PRODIGY-LAB-SARA / README.md
Apex-X's picture
Update README.md
89996cc verified
---
license: mit
library_name: transformers, llama-cpp-python
tags:
- dual-model
- edge-ai
- instruction-tuned
- robotics
- quantized
- raspberry-pi
- llama
- intent-classification
- text-generation
- on-device
language:
- en
- ta
- hi
datasets:
- Apex-X/PRODIGY-LAB_SARA
---
![PRODIGY-Dual](https://img.shields.io/badge/PRODIGY--DOIECHI--SARA-Dual%20Model%20System-blue)
![Memory-Efficient](https://img.shields.io/badge/Edge--Optimized-Raspberry%20Pi%20Ready-green)
![Multi-Model](https://img.shields.io/badge/Dual--Architecture-Intelligent%20Routing-orange)
![Python](https://img.shields.io/badge/Python-3.8%2B-green)
![License](https://img.shields.io/badge/License-MIT-yellow)
![Multilingual](https://img.shields.io/badge/Multilingual-South%20Indian%20Languages-orange)
<p align="center">
<img src="https://huggingface.co/blog/assets/171_prodigy_hf/thumbnail.png" alt="PRODIGY 1.2B Banner" width="80%">
</p>
# Model Card for PRODIGY-DOIECHI & PRODIGY-SARA
A revolutionary **dual-model AI system** optimized for **edge devices** (Raspberry Pi, Jetson Nano, etc.), combining an ultra-lightweight intent classifier (**PRODIGY-DOIECHI**) with a powerful reasoning engine (**PRODIGY-SARA**). The system intelligently routes queries to the optimal model based on complexity, enabling both **sub-100ms responses** and **deep reasoning** on low-resource hardware.
- **GitHub**: [https://github.com/Apex-X/PRODIGY-DOIECHI-SARA](https://github.com/Apex-X/PRODIGY-DOIECHI-SARA)
- **Author**: Aadhithya (Apex-X)
- **Contact**: [email protected]
- **License**: MIT
---
## Model Details
### πŸš€ PRODIGY-DOIECHI
- **Type**: Neural Network Intent Classifier
- **Parameters**: 1.2M
- **Format**: PyTorch (`.pth`)
- **Size**: < 50 MB
- **Input**: Natural language query
- **Output**: Structured intent + confidence score
- **Use Case**: Commands, calculations, system operations, greetings
### 🧠 PRODIGY-SARA
- **Base Model**: Llama-7B ,QWEN-238B
- **Quantization**: GGUF `Q4_K_M`
- **Format**: GGUF (via `llama-cpp-python`)
- **Size**: ~3.8 GB
- **Context Window**: 1024 tokens
- **Fine-tuned on**: [Apex-X/PRODIGY-LAB_SARA](https://huggingface.co/datasets/Apex-X/PRODIGY-LAB_SARA)
- **Domains**: Robotics, Tamil Nadu culture, agriculture, medical support, ethics, general reasoning
---
## Intended Use
This system is designed for **on-device AI assistants** in:
- Smart homes
- Educational robots
- Industrial IoT monitoring
- Rural digital kiosks (supporting Tamil, Hindi, English)
**Not intended** for high-stakes medical diagnosis, legal advice, or autonomous weapon systems.
---
## Performance (Raspberry Pi 4)
| Metric | DOIECHI | SARA |
|----------------------|-------------|--------------|
| RAM Usage | 45 MB | 3.8 GB |
| Avg. Latency | 85 ms | 2.3 sec |
| Throughput | 11.8 q/s | 0.43 q/s |
| Intent Accuracy | 89% | β€” |
| Generation Speed | β€” | 2.3 tok/sec |
> Combined system averages **0.8s response time** in real-world mixed workloads.
---
## Smart Routing Logic
The system uses a 4-stage pipeline:
1. **Memory** β†’ short-term context (non-persistent)
2. **Function Executor** β†’ direct system commands
3. **DOIECHI** β†’ classify intent & complexity
4. **SARA** β†’ activated only if confidence < 0.85 or query contains reasoning keywords (`explain`, `how`, `why`, etc.)
Routing decision takes **< 5ms** and learns from usage patterns.
---
## How to Use
### Python (Combined System)
```python
from prodigy_system import ProdigyDualSystem
system = ProdigyDualSystem()
print(system.process("What's 128 / 4?")) # β†’ DOIECHI
print(system.process("Explain photosynthesis.")) # β†’ SARA
```
---
## 🧠 Hardware Requirements
**Minimum**
- Raspberry Pi Zero 2 W (64-bit OS)
- OS: Linux (64-bit)
- Python: 3.8+
- RAM: 2–4 GB
- Dependencies:
`torch`, `llama-cpp-python`, `nltk`, `psutil`
**Recommended**
- Raspberry Pi 4 (4GB+ RAM) or NVIDIA Jetson Nano
- OS: Ubuntu 20.04+ / Raspberry Pi OS 64-bit
- Python: 3.10+
- Dependencies:
`torch` (CUDA build), `llama-cpp-python`, `nltk`, `psutil`, `huggingface_hub`
**Optional**
- Use Hugging Face Spaces or local FastAPI app for deployment
- GPU acceleration supported (NVIDIA RTX 20xx or higher)
- Convert model to GGUF or quantized formats for faster inference
---
## βš–οΈ Ethical Considerations
- **No Persistent Data Storage**
The system does not store personal data or user history beyond the current session.
- **User Privacy First**
Every interaction is processed locally or in-memory. No external tracking or telemetry.
- **Multilingual Accessibility**
Built with South Indian language inclusivity in mind, ensuring wider digital access.
- **Bias Awareness**
Model responses are generated from training data that may contain inherent biases.
Always review critical outputs with human oversight.
- **Responsible Usage**
This model is for research, educational, and robotics-related applications only.
Avoid use in contexts that generate harmful, discriminatory, or deceptive content.
---
*Developed as part of the **PRODIGY 1.2B** open research initiative on Hugging Face.*
*Optimized for lightweight AI deployment on edge devices like Raspberry Pi and Jetson Nano.*
Citation
@software{prodigy_dual_2025,
author = {Aadhithya Ravi},
title = {PRODIGY-DOIECHI \& PRODIGY-SARA: A Dual-Model Edge AI System},
year = {2025},
publisher = {GitHub},
journal = {GitHub repository},
howpublished = {\url{https://github.com/Apex-X/PRODIGY-DOIECHI-SARA}}
}
---
## 🏁 Acknowledgements
- Built on **llama.cpp** and **PyTorch**
- Inspired by **Alpaca**, **Self-Instruct**, and **TinyLLM** research
- Special thanks to the **Raspberry Pi** and **open-source AI** communities for enabling lightweight, accessible edge AI innovation
Β© 2025 **Aadhithya (Apex-X)**. Released under the **MIT License**.
---
This format follows Hugging Face’s **standard model card structure**, includes all metadata in the YAML frontmatter, and is ready to be used as the `README.md` in a Hugging Face **model repository** (e.g., `Apex-X/PRODIGY-DOIECHI-SARA`).
Let me know if you'd like separate cards for each model or a version optimized for the **Hugging Face Spaces** demo!