Spaces:
Sleeping
Sleeping
File size: 6,122 Bytes
086e367 f6ee5ca 42ce81c 086e367 42ce81c debb82a 42ce81c bbe970a 42ce81c bbe970a 42ce81c bbe970a 42ce81c bbe970a 42ce81c bbe970a f6ee5ca 086e367 bbe970a 42ce81c f6ee5ca bbe970a a540a43 debb82a 42ce81c 086e367 42ce81c 086e367 f6ee5ca 42ce81c bbe970a f6ee5ca 42ce81c bbe970a 42ce81c f6ee5ca 42ce81c 086e367 42ce81c bbe970a a540a43 42ce81c bbe970a 42ce81c bbe970a 42ce81c bbe970a debb82a 61cca59 bbe970a debb82a bbe970a debb82a bbe970a a540a43 bbe970a a540a43 bbe970a a540a43 61cca59 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 |
import gradio as gr
import torch
import torch.nn as nn
import torchvision.transforms as transforms
from PIL import Image
import cv2
import numpy as np
import matplotlib.pyplot as plt
import os
# β
Xception Block Definition
class SeparableConv2d(nn.Module):
def __init__(self, in_channels, out_channels, kernel_size=1, stride=1, padding=0):
super().__init__()
self.depthwise = nn.Conv2d(in_channels, in_channels, kernel_size, stride, padding, groups=in_channels, bias=False)
self.pointwise = nn.Conv2d(in_channels, out_channels, 1, 1, 0, bias=False)
def forward(self, x):
x = self.depthwise(x)
x = self.pointwise(x)
return x
class Block(nn.Module):
def __init__(self, in_filters, out_filters, reps, stride=1, start_with_relu=True, grow_first=True):
super().__init__()
layers = []
filters = in_filters
if grow_first:
if start_with_relu:
layers.append(nn.ReLU(inplace=True))
layers.extend([
SeparableConv2d(in_filters, out_filters, 3, 1, 1),
nn.BatchNorm2d(out_filters)
])
filters = out_filters
for _ in range(reps - 1):
layers.extend([
nn.ReLU(inplace=True),
SeparableConv2d(filters, filters, 3, 1, 1),
nn.BatchNorm2d(filters)
])
if not grow_first:
layers.extend([
nn.ReLU(inplace=True),
SeparableConv2d(in_filters, out_filters, 3, 1, 1),
nn.BatchNorm2d(out_filters)
])
if stride != 1:
layers.append(nn.MaxPool2d(3, stride, 1))
self.block = nn.Sequential(*layers)
self.skip = nn.Conv2d(in_filters, out_filters, 1, stride, bias=False)
self.skipbn = nn.BatchNorm2d(out_filters)
def forward(self, inp):
x = self.block(inp)
skip = self.skipbn(self.skip(inp))
x += skip
return x
# β
Xception Architecture
class Xception(nn.Module):
def __init__(self, num_classes=1):
super().__init__()
self.conv1 = nn.Conv2d(3, 32, 3, 2, 0, bias=False)
self.bn1 = nn.BatchNorm2d(32)
self.relu = nn.ReLU(inplace=True)
self.conv2 = nn.Conv2d(32, 64, 3, bias=False)
self.bn2 = nn.BatchNorm2d(64)
self.block1 = Block(64, 128, 2, 2, start_with_relu=False, grow_first=True)
self.block2 = Block(128, 256, 2, 2, grow_first=True)
self.block3 = Block(256, 728, 2, 2, grow_first=True)
self.block4 = Block(728, 728, 3)
self.block5 = Block(728, 728, 3)
self.block6 = Block(728, 728, 3)
self.block7 = Block(728, 728, 3)
self.block8 = Block(728, 728, 3)
self.block9 = Block(728, 728, 3)
self.block10 = Block(728, 728, 3)
self.block11 = Block(728, 728, 3)
self.block12 = Block(728, 1024, 2, 2, grow_first=False)
self.conv3 = SeparableConv2d(1024, 1536, 3, 1, 1)
self.bn3 = nn.BatchNorm2d(1536)
self.conv4 = SeparableConv2d(1536, 2048, 3, 1, 1)
self.bn4 = nn.BatchNorm2d(2048)
self.fc = nn.Linear(2048, num_classes)
def features(self, input):
x = self.relu(self.bn1(self.conv1(input)))
x = self.relu(self.bn2(self.conv2(x)))
x = self.block1(x)
x = self.block2(x)
x = self.block3(x)
x = self.block4(x)
x = self.block5(x)
x = self.block6(x)
x = self.block7(x)
x = self.block8(x)
x = self.block9(x)
x = self.block10(x)
x = self.block11(x)
x = self.block12(x)
x = self.relu(self.bn3(self.conv3(x)))
x = self.relu(self.bn4(self.conv4(x)))
return x
def forward(self, input):
x = self.features(input)
x = nn.AdaptiveAvgPool2d((1, 1))(x)
x = x.view(x.size(0), -1)
x = self.fc(x)
return x
# β
Load weights
model = Xception()
model.load_state_dict(torch.hub.load_state_dict_from_url(
"https://huggingface.co/Selimsef/xception-cnn-df/resolve/main/xception-binary-weights.pt",
map_location="cpu"
))
model.eval()
# β
Transform
transform = transforms.Compose([
transforms.Resize((299, 299)),
transforms.ToTensor(),
transforms.Normalize([0.5]*3, [0.5]*3)
])
# β
Analyze function
def analyze_deepfake(video_path):
if not video_path:
return "β No video uploaded", None
cap = cv2.VideoCapture(video_path)
preds = []
count = 0
max_frames = 20
while True:
ret, frame = cap.read()
if not ret or count >= max_frames:
break
h, w, _ = frame.shape
y1 = int(h * 0.25)
y2 = int(h * 0.75)
x1 = int(w * 0.25)
x2 = int(w * 0.75)
crop = frame[y1:y2, x1:x2]
image = cv2.cvtColor(crop, cv2.COLOR_BGR2RGB)
image = Image.fromarray(image)
input_tensor = transform(image).unsqueeze(0)
with torch.no_grad():
out = model(input_tensor)
prob = torch.sigmoid(out)[0].item()
preds.append(prob)
count += 1
cap.release()
if not preds:
return "β No frames analyzed", None
avg = np.mean(preds)
label = "**FAKE**" if avg > 0.5 else "**REAL**"
result = f"π― Verdict: {label}\nConfidence: {avg:.2f}"
fig, ax = plt.subplots()
ax.hist(preds, bins=10, color="red" if avg > 0.5 else "green", edgecolor="black")
ax.set_title("Confidence per Frame")
ax.set_xlabel("Fake Probability")
ax.set_ylabel("Frames")
ax.grid(True)
return result, fig
# β
Gradio App
with gr.Blocks() as demo:
gr.Markdown("# π Deepfake Detector with Xception (DFDC)")
gr.Markdown("Upload a `.mp4` video. The app will classify it as REAL or FAKE based on pretrained deepfake model.")
video = gr.Video(label="Upload Video")
output_text = gr.Markdown()
output_plot = gr.Plot()
analyze = gr.Button("π Analyze")
analyze.click(fn=analyze_deepfake, inputs=video, outputs=[output_text, output_plot])
demo.queue().launch()
|