Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
|
@@ -8,37 +8,123 @@ import numpy as np
|
|
| 8 |
import matplotlib.pyplot as plt
|
| 9 |
import os
|
| 10 |
|
| 11 |
-
# β
|
| 12 |
-
class
|
| 13 |
-
def __init__(self):
|
| 14 |
super().__init__()
|
| 15 |
-
|
| 16 |
-
|
| 17 |
-
self.base = base
|
| 18 |
-
|
| 19 |
def forward(self, x):
|
| 20 |
-
|
|
|
|
|
|
|
| 21 |
|
| 22 |
-
|
| 23 |
-
|
| 24 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 25 |
"https://huggingface.co/Selimsef/xception-cnn-df/resolve/main/xception-binary-weights.pt",
|
| 26 |
-
map_location=
|
| 27 |
-
)
|
| 28 |
-
model.load_state_dict(state_dict)
|
| 29 |
model.eval()
|
| 30 |
|
| 31 |
-
# β
|
| 32 |
transform = transforms.Compose([
|
| 33 |
transforms.Resize((299, 299)),
|
| 34 |
transforms.ToTensor(),
|
| 35 |
transforms.Normalize([0.5]*3, [0.5]*3)
|
| 36 |
])
|
| 37 |
|
| 38 |
-
# β
|
| 39 |
-
def
|
| 40 |
-
if video_path
|
| 41 |
-
return "β
|
| 42 |
|
| 43 |
cap = cv2.VideoCapture(video_path)
|
| 44 |
preds = []
|
|
@@ -55,15 +141,14 @@ def predict_deepfake(video_path):
|
|
| 55 |
y2 = int(h * 0.75)
|
| 56 |
x1 = int(w * 0.25)
|
| 57 |
x2 = int(w * 0.75)
|
| 58 |
-
|
| 59 |
-
|
| 60 |
-
image =
|
| 61 |
-
|
| 62 |
-
input_tensor = transform(pil_img).unsqueeze(0)
|
| 63 |
|
| 64 |
with torch.no_grad():
|
| 65 |
-
|
| 66 |
-
prob = torch.sigmoid(
|
| 67 |
preds.append(prob)
|
| 68 |
|
| 69 |
count += 1
|
|
@@ -71,36 +156,31 @@ def predict_deepfake(video_path):
|
|
| 71 |
cap.release()
|
| 72 |
|
| 73 |
if not preds:
|
| 74 |
-
return "β No frames
|
| 75 |
|
| 76 |
avg = np.mean(preds)
|
| 77 |
-
|
| 78 |
-
|
| 79 |
-
|
| 80 |
-
|
| 81 |
-
"""
|
| 82 |
-
|
| 83 |
-
# Plot histogram
|
| 84 |
-
fig, ax = plt.subplots(figsize=(6, 4))
|
| 85 |
ax.hist(preds, bins=10, color="red" if avg > 0.5 else "green", edgecolor="black")
|
| 86 |
-
ax.set_title("Confidence per Frame
|
| 87 |
ax.set_xlabel("Fake Probability")
|
| 88 |
-
ax.set_ylabel("
|
| 89 |
ax.grid(True)
|
| 90 |
|
| 91 |
-
return
|
| 92 |
|
| 93 |
-
# β
Gradio
|
| 94 |
with gr.Blocks() as demo:
|
| 95 |
-
gr.Markdown("
|
| 96 |
-
gr.Markdown("Upload a
|
| 97 |
-
|
| 98 |
-
video_input = gr.Video(label="Upload video")
|
| 99 |
-
result_output = gr.Markdown()
|
| 100 |
-
graph_output = gr.Plot()
|
| 101 |
|
| 102 |
-
|
|
|
|
|
|
|
|
|
|
| 103 |
|
| 104 |
-
|
| 105 |
|
| 106 |
demo.queue().launch()
|
|
|
|
| 8 |
import matplotlib.pyplot as plt
|
| 9 |
import os
|
| 10 |
|
| 11 |
+
# β
Xception Block Definition
|
| 12 |
+
class SeparableConv2d(nn.Module):
|
| 13 |
+
def __init__(self, in_channels, out_channels, kernel_size=1, stride=1, padding=0):
|
| 14 |
super().__init__()
|
| 15 |
+
self.depthwise = nn.Conv2d(in_channels, in_channels, kernel_size, stride, padding, groups=in_channels, bias=False)
|
| 16 |
+
self.pointwise = nn.Conv2d(in_channels, out_channels, 1, 1, 0, bias=False)
|
|
|
|
|
|
|
| 17 |
def forward(self, x):
|
| 18 |
+
x = self.depthwise(x)
|
| 19 |
+
x = self.pointwise(x)
|
| 20 |
+
return x
|
| 21 |
|
| 22 |
+
class Block(nn.Module):
|
| 23 |
+
def __init__(self, in_filters, out_filters, reps, stride=1, start_with_relu=True, grow_first=True):
|
| 24 |
+
super().__init__()
|
| 25 |
+
layers = []
|
| 26 |
+
filters = in_filters
|
| 27 |
+
if grow_first:
|
| 28 |
+
if start_with_relu:
|
| 29 |
+
layers.append(nn.ReLU(inplace=True))
|
| 30 |
+
layers.extend([
|
| 31 |
+
SeparableConv2d(in_filters, out_filters, 3, 1, 1),
|
| 32 |
+
nn.BatchNorm2d(out_filters)
|
| 33 |
+
])
|
| 34 |
+
filters = out_filters
|
| 35 |
+
for _ in range(reps - 1):
|
| 36 |
+
layers.extend([
|
| 37 |
+
nn.ReLU(inplace=True),
|
| 38 |
+
SeparableConv2d(filters, filters, 3, 1, 1),
|
| 39 |
+
nn.BatchNorm2d(filters)
|
| 40 |
+
])
|
| 41 |
+
if not grow_first:
|
| 42 |
+
layers.extend([
|
| 43 |
+
nn.ReLU(inplace=True),
|
| 44 |
+
SeparableConv2d(in_filters, out_filters, 3, 1, 1),
|
| 45 |
+
nn.BatchNorm2d(out_filters)
|
| 46 |
+
])
|
| 47 |
+
if stride != 1:
|
| 48 |
+
layers.append(nn.MaxPool2d(3, stride, 1))
|
| 49 |
+
self.block = nn.Sequential(*layers)
|
| 50 |
+
self.skip = nn.Conv2d(in_filters, out_filters, 1, stride, bias=False)
|
| 51 |
+
self.skipbn = nn.BatchNorm2d(out_filters)
|
| 52 |
+
def forward(self, inp):
|
| 53 |
+
x = self.block(inp)
|
| 54 |
+
skip = self.skipbn(self.skip(inp))
|
| 55 |
+
x += skip
|
| 56 |
+
return x
|
| 57 |
+
|
| 58 |
+
# β
Xception Architecture
|
| 59 |
+
class Xception(nn.Module):
|
| 60 |
+
def __init__(self, num_classes=1):
|
| 61 |
+
super().__init__()
|
| 62 |
+
self.conv1 = nn.Conv2d(3, 32, 3, 2, 0, bias=False)
|
| 63 |
+
self.bn1 = nn.BatchNorm2d(32)
|
| 64 |
+
self.relu = nn.ReLU(inplace=True)
|
| 65 |
+
self.conv2 = nn.Conv2d(32, 64, 3, bias=False)
|
| 66 |
+
self.bn2 = nn.BatchNorm2d(64)
|
| 67 |
+
self.block1 = Block(64, 128, 2, 2, start_with_relu=False, grow_first=True)
|
| 68 |
+
self.block2 = Block(128, 256, 2, 2, grow_first=True)
|
| 69 |
+
self.block3 = Block(256, 728, 2, 2, grow_first=True)
|
| 70 |
+
self.block4 = Block(728, 728, 3)
|
| 71 |
+
self.block5 = Block(728, 728, 3)
|
| 72 |
+
self.block6 = Block(728, 728, 3)
|
| 73 |
+
self.block7 = Block(728, 728, 3)
|
| 74 |
+
self.block8 = Block(728, 728, 3)
|
| 75 |
+
self.block9 = Block(728, 728, 3)
|
| 76 |
+
self.block10 = Block(728, 728, 3)
|
| 77 |
+
self.block11 = Block(728, 728, 3)
|
| 78 |
+
self.block12 = Block(728, 1024, 2, 2, grow_first=False)
|
| 79 |
+
self.conv3 = SeparableConv2d(1024, 1536, 3, 1, 1)
|
| 80 |
+
self.bn3 = nn.BatchNorm2d(1536)
|
| 81 |
+
self.conv4 = SeparableConv2d(1536, 2048, 3, 1, 1)
|
| 82 |
+
self.bn4 = nn.BatchNorm2d(2048)
|
| 83 |
+
self.fc = nn.Linear(2048, num_classes)
|
| 84 |
+
def features(self, input):
|
| 85 |
+
x = self.relu(self.bn1(self.conv1(input)))
|
| 86 |
+
x = self.relu(self.bn2(self.conv2(x)))
|
| 87 |
+
x = self.block1(x)
|
| 88 |
+
x = self.block2(x)
|
| 89 |
+
x = self.block3(x)
|
| 90 |
+
x = self.block4(x)
|
| 91 |
+
x = self.block5(x)
|
| 92 |
+
x = self.block6(x)
|
| 93 |
+
x = self.block7(x)
|
| 94 |
+
x = self.block8(x)
|
| 95 |
+
x = self.block9(x)
|
| 96 |
+
x = self.block10(x)
|
| 97 |
+
x = self.block11(x)
|
| 98 |
+
x = self.block12(x)
|
| 99 |
+
x = self.relu(self.bn3(self.conv3(x)))
|
| 100 |
+
x = self.relu(self.bn4(self.conv4(x)))
|
| 101 |
+
return x
|
| 102 |
+
def forward(self, input):
|
| 103 |
+
x = self.features(input)
|
| 104 |
+
x = nn.AdaptiveAvgPool2d((1, 1))(x)
|
| 105 |
+
x = x.view(x.size(0), -1)
|
| 106 |
+
x = self.fc(x)
|
| 107 |
+
return x
|
| 108 |
+
|
| 109 |
+
# β
Load weights
|
| 110 |
+
model = Xception()
|
| 111 |
+
model.load_state_dict(torch.hub.load_state_dict_from_url(
|
| 112 |
"https://huggingface.co/Selimsef/xception-cnn-df/resolve/main/xception-binary-weights.pt",
|
| 113 |
+
map_location="cpu"
|
| 114 |
+
))
|
|
|
|
| 115 |
model.eval()
|
| 116 |
|
| 117 |
+
# β
Transform
|
| 118 |
transform = transforms.Compose([
|
| 119 |
transforms.Resize((299, 299)),
|
| 120 |
transforms.ToTensor(),
|
| 121 |
transforms.Normalize([0.5]*3, [0.5]*3)
|
| 122 |
])
|
| 123 |
|
| 124 |
+
# β
Analyze function
|
| 125 |
+
def analyze_deepfake(video_path):
|
| 126 |
+
if not video_path:
|
| 127 |
+
return "β No video uploaded", None
|
| 128 |
|
| 129 |
cap = cv2.VideoCapture(video_path)
|
| 130 |
preds = []
|
|
|
|
| 141 |
y2 = int(h * 0.75)
|
| 142 |
x1 = int(w * 0.25)
|
| 143 |
x2 = int(w * 0.75)
|
| 144 |
+
crop = frame[y1:y2, x1:x2]
|
| 145 |
+
image = cv2.cvtColor(crop, cv2.COLOR_BGR2RGB)
|
| 146 |
+
image = Image.fromarray(image)
|
| 147 |
+
input_tensor = transform(image).unsqueeze(0)
|
|
|
|
| 148 |
|
| 149 |
with torch.no_grad():
|
| 150 |
+
out = model(input_tensor)
|
| 151 |
+
prob = torch.sigmoid(out)[0].item()
|
| 152 |
preds.append(prob)
|
| 153 |
|
| 154 |
count += 1
|
|
|
|
| 156 |
cap.release()
|
| 157 |
|
| 158 |
if not preds:
|
| 159 |
+
return "β No frames analyzed", None
|
| 160 |
|
| 161 |
avg = np.mean(preds)
|
| 162 |
+
label = "**FAKE**" if avg > 0.5 else "**REAL**"
|
| 163 |
+
result = f"π― Verdict: {label}\nConfidence: {avg:.2f}"
|
| 164 |
+
|
| 165 |
+
fig, ax = plt.subplots()
|
|
|
|
|
|
|
|
|
|
|
|
|
| 166 |
ax.hist(preds, bins=10, color="red" if avg > 0.5 else "green", edgecolor="black")
|
| 167 |
+
ax.set_title("Confidence per Frame")
|
| 168 |
ax.set_xlabel("Fake Probability")
|
| 169 |
+
ax.set_ylabel("Frames")
|
| 170 |
ax.grid(True)
|
| 171 |
|
| 172 |
+
return result, fig
|
| 173 |
|
| 174 |
+
# β
Gradio App
|
| 175 |
with gr.Blocks() as demo:
|
| 176 |
+
gr.Markdown("# π Deepfake Detector with Xception (DFDC)")
|
| 177 |
+
gr.Markdown("Upload a `.mp4` video. The app will classify it as REAL or FAKE based on pretrained deepfake model.")
|
|
|
|
|
|
|
|
|
|
|
|
|
| 178 |
|
| 179 |
+
video = gr.Video(label="Upload Video")
|
| 180 |
+
output_text = gr.Markdown()
|
| 181 |
+
output_plot = gr.Plot()
|
| 182 |
+
analyze = gr.Button("π Analyze")
|
| 183 |
|
| 184 |
+
analyze.click(fn=analyze_deepfake, inputs=video, outputs=[output_text, output_plot])
|
| 185 |
|
| 186 |
demo.queue().launch()
|