Datasets:
Tasks:
Question Answering
Modalities:
Image
Formats:
imagefolder
Languages:
English
Size:
1K - 10K
ArXiv:
Tags:
math
License:
Create README.md
Browse files
README.md
ADDED
|
@@ -0,0 +1,96 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
---
|
| 2 |
+
license: apache-2.0
|
| 3 |
+
task_categories:
|
| 4 |
+
- question-answering
|
| 5 |
+
language:
|
| 6 |
+
- en
|
| 7 |
+
tags:
|
| 8 |
+
- math
|
| 9 |
+
---
|
| 10 |
+
|
| 11 |
+
## Overview
|
| 12 |
+
VCBench provides a standardized framework for evaluating vision-language models. This document outlines the procedures for both standard evaluation and GPT-assisted evaluation of your model's outputs.
|
| 13 |
+
|
| 14 |
+
## 1. Standard Evaluation
|
| 15 |
+
|
| 16 |
+
### 1.1 Output Format Requirements
|
| 17 |
+
Models must produce outputs in JSONL format with the following structure:
|
| 18 |
+
```
|
| 19 |
+
{"id": <int>, "pred_answer": "<answer_letter>"}
|
| 20 |
+
{"id": <int>, "pred_answer": "<answer_letter>"}
|
| 21 |
+
...
|
| 22 |
+
```
|
| 23 |
+
|
| 24 |
+
**Example File (`submit.jsonl`):**
|
| 25 |
+
```json
|
| 26 |
+
{"id": 1, "pred_answer": "A"}
|
| 27 |
+
{"id": 2, "pred_answer": "B"}
|
| 28 |
+
{"id": 3, "pred_answer": "C"}
|
| 29 |
+
```
|
| 30 |
+
|
| 31 |
+
### 1.2 Evaluation Procedure
|
| 32 |
+
1. Ensure your predictions file follows the specified format
|
| 33 |
+
2. Run the evaluation script:
|
| 34 |
+
```bash
|
| 35 |
+
python evaluate_vcbench.py -p ./path/to/predictions.jsonl -g ./path/to/VCBench_with_answer.json
|
| 36 |
+
```
|
| 37 |
+
`VCBench_with_answer.json` is the ground truth file which can be downloaded from [here](https://huggingface.co/datasets/cloudcatcher2/VCBench/resolve/main/VCBench_with_answer.json).
|
| 38 |
+
|
| 39 |
+
## 2. GPT-Assisted Evaluation
|
| 40 |
+
|
| 41 |
+
### 2.1 Output Format Requirements
|
| 42 |
+
For natural language responses, use this JSONL format:
|
| 43 |
+
```
|
| 44 |
+
{"id": <int>, "pred_answer": "<natural_language_response>"}
|
| 45 |
+
{"id": <int>, "pred_answer": "<natural_language_response>"}
|
| 46 |
+
...
|
| 47 |
+
```
|
| 48 |
+
|
| 49 |
+
**Example File (`nl_predictions.jsonl`):**
|
| 50 |
+
```json
|
| 51 |
+
{"id": 1, "pred_answer": "The correct answer is A"}
|
| 52 |
+
{"id": 2, "pred_answer": "After careful analysis, option B appears correct"}
|
| 53 |
+
{"id": 3, "pred_answer": "C is the right choice"}
|
| 54 |
+
```
|
| 55 |
+
|
| 56 |
+
### 2.2 Environment Setup
|
| 57 |
+
Set your Dashscope API key:
|
| 58 |
+
```bash
|
| 59 |
+
export DASHSCOPE_KEY="your_api_key_here"
|
| 60 |
+
```
|
| 61 |
+
|
| 62 |
+
### 2.3 Evaluation Procedure
|
| 63 |
+
```bash
|
| 64 |
+
python evaluate_vcbench_by_gpt.py -p ./path/to/nl_predictions.jsonl -g ./path/to/VCBench_with_answer.json
|
| 65 |
+
```
|
| 66 |
+
|
| 67 |
+
## 3. Expected Output
|
| 68 |
+
Both evaluation scripts will provide:
|
| 69 |
+
- Overall accuracy percentage
|
| 70 |
+
- Per-question-type accuracy breakdown
|
| 71 |
+
- Progress updates during evaluation
|
| 72 |
+
|
| 73 |
+
|
| 74 |
+
|
| 75 |
+
## Citation
|
| 76 |
+
|
| 77 |
+
<!-- If there is a paper or blog post introducing the dataset, the APA and Bibtex information for that should go in this section. -->
|
| 78 |
+
|
| 79 |
+
**BibTeX:**
|
| 80 |
+
|
| 81 |
+
```bibtex
|
| 82 |
+
@misc{wong2025vcbench
|
| 83 |
+
author = {Zhikai Wang and Jiashuo Sun and Wenqi Zhang and Zhiqiang Hu and Xin Li and Fan Wang and Deli Zhao},
|
| 84 |
+
title = {Benchmarking Multimodal Mathematical Reasoning with Explicit Visual Dependency},
|
| 85 |
+
year = {2025},
|
| 86 |
+
eprint = {2504.18589},
|
| 87 |
+
archivePrefix = {arxiv},
|
| 88 |
+
primaryClass = {cs.CV},
|
| 89 |
+
url = {https://arxiv.org/abs/2504.18589}
|
| 90 |
+
}
|
| 91 |
+
```
|
| 92 |
+
|
| 93 |
+
## Dataset Card Authors
|
| 94 |
+
|
| 95 |
+
- [Zhikai Wang](https://cloudcatcher888.github.io/): [email protected]
|
| 96 |
+
- [Jiashuo Sun](https://gasolsun36.github.io/): [email protected]
|