File size: 6,384 Bytes
bcff88a 2b3ad7f 89996cc bcff88a 2b3ad7f bcff88a bf48f13 bcff88a |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 |
---
license: mit
library_name: transformers, llama-cpp-python
tags:
- dual-model
- edge-ai
- instruction-tuned
- robotics
- quantized
- raspberry-pi
- llama
- intent-classification
- text-generation
- on-device
language:
- en
- ta
- hi
datasets:
- Apex-X/PRODIGY-LAB_SARA
---






<p align="center">
<img src="https://huggingface.co/blog/assets/171_prodigy_hf/thumbnail.png" alt="PRODIGY 1.2B Banner" width="80%">
</p>
# Model Card for PRODIGY-DOIECHI & PRODIGY-SARA
A revolutionary **dual-model AI system** optimized for **edge devices** (Raspberry Pi, Jetson Nano, etc.), combining an ultra-lightweight intent classifier (**PRODIGY-DOIECHI**) with a powerful reasoning engine (**PRODIGY-SARA**). The system intelligently routes queries to the optimal model based on complexity, enabling both **sub-100ms responses** and **deep reasoning** on low-resource hardware.
- **GitHub**: [https://github.com/Apex-X/PRODIGY-DOIECHI-SARA](https://github.com/Apex-X/PRODIGY-DOIECHI-SARA)
- **Author**: Aadhithya (Apex-X)
- **Contact**: [email protected]
- **License**: MIT
---
## Model Details
### π PRODIGY-DOIECHI
- **Type**: Neural Network Intent Classifier
- **Parameters**: 1.2M
- **Format**: PyTorch (`.pth`)
- **Size**: < 50 MB
- **Input**: Natural language query
- **Output**: Structured intent + confidence score
- **Use Case**: Commands, calculations, system operations, greetings
### π§ PRODIGY-SARA
- **Base Model**: Llama-7B ,QWEN-238B
- **Quantization**: GGUF `Q4_K_M`
- **Format**: GGUF (via `llama-cpp-python`)
- **Size**: ~3.8 GB
- **Context Window**: 1024 tokens
- **Fine-tuned on**: [Apex-X/PRODIGY-LAB_SARA](https://huggingface.co/datasets/Apex-X/PRODIGY-LAB_SARA)
- **Domains**: Robotics, Tamil Nadu culture, agriculture, medical support, ethics, general reasoning
---
## Intended Use
This system is designed for **on-device AI assistants** in:
- Smart homes
- Educational robots
- Industrial IoT monitoring
- Rural digital kiosks (supporting Tamil, Hindi, English)
**Not intended** for high-stakes medical diagnosis, legal advice, or autonomous weapon systems.
---
## Performance (Raspberry Pi 4)
| Metric | DOIECHI | SARA |
|----------------------|-------------|--------------|
| RAM Usage | 45 MB | 3.8 GB |
| Avg. Latency | 85 ms | 2.3 sec |
| Throughput | 11.8 q/s | 0.43 q/s |
| Intent Accuracy | 89% | β |
| Generation Speed | β | 2.3 tok/sec |
> Combined system averages **0.8s response time** in real-world mixed workloads.
---
## Smart Routing Logic
The system uses a 4-stage pipeline:
1. **Memory** β short-term context (non-persistent)
2. **Function Executor** β direct system commands
3. **DOIECHI** β classify intent & complexity
4. **SARA** β activated only if confidence < 0.85 or query contains reasoning keywords (`explain`, `how`, `why`, etc.)
Routing decision takes **< 5ms** and learns from usage patterns.
---
## How to Use
### Python (Combined System)
```python
from prodigy_system import ProdigyDualSystem
system = ProdigyDualSystem()
print(system.process("What's 128 / 4?")) # β DOIECHI
print(system.process("Explain photosynthesis.")) # β SARA
```
---
## π§ Hardware Requirements
**Minimum**
- Raspberry Pi Zero 2 W (64-bit OS)
- OS: Linux (64-bit)
- Python: 3.8+
- RAM: 2β4 GB
- Dependencies:
`torch`, `llama-cpp-python`, `nltk`, `psutil`
**Recommended**
- Raspberry Pi 4 (4GB+ RAM) or NVIDIA Jetson Nano
- OS: Ubuntu 20.04+ / Raspberry Pi OS 64-bit
- Python: 3.10+
- Dependencies:
`torch` (CUDA build), `llama-cpp-python`, `nltk`, `psutil`, `huggingface_hub`
**Optional**
- Use Hugging Face Spaces or local FastAPI app for deployment
- GPU acceleration supported (NVIDIA RTX 20xx or higher)
- Convert model to GGUF or quantized formats for faster inference
---
## βοΈ Ethical Considerations
- **No Persistent Data Storage**
The system does not store personal data or user history beyond the current session.
- **User Privacy First**
Every interaction is processed locally or in-memory. No external tracking or telemetry.
- **Multilingual Accessibility**
Built with South Indian language inclusivity in mind, ensuring wider digital access.
- **Bias Awareness**
Model responses are generated from training data that may contain inherent biases.
Always review critical outputs with human oversight.
- **Responsible Usage**
This model is for research, educational, and robotics-related applications only.
Avoid use in contexts that generate harmful, discriminatory, or deceptive content.
---
*Developed as part of the **PRODIGY 1.2B** open research initiative on Hugging Face.*
*Optimized for lightweight AI deployment on edge devices like Raspberry Pi and Jetson Nano.*
Citation
@software{prodigy_dual_2025,
author = {Aadhithya Ravi},
title = {PRODIGY-DOIECHI \& PRODIGY-SARA: A Dual-Model Edge AI System},
year = {2025},
publisher = {GitHub},
journal = {GitHub repository},
howpublished = {\url{https://github.com/Apex-X/PRODIGY-DOIECHI-SARA}}
}
---
## π Acknowledgements
- Built on **llama.cpp** and **PyTorch**
- Inspired by **Alpaca**, **Self-Instruct**, and **TinyLLM** research
- Special thanks to the **Raspberry Pi** and **open-source AI** communities for enabling lightweight, accessible edge AI innovation
Β© 2025 **Aadhithya (Apex-X)**. Released under the **MIT License**.
---
This format follows Hugging Faceβs **standard model card structure**, includes all metadata in the YAML frontmatter, and is ready to be used as the `README.md` in a Hugging Face **model repository** (e.g., `Apex-X/PRODIGY-DOIECHI-SARA`).
Let me know if you'd like separate cards for each model or a version optimized for the **Hugging Face Spaces** demo! |