Datasets:
Tasks:
Question Answering
Modalities:
Image
Formats:
imagefolder
Languages:
English
Size:
1K - 10K
ArXiv:
Tags:
math
License:
| license: apache-2.0 | |
| task_categories: | |
| - question-answering | |
| language: | |
| - en | |
| tags: | |
| - math | |
| ## Overview | |
| VCBench provides a standardized framework for evaluating vision-language models. This document outlines the procedures for both standard evaluation and GPT-assisted evaluation of your model's outputs. | |
| ## 1. Standard Evaluation | |
| ### 1.1 Output Format Requirements | |
| Models must produce outputs in JSONL format with the following structure: | |
| ``` | |
| {"id": <int>, "pred_answer": "<answer_letter>"} | |
| {"id": <int>, "pred_answer": "<answer_letter>"} | |
| ... | |
| ``` | |
| **Example File (`submit.jsonl`):** | |
| ```json | |
| {"id": 1, "pred_answer": "A"} | |
| {"id": 2, "pred_answer": "B"} | |
| {"id": 3, "pred_answer": "C"} | |
| ``` | |
| ### 1.2 Evaluation Procedure | |
| 1. Ensure your predictions file follows the specified format | |
| 2. Run the evaluation script: | |
| ```bash | |
| python evaluate_vcbench.py -p ./path/to/predictions.jsonl -g ./path/to/VCBench_with_answer.json | |
| ``` | |
| `VCBench_with_answer.json` is the ground truth file which can be downloaded from [here](https://huggingface.co/datasets/cloudcatcher2/VCBench/resolve/main/VCBench_with_answer.json). | |
| ## 2. GPT-Assisted Evaluation | |
| ### 2.1 Output Format Requirements | |
| For natural language responses, use this JSONL format: | |
| ``` | |
| {"id": <int>, "pred_answer": "<natural_language_response>"} | |
| {"id": <int>, "pred_answer": "<natural_language_response>"} | |
| ... | |
| ``` | |
| **Example File (`nl_predictions.jsonl`):** | |
| ```json | |
| {"id": 1, "pred_answer": "The correct answer is A"} | |
| {"id": 2, "pred_answer": "After careful analysis, option B appears correct"} | |
| {"id": 3, "pred_answer": "C is the right choice"} | |
| ``` | |
| ### 2.2 Environment Setup | |
| Set your Dashscope API key: | |
| ```bash | |
| export DASHSCOPE_KEY="your_api_key_here" | |
| ``` | |
| ### 2.3 Evaluation Procedure | |
| ```bash | |
| python evaluate_vcbench_by_gpt.py -p ./path/to/nl_predictions.jsonl -g ./path/to/VCBench_with_answer.json | |
| ``` | |
| ## 3. Expected Output | |
| Both evaluation scripts will provide: | |
| - Overall accuracy percentage | |
| - Per-question-type accuracy breakdown | |
| - Progress updates during evaluation | |
| ## Citation | |
| <!-- If there is a paper or blog post introducing the dataset, the APA and Bibtex information for that should go in this section. --> | |
| **BibTeX:** | |
| ```bibtex | |
| @misc{wong2025vcbench | |
| author = {Zhikai Wang and Jiashuo Sun and Wenqi Zhang and Zhiqiang Hu and Xin Li and Fan Wang and Deli Zhao}, | |
| title = {Benchmarking Multimodal Mathematical Reasoning with Explicit Visual Dependency}, | |
| year = {2025}, | |
| eprint = {2504.18589}, | |
| archivePrefix = {arxiv}, | |
| primaryClass = {cs.CV}, | |
| url = {https://arxiv.org/abs/2504.18589} | |
| } | |
| ``` | |
| ## Dataset Card Authors | |
| - [Zhikai Wang](https://cloudcatcher888.github.io/): [email protected] | |
| - [Jiashuo Sun](https://gasolsun36.github.io/): [email protected] | |