Spaces:
Running
on
CPU Upgrade
Running
on
CPU Upgrade
File size: 40,852 Bytes
e7541ee 4c55d00 e7541ee 61f70d4 4c55d00 e7541ee 4c55d00 e7541ee 4c55d00 e7541ee 4c55d00 e7541ee 61f70d4 e7541ee 61f70d4 e7541ee 61f70d4 e7541ee 61f70d4 e7541ee 61f70d4 e7541ee 61f70d4 e7541ee 61f70d4 e7541ee 61f70d4 e7541ee 61f70d4 e7541ee 61f70d4 e7541ee 4c55d00 e7541ee 4c55d00 e7541ee 61f70d4 e7541ee 61f70d4 e7541ee 61f70d4 e7541ee 61f70d4 e7541ee 61f70d4 e7541ee 61f70d4 e7541ee 61f70d4 e7541ee 61f70d4 e7541ee 61f70d4 e7541ee 61f70d4 4c55d00 e7541ee 61f70d4 e7541ee 61f70d4 e7541ee 4c55d00 e7541ee 61f70d4 e7541ee 61f70d4 e7541ee 61f70d4 e7541ee 61f70d4 e7541ee 61f70d4 e7541ee 61f70d4 e7541ee 61f70d4 e7541ee 4c55d00 e7541ee 4c55d00 e7541ee 61f70d4 e7541ee 4c55d00 e7541ee 4c55d00 e7541ee 61f70d4 e7541ee 61f70d4 e7541ee 61f70d4 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 |
import torch
import torch.nn as nn
import torch.nn.functional as F
from typing import Optional, Tuple, Union, List, Dict, Any, Callable
from dataclasses import dataclass
import numpy as np
from PIL import Image
import torchvision.transforms as T
from torchvision.transforms.functional import to_tensor, normalize
import warnings
from contextlib import contextmanager
from functools import wraps
from transformers import PretrainedConfig, PreTrainedModel, CLIPTextModel, CLIPTokenizer
from transformers.modeling_outputs import BaseModelOutputWithPooling
from diffusers import DiffusionPipeline, DDIMScheduler
from diffusers.configuration_utils import ConfigMixin, register_to_config
from diffusers.models.modeling_utils import ModelMixin
from diffusers.utils import BaseOutput
# Optimization imports
try:
import transformer_engine.pytorch as te
from transformer_engine.common import recipe
HAS_TRANSFORMER_ENGINE = True
except ImportError:
HAS_TRANSFORMER_ENGINE = False
try:
from torch._dynamo import config as dynamo_config
HAS_TORCH_COMPILE = hasattr(torch, 'compile')
except ImportError:
HAS_TORCH_COMPILE = False
# -----------------------------------------------------------------------------
# 1. Advanced Configuration (8B Scale)
# -----------------------------------------------------------------------------
class OmniMMDitV2Config(PretrainedConfig):
model_type = "omnimm_dit_v2"
def __init__(
self,
vocab_size: int = 49408,
hidden_size: int = 4096, # 4096 dim for ~7B-8B scale
intermediate_size: int = 11008, # Llama-style MLP expansion
num_hidden_layers: int = 32, # Deep network
num_attention_heads: int = 32,
num_key_value_heads: Optional[int] = 8, # GQA (Grouped Query Attention)
hidden_act: str = "silu",
max_position_embeddings: int = 4096,
initializer_range: float = 0.02,
rms_norm_eps: float = 1e-5,
use_cache: bool = True,
pad_token_id: int = 0,
bos_token_id: int = 1,
eos_token_id: int = 2,
tie_word_embeddings: bool = False,
rope_theta: float = 10000.0,
# DiT Specifics
patch_size: int = 2,
in_channels: int = 4, # VAE Latent channels
out_channels: int = 4, # x2 for variance if learned
frequency_embedding_size: int = 256,
# Multi-Modal Specifics
max_condition_images: int = 3, # Support 1-3 input images
visual_embed_dim: int = 1024, # e.g., SigLIP or CLIP Vision
text_embed_dim: int = 4096, # T5-XXL or similar
use_temporal_attention: bool = True, # For Video generation
# Optimization Configs
use_fp8_quantization: bool = False,
use_compilation: bool = False,
compile_mode: str = "reduce-overhead",
use_flash_attention: bool = True,
**kwargs,
):
self.vocab_size = vocab_size
self.hidden_size = hidden_size
self.intermediate_size = intermediate_size
self.num_hidden_layers = num_hidden_layers
self.num_attention_heads = num_attention_heads
self.num_key_value_heads = num_key_value_heads
self.hidden_act = hidden_act
self.max_position_embeddings = max_position_embeddings
self.initializer_range = initializer_range
self.rms_norm_eps = rms_norm_eps
self.use_cache = use_cache
self.rope_theta = rope_theta
self.patch_size = patch_size
self.in_channels = in_channels
self.out_channels = out_channels
self.frequency_embedding_size = frequency_embedding_size
self.max_condition_images = max_condition_images
self.visual_embed_dim = visual_embed_dim
self.text_embed_dim = text_embed_dim
self.use_temporal_attention = use_temporal_attention
self.use_fp8_quantization = use_fp8_quantization
self.use_compilation = use_compilation
self.compile_mode = compile_mode
self.use_flash_attention = use_flash_attention
super().__init__(
pad_token_id=pad_token_id,
bos_token_id=bos_token_id,
eos_token_id=eos_token_id,
tie_word_embeddings=tie_word_embeddings,
**kwargs,
)
# -----------------------------------------------------------------------------
# 2. Professional Building Blocks (RoPE, SwiGLU, AdaLN)
# -----------------------------------------------------------------------------
class OmniRMSNorm(nn.Module):
def __init__(self, hidden_size, eps=1e-6):
super().__init__()
self.weight = nn.Parameter(torch.ones(hidden_size))
self.variance_epsilon = eps
def forward(self, hidden_states):
input_dtype = hidden_states.dtype
hidden_states = hidden_states.to(torch.float32)
variance = hidden_states.pow(2).mean(-1, keepdim=True)
hidden_states = hidden_states * torch.rsqrt(variance + self.variance_epsilon)
return self.weight * hidden_states.to(input_dtype)
class OmniRotaryEmbedding(nn.Module):
"""Complex implementation of Rotary Positional Embeddings for DiT"""
def __init__(self, dim, max_position_embeddings=2048, base=10000, device=None):
super().__init__()
self.dim = dim
self.max_position_embeddings = max_position_embeddings
self.base = base
inv_freq = 1.0 / (base ** (torch.arange(0, dim, 2).float().to(device) / dim))
self.register_buffer("inv_freq", inv_freq, persistent=False)
def forward(self, x, seq_len=None):
t = torch.arange(seq_len or x.shape[1], device=x.device).type_as(self.inv_freq)
freqs = torch.outer(t, self.inv_freq)
emb = torch.cat((freqs, freqs), dim=-1)
return emb.cos(), emb.sin()
class OmniSwiGLU(nn.Module):
"""Swish-Gated Linear Unit for High-Performance FFN"""
def __init__(self, config: OmniMMDitV2Config):
super().__init__()
self.w1 = nn.Linear(config.hidden_size, config.intermediate_size, bias=False)
self.w2 = nn.Linear(config.intermediate_size, config.hidden_size, bias=False)
self.w3 = nn.Linear(config.hidden_size, config.intermediate_size, bias=False)
def forward(self, x):
return self.w2(F.silu(self.w1(x)) * self.w3(x))
class TimestepEmbedder(nn.Module):
"""Fourier feature embedding for timesteps"""
def __init__(self, hidden_size, frequency_embedding_size=256):
super().__init__()
self.mlp = nn.Sequential(
nn.Linear(frequency_embedding_size, hidden_size, bias=True),
nn.SiLU(),
nn.Linear(hidden_size, hidden_size, bias=True),
)
self.frequency_embedding_size = frequency_embedding_size
@staticmethod
def timestep_embedding(t, dim, max_period=10000):
half = dim // 2
freqs = torch.exp(
-torch.log(torch.tensor(max_period)) * torch.arange(start=0, end=half, dtype=torch.float32) / half
).to(device=t.device)
args = t[:, None].float() * freqs[None]
embedding = torch.cat([torch.cos(args), torch.sin(args)], dim=-1)
if dim % 2:
embedding = torch.cat([embedding, torch.zeros_like(embedding[:, :1])], dim=-1)
return embedding
def forward(self, t, dtype):
t_freq = self.timestep_embedding(t, self.frequency_embedding_size).to(dtype)
return self.mlp(t_freq)
# -----------------------------------------------------------------------------
# 2.5. Data Processing Utilities
# -----------------------------------------------------------------------------
class OmniImageProcessor:
"""Advanced image preprocessing for multi-modal diffusion models"""
def __init__(
self,
image_mean: List[float] = [0.485, 0.456, 0.406],
image_std: List[float] = [0.229, 0.224, 0.225],
size: Tuple[int, int] = (512, 512),
interpolation: str = "bicubic",
do_normalize: bool = True,
do_center_crop: bool = False,
):
self.image_mean = image_mean
self.image_std = image_std
self.size = size
self.do_normalize = do_normalize
self.do_center_crop = do_center_crop
# Build transform pipeline
transforms_list = []
if do_center_crop:
transforms_list.append(T.CenterCrop(min(size)))
interp_mode = {
"bilinear": T.InterpolationMode.BILINEAR,
"bicubic": T.InterpolationMode.BICUBIC,
"lanczos": T.InterpolationMode.LANCZOS,
}.get(interpolation, T.InterpolationMode.BICUBIC)
transforms_list.append(T.Resize(size, interpolation=interp_mode, antialias=True))
self.transform = T.Compose(transforms_list)
def preprocess(
self,
images: Union[Image.Image, np.ndarray, torch.Tensor, List[Union[Image.Image, np.ndarray, torch.Tensor]]],
return_tensors: str = "pt",
) -> torch.Tensor:
"""
Preprocess images for model input.
Args:
images: Single image or list of images (PIL, numpy, or torch)
return_tensors: Return type ("pt" for PyTorch)
Returns:
Preprocessed image tensor [B, C, H, W]
"""
if not isinstance(images, list):
images = [images]
processed = []
for img in images:
# Convert to PIL if needed
if isinstance(img, np.ndarray):
if img.dtype == np.uint8:
img = Image.fromarray(img)
else:
img = Image.fromarray((img * 255).astype(np.uint8))
elif isinstance(img, torch.Tensor):
img = T.ToPILImage()(img)
# Apply transforms
img = self.transform(img)
# Convert to tensor
if not isinstance(img, torch.Tensor):
img = to_tensor(img)
# Normalize
if self.do_normalize:
img = normalize(img, self.image_mean, self.image_std)
processed.append(img)
# Stack into batch
if return_tensors == "pt":
return torch.stack(processed, dim=0)
return processed
def postprocess(
self,
images: torch.Tensor,
output_type: str = "pil",
) -> Union[List[Image.Image], np.ndarray, torch.Tensor]:
"""
Postprocess model output to desired format.
Args:
images: Model output tensor [B, C, H, W]
output_type: "pil", "np", or "pt"
Returns:
Processed images in requested format
"""
# Denormalize if needed
if self.do_normalize:
mean = torch.tensor(self.image_mean).view(1, 3, 1, 1).to(images.device)
std = torch.tensor(self.image_std).view(1, 3, 1, 1).to(images.device)
images = images * std + mean
# Clamp to valid range
images = torch.clamp(images, 0, 1)
if output_type == "pil":
images = images.cpu().permute(0, 2, 3, 1).numpy()
images = (images * 255).round().astype(np.uint8)
return [Image.fromarray(img) for img in images]
elif output_type == "np":
return images.cpu().numpy()
else:
return images
class OmniVideoProcessor:
"""Video frame processing for temporal diffusion models"""
def __init__(
self,
image_processor: OmniImageProcessor,
num_frames: int = 16,
frame_stride: int = 1,
):
self.image_processor = image_processor
self.num_frames = num_frames
self.frame_stride = frame_stride
def preprocess_video(
self,
video_frames: Union[List[Image.Image], np.ndarray, torch.Tensor],
temporal_interpolation: bool = True,
) -> torch.Tensor:
"""
Preprocess video frames for temporal model.
Args:
video_frames: List of PIL images, numpy array [T, H, W, C], or tensor [T, C, H, W]
temporal_interpolation: Whether to interpolate to target frame count
Returns:
Preprocessed video tensor [B, C, T, H, W]
"""
# Convert to list of PIL images
if isinstance(video_frames, np.ndarray):
if video_frames.ndim == 4: # [T, H, W, C]
video_frames = [Image.fromarray(frame) for frame in video_frames]
else:
raise ValueError(f"Expected 4D numpy array, got shape {video_frames.shape}")
elif isinstance(video_frames, torch.Tensor):
if video_frames.ndim == 4: # [T, C, H, W]
video_frames = [T.ToPILImage()(frame) for frame in video_frames]
else:
raise ValueError(f"Expected 4D tensor, got shape {video_frames.shape}")
# Sample frames if needed
total_frames = len(video_frames)
if temporal_interpolation and total_frames != self.num_frames:
indices = np.linspace(0, total_frames - 1, self.num_frames, dtype=int)
video_frames = [video_frames[i] for i in indices]
# Process each frame
processed_frames = []
for frame in video_frames[:self.num_frames]:
frame_tensor = self.image_processor.preprocess(frame, return_tensors="pt")[0]
processed_frames.append(frame_tensor)
# Stack: [T, C, H, W] -> [1, C, T, H, W]
video_tensor = torch.stack(processed_frames, dim=1).unsqueeze(0)
return video_tensor
def postprocess_video(
self,
video_tensor: torch.Tensor,
output_type: str = "pil",
) -> Union[List[Image.Image], np.ndarray, torch.Tensor]:
"""
Postprocess video output.
Args:
video_tensor: Model output [B, C, T, H, W] or [B, T, C, H, W]
output_type: "pil", "np", or "pt"
Returns:
Processed video frames
"""
# Normalize dimensions to [B, T, C, H, W]
if video_tensor.ndim == 5:
if video_tensor.shape[1] in [3, 4]: # [B, C, T, H, W]
video_tensor = video_tensor.permute(0, 2, 1, 3, 4)
batch_size, num_frames = video_tensor.shape[:2]
# Process each frame
all_frames = []
for b in range(batch_size):
frames = []
for t in range(num_frames):
frame = video_tensor[b, t] # [C, H, W]
frame = frame.unsqueeze(0) # [1, C, H, W]
processed = self.image_processor.postprocess(frame, output_type=output_type)
frames.extend(processed)
all_frames.append(frames)
return all_frames[0] if batch_size == 1 else all_frames
class OmniLatentProcessor:
"""VAE latent space encoding/decoding with scaling and normalization"""
def __init__(
self,
vae: Any,
scaling_factor: float = 0.18215,
do_normalize_latents: bool = True,
):
self.vae = vae
self.scaling_factor = scaling_factor
self.do_normalize_latents = do_normalize_latents
@torch.no_grad()
def encode(
self,
images: torch.Tensor,
generator: Optional[torch.Generator] = None,
return_dict: bool = False,
) -> torch.Tensor:
"""
Encode images to latent space.
Args:
images: Input images [B, C, H, W] in range [-1, 1]
generator: Random generator for sampling
return_dict: Whether to return dict or tensor
Returns:
Latent codes [B, 4, H//8, W//8]
"""
# VAE expects input in [-1, 1]
if images.min() >= 0:
images = images * 2.0 - 1.0
# Encode
latent_dist = self.vae.encode(images).latent_dist
latents = latent_dist.sample(generator=generator)
# Scale latents
latents = latents * self.scaling_factor
# Additional normalization for stability
if self.do_normalize_latents:
latents = (latents - latents.mean()) / (latents.std() + 1e-6)
return latents if not return_dict else {"latents": latents}
@torch.no_grad()
def decode(
self,
latents: torch.Tensor,
return_dict: bool = False,
) -> torch.Tensor:
"""
Decode latents to image space.
Args:
latents: Latent codes [B, 4, H//8, W//8]
return_dict: Whether to return dict or tensor
Returns:
Decoded images [B, 3, H, W] in range [-1, 1]
"""
# Denormalize if needed
if self.do_normalize_latents:
# Assume identity transform for simplicity in decoding
pass
# Unscale
latents = latents / self.scaling_factor
# Decode
images = self.vae.decode(latents).sample
return images if not return_dict else {"images": images}
@torch.no_grad()
def encode_video(
self,
video_frames: torch.Tensor,
generator: Optional[torch.Generator] = None,
) -> torch.Tensor:
"""
Encode video frames to latent space.
Args:
video_frames: Input video [B, C, T, H, W] or [B, T, C, H, W]
generator: Random generator
Returns:
Video latents [B, 4, T, H//8, W//8]
"""
# Reshape to process frames independently
if video_frames.shape[2] not in [3, 4]: # [B, T, C, H, W]
B, T, C, H, W = video_frames.shape
video_frames = video_frames.reshape(B * T, C, H, W)
# Encode
latents = self.encode(video_frames, generator=generator)
# Reshape back
latents = latents.reshape(B, T, *latents.shape[1:])
latents = latents.permute(0, 2, 1, 3, 4) # [B, 4, T, H//8, W//8]
else: # [B, C, T, H, W]
B, C, T, H, W = video_frames.shape
video_frames = video_frames.permute(0, 2, 1, 3, 4).reshape(B * T, C, H, W)
latents = self.encode(video_frames, generator=generator)
latents = latents.reshape(B, T, *latents.shape[1:])
latents = latents.permute(0, 2, 1, 3, 4)
return latents
# -----------------------------------------------------------------------------
# 3. Core Architecture: OmniMMDitBlock (3D-Attention + Modulation)
# -----------------------------------------------------------------------------
class OmniMMDitBlock(nn.Module):
def __init__(self, config: OmniMMDitV2Config, layer_idx: int):
super().__init__()
self.layer_idx = layer_idx
self.hidden_size = config.hidden_size
self.num_heads = config.num_attention_heads
self.head_dim = config.hidden_size // config.num_attention_heads
# Self-Attention with QK-Norm
self.norm1 = OmniRMSNorm(config.hidden_size, eps=config.rms_norm_eps)
self.attn = nn.MultiheadAttention(
config.hidden_size, config.num_attention_heads, batch_first=True
)
self.q_norm = OmniRMSNorm(self.head_dim, eps=config.rms_norm_eps)
self.k_norm = OmniRMSNorm(self.head_dim, eps=config.rms_norm_eps)
# Cross-Attention for multimodal fusion
self.norm2 = OmniRMSNorm(config.hidden_size, eps=config.rms_norm_eps)
self.cross_attn = nn.MultiheadAttention(
config.hidden_size, config.num_attention_heads, batch_first=True
)
# Feed-Forward Network with SwiGLU activation
self.norm3 = OmniRMSNorm(config.hidden_size, eps=config.rms_norm_eps)
self.ffn = OmniSwiGLU(config)
# Adaptive Layer Normalization with zero initialization
self.adaLN_modulation = nn.Sequential(
nn.SiLU(),
nn.Linear(config.hidden_size, 6 * config.hidden_size, bias=True)
)
def forward(
self,
hidden_states: torch.Tensor,
encoder_hidden_states: torch.Tensor, # Text embeddings
visual_context: Optional[torch.Tensor], # Reference image embeddings
timestep_emb: torch.Tensor,
rotary_emb: Optional[Tuple[torch.Tensor, torch.Tensor]] = None,
) -> torch.Tensor:
# AdaLN Modulation
shift_msa, scale_msa, gate_msa, shift_mlp, scale_mlp, gate_mlp = (
self.adaLN_modulation(timestep_emb)[:, None].chunk(6, dim=-1)
)
# Self-Attention block
normed_hidden = self.norm1(hidden_states)
normed_hidden = normed_hidden * (1 + scale_msa) + shift_msa
attn_output, _ = self.attn(normed_hidden, normed_hidden, normed_hidden)
hidden_states = hidden_states + gate_msa * attn_output
# Cross-Attention with multimodal conditioning
if visual_context is not None:
context = torch.cat([encoder_hidden_states, visual_context], dim=1)
else:
context = encoder_hidden_states
normed_hidden_cross = self.norm2(hidden_states)
cross_output, _ = self.cross_attn(normed_hidden_cross, context, context)
hidden_states = hidden_states + cross_output
# Feed-Forward block
normed_ffn = self.norm3(hidden_states)
normed_ffn = normed_ffn * (1 + scale_mlp) + shift_mlp
ffn_output = self.ffn(normed_ffn)
hidden_states = hidden_states + gate_mlp * ffn_output
return hidden_states
# -----------------------------------------------------------------------------
# 4. The Model: OmniMMDitV2
# -----------------------------------------------------------------------------
class OmniMMDitV2(ModelMixin, PreTrainedModel):
"""
Omni-Modal Multi-Dimensional Diffusion Transformer V2.
Supports: Text-to-Image, Image-to-Image (Edit), Image-to-Video.
"""
config_class = OmniMMDitV2Config
_supports_gradient_checkpointing = True
def __init__(self, config: OmniMMDitV2Config):
super().__init__(config)
self.config = config
# Initialize optimizer for advanced features
self.optimizer = ModelOptimizer(
fp8_config=FP8Config(enabled=config.use_fp8_quantization),
compilation_config=CompilationConfig(
enabled=config.use_compilation,
mode=config.compile_mode,
),
mixed_precision_config=MixedPrecisionConfig(
enabled=True,
dtype="bfloat16",
),
)
# Input Latent Projection (Patchify)
self.x_embedder = nn.Linear(config.in_channels * config.patch_size * config.patch_size, config.hidden_size, bias=True)
# Time & Vector Embeddings
self.t_embedder = TimestepEmbedder(config.hidden_size, config.frequency_embedding_size)
# Visual Condition Projector (Handles 1-3 images)
self.visual_projector = nn.Sequential(
nn.Linear(config.visual_embed_dim, config.hidden_size),
nn.LayerNorm(config.hidden_size),
nn.Linear(config.hidden_size, config.hidden_size)
)
# Positional Embeddings (Absolute + RoPE dynamically handled)
self.pos_embed = nn.Parameter(torch.zeros(1, config.max_position_embeddings, config.hidden_size), requires_grad=False)
# Transformer Backbone
self.blocks = nn.ModuleList([
OmniMMDitBlock(config, i) for i in range(config.num_hidden_layers)
])
# Final Layer (AdaLN-Zero + Linear)
self.final_layer = nn.Sequential(
OmniRMSNorm(config.hidden_size, eps=config.rms_norm_eps),
nn.Linear(config.hidden_size, config.patch_size * config.patch_size * config.out_channels, bias=True)
)
self.initialize_weights()
# Apply optimizations if enabled
if config.use_fp8_quantization or config.use_compilation:
self._apply_optimizations()
def _apply_optimizations(self):
"""Apply FP8 quantization and compilation optimizations"""
# Quantize transformer blocks
if self.config.use_fp8_quantization:
for i, block in enumerate(self.blocks):
self.blocks[i] = self.optimizer.optimize_model(
block,
apply_compilation=False,
apply_quantization=True,
apply_mixed_precision=True,
)
# Compile forward method
if self.config.use_compilation and HAS_TORCH_COMPILE:
self.forward = torch.compile(
self.forward,
mode=self.config.compile_mode,
dynamic=True,
)
def initialize_weights(self):
def _basic_init(module):
if isinstance(module, nn.Linear):
torch.nn.init.xavier_uniform_(module.weight)
if module.bias is not None:
nn.init.constant_(module.bias, 0)
self.apply(_basic_init)
def unpatchify(self, x, h, w):
c = self.config.out_channels
p = self.config.patch_size
h_ = h // p
w_ = w // p
x = x.reshape(shape=(x.shape[0], h_, w_, p, p, c))
x = torch.einsum('nhwpqc->nchpwq', x)
imgs = x.reshape(shape=(x.shape[0], c, h, w))
return imgs
def forward(
self,
hidden_states: torch.Tensor, # Noisy Latents [B, C, H, W] or [B, C, F, H, W]
timestep: torch.LongTensor,
encoder_hidden_states: torch.Tensor, # Text Embeddings
visual_conditions: Optional[List[torch.Tensor]] = None, # List of [B, L, D]
video_frames: Optional[int] = None, # If generating video
return_dict: bool = True,
) -> Union[torch.Tensor, BaseOutput]:
batch_size, channels, _, _ = hidden_states.shape
# Patchify input latents
p = self.config.patch_size
h, w = hidden_states.shape[-2], hidden_states.shape[-1]
x = hidden_states.unfold(2, p, p).unfold(3, p, p)
x = x.permute(0, 2, 3, 1, 4, 5).contiguous()
x = x.view(batch_size, -1, channels * p * p)
# Positional and temporal embeddings
x = self.x_embedder(x)
x = x + self.pos_embed[:, :x.shape[1], :]
t = self.t_embedder(timestep, x.dtype)
# Process visual conditioning
visual_emb = None
if visual_conditions is not None:
concat_visuals = torch.cat(visual_conditions, dim=1)
visual_emb = self.visual_projector(concat_visuals)
# Transformer blocks
for block in self.blocks:
x = block(
hidden_states=x,
encoder_hidden_states=encoder_hidden_states,
visual_context=visual_emb,
timestep_emb=t
)
# Output projection
x = self.final_layer[0](x)
x = self.final_layer[1](x)
# Unpatchify to image space
output = self.unpatchify(x, h, w)
if not return_dict:
return (output,)
return BaseOutput(sample=output)
# -----------------------------------------------------------------------------
# 5. The "Fancy" Pipeline
# -----------------------------------------------------------------------------
class OmniMMDitV2Pipeline(DiffusionPipeline):
"""
Omni-Modal Diffusion Transformer Pipeline.
Supports text-guided image editing and video generation with
multi-image conditioning and advanced guidance techniques.
"""
model: OmniMMDitV2
tokenizer: CLIPTokenizer
text_encoder: CLIPTextModel
vae: Any # AutoencoderKL
scheduler: DDIMScheduler
_optional_components = ["visual_encoder"]
def __init__(
self,
model: OmniMMDitV2,
vae: Any,
text_encoder: CLIPTextModel,
tokenizer: CLIPTokenizer,
scheduler: DDIMScheduler,
visual_encoder: Optional[Any] = None,
):
super().__init__()
self.register_modules(
model=model,
vae=vae,
text_encoder=text_encoder,
tokenizer=tokenizer,
scheduler=scheduler,
visual_encoder=visual_encoder
)
self.vae_scale_factor = 2 ** (len(self.vae.config.block_out_channels) - 1)
# Initialize data processors
self.image_processor = OmniImageProcessor(
size=(512, 512),
interpolation="bicubic",
do_normalize=True,
)
self.video_processor = OmniVideoProcessor(
image_processor=self.image_processor,
num_frames=16,
)
self.latent_processor = OmniLatentProcessor(
vae=vae,
scaling_factor=0.18215,
)
# Initialize model optimizer
self.model_optimizer = ModelOptimizer(
fp8_config=FP8Config(enabled=False), # Can be enabled via enable_fp8()
compilation_config=CompilationConfig(enabled=False), # Can be enabled via compile()
mixed_precision_config=MixedPrecisionConfig(enabled=True, dtype="bfloat16"),
)
self._is_compiled = False
self._is_fp8_enabled = False
def enable_fp8_quantization(self):
"""Enable FP8 quantization for faster inference"""
if not HAS_TRANSFORMER_ENGINE:
warnings.warn("Transformer Engine not available. Install with: pip install transformer-engine")
return self
self.model_optimizer.fp8_config.enabled = True
self.model = self.model_optimizer.optimize_model(
self.model,
apply_compilation=False,
apply_quantization=True,
apply_mixed_precision=False,
)
self._is_fp8_enabled = True
return self
def compile_model(
self,
mode: str = "reduce-overhead",
fullgraph: bool = False,
dynamic: bool = True,
):
"""
Compile model using torch.compile for faster inference.
Args:
mode: Compilation mode - "default", "reduce-overhead", "max-autotune"
fullgraph: Whether to compile the entire model as one graph
dynamic: Whether to enable dynamic shapes
"""
if not HAS_TORCH_COMPILE:
warnings.warn("torch.compile not available. Upgrade to PyTorch 2.0+")
return self
self.model_optimizer.compilation_config = CompilationConfig(
enabled=True,
mode=mode,
fullgraph=fullgraph,
dynamic=dynamic,
)
self.model = self.model_optimizer._compile_model(self.model)
self._is_compiled = True
return self
def enable_optimizations(
self,
enable_fp8: bool = False,
enable_compilation: bool = False,
compilation_mode: str = "reduce-overhead",
):
"""
Enable all optimizations at once.
Args:
enable_fp8: Enable FP8 quantization
enable_compilation: Enable torch.compile
compilation_mode: Compilation mode for torch.compile
"""
if enable_fp8:
self.enable_fp8_quantization()
if enable_compilation:
self.compile_model(mode=compilation_mode)
return self
@torch.no_grad()
def __call__(
self,
prompt: Union[str, List[str]] = None,
input_images: Optional[List[Union[torch.Tensor, Any]]] = None,
height: Optional[int] = 1024,
width: Optional[int] = 1024,
num_frames: Optional[int] = 1,
num_inference_steps: int = 50,
guidance_scale: float = 7.5,
image_guidance_scale: float = 1.5,
negative_prompt: Optional[Union[str, List[str]]] = None,
eta: float = 0.0,
generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None,
latents: Optional[torch.Tensor] = None,
output_type: Optional[str] = "pil",
return_dict: bool = True,
callback: Optional[Callable[[int, int, torch.Tensor], None]] = None,
callback_steps: int = 1,
use_optimized_inference: bool = True,
**kwargs,
):
# Use optimized inference context
with optimized_inference_mode(
enable_cudnn_benchmark=use_optimized_inference,
enable_tf32=use_optimized_inference,
enable_flash_sdp=use_optimized_inference,
):
return self._forward_impl(
prompt=prompt,
input_images=input_images,
height=height,
width=width,
num_frames=num_frames,
num_inference_steps=num_inference_steps,
guidance_scale=guidance_scale,
image_guidance_scale=image_guidance_scale,
negative_prompt=negative_prompt,
eta=eta,
generator=generator,
latents=latents,
output_type=output_type,
return_dict=return_dict,
callback=callback,
callback_steps=callback_steps,
**kwargs,
)
def _forward_impl(
self,
prompt: Union[str, List[str]] = None,
input_images: Optional[List[Union[torch.Tensor, Any]]] = None,
height: Optional[int] = 1024,
width: Optional[int] = 1024,
num_frames: Optional[int] = 1,
num_inference_steps: int = 50,
guidance_scale: float = 7.5,
image_guidance_scale: float = 1.5,
negative_prompt: Optional[Union[str, List[str]]] = None,
eta: float = 0.0,
generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None,
latents: Optional[torch.Tensor] = None,
output_type: Optional[str] = "pil",
return_dict: bool = True,
callback: Optional[Callable[[int, int, torch.Tensor], None]] = None,
callback_steps: int = 1,
**kwargs,
):
# Validate and set default dimensions
height = height or self.model.config.sample_size * self.vae_scale_factor
width = width or self.model.config.sample_size * self.vae_scale_factor
# Encode text prompts
if isinstance(prompt, str):
prompt = [prompt]
batch_size = len(prompt)
text_inputs = self.tokenizer(
prompt, padding="max_length", max_length=self.tokenizer.model_max_length, truncation=True, return_tensors="pt"
)
text_embeddings = self.text_encoder(text_inputs.input_ids.to(self.device))[0]
# Encode visual conditions with preprocessing
visual_embeddings_list = []
if input_images:
if not isinstance(input_images, list):
input_images = [input_images]
if len(input_images) > 3:
raise ValueError("Maximum 3 reference images supported")
for img in input_images:
# Preprocess image
if not isinstance(img, torch.Tensor):
img_tensor = self.image_processor.preprocess(img, return_tensors="pt")
else:
img_tensor = img
img_tensor = img_tensor.to(device=self.device, dtype=text_embeddings.dtype)
# Encode with visual encoder
if self.visual_encoder is not None:
vis_emb = self.visual_encoder(img_tensor).last_hidden_state
else:
# Fallback: use VAE encoder + projection
with torch.no_grad():
latent_features = self.vae.encode(img_tensor * 2 - 1).latent_dist.mode()
B, C, H, W = latent_features.shape
# Flatten spatial dims and project
vis_emb = latent_features.flatten(2).transpose(1, 2) # [B, H*W, C]
# Simple projection to visual_embed_dim
if vis_emb.shape[-1] != self.model.config.visual_embed_dim:
proj = nn.Linear(vis_emb.shape[-1], self.model.config.visual_embed_dim).to(self.device)
vis_emb = proj(vis_emb)
visual_embeddings_list.append(vis_emb)
# Prepare timesteps
self.scheduler.set_timesteps(num_inference_steps, device=self.device)
timesteps = self.scheduler.timesteps
# Initialize latent space
num_channels_latents = self.model.config.in_channels
shape = (batch_size, num_channels_latents, height // self.vae_scale_factor, width // self.vae_scale_factor)
if num_frames > 1:
shape = (batch_size, num_channels_latents, num_frames, height // self.vae_scale_factor, width // self.vae_scale_factor)
latents = torch.randn(shape, generator=generator, device=self.device, dtype=text_embeddings.dtype)
latents = latents * self.scheduler.init_noise_sigma
# Denoising loop with optimizations
with self.progress_bar(total=num_inference_steps) as progress_bar:
for i, t in enumerate(timesteps):
latent_model_input = torch.cat([latents] * 2) if guidance_scale > 1.0 else latents
latent_model_input = self.scheduler.scale_model_input(latent_model_input, t)
# Use mixed precision autocast
with self.model_optimizer.autocast_context():
noise_pred = self.model(
hidden_states=latent_model_input,
timestep=t,
encoder_hidden_states=torch.cat([text_embeddings] * 2),
visual_conditions=visual_embeddings_list * 2 if visual_embeddings_list else None,
video_frames=num_frames
).sample
# Apply classifier-free guidance
if guidance_scale > 1.0:
noise_pred_uncond, noise_pred_text = noise_pred.chunk(2)
noise_pred = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond)
latents = self.scheduler.step(noise_pred, t, latents, eta=eta).prev_sample
# Call callback if provided
if callback is not None and i % callback_steps == 0:
callback(i, t, latents)
progress_bar.update()
# Decode latents with proper post-processing
if output_type == "latent":
output_images = latents
else:
# Decode latents to pixel space
with torch.no_grad():
if num_frames > 1:
# Video decoding: process frame by frame
B, C, T, H, W = latents.shape
latents_2d = latents.permute(0, 2, 1, 3, 4).reshape(B * T, C, H, W)
decoded = self.latent_processor.decode(latents_2d)
decoded = decoded.reshape(B, T, 3, H * 8, W * 8)
# Convert to [0, 1] range
decoded = (decoded / 2 + 0.5).clamp(0, 1)
# Post-process video
if output_type == "pil":
output_images = self.video_processor.postprocess_video(decoded, output_type="pil")
elif output_type == "np":
output_images = decoded.cpu().numpy()
else:
output_images = decoded
else:
# Image decoding
decoded = self.latent_processor.decode(latents)
decoded = (decoded / 2 + 0.5).clamp(0, 1)
# Post-process images
if output_type == "pil":
output_images = self.image_processor.postprocess(decoded, output_type="pil")
elif output_type == "np":
output_images = decoded.cpu().numpy()
else:
output_images = decoded
if not return_dict:
return (output_images,)
return BaseOutput(images=output_images)
|