa. :returns: Temperature in K and liquid water density in kg/m3. """ a1, a2 = _C_APPS[1] psi = pres/_PTPI - 1 tau = a1*psi + a2*psi**2 temp = _TTP * (1 + tau) dta = 0. for (i,a) in enumerate(_C_APPS[0]): dta += a * tau**(i+1) dliq = _DLTP * (1 + dta) return temp, dliq def _diff_t(p,dl,temp): """Calculate ice-liquid disequilibrium at T. Calculate both sides of the equations given pressure = pressure of liquid water chemical potential of ice = potential of liquid water and their Jacobians with respect to pressure and liquid water density. Solving these equations gives the pressure and liquid water density at the given temperature. :arg float p: Pressure in Pa. :arg float dl: Liquid water density in kg/m3. :arg float temp: Temperature in K. :returns: Left-hand side of the equation, right-hand side, Jacobian of LHS, and Jacobian of RHS. :rtype: tuple(array(float)) """ pl = _eq_pressure(0,0,temp,dl) gi = _ice_g(0,0,temp,p) gl = _eq_chempot(0,0,temp,dl) lhs = numpy.array([p, gi]) rhs = numpy.array([pl, gl]) pl_d = _eq_pressure(0,1,temp,dl) gi_p = _ice_g(0,1,temp,p) gl_d = _eq_chempot(0,1,temp,dl) dlhs = numpy.array([[1.,0.], [gi_p,0.]]) drhs = numpy.array([[0.,pl_d], [0.,gl_d]]) return lhs, rhs, dlhs, drhs def _diff_p(t,dl,pres): """Calculate ice-liquid disequilibrium at P. Calculate both sides of the equations given pressure = pressure of liquid water chemical potential of ice = potential of liquid water and their Jacobians with respect to temperature and liquid water density. Solving these equations gives the temperature and liquid water density at the given temperature. :arg float t: Temperature in K. :arg float dl: Liquid water density in kg/m3. :arg float pres: Pressure in Pa. :returns: Left-hand side of the equation, right-hand side, Jacobian of LHS, and Jacobian of RHS. :rtype: tuple(array(float)) """ pl = _eq_pressure(0,0,t,dl) gi = _ice_g(0,0,t,pres) gl = _eq_chempot(0,0,t,dl) lhs = numpy.array([pres, gi]) rhs = numpy.array([pl, gl]) pl_t = _eq_pressure(1,0,t,dl) pl_d = _eq_pressure(0,1,t,dl) gi_t = _ice_g(1,0,t,pres) gl_t = _eq_chempot(1,0,t,dl) gl_d = _eq_chempot(0,1,t,dl) dlhs = numpy.array([[0.,0.], [gi_t,0.]]) drhs = numpy.array([[pl_t,pl_d], [gl_t,gl_d]]) return lhs, rhs, dlhs, drhs def eq_tp(temp=None,pres=None,dliq=None,chkvals=False,chktol=_CHKTOL, temp0=None,pres0=None,dliq0=None,chkbnd=False,mathargs=None): """Get primary ice-liquid variables at T or P. Get the values of all primary variables for ice and liquid water in equilibrium at either of a given temperature or pressure. If the calculation has already been done, the results can be passed to avoid unnecessary repeat calculations. If enough values are passed, they will be checked for consistency if chkvals is True. :arg temp: Temperature in K. :type temp: float or None :arg pres: Pressure in Pa. :type pres: float or None :arg dliq: Liquid water density in kg/m3. If unknown, pass None (default) and it will be calculated. :type dliq: float or None :arg bool chkvals: If True (default False) and all values are given, this function will calculate the disequilibrium and raise a warning if the results are not within a given tolerance. :arg float chktol: Tolerance to use when checking values (default _CHKTOL). :arg temp0: Initial guess for the temperature in K. If None (default) then `_approx_p` is used. :type temp0: float or None :arg pres0: Initial guess for the pressure in Pa. If None (default) then `_approx_t` is used. :type pres0: float or None :arg dliq0: Initial guess for the liquid water density in kg/m3. If None (default) then `_approx_t` or `_approx_p` is used. :type dliq0: float or None :arg bool chkbnd: If True then warnings are raised when the given values are valid but outside the recommended bounds (default False). :arg mathargs: Keyword arguments to the root-finder :func:`_newton <maths3.newton>` (e.g. maxiter, rtol). If None (default) then no arguments are passed and default parameters will be used. :returns: Temperature, pressure, and liquid water density (all in SI units). :raises ValueError: If neither of temp or pres is provided. :raises RuntimeWarning: If the relative disequilibrium is more than chktol, if chkvals is True and all values are given. """ if temp is None and pres is None: errmsg = 'One of temp or pres must be provided' raise ValueError(errmsg) if temp is not None: if any(val is None for val in (pres,dliq)): x0 = (pres0,dliq0) fargs = (temp,) if mathargs is None: mathargs = dict() x1 = _newton(_diff_t,x0,_approx_t,fargs=fargs,**mathargs) pres, dliq = x1 else: x0 = (temp0,dliq0) fargs = (pres,) if mathargs is None: mathargs = dict() x1 = _newton(_diff_p,x0,_approx_p,fargs=fargs,**mathargs) temp, dliq = x1 _chkflubnds(temp,dliq,chkbnd=chkbnd) _chkicebnds(temp,pres,chkbnd=chkbnd) if not chkvals: return temp, pres, dliq lhs, rhs, __, __ = _diff_p(temp,dliq,pres) errs = list() for (l,r) in zip(lhs,rhs): if abs(r) >= chktol: errs.append(abs(l/r-1)) else: errs.append(abs(l-r)) if max(errs) > chktol: warnmsg = ('Given values {0} and solutions {1} disagree to more than ' 'the tolerance {2}').format(lhs,rhs,chktol) warnings.warn(warnmsg,RuntimeWarning) return temp, pres, dliq ## Thermodynamic properties def temperature(temp=None,pres=None,dliq=None,chkvals=False, chktol=_CHKTOL,temp0=None,pres0=None,dliq0=None,chkbnd=False, mathargs=None): """Calculate ice-liquid temperature. Calculate the temperature of ice and liquid water in equilibrium. :arg temp: Temperature in K. :type temp: float or None :arg pres: Pressure in Pa. :type pres: float or None :arg dliq: Liquid water density in kg/m3. If unknown, pass None (default) and it will be calculated. :type dliq: float or None :arg bool chkvals: If True (default False) and all values are given, this function will calculate the disequilibrium and raise a warning if the results are not within a given tolerance. :arg float chktol: Tolerance to use when checking values (default _CHKTOL). :arg temp0: Initial guess for the temperature in K. If None (default) then `_approx_p` is used. :type temp0: float or None :arg pres0: Initial guess for the pressure in Pa. If None (default) then `_approx_t` is used. :type pres0: float or None :arg dliq0: Initial guess for the liquid water density in kg/m3. If None (default) then `_approx_t` or `_approx_p` is used. :type dliq0: float or None :arg bool chkbnd: If True then warnings are raised when the given values are valid but outside the recommended bounds (default False). :arg mathargs: Keyword arguments to the root-finder :func:`_newton <maths3.newton>` (e.g. maxiter, rtol). If None (default) then no arguments are passed and default parameters will be used. :returns: Temperature in K. :raises ValueError: If neither of temp or pres is provided. :raises RuntimeWarning: If the relative disequilibrium is more than chktol, if chkvals is True and all values are given. :Examples: >>> temperature(pres=1e7) 272.40164887 """ temp, pres, dliq = eq_tp(temp=temp,pres=pres,dliq=dliq,chkvals=chkvals, chktol=chktol,temp0=temp0,pres0=pres0,dliq0=dliq0,chkbnd=chkbnd, mathargs=mathargs) return temp def pressure(temp=None,pres=None,dliq=None,chkvals=False, chktol=_CHKTOL,temp0=None,pres0=None,dliq0=None,chkbnd=False, mathargs=None): """Calculate ice-liquid pressure. Calculate the pressure of ice and liquid water in equilibrium. :arg temp: Temperature in K. :type temp: float or None :arg pres: Pressure in Pa. :type pres: float or None :arg dliq: Liquid water density in kg/m3. If unknown, pass None (default) and it will be calculated. :type dliq: float or None :arg bool chkvals: If True (default False) and all values are given, this function will calculate the disequilibrium and raise a warning if the results are not within a given tolerance. :arg float chktol: Tolerance to use when checking values (default _CHKTOL). :arg temp0: Initial guess for the temperature in K. If None (default) then `_approx_p` is used. :type temp0: float or None :arg pres0: Initial guess for the pressure in Pa. If None (default) then `_approx_t` is used. :type pres0: float or None :arg dliq0: Initial guess for the liquid water density in kg/m3. If None (default) then `_approx_t` or `_approx_p` is used. :type dliq0: float or None :arg bool chkbnd: If True then warnings are raised when the given values are valid but outside the recommended bounds (default False). :arg mathargs: Keyword arguments to the root-finder :func:`_newton <maths3.newton>` (e.g. maxiter, rtol). If None (default) then no arguments are passed and default parameters will be used. :returns: Pressure in Pa. :raises ValueError: If neither of temp or pres is provided. :raises RuntimeWarning: If the relative disequilibrium is more than chktol, if chkvals is True and all values are given. :Examples: >>> pressure(temp=270.) 39313338.8825 """ temp, pres, dliq = eq_tp(temp=temp,pres=pres,dliq=dliq,chkvals=chkvals, chktol=chktol,temp0=temp0,pres0=pres0,dliq0=dliq0,chkbnd=chkbnd, mathargs=mathargs) return pres def densityliq(temp=None,pres=None,dliq=None,chkvals=False, chktol=_CHKTOL,temp0=None,pres0=None,dliq0=None,chkbnd=False, mathargs=None): """Calculate ice-liquid liquid water density. Calculate the density of liquid water for ice and liquid water in equilibrium. :arg temp: Temperature in K. :type temp: float or None :arg pres: Pressure in Pa. :type pres: float or None :arg dliq: Liquid water density in kg/m3. If unknown, pass None (default) and it will be calculated. :type dliq: float or None :arg bool chkvals: If True (default False) and all values are given, this function will calculate the disequilibrium and raise a warning if the results are not within a given tolerance. :arg float chktol: Tolerance to use when checking values (default _CHKTOL). :arg temp0: Initial guess for the temperature in K. If None (default) then `_approx_p` is used. :type temp0: float or None :arg pres0: Initial guess for the pressure in Pa. If None (default) then `_approx_t` is used. :type pres0: float or None :arg dliq0: Initial guess for the liquid water density in kg/m3. If None (default) then `_approx_t` or `_approx_p` is used. :type dliq0: float or None :arg bool chkbnd: If True then warnings are raised when the given values are valid but outside the recommended bounds (default False). :arg mathargs: Keyword arguments to the root-finder :func:`_newton <maths3.newton>` (e.g. maxiter, rtol). If None (default) then no arguments are passed and default parameters will be used. :returns: Liquid water density in kg/m3. :raises ValueError: If neither of temp or pres is provided. :raises RuntimeWarning: If the relative disequilibrium is more than chktol, if chkvals is True and all values are given. :Examples: >>> densityliq(pres=1e7) 1004.79353660 >>> densityliq(temp=270.) 1019.05568894 """ temp, pres, dliq = eq_tp(temp=temp,pres=pres,dliq=dliq,chkvals=chkvals, chktol=chktol,temp0=temp0,pres0=pres0,dliq0=dliq0,chkbnd=chkbnd, mathargs=mathargs) return dliq def chempot(temp=None,pres=None,dliq=None,chkvals=False,chktol=_CHKTOL, temp0=None,pres0=None,dliq0=None,chkbnd=False,mathargs=None): """Calculate ice-liquid chemical potential. Calculate the chemical potential of ice and liquid water in equilibrium. :arg temp: Temperature in K. :type temp: float or None :arg pres: Pressure in Pa. :type pres: float or None :arg dliq: Liquid water density in kg/m3. If unknown, pass None (default) and it will be calculated. :type dliq: float or None :arg bool chkvals: If True (default False) and all values are given, this function will calculate the disequilibrium and raise a warning if the results are not within a given tolerance. :arg float chktol: Tolerance to use when checking values (default _CHKTOL). :arg temp0: Initial guess for the temperature in K. If None (default) then `_approx_p` is used. :type temp0: float or None :arg pres0: Initial guess for the pressure in Pa. If None (default) then `_approx_t` is used. :type pres0: float or None :arg dliq0: Initial guess for the liquid water density in kg/m3. If None (default) then `_approx_t` or `_approx_p` is used. :type dliq0: float or None :arg bool chkbnd: If True then warnings are raised when the given values are valid but outside the recommended bounds (default False). :arg mathargs: Keyword arguments to the root-finder :func:`_newton <maths3.newton>` (e.g. maxiter, rtol). If None (default) then no arguments are passed and default parameters will be used. :returns: Chemical potential in J/kg. :raises ValueError: If neither of temp or pres is provided. :raises RuntimeWarning: If the relative disequilibrium is more than chktol, if chkvals is True and all values are given. :Examples: >>> chempot(pres=1e7) 9972.8817069 >>> chempot(temp=270.) 38870.0605192 """ temp, pres, dliq = eq_tp(temp=temp,pres=pres,dliq=dliq,chkvals=chkvals, chktol=chktol,temp0=temp0,pres0=pres0,dliq0=dliq0,chkbnd=chkbnd, mathargs=mathargs) g = _ice_g(0,0,temp,pres) return g def densityice(temp=None,pres=None,dliq=None,chkvals=False, chktol=_CHKTOL,temp0=None,pres0=None,dliq0=None,chkbnd=False, mathargs=None): """Calculate ice-liquid ice density. Calculate the density of ice for ice and liquid water in equilibrium. :arg temp: Temperature in K. :type temp: float or None :arg pres: Pressure in Pa. :type pres: float or None :arg dliq: Liquid water density in kg/m3. If unknown, pass None (default) and it will be calculated. :type dliq: float or None :arg bool chkvals: If True (default False) and all values are given, this function will calculate the disequilibrium and raise a warning if the results are not within a given tolerance. :arg float chktol: Tolerance to use when checking values (default _CHKTOL). :arg temp0: Initial guess for the temperature in K. If None (default) then `_approx_p` is used. :type temp0: float or None :arg pres0: Initial guess for the pressure in Pa. If None (default) then `_approx_t` is used. :type pres0: float or None :arg dliq0: Initial guess for the liquid water density in kg/m3. If None (default) then `_approx_t` or `_approx_p` is used. :type dliq0: float or None :arg bool chkbnd: If True then warnings are raised when the given values are valid but outside the recommended bounds (default False). :arg mathargs: Keyword arguments to the root-finder :func:`_newton <maths3.newton>` (e.g. maxiter, rtol). If None (default) then no arguments are passed and default parameters will be used. :returns: Ice density in kg/m3. :raises ValueError: If neither of temp or pres is provided. :raises RuntimeWarning: If the relative disequilibrium is more than chktol, if chkvals is True and all values are given. :Examples: >>> densityice(pres=1e7) 917.896690830 >>> densityice(temp=270.) 921.359428514 """ temp, pres, dliq = eq_tp(temp=temp,pres=pres,dliq=dliq,chkvals=chkvals, chktol=chktol,temp0=temp0,pres0=pres0,dliq0=dliq0,chkbnd=chkbnd, mathargs=mathargs) dice = ice2.density(temp,pres) return dice def enthalpyice(temp=None,pres=None,dliq=None,chkvals=False, chktol=_CHKTOL,temp0=None,pres0=None,dliq0=None,chkbnd=False, mathargs=None): """Calculate liquid-ice ice enthalpy. Calculate the specific enthalpy of ice for ice and liquid water in equilibrium. :arg temp: Temperature in K. :type temp: float or None :arg pres: Pressure in Pa. :type pres: float or None :arg dliq: Liquid water density in kg/m3. If unknown, pass None (default) and it will be calculated. :type dliq: float or None :arg bool chkvals: If True (default False) and all values are given, this function will calculate the disequilibrium and raise a warning if the results are not within a given tolerance. :arg float chktol: Tolerance to use when checking values (default _CHKTOL). :arg temp0: Initial guess for the temperature in K. If None (default) then `_approx_p` is used. :type temp0: float or None :arg pres0: Initial guess for the pressure in Pa. If None (default) then `_approx_t` is used. :type pres0: float or None :arg dliq0: Initial guess for the liquid water density in kg/m3. If None (default) then `_approx_t` or `_approx_p` is used. :type dliq0: float or None :arg bool chkbnd: If True then warnings are raised when the given values are valid but outside the recommended bounds (default False). :arg mathargs: Keyword arguments to the root-finder :func:`_newton <maths3.newton>` (e.g. maxiter, rtol). If None (default) then no arguments are passed and default parameters will be used. :returns: Enthalpy in J/kg. :raises ValueError: If neither of temp or pres is provided. :raises RuntimeWarning: If the relative disequilibrium is more than chktol, if chkvals is True and all values are given. :Examples: >>> enthalpyice(pres=1e7) -324602.983822 >>> enthalpyice(temp=270.) -299055.938629 """ temp, pres, dliq = eq_tp(temp=temp,pres=pres,dliq=dliq,chkvals=chkvals, chktol=chktol,temp0=temp0,pres0=pres0,dliq0=dliq0,chkbnd=chkbnd, mathargs=mathargs) hi = ice2.enthalpy(temp,pres) return hi def enthalpyliq(temp=None,pres=None,dliq=None,chkvals=False, chktol=_CHKTOL,temp0=None,pres0=None,dliq0=None,chkbnd=False, mathargs=None): """Calculate ice-liquid liquid water enthalpy. Calculate the specific enthalpy of liquid water for ice and liquid water in equilibrium. :arg temp: Temperature in K. :type temp: float or None :arg pres: Pressure in Pa. :type pres: float or None :arg dliq: Liquid water density in kg/m3. If unknown, pass None (default) and it will be calculated. :type dliq: float or None :arg bool chkvals: If True (default False) and all values are given, this function will calculate the disequilibrium and raise a warning if the results are not within a given tolerance. :arg float chktol: Tolerance to use when checking values (default _CHKTOL). :arg temp0: Initial guess for the temperature in K. If None (default) then `_approx_p` is used. :type temp0: float or None :arg pres0: Initial guess for the pressure in Pa. If None (default) then `_approx_t` is used. :type pres0: float or None :arg dliq0: Initial guess for the liquid water density in kg/m3. If None (default) then `_approx_t` or `_approx_p` is used. :type dliq0: float or None :arg bool chkbnd: If True then warnings are raised when the given values are valid but outside the recommended bounds (default False). :arg mathargs: Keyword arguments to the root-finder :func:`_newton <maths3.newton>` (e.g. maxiter, rtol). If None (default) then no arguments are passed and default parameters will be used. :returns: Enthalpy in J/kg. :raises ValueError: If neither of temp or pres is provided. :raises RuntimeWarning: If the relative disequilibrium is more than chktol, if chkvals is True and all values are given. :Examples: >>> enthalpyliq(pres=1e7) 6945.9269937 >>> enthalpyliq(temp=270.) 26110.7481094 """ temp, pres, dliq = eq_tp(temp=temp,pres=pres,dliq=dliq,chkvals=chkvals, chktol=chktol,temp0=temp0,pres0=pres0,dliq0=dliq0,chkbnd=chkbnd, mathargs=mathargs) hl = flu2.enthalpy(temp,dliq) return hl def enthalpymelt(temp=None,pres=None,dliq=None,chkvals=False, chktol=_CHKTOL,temp0=None,pres0=None,dliq0=None,chkbnd=False, mathargs=None): """Calculate enthalpy of melting. Calculate the specific enthalpy of melting. :arg temp: Temperature in K. :type temp: float or None :arg pres: Pressure in Pa. :type pres: float or None :arg dliq: Liquid water density in kg/m3. If unknown, pass None (default) and it will be calculated. :type dliq: float or None :arg bool chkvals: If True (default False) and all values are given, this function will calculate the disequilibrium and raise a warning if the results are not within a given tolerance. :arg float chktol: Tolerance to use when checking values (default _CHKTOL). :arg temp0: Initial guess for the temperature in K. If None (default) then `_approx_p` is used. :type temp0: float or None :arg pres0: Initial guess for the pressure in Pa. If None (default) then `_approx_t` is used. :type pres0: float or None :arg dliq0: Initial guess for the liquid water density in kg/m3. If None (default) then `_approx_t` or `_approx_p` is used. :type dliq0: float or None :arg bool chkbnd: If True then warnings are raised when the given values are valid but outside the recommended bounds (default False). :arg mathargs: Keyword arguments to the root-finder :func:`_newton <maths3.newton>` (e.g. maxiter, rtol). If None (default) then no arguments are passed and default parameters will be used. :returns: Enthalpy in J/kg. :raises ValueError: If neither of temp or pres is provided. :raises RuntimeWarning: If the relative disequilibrium is more than chktol, if chkvals is True and all values are given. :Examples: >>> enthalpymelt(pres=1e7) 331548.910815 >>> enthalpymelt(temp=270.) 325166.686739 """ temp, pres, dliq = eq_tp(temp=temp,pres=pres,dliq=dliq,chkvals=chkvals, chktol=chktol,temp0=temp0,pres0=pres0,dliq0=dliq0,chkbnd=chkbnd, mathargs=mathargs) hl = flu2.enthalpy(temp,dliq) hi = ice2.enthalpy(temp,pres) hmelt = hl - hi return hmelt def entropyice(temp=None,pres=None,dliq=None,chkvals=False, chktol=_CHKTOL,temp0=None,pres0=None,dliq0=None,chkbnd=False, mathargs=None): """Calculate ice-liquid ice entropy. Calculate the specific entropy of ice for ice and liquid water in equilibrium. :arg temp: Temperature in K. :type temp: float or None :arg pres: Pressure in Pa. :type pres: float or None :arg dliq: Liquid water density in kg/m3. If unknown, pass None (default) and it will be calculated. :type dliq: float or None :arg bool chkvals: If True (default False) and all values are given, this function will calculate the disequilibrium and raise a warning if the results are not within a given tolerance. :arg float chktol: Tolerance to use when checking values (default _CHKTOL). :arg temp0: Initial guess for the temperature in K. If None (default) then `_approx_p` is used. :type temp0: float or None :arg pres0: Initial guess for the pressure in Pa. If None (default) then `_approx_t` is used. :type pres0: float or None :arg dliq0: Initial guess for the liquid water density in kg/m3. If None (default) then `_approx_t` or `_approx_p` is used. :type dliq0: float or None :arg bool chkbnd: If True then warnings are raised when the given values are valid but outside the recommended bounds (default False). :arg mathargs: Keyword arguments to the root-finder :func:`_newton <maths3.newton>` (e.g. maxiter, rtol). If None (default) then no arguments are passed and default parameters will be used. :returns: Entropy in J/kg/K. :raises ValueError: If neither of temp or pres is provided. :raises RuntimeWarning: If the relative disequilibrium is more than chktol, if chkvals is True and all values are given. :Examples: >>> entropyice(pres=1e7) -1228.24464139 >>> entropyice(temp=270.) -1251.57777462 """ temp, pres, dliq = eq_tp(temp=temp,pres=pres,dliq=dliq,chkvals=chkvals, chktol=chktol,temp0=temp0,pres0=pres0,dliq0=dliq0,chkbnd=chkbnd, mathargs=mathargs) si = ice2.entropy(temp,pres) return si def entropyliq(temp=None,pres=None,dliq=None,chkvals=False, chktol=_CHKTOL,temp0=None,pres0=None,dliq0=None,chkbnd=False, mathargs=None): """Calculate ice-liquid liquid entropy. Calculate the specific entropy of liquid water for ice and liquid water in equilibrium. :arg temp: Temperature in K. :type temp: float or None :arg pres: Pressure in Pa. :type pres: float or None :arg dliq: Liquid water density in kg/m3. If unknown, pass None (default) and it will be calculated. :type dliq: float or None :arg bool chkvals: If True (default False) and all values are given, this function will calculate the disequilibrium and raise a warning if the results are not within a given tolerance. :arg float chktol: Tolerance to use when checking values (default _CHKTOL). :arg temp0: Initial guess for the temperature in K. If None (default) then `_approx_p` is used. :type temp0: float or None :arg pres0: Initial guess for the pressure in Pa. If None (default) then `_approx_t` is used. :type pres0: float or None :arg dliq0: Initial guess for the liquid water density in kg/m3. If None (default) then `_approx_t` or `_approx_p` is used. :type dliq0: float or None :arg bool chkbnd: If True then warnings are raised when the given values are valid but outside the recommended bounds (default False). :arg mathargs: Keyword arguments to the root-finder :func:`_newton <maths3.newton>` (e.g. maxiter, rtol). If None (default) then no arguments are passed and default parameters will be used. :returns: Entropy in J/kg/K. :raises ValueError: If neither of temp or pres is provided. :raises RuntimeWarning: If the relative disequilibrium is more than chktol, if chkvals is True and all values are given. :Examples: >>> entropyliq(pres=1e7) -11.11210129 >>> entropyliq(temp=270.) -47.2567126291 """ temp, pres, dliq = eq_tp(temp=temp,pres=pres,dliq=dliq,chkvals=chkvals, chktol=chktol,temp0=temp0,pres0=pres0,dliq0=dliq0,chkbnd=chkbnd, mathargs=mathargs) sl = flu2.entropy(temp,dliq) return sl def entropymelt(temp=None,pres=None,dliq=None,chkvals=False, chktol=_CHKTOL,temp0=None,pres0=None,dliq0=None,chkbnd=False, mathargs=None): """Calculate entropy of melting. Calculate the specific entropy of melting. :arg temp: Temperature in K. :type temp: float or None :arg pres: Pressure in Pa. :type pres: float or None :arg dliq: Liquid water density in kg/m3. If unknown, pass None (default) and it will be calculated. :type dliq: float or None :arg bool chkvals: If True (default False) and all values are given, this function will calculate the disequilibrium and raise a warning if the results are not within a given tolerance. :arg float chktol: Tolerance to use when checking values (default _CHKTOL). :arg temp0: Initial guess for the temperature in K. If None (default) then `_approx_p` is used. :type temp0: float or None :arg pres0: Initial guess for the pressure in Pa. If None (default) then `_approx_t` is used. :type pres0: float or None :arg dliq0: Initial guess for the liquid water density in kg/m3. If None (default) then `_approx_t` or `_approx_p` is used. :type dliq0: float or None :arg bool chkbnd: If True then warnings are raised when the given values are valid but outside the recommended bounds (default False). :arg mathargs: Keyword arguments to the root-finder :func:`_newton <maths3.newton>` (e.g. maxiter, rtol). If None (default) then no arguments are passed and default parameters will be used. :returns: Entropy in J/kg/K. :raises ValueError: If neither of temp or pres is provided. :raises RuntimeWarning: If the relative disequilibrium is more than chktol, if chkvals is True and all values are given. :Examples: >>> entropymelt(pres=1e7) 1217.13254010 >>> entropymelt(temp=270.) 1204.32106199 """ temp, pres, dliq = eq_tp(temp=temp,pres=pres,dliq=dliq,chkvals=chkvals, chktol=chktol,temp0=temp0,pres0=pres0,dliq0=dliq0,chkbnd=chkbnd, mathargs=mathargs) sl = flu2.entropy(temp,dliq) si = ice2.entropy(temp,pres) smelt = sl - si return smelt def volumemelt(temp=None,pres=None,dliq=None,chkvals=False, chktol=_CHKTOL,temp0=None,pres0=None,dliq0=None,chkbnd=False, mathargs=None): """Calculate specific volume of melting. Calculate the specific volume of melting. :arg temp: Temperature in K. :type temp: float or None :arg pres: Pressure in Pa. :type pres: float or None :arg dliq: Liquid water density in kg/m3. If unknown, pass None (default) and it will be calculated. :type dliq: float or None :arg bool chkvals: If True (default False) and all values are given, this function will calculate the disequilibrium and raise a warning if the results are not within a given tolerance. :arg float chktol: Tolerance to use when checking values (default _CHKTOL). :arg temp0: Initial guess for the temperature in K. If None (default) then `_approx_p` is used. :type temp0: float or None :arg pres0: Initial guess for the pressure in Pa. If None (default) then `_approx_t` is used. :type pres0: float or None :arg dliq0: Initial guess for the liquid water density in kg/m3. If None (default) then `_approx_t` or `_approx_p` is used. :type dliq0: float or None :arg bool chkbnd: If True then warnings are raised when the given values are valid but outside the recommended bounds (default False). :arg mathargs: Keyword arguments to the root-finder :func:`_newton <maths3.newton>` (e.g. maxiter, rtol). If None (default) then no arguments are passed and default parameters will be used. :returns: Specific volume in m3/kg. :raises ValueError: If neither of temp or pres is provided. :raises RuntimeWarning: If the relative disequilibrium is more than chktol, if chkvals is True and all values are given. :Examples: >>> volumemelt(pres=1e7) -9.4217890326e-05 >>> volumemelt(temp=270.) -1.04052121182e-4 """ temp, pres, dliq = eq_tp(temp=temp,pres=pres,dliq=dliq,chkvals=chkvals, chktol=chktol,temp0=temp0,pres0=pres0,dliq0=dliq0,chkbnd=chkbnd, mathargs=mathargs) vi = _ice_g(0,1,temp,pres,chkbnd=chkbnd) vl = dliq**(-1) vmelt = vl - vi return vmelt
39.549451
80
0.676077
5,225
35,990
4.605933
0.057799
0.022688
0.035652
0.045375
0.858223
0.822571
0.799717
0.78077
0.777154
0.769675
0
0.031991
0.23915
35,990
909
81
39.592959
0.846876
0.703362
0
0.437811
0
0
0.029086
0
0
0
0
0
0
1
0.084577
false
0
0.034826
0
0.208955
0
0
0
0
null
0
0
0
1
1
1
1
1
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
null
0
0
0
0
0
0
0
0
0
0
0
0
0
6
7a43eae4859f7e4a0ab17cb3b690aad1f9bb0c07
7,430
py
Python
fpga/fourteensegmentdisplay.py
renzenicolai/nmigen-experiments
c6048ad9cbb29d5b478538ef04997a00c0e5dd1b
[ "Unlicense" ]
null
null
null
fpga/fourteensegmentdisplay.py
renzenicolai/nmigen-experiments
c6048ad9cbb29d5b478538ef04997a00c0e5dd1b
[ "Unlicense" ]
null
null
null
fpga/fourteensegmentdisplay.py
renzenicolai/nmigen-experiments
c6048ad9cbb29d5b478538ef04997a00c0e5dd1b
[ "Unlicense" ]
null
null
null
from nmigen import * from nmigen.build import Platform, ResourceError from nmigen.back.pysim import Simulator, Delay, Settle # Small helper classes to simulate the structure of the platform device class _OutputSimulator(): def __init__(self, signal): self.signal = signal self.eq = self.signal.eq class _SegmentSimulator(): def __init__(self, signal): self.o = _OutputSimulator(signal) class FourteenSegmentDisplay(Elaboratable): """ This submodule shows the provided ASCII character on a 14 segment display. The eight bit of the input data is used to switch the dot on or off. """ def __init__(self, deviceType="alnum_led", deviceId=0, simulation=False): # Public self.data = Signal(8, reset=0) self.simulation = simulation self.simSignals = [] # Private self._device = None self._deviceType = deviceType self._deviceId = deviceId self._segments = ['a','b','c','d','e','f','g','h','j','k','l','m','n','p'] self._dotSegment = 'dp' self._lut = [ [0,0,0,0,0,0, 0,0,0, 0, 0,0,0, 0], # (0x20) [0,0,0,0,1,1, 0,0,0, 0, 0,0,0, 0], # ! (0x21) [0,1,0,0,0,1, 0,0,0, 0, 0,0,0, 0], # " (0x22) [0,1,1,1,0,0, 0,1,0, 1, 0,1,0, 1], # # (0x23) [1,0,1,1,0,1, 0,1,0, 1, 0,1,0, 1], # $ (0x24) [0,0,1,0,0,1, 0,0,1, 0, 0,0,1, 0], # % (0x25) [1,0,0,1,1,0, 1,0,1, 0, 1,0,0, 1], # & (0x26) [0,1,0,0,0,0, 0,1,0, 0, 0,0,0, 0], # ' (0x27) [1,0,0,1,1,1, 0,0,0, 0, 0,0,0, 0], # ( (0x28) [1,1,1,1,0,0, 0,0,0, 0, 0,0,0, 0], # ) (0x29) [0,0,0,0,0,0, 1,1,1, 1, 1,1,1, 1], # * (0x2A) [0,0,0,0,0,0, 0,1,0, 1, 0,1,0, 1], # + (0x2B) [0,0,0,0,0,0, 0,0,0, 0, 1,0,0, 0], # , (0x2C) [0,0,0,0,0,0, 0,0,0, 1, 0,0,0, 1], # - (0x2D) [0,0,0,0,0,0, 0,0,0, 0, 0,1,0, 0], # . (0x2E) [0,0,0,0,0,0, 0,0,1, 0, 0,0,1, 0], # / (0x2F) [1,1,1,1,1,1, 0,0,0, 0, 0,0,0, 0], # 0 (0x30) [0,1,1,0,0,0, 0,0,1, 0, 0,0,0, 0], # 1 (0x31) [1,1,0,1,1,0, 0,0,0, 1, 0,0,0, 1], # 2 (0x32) [1,1,1,1,0,0, 0,0,0, 1, 0,0,0, 0], # 3 (0x33) [0,1,1,0,0,1, 0,0,0, 1, 0,0,0, 1], # 4 (0x34) [1,0,1,1,0,1, 0,0,0, 1, 0,0,0, 1], # 5 (0x35) [1,0,1,1,1,1, 0,0,0, 1, 0,0,0, 1], # 6 (0x36) [1,0,0,0,0,0, 0,0,1, 0, 0,1,0, 0], # 7 (0x37) [1,1,1,1,1,1, 0,0,0, 1, 0,0,0, 1], # 8 (0x38) [1,1,1,0,0,1, 0,0,0, 1, 0,0,0, 1], # 9 (0x39) [0,0,0,0,0,0, 0,1,0, 0, 0,1,0, 0], # : (0x3A) [0,0,0,0,0,0, 0,1,0, 0, 0,0,1, 0], # ; (0x3B) [0,0,0,0,0,0, 0,0,1, 0, 1,0,0, 0], # < (0x3C) [0,0,0,1,0,0, 0,0,0, 1, 0,0,0, 1], # = (0x3D) [0,0,0,0,0,0, 1,0,0, 0, 0,0,1, 0], # > (0x3E) [1,0,0,0,0,1, 0,0,1, 0, 0,1,0, 0], # ? (0x3F) [1,1,1,1,1,1, 1,0,1, 0, 1,0,1, 0], # @ (0x40) [1,1,1,0,1,1, 0,0,0, 1, 0,0,0, 1], # A (0x41) [1,1,1,1,0,0, 0,1,0, 1, 0,1,0, 0], # B (0x42) [1,0,0,1,1,1, 0,0,0, 0, 0,0,0, 0], # C (0x43) [1,1,1,1,0,0, 0,1,0, 0, 0,1,0, 0], # D (0x44) [1,0,0,1,1,1, 0,0,0, 1, 0,0,0, 1], # E (0x45) [1,0,0,0,1,1, 0,0,0, 1, 0,0,0, 1], # F (0x46) [1,0,1,1,1,1, 0,0,0, 1, 0,0,0, 0], # G (0x47) [0,1,1,0,1,1, 0,0,0, 1, 0,0,0, 1], # H (0x48) [1,0,0,1,0,0, 0,1,0, 0, 0,1,0, 0], # I (0x49) [0,1,1,1,1,0, 0,0,0, 0, 0,0,0, 0], # J (0x4A) [0,0,0,0,1,1, 0,0,1, 0, 1,0,0, 1], # K (0x4B) [0,0,0,1,1,1, 0,0,0, 0, 0,0,0, 0], # L (0x4C) [0,1,1,0,1,1, 1,0,1, 0, 0,0,0, 0], # M (0x4D) [0,1,1,0,1,1, 1,0,0, 0, 1,0,0, 0], # N (0x4E) [1,1,1,1,1,1, 0,0,0, 0, 0,0,0, 0], # O (0x4F) [1,1,0,0,1,1, 0,0,0, 1, 0,0,0, 1], # P (0x50) [1,1,1,1,1,1, 0,0,0, 0, 1,0,0, 0], # Q (0x51) [1,1,0,0,1,1, 0,0,0, 1, 1,0,0, 1], # R (0x52) [1,0,1,1,0,0, 1,0,0, 1, 0,0,0, 0], # S (0x53) [1,0,0,0,0,0, 0,1,0, 0, 0,1,0, 0], # T (0x54) [0,1,1,1,1,1, 0,0,0, 0, 0,0,0, 0], # U (0x55) [0,0,0,0,1,1, 0,0,1, 0, 0,0,1, 0], # V (0x56) [0,1,1,0,1,1, 0,0,0, 0, 1,0,1, 0], # W (0x57) [0,0,0,0,0,0, 1,0,1, 0, 1,0,1, 0], # X (0x58) [0,0,0,0,0,0, 1,0,1, 0, 0,1,0, 0], # Y (0x59) [1,0,0,1,0,0, 0,0,1, 0, 0,0,1, 0], # Z (0x5A) [1,0,0,1,1,1, 0,0,0, 0, 0,0,0, 0], # [ (0x5B) [0,0,0,0,0,0, 1,0,0, 0, 1,0,0, 0], # \ (0x5C) [1,1,1,1,0,0, 0,0,0, 0, 0,0,0, 0], # ] (0x5D) [1,1,0,0,0,1, 0,0,0, 0, 0,0,0, 0], # ^ (0x5E) [0,0,0,1,0,0, 0,0,0, 0, 0,0,0, 0], # _ (0x5F) [0,0,0,0,0,0, 1,0,0, 0, 0,0,0, 0], # ` (0x60) [1,1,1,1,1,0, 0,0,0, 1, 0,0,0, 1], # a (0x61) [0,0,0,1,1,1, 0,0,0, 0, 1,0,0, 1], # b (0x62) [0,0,0,1,1,0, 0,0,0, 1, 0,0,0, 1], # c (0x63) [0,1,1,1,0,0, 0,0,0, 1, 0,0,1, 0], # d (0x64) [1,0,0,1,1,1, 0,0,0, 0, 0,0,0, 1], # e (0x65) [1,0,0,0,1,1, 0,0,0, 0, 0,0,0, 1], # f (0x66) [1,1,1,1,0,0, 1,0,0, 1, 0,0,0, 0], # g (0x67) [0,0,1,0,1,1, 0,0,0, 1, 0,0,0, 1], # h (0x68) [0,0,0,0,0,0, 0,0,0, 0, 0,1,0, 0], # i (0x69) [0,1,1,1,0,0, 0,0,0, 0, 0,0,0, 0], # j (0x6A) [0,0,0,0,1,1, 0,0,1, 0, 1,0,0, 0], # k (0x6B) [0,0,0,0,0,0, 0,1,0, 0, 0,1,0, 0], # l (0x6C) [0,0,1,0,1,0, 0,0,0, 1, 0,1,0, 1], # m (0x6D) [0,0,0,0,1,0, 0,0,0, 0, 1,0,0, 1], # n (0x6E) [0,0,1,1,1,0, 0,0,0, 1, 0,0,0, 1], # o (0x6F) [1,0,0,0,1,1, 0,0,1, 0, 0,0,0, 1], # p (0x70) [1,1,0,0,0,1, 0,0,0, 1, 1,0,0, 1], # q (0x71) [0,0,0,0,1,0, 0,0,0, 0, 0,0,0, 1], # r (0x72) [1,0,1,1,0,0, 1,0,0, 1, 0,0,0, 0], # s (0x73) [0,0,0,1,1,1, 0,0,0, 0, 0,0,0, 1], # t (0x74) [0,0,1,1,1,0, 0,0,0, 0, 0,0,0, 0], # u (0x75) [0,0,0,0,1,0, 0,0,0, 0, 0,0,1, 0], # v (0x76) [0,0,1,0,1,0, 0,0,0, 0, 1,0,1, 0], # w (0x77) [0,0,0,0,0,0, 1,0,1, 0, 1,0,1, 0], # x (0x78) [0,1,1,1,0,0, 0,1,0, 1, 0,0,0, 0], # y (0x79) [1,0,0,1,0,0, 0,0,1, 0, 0,0,1, 0], # z (0x7A) [1,0,0,1,0,0, 1,0,0, 0, 0,0,1, 1], # { (0x7B) [0,0,0,0,0,0, 0,1,0, 0, 0,1,0, 0], # | (0x7C) [1,0,0,1,0,0, 0,0,1, 1, 1,0,0, 0], # } (0x7D) [0,0,0,0,0,0, 0,0,0, 1, 0,0,0, 1], # ~ (0x7E) ] def elaborate(self, platform: Platform) -> Module: m = Module() if self.simulation: self._device = {} for segment in self._segments + [self._dotSegment]: s = Signal(1) s.name = segment self.simSignals.append(s) self._device[segment] = _SegmentSimulator(s) else: self._device = platform.request(self._deviceType, self._deviceId) # Remove the eighth bit from the data signal and map the seven remaining bits onto the LUT data7 = Signal(unsigned(7)) with m.If(self.data[0:7] < 0x20): # Out of range m.d.comb += data7.eq(0) # Set to SPACE (0x20), 0 in our LUT, when data is out of range with m.Else(): m.d.comb += data7.eq(self.data[0:7]-0x20) # Drive the dot segment using the eighth bit of the data signal m.d.comb += self._device[self._dotSegment].o.eq(self.data[7]) # Drive the other fourteen segments using the LUT with m.Switch(data7): for i in range(len(self._lut)): with m.Case(i): # (SPACE to ~) for j in range(len(self._segments)): m.d.comb += self._device[self._segments[j]].o.eq(self._lut[i][j]) with m.Default(): # (0x7F / DEL) for j in range(len(self._segments)): m.d.comb += self._device[self._segments[j]].o.eq(1) return m def ports(self): ports = [self.data] if self.simulation: ports.extend(self.simSignals) return ports if __name__ == "__main__": m = FourteenSegmentDisplay(simulation = True) sim = Simulator(m) def process(): # This design consist purely of combinational logic # so we just loop through all possible input values for i in range(256): yield m.data.eq(i) yield Delay(1e-6) yield Settle() sim.add_process(process) with sim.write_vcd("test.vcd", "test.gtkw", traces=m.ports()): sim.run()
40.162162
92
0.490983
1,903
7,430
1.890173
0.137677
0.35196
0.353628
0.302474
0.442591
0.4134
0.406172
0.397554
0.389491
0.361412
0
0.277635
0.212248
7,430
184
93
40.380435
0.336921
0.199462
0
0.163522
0
0
0.008579
0
0
0
0.001373
0
0
1
0.037736
false
0
0.018868
0
0.08805
0
0
0
1
null
1
1
1
0
0
0
0
0
0
0
1
0
0
0
0
0
1
0
0
0
0
0
0
0
null
0
0
0
0
0
0
0
0
0
0
0
0
0
6
7aa2ecacc1b4edd27824ab28d2f199ab480f960d
141
py
Python
thirvusoft/thirvusoft/doctype/ts_payroll/test_ts_payroll.py
SaraneshThirvu/Script_Report
5af8f4d3dc32ead2b124f10c55040d49a21ebb5d
[ "MIT" ]
null
null
null
thirvusoft/thirvusoft/doctype/ts_payroll/test_ts_payroll.py
SaraneshThirvu/Script_Report
5af8f4d3dc32ead2b124f10c55040d49a21ebb5d
[ "MIT" ]
null
null
null
thirvusoft/thirvusoft/doctype/ts_payroll/test_ts_payroll.py
SaraneshThirvu/Script_Report
5af8f4d3dc32ead2b124f10c55040d49a21ebb5d
[ "MIT" ]
null
null
null
# Copyright (c) 2021, TS and Contributors # See license.txt # import frappe import unittest class TestTS_Payroll(unittest.TestCase): pass
15.666667
41
0.77305
19
141
5.684211
0.894737
0
0
0
0
0
0
0
0
0
0
0.033333
0.148936
141
8
42
17.625
0.866667
0.489362
0
0
0
0
0
0
0
0
0
0
0
1
0
true
0.333333
0.333333
0
0.666667
0
1
0
0
null
0
0
0
0
0
0
0
0
0
0
0
0
0
1
0
0
0
0
0
0
0
0
0
0
null
0
0
0
0
0
0
1
1
1
0
1
0
0
6
8ff1fc7f5b6a1164af4260cd817188ff96c48ecb
103
py
Python
bitmovin_api_sdk/encoding/configurations/video/vp9/customdata/__init__.py
jaythecaesarean/bitmovin-api-sdk-python
48166511fcb9082041c552ace55a9b66cc59b794
[ "MIT" ]
11
2019-07-03T10:41:16.000Z
2022-02-25T21:48:06.000Z
bitmovin_api_sdk/encoding/configurations/video/vp9/customdata/__init__.py
jaythecaesarean/bitmovin-api-sdk-python
48166511fcb9082041c552ace55a9b66cc59b794
[ "MIT" ]
8
2019-11-23T00:01:25.000Z
2021-04-29T12:30:31.000Z
bitmovin_api_sdk/encoding/configurations/video/vp9/customdata/__init__.py
jaythecaesarean/bitmovin-api-sdk-python
48166511fcb9082041c552ace55a9b66cc59b794
[ "MIT" ]
13
2020-01-02T14:58:18.000Z
2022-03-26T12:10:30.000Z
from bitmovin_api_sdk.encoding.configurations.video.vp9.customdata.customdata_api import CustomdataApi
51.5
102
0.902913
13
103
6.923077
0.846154
0
0
0
0
0
0
0
0
0
0
0.010101
0.038835
103
1
103
103
0.89899
0
0
0
0
0
0
0
0
0
0
0
0
1
0
true
0
1
0
1
0
1
0
0
null
0
0
0
0
0
0
0
0
0
0
0
0
0
1
0
1
0
0
0
0
0
0
0
0
null
0
0
0
0
0
0
1
0
1
0
1
0
0
6
56f59a848cb0e6dafae0001284fd9453da3b89e8
27
py
Python
code/cyclegan/__init__.py
karl-joan/text2art-gan
86370667f9a62bab95968abe1990dcaa4760b333
[ "MIT" ]
5
2021-10-30T13:40:41.000Z
2022-03-20T04:48:45.000Z
code/cyclegan/__init__.py
karl-joan/text2art-gan
86370667f9a62bab95968abe1990dcaa4760b333
[ "MIT" ]
null
null
null
code/cyclegan/__init__.py
karl-joan/text2art-gan
86370667f9a62bab95968abe1990dcaa4760b333
[ "MIT" ]
2
2021-09-06T03:45:04.000Z
2022-03-13T03:23:49.000Z
from .main import cyclegan
13.5
26
0.814815
4
27
5.5
1
0
0
0
0
0
0
0
0
0
0
0
0.148148
27
1
27
27
0.956522
0
0
0
0
0
0
0
0
0
0
0
0
1
0
true
0
1
0
1
0
1
1
0
null
0
0
0
0
0
0
0
0
0
0
0
0
0
1
0
0
0
0
0
0
0
0
0
0
null
0
0
0
0
0
0
1
0
1
0
1
0
0
6
56fe5a7bf702f7326f225c4e486c0a157601c27e
39,967
py
Python
test/intelliflow/core/signal_processing/routing_runtime_constructs/test_route.py
amzn/rheoceros
5e8f79d97f8b21d693d3c869b0df70de3d5fd068
[ "Apache-2.0", "MIT-0" ]
4
2022-03-24T04:39:02.000Z
2022-03-31T16:41:50.000Z
test/intelliflow/core/signal_processing/routing_runtime_constructs/test_route.py
amzn/rheoceros
5e8f79d97f8b21d693d3c869b0df70de3d5fd068
[ "Apache-2.0", "MIT-0" ]
null
null
null
test/intelliflow/core/signal_processing/routing_runtime_constructs/test_route.py
amzn/rheoceros
5e8f79d97f8b21d693d3c869b0df70de3d5fd068
[ "Apache-2.0", "MIT-0" ]
null
null
null
# Copyright Amazon.com, Inc. or its affiliates. All Rights Reserved. # SPDX-License-Identifier: Apache-2.0 import copy import time from test.intelliflow.core.signal_processing.dimension_constructs.test_dimension_spec import TestDimensionSpec from test.intelliflow.core.signal_processing.routing_runtime_constructs import create_incoming_signal from test.intelliflow.core.signal_processing.signal.test_signal_link_node import signal_dimension_tuple import pytest from intelliflow.core.platform.constructs import RoutingHookInterface from intelliflow.core.serialization import dumps, loads from intelliflow.core.signal_processing.definitions.dimension_defs import Type from intelliflow.core.signal_processing.routing_runtime_constructs import * from intelliflow.core.signal_processing.signal import * from intelliflow.core.signal_processing.signal_source import InternalDatasetSignalSourceAccessSpec from intelliflow.core.signal_processing.slot import SlotType def _create_hook(code: str = "pass") -> Slot: return Slot(SlotType.SYNC_INLINED, dumps(code), None, None, None, None) class TestRoute: @classmethod def _route_1_basic(cls): from test.intelliflow.core.signal_processing.test_slot import TestSlot from test.intelliflow.core.signal_processing.signal.test_signal import TestSignal from test.intelliflow.core.signal_processing.signal.test_signal_link_node import TestSignalLinkNode signal_link_node = copy.deepcopy(TestSignalLinkNode.signal_link_node_1) output_spec = DimensionSpec.load_from_pretty({"output_dim": {type: Type.LONG}}) output_dim_link_matrix = [ SignalDimensionLink( signal_dimension_tuple(None, "output_dim"), lambda x: x, signal_dimension_tuple(TestSignal.signal_internal_1, "dim_1_1") ) ] output_filter = signal_link_node.get_output_filter( output_spec, # Logical equivalent -> output_dim = (signal_internal_1('dim_1_1') output_dim_link_matrix, ) output_signal = Signal( TestSignal.signal_internal_1.type, InternalDatasetSignalSourceAccessSpec("sample_data", output_spec, **{}), SignalDomainSpec(output_spec, output_filter, TestSignal.signal_internal_1.domain_spec.integrity_check_protocol), "sample_data", ) return Route( f"InternalDataNode-{output_signal.alias}", signal_link_node, output_signal, output_dim_link_matrix, [TestSlot.slot_batch_compute_basic], False, ) @classmethod def _route_2_two_inputs_linked(cls): from test.intelliflow.core.signal_processing.test_slot import TestSlot from test.intelliflow.core.signal_processing.signal.test_signal import TestSignal from test.intelliflow.core.signal_processing.signal.test_signal_link_node import TestSignalLinkNode signal_link_node = copy.deepcopy(TestSignalLinkNode.signal_link_node_2) output_spec = DimensionSpec.load_from_pretty({"output_dim": {type: Type.LONG}}) output_dim_link_matrix = [ SignalDimensionLink( signal_dimension_tuple(None, "output_dim"), lambda x: x, signal_dimension_tuple(TestSignal.signal_internal_1, "dim_1_1") ) ] output_filter = signal_link_node.get_output_filter(output_spec, output_dim_link_matrix) output_signal = Signal( TestSignal.signal_internal_1.type, InternalDatasetSignalSourceAccessSpec("sample_data_2", output_spec, **{}), SignalDomainSpec(output_spec, output_filter, TestSignal.signal_internal_1.domain_spec.integrity_check_protocol), "sample_data_2", ) return Route( f"InternalDataNode-{output_signal.alias}", signal_link_node, output_signal, output_dim_link_matrix, [TestSlot.slot_batch_compute_basic], False, ) @classmethod def _route_3_three_inputs_unlinked(cls): from test.intelliflow.core.signal_processing.test_slot import TestSlot from test.intelliflow.core.signal_processing.signal.test_signal import TestSignal from test.intelliflow.core.signal_processing.signal.test_signal_link_node import TestSignalLinkNode signal_link_node = copy.deepcopy(TestSignalLinkNode.signal_link_node_3_complex) # create sample expected output output_spec = DimensionSpec.load_from_pretty( {"output_dim_1": {type: Type.LONG, "output_dim_2": {type: Type.LONG, "output_dim_3": {type: Type.LONG}}}} ) output_dim_link_matrix = [ SignalDimensionLink( signal_dimension_tuple(None, "output_dim_1"), lambda x: x, signal_dimension_tuple(TestSignal.signal_internal_complex_1, "dim_1_1"), ), SignalDimensionLink( signal_dimension_tuple(None, "output_dim_2"), # input's sub dimension is of type String, convert it. # because output spec expects it to be of type Long. lambda x: ord(x), signal_dimension_tuple(TestSignal.signal_internal_complex_1, "dim_1_2"), ), SignalDimensionLink( signal_dimension_tuple(None, "output_dim_3"), # and this one is from the 3rd input (which has only one dim 'dim_1_1') lambda x: x, signal_dimension_tuple(TestSignal.signal_s3_1, "dim_1_1"), ), ] output_filter = signal_link_node.get_output_filter(output_spec, output_dim_link_matrix) output_signal = Signal( SignalType.INTERNAL_PARTITION_CREATION, InternalDatasetSignalSourceAccessSpec("sample_data_3", output_spec, **{}), SignalDomainSpec(output_spec, output_filter, TestSignal.signal_internal_complex_1.domain_spec.integrity_check_protocol), "sample_data_3", ) return Route( f"InternalDataNode-{output_signal.alias}", signal_link_node, output_signal, output_dim_link_matrix, [TestSlot.slot_batch_compute_basic], False, ) @classmethod def _route_3_three_inputs_linked(cls): from test.intelliflow.core.signal_processing.test_slot import TestSlot from test.intelliflow.core.signal_processing.signal.test_signal import TestSignal from test.intelliflow.core.signal_processing.signal.test_signal_link_node import TestSignalLinkNode signal_link_node = copy.deepcopy(TestSignalLinkNode.signal_link_node_3_complex) # add links (since the dimension names on same, use the auto-linking of dimensions, # so that; # signal_internal_complex_1['dim_1_1'] == signal_s3_1['dim_1_1'], etc signal_link_node.compensate_missing_links() # create sample expected output output_spec = DimensionSpec.load_from_pretty( { "output_dim_1": { type: Type.LONG, "output_dim_2": { type: Type.LONG, }, } } ) output_dim_link_matrix = [ SignalDimensionLink( signal_dimension_tuple(None, "output_dim_1"), # from the second dimension of the first/second inputs (convert to Long) lambda x: ord(x), signal_dimension_tuple(TestSignal.signal_internal_complex_1, "dim_1_2"), ), SignalDimensionLink( signal_dimension_tuple(None, "output_dim_2"), # and this one is from the 3rd input (which has only one dim 'dim_1_1') lambda x: x, signal_dimension_tuple(TestSignal.signal_s3_1, "dim_1_1"), ), ] output_filter = signal_link_node.get_output_filter(output_spec, output_dim_link_matrix) output_signal = Signal( SignalType.INTERNAL_PARTITION_CREATION, InternalDatasetSignalSourceAccessSpec("sample_data_4", output_spec, **{}), SignalDomainSpec(output_spec, output_filter, TestSignal.signal_internal_complex_1.domain_spec.integrity_check_protocol), "sample_data_4", ) return Route( f"InternalDataNode-{output_signal.alias}", signal_link_node, output_signal, output_dim_link_matrix, [TestSlot.slot_batch_compute_basic], False, ) def test_route_init(self): assert self._route_1_basic() def test_route_init_with_hooks(self): route = self._route_1_basic() Route( route.route_id, route.link_node, route.output, route._output_dim_matrix, route.slots, False, RouteExecutionHook( on_exec_begin=_create_hook(), on_exec_skipped=_create_hook(), on_compute_success=_create_hook(), on_compute_failure=_create_hook(), on_success=_create_hook(), on_failure=_create_hook(), checkpoints=[RouteCheckpoint(5, _create_hook())], ), 30 * 24 * 60 * 60, RoutePendingNodeHook(on_pending_node_created=_create_hook(), on_expiration=_create_hook(), checkpoints=None), ) # check another instantiation case + checkpoint sorting assert ( Route( route.route_id, route.link_node, route.output, route._output_dim_matrix, route.slots, False, RouteExecutionHook( on_exec_begin=_create_hook(), on_exec_skipped=_create_hook(), on_compute_success=_create_hook(), on_compute_failure=_create_hook(), on_success=_create_hook(), on_failure=_create_hook(), checkpoints=[], ), None, RoutePendingNodeHook( on_pending_node_created=_create_hook(), on_expiration=None, checkpoints=[RouteCheckpoint(2, _create_hook()), RouteCheckpoint(1, _create_hook())], ), ) .pending_node_hook.checkpoints[0] .checkpoint_in_secs == 1 ) def test_route_init_with_hook_chain(self): route = self._route_1_basic() callback1_var = None callback1_var_expected = 1 def _callback1(*args, **kwargs): nonlocal callback1_var callback1_var = callback1_var_expected callback2_var = None callback2_var_expected = 2 def _callback2(*args, **kwargs): nonlocal callback2_var callback2_var = callback2_var_expected hook1 = RouteExecutionHook( on_exec_begin=_create_hook(), on_exec_skipped=_callback1, on_compute_success=_create_hook(), on_compute_failure=_create_hook(), on_success=_create_hook(), on_failure=_create_hook(), checkpoints=[RouteCheckpoint(5, _create_hook())], ) hook2 = RouteExecutionHook( on_exec_begin=_create_hook(), on_exec_skipped=_callback2, on_compute_success=_create_hook(), on_compute_failure=_create_hook(), on_success=_create_hook(), on_failure=_create_hook(), checkpoints=[RouteCheckpoint(10, _create_hook())], ) exec_hook_chain = hook1.chain(hook2) pending_hook1 = RoutePendingNodeHook( on_pending_node_created=_create_hook(), on_expiration=_create_hook(), checkpoints=[RouteCheckpoint(5, _create_hook())] ) pending_hook2 = RoutePendingNodeHook( on_pending_node_created=_create_hook(), on_expiration=_create_hook(), checkpoints=[RouteCheckpoint(10, _create_hook())] ) pending_hook3 = RoutePendingNodeHook( on_pending_node_created=_create_hook(), on_expiration=_create_hook(), checkpoints=[RouteCheckpoint(13, _create_hook())] ) pending_hook_chain = pending_hook1.chain(pending_hook2, pending_hook3) pending_hook_chain_2 = pending_hook1.chain(pending_hook2).chain(pending_hook3) Route( route.route_id, route.link_node, route.output, route._output_dim_matrix, route.slots, False, exec_hook_chain, 24 * 60 * 60, pending_hook_chain, ) assert len(exec_hook_chain.checkpoints) == 2 assert len(pending_hook_chain.checkpoints) == 3 assert len(pending_hook_chain_2.checkpoints) == 3 exec_hook_chain.on_exec_begin() pending_hook_chain.on_pending_node_created() pending_hook_chain_2.on_expiration() exec_hook_chain.on_exec_skipped() assert callback1_var == callback1_var_expected assert callback2_var == callback2_var_expected def test_route_equality(self): assert self._route_1_basic() == self._route_1_basic() assert Route("test", None, None, [], [], False) == Route("test", None, None, [], [], False) assert Route("test", None, None, [], [], False) != Route("test2", None, None, [], [], False) assert self._route_1_basic() == self._route_1_basic().clone() def test_route_check_integrity(self): route = self._route_1_basic() assert route.check_integrity(self._route_1_basic()) route2 = self._route_2_two_inputs_linked() # Route is very sensitive about an integrity check against a different Route. This is very critical # for whole Routing module. It should not occur! A safe-guard against a high-level (e.g RoutingTable) bug. with pytest.raises(ValueError): assert route.check_integrity(route2) # make id equal so that check move on to other fields route2._id = route.route_id assert not route.check_integrity(route2) assert route.check_integrity(Route(route.route_id, route.link_node, route.output, route._output_dim_matrix, route.slots, False)) assert not route.check_integrity( Route(route.route_id, route2.link_node, route.output, route._output_dim_matrix, route.slots, False) ) assert not route.check_integrity( Route(route.route_id, route.link_node, route2.output, route._output_dim_matrix, route.slots, False) ) assert not route.check_integrity(Route(route.route_id, route.link_node, route.output, [], route.slots, False)) assert not route.check_integrity(Route(route.route_id, route.link_node, route.output, route._output_dim_matrix, [], False)) def test_route_check_integrity_noops(self): """show that some type of changes in route should not invalidate the integrity""" route = self._route_3_three_inputs_linked() # dim matrix ordering should not alter the semantics of route new_route = copy.deepcopy(route) new_route.link_node.link_matrix.reverse() new_route.output_dim_matrix.reverse() # TODO evaluate slots order? currently impacting integrity but not as critical as dim matrice assert route.check_integrity(new_route) @pytest.mark.parametrize( "execution_hook_1, pending_node_ttl_1, pending_hook_1, execution_hook_2, pending_node_ttl_2, pending_hook_2, result", [ (None, 30 * 24 * 60 * 60, None, None, 24 * 60 * 60, None, False), ( RouteExecutionHook( on_exec_begin=_create_hook(), on_exec_skipped=_create_hook(), on_compute_success=_create_hook(), on_compute_failure=_create_hook(), on_success=_create_hook(), on_failure=_create_hook(), checkpoints=[RouteCheckpoint(checkpoint_in_secs=5, slot=_create_hook())], ), 30 * 24 * 60 * 60, RoutePendingNodeHook( on_pending_node_created=_create_hook(), on_expiration=_create_hook(), checkpoints=[RouteCheckpoint(checkpoint_in_secs=1, slot=_create_hook()), RouteCheckpoint(2, _create_hook())], ), RouteExecutionHook( on_exec_begin=_create_hook(), on_exec_skipped=_create_hook(), on_compute_success=_create_hook(), on_compute_failure=_create_hook(), on_success=_create_hook(), on_failure=_create_hook(), checkpoints=[RouteCheckpoint(5, _create_hook())], ), 30 * 24 * 60 * 60, RoutePendingNodeHook( on_pending_node_created=_create_hook(), on_expiration=_create_hook(), # also test that checkpoint other should not matter as long as values are same checkpoints=[RouteCheckpoint(2, _create_hook()), RouteCheckpoint(1, _create_hook())], ), True, ), ( RouteExecutionHook(on_exec_begin=_create_hook()), 30 * 24 * 60 * 60, RoutePendingNodeHook(), RouteExecutionHook(on_exec_begin=_create_hook()), 30 * 24 * 60 * 60, RoutePendingNodeHook(), True, ), ( RouteExecutionHook(on_exec_begin=_create_hook("print('diff')")), 30 * 24 * 60 * 60, RoutePendingNodeHook(), RouteExecutionHook(on_exec_begin=_create_hook()), 30 * 24 * 60 * 60, RoutePendingNodeHook(), False, ), (None, None, None, None, None, None, True), ( RouteExecutionHook(on_exec_begin=None, on_exec_skipped=None), None, None, RouteExecutionHook(on_exec_begin=None, on_exec_skipped=_create_hook()), None, None, False, ), ( RouteExecutionHook(on_exec_begin=None, on_exec_skipped=_create_hook()), None, None, RouteExecutionHook(on_exec_begin=None, on_exec_skipped=None), None, None, False, ), ( RouteExecutionHook( on_exec_begin=None, on_exec_skipped=None, on_compute_success=None, on_compute_failure=None, on_success=None, on_failure=None, checkpoints=[RouteCheckpoint(1, _create_hook())], ), None, RoutePendingNodeHook(), RouteExecutionHook( on_exec_begin=None, on_exec_skipped=None, on_compute_success=None, on_compute_failure=None, on_success=None, on_failure=None, # change the value of first checkpoint checkpoints=[RouteCheckpoint(5, _create_hook())], ), None, RoutePendingNodeHook(), False, ), ( RouteExecutionHook(), None, RoutePendingNodeHook( on_pending_node_created=_create_hook(), on_expiration=None, checkpoints=[RouteCheckpoint(2, _create_hook())] ), RouteExecutionHook(), None, RoutePendingNodeHook( on_pending_node_created=_create_hook(), on_expiration=None, # also test that checkpoint other should not matter as long as values are same checkpoints=[RouteCheckpoint(1, _create_hook())], ), False, ), ( None, None, RoutePendingNodeHook(on_pending_node_created=None, on_expiration=None, checkpoints=[RouteCheckpoint(1, _create_hook())]), None, None, RoutePendingNodeHook( on_pending_node_created=None, on_expiration=None, # also test that checkpoint other should not matter as long as values are same checkpoints=[RouteCheckpoint(1, _create_hook("print('diff 2')"))], ), False, ), ], ) def test_route_check_auxiliary_integrity( self, execution_hook_1, pending_node_ttl_1, pending_hook_1, execution_hook_2, pending_node_ttl_2, pending_hook_2, result ): route = self._route_1_basic() assert ( Route( route.route_id, route.link_node, route.output, route._output_dim_matrix, route.slots, False, execution_hook_1, pending_node_ttl_1, pending_hook_1, ).check_auxiliary_data_integrity( Route( route.route_id, route.link_node, route.output, route._output_dim_matrix, route.slots, False, execution_hook_2, pending_node_ttl_2, pending_hook_2, ) ) == result ) def test_route_serialization(self): route = self._route_1_basic() assert route == loads(dumps(route)) def test_route_receive_basic(self): from test.intelliflow.core.signal_processing.signal.test_signal import TestSignal route = self._route_1_basic() # route will reject incompatible signal assert not route.receive(create_incoming_signal(TestSignal.signal_s3_1, [1])) assert not route._pending_nodes # successful trigger # 1 response: Optional[Route.Response] = route.receive(create_incoming_signal(TestSignal.signal_internal_1, [1])) assert response assert len(response.new_execution_contexts) == 1 assert response.new_execution_contexts[0].slots assert DimensionFilter.check_equivalence( response.new_execution_contexts[0].output.domain_spec.dimension_filter_spec, DimensionFilter.load_raw({1: {}}) ) # since the node completed immediately (since it has only one input), # also removed from the internal pending nodes. assert not route._pending_nodes # successful trigger # 2 response: Optional[Route.Response] = route.receive(create_incoming_signal(TestSignal.signal_internal_1, [2])) assert DimensionFilter.check_equivalence( response.new_execution_contexts[0].output.domain_spec.dimension_filter_spec, DimensionFilter.load_raw({2: {}}) ) # since the node completed immediately (since it has only one input), # also removed from the internal pending nodes. assert not route._pending_nodes def test_route_receive_two_inputs_linked(self): from test.intelliflow.core.signal_processing.signal.test_signal import TestSignal route = self._route_2_two_inputs_linked() # will consume the event, create a new pending node but return no 'new_execution_contexts' response = route.receive(create_incoming_signal(TestSignal.signal_internal_1, [1])) assert not response.new_execution_contexts assert len(response.new_pending_nodes) == 1 assert len(route._pending_nodes) == 1 # will consume the event, create a new pending node but return no 'new_execution_contexts' response = route.receive(create_incoming_signal(TestSignal.signal_internal_1, [2])) assert not response.new_execution_contexts assert len(response.new_pending_nodes) == 1 assert len(route._pending_nodes) == 2 # please note that it is 2 now! # will consume again with no internal effect response = route.receive(create_incoming_signal(TestSignal.signal_internal_1, [2])) assert not response.new_execution_contexts assert not response.new_pending_nodes response = route.receive(create_incoming_signal(TestSignal.signal_internal_1, [1])) assert not response.new_execution_contexts assert not response.new_pending_nodes assert len(route._pending_nodes) == 2 # please note that it is 2 still # send in a Signal that belongs to the second input but with different dim value # will create another pending node since it is neither '1' nor '2' (linking is active). response = route.receive(create_incoming_signal(TestSignal.signal_s3_1, [3])) assert not response.new_execution_contexts assert len(response.new_pending_nodes) == 1 assert len(route._pending_nodes) == 3 # please note that it is 3 now! # Completions # unleash the third pending node (which is pending on its first input with dim value 3) response = route.receive(create_incoming_signal(TestSignal.signal_internal_1, [3])) assert len(response.new_execution_contexts) == 1 assert not response.new_pending_nodes assert DimensionFilter.check_equivalence( response.new_execution_contexts[0].output.domain_spec.dimension_filter_spec, DimensionFilter.load_raw({3: {}}) ) assert len(route._pending_nodes) == 2 # please note that it got back to 2! # unleash the fist node response = route.receive(create_incoming_signal(TestSignal.signal_s3_1, [1])) assert len(response.new_execution_contexts) == 1 assert DimensionFilter.check_equivalence( response.new_execution_contexts[0].output.domain_spec.dimension_filter_spec, DimensionFilter.load_raw({1: {}}) ) assert len(route._pending_nodes) == 1 # and finally the second node response = route.receive(create_incoming_signal(TestSignal.signal_s3_1, [2])) assert len(response.new_execution_contexts) == 1 assert DimensionFilter.check_equivalence( response.new_execution_contexts[0].output.domain_spec.dimension_filter_spec, DimensionFilter.load_raw({2: {}}) ) assert not route._pending_nodes def test_route_receive_three_inputs_unlinked(self): from test.intelliflow.core.signal_processing.signal.test_signal import TestSignal route = self._route_3_three_inputs_unlinked() # will consume the event, create a new pending node but return no 'new_execution_contexts' response = route.receive(create_incoming_signal(TestSignal.signal_internal_complex_1, [1, "y"])) assert not response.new_execution_contexts assert len(route._pending_nodes) == 1 # will consume the event, create a new pending node but return no 'new_execution_contexts' response = route.receive(create_incoming_signal(TestSignal.signal_internal_complex_1, [2, "y"])) assert not response.new_execution_contexts assert len(route._pending_nodes) == 2 # please note that it is 2 now! # will consume again with no internal effect response = route.receive(create_incoming_signal(TestSignal.signal_internal_complex_1, [2, "y"])) assert not response.new_execution_contexts response = route.receive(create_incoming_signal(TestSignal.signal_internal_complex_1, [1, "y"])) assert not response.new_execution_contexts assert len(route._pending_nodes) == 2 # please note that it is 2 still # EFFECT of missing linking (N-N logic) # incoming signal will satisfy all of the pending nodes response = route.receive(create_incoming_signal(TestSignal.signal_s3_1, [3])) assert len(response.new_execution_contexts) == 2 assert not route._pending_nodes # please note that it got back to 0 now! # we have to compare this way since the order is not guarateed if DimensionFilter.check_equivalence( response.new_execution_contexts[0].output.domain_spec.dimension_filter_spec, DimensionFilter.load_raw( { 2: { # from the 1st dim of the 1st input signal 121: {3: {}} # ord('y') from the second dim of the 1st input signal # from the 3rd input } } ), ): assert DimensionFilter.check_equivalence( response.new_execution_contexts[1].output.domain_spec.dimension_filter_spec, DimensionFilter.load_raw({1: {121: {3: {}}}}) ) else: assert DimensionFilter.check_equivalence( response.new_execution_contexts[1].output.domain_spec.dimension_filter_spec, DimensionFilter.load_raw({2: {121: {3: {}}}}) ) def test_route_receive_three_inputs_linked(self): from test.intelliflow.core.signal_processing.signal.test_signal import TestSignal route = self._route_3_three_inputs_linked() # will consume the event, create a new pending node but return no 'new_execution_contexts' response = route.receive(create_incoming_signal(TestSignal.signal_internal_complex_1, [1, "y"])) assert not response.new_execution_contexts assert len(route._pending_nodes) == 1 # will consume the event, create a new pending node but return no 'new_execution_contexts' response = route.receive(create_incoming_signal(TestSignal.signal_internal_complex_1, [2, "y"])) assert not response.new_execution_contexts assert len(route._pending_nodes) == 2 # EFFECT of linking # incoming signal will not satisfy dimensional linking and will just create another node. response = route.receive(create_incoming_signal(TestSignal.signal_s3_1, [3])) assert not response.new_execution_contexts assert len(route._pending_nodes) == 3 # please note that it is 3 now! # unleash the most recent node response = route.receive(create_incoming_signal(TestSignal.signal_internal_complex_1, [3, "y"])) assert len(response.new_execution_contexts) == 1 assert len(route._pending_nodes) == 2 assert DimensionFilter.check_equivalence( response.new_execution_contexts[0].output.domain_spec.dimension_filter_spec, DimensionFilter.load_raw({121: {3: {}}}) ) # unleash the node that created first response = route.receive(create_incoming_signal(TestSignal.signal_s3_1, [1])) assert len(response.new_execution_contexts) == 1 assert len(route._pending_nodes) == 1 assert DimensionFilter.check_equivalence( response.new_execution_contexts[0].output.domain_spec.dimension_filter_spec, DimensionFilter.load_raw({121: {1: {}}}) ) # unleash the node that created second response = route.receive(create_incoming_signal(TestSignal.signal_s3_1, [2])) assert len(response.new_execution_contexts) == 1 assert not route._pending_nodes # no remaining pending nodes! assert DimensionFilter.check_equivalence( response.new_execution_contexts[0].output.domain_spec.dimension_filter_spec, DimensionFilter.load_raw({121: {2: {}}}) ) def test_route_check_expired_nodes(self): from test.intelliflow.core.signal_processing.signal.test_signal import TestSignal route = self._route_2_two_inputs_linked() route = Route( route.route_id, route.link_node, route.output, route._output_dim_matrix, route.slots, False, RouteExecutionHook(), 5, # seconds RoutePendingNodeHook(), ) route.receive(create_incoming_signal(TestSignal.signal_internal_1, [1])) route.receive(create_incoming_signal(TestSignal.signal_internal_1, [2])) assert len(route._pending_nodes) == 2 # send in a Signal that belongs to the second input but with different dim value # will create another pending node since it is neither '1' nor '2' (linking is active). response = route.receive(create_incoming_signal(TestSignal.signal_s3_1, [3])) assert not response.new_execution_contexts assert len(response.new_pending_nodes) == 1 assert len(route._pending_nodes) == 3 # please note that it is 3 now! # Completions # unleash the third pending node (which is pending on its first input with dim value 3) route.receive(create_incoming_signal(TestSignal.signal_internal_1, [3])) assert len(route._pending_nodes) == 2 # please note that it got back to 2! # just make sure that it has been at least 5 seconds after the creation of those pending nodes. time.sleep(5) expired_nodes = route.check_expired_nodes() assert len(expired_nodes) == 2 assert len(route._pending_nodes) == 0 def test_route_zombie_node_on_other_input_already_materialized(self): from test.intelliflow.core.signal_processing.signal.test_signal import TestSignal route = self._route_2_two_inputs_linked() # create new route to make sure that the second input is already materialized on value 3 [for dim_1_1]! new_signal_link_node = SignalLinkNode( [TestSignal.signal_internal_1, create_incoming_signal(TestSignal.signal_s3_1.clone("test_signal_from_S3"), [3])] ) new_signal_link_node.compensate_missing_links() route = Route( route.route_id, new_signal_link_node, route.output, route._output_dim_matrix, route.slots, False, route.execution_hook, route.pending_node_ttl_in_secs, # seconds route.pending_node_hook, ) # since second input is locked on 3, this event would yield a zombie node # 1 != 3 response = route.receive(create_incoming_signal(TestSignal.signal_internal_1, [1])) assert not response.new_execution_contexts assert len(response.new_pending_nodes) == 1 assert len(route._pending_nodes) == 1 assert next(iter(response.new_pending_nodes)).is_zombie # same again 2 != 3 response = route.receive(create_incoming_signal(TestSignal.signal_internal_1, [2])) # since second input is locked on 3, this event would yield a zombie node assert not response.new_execution_contexts assert len(response.new_pending_nodes) == 1 assert len(route._pending_nodes) == 2 assert next(iter(response.new_pending_nodes)).is_zombie # new pending node! 3 == 3 response = route.receive(create_incoming_signal(TestSignal.signal_internal_1, [3])) assert not response.new_execution_contexts assert len(response.new_pending_nodes) == 1 assert len(route._pending_nodes) == 3 # new node should NOT be a zombie, waiting for TestSignal.signal_s3_1[3] to come in assert not next(iter(response.new_pending_nodes)).is_zombie def test_route_zombie_node_not_possible_when_inputs_unlinked(self): from test.intelliflow.core.signal_processing.signal.test_signal import TestSignal route = self._route_2_two_inputs_linked() # create new route to make sure that the second input is already materialized on value 3 [for dim_1_1]! new_signal_link_node = SignalLinkNode( [TestSignal.signal_internal_1, create_incoming_signal(TestSignal.signal_s3_1.clone("test_signal_from_S3"), [3])] ) # UNLINKED ! # new_signal_link_node.compensate_missing_links() route = Route( route.route_id, new_signal_link_node, route.output, route._output_dim_matrix, route.slots, False, route.execution_hook, route.pending_node_ttl_in_secs, # seconds route.pending_node_hook, ) # since second input is locked on 3, this event can NOT yield a zombie node since they are unlinked # 1 != 3 response = route.receive(create_incoming_signal(TestSignal.signal_internal_1, [1])) assert not response.new_execution_contexts assert len(response.new_pending_nodes) == 1 assert len(route._pending_nodes) == 1 assert not next(iter(response.new_pending_nodes)).is_zombie def test_route_zombie_node_not_possible_when_other_is_a_materialized_reference_even_if_inputs_linked(self): """Actually yields execution immediately since the second input is a materialized reference""" from test.intelliflow.core.signal_processing.signal.test_signal import TestSignal route = self._route_2_two_inputs_linked() # create new route to make sure that the second input is already materialized on value 3 [for dim_1_1]! new_signal_link_node = SignalLinkNode( [ TestSignal.signal_internal_1, # materialized reference input create_incoming_signal(TestSignal.signal_s3_1.clone("test_signal_from_S3").as_reference(), [3]), ] ) # LINK ! new_signal_link_node.compensate_missing_links() route = Route( route.route_id, new_signal_link_node, route.output, route._output_dim_matrix, route.slots, False, route.execution_hook, route.pending_node_ttl_in_secs, route.pending_node_hook, ) # although second input is locked on 3, this event can NOT yield a zombie node since it is a material reference. # 1 != 3 response = route.receive(create_incoming_signal(TestSignal.signal_internal_1, [1])) # yields execution ! assert response.new_execution_contexts assert len(response.new_pending_nodes) == 0 assert len(route._pending_nodes) == 0 # DONE # We are actually done but let's show that even if they are unlinked, the result would not change. new_signal_link_node = SignalLinkNode( [ TestSignal.signal_internal_1, # materialized reference input create_incoming_signal(TestSignal.signal_s3_1.clone("test_signal_from_S3").as_reference(), [3]), ] ) # UNLINK ! # new_signal_link_node.compensate_missing_links() route = Route( route.route_id, new_signal_link_node, route.output, route._output_dim_matrix, route.slots, False, route.execution_hook, route.pending_node_ttl_in_secs, route.pending_node_hook, ) response = route.receive(create_incoming_signal(TestSignal.signal_internal_1, [1])) # yields execution again! assert response.new_execution_contexts assert len(response.new_pending_nodes) == 0 assert len(route._pending_nodes) == 0
44.358491
138
0.636525
4,486
39,967
5.326349
0.076906
0.031807
0.037666
0.045702
0.861137
0.8282
0.813342
0.788315
0.774881
0.756508
0
0.017156
0.286837
39,967
900
139
44.407778
0.821142
0.129582
0
0.669944
0
0
0.020388
0.004383
0
0
0
0.001111
0.154494
1
0.032303
false
0.001404
0.046348
0.001404
0.087079
0.002809
0
0
0
null
0
0
0
1
1
1
1
1
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
null
0
0
0
0
0
0
0
0
0
0
0
0
0
6
711dc29809114966ffd1a3a12882c04b3dd3d23a
49
py
Python
feedback/views/__init__.py
darkismus/kompassi
35dea2c7af2857a69cae5c5982b48f01ba56da1f
[ "CC-BY-3.0" ]
13
2015-11-29T12:19:12.000Z
2021-02-21T15:42:11.000Z
feedback/views/__init__.py
darkismus/kompassi
35dea2c7af2857a69cae5c5982b48f01ba56da1f
[ "CC-BY-3.0" ]
23
2015-04-29T19:43:34.000Z
2021-02-10T05:50:17.000Z
feedback/views/__init__.py
darkismus/kompassi
35dea2c7af2857a69cae5c5982b48f01ba56da1f
[ "CC-BY-3.0" ]
11
2015-09-20T18:59:00.000Z
2020-02-07T08:47:34.000Z
from .feedback_view import feedback_view # noqa
24.5
48
0.816327
7
49
5.428571
0.714286
0.631579
0
0
0
0
0
0
0
0
0
0
0.142857
49
1
49
49
0.904762
0.081633
0
0
0
0
0
0
0
0
0
0
0
1
0
true
0
1
0
1
0
1
1
0
null
1
0
0
0
0
0
0
0
0
0
0
0
0
1
0
0
0
0
0
0
0
0
0
0
null
0
0
0
0
0
0
1
0
1
0
0
0
0
6
8570b07b4e9af91f0c08ffa94177023db3ec5f6a
81
py
Python
nbgrader/exchange/abc/fetch_feedback.py
omelnikov/nbgrader
66984e5732c98bd15733c027601a62fca6a46222
[ "BSD-3-Clause" ]
1,116
2015-01-20T19:22:24.000Z
2022-03-31T22:05:10.000Z
nbgrader/exchange/abc/fetch_feedback.py
jld23/nbgrader
07a38cd8ed12ab33870bdd42f0bf35aa1252b0db
[ "BSD-3-Clause" ]
1,166
2015-01-08T21:50:31.000Z
2022-03-31T05:15:01.000Z
nbgrader/exchange/abc/fetch_feedback.py
jld23/nbgrader
07a38cd8ed12ab33870bdd42f0bf35aa1252b0db
[ "BSD-3-Clause" ]
337
2015-02-06T01:28:00.000Z
2022-03-29T06:52:38.000Z
from .exchange import Exchange class ExchangeFetchFeedback(Exchange): pass
13.5
38
0.790123
8
81
8
0.75
0
0
0
0
0
0
0
0
0
0
0
0.160494
81
5
39
16.2
0.941176
0
0
0
0
0
0
0
0
0
0
0
0
1
0
true
0.333333
0.333333
0
0.666667
0
1
0
0
null
0
0
0
0
0
0
0
0
0
0
0
0
0
1
0
0
0
0
0
0
0
0
0
0
null
0
0
0
0
0
0
1
1
1
0
1
0
0
6
85b9df7e5df2c3700d38f73b5d3eb34cddac9dcb
31
py
Python
schoolInfo/school/schedule/__init__.py
sunrabbit123/school-info_python
e2fbe928d6f024c6ec2f86b109833595dbdbb294
[ "MIT" ]
null
null
null
schoolInfo/school/schedule/__init__.py
sunrabbit123/school-info_python
e2fbe928d6f024c6ec2f86b109833595dbdbb294
[ "MIT" ]
1
2021-05-09T12:51:37.000Z
2021-05-17T14:36:23.000Z
schoolInfo/school/schedule/__init__.py
sunrabbit123/school-info_python
e2fbe928d6f024c6ec2f86b109833595dbdbb294
[ "MIT" ]
null
null
null
from .schedule import schedule
15.5
30
0.83871
4
31
6.5
0.75
0
0
0
0
0
0
0
0
0
0
0
0.129032
31
1
31
31
0.962963
0
0
0
0
0
0
0
0
0
0
0
0
1
0
true
0
1
0
1
0
1
1
0
null
0
0
0
0
0
0
0
0
0
0
0
0
0
1
0
0
0
0
0
0
0
0
0
0
null
0
0
0
0
0
0
1
0
1
0
1
0
0
6
a42e9d2a1e7a9cf3db47e508fb6f4bf89cb81693
5,486
py
Python
strategies/go_to_incarnam.py
ProjectBlackFalcon/BlackFalconCore
23af1829224738c06092e3e513a0bf2753b4c35f
[ "MIT" ]
8
2019-05-26T19:44:28.000Z
2021-01-31T14:53:17.000Z
strategies/go_to_incarnam.py
ProjectBlackFalcon/BlackFalconCore
23af1829224738c06092e3e513a0bf2753b4c35f
[ "MIT" ]
8
2019-07-17T21:19:47.000Z
2019-09-28T12:52:39.000Z
strategies/go_to_incarnam.py
ProjectBlackFalcon/BlackFalconCore
23af1829224738c06092e3e513a0bf2753b4c35f
[ "MIT" ]
null
null
null
import json import time from tools import logger as log import strategies def go_to_incarnam(**kwargs): """ A strategy to go from Astrub to Incarnam trough the portal :param kwargs: strategy, listener, and orders_queue :return: the input strategy with a report """ strategy = kwargs['strategy'] listener = kwargs['listener'] orders_queue = kwargs['orders_queue'] assets = kwargs['assets'] logger = log.get_logger(__name__, strategy['bot']) global_start, start = time.time(), time.time() # Enter the portal room door_skill_id = 184 element_id, skill_uid = None, None for element in listener.game_state['map_elements']: if 'enabledSkills' in element.keys(): for skill in element['enabledSkills']: if 'skillId' in skill.keys() and skill['skillId'] == door_skill_id: element_id = element['elementId'] skill_uid = skill['skillInstanceUid'] if element_id is None or skill_uid is None: logger.warn('Failed entering the portal room in {}s'.format(0)) strategy['report'] = { 'success': False, 'details': {'Execution time': 0, 'Reason': 'Could not find skill UID or element id'} } log.close_logger(logger) return strategy order = { 'command': 'use_interactive', 'parameters': { 'element_id': element_id, 'skill_uid': skill_uid } } logger.info('Sending order to bot API: {}'.format(order)) orders_queue.put((json.dumps(order),)) start = time.time() timeout = 10 if 'timeout' not in strategy.keys() else strategy['timeout'] waiting = True while waiting and time.time() - start < timeout: if 'pos' in listener.game_state.keys(): if listener.game_state['map_id'] == 192416776: waiting = False time.sleep(0.05) execution_time = time.time() - start if waiting: logger.warn('Failed entering the portal room in {}s'.format(execution_time)) strategy['report'] = { 'success': False, 'details': {'Execution time': execution_time, 'Reason': 'Timeout'} } log.close_logger(logger) return strategy logger.info('Entered the portal room in {}s'.format(execution_time)) # Go to cell 468 order = { 'command': 'move', 'parameters': { "isUsingNewMovementSystem": False, "cells": [[True, False, 0, 0, True, 0] for _ in range(560)], "target_cell": 468 } } logger.info('Sending order to bot API: {}'.format(order)) orders_queue.put((json.dumps(order),)) start = time.time() timeout = 10 if 'timeout' not in strategy.keys() else strategy['timeout'] waiting = True while waiting and time.time() - start < timeout: if 'pos' in listener.game_state.keys() and 'worldmap' in listener.game_state.keys(): if listener.game_state['cell'] == 468: waiting = False time.sleep(0.05) execution_time = time.time() - start if waiting: logger.warning('Failed going to cell 468 in {}s'.format(execution_time)) strategy['report'] = { 'success': False, 'details': {'Execution time': execution_time, 'Reason': 'Timeout'} } log.close_logger(logger) return strategy # Use the portal door_skill_id = 184 element_id, skill_uid = None, None for element in listener.game_state['map_elements']: if 'enabledSkills' in element.keys(): for skill in element['enabledSkills']: if 'skillId' in skill.keys() and skill['skillId'] == door_skill_id: element_id = element['elementId'] skill_uid = skill['skillInstanceUid'] if element_id is None or skill_uid is None: logger.warn('Failed entering the portal room in {}s'.format(0)) strategy['report'] = { 'success': False, 'details': {'Execution time': 0, 'Reason': 'Could not find skill UID or element id'} } log.close_logger(logger) return strategy order = { 'command': 'use_interactive', 'parameters': { 'element_id': element_id, 'skill_uid': skill_uid } } logger.info('Sending order to bot API: {}'.format(order)) orders_queue.put((json.dumps(order),)) start = time.time() timeout = 10 if 'timeout' not in strategy.keys() else strategy['timeout'] waiting = True while waiting and time.time() - start < timeout: if 'pos' in listener.game_state.keys(): if listener.game_state['worldmap'] == 2: waiting = False time.sleep(0.05) execution_time = time.time() - start if waiting: logger.warning('Failed going through the portal from Incarnam to Astrub in {}s'.format(execution_time)) strategy['report'] = { 'success': False, 'details': {'Execution time': execution_time, 'Reason': 'Timeout'} } log.close_logger(logger) return strategy execution_time = time.time() - global_start logger.info('Went from Astrub to Incarnam in {}s'.format(execution_time)) strategy['report'] = { 'success': True, 'details': {'Execution time': execution_time} } log.close_logger(logger) return strategy
34.503145
111
0.595151
644
5,486
4.948758
0.167702
0.077502
0.048008
0.03577
0.787888
0.777534
0.766865
0.766865
0.742391
0.729212
0
0.013476
0.283084
5,486
158
112
34.721519
0.796847
0.03755
0
0.70229
0
0
0.21279
0.004568
0
0
0
0
0
1
0.007634
false
0
0.030534
0
0.083969
0
0
0
0
null
0
0
0
0
1
1
1
1
1
0
0
0
0
0
0
0
0
0
0
1
0
0
0
0
null
0
0
0
0
0
0
0
0
0
0
0
0
0
6
a42f7f668f38670d489c9bdb6a6b76503b566b68
26
py
Python
get_decks_ids/__init__.py
sarajaksa/anki-addons
01e4cedca0cca1df11202c52c473a8c35eb5f0b8
[ "Unlicense" ]
3
2017-03-05T21:53:06.000Z
2019-03-13T09:50:19.000Z
get_decks_ids/__init__.py
sarajaksa/anki-addons
01e4cedca0cca1df11202c52c473a8c35eb5f0b8
[ "Unlicense" ]
3
2017-03-04T16:24:15.000Z
2018-11-14T15:20:49.000Z
get_decks_ids/__init__.py
sarajaksa/anki-addons
01e4cedca0cca1df11202c52c473a8c35eb5f0b8
[ "Unlicense" ]
1
2019-05-12T10:46:25.000Z
2019-05-12T10:46:25.000Z
from . import get_deck_id
13
25
0.807692
5
26
3.8
1
0
0
0
0
0
0
0
0
0
0
0
0.153846
26
1
26
26
0.863636
0
0
0
0
0
0
0
0
0
0
0
0
1
0
true
0
1
0
1
0
1
1
0
null
0
0
0
0
0
0
0
0
0
0
0
0
0
1
0
0
0
0
0
0
0
0
0
0
null
0
0
0
0
0
0
1
0
1
0
1
0
0
6
a44fcaf72af452eb78dae46d1d49a2249dd7f3c4
143
py
Python
week1/2.py
kamorozov/coursera_python
706bc1bc46839f8b3debdf293240ad5ce20c9775
[ "Unlicense" ]
2
2019-05-17T13:42:02.000Z
2019-05-18T04:00:35.000Z
week1/2.py
kamorozov/coursera_python
706bc1bc46839f8b3debdf293240ad5ce20c9775
[ "Unlicense" ]
null
null
null
week1/2.py
kamorozov/coursera_python
706bc1bc46839f8b3debdf293240ad5ce20c9775
[ "Unlicense" ]
2
2019-10-03T09:07:44.000Z
2019-12-28T19:17:20.000Z
n = int(input()) print(' _~_ ' * n) print(' (o o) ' * n) print(' / V \ ' * n) print('/( _ )\ ' * n) print(' ^^ ^^ ' * n)
20.428571
24
0.314685
16
143
2.625
0.375
0.571429
0.52381
0
0
0
0
0
0
0
0
0
0.384615
143
6
25
23.833333
0.477273
0
0
0
0
0
0.364964
0
0
0
0
0
0
1
0
false
0
0
0
0
0.833333
1
0
0
null
1
1
0
0
0
0
0
0
0
0
0
0
0
1
0
0
1
0
0
0
0
0
0
0
null
0
0
0
0
0
0
0
0
0
0
0
1
0
6
f13146176d51f8cb1731e866ee6731f529600270
97
py
Python
setup.py
souravdatta/words
1d4d8e5f192b24b2c734d839fe3eaa540256e2ed
[ "MIT" ]
null
null
null
setup.py
souravdatta/words
1d4d8e5f192b24b2c734d839fe3eaa540256e2ed
[ "MIT" ]
null
null
null
setup.py
souravdatta/words
1d4d8e5f192b24b2c734d839fe3eaa540256e2ed
[ "MIT" ]
null
null
null
# Py2Exe setup file from distutils.core import setup import py2exe setup(console=['words.py'])
13.857143
32
0.762887
14
97
5.285714
0.714286
0.297297
0
0
0
0
0
0
0
0
0
0.02381
0.134021
97
6
33
16.166667
0.857143
0.175258
0
0
0
0
0.103896
0
0
0
0
0
0
1
0
true
0
0.666667
0
0.666667
0
1
0
0
null
1
0
0
0
0
0
0
0
0
0
0
0
0
1
0
0
0
0
0
0
0
0
0
0
null
0
0
0
0
0
0
1
0
1
0
1
0
0
6
f13ba3b7c19b139da995ed439ad5c64bd1341cb8
3,020
py
Python
TestSlice6.py
TecnicoSSof/Software-Security
9c31f5f59a1d1c21c2c9876d09bbbd9823d96357
[ "Apache-2.0" ]
null
null
null
TestSlice6.py
TecnicoSSof/Software-Security
9c31f5f59a1d1c21c2c9876d09bbbd9823d96357
[ "Apache-2.0" ]
null
null
null
TestSlice6.py
TecnicoSSof/Software-Security
9c31f5f59a1d1c21c2c9876d09bbbd9823d96357
[ "Apache-2.0" ]
null
null
null
import os import unittest from searcher.Vulnerability import Vulnerability from searcher.Searcher import Searcher import json from static_analyzer import file_get_contents class TestSlice6(unittest.TestCase): def test_rules(self): parsed_snippet = json.loads(file_get_contents(os.getcwd() + "/tests/slice6/slice6.json")) parsed_rules = json.loads(file_get_contents(os.getcwd() + "/tests/slice6/rules.json")) output = open(os.getcwd() + "/tests/slice6/slice6_rules.out", "r") vulnerabilities = Vulnerability.build_vulnerabilities(parsed_rules) s = Searcher(parsed_snippet['body'], vulnerabilities) self.assertEqual(s.get_vulnerabilities_str(), output.read(), "Should be equal") output.close() def test_rules2(self): parsed_snippet = json.loads(file_get_contents(os.getcwd() + "/tests/slice6/slice6.json")) parsed_rules = json.loads(file_get_contents(os.getcwd() + "/tests/slice6/rules2.json")) output = open(os.getcwd() + "/tests/slice6/slice6_rules2.out", "r") vulnerabilities = Vulnerability.build_vulnerabilities(parsed_rules) s = Searcher(parsed_snippet['body'], vulnerabilities) self.assertEqual(s.get_vulnerabilities_str(), output.read(), "Should be equal") output.close() def test_rules3(self): parsed_snippet = json.loads(file_get_contents(os.getcwd() + "/tests/slice6/slice6.json")) parsed_rules = json.loads(file_get_contents(os.getcwd() + "/tests/slice6/rules3.json")) output = open(os.getcwd() + "/tests/slice6/slice6_rules3.out", "r") vulnerabilities = Vulnerability.build_vulnerabilities(parsed_rules) s = Searcher(parsed_snippet['body'], vulnerabilities) self.assertEqual(s.get_vulnerabilities_str(), output.read(), "Should be equal") output.close() def test_rulesNoVuln(self): parsed_snippet = json.loads(file_get_contents(os.getcwd() + "/tests/slice6/slice6.json")) parsed_rules = json.loads(file_get_contents(os.getcwd() + "/tests/slice6/rulesNoVuln.json")) output = open(os.getcwd() + "/tests/slice6/slice6_rulesNoVuln.out", "r") vulnerabilities = Vulnerability.build_vulnerabilities(parsed_rules) s = Searcher(parsed_snippet['body'], vulnerabilities) self.assertEqual(s.get_vulnerabilities_str(), output.read(), "Should be equal") output.close() def test_rulesSanit(self): parsed_snippet = json.loads(file_get_contents(os.getcwd() + "/tests/slice6/slice6.json")) parsed_rules = json.loads(file_get_contents(os.getcwd() + "/tests/slice6/rulesSanit.json")) output = open(os.getcwd() + "/tests/slice6/slice6_rulesSanit.out", "r") vulnerabilities = Vulnerability.build_vulnerabilities(parsed_rules) s = Searcher(parsed_snippet['body'], vulnerabilities) self.assertEqual(s.get_vulnerabilities_str(), output.read(), "Should be equal") output.close() if __name__ == '__main__': unittest.main()
50.333333
100
0.700993
357
3,020
5.717087
0.131653
0.058795
0.095541
0.139637
0.841744
0.841744
0.841744
0.841744
0.746203
0.746203
0
0.012668
0.163576
3,020
59
101
51.186441
0.795329
0
0
0.510204
0
0
0.175166
0.139404
0
0
0
0
0.102041
1
0.102041
false
0
0.122449
0
0.244898
0
0
0
0
null
0
0
0
1
1
1
1
1
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
null
0
0
0
0
0
0
0
0
0
0
0
0
0
6
f14b4723145eab9e4983e1e31682b70ef51514f9
38,348
py
Python
tests/test_worldpop.py
mcarans/hdxscraper-worldpop
dcfd73df5af2fffb927a6ad39129f744a6f5debb
[ "MIT" ]
1
2017-09-02T15:07:43.000Z
2017-09-02T15:07:43.000Z
tests/test_worldpop.py
mcarans/hdxscraper-worldpop
dcfd73df5af2fffb927a6ad39129f744a6f5debb
[ "MIT" ]
1
2021-09-21T15:44:59.000Z
2021-09-22T22:47:42.000Z
tests/test_worldpop.py
mcarans/hdxscraper-worldpop
dcfd73df5af2fffb927a6ad39129f744a6f5debb
[ "MIT" ]
null
null
null
#!/usr/bin/python """ Unit tests for worldpop. """ from os.path import join import pytest from hdx.data.vocabulary import Vocabulary from hdx.hdx_configuration import Configuration from hdx.hdx_locations import Locations from hdx.location.country import Country from worldpop import ( generate_datasets_and_showcases, get_countriesdata, get_indicators_metadata, ) class TestWorldPop: indicators_metadata = [ { "alias": "pop", "name": "Population", "title": "Population", "desc": "WorldPop produces different types of gridded population count datasets...", }, { "alias": "births", "name": "Births", "title": "Births", "desc": "The health and survival of women and their new-born babies in low income countries is a key public health priority...", }, { "alias": "pregnancies", "name": "Pregnancies", "title": "Pregnancies", "desc": "The health and survival of women and their new-born babies in low income countries is a key public health priority...", }, { "alias": "age_structures", "name": "Age and sex structures", "title": "Age and sex structures", "desc": "Age and sex structures: WorldPop produces different types of gridded population count datasets...", }, ] countriesdata = { "AUS": { "pop": { "wpgp": ["http://papa/getJSON/pop/wpgp?iso3=AUS"], "wpgpunadj": ["http://papa/getJSON/pop/wpgpunadj?iso3=AUS"], } }, "BRA": { "pop": { "wpgp": ["http://papa/getJSON/pop/wpgp?iso3=BRA"], "wpgpunadj": ["http://papa/getJSON/pop/wpgpunadj?iso3=BRA"], } }, "CAN": { "pop": { "wpgp": ["http://papa/getJSON/pop/wpgp?iso3=CAN"], "wpgpunadj": ["http://papa/getJSON/pop/wpgpunadj?iso3=CAN"], } }, "RUS": { "pop": { "wpgp": ["http://papa/getJSON/pop/wpgp?iso3=RUS"], "wpgpunadj": ["http://papa/getJSON/pop/wpgpunadj?iso3=RUS"], } }, "World": { "pop": { "wpgp1km": [ "http://papa/getJSON/pop/wpgp1km?id=24776", "http://papa/getJSON/pop/wpgp1km?id=24777", ] } }, "ZWE": { "pop": { "wpgp": ["http://papa/getJSON/pop/wpgp?iso3=ZWE"], "wpgpunadj": ["http://papa/getJSON/pop/wpgpunadj?iso3=ZWE"], } }, } wpgpdata = [ {"id": "1325", "iso3": "AUS"}, {"id": "1326", "iso3": "RUS"}, {"id": "1327", "iso3": "BRA"}, {"id": "1328", "iso3": "CAN"}, {"id": "1482", "iso3": "ZWE"}, ] wpgpunadjdata = [ {"id": "13251", "iso3": "AUS"}, {"id": "13261", "iso3": "RUS"}, {"id": "13271", "iso3": "BRA"}, {"id": "13281", "iso3": "CAN"}, {"id": "14821", "iso3": "ZWE"}, ] metadata = [ { "id": "1482", "title": "The spatial distribution of population in 2000, Zimbabwe", "desc": "Estimated total number of people per grid-cell.", "doi": "10.5258/SOTON/WP00645", "date": "2018-11-01", "popyear": "2000", "citation": "WorldPop", "data_file": "GIS/Population/Global_2000_2020/2000/ZWE/zwe_ppp_2000.tif", "archive": "N", "public": "Y", "source": "WorldPop, University of Southampton, UK", "data_format": "geotiff", "author_email": "[email protected]", "author_name": "WorldPop", "maintainer_name": "WorldPop", "maintainer_email": "[email protected]", "project": "Population", "category": "Individual countries 2000-2020 ( 100m resolution )", "gtype": "Population", "continent": "Africa", "country": "Zimbabwe", "iso3": "ZWE", "files": [ "ftp://ftp.worldpop.org.uk/GIS/Population/Global_2000_2020/2000/ZWE/zwe_ppp_2000.tif" ], "url_img": "https://www.worldpop.org/tabs/gdata/img/1482/zwe_ppp_wpgp_2000_Image.png", "organisation": "WorldPop, University of Southampton, UK, www.worldpop.org", "license": "https://www.worldpop.org/data/licence.txt", "url_summary": "https://www.worldpop.org/geodata/summary?id=1482", }, { "id": "1731", "title": "The spatial distribution of population in 2001, Zimbabwe", "desc": "Estimated total number of people per grid-cell.", "doi": "10.5258/SOTON/WP00645", "date": "2018-11-01", "popyear": "2001", "citation": "WorldPop", "data_file": "GIS/Population/Global_2000_2020/2001/ZWE/zwe_ppp_2001.tif", "archive": "N", "public": "Y", "source": "WorldPop, University of Southampton, UK", "data_format": "geotiff", "author_email": "[email protected]", "author_name": "WorldPop", "maintainer_name": "WorldPop", "maintainer_email": "[email protected]", "project": "Population", "category": "Individual countries 2000-2020 ( 100m resolution )", "gtype": "Population", "continent": "Africa", "country": "Zimbabwe", "iso3": "ZWE", "files": [ "ftp://ftp.worldpop.org.uk/GIS/Population/Global_2000_2020/2001/ZWE/zwe_ppp_2001.tif" ], "url_img": "https://www.worldpop.org/tabs/gdata/img/1731/zwe_ppp_wpgp_2001_Image.png", "organisation": "WorldPop, University of Southampton, UK, www.worldpop.org", "license": "https://www.worldpop.org/data/licence.txt", "url_summary": "https://www.worldpop.org/geodata/summary?id=1731", }, { "id": "3474", "title": "The spatial distribution of population in 2008, Zimbabwe", "desc": "Estimated total number of people per grid-cell.", "doi": "10.5258/SOTON/WP00645", "date": "2018-11-01", "popyear": "2008", "citation": "WorldPop", "data_file": "GIS/Population/Global_2000_2020/2008/ZWE/zwe_ppp_2008.tif", "archive": "N", "public": "Y", "source": "WorldPop, University of Southampton, UK", "data_format": "geotiff", "author_email": "[email protected]", "author_name": "WorldPop", "maintainer_name": "WorldPop", "maintainer_email": "[email protected]", "project": "Population", "category": "Individual countries 2000-2020 ( 100m resolution )", "gtype": "Population", "continent": "Africa", "country": "Zimbabwe", "iso3": "ZWE", "files": [ "ftp://ftp.worldpop.org.uk/GIS/Population/Global_2000_2020/2008/ZWE/zwe_ppp_2008.tif" ], "url_img": "https://www.worldpop.org/tabs/gdata/img/3474/zwe_ppp_wpgp_2008_Image.png", "organisation": "WorldPop, University of Southampton, UK, www.worldpop.org", "license": "https://www.worldpop.org/data/licence.txt", "url_summary": "https://www.worldpop.org/geodata/summary?id=3474", }, { "id": "4711", "title": "The spatial distribution of population in 2013, Zimbabwe", "desc": "Estimated total number of people per grid-cell.", "doi": "10.5258/SOTON/WP00645", "date": "2018-11-01", "popyear": "2013", "citation": "WorldPop", "data_file": "GIS/Population/Global_2000_2020/2013/ZWE/zwe_ppp_2013.tif", "archive": "N", "public": "Y", "source": "WorldPop, University of Southampton, UK", "data_format": "geotiff", "author_email": "[email protected]", "author_name": "WorldPop", "maintainer_name": "WorldPop", "maintainer_email": "[email protected]", "project": "Population", "category": "Individual countries 2000-2020 ( 100m resolution )", "gtype": "Population", "continent": "Africa", "country": "Zimbabwe", "iso3": "ZWE", "files": [ "ftp://ftp.worldpop.org.uk/GIS/Population/Global_2000_2020/2013/ZWE/zwe_ppp_2013.tif" ], "url_img": "https://www.worldpop.org/tabs/gdata/img/4711/zwe_ppp_wpgp_2013_Image.png", "organisation": "WorldPop, University of Southampton, UK, www.worldpop.org", "license": "https://www.worldpop.org/data/licence.txt", "url_summary": "https://www.worldpop.org/geodata/summary?id=4711", }, { "id": "6205", "title": "The spatial distribution of population in 2019, Zimbabwe", "desc": "Estimated total number of people per grid-cell.", "doi": "10.5258/SOTON/WP00645", "date": "2018-11-01", "popyear": "2019", "citation": "WorldPop", "data_file": "GIS/Population/Global_2000_2020/2019/ZWE/zwe_ppp_2019.tif", "archive": "N", "public": "Y", "source": "WorldPop, University of Southampton, UK", "data_format": "geotiff", "author_email": "[email protected]", "author_name": "WorldPop", "maintainer_name": "WorldPop", "maintainer_email": "[email protected]", "project": "Population", "category": "Individual countries 2000-2020 ( 100m resolution )", "gtype": "Population", "continent": "Africa", "country": "Zimbabwe", "iso3": "ZWE", "files": [ "ftp://ftp.worldpop.org.uk/GIS/Population/Global_2000_2020/2019/ZWE/zwe_ppp_2019.tif" ], "url_img": "https://www.worldpop.org/tabs/gdata/img/6205/zwe_ppp_wpgp_2019_Image.png", "organisation": "WorldPop, University of Southampton, UK, www.worldpop.org", "license": "https://www.worldpop.org/data/licence.txt", "url_summary": "https://www.worldpop.org/geodata/summary?id=6205", }, { "id": "6454", "title": "The spatial distribution of population in 2020, Zimbabwe", "desc": "Estimated total number of people per grid-cell.", "doi": "10.5258/SOTON/WP00645", "date": "2018-11-01", "popyear": "2020", "citation": "WorldPop", "data_file": "GIS/Population/Global_2000_2020/2020/ZWE/zwe_ppp_2020.tif", "archive": "N", "public": "Y", "source": "WorldPop, University of Southampton, UK", "data_format": "geotiff", "author_email": "[email protected]", "author_name": "WorldPop", "maintainer_name": "WorldPop", "maintainer_email": "[email protected]", "project": "Population", "category": "Individual countries 2000-2020 ( 100m resolution )", "gtype": "Population", "continent": "Africa", "country": "Zimbabwe", "iso3": "ZWE", "files": [ "ftp://ftp.worldpop.org.uk/GIS/Population/Global_2000_2020/2020/ZWE/zwe_ppp_2020.tif" ], "url_img": "https://www.worldpop.org/tabs/gdata/img/6454/zwe_ppp_wpgp_2020_Image.png", "organisation": "WorldPop, University of Southampton, UK, www.worldpop.org", "license": "https://www.worldpop.org/data/licence.txt", "url_summary": "https://www.worldpop.org/geodata/summary?id=6454", }, ] metadataunadj = [ { "id": "14821", "title": "The spatial distribution of population in 2000 with country total adjusted to match the corresponding UNPD estimate, Zimbabwe", "desc": "Estimated total number of people per grid-cell. UNAdj", "doi": "10.5258/SOTON/WP00645", "date": "2018-11-01", "popyear": "2000", "citation": "WorldPop", "data_file": "GIS/Population/Global_2000_2020/2000/ZWE/zwe_ppp_2000.tif", "archive": "N", "public": "Y", "source": "WorldPop, University of Southampton, UK", "data_format": "geotiff", "author_email": "[email protected]", "author_name": "WorldPop", "maintainer_name": "WorldPop", "maintainer_email": "[email protected]", "project": "Population", "category": "Individual countries 2000-2020 UN adjusted ( 100m resolution )", "gtype": "Population", "continent": "Africa", "country": "Zimbabwe", "iso3": "ZWE", "files": [ "ftp://ftp.worldpop.org.uk/GIS/Population/Global_2000_2020/2000/ZWE/zwe_ppp_2000_UNadj.tif" ], "url_img": "https://www.worldpop.org/tabs/gdata/img/1482/zwe_ppp_wpgp_2000_Image_UNadj.png", "organisation": "WorldPop, University of Southampton, UK, www.worldpop.org", "license": "https://www.worldpop.org/data/licence.txt", "url_summary": "https://www.worldpop.org/geodata/summary?id=14821", }, { "id": "17311", "title": "The spatial distribution of population in 2001 with country total adjusted to match the corresponding UNPD estimate, Zimbabwe", "desc": "Estimated total number of people per grid-cell. UNAdj", "doi": "10.5258/SOTON/WP00645", "date": "2018-11-01", "popyear": "2001", "citation": "WorldPop", "data_file": "GIS/Population/Global_2000_2020/2001/ZWE/zwe_ppp_2001.tif", "archive": "N", "public": "Y", "source": "WorldPop, University of Southampton, UK", "data_format": "geotiff", "author_email": "[email protected]", "author_name": "WorldPop", "maintainer_name": "WorldPop", "maintainer_email": "[email protected]", "project": "Population", "category": "Individual countries 2000-2020 UN adjusted ( 100m resolution )", "gtype": "Population", "continent": "Africa", "country": "Zimbabwe", "iso3": "ZWE", "files": [ "ftp://ftp.worldpop.org.uk/GIS/Population/Global_2000_2020/2001/ZWE/zwe_ppp_2001_UNadj.tif" ], "url_img": "https://www.worldpop.org/tabs/gdata/img/1731/zwe_ppp_wpgp_2001_Image_UNadj.png", "organisation": "WorldPop, University of Southampton, UK, www.worldpop.org", "license": "https://www.worldpop.org/data/licence.txt", "url_summary": "https://www.worldpop.org/geodata/summary?id=17311", }, { "id": "34741", "title": "The spatial distribution of population in 2008 with country total adjusted to match the corresponding UNPD estimate, Zimbabwe", "desc": "Estimated total number of people per grid-cell. UNAdj", "doi": "10.5258/SOTON/WP00645", "date": "2018-11-01", "popyear": "2008", "citation": "WorldPop", "data_file": "GIS/Population/Global_2000_2020/2008/ZWE/zwe_ppp_2008.tif", "archive": "N", "public": "Y", "source": "WorldPop, University of Southampton, UK", "data_format": "geotiff", "author_email": "[email protected]", "author_name": "WorldPop", "maintainer_name": "WorldPop", "maintainer_email": "[email protected]", "project": "Population", "category": "Individual countries 2000-2020 UN adjusted ( 100m resolution )", "gtype": "Population", "continent": "Africa", "country": "Zimbabwe", "iso3": "ZWE", "files": [ "ftp://ftp.worldpop.org.uk/GIS/Population/Global_2000_2020/2008/ZWE/zwe_ppp_2008_UNadj.tif" ], "url_img": "https://www.worldpop.org/tabs/gdata/img/3474/zwe_ppp_wpgp_2008_Image_UNadj.png", "organisation": "WorldPop, University of Southampton, UK, www.worldpop.org", "license": "https://www.worldpop.org/data/licence.txt", "url_summary": "https://www.worldpop.org/geodata/summary?id=34741", }, { "id": "47111", "title": "The spatial distribution of population in 2013 with country total adjusted to match the corresponding UNPD estimate, Zimbabwe", "desc": "Estimated total number of people per grid-cell. UNAdj", "doi": "10.5258/SOTON/WP00645", "date": "2018-11-01", "popyear": "2013", "citation": "WorldPop", "data_file": "GIS/Population/Global_2000_2020/2013/ZWE/zwe_ppp_2013.tif", "archive": "N", "public": "Y", "source": "WorldPop, University of Southampton, UK", "data_format": "geotiff", "author_email": "[email protected]", "author_name": "WorldPop", "maintainer_name": "WorldPop", "maintainer_email": "[email protected]", "project": "Population", "category": "Individual countries 2000-2020 UN adjusted ( 100m resolution )", "gtype": "Population", "continent": "Africa", "country": "Zimbabwe", "iso3": "ZWE", "files": [ "ftp://ftp.worldpop.org.uk/GIS/Population/Global_2000_2020/2013/ZWE/zwe_ppp_2013_UNadj.tif" ], "url_img": "https://www.worldpop.org/tabs/gdata/img/4711/zwe_ppp_wpgp_2013_Image_UNadj.png", "organisation": "WorldPop, University of Southampton, UK, www.worldpop.org", "license": "https://www.worldpop.org/data/licence.txt", "url_summary": "https://www.worldpop.org/geodata/summary?id=47111", }, { "id": "62051", "title": "The spatial distribution of population in 2019 with country total adjusted to match the corresponding UNPD estimate, Zimbabwe", "desc": "Estimated total number of people per grid-cell. UNAdj", "doi": "10.5258/SOTON/WP00645", "date": "2018-11-01", "popyear": "2019", "citation": "WorldPop", "data_file": "GIS/Population/Global_2000_2020/2019/ZWE/zwe_ppp_2019.tif", "archive": "N", "public": "Y", "source": "WorldPop, University of Southampton, UK", "data_format": "geotiff", "author_email": "[email protected]", "author_name": "WorldPop", "maintainer_name": "WorldPop", "maintainer_email": "[email protected]", "project": "Population", "category": "Individual countries 2000-2020 UN adjusted ( 100m resolution )", "gtype": "Population", "continent": "Africa", "country": "Zimbabwe", "iso3": "ZWE", "files": [ "ftp://ftp.worldpop.org.uk/GIS/Population/Global_2000_2020/2019/ZWE/zwe_ppp_2019_UNadj.tif" ], "url_img": "https://www.worldpop.org/tabs/gdata/img/6205/zwe_ppp_wpgp_2019_Image_UNadj.png", "organisation": "WorldPop, University of Southampton, UK, www.worldpop.org", "license": "https://www.worldpop.org/data/licence.txt", "url_summary": "https://www.worldpop.org/geodata/summary?id=62051", }, { "id": "64541", "title": "The spatial distribution of population in 2020 with country total adjusted to match the corresponding UNPD estimate, Zimbabwe", "desc": "Estimated total number of people per grid-cell. UNAdj", "doi": "10.5258/SOTON/WP00645", "date": "2018-11-01", "popyear": "2020", "citation": "WorldPop", "data_file": "GIS/Population/Global_2000_2020/2020/ZWE/zwe_ppp_2020.tif", "archive": "N", "public": "Y", "source": "WorldPop, University of Southampton, UK", "data_format": "geotiff", "author_email": "[email protected]", "author_name": "WorldPop", "maintainer_name": "WorldPop", "maintainer_email": "[email protected]", "project": "Population", "category": "Individual countries 2000-2020 UN adjusted ( 100m resolution )", "gtype": "Population", "continent": "Africa", "country": "Zimbabwe", "iso3": "ZWE", "files": [ "ftp://ftp.worldpop.org.uk/GIS/Population/Global_2000_2020/2020/ZWE/zwe_ppp_2020_UNadj.tif" ], "url_img": "https://www.worldpop.org/tabs/gdata/img/6454/zwe_ppp_wpgp_2020_Image_UNadj.png", "organisation": "WorldPop, University of Southampton, UK, www.worldpop.org", "license": "https://www.worldpop.org/data/licence.txt", "url_summary": "https://www.worldpop.org/geodata/summary?id=64541", }, ] wpgp1kmdata = [{"id": "24776"}, {"id": "24777"}] metadata_24777 = { "id": "24777", "title": "The spatial distribution of population in 2020", "desc": "Estimated total number of people per grid-cell...\r\n", "doi": "10.5258/SOTON/WP00647", "date": "0018-02-01", "popyear": "2020", "citation": "WorldPop...\r\n", "data_file": "GIS/Population/Global_2000_2020/2020/0_Mosaicked/ppp_2020_1km_Aggregated.tif", "file_img": "world_ppp_wpgp_2020_Image.png", "archive": "N", "public": "Y", "source": "WorldPop, University of Southampton, UK", "data_format": "tiff", "author_email": "[email protected]", "author_name": "WorldPop", "maintainer_name": "WorldPop", "maintainer_email": "[email protected]", "project": "Population", "category": "Global mosaics 2000-2020", "gtype": "Population", "continent": "World", "country": None, "iso3": None, "files": [ "ftp://ftp.worldpop.org.uk/GIS/Population/Global_2000_2020/2020/0_Mosaicked/ppp_2020_1km_Aggregated.tif" ], "url_img": "", "organisation": "WorldPop, University of Southampton, UK, www.worldpop.org", "license": "https://www.worldpop.org/data/licence.txt", "url_summary": "https://www.worldpop.org/geodata/summary?id=24777", } metadata_24776 = { "id": "24776", "title": "The spatial distribution of population in 2019", "desc": "Estimated total number of people per grid-cell...\r\n", "doi": "10.5258/SOTON/WP00647", "date": "2018-11-01", "popyear": "2019", "citation": "WorldPop...\r\n", "data_file": "GIS/Population/Global_2000_2020/2019/0_Mosaicked/ppp_2019_1km_Aggregated.tif", "file_img": "world_ppp_wpgp_2019_Image.png", "archive": "N", "public": "Y", "source": "WorldPop, University of Southampton, UK", "data_format": "tiff", "author_email": "[email protected]", "author_name": "WorldPop", "maintainer_name": "WorldPop", "maintainer_email": "[email protected]", "project": "Population", "category": "Global mosaics 2000-2020", "gtype": "Population", "continent": "World", "country": None, "iso3": None, "files": [ "ftp://ftp.worldpop.org.uk/GIS/Population/Global_2000_2020/2019/0_Mosaicked/ppp_2019_1km_Aggregated.tif" ], "url_img": "https://www.worldpop.org/tabs/gdata/img/24776/world_ppp_wpgp_2019_Image.png", "organisation": "WorldPop, University of Southampton, UK, www.worldpop.org", "license": "https://www.worldpop.org/data/licence.txt", "url_summary": "https://www.worldpop.org/geodata/summary?id=24776", } @pytest.fixture(scope="function") def configuration(self): Configuration._create( hdx_read_only=True, user_agent="test", project_config_yaml=join("tests", "config", "project_configuration.yml"), ) Locations.set_validlocations( [{"name": "zwe", "title": "Zimbabwe"}, {"name": "world", "title": "World"}] ) Country.countriesdata(use_live=False) Vocabulary._tags_dict = True Vocabulary._approved_vocabulary = { "tags": [{"name": "population"}, {"name": "geodata"}], "id": "4e61d464-4943-4e97-973a-84673c1aaa87", "name": "approved", } return Configuration.read() @pytest.fixture(scope="function") def downloader(self): class Download: url = None @classmethod def download(cls, url): cls.url = url @classmethod def get_json(cls): if cls.url == "http://lala/getJSON/": return {"data": TestWorldPop.indicators_metadata} elif cls.url == "http://papa/getJSON/pop/wpgp": return {"data": TestWorldPop.wpgpdata} elif cls.url == "http://papa/getJSON/pop/wpgpunadj": return {"data": TestWorldPop.wpgpunadjdata} elif cls.url == "http://papa/getJSON/pop/wpgp1km": return {"data": TestWorldPop.wpgp1kmdata} elif cls.url == "http://papa/getJSON/pop/wpgp?iso3=ZWE": return {"data": TestWorldPop.metadata} elif cls.url == "http://papa/getJSON/pop/wpgpunadj?iso3=ZWE": return {"data": TestWorldPop.metadataunadj} elif cls.url == "http://papa/getJSON/pop/wpgp1km?id=24776": return {"data": TestWorldPop.metadata_24776} elif cls.url == "http://papa/getJSON/pop/wpgp1km?id=24777": return {"data": TestWorldPop.metadata_24777} @staticmethod def get_text(): return ( "The WorldPop project aims to provide an open access archive of spatial " "demographic datasets ... at creativecommons.org." ) return Download() def test_get_indicators_metadata(self, configuration, downloader): indicators = configuration["indicators"] indicators_metadata = get_indicators_metadata( "http://lala/getJSON/", downloader, indicators ) assert "pop" in indicators_metadata.keys() assert sorted( list(indicators_metadata.values()), key=lambda k: k["alias"] ) == sorted(TestWorldPop.indicators_metadata, key=lambda k: k["alias"]) def test_get_countriesdata(self, configuration, downloader): indicators = configuration["indicators"] cutdownindicators = {"pop": indicators["pop"]} countriesdata, countries = get_countriesdata( "http://papa/getJSON/", downloader, cutdownindicators ) assert countriesdata == TestWorldPop.countriesdata assert countries == [ {"iso3": "AUS"}, {"iso3": "BRA"}, {"iso3": "CAN"}, {"iso3": "RUS"}, {"iso3": "ZWE"}, {"iso3": "World"}, ] def test_generate_datasets_and_showcases(self, configuration, downloader): indicators_metadata = {"pop": TestWorldPop.indicators_metadata[0]} countryiso = "World" countrydata = TestWorldPop.countriesdata[countryiso] datasets, showcases = generate_datasets_and_showcases( downloader, countryiso, indicators_metadata, countrydata ) dataset = datasets[0] assert dataset == { "name": "worldpop-population-for-world", "title": "World - Population", "notes": "WorldPop produces different types of gridded population count datasets... \nData for earlier dates is available directly from WorldPop. \n \nWorldPop...\r\n", "methodology": "Other", "methodology_other": "Estimated total number of people per grid-cell...\r\n", "dataset_source": "WorldPop, University of Southampton, UK", "license_id": "hdx-other", "license_other": "The WorldPop project aims to provide an open access archive of spatial demographic datasets ... at creativecommons.org.", "private": False, "maintainer": "37023db4-a571-4f28-8d1f-15f0353586af", "owner_org": "3f077dff-1d05-484d-a7c2-4cb620f22689", "data_update_frequency": "365", "subnational": "1", "groups": [{"name": "world"}], "tags": [ { "name": "population", "vocabulary_id": "4e61d464-4943-4e97-973a-84673c1aaa87", }, { "name": "geodata", "vocabulary_id": "4e61d464-4943-4e97-973a-84673c1aaa87", }, ], "dataset_date": "[2019-01-01T00:00:00 TO 2020-12-31T00:00:00]", } resources = dataset.get_resources() assert resources == [ { "name": "ppp_2020_1km_Aggregated.tif", "format": "geotiff", "url": "ftp://ftp.worldpop.org.uk/GIS/Population/Global_2000_2020/2020/0_Mosaicked/ppp_2020_1km_Aggregated.tif", "description": "The spatial distribution of population in 2020", "resource_type": "api", "url_type": "api", }, { "name": "ppp_2019_1km_Aggregated.tif", "format": "geotiff", "url": "ftp://ftp.worldpop.org.uk/GIS/Population/Global_2000_2020/2019/0_Mosaicked/ppp_2019_1km_Aggregated.tif", "description": "The spatial distribution of population in 2019", "resource_type": "api", "url_type": "api", }, ] showcase = next(iter(showcases.values()))[0] assert showcase == { "name": "worldpop-population-for-world-showcase", "title": "WorldPop World Population Summary Page", "notes": "Summary for Global mosaics 2000-2020 - World", "url": "https://www.worldpop.org/geodata/summary?id=24777", "image_url": "https://www.worldpop.org/tabs/gdata/img/24776/world_ppp_wpgp_2019_Image.png", "tags": [ { "name": "population", "vocabulary_id": "4e61d464-4943-4e97-973a-84673c1aaa87", }, { "name": "geodata", "vocabulary_id": "4e61d464-4943-4e97-973a-84673c1aaa87", }, ], } countryiso = "ZWE" countrydata = TestWorldPop.countriesdata[countryiso] datasets, showcases = generate_datasets_and_showcases( downloader, countryiso, indicators_metadata, countrydata ) dataset = datasets[0] assert dataset == { "name": "worldpop-population-for-zimbabwe", "title": "Zimbabwe - Population", "notes": "WorldPop produces different types of gridded population count datasets... \nData for earlier dates is available directly from WorldPop. \n \nWorldPop", "methodology": "Other", "methodology_other": "Estimated total number of people per grid-cell. UNAdj", "dataset_source": "WorldPop, University of Southampton, UK", "license_id": "hdx-other", "license_other": "The WorldPop project aims to provide an open access archive of spatial demographic datasets ... at creativecommons.org.", "private": False, "maintainer": "37023db4-a571-4f28-8d1f-15f0353586af", "owner_org": "3f077dff-1d05-484d-a7c2-4cb620f22689", "data_update_frequency": "365", "subnational": "1", "groups": [{"name": "zwe"}], "tags": [ { "name": "population", "vocabulary_id": "4e61d464-4943-4e97-973a-84673c1aaa87", }, { "name": "geodata", "vocabulary_id": "4e61d464-4943-4e97-973a-84673c1aaa87", }, ], "dataset_date": "[2000-01-01T00:00:00 TO 2020-12-31T00:00:00]", } resources = dataset.get_resources() assert resources == [ { "name": "zwe_ppp_2020.tif", "format": "geotiff", "url": "ftp://ftp.worldpop.org.uk/GIS/Population/Global_2000_2020/2020/ZWE/zwe_ppp_2020.tif", "description": "The spatial distribution of population in 2020, Zimbabwe", "resource_type": "api", "url_type": "api", }, { "name": "zwe_ppp_2020_UNadj.tif", "format": "geotiff", "url": "ftp://ftp.worldpop.org.uk/GIS/Population/Global_2000_2020/2020/ZWE/zwe_ppp_2020_UNadj.tif", "description": "The spatial distribution of population in 2020 with country total adjusted to match the corresponding UNPD estimate, Zimbabwe", "resource_type": "api", "url_type": "api", }, { "name": "zwe_ppp_2019.tif", "format": "geotiff", "url": "ftp://ftp.worldpop.org.uk/GIS/Population/Global_2000_2020/2019/ZWE/zwe_ppp_2019.tif", "description": "The spatial distribution of population in 2019, Zimbabwe", "resource_type": "api", "url_type": "api", }, { "name": "zwe_ppp_2019_UNadj.tif", "format": "geotiff", "url": "ftp://ftp.worldpop.org.uk/GIS/Population/Global_2000_2020/2019/ZWE/zwe_ppp_2019_UNadj.tif", "description": "The spatial distribution of population in 2019 with country total adjusted to match the corresponding UNPD estimate, Zimbabwe", "resource_type": "api", "url_type": "api", }, { "name": "zwe_ppp_2013.tif", "format": "geotiff", "url": "ftp://ftp.worldpop.org.uk/GIS/Population/Global_2000_2020/2013/ZWE/zwe_ppp_2013.tif", "description": "The spatial distribution of population in 2013, Zimbabwe", "resource_type": "api", "url_type": "api", }, { "name": "zwe_ppp_2013_UNadj.tif", "format": "geotiff", "url": "ftp://ftp.worldpop.org.uk/GIS/Population/Global_2000_2020/2013/ZWE/zwe_ppp_2013_UNadj.tif", "description": "The spatial distribution of population in 2013 with country total adjusted to match the corresponding UNPD estimate, Zimbabwe", "resource_type": "api", "url_type": "api", }, { "name": "zwe_ppp_2008.tif", "format": "geotiff", "url": "ftp://ftp.worldpop.org.uk/GIS/Population/Global_2000_2020/2008/ZWE/zwe_ppp_2008.tif", "description": "The spatial distribution of population in 2008, Zimbabwe", "resource_type": "api", "url_type": "api", }, { "name": "zwe_ppp_2008_UNadj.tif", "format": "geotiff", "url": "ftp://ftp.worldpop.org.uk/GIS/Population/Global_2000_2020/2008/ZWE/zwe_ppp_2008_UNadj.tif", "description": "The spatial distribution of population in 2008 with country total adjusted to match the corresponding UNPD estimate, Zimbabwe", "resource_type": "api", "url_type": "api", }, { "name": "zwe_ppp_2001.tif", "format": "geotiff", "url": "ftp://ftp.worldpop.org.uk/GIS/Population/Global_2000_2020/2001/ZWE/zwe_ppp_2001.tif", "description": "The spatial distribution of population in 2001, Zimbabwe", "resource_type": "api", "url_type": "api", }, { "name": "zwe_ppp_2001_UNadj.tif", "format": "geotiff", "url": "ftp://ftp.worldpop.org.uk/GIS/Population/Global_2000_2020/2001/ZWE/zwe_ppp_2001_UNadj.tif", "description": "The spatial distribution of population in 2001 with country total adjusted to match the corresponding UNPD estimate, Zimbabwe", "resource_type": "api", "url_type": "api", } ] showcase = next(iter(showcases.values()))[0] assert showcase == { "name": "worldpop-population-for-zimbabwe-showcase", "title": "WorldPop Zimbabwe Population Summary Page", "notes": "Summary for Individual countries 2000-2020 ( 100m resolution ) - Zimbabwe", "url": "https://www.worldpop.org/geodata/summary?id=6454", "image_url": "https://www.worldpop.org/tabs/gdata/img/6454/zwe_ppp_wpgp_2020_Image.png", "tags": [ { "name": "population", "vocabulary_id": "4e61d464-4943-4e97-973a-84673c1aaa87", }, { "name": "geodata", "vocabulary_id": "4e61d464-4943-4e97-973a-84673c1aaa87", }, ], }
45.81601
183
0.541541
3,858
38,348
5.250648
0.075687
0.046157
0.040776
0.042208
0.881177
0.871254
0.859555
0.841734
0.795577
0.769067
0
0.078749
0.311229
38,348
836
184
45.870813
0.688184
0.001069
0
0.544895
0
0.03936
0.541125
0.112982
0
0
0
0
0.0123
1
0.00984
false
0
0.00861
0.00123
0.04551
0
0
0
0
null
0
0
0
1
1
1
1
1
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
null
0
0
0
0
0
0
0
0
0
0
0
0
0
6
f18bd24ea799cc66f95a6e5ba34ff5211de2b387
30
py
Python
time_execution/__init__.py
snelis/py-timeexecution
f08bf6b9c5307a50b3ee1190f79bf74dc920f8da
[ "Apache-2.0" ]
null
null
null
time_execution/__init__.py
snelis/py-timeexecution
f08bf6b9c5307a50b3ee1190f79bf74dc920f8da
[ "Apache-2.0" ]
null
null
null
time_execution/__init__.py
snelis/py-timeexecution
f08bf6b9c5307a50b3ee1190f79bf74dc920f8da
[ "Apache-2.0" ]
null
null
null
from .time_execution import *
15
29
0.8
4
30
5.75
1
0
0
0
0
0
0
0
0
0
0
0
0.133333
30
1
30
30
0.884615
0
0
0
0
0
0
0
0
0
0
0
0
1
0
true
0
1
0
1
0
1
1
0
null
0
0
0
0
0
0
0
0
0
0
0
0
0
1
0
0
0
0
0
0
0
0
0
0
null
0
0
0
0
0
0
1
0
1
0
1
0
0
6
74ce8c8a200f28440567b9bb992acb489cd7d1a9
107
py
Python
office365/sharepoint/utilities/wopi_web_app_properties.py
rikeshtailor/Office365-REST-Python-Client
ca7bfa1b22212137bb4e984c0457632163e89a43
[ "MIT" ]
544
2016-08-04T17:10:16.000Z
2022-03-31T07:17:20.000Z
office365/sharepoint/utilities/wopi_web_app_properties.py
rikeshtailor/Office365-REST-Python-Client
ca7bfa1b22212137bb4e984c0457632163e89a43
[ "MIT" ]
438
2016-10-11T12:24:22.000Z
2022-03-31T19:30:35.000Z
office365/sharepoint/utilities/wopi_web_app_properties.py
rikeshtailor/Office365-REST-Python-Client
ca7bfa1b22212137bb4e984c0457632163e89a43
[ "MIT" ]
202
2016-08-22T19:29:40.000Z
2022-03-30T20:26:15.000Z
from office365.runtime.client_value import ClientValue class WopiWebAppProperties(ClientValue): pass
17.833333
54
0.831776
11
107
8
0.909091
0
0
0
0
0
0
0
0
0
0
0.031915
0.121495
107
5
55
21.4
0.904255
0
0
0
0
0
0
0
0
0
0
0
0
1
0
true
0.333333
0.333333
0
0.666667
0
1
0
0
null
0
0
0
0
0
0
0
0
0
0
0
0
0
1
0
0
0
0
0
0
0
0
0
0
null
0
0
0
0
0
0
1
1
1
0
1
0
0
6
74dbc6e6353172f4c10b84fea774baef4a531397
95
py
Python
src/sementeira/iii_controllers/pesquisar_pessoa.py
torraodocerrado/sementeira
962d15bef63a73493b8cf29a22b656f19aa161ff
[ "Apache-2.0" ]
2
2021-02-25T23:52:40.000Z
2021-02-25T23:52:42.000Z
src/sementeira/iii_controllers/pesquisar_pessoa.py
torraodocerrado/sementeira
962d15bef63a73493b8cf29a22b656f19aa161ff
[ "Apache-2.0" ]
null
null
null
src/sementeira/iii_controllers/pesquisar_pessoa.py
torraodocerrado/sementeira
962d15bef63a73493b8cf29a22b656f19aa161ff
[ "Apache-2.0" ]
null
null
null
from .abstract_query import AbstractQuery class PesquisarPessoa(AbstractQuery): pass
15.833333
41
0.778947
9
95
8.111111
0.888889
0
0
0
0
0
0
0
0
0
0
0
0.178947
95
5
42
19
0.935897
0
0
0
0
0
0
0
0
0
0
0
0
1
0
true
0.333333
0.333333
0
0.666667
0
1
0
0
null
0
0
0
0
0
0
0
0
0
0
0
0
0
1
0
0
0
0
0
0
0
0
0
0
null
0
0
0
0
0
0
1
1
1
0
1
0
0
6
2d1d61b3fcb8f382f84576e100b3996770495f89
25
py
Python
env/Lib/site-packages/win32/mapi/__init__.py
Daniel-Key/HearStone-Python
981584d2b9502319393bd92b48f0ec8d906b4d44
[ "MIT" ]
null
null
null
env/Lib/site-packages/win32/mapi/__init__.py
Daniel-Key/HearStone-Python
981584d2b9502319393bd92b48f0ec8d906b4d44
[ "MIT" ]
1
2020-10-27T14:44:08.000Z
2020-10-27T14:44:08.000Z
env/Lib/site-packages/win32/mapi/__init__.py
Daniel-Key/HearStone-Python
981584d2b9502319393bd92b48f0ec8d906b4d44
[ "MIT" ]
null
null
null
from win32._mapi import *
25
25
0.8
4
25
4.75
1
0
0
0
0
0
0
0
0
0
0
0.090909
0.12
25
1
25
25
0.772727
0
0
0
0
0
0
0
0
0
0
0
0
1
0
true
0
1
0
1
0
1
1
0
null
0
0
0
0
0
0
0
0
0
0
0
0
0
1
0
0
0
0
0
0
0
0
0
0
null
0
0
0
0
0
0
1
0
1
0
1
0
0
6
2d2e9702d8917bd50d220179a5ae3d2d3a0df138
71
py
Python
common/__init__.py
wupengyue/AdminLTE
7a15c85a2a9ceb22f1b9c67437113df9aebf77bf
[ "MIT" ]
null
null
null
common/__init__.py
wupengyue/AdminLTE
7a15c85a2a9ceb22f1b9c67437113df9aebf77bf
[ "MIT" ]
null
null
null
common/__init__.py
wupengyue/AdminLTE
7a15c85a2a9ceb22f1b9c67437113df9aebf77bf
[ "MIT" ]
null
null
null
# -*- coding: utf-8 -*- # @Date : 2017-07-18 20:12:08 # @Author :
14.2
32
0.478873
11
71
3.090909
1
0
0
0
0
0
0
0
0
0
0
0.283019
0.253521
71
4
33
17.75
0.358491
0.887324
0
null
0
null
0
0
null
0
0
0
null
1
null
true
0
0
null
null
null
1
0
0
null
0
0
0
0
0
0
0
0
0
0
1
0
0
1
0
0
1
1
0
0
0
0
0
0
null
0
0
0
0
0
0
1
0
0
0
0
0
0
6
742448e3aae25772c6b6399b5c670e3dc3e6f144
33
py
Python
deployment/__init__.py
maxfrei750/CarbonBlackSegmentation
ff5aeaf03a9c60c1a0396f1d2b6d5a3347808a30
[ "MIT" ]
null
null
null
deployment/__init__.py
maxfrei750/CarbonBlackSegmentation
ff5aeaf03a9c60c1a0396f1d2b6d5a3347808a30
[ "MIT" ]
null
null
null
deployment/__init__.py
maxfrei750/CarbonBlackSegmentation
ff5aeaf03a9c60c1a0396f1d2b6d5a3347808a30
[ "MIT" ]
null
null
null
from .segmenter import Segmenter
16.5
32
0.848485
4
33
7
0.75
0
0
0
0
0
0
0
0
0
0
0
0.121212
33
1
33
33
0.965517
0
0
0
0
0
0
0
0
0
0
0
0
1
0
true
0
1
0
1
0
1
1
0
null
0
0
0
0
0
0
0
0
0
0
0
0
0
1
0
0
0
0
0
0
0
0
0
0
null
0
0
0
0
0
0
1
0
1
0
1
0
0
6
74414156113f70aed599e59e489aec7e8aaa778e
43,200
py
Python
sdh/metrics/org/api.py
SmartDeveloperHub/sdh-org-metrics
78a50501a04ce7c9d8bd55d4688d66c9f6e36766
[ "Apache-2.0" ]
null
null
null
sdh/metrics/org/api.py
SmartDeveloperHub/sdh-org-metrics
78a50501a04ce7c9d8bd55d4688d66c9f6e36766
[ "Apache-2.0" ]
null
null
null
sdh/metrics/org/api.py
SmartDeveloperHub/sdh-org-metrics
78a50501a04ce7c9d8bd55d4688d66c9f6e36766
[ "Apache-2.0" ]
null
null
null
""" #-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=# This file is part of the Smart Developer Hub Project: http://www.smartdeveloperhub.org Center for Open Middleware http://www.centeropenmiddleware.com/ #-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=# Copyright (C) 2015 Center for Open Middleware. #-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=# Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. #-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=# """ from sdh.metrics.org import app, st as store from sdh.metrics.server import ORG, SCM, CI, APIError import calendar from datetime import datetime __author__ = 'Alejandro F. Carrera' def get_average_list(l): return reduce(lambda x, y: x + y, l) / len(l) def get_correct_kwargs(kwargs): args = { 'begin': 0 if kwargs.get('begin') is None else kwargs.get('begin'), 'end': calendar.timegm(datetime.now().timetuple()) if kwargs.get('end') is None else kwargs.get('end'), 'max': 0 if kwargs.get('max') is None else kwargs.get('max') } if args['max'] == 0: args['step'] = 86400 else: args['step'] = (args.get('end') - args.get('begin')) / args.get('max') return args def detect_overlap_date(a_begin, a_end, b_begin, b_end): return ( (int(a_begin) <= int(b_begin)) and (int(a_end) >= int(b_end)) # contains ) or ( (int(a_begin) >= int(b_begin)) and (int(a_end) <= int(b_end)) # contains ) or ( (int(a_begin) <= int(b_begin)) and (int(b_begin) <= int(a_end)) # shift right ) or ( (int(a_begin) <= int(b_end)) and (int(b_end) <= int(a_end)) # shift left ) def detect_project_repositories_overlap(uri, args): temp_frame = store.get_project_temporal_frame(uri) return detect_overlap_date( args.get('begin'), args.get('end'), temp_frame.get('first_commit'), temp_frame.get('last_commit') ) def get_external_position_metric(uid, endpoint, position, aggregate, args, flag): try: pr = get_position_products(uid, args, position, flag) pr_res = [] if args['begin'] == 0: args['begin'] = None tmp_arg = args if flag: if aggregate == 'sum': tmp_frame = store.get_specific_products_temporal_frame(pr) tmp_arg['begin'] = tmp_frame.get('first_commit') tmp_arg['end'] = tmp_frame.get('last_commit') pr_res = map( lambda x: app.request_metric(endpoint, prid=x.get('id'), **tmp_arg), pr ) else: for k in pr: pr_temp_frame = store.get_product_temporal_frame(k.get('uri')) tmp_arg['begin'] = pr_temp_frame.get('first_commit') tmp_arg['end'] = pr_temp_frame.get('last_commit') pr_res.append(app.request_metric(endpoint, prid=k.get('id'), **tmp_arg)) else: pr_res = map(lambda k: app.request_metric(endpoint, prid=k.get('id'), **tmp_arg), pr) if len(pr_res): context = pr_res[0][0] else: context = args v = zip(*map(lambda x: x[1], pr_res)) if aggregate == 'avg': res = [get_average_list(x) for x in v] else: res = [sum(x) for x in v] return context, res except (EnvironmentError, AttributeError) as e: raise APIError(e.message) return args, [] def get_position_repositories(uid, args, position, flag_total, only_uris): positions_id = store.get_all_members_id(position) if uid not in positions_id: return [] else: projects = store.get_all_member_projects(positions_id[uid]) res_prj = set() res = [] for x in projects: repos = store.get_all_project_repositories(x) if not flag_total: for k in repos: rep_info = store.db.hgetall(k) if detect_overlap_date( args.get('begin'), args.get('end'), rep_info.get('first_commit'), rep_info.get('last_commit') ): res_prj.add(k) if only_uris: return res_prj else: [res.append({ 'id': store.db.hgetall(x).get('id'), 'uri': x }) for x in res_prj] return res def get_position_projects(uid, args, position, flag_total, only_uris): positions_id = store.get_all_members_id(position) if uid not in positions_id: return [] else: projects = store.get_all_member_projects(positions_id[uid]) if not flag_total: res_prj = set() for x in projects: if detect_project_repositories_overlap(x, args): res_prj.add(x) projects = list(res_prj) res = [] if only_uris: return projects else: [res.append({ 'id': store.db.get(x), 'uri': x }) for x in projects] return res def get_position_products(uid, args, position, flag_total): pr = get_position_projects(uid, args, position, flag_total, False) pro = set() res = [] for x in pr: pro = pro.union(set(store.get_all_project_products(x.get('uri')))) [res.append({ 'id': store.db.get(x), 'uri': x }) for x in pro] return res def get_position_position(uid, args, fil, position, flag_total): pr = set(get_position_projects(uid, args, fil, flag_total, True)) members = store.get_all_members(position) members_dir = set() res = [] for x in members: if len(pr.intersection(set(store.get_all_member_projects(x)))) > 0: members_dir.add(x) [res.append({ 'id': store.db.hgetall(x).get("id"), 'uri': x }) for x in members_dir] return res def get_director_position(uid, args, position, flag_total): return get_position_position(uid, args, 'directors', position, flag_total) def get_pmanager_position(uid, args, position, flag_total): return get_position_position(uid, args, 'productmanagers', position, flag_total) def get_project_roles(pjid, args, role, flag_total): projects_id = store.get_all_projects_id() if pjid not in projects_id: return [] else: if not flag_total and not detect_project_repositories_overlap(projects_id[pjid], args): return [] if role == "softwaredeveloper": tmp_arg = args if not flag_total: pr_temp_frame = store.get_project_temporal_frame(projects_id[pjid]) tmp_arg['begin'] = pr_temp_frame.get('first_commit') tmp_arg['end'] = pr_temp_frame.get('last_commit') co, res = app.request_view('project-developers', pjid=pjid, **tmp_arg) return res else: res = set() users_id = store.get_all_members(role) for x in users_id: pr_res = store.get_all_member_projects(x) if projects_id[pjid] in pr_res: res.add(x) res_set = [] [res_set.append({ 'id': store.db.hgetall(x).get("id"), 'uri': x }) for x in res] return res_set def get_director_roles(uid, args, role, flag_total): return get_position_position(uid, args, 'directors', role, flag_total) def get_pmanager_roles(uid, args, role, flag_total): return get_position_position(uid, args, 'productmanagers', role, flag_total) def helper_get_director_pmanagers(uid, **kwargs): flag_total = kwargs.get('begin') is None and kwargs.get('end') is None args = get_correct_kwargs(kwargs) return args, get_director_position(uid, args, 'productmanagers', flag_total) def helper_get_director_architects(uid, **kwargs): flag_total = kwargs.get('begin') is None and kwargs.get('end') is None args = get_correct_kwargs(kwargs) return args, get_director_position(uid, args, 'architects', flag_total) def helper_get_pmanager_architects(uid, **kwargs): flag_total = kwargs.get('begin') is None and kwargs.get('end') is None args = get_correct_kwargs(kwargs) return args, get_pmanager_position(uid, args, 'architects', flag_total) def helper_get_position_developers(uid, position, **kwargs): flag_total = kwargs.get('begin') is None and kwargs.get('end') is None args = get_correct_kwargs(kwargs) try: res = set() pr = get_position_products(uid, args, position, flag_total) devs = map(lambda k: app.request_view('product-developers', prid=k.get('id'), **kwargs), pr) [[res.add(j.get('uri')) for j in x] for x in map(lambda x: x[1], devs)] res_devs = [] [res_devs.append({ "id": store.db.hgetall(x).get("id"), "uri": x }) for x in res] return args, res_devs except (EnvironmentError, AttributeError) as e: raise APIError(e.message) return args, [] @app.view('/product-projects', target=ORG.Project, parameters=[ORG.Product], id='product-projects', title='Projects of Product') def get_product_projects(prid, **kwargs): flag_total = kwargs.get('begin') is None and kwargs.get('end') is None args = get_correct_kwargs(kwargs) products_id = store.get_all_products_id() if prid not in products_id: return args, [] else: projects = store.get_all_product_projects(products_id[prid]) if not flag_total: res_prj = set() for x in projects: if detect_project_repositories_overlap(x, args): res_prj.add(x) projects = list(res_prj) res = [] [res.append({ 'id': store.db.get(x), 'uri': x }) for x in projects] return args, res @app.view('/project-repositories', target=SCM.Repository, parameters=[ORG.Project], id='project-repositories', title='Repositories of Project') def get_project_repositories(pjid, **kwargs): flag_total = kwargs.get('begin') is None and kwargs.get('end') is None args = get_correct_kwargs(kwargs) projects_id = store.get_all_projects_id() if pjid not in projects_id: return args, [] else: repos = store.get_all_project_repositories(projects_id[pjid]) if not flag_total: res_prj = set() for k in repos: rep_info = store.db.hgetall(k) if detect_overlap_date( args.get('begin'), args.get('end'), rep_info.get('first_commit'), rep_info.get('last_commit') ): res_prj.add(k) repos = res_prj res = [] [res.append({ 'id': store.db.hgetall(x).get('id'), 'uri': x }) for x in repos] return args, res @app.metric('/total-project-stakeholders', parameters=[ORG.Project], id='project-stakeholders', title='Stakeholders of Project') def get_total_project_stakeholders(pjid, **kwargs): flag_total = kwargs.get('begin') is None and kwargs.get('end') is None args = get_correct_kwargs(kwargs) return args, [len(get_project_roles(pjid, args, 'stakeholder', flag_total))] @app.view('/project-stakeholders', target=ORG.Person, parameters=[ORG.Project], id='project-stakeholders', title='Stakeholders of Project') def get_project_stakeholders(pjid, **kwargs): flag_total = kwargs.get('begin') is None and kwargs.get('end') is None args = get_correct_kwargs(kwargs) return args, get_project_roles(pjid, args, 'stakeholder', flag_total) @app.metric('/total-project-swarchitects', parameters=[ORG.Project], id='project-swarchitects', title='Software Architects of Project') def get_total_project_swarchitects(pjid, **kwargs): flag_total = kwargs.get('begin') is None and kwargs.get('end') is None args = get_correct_kwargs(kwargs) return args, [len(get_project_roles(pjid, args, 'softwarearchitect', flag_total))] @app.view('/project-swarchitects', target=ORG.Person, parameters=[ORG.Project], id='project-swarchitects', title='Software Architects of Project') def get_project_swarchitects(pjid, **kwargs): flag_total = kwargs.get('begin') is None and kwargs.get('end') is None args = get_correct_kwargs(kwargs) return args, get_project_roles(pjid, args, 'softwarearchitect', flag_total) @app.metric('/total-project-pjmanagers', parameters=[ORG.Project], id='project-pjmanagers', title='Project Managers of Project') def get_total_project_pjmanagers(pjid, **kwargs): flag_total = kwargs.get('begin') is None and kwargs.get('end') is None args = get_correct_kwargs(kwargs) return args, [len(get_project_roles(pjid, args, 'projectmanager', flag_total))] @app.view('/project-pjmanagers', target=ORG.Person, parameters=[ORG.Project], id='project-pjmanagers', title='Project Managers of Project') def get_project_pjmanagers(pjid, **kwargs): flag_total = kwargs.get('begin') is None and kwargs.get('end') is None args = get_correct_kwargs(kwargs) return args, get_project_roles(pjid, args, 'projectmanager', flag_total) @app.metric('/total-project-swdevelopers', parameters=[ORG.Project], id='project-swdevelopers', title='Software Developers of Project') def get_total_project_swdevelopers(pjid, **kwargs): flag_total = kwargs.get('begin') is None and kwargs.get('end') is None args = get_correct_kwargs(kwargs) return args, [len(get_project_roles(pjid, args, 'softwaredeveloper', flag_total))] @app.view('/project-swdevelopers', target=ORG.Person, parameters=[ORG.Project], id='project-swdevelopers', title='Software Developers of Project') def get_project_swdevelopers(pjid, **kwargs): flag_total = kwargs.get('begin') is None and kwargs.get('end') is None args = get_correct_kwargs(kwargs) return args, get_project_roles(pjid, args, 'softwaredeveloper', flag_total) @app.metric('/total-director-repositories', parameters=[ORG.Person], id='director-repositories', title='Repositories of Director') def get_total_director_repositories(uid, **kwargs): flag_total = kwargs.get('begin') is None and kwargs.get('end') is None args = get_correct_kwargs(kwargs) return args, [len(get_position_repositories(uid, args, 'directors', flag_total, False))] @app.view('/director-repositories', target=SCM.Repository, parameters=[ORG.Person], id='director-repositories', title='Repositories of Director') def get_director_repositories(uid, **kwargs): flag_total = kwargs.get('begin') is None and kwargs.get('end') is None args = get_correct_kwargs(kwargs) return args, get_position_repositories(uid, args, 'directors', flag_total, False) @app.metric('/total-director-projects', parameters=[ORG.Person], id='director-projects', title='Projects of Director') def get_total_director_projects(uid, **kwargs): flag_total = kwargs.get('begin') is None and kwargs.get('end') is None args = get_correct_kwargs(kwargs) return args, [len(get_position_projects(uid, args, 'directors', flag_total, False))] @app.view('/director-projects', target=ORG.Project, parameters=[ORG.Person], id='director-projects', title='Projects of Director') def get_director_projects(uid, **kwargs): flag_total = kwargs.get('begin') is None and kwargs.get('end') is None args = get_correct_kwargs(kwargs) return args, get_position_projects(uid, args, 'directors', flag_total, False) @app.metric('/total-architect-projects', parameters=[ORG.Person], id='architect-projects', title='Projects of Architect') def get_total_architects_projects(uid, **kwargs): flag_total = kwargs.get('begin') is None and kwargs.get('end') is None args = get_correct_kwargs(kwargs) return args, [len(get_position_projects(uid, args, 'architects', flag_total, False))] @app.view('/architect-projects', target=ORG.Project, parameters=[ORG.Person], id='architect-projects', title='Projects of Architect') def get_architect_projects(uid, **kwargs): flag_total = kwargs.get('begin') is None and kwargs.get('end') is None args = get_correct_kwargs(kwargs) return args, get_position_projects(uid, args, 'architects', flag_total, False) @app.metric('/total-pmanager-projects', parameters=[ORG.Person], id='pmanager-projects', title='Projects of Product Manager') def get_total_manager_projects(uid, **kwargs): flag_total = kwargs.get('begin') is None and kwargs.get('end') is None args = get_correct_kwargs(kwargs) return args, [len(get_position_projects(uid, args, 'productmanagers', flag_total, False))] @app.view('/pmanager-projects', target=ORG.Project, parameters=[ORG.Person], id='pmanager-projects', title='Projects of Product Manager') def get_manager_projects(uid, **kwargs): flag_total = kwargs.get('begin') is None and kwargs.get('end') is None args = get_correct_kwargs(kwargs) return args, get_position_projects(uid, args, 'productmanagers', flag_total, False) @app.metric('/total-director-products', parameters=[ORG.Person], id='director-products', title='Products of Director') def get_total_director_products(uid, **kwargs): flag_total = kwargs.get('begin') is None and kwargs.get('end') is None args = get_correct_kwargs(kwargs) return args, [len(get_position_products(uid, args, 'directors', flag_total))] @app.view('/director-products', target=ORG.Product, parameters=[ORG.Person], id='director-products', title='Products of Director') def get_director_products(uid, **kwargs): flag_total = kwargs.get('begin') is None and kwargs.get('end') is None args = get_correct_kwargs(kwargs) return args, get_position_products(uid, args, 'directors', flag_total) @app.metric('/total-architect-products', parameters=[ORG.Person], id='architects-products', title='Products of Architect') def get_total_architect_products(uid, **kwargs): flag_total = kwargs.get('begin') is None and kwargs.get('end') is None args = get_correct_kwargs(kwargs) return args, [len(get_position_products(uid, args, 'architects', flag_total))] @app.view('/architect-products', target=ORG.Product, parameters=[ORG.Person], id='architects-products', title='Products of Architect') def get_architect_products(uid, **kwargs): flag_total = kwargs.get('begin') is None and kwargs.get('end') is None args = get_correct_kwargs(kwargs) return args, get_position_products(uid, args, 'architects', flag_total) @app.metric('/total-pmanager-repositories', parameters=[ORG.Person], id='pmanager-repositories', title='Repositories of Product Manager') def get_total_pmanager_repositories(uid, **kwargs): flag_total = kwargs.get('begin') is None and kwargs.get('end') is None args = get_correct_kwargs(kwargs) return args, [len(get_position_repositories(uid, args, 'productmanagers', flag_total, False))] @app.view('/pmanager-repositories', target=SCM.Repository, parameters=[ORG.Person], id='pmanager-repositories', title='Repositories of Product Manager') def get_pmanager_repositories(uid, **kwargs): flag_total = kwargs.get('begin') is None and kwargs.get('end') is None args = get_correct_kwargs(kwargs) return args, get_position_repositories(uid, args, 'productmanagers', flag_total, False) @app.metric('/total-pmanager-products', parameters=[ORG.Person], id='pmanager-products', title='Products of Product Manager') def get_total_manager_products(uid, **kwargs): flag_total = kwargs.get('begin') is None and kwargs.get('end') is None args = get_correct_kwargs(kwargs) return args, [len(get_position_products(uid, args, 'productmanagers', flag_total))] @app.view('/pmanager-products', target=ORG.Product, parameters=[ORG.Person], id='pmanager-products', title='Products of Product Manager') def get_manager_products(uid, **kwargs): flag_total = kwargs.get('begin') is None and kwargs.get('end') is None args = get_correct_kwargs(kwargs) return args, get_position_products(uid, args, 'productmanagers', flag_total) @app.metric('/total-director-productmanagers', parameters=[ORG.Person], id='director-productmanagers', title='Product Managers of Director') def get_total_director_pmanagers(uid, **kwargs): co, res = helper_get_director_pmanagers(uid, **kwargs) return co, [len(res)] @app.view('/director-productmanagers', target=ORG.Person, parameters=[ORG.Person], id='director-productmanagers', title='Product Managers of Director') def get_director_pmanagers(uid, **kwargs): return helper_get_director_pmanagers(uid, **kwargs) @app.metric('/total-director-architects', parameters=[ORG.Person], id='director-architects', title='Architects of Director') def get_total_director_architects(uid, **kwargs): co, res = helper_get_director_architects(uid, **kwargs) return co, [len(res)] @app.view('/director-architects', target=ORG.Person, parameters=[ORG.Person], id='director-architects', title='Architects of Director') def get_director_architects(uid, **kwargs): return helper_get_director_architects(uid, **kwargs) @app.metric('/total-director-developers', parameters=[ORG.Person], id='director-developers', title='Developers of Director') def get_total_director_developers(uid, **kwargs): co, res = helper_get_position_developers(uid, 'directors', **kwargs) return co, [len(res)] @app.view('/director-developers', target=ORG.Person, parameters=[ORG.Person], id='director-developers', title='Developers of Director') def get_director_developers(uid, **kwargs): return helper_get_position_developers(uid, 'directors', **kwargs) @app.metric('/total-director-stakeholders', parameters=[ORG.Person], id='director-stakeholders', title='Stakeholders of Director') def get_total_director_stakeholders(uid, **kwargs): flag_total = kwargs.get('begin') is None and kwargs.get('end') is None args = get_correct_kwargs(kwargs) return args, [len(get_director_roles(uid, args, 'stakeholder', flag_total))] @app.view('/director-stakeholders', target=ORG.Person, parameters=[ORG.Person], id='director-stakeholders', title='Stakeholders of Director') def get_director_stakeholders(uid, **kwargs): flag_total = kwargs.get('begin') is None and kwargs.get('end') is None args = get_correct_kwargs(kwargs) return args, get_director_roles(uid, args, 'stakeholder', flag_total) @app.metric('/total-director-swarchitects', parameters=[ORG.Person], id='director-swarchitects', title='Software Architects of Director') def get_total_director_swarchitects(uid, **kwargs): flag_total = kwargs.get('begin') is None and kwargs.get('end') is None args = get_correct_kwargs(kwargs) return args, [len(get_director_roles(uid, args, 'softwarearchitect', flag_total))] @app.view('/director-swarchitects', target=ORG.Person, parameters=[ORG.Person], id='director-swarchitects', title='Software Architects of Director') def get_director_swarchitects(uid, **kwargs): flag_total = kwargs.get('begin') is None and kwargs.get('end') is None args = get_correct_kwargs(kwargs) return args, get_director_roles(uid, args, 'softwarearchitect', flag_total) @app.metric('/total-director-swdevelopers', parameters=[ORG.Person], id='director-swdevelopers', title='Software Developers of Director') def get_total_director_swdevelopers(uid, **kwargs): flag_total = kwargs.get('begin') is None and kwargs.get('end') is None args = get_correct_kwargs(kwargs) return args, [len(get_director_roles(uid, args, 'softwaredeveloper', flag_total))] @app.view('/director-swdevelopers', target=ORG.Person, parameters=[ORG.Person], id='director-swdevelopers', title='Software Developers of Director') def get_director_swdevelopers(uid, **kwargs): flag_total = kwargs.get('begin') is None and kwargs.get('end') is None args = get_correct_kwargs(kwargs) return args, get_director_roles(uid, args, 'softwaredeveloper', flag_total) @app.metric('/total-director-pjmanagers', parameters=[ORG.Person], id='director-pjmanagers', title='Project Managers of Director') def get_total_director_pjmanagers(uid, **kwargs): flag_total = kwargs.get('begin') is None and kwargs.get('end') is None args = get_correct_kwargs(kwargs) return args, [len(get_director_roles(uid, args, 'projectmanager', flag_total))] @app.view('/director-pjmanagers', target=ORG.Person, parameters=[ORG.Person], id='director-pjmanagers', title='Project Managers of Director') def get_director_pjmanagers(uid, **kwargs): flag_total = kwargs.get('begin') is None and kwargs.get('end') is None args = get_correct_kwargs(kwargs) return args, get_director_roles(uid, args, 'projectmanager', flag_total) @app.metric('/total-director-members', parameters=[ORG.Person], id='director-members', title='Members below Director') def get_total_director_members(uid, **kwargs): res = {} co, pm = helper_get_director_pmanagers(uid, **kwargs) [res.update({x.get('id'): x.get('uri')}) for x in pm] co, ar = helper_get_director_architects(uid, **kwargs) [res.update({x.get('id'): x.get('uri')}) for x in ar] co, dev = helper_get_position_developers(uid, 'directors', **kwargs) [res.update({x.get('id'): x.get('uri')}) for x in dev] return co, [len(res.keys())] @app.view('/director-members', target=ORG.Person, parameters=[ORG.Person], id='director-members', title='Members below Director') def get_director_members(uid, **kwargs): res = {} co, pm = helper_get_director_pmanagers(uid, **kwargs) [res.update({x.get('id'): x.get('uri')}) for x in pm] co, ar = helper_get_director_architects(uid, **kwargs) [res.update({x.get('id'): x.get('uri')}) for x in ar] co, dev = helper_get_position_developers(uid, 'directors', **kwargs) [res.update({x.get('id'): x.get('uri')}) for x in dev] res_mem = [] [res_mem.append({ "id": x, "uri": res[x] }) for x in res.keys()] return co, res_mem @app.metric('/director-productmembers', aggr='avg', parameters=[ORG.Person], id='director-productmembers', title='Product Members AVG of Director') def get_avg_director_productmembers(uid, **kwargs): res = {} co, pm = helper_get_director_pmanagers(uid, **kwargs) [res.update({x.get('id'): x.get('uri')}) for x in pm] co, ar = helper_get_director_architects(uid, **kwargs) [res.update({x.get('id'): x.get('uri')}) for x in ar] co, dev = helper_get_position_developers(uid, 'directors', **kwargs) [res.update({x.get('id'): x.get('uri')}) for x in dev] res_mem = len(res.keys()) flag_total = kwargs.get('begin') is None and kwargs.get('end') is None args = get_correct_kwargs(kwargs) res_pr = len(get_position_products(uid, args, 'directors', flag_total)) if res_pr == 0: return co, [0] return co, [float(res_mem) / float(res_pr)] @app.metric('/director-productrepositories', aggr='avg', parameters=[ORG.Person], id='director-productrepositories', title='Product Repositories AVG of Director') def get_avg_director_productrepositories(uid, **kwargs): flag_total = kwargs.get('begin') is None and kwargs.get('end') is None args = get_correct_kwargs(kwargs) res_rep = len(get_position_repositories(uid, args, 'directors', flag_total, True)) res_pr = len(get_position_products(uid, args, 'directors', flag_total)) if res_pr == 0: return args, [0] return args, [float(res_rep) / float(res_pr)] @app.metric('/director-projectmembers', aggr='avg', parameters=[ORG.Person], id='director-projectmembers', title='Project Members AVG of Director') def get_avg_director_projectmembers(uid, **kwargs): res = {} co, pm = helper_get_director_pmanagers(uid, **kwargs) [res.update({x.get('id'): x.get('uri')}) for x in pm] co, ar = helper_get_director_architects(uid, **kwargs) [res.update({x.get('id'): x.get('uri')}) for x in ar] co, dev = helper_get_position_developers(uid, 'directors', **kwargs) [res.update({x.get('id'): x.get('uri')}) for x in dev] res_mem = len(res.keys()) flag_total = kwargs.get('begin') is None and kwargs.get('end') is None args = get_correct_kwargs(kwargs) res_pr = len(get_position_projects(uid, args, 'directors', flag_total, True)) if res_pr == 0: return co, [0] return co, [float(res_mem) / float(res_pr)] @app.metric('/director-projectrepositories', aggr='avg', parameters=[ORG.Person], id='director-projectrepositories', title='Project Repositories AVG of Director') def get_avg_director_projectrepositories(uid, **kwargs): flag_total = kwargs.get('begin') is None and kwargs.get('end') is None args = get_correct_kwargs(kwargs) res_rep = len(get_position_repositories(uid, args, 'directors', flag_total, True)) res_pr = len(get_position_projects(uid, args, 'directors', flag_total, True)) if res_pr == 0: return args, [0] return args, [float(res_rep) / float(res_pr)] @app.metric('/director-activity', parameters=[ORG.Person], id='director-activity', title='Activity of Director') def get_director_activity(uid, **kwargs): flag_total = kwargs.get('begin') is None and kwargs.get('end') is None args = get_correct_kwargs(kwargs) co, res = get_external_position_metric(uid, 'sum-product-activity', 'directors', 'sum', args, flag_total) res_makeup = [] if len(res): res_max = max(res) [res_makeup.append(float(x)/res_max) for x in res] return co, res_makeup @app.metric('/director-quality', aggr='avg', parameters=[ORG.Person], id='director-quality', title='Quality of Director') def get_director_quality(uid, **kwargs): flag_total = kwargs.get('begin') is None and kwargs.get('end') is None args = get_correct_kwargs(kwargs) return get_external_position_metric(uid, 'sum-product-quality', 'directors', 'avg', args, flag_total) @app.metric('/director-health', aggr='avg', parameters=[ORG.Person], id='director-health', title='Health of Director') def get_director_health(uid, **kwargs): flag_total = kwargs.get('begin') is None and kwargs.get('end') is None args = get_correct_kwargs(kwargs) return get_external_position_metric(uid, 'sum-product-health', 'directors', 'avg', args, flag_total) @app.metric('/director-costs', parameters=[ORG.Person], id='director-costs', title='Costs of Director') def get_director_costs(uid, **kwargs): flag_total = kwargs.get('begin') is None and kwargs.get('end') is None args = get_correct_kwargs(kwargs) return get_external_position_metric(uid, 'sum-product-cost', 'directors', 'sum', args, flag_total) @app.metric('/director-externals', parameters=[ORG.Person], id='director-externals', title='External Committers from Products of Director') def get_director_externals(uid, **kwargs): flag_total = kwargs.get('begin') is None and kwargs.get('end') is None args = get_correct_kwargs(kwargs) return get_external_position_metric(uid, 'sum-product-externals', 'directors', 'sum', args, flag_total) @app.metric('/director-timetomarket', aggr='avg', parameters=[ORG.Person], id='director-timetomarket', title='Time To Market from Products of Director') def get_director_timetomarket(uid, **kwargs): flag_total = kwargs.get('begin') is None and kwargs.get('end') is None args = get_correct_kwargs(kwargs) return get_external_position_metric(uid, 'sum-product-timetomarket', 'directors', 'avg', args, flag_total) @app.metric('/total-pmanager-architects', parameters=[ORG.Person], id='pmanager-architects', title='Architects of Product Manager') def get_total_pmanager_architects(uid, **kwargs): co, res = helper_get_pmanager_architects(uid, **kwargs) return co, [len(res)] @app.view('/pmanager-architects', target=ORG.Person, parameters=[ORG.Person], id='pmanager-architects', title='Architects of Product Manager') def get_pmanager_architects(uid, **kwargs): return helper_get_pmanager_architects(uid, **kwargs) @app.metric('/total-pmanager-developers', parameters=[ORG.Person], id='pmanager-developers', title='Developers of Product Manager') def get_total_pmanager_developers(uid, **kwargs): co, res = helper_get_position_developers(uid, 'productmanagers', **kwargs) return co, [len(res)] @app.view('/pmanager-developers', target=ORG.Person, parameters=[ORG.Person], id='pmanager-developers', title='Developers of Product Manager') def get_pmanager_developers(uid, **kwargs): return helper_get_position_developers(uid, 'productmanagers', **kwargs) @app.metric('/total-pmanager-stakeholders', parameters=[ORG.Person], id='pmanager-stakeholders', title='Stakeholders of Product Manager') def get_total_pmanager_stakeholders(uid, **kwargs): flag_total = kwargs.get('begin') is None and kwargs.get('end') is None args = get_correct_kwargs(kwargs) return args, [len(get_pmanager_roles(uid, args, 'stakeholder', flag_total))] @app.view('/pmanager-stakeholders', target=ORG.Person, parameters=[ORG.Person], id='pmanager-stakeholders', title='Stakeholders of Product Manager') def get_pmanager_stakeholders(uid, **kwargs): flag_total = kwargs.get('begin') is None and kwargs.get('end') is None args = get_correct_kwargs(kwargs) return args, get_pmanager_roles(uid, args, 'stakeholder', flag_total) @app.metric('/total-pmanager-swarchitects', parameters=[ORG.Person], id='pmanager-swarchitects', title='Software Architects of Product Manager') def get_total_pmanager_swarchitects(uid, **kwargs): flag_total = kwargs.get('begin') is None and kwargs.get('end') is None args = get_correct_kwargs(kwargs) return args, [len(get_pmanager_roles(uid, args, 'softwarearchitect', flag_total))] @app.view('/pmanager-swarchitects', target=ORG.Person, parameters=[ORG.Person], id='pmanager-swarchitects', title='Software Architects of Product Manager') def get_pmanager_swarchitects(uid, **kwargs): flag_total = kwargs.get('begin') is None and kwargs.get('end') is None args = get_correct_kwargs(kwargs) return args, get_pmanager_roles(uid, args, 'softwarearchitect', flag_total) @app.metric('/total-pmanager-swdevelopers', parameters=[ORG.Person], id='pmanager-swdevelopers', title='Software Developers of Product Manager') def get_total_pmanager_swdevelopers(uid, **kwargs): flag_total = kwargs.get('begin') is None and kwargs.get('end') is None args = get_correct_kwargs(kwargs) return args, [len(get_pmanager_roles(uid, args, 'softwaredeveloper', flag_total))] @app.view('/pmanager-swdevelopers', target=ORG.Person, parameters=[ORG.Person], id='pmanager-swdevelopers', title='Software Developers of Product Manager') def get_pmanager_swdevelopers(uid, **kwargs): flag_total = kwargs.get('begin') is None and kwargs.get('end') is None args = get_correct_kwargs(kwargs) return args, get_pmanager_roles(uid, args, 'softwaredeveloper', flag_total) @app.metric('/total-pmanager-pjmanagers', parameters=[ORG.Person], id='pmanager-pjmanagers', title='Project Managers of Product Manager') def get_total_pmanager_pjmanagers(uid, **kwargs): flag_total = kwargs.get('begin') is None and kwargs.get('end') is None args = get_correct_kwargs(kwargs) return args, [len(get_pmanager_roles(uid, args, 'projectmanager', flag_total))] @app.view('/pmanager-pjmanagers', target=ORG.Person, parameters=[ORG.Person], id='pmanager-pjmanagers', title='Project Managers of Product Manager') def get_pmanager_pjmanagers(uid, **kwargs): flag_total = kwargs.get('begin') is None and kwargs.get('end') is None args = get_correct_kwargs(kwargs) return args, get_pmanager_roles(uid, args, 'projectmanager', flag_total) @app.metric('/total-pmanager-members', parameters=[ORG.Person], id='pmanager-members', title='Members below Product Manager') def get_total_pmanager_members(uid, **kwargs): res = {} co, ar = helper_get_pmanager_architects(uid, **kwargs) [res.update({x.get('id'): x.get('uri')}) for x in ar] co, dev = helper_get_position_developers(uid, 'productmanagers', **kwargs) [res.update({x.get('id'): x.get('uri')}) for x in dev] return co, [len(res.keys())] @app.metric('/pmanager-productrepositories', aggr='avg', parameters=[ORG.Person], id='pmanager-productrepositories', title='Product Repositories AVG of Product Manager') def get_avg_pmanager_productrepositories(uid, **kwargs): flag_total = kwargs.get('begin') is None and kwargs.get('end') is None args = get_correct_kwargs(kwargs) res_rep = len(get_position_repositories(uid, args, 'productmanagers', flag_total, True)) res_pr = len(get_position_products(uid, args, 'productmanagers', flag_total)) if res_pr == 0: return args, [0] return args, [float(res_rep) / float(res_pr)] @app.metric('/pmanager-productmembers', aggr='avg', parameters=[ORG.Person], id='pmanager-productmembers', title='Product Members AVG of Product Manager') def get_avg_pmanager_productmembers(uid, **kwargs): res = {} co, ar = helper_get_pmanager_architects(uid, **kwargs) [res.update({x.get('id'): x.get('uri')}) for x in ar] co, dev = helper_get_position_developers(uid, 'productmanagers', **kwargs) [res.update({x.get('id'): x.get('uri')}) for x in dev] res_mem = len(res.keys()) flag_total = kwargs.get('begin') is None and kwargs.get('end') is None args = get_correct_kwargs(kwargs) res_pr = len(get_position_products(uid, args, 'productmanagers', flag_total)) if res_pr == 0: return co, [0] return co, [float(res_mem) / float(res_pr)] @app.metric('/pmanager-projectrepositories', aggr='avg', parameters=[ORG.Person], id='pmanager-projectrepositories', title='Project Repositories AVG of Product Manager') def get_avg_pmanager_projectrepositories(uid, **kwargs): flag_total = kwargs.get('begin') is None and kwargs.get('end') is None args = get_correct_kwargs(kwargs) res_rep = len(get_position_repositories(uid, args, 'productmanagers', flag_total, True)) res_pr = len(get_position_projects(uid, args, 'productmanagers', flag_total, True)) if res_pr == 0: return args, [0] return args, [float(res_rep) / float(res_pr)] @app.metric('/pmanager-projectmembers', aggr='avg', parameters=[ORG.Person], id='pmanager-projectmembers', title='Project Members AVG of Product Manager') def get_avg_pmanager_projectmembers(uid, **kwargs): res = {} co, ar = helper_get_pmanager_architects(uid, **kwargs) [res.update({x.get('id'): x.get('uri')}) for x in ar] co, dev = helper_get_position_developers(uid, 'productmanagers', **kwargs) [res.update({x.get('id'): x.get('uri')}) for x in dev] res_mem = len(res.keys()) flag_total = kwargs.get('begin') is None and kwargs.get('end') is None args = get_correct_kwargs(kwargs) res_pr = len(get_position_projects(uid, args, 'productmanagers', flag_total, True)) if res_pr == 0: return co, [0] return co, [float(res_mem) / float(res_pr)] @app.view('/pmanager-members', target=ORG.Person, parameters=[ORG.Person], id='pmanager-members', title='Members below Product Manager') def get_pmanager_members(uid, **kwargs): res = {} co, ar = helper_get_pmanager_architects(uid, **kwargs) [res.update({x.get('id'): x.get('uri')}) for x in ar] co, dev = helper_get_position_developers(uid, 'productmanagers', **kwargs) [res.update({x.get('id'): x.get('uri')}) for x in dev] res_mem = [] [res_mem.append({ "id": x, "uri": res[x] }) for x in res.keys()] return co, res_mem @app.metric('/pmanager-activity', parameters=[ORG.Person], id='pmanager-activity', title='Activity of Product Manager') def get_pmanager_activity(uid, **kwargs): flag_total = kwargs.get('begin') is None and kwargs.get('end') is None args = get_correct_kwargs(kwargs) co, res = get_external_position_metric(uid, 'sum-product-activity', 'productmanagers', 'sum', args, flag_total) res_makeup = [] if len(res): res_max = max(res) [res_makeup.append(float(x)/res_max) for x in res] return co, res_makeup @app.metric('/pmanager-quality', aggr='avg', parameters=[ORG.Person], id='pmanager-quality', title='Quality of Product Manager') def get_pmanager_quality(uid, **kwargs): flag_total = kwargs.get('begin') is None and kwargs.get('end') is None args = get_correct_kwargs(kwargs) return get_external_position_metric(uid, 'sum-product-quality', 'productmanagers', 'avg', args, flag_total) @app.metric('/pmanager-health', aggr='avg', parameters=[ORG.Person], id='pmanager-health', title='Health of Product Manager') def get_pmanager_health(uid, **kwargs): flag_total = kwargs.get('begin') is None and kwargs.get('end') is None args = get_correct_kwargs(kwargs) return get_external_position_metric(uid, 'sum-product-health', 'productmanagers', 'avg', args, flag_total) @app.metric('/pmanager-costs', parameters=[ORG.Person], id='pmanager-costs', title='Costs of Product Manager') def get_pmanager_costs(uid, **kwargs): flag_total = kwargs.get('begin') is None and kwargs.get('end') is None args = get_correct_kwargs(kwargs) return get_external_position_metric(uid, 'sum-product-cost', 'productmanagers', 'sum', args, flag_total) @app.metric('/pmanager-timetomarket', aggr='avg', parameters=[ORG.Person], id='pmanager-timetomarket', title='Time To Market from Products of Product Manager') def get_pmanager_timetomarket(uid, **kwargs): flag_total = kwargs.get('begin') is None and kwargs.get('end') is None args = get_correct_kwargs(kwargs) return get_external_position_metric(uid, 'sum-product-timetomarket', 'productmanagers', 'avg', args, flag_total)
42.60355
116
0.673472
5,765
43,200
4.869905
0.041977
0.049047
0.033411
0.051719
0.900089
0.84545
0.800534
0.757222
0.702369
0.647373
0
0.001075
0.181944
43,200
1,013
117
42.645607
0.79335
0.025787
0
0.546753
0
0
0.181676
0.046322
0
0
0
0
0
1
0.120779
false
0
0.005195
0.014286
0.271429
0
0
0
0
null
0
0
0
1
1
1
1
1
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
null
0
0
0
0
0
0
0
0
0
0
0
0
0
6
746248a9a6ff0d428ab94f820ef076b18b48282a
123
py
Python
iot_api/user_api/websocket/alerts.py
dolfandringa/rolaguard_backend
d4df7b55fc001aa6e0499edcfa94bf1b1c63b084
[ "Apache-2.0" ]
null
null
null
iot_api/user_api/websocket/alerts.py
dolfandringa/rolaguard_backend
d4df7b55fc001aa6e0499edcfa94bf1b1c63b084
[ "Apache-2.0" ]
7
2020-05-05T20:10:59.000Z
2021-05-26T17:59:24.000Z
iot_api/user_api/websocket/alerts.py
dolfandringa/rolaguard_backend
d4df7b55fc001aa6e0499edcfa94bf1b1c63b084
[ "Apache-2.0" ]
1
2021-01-28T05:54:11.000Z
2021-01-28T05:54:11.000Z
from iot_api import socketio def emit_alert_event(event, recipient): socketio.emit('new_alert', event, room=recipient)
30.75
53
0.788618
18
123
5.166667
0.666667
0.215054
0
0
0
0
0
0
0
0
0
0
0.113821
123
4
53
30.75
0.853211
0
0
0
0
0
0.072581
0
0
0
0
0
0
1
0.333333
false
0
0.333333
0
0.666667
0
1
0
0
null
1
0
0
0
0
0
0
0
0
0
0
0
0
1
0
0
0
0
0
0
0
0
0
0
null
0
0
0
0
0
1
0
0
1
0
1
0
0
6
7481800efb51f4d1a5766aebafa35170462e666c
38
py
Python
autox/autox_ts/metrics/__init__.py
OneToolsCollection/4paradigm-AutoX
f8e838021354de17f5bb9bc44e9d68d12dda6427
[ "Apache-2.0" ]
null
null
null
autox/autox_ts/metrics/__init__.py
OneToolsCollection/4paradigm-AutoX
f8e838021354de17f5bb9bc44e9d68d12dda6427
[ "Apache-2.0" ]
null
null
null
autox/autox_ts/metrics/__init__.py
OneToolsCollection/4paradigm-AutoX
f8e838021354de17f5bb9bc44e9d68d12dda6427
[ "Apache-2.0" ]
null
null
null
from .metrics import _get_score_metric
38
38
0.894737
6
38
5.166667
1
0
0
0
0
0
0
0
0
0
0
0
0.078947
38
1
38
38
0.885714
0
0
0
0
0
0
0
0
0
0
0
0
1
0
true
0
1
0
1
0
1
1
0
null
0
0
0
0
0
0
0
0
0
0
0
0
0
1
0
0
0
0
0
0
0
0
0
0
null
0
0
0
0
0
0
1
0
1
0
1
0
0
6
77823bcef33f848f86c9133fcce12df4adef4d86
27
py
Python
__init__.py
GRV96/hm_duration
89de54a114cab42862dbe6b6dd5b2180adf2ee0d
[ "MIT" ]
null
null
null
__init__.py
GRV96/hm_duration
89de54a114cab42862dbe6b6dd5b2180adf2ee0d
[ "MIT" ]
null
null
null
__init__.py
GRV96/hm_duration
89de54a114cab42862dbe6b6dd5b2180adf2ee0d
[ "MIT" ]
null
null
null
from .hm_duration import *
13.5
26
0.777778
4
27
5
1
0
0
0
0
0
0
0
0
0
0
0
0.148148
27
1
27
27
0.869565
0
0
0
0
0
0
0
0
0
0
0
0
1
0
true
0
1
0
1
0
1
1
0
null
0
0
0
0
0
0
0
0
0
0
0
0
0
1
0
0
0
0
0
0
0
0
0
0
null
0
0
0
0
0
0
1
0
1
0
1
0
0
6
77ea483e2f5d12c57ce4e04b7312ab2402473ea4
47
py
Python
input.py
rooch001/RaspberryPi-DTU
baea2ad7a2eb8bdc45b56d6bde5d5bd3e3c30cfd
[ "MIT" ]
null
null
null
input.py
rooch001/RaspberryPi-DTU
baea2ad7a2eb8bdc45b56d6bde5d5bd3e3c30cfd
[ "MIT" ]
null
null
null
input.py
rooch001/RaspberryPi-DTU
baea2ad7a2eb8bdc45b56d6bde5d5bd3e3c30cfd
[ "MIT" ]
null
null
null
import os import shutil print(os.listdir('/'))
11.75
22
0.723404
7
47
4.857143
0.714286
0
0
0
0
0
0
0
0
0
0
0
0.106383
47
4
22
11.75
0.809524
0
0
0
0
0
0.020833
0
0
0
0
0
0
1
0
true
0
0.666667
0
0.666667
0.333333
1
1
0
null
0
0
0
0
0
0
0
0
0
0
0
0
0
1
0
0
0
0
0
0
0
0
0
0
null
0
0
0
0
0
0
1
0
1
0
1
0
0
6
77ff924bd9452e672bd6d921994120546cb53305
102
py
Python
custom_components/matts_gadgets_ceiling_fan/const.py
mattyway/matts_gadgets_ceiling_fan
f7b353fb9752f87569ec1925d08804a83e6715cf
[ "MIT" ]
null
null
null
custom_components/matts_gadgets_ceiling_fan/const.py
mattyway/matts_gadgets_ceiling_fan
f7b353fb9752f87569ec1925d08804a83e6715cf
[ "MIT" ]
null
null
null
custom_components/matts_gadgets_ceiling_fan/const.py
mattyway/matts_gadgets_ceiling_fan
f7b353fb9752f87569ec1925d08804a83e6715cf
[ "MIT" ]
null
null
null
"""Constants for the Matt's Gadgets Ceiling Fan integration.""" DOMAIN = "matts_gadgets_ceiling_fan"
25.5
63
0.77451
14
102
5.428571
0.785714
0.368421
0.447368
0
0
0
0
0
0
0
0
0
0.117647
102
3
64
34
0.844444
0.558824
0
0
0
0
0.641026
0.641026
0
0
0
0
0
1
0
false
0
0
0
0
0
1
0
0
null
1
1
0
0
0
0
0
0
0
0
0
0
0
1
0
0
0
0
0
0
0
0
1
1
null
0
0
0
0
0
0
0
0
0
0
0
0
0
6
7ad29cf27964c995c953363ee94f815f643e4137
44
py
Python
sdk/exception/exceed_limit_exception.py
CLG0125/elemesdk
344466398bad7cf026e082e47c77d3ca98621ef3
[ "MIT" ]
1
2021-04-03T05:11:29.000Z
2021-04-03T05:11:29.000Z
sdk/exception/exceed_limit_exception.py
CLG0125/elemesdk
344466398bad7cf026e082e47c77d3ca98621ef3
[ "MIT" ]
null
null
null
sdk/exception/exceed_limit_exception.py
CLG0125/elemesdk
344466398bad7cf026e082e47c77d3ca98621ef3
[ "MIT" ]
null
null
null
class ExceedLimitException(Exception):pass
14.666667
42
0.863636
4
44
9.5
1
0
0
0
0
0
0
0
0
0
0
0
0.068182
44
2
43
22
0.926829
0
0
0
0
0
0
0
0
0
0
0
0
1
0
true
1
0
0
1
0
1
1
0
null
0
0
0
0
0
0
0
0
0
0
0
0
0
1
0
0
0
0
0
0
0
0
0
0
null
0
0
0
0
0
0
1
1
0
0
1
0
0
6
7af9ce8ba99ab0024b0d79ef7600bd2202d6b9e4
41
py
Python
packages/plugins/model-define/tensorflow-cycle-gan-model-define/CycleGAN/image_loader/__init__.py
CandyQiu/pipcook
12d482d6dcfb828bf80fcf908aee2c8ba5e9bd8a
[ "Apache-2.0" ]
2
2020-04-21T05:49:02.000Z
2021-03-01T15:14:29.000Z
packages/plugins/model-define/tensorflow-cycle-gan-model-define/CycleGAN/image_loader/__init__.py
CandyQiu/pipcook
12d482d6dcfb828bf80fcf908aee2c8ba5e9bd8a
[ "Apache-2.0" ]
null
null
null
packages/plugins/model-define/tensorflow-cycle-gan-model-define/CycleGAN/image_loader/__init__.py
CandyQiu/pipcook
12d482d6dcfb828bf80fcf908aee2c8ba5e9bd8a
[ "Apache-2.0" ]
null
null
null
from .image_loader import ImageGenerator
20.5
40
0.878049
5
41
7
1
0
0
0
0
0
0
0
0
0
0
0
0.097561
41
1
41
41
0.945946
0
0
0
0
0
0
0
0
0
0
0
0
1
0
true
0
1
0
1
0
1
1
0
null
0
0
0
0
0
0
0
0
0
0
0
0
0
1
0
0
0
0
0
0
0
0
0
0
null
0
0
0
0
0
0
1
0
1
0
1
0
0
6
bb17d26fa2cfe52fac2399248342acf911c767f1
125
py
Python
rl_helper/__init__.py
yiwc/rl_helper
3cb0c088b40dabd3fa17af6e53f7c9563c7ef8b8
[ "MIT" ]
null
null
null
rl_helper/__init__.py
yiwc/rl_helper
3cb0c088b40dabd3fa17af6e53f7c9563c7ef8b8
[ "MIT" ]
null
null
null
rl_helper/__init__.py
yiwc/rl_helper
3cb0c088b40dabd3fa17af6e53f7c9563c7ef8b8
[ "MIT" ]
null
null
null
from rl_helper.envhelper import envhelper,VDisplay from rl_helper.fps import fps from rl_helper.exps import ExperimentManager
41.666667
50
0.88
19
125
5.631579
0.473684
0.168224
0.336449
0
0
0
0
0
0
0
0
0
0.088
125
3
51
41.666667
0.938596
0
0
0
0
0
0
0
0
0
0
0
0
1
0
true
0
1
0
1
0
1
0
0
null
0
1
0
0
0
0
0
0
0
0
0
0
0
1
0
0
0
0
0
0
0
0
0
0
null
0
0
0
0
0
0
1
0
1
0
1
0
0
6
bb1fea629f2a9e4489bdbe2cada201c3a470df90
38
py
Python
pyqt_helper/__init__.py
morefigs/pyqt-ui-helper
0f80f8483f57fc58a1c58fb2832094c7931b9fa6
[ "MIT" ]
2
2019-07-08T22:57:00.000Z
2022-01-07T10:36:53.000Z
pyqt_helper/__init__.py
morefigs/pyqt-ui-helper
0f80f8483f57fc58a1c58fb2832094c7931b9fa6
[ "MIT" ]
20
2021-05-03T18:02:23.000Z
2022-03-12T12:01:04.000Z
pyqt_helper/__init__.py
morefigs/pyqt-ui-helper
0f80f8483f57fc58a1c58fb2832094c7931b9fa6
[ "MIT" ]
null
null
null
from .pyqt_helper import process_file
19
37
0.868421
6
38
5.166667
1
0
0
0
0
0
0
0
0
0
0
0
0.105263
38
1
38
38
0.911765
0
0
0
0
0
0
0
0
0
0
0
0
1
0
true
0
1
0
1
0
1
1
0
null
0
0
0
0
0
0
0
0
0
0
0
0
0
1
0
0
0
0
0
0
0
0
0
0
null
0
0
0
0
0
0
1
0
1
0
1
0
0
6
bb2e7d5f7c0ebcba291fff0eb900b78cfa2b84c9
24,753
py
Python
tests/integration/test_krkgw_page.py
konrad-kocik/nicelka
a174fce9b8c6d4414312120e89e10bb1e10629df
[ "MIT" ]
null
null
null
tests/integration/test_krkgw_page.py
konrad-kocik/nicelka
a174fce9b8c6d4414312120e89e10bb1e10629df
[ "MIT" ]
null
null
null
tests/integration/test_krkgw_page.py
konrad-kocik/nicelka
a174fce9b8c6d4414312120e89e10bb1e10629df
[ "MIT" ]
null
null
null
from pytest import fixture from tests.integration.utilities.utilities import get_io_dir_paths, create_dir, remove_dir, run_krkgw_searcher, assert_report_file_content_equals test_suite = 'krkgw_page' test_cases = ['no_result', 'no_result_twice', 'single_result', 'single_result_indirect_match_skipped', 'single_result_indirect_match_allowed', 'single_result_duplicate_skipped', 'single_result_duplicate_allowed', 'single_result_twice', 'multiple_results', 'multiple_results_indirect_matches_skipped', 'multiple_results_indirect_matches_allowed', 'multiple_results_duplicate_skipped', 'multiple_results_duplicate_allowed', 'multiple_results_twice', 'multiple_results_on_multiple_pages_all_allowed', 'multiple_results_on_multiple_pages_indirect_matches_skipped', 'multiple_results_with_empty_details', 'basic_use_cases' ] @fixture(scope='module') def create_reports_dirs(): for test_case in test_cases: _, report_dir_path = get_io_dir_paths(test_suite, test_case) create_dir(report_dir_path) @fixture(scope='module') def remove_reports_dirs(request): def teardown(): for test_case in test_cases: _, report_dir_path = get_io_dir_paths(test_suite, test_case) remove_dir(report_dir_path) request.addfinalizer(teardown) def test_no_result(create_reports_dirs, remove_reports_dirs): expected_report = \ '======================================================================' + '\n' + \ '33-383 MUSZYNKA' + '\n\n' + \ 'Results found: 0' data_dir_path, report_dir_path = get_io_dir_paths(test_suite, test_case='no_result') searcher = run_krkgw_searcher(data_dir_path, report_dir_path) assert_report_file_content_equals(expected_report, searcher.report_file_path) def test_no_result_twice(create_reports_dirs, remove_reports_dirs): expected_report = \ '======================================================================' + '\n' + \ '33-383 MUSZYNKA' + '\n\n' + \ '======================================================================' + '\n' + \ '33-322 JASIENNA' + '\n\n' + \ 'Results found: 0' data_dir_path, report_dir_path = get_io_dir_paths(test_suite, test_case='no_result_twice') searcher = run_krkgw_searcher(data_dir_path, report_dir_path) assert_report_file_content_equals(expected_report, searcher.report_file_path) def test_single_result(create_reports_dirs, remove_reports_dirs): expected_report = \ '======================================================================' + '\n' + \ '21-075 ZEZULIN PIERWSZY' + '\n\n' + \ 'Koło Gospodyń Wiejskich "Zezulin" w Zezulinie' + '\n' + \ 'Zezulin Pierwszy 22A' + '\n' + \ '21-075 Zezulin Pierwszy' + '\n\n' + \ 'Results found: 1' data_dir_path, report_dir_path = get_io_dir_paths(test_suite, test_case='single_result') searcher = run_krkgw_searcher(data_dir_path, report_dir_path) assert_report_file_content_equals(expected_report, searcher.report_file_path) def test_single_result_indirect_match_skipped(create_reports_dirs, remove_reports_dirs): expected_report = \ '======================================================================' + '\n' + \ '33-334 BOGUSZA' + '\n\n' + \ 'Results found: 0' data_dir_path, report_dir_path = get_io_dir_paths(test_suite, test_case='single_result_indirect_match_skipped') searcher = run_krkgw_searcher(data_dir_path, report_dir_path) assert_report_file_content_equals(expected_report, searcher.report_file_path) def test_single_result_indirect_match_allowed(create_reports_dirs, remove_reports_dirs): expected_report = \ '======================================================================' + '\n' + \ '33-334 BOGUSZA' + '\n\n' + \ 'Koło Gospodyń Wiejskich w Boguszach' + '\n' + \ 'Bogusze 45' + '\n' + \ '16-100 Bogusze' + '\n\n' + \ 'Results found: 1' data_dir_path, report_dir_path = get_io_dir_paths(test_suite, test_case='single_result_indirect_match_allowed') searcher = run_krkgw_searcher(data_dir_path, report_dir_path, allow_indirect_matches=True) assert_report_file_content_equals(expected_report, searcher.report_file_path) def test_single_result_duplicate_skipped(create_reports_dirs, remove_reports_dirs): expected_report = \ '======================================================================' + '\n' + \ '21-075 ZEZULIN PIERWSZY' + '\n\n' + \ 'Koło Gospodyń Wiejskich "Zezulin" w Zezulinie' + '\n' + \ 'Zezulin Pierwszy 22A' + '\n' + \ '21-075 Zezulin Pierwszy' + '\n\n' + \ '======================================================================' + '\n' + \ '21-075 ZEZULIN PIERWSZY' + '\n\n' + \ 'Results found: 1' data_dir_path, report_dir_path = get_io_dir_paths(test_suite, test_case='single_result_duplicate_skipped') searcher = run_krkgw_searcher(data_dir_path, report_dir_path) assert_report_file_content_equals(expected_report, searcher.report_file_path) def test_single_result_duplicate_allowed(create_reports_dirs, remove_reports_dirs): expected_report = \ '======================================================================' + '\n' + \ '21-075 ZEZULIN PIERWSZY' + '\n\n' + \ 'Koło Gospodyń Wiejskich "Zezulin" w Zezulinie' + '\n' + \ 'Zezulin Pierwszy 22A' + '\n' + \ '21-075 Zezulin Pierwszy' + '\n\n' + \ '======================================================================' + '\n' + \ '21-075 ZEZULIN PIERWSZY' + '\n\n' + \ 'Koło Gospodyń Wiejskich "Zezulin" w Zezulinie' + '\n' + \ 'Zezulin Pierwszy 22A' + '\n' + \ '21-075 Zezulin Pierwszy' + '\n\n' + \ 'Results found: 2' data_dir_path, report_dir_path = get_io_dir_paths(test_suite, test_case='single_result_duplicate_allowed') searcher = run_krkgw_searcher(data_dir_path, report_dir_path, allow_duplicates=True) assert_report_file_content_equals(expected_report, searcher.report_file_path) def test_single_result_twice(create_reports_dirs, remove_reports_dirs): expected_report = \ '======================================================================' + '\n' + \ '22-234 SĘKÓW' + '\n\n' + \ 'KOŁO GOSPODYŃ WIEJSKICH "BUBNOWSKIE BABY"' + '\n' + \ 'Sęków 15' + '\n' + \ '22-234 Sęków' + '\n\n' + \ '======================================================================' + '\n' + \ '21-421 ZASTAWIE' + '\n\n' + \ 'Koło Gospodyń Wiejskich w Zastawiu' + '\n' + \ 'Zastawie 47A' + '\n' + \ '21-421 Zastawie' + '\n\n' + \ 'Results found: 2' data_dir_path, report_dir_path = get_io_dir_paths(test_suite, test_case='single_result_twice') searcher = run_krkgw_searcher(data_dir_path, report_dir_path) assert_report_file_content_equals(expected_report, searcher.report_file_path) def test_multiple_results(create_reports_dirs, remove_reports_dirs): expected_report = \ '======================================================================' + '\n' + \ '38-315 KUNKOWA' + '\n\n' + \ 'Koło Gospodyń Wiejskich i Gospodarzy w Kunkowej' + '\n' + \ 'Kunkowa 18' + '\n' + \ '38-315 Kunkowa' + '\n\n' + \ 'Koło Gospodyń Wiejskich w Kunkowej i Leszczynach' + '\n' + \ 'Kunkowa 18' + '\n' + \ '38-315 Kunkowa' + '\n\n' + \ 'Results found: 2' data_dir_path, report_dir_path = get_io_dir_paths(test_suite, test_case='multiple_results') searcher = run_krkgw_searcher(data_dir_path, report_dir_path) assert_report_file_content_equals(expected_report, searcher.report_file_path) def test_multiple_results_indirect_matches_skipped(create_reports_dirs, remove_reports_dirs): expected_report = \ '======================================================================' + '\n' + \ '33-393 MARCINKOWICE' + '\n\n' + \ 'KOŁO GOSPODYŃ WIEJSKICH W MARCINKOWICACH' + '\n' + \ 'Marcinkowice 124' + '\n' + \ '33-393 Marcinkowice' + '\n\n' + \ 'KOŁO GOSPODYŃ WIEJSKICH W MARCINKOWICACH' + '\n' + \ 'Marcinkowice 104' + '\n' + \ '33-393 Marcinkowice' + '\n\n' + \ 'Koło Gospodyń Wiejskich "Marcinkowicanki"' + '\n' + \ 'Marcinkowice 47' + '\n' + \ '33-273 Marcinkowice' + '\n\n' + \ 'Results found: 3' data_dir_path, report_dir_path = get_io_dir_paths(test_suite, test_case='multiple_results_indirect_matches_skipped') searcher = run_krkgw_searcher(data_dir_path, report_dir_path) assert_report_file_content_equals(expected_report, searcher.report_file_path) def test_multiple_results_indirect_matches_allowed(create_reports_dirs, remove_reports_dirs): expected_report = \ '======================================================================' + '\n' + \ '24-100 TOMASZÓW' + '\n\n' + \ 'Koło Gospodyń Wiejskich w Tomaszowie' + '\n' + \ 'Tomaszów lok. 39' + '\n' + \ '24-100 Tomaszów' + '\n\n' + \ 'Koło Gospodyń Wiejskich w Tomaszowie' + '\n' + \ 'Tomaszów 44 "b"' + '\n' + \ '26-505 Tomaszów' + '\n\n' + \ 'Results found: 2' data_dir_path, report_dir_path = get_io_dir_paths(test_suite, test_case='multiple_results_indirect_matches_allowed') searcher = run_krkgw_searcher(data_dir_path, report_dir_path, allow_indirect_matches=True) assert_report_file_content_equals(expected_report, searcher.report_file_path) def test_multiple_results_duplicate_skipped(create_reports_dirs, remove_reports_dirs): expected_report = \ '======================================================================' + '\n' + \ '38-315 KUNKOWA' + '\n\n' + \ 'Koło Gospodyń Wiejskich i Gospodarzy w Kunkowej' + '\n' + \ 'Kunkowa 18' + '\n' + \ '38-315 Kunkowa' + '\n\n' + \ 'Koło Gospodyń Wiejskich w Kunkowej i Leszczynach' + '\n' + \ 'Kunkowa 18' + '\n' + \ '38-315 Kunkowa' + '\n\n' + \ '======================================================================' + '\n' + \ '38-315 KUNKOWA' + '\n\n' + \ 'Results found: 2' data_dir_path, report_dir_path = get_io_dir_paths(test_suite, test_case='multiple_results_duplicate_skipped') searcher = run_krkgw_searcher(data_dir_path, report_dir_path) assert_report_file_content_equals(expected_report, searcher.report_file_path) def test_multiple_results_duplicate_allowed(create_reports_dirs, remove_reports_dirs): expected_report = \ '======================================================================' + '\n' + \ '38-315 KUNKOWA' + '\n\n' + \ 'Koło Gospodyń Wiejskich i Gospodarzy w Kunkowej' + '\n' + \ 'Kunkowa 18' + '\n' + \ '38-315 Kunkowa' + '\n\n' + \ 'Koło Gospodyń Wiejskich w Kunkowej i Leszczynach' + '\n' + \ 'Kunkowa 18' + '\n' + \ '38-315 Kunkowa' + '\n\n' + \ '======================================================================' + '\n' + \ '38-315 KUNKOWA' + '\n\n' + \ 'Koło Gospodyń Wiejskich i Gospodarzy w Kunkowej' + '\n' + \ 'Kunkowa 18' + '\n' + \ '38-315 Kunkowa' + '\n\n' + \ 'Koło Gospodyń Wiejskich w Kunkowej i Leszczynach' + '\n' + \ 'Kunkowa 18' + '\n' + \ '38-315 Kunkowa' + '\n\n' + \ 'Results found: 4' data_dir_path, report_dir_path = get_io_dir_paths(test_suite, test_case='multiple_results_duplicate_allowed') searcher = run_krkgw_searcher(data_dir_path, report_dir_path, allow_duplicates=True) assert_report_file_content_equals(expected_report, searcher.report_file_path) def test_multiple_results_twice(create_reports_dirs, remove_reports_dirs): expected_report = \ '======================================================================' + '\n' + \ '38-315 KUNKOWA' + '\n\n' + \ 'Koło Gospodyń Wiejskich i Gospodarzy w Kunkowej' + '\n' + \ 'Kunkowa 18' + '\n' + \ '38-315 Kunkowa' + '\n\n' + \ 'Koło Gospodyń Wiejskich w Kunkowej i Leszczynach' + '\n' + \ 'Kunkowa 18' + '\n' + \ '38-315 Kunkowa' + '\n\n' + \ '======================================================================' + '\n' + \ '33-393 MARCINKOWICE' + '\n\n' + \ 'KOŁO GOSPODYŃ WIEJSKICH W MARCINKOWICACH' + '\n' + \ 'Marcinkowice 124' + '\n' + \ '33-393 Marcinkowice' + '\n\n' + \ 'KOŁO GOSPODYŃ WIEJSKICH W MARCINKOWICACH' + '\n' + \ 'Marcinkowice 104' + '\n' + \ '33-393 Marcinkowice' + '\n\n' + \ 'Koło Gospodyń Wiejskich "Marcinkowicanki"' + '\n' + \ 'Marcinkowice 47' + '\n' + \ '33-273 Marcinkowice' + '\n\n' + \ 'Results found: 5' data_dir_path, report_dir_path = get_io_dir_paths(test_suite, test_case='multiple_results_twice') searcher = run_krkgw_searcher(data_dir_path, report_dir_path) assert_report_file_content_equals(expected_report, searcher.report_file_path) def test_multiple_results_on_multiple_pages_all_allowed(create_reports_dirs, remove_reports_dirs): expected_report = \ '======================================================================' + '\n' + \ '00-001 NOWA WIEŚ' + '\n\n' + \ 'Koło Gospodyń Wiejskich Nowa Wieś Niemczańska' + '\n' + \ 'Nowa Wieś Niemczańska 36 lok. 2' + '\n' + \ '58-230 Nowa Wieś Niemczańska' + '\n\n' + \ 'Koło Gospodyń Wiejskich Nowowianki w Nowej Wsi Legnickiej' + '\n' + \ 'Nowa Wieś Legnicka 56' + '\n' + \ '59-241 Nowa Wieś Legnicka' + '\n\n' + \ 'Koło Gospodyń Wiejskich POLANKI w Nowej Wsi Grodziskiej' + '\n' + \ 'Nowa Wieś Grodziska 54' + '\n' + \ '59-524 Nowa Wieś Grodziska' + '\n\n' + \ 'Koło Gospodyń Wiejskich w Nowej Wsi "Ale Babki"' + '\n' + \ 'Nowa Wieś 63' + '\n' + \ '87-602 Nowa Wieś' + '\n\n' + \ 'Koło Gospodyń Wiejskich w Nowej Wsi' + '\n' + \ 'Nowa Wieś 80' + '\n' + \ '88-324 Nowa Wieś' + '\n\n' + \ 'Koło Gospodyń Wiejskich w Nowej Wsi' + '\n' + \ 'Nowa Wieś 76' + '\n' + \ '21-107 Nowa Wieś' + '\n\n' + \ 'Koło Gospodyń Wiejskich w Nowej Wsi' + '\n' + \ 'Nowa Wieś 20C' + '\n' + \ '22-600 Nowa Wieś' + '\n\n' + \ 'Koło Gospodyń Wiejskich w Nowej Wsi' + '\n' + \ 'Nowa Wieś 27' + '\n' + \ '99-300 Nowa Wieś' + '\n\n' + \ 'Koło Gospodyń Wiejskich ,,Futuryści" w Nowej Wsi' + '\n' + \ 'Nowa Wieś 84' + '\n' + \ '97-340 Nowa Wieś' + '\n\n' + \ 'Koło Gospodyń Wiejskich Nowa Wieś "Koniczynka"' + '\n' + \ 'Nowa Wieś 3' + '\n' + \ '97-330 Nowa Wieś' + '\n\n' + \ 'Koło Gospodyń Wiejskich Szlachcianki' + '\n' + \ 'Nowa Wieś Szlachecka 1b' + '\n' + \ '32-060 Nowa Wieś Szlachecka' + '\n\n' + \ 'Koło Gospodyń Wiejskich Nowa Wieś' + '\n' + \ 'Nowa Wieś 42' + '\n' + \ '32-046 Nowa Wieś' + '\n\n' + \ 'Koło Gospodyń Wiejskich w Nowej Wsi (gmina Łabowa)' + '\n' + \ 'Nowa Wieś 55' + '\n' + \ '33-336 Nowa Wieś' + '\n\n' + \ 'Koło Gospodyń Wiejskich w Nowej Wsi' + '\n' + \ 'Nowa Wieś 25' + '\n' + \ '05-660 Nowa Wieś' + '\n\n' + \ 'Koło Gospodyń Wiejskich w Nowej Wsi Babeczki z pieprzem i solą' + '\n' + \ 'Nowa Wieś 52' + '\n' + \ '26-900 Nowa Wieś' + '\n\n' + \ 'Koło Gospodyń Wiejskich "Nowalijki" w Nowej Wsi' + '\n' + \ 'ul. Reymonta 32 A' + '\n' + \ '07-416 Nowa Wieś' + '\n\n' + \ 'Koło Gospodyń Wiejskich w Nowej Wsi Wschodniej' + '\n' + \ 'Nowa Wieś Wschodnia 32A' + '\n' + \ '07-411 Nowa Wieś Wschodnia' + '\n\n' + \ 'Koło Gospodyń Wiejskich KAROLEWO-NOWA WIEŚ' + '\n' + \ 'Nowa Wieś 1' + '\n' + \ '09-505 Nowa Wieś' + '\n\n' + \ 'Koło Gospodyń Wiejskich "Stokrotka"' + '\n' + \ 'Nowa Wieś 7B' + '\n' + \ '09-440 Nowa Wieś' + '\n\n' + \ 'Koło Gospodyń Wiejskich Gospochy w Nowej Wsi' + '\n' + \ 'ul. Magnolii 7' + '\n' + \ '05-806 Nowa Wieś' + '\n\n' + \ 'KOŁO GOSPODYŃ WIEJSKICH W NOWEJ WSI' + '\n' + \ 'ul. Wolności 37' + '\n' + \ '08-300 Nowa Wieś' + '\n\n' + \ 'Koło Gospodyń Wiejskich w Nowej Wsi' + '\n' + \ 'Nowa Wieś lok. 90' + '\n' + \ '36-100 Nowa Wieś' + '\n\n' + \ 'Koło Gospodyń Wiejskich w Nowej Wsi' + '\n' + \ 'Nowa Wieś 152 A' + '\n' + \ '38-120 Nowa Wieś' + '\n\n' + \ 'Koło Gospodyń Wiejskich "Wespół w Zespół" w Nowej Wsi' + '\n' + \ 'Nowa Wieś 18F' + '\n' + \ '16-402 Nowa Wieś' + '\n\n' + \ 'KOŁO GOSPODYŃ WIEJSKICH FIOŁKI W NOWEJ WSI' + '\n' + \ 'Nowa Wieś 4' + '\n' + \ '77-320 Nowa Wieś' + '\n\n' + \ 'Koło Gospodyń Wiejskich w Nowej Wsi Przywidzkiej' + '\n' + \ 'ul. Szkolna 2' + '\n' + \ '83-047 Nowa Wieś Przywidzka' + '\n\n' + \ 'Koło Gospodyń Wiejskich w Nowej Wsi' + '\n' + \ 'Nowa Wieś 41' + '\n' + \ '42-110 Nowa Wieś' + '\n\n' + \ 'Koło Gospodyń Wiejskich Nowa Wieś' + '\n' + \ 'Nowa Wieś 100' + '\n' + \ '28-362 Nowa Wieś' + '\n\n' + \ 'Koło Gospodyń Wiejskich w Nowej Wsi' + '\n' + \ 'Nowa Wieś 25' + '\n' + \ '27-640 Nowa Wieś' + '\n\n' + \ 'Koło Gospodyń Wiejskich w Nowej Wsi „Nowalijki”' + '\n' + \ 'Nowa Wieś 9A' + '\n' + \ '11-030 Nowa Wieś' + '\n\n' + \ 'Koło Gospodyń Wiejskich w Nowej Wsi Niechanowskiej "Storczyk"' + '\n' + \ 'Nowa Wieś Niechanowska 14' + '\n' + \ '62-220 Nowa Wieś Niechanowska' + '\n\n' + \ 'Koło Gospodyń Wiejskich w Nowej Wsi Książęcej' + '\n' + \ 'Nowa Wieś Książęca 35' + '\n' + \ '63-640 Nowa Wieś Książęca' + '\n\n' + \ 'KOŁO GOSPODYŃ WIEJSKICH W NOWEJ WSI' + '\n' + \ 'Nowa Wieś ' + '\n' + \ '63-708 Nowa Wieś' + '\n\n' + \ 'Koło Gospodyń Wiejskich w Nowej Wsi' + '\n' + \ 'Nowa Wieś 19 lok. B7' + '\n' + \ '63-308 Nowa Wieś' + '\n\n' + \ 'Koło Gospodyń Wiejskich w Nowej Wsi Podgórnej' + '\n' + \ 'Nowa Wieś Podgórna 21 lok. 2' + '\n' + \ '62-320 Nowa Wieś Podgórna' + '\n\n' + \ 'Koło Gospodyń Wiejskich w Nowej Wsi Królewskiej' + '\n' + \ 'Nowa Wieś Królewska 22' + '\n' + \ '62-300 Nowa Wieś Królewska' + '\n\n' + \ 'Results found: 36' data_dir_path, report_dir_path = get_io_dir_paths(test_suite, test_case='multiple_results_on_multiple_pages_all_allowed') searcher = run_krkgw_searcher(data_dir_path, report_dir_path, allow_indirect_matches=True, allow_duplicates=True) assert_report_file_content_equals(expected_report, searcher.report_file_path) def test_multiple_results_on_multiple_pages_indirect_matches_skipped(create_reports_dirs, remove_reports_dirs): expected_report = \ '======================================================================' + '\n' + \ '62-300 NOWA WIEŚ' + '\n\n' + \ 'Koło Gospodyń Wiejskich w Nowej Wsi Niechanowskiej "Storczyk"' + '\n' + \ 'Nowa Wieś Niechanowska 14' + '\n' + \ '62-220 Nowa Wieś Niechanowska' + '\n\n' + \ 'Koło Gospodyń Wiejskich w Nowej Wsi Podgórnej' + '\n' + \ 'Nowa Wieś Podgórna 21 lok. 2' + '\n' + \ '62-320 Nowa Wieś Podgórna' + '\n\n' + \ 'Koło Gospodyń Wiejskich w Nowej Wsi Królewskiej' + '\n' + \ 'Nowa Wieś Królewska 22' + '\n' + \ '62-300 Nowa Wieś Królewska' + '\n\n' + \ 'Results found: 3' data_dir_path, report_dir_path = get_io_dir_paths(test_suite, test_case='multiple_results_on_multiple_pages_indirect_matches_skipped') searcher = run_krkgw_searcher(data_dir_path, report_dir_path) assert_report_file_content_equals(expected_report, searcher.report_file_path) def test_multiple_results_with_empty_details(create_reports_dirs, remove_reports_dirs): expected_report = \ '======================================================================' + '\n' + \ '89-200 TUR' + '\n\n' + \ 'Koło Gospodyń Wiejskich Centrum Kultury Ostrowite' + '\n' + \ 'ul. Szkolna 22' + '\n' + \ '89-620 Ostrowite' + '\n\n' + \ 'Results found: 1' data_dir_path, report_dir_path = get_io_dir_paths(test_suite, test_case='multiple_results_with_empty_details') searcher = run_krkgw_searcher(data_dir_path, report_dir_path) assert_report_file_content_equals(expected_report, searcher.report_file_path) def test_basic_use_cases(create_reports_dirs, remove_reports_dirs): """ no_result single_result multiple_results no_result_twice single_result_indirect_match_skipped multiple_results_on_multiple_pages_indirect_matches_skipped single_result_duplicate_skipped multiple_results_twice single_result_twice """ expected_report = \ '======================================================================' + '\n' + \ '33-383 MUSZYNKA' + '\n\n' + \ '======================================================================' + '\n' + \ '21-075 ZEZULIN PIERWSZY' + '\n\n' + \ 'Koło Gospodyń Wiejskich "Zezulin" w Zezulinie' + '\n' + \ 'Zezulin Pierwszy 22A' + '\n' + \ '21-075 Zezulin Pierwszy' + '\n\n' + \ '======================================================================' + '\n' + \ '38-315 KUNKOWA' + '\n\n' + \ 'Koło Gospodyń Wiejskich i Gospodarzy w Kunkowej' + '\n' + \ 'Kunkowa 18' + '\n' + \ '38-315 Kunkowa' + '\n\n' + \ 'Koło Gospodyń Wiejskich w Kunkowej i Leszczynach' + '\n' + \ 'Kunkowa 18' + '\n' + \ '38-315 Kunkowa' + '\n\n' + \ '======================================================================' + '\n' + \ '33-383 MUSZYNKA' + '\n\n' + \ '======================================================================' + '\n' + \ '33-322 JASIENNA' + '\n\n' + \ '======================================================================' + '\n' + \ '33-334 BOGUSZA' + '\n\n' + \ '======================================================================' + '\n' + \ '62-300 NOWA WIEŚ' + '\n\n' + \ 'Koło Gospodyń Wiejskich w Nowej Wsi Niechanowskiej "Storczyk"' + '\n' + \ 'Nowa Wieś Niechanowska 14' + '\n' + \ '62-220 Nowa Wieś Niechanowska' + '\n\n' + \ 'Koło Gospodyń Wiejskich w Nowej Wsi Podgórnej' + '\n' + \ 'Nowa Wieś Podgórna 21 lok. 2' + '\n' + \ '62-320 Nowa Wieś Podgórna' + '\n\n' + \ 'Koło Gospodyń Wiejskich w Nowej Wsi Królewskiej' + '\n' + \ 'Nowa Wieś Królewska 22' + '\n' + \ '62-300 Nowa Wieś Królewska' + '\n\n' + \ '======================================================================' + '\n' + \ '21-075 ZEZULIN PIERWSZY' + '\n\n' + \ '======================================================================' + '\n' + \ '33-393 MARCINKOWICE' + '\n\n' + \ 'KOŁO GOSPODYŃ WIEJSKICH W MARCINKOWICACH' + '\n' + \ 'Marcinkowice 124' + '\n' + \ '33-393 Marcinkowice' + '\n\n' + \ 'KOŁO GOSPODYŃ WIEJSKICH W MARCINKOWICACH' + '\n' + \ 'Marcinkowice 104' + '\n' + \ '33-393 Marcinkowice' + '\n\n' + \ 'Koło Gospodyń Wiejskich "Marcinkowicanki"' + '\n' + \ 'Marcinkowice 47' + '\n' + \ '33-273 Marcinkowice' + '\n\n' + \ '======================================================================' + '\n' + \ '22-234 SĘKÓW' + '\n\n' + \ 'KOŁO GOSPODYŃ WIEJSKICH "BUBNOWSKIE BABY"' + '\n' + \ 'Sęków 15' + '\n' + \ '22-234 Sęków' + '\n\n' + \ '======================================================================' + '\n' + \ '21-421 ZASTAWIE' + '\n\n' + \ 'Koło Gospodyń Wiejskich w Zastawiu' + '\n' + \ 'Zastawie 47A' + '\n' + \ '21-421 Zastawie' + '\n\n' + \ 'Results found: 11' data_dir_path, report_dir_path = get_io_dir_paths(test_suite, test_case='basic_use_cases') searcher = run_krkgw_searcher(data_dir_path, report_dir_path) assert_report_file_content_equals(expected_report, searcher.report_file_path)
48.251462
145
0.531653
2,759
24,753
4.499094
0.093875
0.020624
0.036736
0.085717
0.873359
0.838315
0.828245
0.809555
0.795859
0.781036
0
0.038731
0.238557
24,753
512
146
48.345703
0.619801
0.009211
0
0.625
0
0
0.45365
0.136536
0
0
0
0
0.043182
1
0.047727
false
0
0.004545
0
0.052273
0
0
0
0
null
0
0
0
1
1
1
1
1
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
null
0
0
0
0
0
0
0
0
0
0
0
0
0
6
bb3bccac3c361186a4bcf66d697926d46ae834d7
20,129
py
Python
vim/plugins/vim-orgmode/tests/test_plugin_navigator.py
Raymond-yn/dotfiles
b1745ff62f4285785877a2c04d93ce8fa2775964
[ "MIT" ]
11
2018-11-16T02:30:33.000Z
2018-11-27T14:57:55.000Z
vim/plugins/vim-orgmode/tests/test_plugin_navigator.py
Raymond-yn/dotfiles
b1745ff62f4285785877a2c04d93ce8fa2775964
[ "MIT" ]
null
null
null
vim/plugins/vim-orgmode/tests/test_plugin_navigator.py
Raymond-yn/dotfiles
b1745ff62f4285785877a2c04d93ce8fa2775964
[ "MIT" ]
1
2019-01-22T06:51:51.000Z
2019-01-22T06:51:51.000Z
# -*- coding: utf-8 -*- import unittest import sys sys.path.append(u'../ftplugin') import vim from orgmode._vim import ORGMODE from orgmode.py3compat.encode_compatibility import * START = True END = False def set_visual_selection(visualmode, line_start, line_end, col_start=1, col_end=1, cursor_pos=START): if visualmode not in (u'', u'V', u'v'): raise ValueError(u'Illegal value for visualmode, must be in , V, v') vim.EVALRESULTS['visualmode()'] = visualmode # getpos results [bufnum, lnum, col, off] vim.EVALRESULTS['getpos("\'<")'] = ('', '%d' % line_start, '%d' % col_start, '') vim.EVALRESULTS['getpos("\'>")'] = ('', '%d' % line_end, '%d' % col_end, '') if cursor_pos == START: vim.current.window.cursor = (line_start, col_start) else: vim.current.window.cursor = (line_end, col_end) counter = 0 class NavigatorTestCase(unittest.TestCase): def setUp(self): global counter counter += 1 vim.CMDHISTORY = [] vim.CMDRESULTS = {} vim.EVALHISTORY = [] vim.EVALRESULTS = { # no org_todo_keywords for b u_encode(u'exists("b:org_todo_keywords")'): u_encode('0'), # global values for org_todo_keywords u_encode(u'exists("g:org_todo_keywords")'): u_encode('1'), u_encode(u'g:org_todo_keywords'): [u_encode(u'TODO'), u_encode(u'|'), u_encode(u'DONE')], u_encode(u'exists("g:org_debug")'): u_encode(u'0'), u_encode(u'exists("g:org_debug")'): u_encode(u'0'), u_encode(u'exists("*repeat#set()")'): u_encode(u'0'), u_encode(u'b:changedtick'): u_encode(u'%d' % counter), u_encode(u"v:count"): u_encode(u'0'), } vim.current.buffer[:] = [ u_encode(i) for i in u""" * Überschrift 1 Text 1 Bla bla ** Überschrift 1.1 Text 2 Bla Bla bla ** Überschrift 1.2 Text 3 **** Überschrift 1.2.1.falsch Bla Bla bla bla *** Überschrift 1.2.1 * Überschrift 2 * Überschrift 3 asdf sdf """.split(u'\n') ] if not u'Navigator' in ORGMODE.plugins: ORGMODE.register_plugin(u'Navigator') self.navigator = ORGMODE.plugins[u'Navigator'] def test_movement(self): # test movement outside any heading vim.current.window.cursor = (1, 0) self.navigator.previous(mode=u'normal') self.assertEqual(vim.current.window.cursor, (1, 0)) self.navigator.next(mode=u'normal') self.assertEqual(vim.current.window.cursor, (2, 2)) def test_forward_movement(self): # test forward movement vim.current.window.cursor = (2, 0) self.navigator.next(mode=u'normal') self.assertEqual(vim.current.window.cursor, (6, 3)) self.navigator.next(mode=u'normal') self.assertEqual(vim.current.window.cursor, (10, 3)) self.navigator.next(mode=u'normal') self.assertEqual(vim.current.window.cursor, (13, 5)) self.navigator.next(mode=u'normal') self.assertEqual(vim.current.window.cursor, (16, 4)) self.navigator.next(mode=u'normal') self.assertEqual(vim.current.window.cursor, (17, 2)) self.navigator.next(mode=u'normal') self.assertEqual(vim.current.window.cursor, (18, 2)) self.navigator.next(mode=u'normal') self.assertEqual(vim.current.window.cursor, (18, 2)) ## don't move cursor if last heading is already focussed vim.current.window.cursor = (19, 6) self.navigator.next(mode=u'normal') self.assertEqual(vim.current.window.cursor, (19, 6)) ## test movement with count vim.current.window.cursor = (2, 0) vim.EVALRESULTS[u_encode(u"v:count")] = u_encode(u'-1') self.navigator.next(mode=u'normal') self.assertEqual(vim.current.window.cursor, (6, 3)) vim.current.window.cursor = (2, 0) vim.EVALRESULTS[u_encode(u"v:count")] = u_encode(u'0') self.navigator.next(mode=u'normal') self.assertEqual(vim.current.window.cursor, (6, 3)) vim.current.window.cursor = (2, 0) vim.EVALRESULTS[u_encode(u"v:count")] = u_encode(u'1') self.navigator.next(mode=u'normal') self.assertEqual(vim.current.window.cursor, (6, 3)) vim.EVALRESULTS[u_encode(u"v:count")] = u_encode(u'3') self.navigator.next(mode=u'normal') self.assertEqual(vim.current.window.cursor, (16, 4)) self.navigator.next(mode=u'normal') self.assertEqual(vim.current.window.cursor, (18, 2)) self.navigator.next(mode=u'normal') self.assertEqual(vim.current.window.cursor, (18, 2)) vim.EVALRESULTS[u_encode(u"v:count")] = u_encode(u'0') def test_backward_movement(self): # test backward movement vim.current.window.cursor = (19, 6) self.navigator.previous(mode=u'normal') self.assertEqual(vim.current.window.cursor, (18, 2)) self.navigator.previous(mode=u'normal') self.assertEqual(vim.current.window.cursor, (17, 2)) self.navigator.previous(mode=u'normal') self.assertEqual(vim.current.window.cursor, (16, 4)) self.navigator.previous(mode=u'normal') self.assertEqual(vim.current.window.cursor, (13, 5)) self.navigator.previous(mode=u'normal') self.assertEqual(vim.current.window.cursor, (10, 3)) self.navigator.previous(mode=u'normal') self.assertEqual(vim.current.window.cursor, (6, 3)) self.navigator.previous(mode=u'normal') self.assertEqual(vim.current.window.cursor, (2, 2)) ## test movement with count vim.current.window.cursor = (19, 6) vim.EVALRESULTS[u_encode(u"v:count")] = u_encode(u'-1') self.navigator.previous(mode=u'normal') self.assertEqual(vim.current.window.cursor, (18, 2)) vim.current.window.cursor = (19, 6) vim.EVALRESULTS[u_encode(u"v:count")] = u_encode(u'0') self.navigator.previous(mode=u'normal') self.assertEqual(vim.current.window.cursor, (18, 2)) vim.current.window.cursor = (19, 6) vim.EVALRESULTS[u_encode(u"v:count")] = u_encode(u'3') self.navigator.previous(mode=u'normal') self.assertEqual(vim.current.window.cursor, (16, 4)) vim.EVALRESULTS[u_encode(u"v:count")] = u_encode(u'4') self.navigator.previous(mode=u'normal') self.assertEqual(vim.current.window.cursor, (2, 2)) vim.EVALRESULTS[u_encode(u"v:count")] = u_encode(u'4') self.navigator.previous(mode=u'normal') self.assertEqual(vim.current.window.cursor, (2, 2)) def test_parent_movement(self): # test movement to parent vim.current.window.cursor = (2, 0) self.assertEqual(self.navigator.parent(mode=u'normal'), None) self.assertEqual(vim.current.window.cursor, (2, 0)) vim.current.window.cursor = (3, 4) self.navigator.parent(mode=u'normal') self.assertEqual(vim.current.window.cursor, (3, 4)) vim.current.window.cursor = (16, 4) self.navigator.parent(mode=u'normal') self.assertEqual(vim.current.window.cursor, (10, 3)) self.navigator.parent(mode=u'normal') self.assertEqual(vim.current.window.cursor, (2, 2)) vim.current.window.cursor = (15, 6) self.navigator.parent(mode=u'normal') self.assertEqual(vim.current.window.cursor, (10, 3)) self.navigator.parent(mode=u'normal') self.assertEqual(vim.current.window.cursor, (2, 2)) ## test movement with count vim.current.window.cursor = (16, 4) vim.EVALRESULTS[u_encode(u"v:count")] = u_encode(u'-1') self.navigator.parent(mode=u'normal') self.assertEqual(vim.current.window.cursor, (10, 3)) vim.current.window.cursor = (16, 4) vim.EVALRESULTS[u_encode(u"v:count")] = u_encode(u'0') self.navigator.parent(mode=u'normal') self.assertEqual(vim.current.window.cursor, (10, 3)) vim.current.window.cursor = (16, 4) vim.EVALRESULTS[u_encode(u"v:count")] = u_encode(u'1') self.navigator.parent(mode=u'normal') self.assertEqual(vim.current.window.cursor, (10, 3)) vim.current.window.cursor = (16, 4) vim.EVALRESULTS[u_encode(u"v:count")] = u_encode(u'2') self.navigator.parent(mode=u'normal') self.assertEqual(vim.current.window.cursor, (2, 2)) vim.current.window.cursor = (16, 4) vim.EVALRESULTS[u_encode(u"v:count")] = u_encode(u'3') self.navigator.parent(mode=u'normal') self.assertEqual(vim.current.window.cursor, (2, 2)) def test_next_parent_movement(self): # test movement to parent vim.current.window.cursor = (6, 0) self.assertNotEqual(self.navigator.parent_next_sibling(mode=u'normal'), None) self.assertEqual(vim.current.window.cursor, (17, 2)) def test_forward_movement_visual(self): # selection start: << # selection end: >> # cursor poistion: | # << text # text| >> # text # heading set_visual_selection(u'V', 2, 4, cursor_pos=END) self.assertNotEqual(self.navigator.next(mode=u'visual'), None) self.assertEqual(vim.CMDHISTORY[-1], u_encode(u'normal! 2ggV5gg')) # << text # text # text| >> # heading set_visual_selection(u'V', 2, 5, cursor_pos=END) self.assertNotEqual(self.navigator.next(mode=u'visual'), None) self.assertEqual(vim.CMDHISTORY[-1], u_encode(u'normal! 2ggV9gg')) # << text # x. heading # text| >> # heading set_visual_selection(u'V', 12, 14, cursor_pos=END) self.assertNotEqual(self.navigator.next(mode=u'visual'), None) self.assertEqual(vim.CMDHISTORY[-1], u_encode(u'normal! 12ggV15gg')) set_visual_selection(u'V', 12, 15, cursor_pos=END) self.assertNotEqual(self.navigator.next(mode=u'visual'), None) self.assertEqual(vim.CMDHISTORY[-1], u_encode(u'normal! 12ggV16gg')) set_visual_selection(u'V', 12, 16, cursor_pos=END) self.assertNotEqual(self.navigator.next(mode=u'visual'), None) self.assertEqual(vim.CMDHISTORY[-1], u_encode(u'normal! 12ggV17gg')) # << text # text # text| >> # heading # EOF set_visual_selection(u'V', 15, 17, cursor_pos=END) self.assertNotEqual(self.navigator.next(mode=u'visual'), None) self.assertEqual(vim.CMDHISTORY[-1], u_encode(u'normal! 15ggV20gg')) # << text >> # heading set_visual_selection(u'V', 1, 1, cursor_pos=START) self.assertNotEqual(self.navigator.next(mode=u'visual'), None) self.assertEqual(vim.CMDHISTORY[-1], u_encode(u'normal! 1ggV5gg')) # << heading >> # text # heading set_visual_selection(u'V', 2, 2, cursor_pos=START) self.assertNotEqual(self.navigator.next(mode=u'visual'), None) self.assertEqual(vim.CMDHISTORY[-1], u_encode(u'normal! 2ggV5gg')) # << text >> # heading set_visual_selection(u'V', 1, 1, cursor_pos=END) self.assertNotEqual(self.navigator.next(mode=u'visual'), None) self.assertEqual(vim.CMDHISTORY[-1], u_encode(u'normal! 1ggV5gg')) # << |text # heading # text # heading # text >> set_visual_selection(u'V', 1, 8, cursor_pos=START) self.assertNotEqual(self.navigator.next(mode=u'visual'), None) self.assertEqual(vim.CMDHISTORY[-1], u_encode(u'normal! 2ggV8ggo')) # << |heading # text # heading # text >> set_visual_selection(u'V', 2, 8, cursor_pos=START) self.assertNotEqual(self.navigator.next(mode=u'visual'), None) self.assertEqual(vim.CMDHISTORY[-1], u_encode(u'normal! 6ggV8ggo')) # << |heading # text >> # heading set_visual_selection(u'V', 6, 8, cursor_pos=START) self.assertNotEqual(self.navigator.next(mode=u'visual'), None) self.assertEqual(vim.CMDHISTORY[-1], u_encode(u'normal! 8ggV9gg')) # << |x. heading # text >> # heading set_visual_selection(u'V', 13, 15, cursor_pos=START) self.assertNotEqual(self.navigator.next(mode=u'visual'), None) self.assertEqual(vim.CMDHISTORY[-1], u_encode(u'normal! 15ggV15gg')) set_visual_selection(u'V', 13, 16, cursor_pos=START) self.assertNotEqual(self.navigator.next(mode=u'visual'), None) self.assertEqual(vim.CMDHISTORY[-1], u_encode(u'normal! 16ggV16ggo')) set_visual_selection(u'V', 16, 16, cursor_pos=START) self.assertNotEqual(self.navigator.next(mode=u'visual'), None) self.assertEqual(vim.CMDHISTORY[-1], u_encode(u'normal! 16ggV17gg')) # << |x. heading # text >> # heading # EOF set_visual_selection(u'V', 17, 17, cursor_pos=START) self.assertNotEqual(self.navigator.next(mode=u'visual'), None) self.assertEqual(vim.CMDHISTORY[-1], u_encode(u'normal! 17ggV20gg')) # << |heading # text>> # text # EOF set_visual_selection(u'V', 18, 19, cursor_pos=START) self.assertEqual(self.navigator.next(mode=u'visual'), None) self.assertEqual(vim.CMDHISTORY[-1], u_encode(u'normal! 19ggV20gg')) # << heading # text|>> # text # EOF set_visual_selection(u'V', 18, 19, cursor_pos=END) self.assertEqual(self.navigator.next(mode=u'visual'), None) self.assertEqual(vim.CMDHISTORY[-1], u_encode(u'normal! 18ggV20gg')) # << heading # text|>> # EOF set_visual_selection(u'V', 18, 20, cursor_pos=END) self.assertEqual(self.navigator.next(mode=u'visual'), None) self.assertEqual(vim.CMDHISTORY[-1], u_encode(u'normal! 18ggV20gg')) # << |heading # text>> # EOF set_visual_selection(u'V', 20, 20, cursor_pos=START) self.assertEqual(self.navigator.next(mode=u'visual'), None) self.assertEqual(vim.CMDHISTORY[-1], u_encode(u'normal! 20ggV20gg')) def test_forward_movement_visual_to_the_end_of_the_file(self): vim.current.buffer[:] = [ u_encode(i) for i in u""" * Überschrift 1 Text 1 Bla bla ** Überschrift 1.1 Text 2 Bla Bla bla ** Überschrift 1.2 Text 3 **** Überschrift 1.2.1.falsch Bla Bla bla bla test """.split(u'\n') ] # << |heading # text>> # EOF set_visual_selection(u'V', 15, 15, cursor_pos=START) self.assertEqual(self.navigator.next(mode=u'visual'), None) self.assertEqual(vim.CMDHISTORY[-1], u_encode(u'normal! 15ggV17gg')) set_visual_selection(u'V', 15, 17, cursor_pos=END) self.assertEqual(self.navigator.next(mode=u'visual'), None) self.assertEqual(vim.CMDHISTORY[-1], u_encode(u'normal! 15ggV17gg')) def test_backward_movement_visual(self): # selection start: << # selection end: >> # cursor poistion: | # << text | >> # text # heading set_visual_selection(u'V', 1, 1, cursor_pos=START) self.assertEqual(self.navigator.previous(mode=u'visual'), None) self.assertEqual(vim.CMDHISTORY[-1], u_encode(u'normal! gv')) set_visual_selection(u'V', 1, 1, cursor_pos=END) self.assertEqual(self.navigator.previous(mode=u'visual'), None) self.assertEqual(vim.CMDHISTORY[-1], u_encode(u'normal! gv')) # << heading| >> # text # heading set_visual_selection(u'V', 2, 2, cursor_pos=START) self.assertEqual(self.navigator.previous(mode=u'visual'), None) self.assertEqual(vim.CMDHISTORY[-1], u_encode(u'normal! 2ggV2ggo')) set_visual_selection(u'V', 2, 2, cursor_pos=END) self.assertEqual(self.navigator.previous(mode=u'visual'), None) self.assertEqual(vim.CMDHISTORY[-1], u_encode(u'normal! 2ggV2ggo')) # heading # text # << |text # text >> set_visual_selection(u'V', 3, 5, cursor_pos=START) self.assertNotEqual(self.navigator.previous(mode=u'visual'), None) self.assertEqual(vim.CMDHISTORY[-1], u_encode(u'normal! 2ggV5ggo')) # heading # text # << text # text| >> set_visual_selection(u'V', 3, 5, cursor_pos=END) self.assertNotEqual(self.navigator.previous(mode=u'visual'), None) self.assertEqual(vim.CMDHISTORY[-1], u_encode(u'normal! 2ggV3ggo')) # heading # text # << text # text| >> set_visual_selection(u'V', 8, 9, cursor_pos=END) self.assertNotEqual(self.navigator.previous(mode=u'visual'), None) self.assertEqual(vim.CMDHISTORY[-1], u_encode(u'normal! 6ggV8ggo')) # heading # << text # x. heading # text| >> set_visual_selection(u'V', 12, 14, cursor_pos=END) self.assertNotEqual(self.navigator.previous(mode=u'visual'), None) self.assertEqual(vim.CMDHISTORY[-1], u_encode(u'normal! 12ggV12gg')) set_visual_selection(u'V', 12, 15, cursor_pos=END) self.assertNotEqual(self.navigator.previous(mode=u'visual'), None) self.assertEqual(vim.CMDHISTORY[-1], u_encode(u'normal! 12ggV12gg')) # heading # << |text # x. heading # text >> set_visual_selection(u'V', 12, 15, cursor_pos=START) self.assertNotEqual(self.navigator.previous(mode=u'visual'), None) self.assertEqual(vim.CMDHISTORY[-1], u_encode(u'normal! 10ggV15ggo')) # heading # << text # x. heading| >> set_visual_selection(u'V', 12, 13, cursor_pos=END) self.assertNotEqual(self.navigator.previous(mode=u'visual'), None) self.assertEqual(vim.CMDHISTORY[-1], u_encode(u'normal! 12ggV12gg')) # heading # << text # heading # text # x. heading| >> set_visual_selection(u'V', 12, 16, cursor_pos=END) self.assertNotEqual(self.navigator.previous(mode=u'visual'), None) self.assertEqual(vim.CMDHISTORY[-1], u_encode(u'normal! 12ggV15gg')) # << text # heading # text # heading| >> set_visual_selection(u'V', 15, 17, cursor_pos=END) self.assertNotEqual(self.navigator.previous(mode=u'visual'), None) self.assertEqual(vim.CMDHISTORY[-1], u_encode(u'normal! 15ggV16gg')) # heading # << |text # text # heading # text >> set_visual_selection(u'V', 4, 8, cursor_pos=START) self.assertNotEqual(self.navigator.previous(mode=u'visual'), None) self.assertEqual(vim.CMDHISTORY[-1], u_encode(u'normal! 2ggV8ggo')) # heading # << text # text # heading # text| >> set_visual_selection(u'V', 4, 8, cursor_pos=END) self.assertNotEqual(self.navigator.previous(mode=u'visual'), None) self.assertEqual(vim.CMDHISTORY[-1], u_encode(u'normal! 4ggV5gg')) # heading # << text # text # heading # text| >> set_visual_selection(u'V', 4, 5, cursor_pos=END) self.assertNotEqual(self.navigator.previous(mode=u'visual'), None) self.assertEqual(vim.CMDHISTORY[-1], u_encode(u'normal! 2ggV4ggo')) # BOF # << |heading # text # heading # text >> set_visual_selection(u'V', 2, 8, cursor_pos=START) self.assertEqual(self.navigator.previous(mode=u'visual'), None) self.assertEqual(vim.CMDHISTORY[-1], u_encode(u'normal! 2ggV8ggo')) # BOF # heading # << text # text| >> set_visual_selection(u'V', 3, 4, cursor_pos=END) self.assertNotEqual(self.navigator.previous(mode=u'visual'), None) self.assertEqual(vim.CMDHISTORY[-1], u_encode(u'normal! 2ggV3ggo')) # BOF # << heading # text # text| >> set_visual_selection(u'V', 2, 4, cursor_pos=END) self.assertNotEqual(self.navigator.previous(mode=u'visual'), None) self.assertEqual(vim.CMDHISTORY[-1], u_encode(u'normal! 2ggV2ggo')) # << text # heading # text # x. heading # text| >> set_visual_selection(u'V', 8, 14, cursor_pos=END) self.navigator.previous(mode=u'visual') self.assertEqual(vim.CMDHISTORY[-1], u_encode(u'normal! 8ggV12gg')) def test_parent_movement_visual(self): # selection start: << # selection end: >> # cursor poistion: | # heading # << text| # text # text >> set_visual_selection(u'V', 4, 8, cursor_pos=START) self.navigator.parent(mode=u'visual') self.assertEqual(vim.CMDHISTORY[-1], u_encode(u'normal! gv')) # heading # << text| # text # text >> set_visual_selection(u'V', 6, 8, cursor_pos=START) self.navigator.parent(mode=u'visual') self.assertEqual(vim.CMDHISTORY[-1], u_encode(u'normal! 2ggV8ggo')) # heading # << text # text # text| >> set_visual_selection(u'V', 6, 8, cursor_pos=END) self.navigator.parent(mode=u'visual') self.assertEqual(vim.CMDHISTORY[-1], u_encode(u'normal! 6ggV5gg')) # << |heading # text # text # text >> set_visual_selection(u'V', 2, 8, cursor_pos=START) self.assertEqual(self.navigator.parent(mode=u'visual'), None) # << heading # text # heading # text| >> set_visual_selection(u'V', 2, 8, cursor_pos=END) self.navigator.parent(mode=u'visual') self.assertEqual(vim.CMDHISTORY[-1], u_encode(u'normal! 2ggV5gg')) set_visual_selection(u'V', 7, 8, cursor_pos=START) self.navigator.parent(mode=u'visual') self.assertEqual(vim.CMDHISTORY[-1], u_encode(u'normal! 2ggV8ggo')) # heading # heading # << text # text| >> set_visual_selection(u'V', 12, 13, cursor_pos=END) self.navigator.parent(mode=u'visual') self.assertEqual(vim.CMDHISTORY[-1], u_encode(u'normal! 12ggV12gg')) set_visual_selection(u'V', 10, 12, cursor_pos=START) self.navigator.parent(mode=u'visual') self.assertEqual(vim.CMDHISTORY[-1], u_encode(u'normal! 2ggV12ggo')) # heading # << text # text # heading| >> set_visual_selection(u'V', 11, 17, cursor_pos=END) self.assertEqual(self.navigator.parent(mode=u'visual'), None) # << text # heading # text # x. heading # text| >> set_visual_selection(u'V', 8, 14, cursor_pos=END) self.navigator.parent(mode=u'visual') self.assertEqual(vim.CMDHISTORY[-1], u_encode(u'normal! 8ggV12gg')) def suite(): return unittest.TestLoader().loadTestsFromTestCase(NavigatorTestCase)
31.749211
93
0.696657
2,960
20,129
4.630405
0.058446
0.113819
0.056034
0.099518
0.900482
0.882971
0.872246
0.866117
0.844302
0.815117
0
0.031468
0.130111
20,129
633
94
31.799368
0.751285
0.093199
0
0.68661
0
0
0.123464
0.00681
0
0
0
0.00158
0.384615
1
0.034188
false
0
0.014245
0.002849
0.054131
0
0
0
0
null
0
0
0
1
1
1
1
1
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
null
0
0
0
0
0
0
0
0
0
0
0
0
0
6
bb46960a624b1fcc9ef41fe1b43cb6eb44c59062
14,165
py
Python
src/bos_consensus/blockchain/test_blockchain.py
LuffyEMonkey/isaac-consensus-protocol
806d967d56ef8862a477b2515c7854af289c10a0
[ "Apache-2.0" ]
1
2018-04-10T11:00:59.000Z
2018-04-10T11:00:59.000Z
src/bos_consensus/blockchain/test_blockchain.py
LuffyEMonkey/isaac-consensus-protocol
806d967d56ef8862a477b2515c7854af289c10a0
[ "Apache-2.0" ]
null
null
null
src/bos_consensus/blockchain/test_blockchain.py
LuffyEMonkey/isaac-consensus-protocol
806d967d56ef8862a477b2515c7854af289c10a0
[ "Apache-2.0" ]
null
null
null
from ..common import Ballot, BallotVotingResult, Message, node_factory from ..network import Endpoint from ..blockchain import Blockchain from ..consensus import get_fba_module from ..consensus.fba.isaac import IsaacState from .util import StubTransport IsaacConsensus = get_fba_module('isaac').IsaacConsensus def blockchain_factory(name, address, threshold, validator_endpoint_uris): node = node_factory(name, Endpoint.from_uri(address)) validators = list() for uri in validator_endpoint_uris: validators.append( node_factory(uri, Endpoint.from_uri(uri)), ) consensus = IsaacConsensus(node, threshold, validators) return Blockchain( consensus, StubTransport() ) def test_consensus_instantiation(): blockchain = blockchain_factory( 'n1', 'http://localhost:5001', 100, ['http://localhost:5002', 'http://localhost:5003']) assert blockchain.node_name == 'n1' assert blockchain.endpoint.uri_full == 'http://localhost:5001?name=n1' assert blockchain.consensus.threshold == 100 IsaacConsensus.transport = StubTransport() def test_state_init_to_sign(): node_name_1 = 'http://localhost:5001' node_name_2 = 'http://localhost:5002' node_name_3 = 'http://localhost:5003' bc1 = blockchain_factory( node_name_1, 'http://localhost:5001', 100, [node_name_2, node_name_3] ) bc2 = blockchain_factory( node_name_2, 'http://localhost:5002', 100, [node_name_1, node_name_3] ) bc3 = blockchain_factory( node_name_3, 'http://localhost:5003', 100, [node_name_1, node_name_2] ) bc1.consensus.add_to_validator_connected(bc2.node) bc1.consensus.add_to_validator_connected(bc3.node) bc1.consensus.init() message = Message.new('message') ballot_init_1 = Ballot.new(node_name_1, message, IsaacState.INIT, BallotVotingResult.agree) ballot_id = ballot_init_1.ballot_id ballot_init_2 = Ballot(ballot_id, node_name_2, message, IsaacState.INIT, BallotVotingResult.agree, ballot_init_1.timestamp) ballot_init_3 = Ballot(ballot_id, node_name_3, message, IsaacState.INIT, BallotVotingResult.agree, ballot_init_1.timestamp) bc1.receive_ballot(ballot_init_1) bc1.receive_ballot(ballot_init_2) bc1.receive_ballot(ballot_init_3) assert bc1.consensus.slot.get_ballot_state(ballot_init_1) == IsaacState.SIGN def test_state_init_to_all_confirm_sequence(): node_name_1 = 'http://localhost:5001' node_name_2 = 'http://localhost:5002' node_name_3 = 'http://localhost:5003' bc1 = blockchain_factory( node_name_1, 'http://localhost:5001', 100, [node_name_2, node_name_3], ) bc2 = blockchain_factory( node_name_2, 'http://localhost:5002', 100, [node_name_1, node_name_3], ) bc3 = blockchain_factory( node_name_3, 'http://localhost:5003', 100, [node_name_1, node_name_2], ) bc1.consensus.add_to_validator_connected(bc2.node) bc1.consensus.add_to_validator_connected(bc3.node) bc1.consensus.init() bc2.consensus.add_to_validator_connected(bc1.node) bc2.consensus.add_to_validator_connected(bc3.node) bc2.consensus.init() bc3.consensus.add_to_validator_connected(bc1.node) bc3.consensus.add_to_validator_connected(bc2.node) bc3.consensus.init() message = Message.new('message') ballot_init_1 = Ballot.new(node_name_1, message, IsaacState.INIT, BallotVotingResult.agree) ballot_id = ballot_init_1.ballot_id ballot_init_2 = Ballot(ballot_id, node_name_2, message, IsaacState.INIT, BallotVotingResult.agree, ballot_init_1.timestamp) ballot_init_3 = Ballot(ballot_id, node_name_3, message, IsaacState.INIT, BallotVotingResult.agree, ballot_init_1.timestamp) bc1.receive_ballot(ballot_init_1) bc1.receive_ballot(ballot_init_2) bc1.receive_ballot(ballot_init_3) bc2.receive_ballot(ballot_init_1) bc2.receive_ballot(ballot_init_2) bc2.receive_ballot(ballot_init_3) bc3.receive_ballot(ballot_init_1) bc3.receive_ballot(ballot_init_2) bc3.receive_ballot(ballot_init_3) assert bc1.consensus.slot.get_ballot_state(ballot_init_2) == IsaacState.SIGN assert bc2.consensus.slot.get_ballot_state(ballot_init_2) == IsaacState.SIGN assert bc3.consensus.slot.get_ballot_state(ballot_init_2) == IsaacState.SIGN ballot_sign_1 = Ballot(ballot_id, node_name_1, message, IsaacState.SIGN, BallotVotingResult.agree, ballot_init_1.timestamp) ballot_sign_2 = Ballot(ballot_id, node_name_2, message, IsaacState.SIGN, BallotVotingResult.agree, ballot_init_1.timestamp) ballot_sign_3 = Ballot(ballot_id, node_name_3, message, IsaacState.SIGN, BallotVotingResult.agree, ballot_init_1.timestamp) bc1.receive_ballot(ballot_sign_1) bc1.receive_ballot(ballot_sign_2) bc1.receive_ballot(ballot_sign_3) bc2.receive_ballot(ballot_sign_1) bc2.receive_ballot(ballot_sign_2) bc2.receive_ballot(ballot_sign_3) bc3.receive_ballot(ballot_sign_1) bc3.receive_ballot(ballot_sign_2) bc3.receive_ballot(ballot_sign_3) assert bc1.consensus.slot.get_ballot_state(ballot_init_2) == IsaacState.ACCEPT assert bc2.consensus.slot.get_ballot_state(ballot_init_2) == IsaacState.ACCEPT assert bc3.consensus.slot.get_ballot_state(ballot_init_2) == IsaacState.ACCEPT ballot_accept_1 = Ballot(ballot_id, node_name_1, message, IsaacState.ACCEPT, BallotVotingResult.agree, ballot_init_1.timestamp) ballot_accept_2 = Ballot(ballot_id, node_name_2, message, IsaacState.ACCEPT, BallotVotingResult.agree, ballot_init_1.timestamp) ballot_accept_3 = Ballot(ballot_id, node_name_3, message, IsaacState.ACCEPT, BallotVotingResult.agree, ballot_init_1.timestamp) bc1.receive_ballot(ballot_sign_1) # different state ballot bc1.receive_ballot(ballot_accept_2) bc1.receive_ballot(ballot_accept_3) bc2.receive_ballot(ballot_accept_1) bc2.receive_ballot(ballot_accept_2) bc2.receive_ballot(ballot_sign_3) # different state ballot bc3.receive_ballot(ballot_accept_1) bc3.receive_ballot(ballot_accept_2) bc3.receive_ballot(ballot_accept_3) assert message in bc1.consensus.messages assert bc2.consensus.slot.get_ballot_state(ballot_init_2) == IsaacState.ACCEPT assert message in bc3.consensus.messages def test_state_jump_from_init(): node_name_1 = 'http://localhost:5001' node_name_2 = 'http://localhost:5002' node_name_3 = 'http://localhost:5003' node_name_4 = 'http://localhost:5004' bc1 = blockchain_factory( node_name_1, 'http://localhost:5001', 100, [node_name_2, node_name_3, node_name_4], ) bc2 = blockchain_factory( node_name_2, 'http://localhost:5002', 100, [node_name_1, node_name_3, node_name_4], ) bc3 = blockchain_factory( node_name_3, 'http://localhost:5003', 100, [node_name_1, node_name_2, node_name_4], ) bc4 = blockchain_factory( node_name_4, 'http://localhost:5004', 100, [node_name_1, node_name_2, node_name_3], ) bc1.consensus.add_to_validator_connected(bc2.node) bc1.consensus.add_to_validator_connected(bc3.node) bc1.consensus.add_to_validator_connected(bc4.node) bc1.consensus.init() message = Message.new('message') ballot_init_2 = Ballot.new(node_name_2, message, IsaacState.INIT, BallotVotingResult.agree) ballot_id = ballot_init_2.ballot_id ballot_init_3 = Ballot(ballot_id, node_name_3, message, IsaacState.INIT, BallotVotingResult.agree, ballot_init_2.timestamp) ballot_init_4 = Ballot(ballot_id, node_name_4, message, IsaacState.INIT, BallotVotingResult.agree, ballot_init_2.timestamp) bc1.receive_ballot(ballot_init_2) bc1.receive_ballot(ballot_init_3) bc1.receive_ballot(ballot_init_4) assert bc1.consensus.slot.get_ballot_state(ballot_init_2) == IsaacState.SIGN ballot_sign_2 = Ballot(ballot_id, node_name_2, message, IsaacState.ACCEPT, BallotVotingResult.agree, ballot_init_2.timestamp) ballot_sign_3 = Ballot(ballot_id, node_name_3, message, IsaacState.SIGN, BallotVotingResult.agree, ballot_init_2.timestamp) ballot_sign_4 = Ballot(ballot_id, node_name_4, message, IsaacState.SIGN, BallotVotingResult.agree, ballot_init_2.timestamp) bc1.receive_ballot(ballot_sign_2) bc1.receive_ballot(ballot_sign_3) bc1.receive_ballot(ballot_sign_4) assert bc1.consensus.slot.get_ballot_state(ballot_init_2) == IsaacState.ACCEPT ballot_accept_3 = Ballot(ballot_id, node_name_3, message, IsaacState.ACCEPT, BallotVotingResult.agree, ballot_init_2.timestamp) ballot_accept_4 = Ballot(ballot_id, node_name_4, message, IsaacState.ACCEPT, BallotVotingResult.agree, ballot_init_2.timestamp) bc1.receive_ballot(ballot_accept_3) bc1.receive_ballot(ballot_accept_4) assert message in bc1.consensus.messages def test_next_message(): node_name_1 = 'http://localhost:5001' node_name_2 = 'http://localhost:5002' node_name_3 = 'http://localhost:5003' node_name_4 = 'http://localhost:5004' bc1 = blockchain_factory( node_name_1, 'http://localhost:5001', 100, [node_name_2, node_name_3, node_name_4], ) bc2 = blockchain_factory( node_name_2, 'http://localhost:5002', 100, [node_name_1, node_name_3, node_name_4], ) bc3 = blockchain_factory( node_name_3, 'http://localhost:5003', 100, [node_name_1, node_name_2, node_name_4], ) bc4 = blockchain_factory( node_name_4, 'http://localhost:5004', 100, [node_name_1, node_name_2, node_name_3], ) bc1.consensus.add_to_validator_connected(bc2.node) bc1.consensus.add_to_validator_connected(bc3.node) bc1.consensus.add_to_validator_connected(bc4.node) bc1.consensus.init() message_1 = Message.new('message-1') ballot_init_2 = Ballot.new(node_name_2, message_1, IsaacState.INIT, BallotVotingResult.agree) ballot_id = ballot_init_2.ballot_id ballot_init_3 = Ballot(ballot_id, node_name_3, message_1, IsaacState.INIT, BallotVotingResult.agree, ballot_init_2.timestamp) ballot_init_4 = Ballot(ballot_id, node_name_4, message_1, IsaacState.INIT, BallotVotingResult.agree, ballot_init_2.timestamp) bc1.receive_ballot(ballot_init_2) bc1.receive_ballot(ballot_init_3) bc1.receive_ballot(ballot_init_4) assert bc1.consensus.slot.get_ballot_state(ballot_init_2) == IsaacState.SIGN ballot_sign_2 = Ballot(ballot_id, node_name_2, message_1, IsaacState.ACCEPT, BallotVotingResult.agree, ballot_init_2.timestamp) ballot_sign_3 = Ballot(ballot_id, node_name_3, message_1, IsaacState.SIGN, BallotVotingResult.agree, ballot_init_2.timestamp) ballot_sign_4 = Ballot(ballot_id, node_name_4, message_1, IsaacState.SIGN, BallotVotingResult.agree, ballot_init_2.timestamp) bc1.receive_ballot(ballot_sign_2) bc1.receive_ballot(ballot_sign_3) bc1.receive_ballot(ballot_sign_4) assert bc1.consensus.slot.get_ballot_state(ballot_init_2) == IsaacState.ACCEPT ballot_accept_3 = Ballot(ballot_id, node_name_3, message_1, IsaacState.ACCEPT, BallotVotingResult.agree, ballot_init_2.timestamp) ballot_accept_4 = Ballot(ballot_id, node_name_4, message_1, IsaacState.ACCEPT, BallotVotingResult.agree, ballot_init_2.timestamp) bc1.receive_ballot(ballot_accept_3) bc1.receive_ballot(ballot_accept_4) assert message_1 in bc1.consensus.messages message_2 = Message.new('message-2') ballot_init_2 = Ballot.new(node_name_2, message_2, IsaacState.INIT, BallotVotingResult.agree) ballot_id_2 = ballot_init_2.ballot_id ballot_init_2.ballot_id = ballot_id_2 ballot_init_3.ballot_id = ballot_id_2 ballot_init_4.ballot_id = ballot_id_2 ballot_init_2.timestamp = ballot_init_2.timestamp ballot_init_3.timestamp = ballot_init_2.timestamp ballot_init_4.timestamp = ballot_init_2.timestamp ballot_init_2.message = message_2 ballot_init_3.message = message_2 ballot_init_4.message = message_2 bc1.receive_ballot(ballot_init_2) bc1.receive_ballot(ballot_init_3) bc1.receive_ballot(ballot_init_4) assert bc1.consensus.slot.get_ballot_state(ballot_init_2) == IsaacState.SIGN ballot_sign_2.ballot_id = ballot_id_2 ballot_sign_3.ballot_id = ballot_id_2 ballot_sign_4.ballot_id = ballot_id_2 ballot_sign_2.timestamp = ballot_init_2.timestamp ballot_sign_3.timestamp = ballot_init_2.timestamp ballot_sign_4.timestamp = ballot_init_2.timestamp ballot_sign_2.message = message_2 ballot_sign_3.message = message_2 ballot_sign_4.message = message_2 bc1.receive_ballot(ballot_sign_2) bc1.receive_ballot(ballot_sign_3) bc1.receive_ballot(ballot_sign_4) assert bc1.consensus.slot.get_ballot_state(ballot_init_2) == IsaacState.ACCEPT ballot_accept_3.ballot_id = ballot_id_2 ballot_accept_4.ballot_id = ballot_id_2 ballot_accept_3.message = message_2 ballot_accept_4.message = message_2 ballot_accept_3.timestamp = ballot_init_2.timestamp ballot_accept_4.timestamp = ballot_init_2.timestamp bc1.receive_ballot(ballot_accept_3) bc1.receive_ballot(ballot_accept_4) assert message_1 in bc1.consensus.messages
35.32419
108
0.710131
1,880
14,165
4.948936
0.039362
0.080825
0.110275
0.085125
0.89166
0.822979
0.806535
0.730546
0.72356
0.707868
0
0.051588
0.202188
14,165
400
109
35.4125
0.771702
0.003177
0
0.601286
0
0
0.051569
0
0
0
0
0
0.07074
1
0.019293
false
0
0.019293
0
0.041801
0
0
0
0
null
0
0
0
1
1
1
1
1
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
null
0
0
0
0
0
0
0
0
0
0
0
0
0
6
2484b713073294f833a7aedb426225a3f08b5595
299
py
Python
__init__.py
d-we/binja-golang-symbol-restore
251cc45cab66512fd404eaf69ec6e018684aa5d4
[ "MIT" ]
9
2020-06-15T09:14:18.000Z
2021-12-30T19:39:33.000Z
__init__.py
d-we/binja-golang-symbol-restore
251cc45cab66512fd404eaf69ec6e018684aa5d4
[ "MIT" ]
3
2020-06-10T03:29:26.000Z
2021-02-08T19:25:51.000Z
__init__.py
d-we/binja-golang-symbol-restore
251cc45cab66512fd404eaf69ec6e018684aa5d4
[ "MIT" ]
3
2020-08-15T16:01:14.000Z
2020-10-14T21:48:32.000Z
import binaryninja from .golang_symbol_restore import restore_golang_symbols binaryninja.plugin.PluginCommand.register("Restore Golang Symbols", "Fill region with breakpoint instructions.", restore_golang_symbols)
42.714286
86
0.622074
25
299
7.2
0.6
0.216667
0.333333
0
0
0
0
0
0
0
0
0
0.334448
299
6
87
49.833333
0.904523
0
0
0
0
0
0.210702
0
0
0
0
0
0
1
0
true
0
0.4
0
0.4
0
1
0
0
null
1
1
0
0
0
0
0
0
0
0
0
0
0
1
0
0
0
0
0
0
0
0
0
0
null
0
0
0
0
0
0
1
0
1
0
0
0
0
6
703a9b063f761ade9c2123a1def345dd3a9fc462
138
py
Python
pyplex/gl/__init__.py
pyplex/pyplex
66e19acb3efd1a8a69d28022edcb0b6ad5cb6b11
[ "MIT" ]
5
2018-01-17T09:08:38.000Z
2020-09-20T20:38:51.000Z
pyplex/gl/__init__.py
pyplex/pyplex
66e19acb3efd1a8a69d28022edcb0b6ad5cb6b11
[ "MIT" ]
null
null
null
pyplex/gl/__init__.py
pyplex/pyplex
66e19acb3efd1a8a69d28022edcb0b6ad5cb6b11
[ "MIT" ]
null
null
null
from .gl import GL20, GL21, GL30, GL31, GL32, GL33, GL40, GL41, GL42, GL43, GL44, GL45, GL_ANY from .enum import * from .constant import *
46
94
0.710145
23
138
4.217391
0.782609
0
0
0
0
0
0
0
0
0
0
0.208696
0.166667
138
3
95
46
0.634783
0
0
0
0
0
0
0
0
0
0
0
0
1
0
true
0
1
0
1
0
1
0
0
null
0
0
0
0
0
0
0
0
0
0
1
0
0
1
0
0
0
0
0
0
0
0
0
0
null
0
0
0
0
0
0
1
0
1
0
1
0
0
6
703aacd66e46deed1090e868e263e907aa004b9c
78
py
Python
metaL/core/__init__.py
ponyatov/metaLmin
6634b67465ea448c4a763d7c035b851579378ffd
[ "MIT" ]
null
null
null
metaL/core/__init__.py
ponyatov/metaLmin
6634b67465ea448c4a763d7c035b851579378ffd
[ "MIT" ]
null
null
null
metaL/core/__init__.py
ponyatov/metaLmin
6634b67465ea448c4a763d7c035b851579378ffd
[ "MIT" ]
null
null
null
from .object import * from .ns import * from .io import * from .time import *
15.6
21
0.692308
12
78
4.5
0.5
0.555556
0
0
0
0
0
0
0
0
0
0
0.205128
78
4
22
19.5
0.870968
0
0
0
0
0
0
0
0
0
0
0
0
1
0
true
0
1
0
1
0
1
0
0
null
1
0
0
0
0
0
0
0
0
0
0
0
0
1
0
0
0
0
0
0
0
0
0
0
null
0
0
0
0
0
0
1
0
1
0
1
0
0
6
563e1dc93625ecb24de9882d6fb7672e51e4500d
9,664
py
Python
Projects/ABM_DA/bussim/A03_calibration.py
RobertClay/DUST-RC
09f7ec9d8d093021d068dff8a7a48c15ea318b86
[ "MIT" ]
15
2018-11-21T14:57:24.000Z
2022-03-04T15:42:09.000Z
Projects/ABM_DA/bussim/A03_calibration.py
RobertClay/DUST-RC
09f7ec9d8d093021d068dff8a7a48c15ea318b86
[ "MIT" ]
125
2019-11-06T13:03:35.000Z
2022-03-07T13:38:33.000Z
Projects/ABM_DA/bussim/A03_calibration.py
RobertClay/DUST-RC
09f7ec9d8d093021d068dff8a7a48c15ea318b86
[ "MIT" ]
6
2018-11-20T15:56:49.000Z
2021-10-08T10:21:06.000Z
# -*- coding: utf-8 -*- """ This code evaluates the outputs from calibrated BusSim @author: geomlk """ import numpy as np import matplotlib.pyplot as plt import pickle import os os.chdir("/Users/minhkieu/Documents/Github/dust/Projects/ABM_DA/bussim/") ''' Step 1: Load calibration results ''' def load_calibrated_params_IncreaseRate(IncreaseRate): name0 = ['./Calibration/BusSim_Model2_calibration_IncreaseRate_',str(IncreaseRate),'.pkl'] str1 = ''.join(name0) with open(str1, 'rb') as f: model_params, best_mean_model2,Sol_archived_mean,Sol_archived_std,PI_archived = pickle.load(f) name0 = ['./Calibration/BusSim_Model1_calibration_IncreaseRate_',str(IncreaseRate),'.pkl'] str1 = ''.join(name0) with open(str1, 'rb') as f: model_params, best_mean_model1,Sol_archived_mean,Sol_archived_std,PI_archived = pickle.load(f) return best_mean_model1,best_mean_model2 def load_calibrated_params_maxDemand(maxDemand): name0 = ['./Calibration/BusSim_Model2_calibration_static_maxDemand_',str(maxDemand),'.pkl'] str1 = ''.join(name0) with open(str1, 'rb') as f: model_params, best_mean_model2,Sol_archived_mean,Sol_archived_std,PI_archived = pickle.load(f) name0 = ['./Calibration/BusSim_Model1_calibration_static_maxDemand_',str(maxDemand),'.pkl'] str1 = ''.join(name0) with open(str1, 'rb') as f: model_params, best_mean_model1,Sol_archived_mean,Sol_archived_std,PI_archived = pickle.load(f) return best_mean_model1,best_mean_model2 ''' Step 2: Load synthetic real-time data ''' def load_actual_params_IncreaseRate(IncreaseRate): #load up a model from a Pickle name0 = ['./Data/Realtime_data_IncreaseRate_',str(IncreaseRate),'.pkl'] str1 = ''.join(name0) with open(str1, 'rb') as f: model_params,t,x,GroundTruth = pickle.load(f) return model_params,t,x def load_actual_params_maxDemand(maxDemand): #load up a model from a Pickle name0 = ['./Data/Realtime_data_static_maxDemand_',str(maxDemand),'.pkl'] str1 = ''.join(name0) with open(str1, 'rb') as f: model_params,t,x,GroundTruth = pickle.load(f) return model_params,t,x #define RMSE function def rmse(yhat,y): return np.sqrt(np.square(np.subtract(yhat, y).mean())) ''' Step 3: Evaluation of calibrated models when the arrival rate is changing by 1 to 20% ''' def IncreaseRate_analysis(): Results = [0,0] do_plot=True for IncreaseRate in range(1,20,2): #load real-time data model_params, t,x = load_actual_params_IncreaseRate(IncreaseRate) #load calibrated parameters best_mean_model1,best_mean_model2 = load_calibrated_params_IncreaseRate(IncreaseRate) #load the BusSim-static model from BusSim_stochastic import Model as Model2 ArrivalRate = best_mean_model2[0:(model_params['NumberOfStop'])] DepartureRate = best_mean_model2[model_params['NumberOfStop']:(2*model_params['NumberOfStop'])] TrafficSpeed = best_mean_model2[-2] #load model model = Model2(model_params, TrafficSpeed,ArrivalRate,DepartureRate) for time_step in range(int(model.EndTime / model.dt)): model.step() x2 = np.array([bus.trajectory for bus in model.buses]).T t2 = np.arange(0, model.EndTime, model.dt) x2[x2 <= 0 ] = np.nan x2[x2 >= (model.NumberOfStop * model.LengthBetweenStop)] = np.nan #load the BusSim-stochastic model from BusSim_deterministic import Model as Model1 ArrivalRate = best_mean_model1[0:(model_params['NumberOfStop'])] DepartureRate = best_mean_model1[model_params['NumberOfStop']:(2*model_params['NumberOfStop'])] TrafficSpeed = best_mean_model1[-2] #load model model = Model1(model_params, TrafficSpeed,ArrivalRate,DepartureRate) for time_step in range(int(model.EndTime / model.dt)): model.step() x3 = np.array([bus.trajectory for bus in model.buses]).T t3 = np.arange(0, model.EndTime, model.dt) x3[x3 <= 0 ] = np.nan x3[x3 >= (model.NumberOfStop * model.LengthBetweenStop)] = np.nan #plot individual run (if needed) if do_plot: plt.figure(3, figsize=(16 / 2, 9 / 2)) plt.clf() plt.plot(t, x, linewidth=1,color='black',linestyle = '-') plt.plot(t2, x2, linewidth=1.5,linestyle = ':',color='r') plt.ylabel('Distance (m)') plt.xlabel('Time (s)') plt.plot(t3, x3, linewidth=1.5,linestyle = '--',color='b') plt.plot([], [], linewidth=1.5,linestyle = ':',color='r',label='BusSim-stochastic') plt.plot([], [], linewidth=1.5,linestyle = '--',color='b',label='BusSim-deterministic') plt.plot([], [], linewidth=1,color='black',linestyle = '-',label='Real-time') plt.legend() plt.show() name0 = ['./Figures/Fig_calibration_IncreaseRate_',str(IncreaseRate),'.pdf'] str1 = ''.join(name0) plt.savefig(str1, dpi=200,bbox_inches='tight') #calculate RMSE x3[np.isnan(x3)]=0 x2[np.isnan(x2)]=0 x[np.isnan(x)]=0 RMSE1 = rmse(x3,x) RMSE2 = rmse(x2,x) Results = np.vstack((Results,[RMSE1,RMSE2])) #plot the evaluation results do_plot_results=True if do_plot_results: plt.figure(3, figsize=(16 / 2, 9 / 2)) plt.clf() plt.plot(np.arange(1,20,2),Results[1:,1],linewidth=1.5,linestyle = '--',color='b',label='BusSim-deterministic') plt.plot(np.arange(1,20,2),Results[1:,0],linewidth=1.5,linestyle = ':',color='r',label='BusSim-stochastic') plt.ylabel('RMSE (m)') plt.xlabel(r'$\xi$ (%)') plt.legend() plt.show() plt.savefig('./Figures/Fig_calibration_results_IncreaseRate.pdf', dpi=200,bbox_inches='tight') return Results ''' Step 3: Evaluation of the case when the maxDemand increases from 0.5 to 4.5 ''' def maxDemand_analysis(): Results = [0,0] do_plot=False for maxDemand in range(1,10,2): maxDemand=maxDemand/2 model_params, t,x = load_actual_params_maxDemand(maxDemand) best_mean_model1,best_mean_model2 = load_calibrated_params_maxDemand(maxDemand) from BusSim_stochastic import Model as Model2 ArrivalRate = best_mean_model2[0:(model_params['NumberOfStop'])] DepartureRate = best_mean_model2[model_params['NumberOfStop']:(2*model_params['NumberOfStop'])] TrafficSpeed = best_mean_model2[-1] #load model model = Model2(model_params, TrafficSpeed,ArrivalRate,DepartureRate) for time_step in range(int(model.EndTime / model.dt)): model.step() x2 = np.array([bus.trajectory for bus in model.buses]).T t2 = np.arange(0, model.EndTime, model.dt) x2[x2 <= 0 ] = np.nan x2[x2 >= (model.NumberOfStop * model.LengthBetweenStop)] = np.nan from BusSim_deterministic import Model as Model1 ArrivalRate = best_mean_model1[0:(model_params['NumberOfStop'])] DepartureRate = best_mean_model1[model_params['NumberOfStop']:(2*model_params['NumberOfStop'])] TrafficSpeed = best_mean_model1[-1] #load model model = Model1(model_params, TrafficSpeed,ArrivalRate,DepartureRate) for time_step in range(int(model.EndTime / model.dt)): model.step() x3 = np.array([bus.trajectory for bus in model.buses]).T t3 = np.arange(0, model.EndTime, model.dt) x3[x3 <= 0 ] = np.nan x3[x3 >= (model.NumberOfStop * model.LengthBetweenStop)] = np.nan #plot individual plots if it's needed if do_plot: plt.figure(3, figsize=(16 / 2, 9 / 2)) plt.clf() plt.plot(t2, x2, linewidth=1,linestyle = ':',color='r',label='BusSim-stochastic') plt.plot(t, x, linewidth=1,color='black',linestyle = '-',label='Real-time') plt.ylabel('Distance (m)') plt.xlabel('Time (s)') plt.plot(t3, x3, linewidth=.5,linestyle = '--',color='b',label='BusSim-deterministic') plt.legend() plt.show() name0 = ['./Figures/Fig_calibration_maxDemand_',str(maxDemand),'.pdf'] str1 = ''.join(name0) plt.savefig(str1, dpi=200,bbox_inches='tight') #calculate RMSE for each run x3[np.isnan(x3)]=0 x2[np.isnan(x2)]=0 x[np.isnan(x)]=0 RMSE1 = rmse(x3,x) RMSE2 = rmse(x2,x) Results = np.vstack((Results,[RMSE1,RMSE2])) #plot the evaluation results do_plot_results=True if do_plot_results: plt.figure(3, figsize=(16 / 2, 9 / 2)) plt.clf() plt.plot(np.arange(1,10,2),Results[1:,0],linewidth=1.5,linestyle = '--',color='b',label='BusSim-deterministic') plt.plot(np.arange(1,10,2),Results[1:,1],linewidth=1.5,linestyle = ':',color='r',label='BusSim-stochastic') plt.ylabel('RMSE (m)') plt.xlabel(r'$maxDemand$ (passenger/min)') plt.xticks(np.arange(1,10,2), (np.arange(1,10,2)/2)) plt.legend() plt.show() plt.savefig('./Figures/Fig_calibration_results_maxDemand.pdf', dpi=200,bbox_inches='tight') return Results if __name__ == '__main__': #main code, just call the evaluation codes Results = IncreaseRate_analysis() #Results = maxDemand_analysis()
45.158879
119
0.627276
1,244
9,664
4.71865
0.141479
0.048722
0.02862
0.025894
0.851448
0.807836
0.776831
0.765758
0.725724
0.679557
0
0.035256
0.233961
9,664
214
120
45.158879
0.757666
0.06012
0
0.670732
0
0
0.118463
0.059686
0
0
0
0
0
1
0.042683
false
0.006098
0.04878
0.006098
0.134146
0
0
0
0
null
0
0
0
1
1
1
1
1
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
null
0
0
0
0
0
0
0
0
0
0
0
0
0
6
56708965d6fec056a956b940dd9b227f3d8fbfd4
8,820
py
Python
dist_train/workers/baseline.py
victorcampos7/edl
ffdf23d4e102ca7d69a1408bafa267b0c7d8bfa0
[ "MIT" ]
30
2020-02-16T15:52:59.000Z
2022-03-22T10:54:54.000Z
dist_train/workers/baseline.py
imatge-upc/edl
ffdf23d4e102ca7d69a1408bafa267b0c7d8bfa0
[ "MIT" ]
null
null
null
dist_train/workers/baseline.py
imatge-upc/edl
ffdf23d4e102ca7d69a1408bafa267b0c7d8bfa0
[ "MIT" ]
7
2020-02-16T15:53:05.000Z
2022-01-18T03:41:03.000Z
# Copyright (c) 2019, salesforce.com, inc. # All rights reserved. # SPDX-License-Identifier: MIT # For full license text, see the LICENSE file in the repo root or https://opensource.org/licenses/MIT import os import json import time import torch import numpy as np from dist_train.utils.shared_optim import SharedAdam as Adam from dist_train.workers.base import EpisodicOffPolicyManager, OffPolicyManager, OnPolicyManager, PPOManager class EpisodicOffPolicy(EpisodicOffPolicyManager): def rollout_wrapper(self, c_ep_counter): st = time.time() self.agent_model.play_episode() # Add episode for training. self.replay_buffer.add_episode(self.agent_model.transitions_for_buffer(training=True)) dur = time.time() - st # Calculate losses to allow dense logging episode_stats = self.agent_model.episode_summary() self._log_rollout(c_ep_counter, dur, episode_stats) def _log_rollout(self, c_ep_counter, dur, episode_stats): # Increment the steps counters, place the log in the epoch buffer, and give a quick rollout print c_ep_counter += 1 self.time_keeper['n_rounds'] += 1 n_steps = int(self.agent_model.train_steps.data.item()) + int(c_ep_counter.item()) timestamp = ''.join('{:017.4f}'.format(time.time()).split('.')) log = {'{:d}.{}'.format(n_steps, timestamp): [str(sl) for sl in episode_stats]} self.epoch_buffer.append(log) dense_save = False # (int(self.time_keeper['n_rounds']) % self.settings.ep_save) == 0 and self.rank == 0 log_str = '{:10d} - {} {:6d} Dur = {:6.2f}, Steps = {:3d} {} {}'.format( n_steps, '*' if dense_save else ' ', int(self.time_keeper['n_rounds']), dur, int(self.agent_model.n_steps), '!!!' if int(self.agent_model.was_success) else ' ', '*' if dense_save else ' ' ) self.logger.info(log_str) def eval_wrapper(self): stats = [] episodes = {} for evi in range(self.config.get('eval_iters', 10)): self.agent_model.play_episode(do_eval=self.config.get('greedy_eval', True)) ep_stats = [float(x) for x in self.agent_model.episode_summary()] stats.append(ep_stats) dump_ep = [] for t in self.agent_model.curr_ep: dump_t = {k: np.array(v.detach()).tolist() for k, v in t.items()} dump_ep.append(dump_t) episodes[evi] = dump_ep return stats, episodes class OffPolicy(OffPolicyManager): def env_transitions_wrapper(self, c_step_counter, num_transitions): # Collect transitions and update counter self.agent_model.collect_transitions(num_transitions, skip_im_rew=True) c_step_counter += num_transitions # Add episode for training self.replay_buffer.add_episode(self.agent_model.transitions_for_buffer(training=True)) def eval_wrapper(self): stats = [] episodes = {} for evi in range(self.config.get('eval_iters', 10)): self.agent_model.play_episode(do_eval=self.config.get('greedy_eval', True)) ep_stats = [float(x) for x in self.agent_model.episode_summary()] stats.append(ep_stats) dump_ep = [] for t in self.agent_model.curr_ep: dump_t = {k: np.array(v.cpu().detach()).tolist() for k, v in t.items()} dump_ep.append(dump_t) episodes[evi] = dump_ep return stats, episodes class HierarchicalEpisodicOffPolicy(EpisodicOffPolicy): def __init__(self, rank, config, settings): super().__init__(rank, config, settings) self.optim_lo_path = os.path.join(self.exp_dir, 'optim_lo.pth.tar') self.optim_lo = Adam(self.agent_model._lo_parameters, lr=config['learning_rate']) if os.path.isfile(self.optim_lo_path): self.optim_lo.load_state_dict(torch.load(self.optim_lo_path)) def checkpoint(self): super().checkpoint() torch.save(self.optim_lo, self.optim_lo_path) def rollout_wrapper(self, c_ep_counter): st = time.time() self.agent_model.play_episode(optim_lo=self.optim_lo) self.agent_model.relabel_episode() # Add episode for training. self.replay_buffer.add_episode(self.agent_model.transitions_for_buffer(training=True)) dur = time.time() - st # Calculate losses to allow dense logging episode_stats = self.agent_model.episode_summary() self._log_rollout(c_ep_counter, dur, episode_stats) class OnPolicy(OnPolicyManager): def rollout_wrapper(self, c_ep_counter): st = time.time() self.agent_model.eval() self.agent_model.play_episode() self.agent_model.train() loss = self.condense_loss(self.agent_model()) dur = time.time() - st # Calculate losses to allow dense logging episode_stats = self.agent_model.episode_summary() self._log_rollout(c_ep_counter, dur, episode_stats) return loss def _log_rollout(self, c_ep_counter, dur, episode_stats): c_ep_counter += 1 n_steps = int(self.agent_model.train_steps.data.item()) + int(c_ep_counter.item()) timestamp = ''.join('{:017.4f}'.format(time.time()).split('.')) dense_save = False # (int(self.time_keeper['n_rounds']) % self.settings.ep_save) == 0 and self.rank == 0 # The burden to save falls to us if dense_save: dstr = '{:010d}.{}'.format(n_steps, timestamp) config_path = self.settings.config_path exp_name = config_path.split('/')[-1][:-5] exp_dir = os.path.join(self.settings.log_dir, exp_name) c_path = os.path.join(exp_dir, dstr + '.json') dump_ep = [] for t in self.agent_model.curr_ep: dump_t = {k: np.array(v.detach()).tolist() for k, v in t.items()} dump_ep.append(dump_t) with open(c_path, 'wt') as f: json.dump(dump_ep, f) self.time_keeper['ep_save'] = int(self.time_keeper['n_rounds']) # Increment the steps counters and log the results. self.time_keeper['n_rounds'] += 1 hist_name = 'hist_{}.json'.format(self.rank) with open(os.path.join(self.exp_dir, hist_name), 'a') as save_file: log = {'{:d}.{}'.format(n_steps, timestamp): [str(sl) for sl in episode_stats]} save_file.write(json.dumps(log)) save_file.close() log_str = '{:10d} - {} {:6d} Dur = {:6.2f}, Steps = {:3d} {} {}'.format( n_steps, '*' if dense_save else ' ', int(self.time_keeper['n_rounds']), dur, int(self.agent_model.n_steps), '!!!' if int(self.agent_model.was_success) else ' ', '*' if dense_save else ' ' ) self.logger.info(log_str) def eval_wrapper(self): stats = [] episodes = {} for evi in range(self.config.get('eval_iters', 10)): self.agent_model.play_episode(do_eval=bool(self.config.get('greedy_eval', True))) ep_stats = [float(x) for x in self.agent_model.episode_summary()] stats.append(ep_stats) dump_ep = [] for t in self.agent_model.curr_ep: dump_t = {k: np.array(v.detach()).tolist() for k, v in t.items()} dump_ep.append(dump_t) episodes[evi] = dump_ep return stats, episodes class PPO(PPOManager, OnPolicy): def rollout_wrapper(self, c_ep_counter): st = time.time() self.agent_model.reach_horizon() dur = time.time() - st # Calculate losses to allow dense logging episode_stats = self.agent_model.episode_summary() self._log_rollout(c_ep_counter, dur, episode_stats) class HierarchicalPPO(PPO): def __init__(self, rank, config, settings): super().__init__(rank, config, settings) self.optim_lo_path = os.path.join(self.exp_dir, 'optim_lo.pth.tar') self.optim_lo = Adam(self.agent_model._lo_parameters, lr=config['learning_rate']) if os.path.isfile(self.optim_lo_path): self.optim_lo.load_state_dict(torch.load(self.optim_lo_path)) def checkpoint(self): super().checkpoint() torch.save(self.optim_lo, self.optim_lo_path) def rollout_wrapper(self, c_ep_counter): st = time.time() self.agent_model.reach_horizon(optim_lo=self.optim_lo) dur = time.time() - st # Calculate losses to allow dense logging episode_stats = self.agent_model.episode_summary() self._log_rollout(c_ep_counter, dur, episode_stats)
37.372881
113
0.625057
1,191
8,820
4.373636
0.164568
0.0622
0.096756
0.032252
0.760799
0.739105
0.722404
0.722404
0.722404
0.722404
0
0.006525
0.252834
8,820
236
114
37.372881
0.783915
0.096485
0
0.742331
0
0.01227
0.045403
0
0
0
0
0
0
1
0.092025
false
0
0.042945
0
0.196319
0
0
0
0
null
0
0
0
0
1
1
1
1
1
0
0
0
0
0
0
0
0
0
0
1
0
0
0
0
null
0
0
0
0
0
0
0
0
0
0
0
0
0
6
8e673db362c569f9ad4cae086dd2478daf171db2
13,601
py
Python
figures.py
maria-kuruvilla/temp_collective_new
c45b72cee7c17072507eb67790d1699f5684098a
[ "MIT" ]
null
null
null
figures.py
maria-kuruvilla/temp_collective_new
c45b72cee7c17072507eb67790d1699f5684098a
[ "MIT" ]
null
null
null
figures.py
maria-kuruvilla/temp_collective_new
c45b72cee7c17072507eb67790d1699f5684098a
[ "MIT" ]
null
null
null
""" Code to plot average nearest neighbor distance between fish in a school as a function of group size - one line per water temperature. """ # imports import sys, os import numpy as np import matplotlib.pyplot as plt import pickle from matplotlib import cm import argparse #argparse def boolean_string(s): # this function helps with getting Boolean input if s not in ['False', 'True']: raise ValueError('Not a valid boolean string') return s == 'True' # note use of == # create the parser object parser = argparse.ArgumentParser() # NOTE: argparse will throw an error if: # - a flag is given with no value # - the value does not match the type # and if a flag is not given it will be filled with the default. parser.add_argument('-a', '--a_string', default='annd', type=str) #parser.add_argument('-s', '--a_string', default='annd_std', type=str) parser.add_argument('-b', '--integer_b', default=3, type=int) parser.add_argument('-c', '--float_c', default=1.5, type=float) parser.add_argument('-v', '--verbose', default=True, type=boolean_string) # Note that you assign a short name and a long name to each argument. # You can use either when you call the program, but you have to use the # long name when getting the values back from "args". # get the arguments args = parser.parse_args() xx=0 h = 0.3 if args.a_string=='annd': y_label = 'ANND (Body Length)' xx = 1 if args.a_string=='speed': y_label = 'Speed (Body Length/s)' if args.a_string=='acceleration': y_label = 'Acceleration (Body Length/s'+r'$^2$)' if args.a_string=='polarization': y_label = 'Polarization' xx=1 if args.a_string=='spikes': y_label = 'Number of \n startles' h = 0.4 if args.a_string=='accurate': y_label = 'Number of \n accurate startles' h = 0.4 if args.a_string=='latency': y_label = 'Latency (frames)' if args.a_string=='local_pol': y_label = 'Local polarization' xx = 1 if args.a_string=='local_pol_m': y_label = 'Local polarization' xx = 1 if args.a_string=='dtc': y_label = 'Distance to center \n (pixels)' if args.a_string=='dtc_roi': y_label = 'Distance to center \n (pixels)' if args.a_string=='dtc_roi_norm': y_label = 'Distance to center \n (Body Length)' if args.a_string=='percentile_speed99': y_label = '99th percentile of speed \n (Body Length/s)' if args.a_string=='percentile_speed90': y_label = '90th percentile of speed \n (Body Length/s)' if args.a_string=='percentile_speed80': y_label = '80th percentile of speed \n (Body Length/s)' if args.a_string=='percentile_speed70': y_label = '70th percentile of speed \n (Body Length/s)' if args.a_string=='percentile_speed60': y_label = '60th percentile of speed \n (Body Length/s)' if args.a_string=='percentile_speed100': y_label = '100th percentile of speed \n (Body Length/s)' if args.a_string=='percentile_speed_low_pass99': y_label = '99th percentile of speed \n (Body Length/s)' if args.a_string=='percentile_speed_low_pass90': y_label = '90th percentile of speed \n (Body Length/s)' if args.a_string=='percentile_speed_low_pass80': y_label = '80th percentile of speed \n (Body Length/s)' if args.a_string=='percentile_speed_low_pass70': y_label = '70th percentile of speed \n (Body Length/s)' if args.a_string=='percentile_speed_low_pass60': y_label = '60th percentile of speed \n (Body Length/s)' if args.a_string=='percentile_speed_low_pass100': y_label = '100th percentile of speed \n (Body Length/s)' if args.a_string=='percentile_acc99': y_label = '99th percentile of \n acceleration \n (Body Length/s'+r'$^2$)' if args.a_string=='percentile_acc90': y_label = '90th percentile of \n acceleration \n (Body Length/s'+r'$^2$)' if args.a_string=='percentile_acc80': y_label = '80th percentile of \n acceleration \n (Body Length/s'+r'$^2$)' if args.a_string=='percentile_acc70': y_label = '70th percentile of \n acceleration \n (Body Length/s'+r'$^2$)' if args.a_string=='percentile_acc60': y_label = '60th percentile of \n acceleration \n (Body Length/s'+r'$^2$)' if args.a_string=='percentile_acc100': y_label = '100th percentile of \n acceleration \n (Body Length/s'+r'$^2$)' if args.a_string=='percentile_acc_low_pass99': y_label = '99th percentile of \n acceleration \n (Body Length/s'+r'$^2$)' if args.a_string=='percentile_acc_low_pass90': y_label = '90th percentile of \n acceleration \n (Body Length/s'+r'$^2$)' if args.a_string=='percentile_acc_low_pass80': y_label = '80th percentile of \n acceleration \n (Body Length/s'+r'$^2$)' if args.a_string=='percentile_acc_low_pass70': y_label = '70th percentile of \n acceleration \n (Body Length/s'+r'$^2$)' if args.a_string=='percentile_acc_low_pass60': y_label = '60th percentile of \n acceleration \n (Body Length/s'+r'$^2$)' if args.a_string=='percentile_acc_low_pass100': y_label = '100th percentile of \n acceleration \n (Body Length/s'+r'$^2$)' if args.a_string=='unmasked_startles': y_label = 'No. of startles \n per unit unmasked time' if args.a_string=='max_loom_speed': y_label = 'Maximum speed during loom \n (Body Length/s)' if args.a_string=='loom_speed99': y_label = '99th percentile of \n speed during loom \n (Body Length/s)' if args.a_string=='loom_speed90': y_label = '90th percentile of \n speed during loom \n (Body Length/s)' if args.a_string=='max_loom_acc': y_label = 'Maximum acceleration during loom \n (Body Length/s'+r'$^2$)' if args.a_string=='loom_acc99': y_label = '99th percentile of \n acceleration during loom \n (Body Length/s'+r'$^2$)' if args.a_string=='loom_acc90': y_label = '90th percentile of \n acceleration during loom \n (Body Length/s'+r'$^2$)' if args.a_string=='max_loom_speed_low_pass': y_label = 'Maximum speed during loom \n (Body Length/s)' if args.a_string=='loom_speed99_low_pass': y_label = '99th percentile of \n speed during loom \n (Body Length/s)' if args.a_string=='loom_speed90_low_pass': y_label = '90th percentile of \n speed during loom \n (Body Length/s)' if args.a_string=='max_loom_acc_low_pass': y_label = 'Maximum acceleration during loom \n (Body Length/s'+r'$^2$)' if args.a_string=='loom_acc99_low_pass': y_label = '99th percentile of \n acceleration during loom \n (Body Length/s'+r'$^2$)' if args.a_string=='loom_acc90_low_pass': y_label = '90th percentile of \n acceleration during loom \n (Body Length/s'+r'$^2$)' if args.a_string=='ratio_max_loom_speed_low_pass': y_label = 'Ratio of maximum \n speed during loom \n to before loom' if args.a_string=='ratio_loom_speed99_low_pass': y_label = 'Ratio of 99th percentile of \n speed during loom \n to before loom' if args.a_string=='ratio_loom_speed90_low_pass': y_label = 'Ratio of 90th percentile of \n speed during loom \n to before loom' if args.a_string=='ratio_max_loom_acc_low_pass': y_label = 'Ratio of maximum \n acceleration during loom \n to before loom' if args.a_string=='ratio_loom_acc99_low_pass': y_label = 'Ratio of 99th percentile of \n acceleration during loom \n to before loom' if args.a_string=='ratio_loom_acc90_low_pass': y_label = 'Ratio of 90th percentile of \n acceleration during loom \n to before loom' if args.a_string=='ratio_loom_acc50_low_pass': y_label = 'Ratio of 50th percentile of \n acceleration during loom \n to before loom' if args.a_string=='ratio_loom_speed50_low_pass': y_label = 'Ratio of 50th percentile of \n speed during loom \n to before loom' if args.a_string=='max_non_loom_speed_low_pass': y_label = 'Maximum speed before loom \n (Body Length/s)' if args.a_string=='non_loom_speed99_low_pass': y_label = '99th percentile of \n speed before loom \n (Body Length/s)' if args.a_string=='non_loom_speed90_low_pass': y_label = '90th percentile of \n speed before loom \n (Body Length/s)' if args.a_string=='max_non_loom_acc_low_pass': y_label = 'Maximum acceleration before loom \n (Body Length/s'+r'$^2$)' if args.a_string=='non_loom_acc99_low_pass': y_label = '99th percentile of \n acceleration before loom \n (Body Length/s'+r'$^2$)' if args.a_string=='non_loom_acc90_low_pass': y_label = '90th percentile of \n acceleration before loom \n (Body Length/s'+r'$^2$)' if args.a_string=='unmasked_startles_ratio': y_label = 'Proportion of accurate startles' if args.a_string=='new_masked_startles_ratio': y_label = 'Proportion of accurate startles' if args.a_string=='prop_startles': y_label = 'Proportion of individuals \n that startle' xx=1 if args.a_string=='prop_startles_new_mask': y_label = 'Proportion of individuals \n that startle' xx=1 if args.a_string=='prop_startles_no_nan_new_mask': y_label = 'Proportion of individuals \n that startle' xx=1 if args.a_string=='loom_startles': y_label = 'Number of startles \n per fish during loom' if args.a_string=='loom_startles_normalized': y_label = 'Number of startles \n per fish during loom' if args.a_string=='preloom_startles_normalized': y_label = 'Number of startles \n per fish before loom' if args.a_string=='nonloom_startles_normalized': y_label = 'Number of startles \n per fish between looms' if args.a_string=='ind_startle_speed': y_label = 'Maximum startle speed \n (Body Length/s)' if args.a_string=='ind_median_speed': y_label = 'Median speed before loom \n (Body Length/s)' if args.a_string=='ind_ratio_speed': y_label = 'Ratio of max startle speed \n to median speed before loom' in_dir1 = '../../output/temp_collective/roi/' + args.a_string + '.p' annd_values = pickle.load(open(in_dir1, 'rb')) # 'rb is for read binary in_dir2 = '../../output/temp_collective/roi/' + args.a_string + '_std.p' out_dir = '../../output/temp_collective/roi_figures/' + args.a_string + '.png' std_annd_values = pickle.load(open(in_dir2, 'rb')) # 'rb is for read binary temperature = [9,13,17,21,25,29] if xx == 0: group = [1,2,4,8,16] else: group = [2,4,8,16] #group = [1,8] x = 5 # 5 for gs upto 16 #Plotting lw=1.25 fs=12 colors = plt.cm.viridis(np.linspace(0,1,6)) plt.close('all') # always start by cleaning up fig = plt.figure(figsize=(10,6)) ax = fig.add_subplot(211) plt.subplots_adjust(left=None, bottom=None, right=None, top=None, wspace=None, hspace=h) for i in range(6): ax.plot(group[:x], annd_values[i,:x], label = str(temperature[i])+ r'$^{\circ}$C', linewidth = lw, color = colors[i]) ax.fill_between(group[:x], annd_values[i,:x] - std_annd_values[i,:x], annd_values[i,:x] + std_annd_values[i,:x], alpha = 0.3, color = colors[i]) plt.xlabel('Group Size', size = fs) plt.ylabel(y_label, size = fs) plt.xscale('log',basex=2) if xx == 0: plt.xticks(ticks = [1,2,4,8,16], labels = [1,2,4,8,16]) else: plt.xticks(ticks = [2,4,8,16], labels = [2,4,8,16]) """ if xx == 0: plt.xticks(ticks = [1,2,4,8,16,32], labels = [1,2,4,8,16,32]) else: plt.xticks(ticks = [2,4,8,16,32], labels = [2,4,8,16,32]) """ #plt.xlim(right = 30) ax.tick_params(labelsize=.9*fs) ax.set_title('a)', loc='left', fontsize = fs) plt.legend(fontsize=fs, loc='upper right', title = 'Water Temperature', framealpha = 0.5) x=6 colors = plt.cm.viridis(np.linspace(0,1,5)) # 5 for gs upto 16 ax = fig.add_subplot(212) for i in range(4): ax.plot(temperature[0:x], annd_values[0:x,i], label = str(group[i]), linewidth = lw, color = colors[i]) ax.fill_between(temperature[0:x], annd_values[0:x,i] - std_annd_values[0:x,i], annd_values[0:x,i] + std_annd_values[0:x,i], alpha = 0.3, color = colors[i]) plt.xlabel('Temperature '+r'($^{\circ}$C)', size = fs) plt.locator_params(axis='x', nbins=5) plt.ylabel(y_label, size = fs) plt.xticks(ticks = [9,13,17,21,25,29], labels = [9,13,17,21,25,29]) #plt.xlim(right = 30) ax.tick_params(labelsize=.9*fs) ax.set_title('b)', loc='left', fontsize = fs) plt.legend(fontsize=fs, loc='upper right', title = 'Group Size', framealpha = 0.5) fig.savefig(out_dir, dpi = 300) plt.show() """ #SPEED in_dir1 = '../../output/temp_collective/roi/average_speed.p' speed_values = pickle.load(open(in_dir1, 'rb')) # 'rb is for read binary in_dir2 = '../../output/temp_collective/roi/speed_std.p' out_dir = '../../output/temp_collective/roi_figures/speed.png' std_speed = pickle.load(open(in_dir2, 'rb')) # 'rb is for read binary temperature = [29,25,21,17,13,9] group = [1,2,4,8,16] x = 5 #Plotting lw=1.25 fs=14 colors = plt.cm.viridis_r(np.linspace(0,1,6)) plt.close('all') # always start by cleaning up fig = plt.figure(figsize=(12,8)) ax = fig.add_subplot(211) for i in range(6): ax.plot(group[0:x], speed_values[i,0:x], label = str(temperature[i])+ r'$^{\circ}$C', linewidth = lw, color = colors[i]) ax.fill_between(group[0:x], speed_values[i,0:x] - std_speed[i,0:x], speed_values[i,0:x] + std_speed[i,0:x], alpha = 0.3, color = colors[i]) plt.xlabel('Group Size', size = 0.9*fs) plt.ylabel('Speed (Body Length/s)', size = 0.9*fs) ax.tick_params(labelsize=.8*fs) ax.set_title('a)', loc='left', fontsize = fs) plt.legend(fontsize=fs, loc='upper right', title = 'Water Temperature') x=6 colors = plt.cm.viridis(np.linspace(0,1,5)) ax = fig.add_subplot(212) for i in range(1,5): ax.plot(temperature[0:x], speed_values[0:x,i], label = str(group[i]), linewidth = lw, color = colors[i]) ax.fill_between(temperature[0:x], speed_values[0:x,i] - std_speed[0:x,i], speed_values[0:x,i] + std_speed[0:x,i], alpha = 0.3, color = colors[i]) plt.xlabel('Temperature '+r'($^{\circ}$C)', size = 0.9*fs) plt.locator_params(axis='x', nbins=5) plt.ylabel('Speed (Body Length/s)', size = 0.9*fs) ax.tick_params(labelsize=.8*fs) ax.set_title('b)', loc='left', fontsize = fs) plt.legend(fontsize=fs, loc='upper right', title = 'Group Size') #fig.suptitle('Average Nearest Neighbor Distance (ANND)', size = 1.5*fs) fig.savefig(out_dir) plt.show() """
35.792105
160
0.710462
2,404
13,601
3.849002
0.121048
0.060521
0.092727
0.105371
0.818653
0.794661
0.758133
0.72852
0.690587
0.668972
0
0.038361
0.131755
13,601
379
161
35.886544
0.745194
0.063378
0
0.286996
0
0
0.503086
0.097643
0
0
0
0
0
1
0.004484
false
0.143498
0.026906
0
0.035874
0
0
0
0
null
0
0
0
1
1
1
1
0
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
null
0
0
0
0
0
0
0
1
0
0
0
0
0
6
8eed562bb3ffb90d5a64ae9eed83f174c8c31c52
11,116
py
Python
util/modules_asym.py
Isaac-Li-cn/certify_robustness
f904dc923afc6354e406c57a1c923d13fc39d315
[ "BSD-3-Clause" ]
null
null
null
util/modules_asym.py
Isaac-Li-cn/certify_robustness
f904dc923afc6354e406c57a1c923d13fc39d315
[ "BSD-3-Clause" ]
null
null
null
util/modules_asym.py
Isaac-Li-cn/certify_robustness
f904dc923afc6354e406c57a1c923d13fc39d315
[ "BSD-3-Clause" ]
null
null
null
""" 这个文件修改自原文件,修改内容包括: 1. 删除quadratic algorithm的使用,因为还没想好该怎么用 2. 从原来的单扰动改为多扰动 """ ''' >>> This file creates modules that can do forward, backward pass as well as bound propagation ''' import torch import torch.nn as nn import torch.nn.functional as F from torch.nn.parameter import Parameter from abc import ABCMeta, abstractmethod import numpy as np from .linearize import linearize_relu, linearize_sigd, linearize_tanh, linearize_arctan from .utility import reduced_m_bm, reduced_bm_bm, reduced_bv_bm, reduced_bm_bv, quad_bound_calc class Layer(nn.Module, metaclass = ABCMeta): def __init__(self,): super(Layer, self).__init__() @abstractmethod def forward(self, x): ''' >>> do forward pass with a given input ''' raise NotImplementedError @abstractmethod def bound(self, l, u, W_list, m1_list, m2_list, ori_perturb_norm = None, ori_perturb_eps1 = None, ori_perturb_eps2 = None, first_layer = False): ''' >>> do bound calculation >>> l, u: the lower and upper bound of the input, of shape [batch_size, immediate_in_dim] >>> W_list: the transformation matrix introduced by the previous layers, of shape [batch_size, out_dim, in_dim] >>> m1_list, m2_list: the bias introduced by the previous layers, of shape [batch_size, in_dim] >>> ori_perturb_norm, ori_perturb_eps: the original perturbation, default is None >>> first_layer: boolean, whether or not this layer is the first layer ''' raise NotImplementedError class FCLayer(Layer): def __init__(self, in_features, out_features): super(FCLayer, self).__init__() self.in_features = in_features self.out_features = out_features self.layer = nn.Linear(in_features, out_features) def forward(self, x): return F.linear(x, self.layer.weight, self.layer.bias) def bound(self, l, u, W_list, m1_list, m2_list, ori_perturb_norm = None, ori_perturb_eps1 = None, ori_perturb_eps2 = None, first_layer = False): batch_size = l.shape[0] # # quad method # # if the bias term in the last iteration is the same, we can merge it with the current one # max_var = torch.max(torch.abs(m1_list[-1] - m2_list[-1])) # # Update the transition weight matrix # update_list = W_list if max_var > 1e-4 or ori_perturb_norm != None else W_list[:-1] # for idx, W in enumerate(update_list): # W_list[idx] = reduced_m_bm(self.layer.weight, W) # # Add the contribution of this layer # if max_var > 1e-4 or ori_perturb_norm != None: # W_list.append(torch.ones([batch_size, self.out_features], device = self.layer.weight.device)) # m1_list.append(self.layer.bias.unsqueeze(0).repeat(batch_size, 1)) # m2_list.append(self.layer.bias.unsqueeze(0).repeat(batch_size, 1)) # else: # W_list[-1] = torch.ones([batch_size, self.out_features], device = self.layer.weight.device) # m1_list[-1] = torch.matmul(m1_list[-1], self.layer.weight.transpose(0, 1)) + self.layer.bias # m2_list[-1] = torch.matmul(m2_list[-1], self.layer.weight.transpose(0, 1)) + self.layer.bias # quad_low_bound, quad_up_bound = quad_bound_calc(W_list, m1_list, m2_list, ori_perturb_norm, ori_perturb_eps) # simp method if first_layer == True: primal_norm = ori_perturb_norm dual_norm = 1. / (1. - 1. / primal_norm) adjust1 = torch.norm(self.layer.weight.unsqueeze(0) * ori_perturb_eps1.unsqueeze(1), dim = 2, p = dual_norm) # of shape [batch_size, out_dim] adjust2 = torch.norm(self.layer.weight.unsqueeze(0) * ori_perturb_eps2.unsqueeze(1), dim = 2, p = dual_norm) # of shape [batch_size, out_dim] else: adjust = 0. W_neg = torch.clamp(self.layer.weight, max = 0.) W_pos = torch.clamp(self.layer.weight, min = 0.) low_bound = l.matmul(W_pos.t()) + u.matmul(W_neg.t()) - adjust1 + self.layer.bias up_bound = l.matmul(W_neg.t()) + u.matmul(W_pos.t()) + adjust2 + self.layer.bias # low_bound = torch.max(quad_low_bound, simp_low_bound) # up_bound = torch.min(quad_up_bound, simp_up_bound) return low_bound, up_bound, W_list, m1_list, m2_list class ReLULayer(Layer): def __init__(self,): super(ReLULayer, self).__init__() def forward(self, x): return F.relu(x, inplace = True) def bound(self, l, u, W_list, m1_list, m2_list, ori_perturb_norm = None, ori_perturb_eps = None, first_layer = False): assert first_layer == False, 'the first layer cannot be ReLU' batch_size = l.shape[0] # # quad method # # Obtain D, m1, m2 # D, m1, m2 = linearize_relu(l, u) # D = D.reshape(batch_size, -1) # of shape [batch_size, dim] # m1 = m1.reshape(batch_size, -1) # of shape [batch_size, dim] # m2 = m2.reshape(batch_size, -1) # of shape [batch_size, dim] # out_dim = D.shape[1] # # For potential merge # max_var = torch.max(torch.abs(m1_list[-1] - m2_list[-1])) # # Update # update_list = W_list if max_var > 1e-4 else W_list[:-1] # for idx, W in enumerate(update_list): # W_list[idx] = reduced_bm_bm(D, W) # # Add the contribution of this layer # if max_var > 1e-4: # W_list.append(torch.ones([batch_size, out_dim], device = D.device)) # m1_list.append(m1) # m2_list.append(m2) # else: # m1_list[-1] = m1_list[-1] * D + m1 # m2_list[-1] = m2_list[-1] * D + m2 # quad_low_bound, quad_up_bound = quad_bound_calc(W_list, m1_list, m2_list, ori_perturb_norm, ori_perturb_eps) # simp method low_bound = F.relu(l, inplace = True) up_bound = F.relu(u, inplace = True) # low_bound = torch.max(quad_low_bound, simp_low_bound) # up_bound = torch.min(quad_up_bound, simp_up_bound) return low_bound, up_bound, W_list, m1_list, m2_list class SigdLayer(Layer): def __init__(self,): super(SigdLayer, self).__init__() def forward(self, x): return F.sigmoid(x) def bound(self, l, u, W_list, m1_list, m2_list, ori_perturb_norm = None, ori_perturb_eps = None, first_layer = False): assert first_layer == False, 'the first layer cannot be ReLU' batch_size = l.shape[0] # # quad method # # Obtain D, m1, m2 # D, m1, m2 = linearize_sigd(l, u) # D = D.reshape(batch_size, -1) # m1 = m1.reshape(batch_size, -1) # m2 = m2.reshape(batch_size, -1) # out_dim = D.shape[1] # # For potential merge # max_var = torch.max(torch.abs(m1_list[-1] - m2_list[-1])) # # Update # update_list = W_list if max_var > 1e-4 else W_list[:-1] # for idx, W in enumerate(update_list): # W_list[idx] = reduced_bm_bm(D, W) # # Add the contribution of this layer # if max_var > 1e-4: # W_list.append(torch.ones([batch_size, out_dim], device = D.device)) # m1_list.append(m1) # m2_list.append(m2) # else: # m1_list[-1] = m1_list[-1] * D + m1 # m2_list[-1] = m2_list[-1] * D + m2 # quad_low_bound, quad_up_bound = quad_bound_calc(W_list, m1_list, m2_list, ori_perturb_norm, ori_perturb_eps) # simp method low_bound = F.sigmoid(l) up_bound = F.sigmoid(u) # low_bound = torch.max(quad_low_bound, simp_low_bound) # up_bound = torch.min(quad_up_bound, simp_up_bound) return low_bound, up_bound, W_list, m1_list, m2_list class TanhLayer(Layer): def __init__(self,): super(TanhLayer, self).__init__() def forward(self, x): return torch.tanh(x) def bound(self, l, u, W_list, m1_list, m2_list, ori_perturb_norm = None, ori_perturb_eps = None, first_layer = False): assert first_layer == False, 'the first layer cannot be ReLU' batch_size = l.shape[0] # # quad method # # Obtain D, m1, m2 # D, m1, m2 = linearize_tanh(l, u) # D = D.reshape(batch_size, -1) # m1 = m1.reshape(batch_size, -1) # m2 = m2.reshape(batch_size, -1) # out_dim = D.shape[1] # # For potential merge # max_var = torch.max(torch.abs(m1_list[-1] - m2_list[-1])) # # Update # update_list = W_list if max_var > 1e-4 else W_list[:-1] # for idx, W in enumerate(update_list): # W_list[idx] = reduced_bm_bm(D, W) # # Add the contribution of this layer # if max_var > 1e-4: # W_list.append(torch.ones([batch_size, out_dim], device = D.device)) # m1_list.append(m1) # m2_list.append(m2) # else: # m1_list[-1] = m1_list[-1] * D + m1 # m2_list[-1] = m2_list[-1] * D + m2 # quad_low_bound, quad_up_bound = quad_bound_calc(W_list, m1_list, m2_list, ori_perturb_norm, ori_perturb_eps) # simp method low_bound = torch.tanh(l) up_bound = torch.tanh(u) # low_bound = torch.max(quad_low_bound, simp_low_bound) # up_bound = torch.min(quad_up_bound, simp_up_bound) return low_bound, up_bound, W_list, m1_list, m2_list class ArctanLayer(Layer): def __init__(self,): super(ArctanLayer, self).__init__() def forward(self, x): return torch.atan(x) def bound(self, l, u, W_list, m1_list, m2_list, ori_perturb_norm = None, ori_perturb_eps = None, first_layer = False): assert first_layer == False, 'the first layer cannot be ReLU' batch_size = l.shape[0] # # quad method # # Obtain D, m1, m2 # D, m1, m2 = linearize_arctan(l, u) # D = D.reshape(batch_size, -1) # m1 = m1.reshape(batch_size, -1) # m2 = m2.reshape(batch_size, -1) # out_dim = D.shape[1] # # For potential merge # max_var = torch.max(torch.abs(m1_list[-1] - m2_list[-1])) # # Update # update_list = W_list if max_var > 1e-4 else W_list[:-1] # for idx, W in enumerate(update_list): # W_list[idx] = reduced_bm_bm(D, W) # # Add the contribution of this layer # if max_var > 1e-4: # W_list.append(torch.ones([batch_size, out_dim], device = D.device)) # m1_list.append(m1) # m2_list.append(m2) # else: # m1_list[-1] = m1_list[-1] * D + m1 # m2_list[-1] = m2_list[-1] * D + m2 # quad_low_bound, quad_up_bound = quad_bound_calc(W_list, m1_list, m2_list, ori_perturb_norm, ori_perturb_eps) # simp method low_bound = torch.atan(l) up_bound = torch.atan(u) # low_bound = torch.max(quad_low_bound, simp_low_bound) # up_bound = torch.min(quad_up_bound, simp_up_bound) return low_bound, up_bound, W_list, m1_list, m2_list
35.066246
154
0.609662
1,650
11,116
3.830909
0.10303
0.030059
0.021516
0.032273
0.743237
0.722038
0.712071
0.706217
0.685335
0.637716
0
0.028543
0.27195
11,116
316
155
35.177215
0.752502
0.496402
0
0.421687
0
0
0.02284
0
0
0
0
0
0.048193
1
0.216867
false
0
0.096386
0.060241
0.506024
0
0
0
0
null
0
0
0
0
1
1
1
0
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
null
0
0
0
0
0
1
0
0
0
0
1
0
0
6
d907a43938650d8d6f9175971c2ee412f0e1b223
1,430
py
Python
Problems/primetest.py
NielsonJ/Project-Euler
d54dce5461825c440a094310c3567b88c6f9a150
[ "MIT" ]
null
null
null
Problems/primetest.py
NielsonJ/Project-Euler
d54dce5461825c440a094310c3567b88c6f9a150
[ "MIT" ]
1
2020-03-11T08:06:25.000Z
2020-03-11T08:06:34.000Z
Problems/primetest.py
NielsonJ/Project-Euler
d54dce5461825c440a094310c3567b88c6f9a150
[ "MIT" ]
null
null
null
from libs.primelib import Prime import cProfile import time # Test variable's primeindex = 100000 primecheck = 1000000000000 def main(): prime = Prime() print('test 1:') start = time.clock() value = prime.getByIndex(primeindex) end = time.clock() print('value: ' + str(value)) print('time: ' + str(end - start)) print() print('test 2:') start = time.clock() value = prime.getByIndex(primeindex) end = time.clock() print('value: ' + str(value)) print('time: ' + str(end - start)) print() prime1 = Prime() prime2 = Prime() print('test 4:') start = time.clock() value = prime1.checkIfPrime(primecheck) end = time.clock() print('value: ' + str(value)) print('time: ' + str(end - start)) print() print('test 5:') start = time.clock() value = prime1.checkIfPrime(primecheck) end = time.clock() print('value: ' + str(value)) print('time: ' + str(end - start)) print() print('test 6:') start = time.clock() value = prime2.checkIfPrime(primecheck) end = time.clock() print('value: ' + str(value)) print('time: ' + str(end - start)) print() print('test 7:') start = time.clock() value = prime2.checkIfPrime(primecheck) end = time.clock() print('value: ' + str(value)) print('time: ' + str(end - start)) print() if __name__ == '__main__': main()
21.666667
43
0.58042
166
1,430
4.951807
0.204819
0.131387
0.10219
0.138686
0.781022
0.781022
0.781022
0.781022
0.781022
0.781022
0
0.028972
0.251748
1,430
65
44
22
0.739252
0.01049
0
0.679245
0
0
0.090587
0
0
0
0
0
0
1
0.018868
false
0
0.056604
0
0.075472
0.45283
0
0
0
null
0
0
0
0
1
1
1
1
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
null
0
0
0
0
0
0
0
0
0
0
0
1
0
6
d9863370e480b53bf264ca69904724291538c799
105
py
Python
application/configuration/views.py
pernaess/ctrlpnl
e0636f3b19d4a5ec5e96120526f238888271391d
[ "MIT" ]
34
2020-01-27T15:07:25.000Z
2021-09-25T17:07:37.000Z
application/configuration/views.py
pernaess/ctrlpnl
e0636f3b19d4a5ec5e96120526f238888271391d
[ "MIT" ]
26
2020-01-29T12:24:42.000Z
2022-03-12T00:16:44.000Z
application/configuration/views.py
pernaess/ctrlpnl
e0636f3b19d4a5ec5e96120526f238888271391d
[ "MIT" ]
7
2020-01-27T11:42:11.000Z
2021-04-05T04:42:22.000Z
from django.shortcuts import redirect def login_redirect(request): return redirect('/account/login')
26.25
37
0.790476
13
105
6.307692
0.769231
0
0
0
0
0
0
0
0
0
0
0
0.114286
105
4
38
26.25
0.88172
0
0
0
0
0
0.132075
0
0
0
0
0
0
1
0.333333
false
0
0.333333
0.333333
1
0
1
0
0
null
0
0
0
0
0
0
0
0
0
0
0
0
0
1
0
0
0
0
0
0
0
0
0
0
null
0
0
0
0
0
1
0
0
1
1
1
0
0
6
7940074a7371928505748d90b9c862ee5b2d225e
82
py
Python
haystack/nodes/question_generator/__init__.py
mapapa/haystack
79fdda8a7cf393d774803608a4874f2a6e63cf6f
[ "Apache-2.0" ]
7
2022-01-22T18:58:54.000Z
2022-03-18T17:06:35.000Z
haystack/nodes/question_generator/__init__.py
mapapa/haystack
79fdda8a7cf393d774803608a4874f2a6e63cf6f
[ "Apache-2.0" ]
17
2021-12-08T18:00:58.000Z
2021-12-28T14:03:27.000Z
haystack/nodes/question_generator/__init__.py
mapapa/haystack
79fdda8a7cf393d774803608a4874f2a6e63cf6f
[ "Apache-2.0" ]
1
2022-01-05T15:24:36.000Z
2022-01-05T15:24:36.000Z
from haystack.nodes.question_generator.question_generator import QuestionGenerator
82
82
0.926829
9
82
8.222222
0.777778
0.459459
0
0
0
0
0
0
0
0
0
0
0.036585
82
1
82
82
0.936709
0
0
0
0
0
0
0
0
0
0
0
0
1
0
true
0
1
0
1
0
1
0
0
null
1
0
0
0
0
0
0
0
0
0
0
0
0
1
0
0
0
0
0
0
0
0
0
0
null
0
0
0
0
0
0
1
0
1
0
1
0
0
6
79dc47eea0d2277e80b8015449551a4eef9526a7
235
py
Python
terrafirma/calendar/apps.py
AlexandraAlter/django-terrafirma
afce5946f173aded2b4bfea78cf1b1034ec32272
[ "MIT" ]
null
null
null
terrafirma/calendar/apps.py
AlexandraAlter/django-terrafirma
afce5946f173aded2b4bfea78cf1b1034ec32272
[ "MIT" ]
null
null
null
terrafirma/calendar/apps.py
AlexandraAlter/django-terrafirma
afce5946f173aded2b4bfea78cf1b1034ec32272
[ "MIT" ]
null
null
null
from django.apps import AppConfig from django.utils.translation import gettext_lazy as _ class CalendarConfig(AppConfig): name = 'terrafirma.calendar' label = 'terrafirma_calendar' verbose_name = _('Terrafirma Calendar')
26.111111
54
0.770213
26
235
6.769231
0.653846
0.306818
0.25
0
0
0
0
0
0
0
0
0
0.153191
235
8
55
29.375
0.884422
0
0
0
0
0
0.242553
0
0
0
0
0
0
1
0
false
0
0.333333
0
1
0
1
0
0
null
1
1
0
0
0
0
0
0
0
0
0
0
0
1
0
0
0
0
0
0
0
0
0
0
null
0
0
0
0
0
0
0
0
1
0
1
0
0
6
8de1d142174d05fb9706941c985835cf92bd890c
242
py
Python
allauth/account/admin.py
k1000/django-allauth
e67b05fde5635f19850de73558987573c085826f
[ "MIT" ]
1
2015-11-05T15:17:10.000Z
2015-11-05T15:17:10.000Z
allauth/account/admin.py
k1000/django-allauth
e67b05fde5635f19850de73558987573c085826f
[ "MIT" ]
null
null
null
allauth/account/admin.py
k1000/django-allauth
e67b05fde5635f19850de73558987573c085826f
[ "MIT" ]
null
null
null
from django.contrib import admin # from models import PasswordReset # # class PasswordResetAdmin(admin.ModelAdmin): # list_display = ["user", "temp_key", "timestamp", "reset"] # # admin.site.register(PasswordReset, PasswordResetAdmin)
26.888889
63
0.747934
25
242
7.16
0.76
0
0
0
0
0
0
0
0
0
0
0
0.128099
242
8
64
30.25
0.848341
0.805785
0
0
0
0
0
0
0
0
0
0
0
1
0
true
0
1
0
1
0
1
0
0
null
0
0
0
0
0
0
0
0
0
0
0
0
0
1
0
0
0
1
0
0
0
0
0
0
null
0
0
0
0
0
0
1
0
1
0
1
0
0
6
8df73822b76b3e31a9ba5cf5bb546df14eb33a80
38
py
Python
pipeline/__init__.py
tom-010/python-pipeline
6be08206b96d56b0c206f12384548e52f5075be6
[ "Apache-2.0" ]
null
null
null
pipeline/__init__.py
tom-010/python-pipeline
6be08206b96d56b0c206f12384548e52f5075be6
[ "Apache-2.0" ]
null
null
null
pipeline/__init__.py
tom-010/python-pipeline
6be08206b96d56b0c206f12384548e52f5075be6
[ "Apache-2.0" ]
null
null
null
from pipeline.pipeline import pipeline
38
38
0.894737
5
38
6.8
0.6
0
0
0
0
0
0
0
0
0
0
0
0.078947
38
1
38
38
0.971429
0
0
0
0
0
0
0
0
0
0
0
0
1
0
true
0
1
0
1
0
1
1
0
null
0
0
0
0
0
0
0
0
0
0
0
0
0
1
0
0
0
0
0
0
0
0
0
0
null
0
0
0
0
0
0
1
0
1
0
1
0
0
6
30d54fa27b6407cf613e47ef65f685b9f45ab6fc
37
py
Python
src/RGT/userProfile/__init__.py
danrg/RGT-tool
115ba9a93686595699b3e182958921b3d60382b3
[ "MIT" ]
7
2015-02-09T12:12:04.000Z
2019-03-31T08:23:36.000Z
src/RGT/userProfile/__init__.py
danrg/RGT-tool
115ba9a93686595699b3e182958921b3d60382b3
[ "MIT" ]
3
2015-07-05T20:49:14.000Z
2017-07-03T19:45:18.000Z
src/RGT/userProfile/__init__.py
danrg/RGT-tool
115ba9a93686595699b3e182958921b3d60382b3
[ "MIT" ]
1
2021-03-23T14:01:22.000Z
2021-03-23T14:01:22.000Z
from views import displayUserProfile
18.5
36
0.891892
4
37
8.25
1
0
0
0
0
0
0
0
0
0
0
0
0.108108
37
1
37
37
1
0
0
0
0
0
0
0
0
0
0
0
0
1
0
true
0
1
0
1
0
1
1
0
null
0
0
0
0
0
0
0
0
0
0
0
0
0
1
0
0
0
0
0
0
0
0
0
0
null
0
0
0
0
0
0
1
0
1
0
1
0
0
6
30dd9689a3bf67ed453ecd720684aa2b2390bfa6
4,680
py
Python
authors/apps/articles/tests/test_like_comments.py
andela/ah-codeofduty
ab749037dbb08712a2e47848e31a1ccb14de1165
[ "BSD-3-Clause" ]
null
null
null
authors/apps/articles/tests/test_like_comments.py
andela/ah-codeofduty
ab749037dbb08712a2e47848e31a1ccb14de1165
[ "BSD-3-Clause" ]
41
2018-10-23T08:45:43.000Z
2022-03-11T23:34:18.000Z
authors/apps/articles/tests/test_like_comments.py
andela/ah-codeofduty
ab749037dbb08712a2e47848e31a1ccb14de1165
[ "BSD-3-Clause" ]
3
2020-05-01T16:21:13.000Z
2021-05-11T08:25:11.000Z
from .base import BaseTest from authors.apps.articles.models import Article from rest_framework.views import status import json class CommentsLikeDislikeTestCase(BaseTest): """test class for liking and disliking comments """ def create_article(self, token, article): """ Method to create an article""" return self.client.post(self.ARTICLES, self.test_article_data, HTTP_AUTHORIZATION=self.token, format='json') def create_comment(self, token, slug, test_comment_data): """ Method to create an article then comment""" self.client.post(self.ARTICLES, self.test_article_data, HTTP_AUTHORIZATION=self.token, format='json') return self.client.post('/api/articles/test-title12/comment/', self.test_comment_data, HTTP_AUTHORIZATION=self.token, format='json') def test_like_comment(self): """Test test the liking of a comment""" # article created response = self.create_article(self.token, self.test_article_data) self.assertEquals(status.HTTP_201_CREATED, response.status_code) # creating a comment slug = response.data['slug'] response = self.create_comment(self.token, slug, self.test_comment_data) comment_id = response.data["id"] self.assertEquals(status.HTTP_201_CREATED, response.status_code) # like a comment response = self.client.put('/api/articles/test-title12/comment/' + str(comment_id) + '/like/', HTTP_AUTHORIZATION=self.token, format='json') self.assertEquals(status.HTTP_200_OK, response.status_code) def test_unlike_comment(self): """Test test the liking of a comment""" response = self.create_article(self.token, self.test_article_data) self.assertEquals(status.HTTP_201_CREATED, response.status_code) slug = response.data['slug'] response = self.create_comment(self.token, slug, self.test_comment_data) comment_id = response.data["id"] self.assertEquals(status.HTTP_201_CREATED, response.status_code) response = self.client.put('/api/articles/test-title12/comment/' + str(comment_id) + '/like/', HTTP_AUTHORIZATION=self.token, format='json') self.assertEquals(status.HTTP_200_OK, response.status_code) def test_like_missing_article(self): """Test test the liking of a comment""" response = self.create_article(self.token, self.test_article_data) self.assertEquals(status.HTTP_201_CREATED, response.status_code) slug = response.data['slug'] response = self.create_comment(self.token, slug, self.test_comment_data) comment_id = response.data["id"] self.assertEquals(status.HTTP_201_CREATED, response.status_code) response = self.client.put('/api/articles/me/comment/' + str(comment_id) + '/dislike/', HTTP_AUTHORIZATION=self.token, format='json' ) self.assertEquals(status.HTTP_404_NOT_FOUND, response.status_code) def test_like_missing_comment(self): """Test test the liking of a comment""" response = self.create_article(self.token, self.test_article_data) self.assertEquals(status.HTTP_201_CREATED, response.status_code) slug = response.data['slug'] response = self.create_comment(self.token, slug, self.test_comment_data) self.assertEquals(status.HTTP_201_CREATED, response.status_code) response = self.client.put('/api/articles/test-title12/comment/99/dislike/', HTTP_AUTHORIZATION=self.token, format='json' ) self.assertEquals(status.HTTP_404_NOT_FOUND, response.status_code) def test_like_comment_if_article_does_not_exist(self): """Test test the liking of a comment in an article that does not exist""" slug = 'test-title12' response = self.create_comment(self.token, slug, self.test_comment_data) comment_id = response.data["id"] self.assertEquals(status.HTTP_201_CREATED, response.status_code) # like a comment response = self.client.put('/api/articles/test-title123/comment/' + str(comment_id) + '/like/', HTTP_AUTHORIZATION=self.token, format='json' ) self.assertEquals(response.data['Error'], 'The article does not exist')
47.272727
103
0.640385
546
4,680
5.283883
0.130037
0.059272
0.099133
0.117158
0.835009
0.8
0.8
0.793761
0.767071
0.753899
0
0.015544
0.257692
4,680
98
104
47.755102
0.814911
0.082051
0
0.651515
0
0
0.079529
0.049882
0
0
0
0
0.212121
1
0.106061
false
0
0.060606
0
0.212121
0
0
0
0
null
0
0
0
1
1
1
1
1
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
null
0
0
0
0
0
0
0
0
0
0
0
0
0
6
30f3cfcf7af0bb5923bab6a38ac6e979bd553f2b
275
py
Python
sphinxcontrib/__init__.py
nikicc/anaconda-recipes
9c611a5854bf41bbc5e7ed9853dc71c0851a62ef
[ "BSD-3-Clause" ]
130
2015-07-28T03:41:21.000Z
2022-03-16T03:07:41.000Z
sphinxcontrib/__init__.py
nikicc/anaconda-recipes
9c611a5854bf41bbc5e7ed9853dc71c0851a62ef
[ "BSD-3-Clause" ]
147
2017-08-13T04:31:27.000Z
2022-03-07T11:22:23.000Z
sphinxcontrib/__init__.py
nikicc/anaconda-recipes
9c611a5854bf41bbc5e7ed9853dc71c0851a62ef
[ "BSD-3-Clause" ]
72
2015-07-29T02:35:56.000Z
2022-02-26T14:31:15.000Z
# This empty file makes the sphinxcontrib namespace package work. # It is the only file included in the 'sphinxcontrib' conda package. # Conda packages which use the sphinxcontrib namespace do not include # this file, but depend on the 'sphinxcontrib' conda package instead.
55
69
0.796364
40
275
5.475
0.625
0.292237
0.228311
0.255708
0
0
0
0
0
0
0
0
0.16
275
4
70
68.75
0.948052
0.967273
0
null
0
null
0
0
null
0
0
0
null
1
null
true
0
0
null
null
null
0
0
0
null
1
1
1
0
0
0
0
0
0
0
0
0
0
1
0
0
0
1
0
0
0
0
0
0
null
0
0
0
0
0
0
1
0
0
0
0
0
0
6