EfficientNetV2-S-FacesMTL-EXP1

This model is a fine-tuned version of on an unknown dataset. It achieves the following results on the evaluation set:

  • Gender Accuracy: 0.9219
  • Gender F1: 0.8960
  • Age Mae: 5.4856
  • Age Rmse: 7.7077
  • Loss: 59.6107

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0001
  • train_batch_size: 32
  • eval_batch_size: 32
  • seed: 42
  • optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: cosine
  • num_epochs: 5
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Gender Accuracy Gender F1 Age Mae Age Rmse Validation Loss
141.0082 0.1728 150 0.7669 0.4982 9.8306 13.2003 174.7533
115.015 0.3456 300 0.8179 0.6641 7.2638 9.8329 97.0897
114.0637 0.5184 450 0.8727 0.8262 7.6025 10.2955 106.4104
108.9411 0.6912 600 0.8355 0.7141 6.4249 8.5998 74.3246
102.9268 0.8641 750 0.8862 0.8405 6.3497 8.6367 74.9009
74.0264 1.0369 900 0.8911 0.8478 6.0467 8.1970 67.4731
69.2823 1.2097 1050 0.8741 0.8048 7.7731 9.7514 95.3764
75.1102 1.3825 1200 0.8971 0.8558 6.1987 8.4372 71.4451
84.3635 1.5553 1350 0.8969 0.8597 6.1119 8.4568 71.7744
69.7893 1.7281 1500 0.9072 0.8736 6.0104 8.2477 68.2638
61.8971 1.9009 1650 0.9092 0.8763 6.1341 8.2888 68.9466
42.5042 2.0737 1800 0.8997 0.8730 5.7658 7.9370 63.2745
39.7624 2.2465 1950 0.9107 0.8726 5.9121 8.1481 66.6196
41.98 2.4194 2100 0.9136 0.8830 5.6534 7.8299 61.5340
48.5888 2.5922 2250 0.9069 0.8794 5.7673 7.9777 63.8842
49.4607 2.7650 2400 0.9136 0.8835 5.6717 7.7749 60.6700
52.7909 2.9378 2550 0.9182 0.8907 5.7793 7.9226 62.9845
29.6541 3.1106 2700 0.9182 0.8910 5.5971 7.6659 58.9833
29.6989 3.2834 2850 0.9242 0.8964 5.6225 7.7525 60.3134
34.2387 3.4562 3000 0.9225 0.8959 5.6239 7.7780 60.7093
29.4395 3.6290 3150 0.9205 0.8945 5.6094 7.7657 60.5210
30.939 3.8018 3300 0.9231 0.8977 5.5582 7.6809 59.2081
43.7756 3.9747 3450 0.9202 0.8945 5.5838 7.7157 59.7454
21.8149 4.1475 3600 0.9225 0.8951 5.5411 7.6636 58.9366
28.7175 4.3203 3750 0.9213 0.8965 5.5546 7.6726 59.0829
28.0368 4.4931 3900 0.9245 0.8990 5.5760 7.7432 60.1640
24.2052 4.6659 4050 0.9165 0.8918 5.5538 7.6908 59.3667
24.5022 4.8387 4200 0.9245 0.8992 5.5598 7.7017 59.5255

Framework versions

  • Transformers 4.57.1
  • Pytorch 2.9.0+cu130
  • Datasets 4.4.1
  • Tokenizers 0.22.1
Downloads last month
13
Safetensors
Model size
21.6M params
Tensor type
F32
ยท
Inference Providers NEW
This model isn't deployed by any Inference Provider. ๐Ÿ™‹ Ask for provider support

Evaluation results