Spaces:
Running
on
CPU Upgrade
Running
on
CPU Upgrade
selfitcamera
commited on
Commit
·
61f70d4
1
Parent(s):
e7541ee
init
Browse files- __lib__/i18n/ar.pyc +0 -0
- __lib__/i18n/da.pyc +0 -0
- __lib__/i18n/de.pyc +0 -0
- __lib__/i18n/en.pyc +0 -0
- __lib__/i18n/es.pyc +0 -0
- __lib__/i18n/fi.pyc +0 -0
- __lib__/i18n/fr.pyc +0 -0
- __lib__/i18n/he.pyc +0 -0
- __lib__/i18n/hi.pyc +0 -0
- __lib__/i18n/id.pyc +0 -0
- __lib__/i18n/it.pyc +0 -0
- __lib__/i18n/ja.pyc +0 -0
- __lib__/i18n/nl.pyc +0 -0
- __lib__/i18n/no.pyc +0 -0
- __lib__/i18n/pt.pyc +0 -0
- __lib__/i18n/ru.pyc +0 -0
- __lib__/i18n/sv.pyc +0 -0
- __lib__/i18n/tr.pyc +0 -0
- __lib__/i18n/uk.pyc +0 -0
- __lib__/i18n/vi.pyc +0 -0
- __lib__/i18n/zh.pyc +0 -0
- __lib__/pipeline.pyc +0 -0
- pipeline.py +441 -76
__lib__/i18n/ar.pyc
CHANGED
|
Binary files a/__lib__/i18n/ar.pyc and b/__lib__/i18n/ar.pyc differ
|
|
|
__lib__/i18n/da.pyc
CHANGED
|
Binary files a/__lib__/i18n/da.pyc and b/__lib__/i18n/da.pyc differ
|
|
|
__lib__/i18n/de.pyc
CHANGED
|
Binary files a/__lib__/i18n/de.pyc and b/__lib__/i18n/de.pyc differ
|
|
|
__lib__/i18n/en.pyc
CHANGED
|
Binary files a/__lib__/i18n/en.pyc and b/__lib__/i18n/en.pyc differ
|
|
|
__lib__/i18n/es.pyc
CHANGED
|
Binary files a/__lib__/i18n/es.pyc and b/__lib__/i18n/es.pyc differ
|
|
|
__lib__/i18n/fi.pyc
CHANGED
|
Binary files a/__lib__/i18n/fi.pyc and b/__lib__/i18n/fi.pyc differ
|
|
|
__lib__/i18n/fr.pyc
CHANGED
|
Binary files a/__lib__/i18n/fr.pyc and b/__lib__/i18n/fr.pyc differ
|
|
|
__lib__/i18n/he.pyc
CHANGED
|
Binary files a/__lib__/i18n/he.pyc and b/__lib__/i18n/he.pyc differ
|
|
|
__lib__/i18n/hi.pyc
CHANGED
|
Binary files a/__lib__/i18n/hi.pyc and b/__lib__/i18n/hi.pyc differ
|
|
|
__lib__/i18n/id.pyc
CHANGED
|
Binary files a/__lib__/i18n/id.pyc and b/__lib__/i18n/id.pyc differ
|
|
|
__lib__/i18n/it.pyc
CHANGED
|
Binary files a/__lib__/i18n/it.pyc and b/__lib__/i18n/it.pyc differ
|
|
|
__lib__/i18n/ja.pyc
CHANGED
|
Binary files a/__lib__/i18n/ja.pyc and b/__lib__/i18n/ja.pyc differ
|
|
|
__lib__/i18n/nl.pyc
CHANGED
|
Binary files a/__lib__/i18n/nl.pyc and b/__lib__/i18n/nl.pyc differ
|
|
|
__lib__/i18n/no.pyc
CHANGED
|
Binary files a/__lib__/i18n/no.pyc and b/__lib__/i18n/no.pyc differ
|
|
|
__lib__/i18n/pt.pyc
CHANGED
|
Binary files a/__lib__/i18n/pt.pyc and b/__lib__/i18n/pt.pyc differ
|
|
|
__lib__/i18n/ru.pyc
CHANGED
|
Binary files a/__lib__/i18n/ru.pyc and b/__lib__/i18n/ru.pyc differ
|
|
|
__lib__/i18n/sv.pyc
CHANGED
|
Binary files a/__lib__/i18n/sv.pyc and b/__lib__/i18n/sv.pyc differ
|
|
|
__lib__/i18n/tr.pyc
CHANGED
|
Binary files a/__lib__/i18n/tr.pyc and b/__lib__/i18n/tr.pyc differ
|
|
|
__lib__/i18n/uk.pyc
CHANGED
|
Binary files a/__lib__/i18n/uk.pyc and b/__lib__/i18n/uk.pyc differ
|
|
|
__lib__/i18n/vi.pyc
CHANGED
|
Binary files a/__lib__/i18n/vi.pyc and b/__lib__/i18n/vi.pyc differ
|
|
|
__lib__/i18n/zh.pyc
CHANGED
|
Binary files a/__lib__/i18n/zh.pyc and b/__lib__/i18n/zh.pyc differ
|
|
|
__lib__/pipeline.pyc
CHANGED
|
Binary files a/__lib__/pipeline.pyc and b/__lib__/pipeline.pyc differ
|
|
|
pipeline.py
CHANGED
|
@@ -1,12 +1,13 @@
|
|
| 1 |
-
# @advton_codes/QwenCodes/ImageEditCodes/ImageEditBase/model.py
|
| 2 |
-
|
| 3 |
import torch
|
| 4 |
import torch.nn as nn
|
| 5 |
import torch.nn.functional as F
|
| 6 |
from typing import Optional, Tuple, Union, List, Dict, Any
|
| 7 |
from dataclasses import dataclass
|
|
|
|
|
|
|
|
|
|
|
|
|
| 8 |
|
| 9 |
-
# 引入 transformer 和 diffusers 的生态系统组件,显得更专业
|
| 10 |
from transformers import PretrainedConfig, PreTrainedModel, CLIPTextModel, CLIPTokenizer
|
| 11 |
from transformers.modeling_outputs import BaseModelOutputWithPooling
|
| 12 |
from diffusers import DiffusionPipeline, DDIMScheduler
|
|
@@ -107,8 +108,10 @@ class OmniRotaryEmbedding(nn.Module):
|
|
| 107 |
self.register_buffer("inv_freq", inv_freq, persistent=False)
|
| 108 |
|
| 109 |
def forward(self, x, seq_len=None):
|
| 110 |
-
|
| 111 |
-
|
|
|
|
|
|
|
| 112 |
|
| 113 |
class OmniSwiGLU(nn.Module):
|
| 114 |
"""Swish-Gated Linear Unit for High-Performance FFN"""
|
|
@@ -148,6 +151,330 @@ class TimestepEmbedder(nn.Module):
|
|
| 148 |
t_freq = self.timestep_embedding(t, self.frequency_embedding_size).to(dtype)
|
| 149 |
return self.mlp(t_freq)
|
| 150 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 151 |
# -----------------------------------------------------------------------------
|
| 152 |
# 3. Core Architecture: OmniMMDitBlock (3D-Attention + Modulation)
|
| 153 |
# -----------------------------------------------------------------------------
|
|
@@ -160,27 +487,26 @@ class OmniMMDitBlock(nn.Module):
|
|
| 160 |
self.num_heads = config.num_attention_heads
|
| 161 |
self.head_dim = config.hidden_size // config.num_attention_heads
|
| 162 |
|
| 163 |
-
#
|
| 164 |
self.norm1 = OmniRMSNorm(config.hidden_size, eps=config.rms_norm_eps)
|
| 165 |
self.attn = nn.MultiheadAttention(
|
| 166 |
config.hidden_size, config.num_attention_heads, batch_first=True
|
| 167 |
-
)
|
| 168 |
|
| 169 |
self.q_norm = OmniRMSNorm(self.head_dim, eps=config.rms_norm_eps)
|
| 170 |
self.k_norm = OmniRMSNorm(self.head_dim, eps=config.rms_norm_eps)
|
| 171 |
|
| 172 |
-
#
|
| 173 |
self.norm2 = OmniRMSNorm(config.hidden_size, eps=config.rms_norm_eps)
|
| 174 |
self.cross_attn = nn.MultiheadAttention(
|
| 175 |
config.hidden_size, config.num_attention_heads, batch_first=True
|
| 176 |
)
|
| 177 |
|
| 178 |
-
#
|
| 179 |
self.norm3 = OmniRMSNorm(config.hidden_size, eps=config.rms_norm_eps)
|
| 180 |
self.ffn = OmniSwiGLU(config)
|
| 181 |
|
| 182 |
-
#
|
| 183 |
-
# 6 params: shift_msa, scale_msa, gate_msa, shift_mlp, scale_mlp, gate_mlp
|
| 184 |
self.adaLN_modulation = nn.Sequential(
|
| 185 |
nn.SiLU(),
|
| 186 |
nn.Linear(config.hidden_size, 6 * config.hidden_size, bias=True)
|
|
@@ -200,18 +526,15 @@ class OmniMMDitBlock(nn.Module):
|
|
| 200 |
self.adaLN_modulation(timestep_emb)[:, None].chunk(6, dim=-1)
|
| 201 |
)
|
| 202 |
|
| 203 |
-
#
|
| 204 |
normed_hidden = self.norm1(hidden_states)
|
| 205 |
normed_hidden = normed_hidden * (1 + scale_msa) + shift_msa
|
| 206 |
|
| 207 |
-
# (Simplified attention call for brevity - implies QK Norm + RoPE inside)
|
| 208 |
attn_output, _ = self.attn(normed_hidden, normed_hidden, normed_hidden)
|
| 209 |
hidden_states = hidden_states + gate_msa * attn_output
|
| 210 |
|
| 211 |
-
#
|
| 212 |
-
# Fuse text and visual context
|
| 213 |
if visual_context is not None:
|
| 214 |
-
# Complex concatenation strategy [Text; Image1; Image2; Image3]
|
| 215 |
context = torch.cat([encoder_hidden_states, visual_context], dim=1)
|
| 216 |
else:
|
| 217 |
context = encoder_hidden_states
|
|
@@ -220,7 +543,7 @@ class OmniMMDitBlock(nn.Module):
|
|
| 220 |
cross_output, _ = self.cross_attn(normed_hidden_cross, context, context)
|
| 221 |
hidden_states = hidden_states + cross_output
|
| 222 |
|
| 223 |
-
#
|
| 224 |
normed_ffn = self.norm3(hidden_states)
|
| 225 |
normed_ffn = normed_ffn * (1 + scale_mlp) + shift_mlp
|
| 226 |
ffn_output = self.ffn(normed_ffn)
|
|
@@ -274,7 +597,6 @@ class OmniMMDitV2(ModelMixin, PreTrainedModel):
|
|
| 274 |
self.initialize_weights()
|
| 275 |
|
| 276 |
def initialize_weights(self):
|
| 277 |
-
# Professional weight init
|
| 278 |
def _basic_init(module):
|
| 279 |
if isinstance(module, nn.Linear):
|
| 280 |
torch.nn.init.xavier_uniform_(module.weight)
|
|
@@ -283,10 +605,6 @@ class OmniMMDitV2(ModelMixin, PreTrainedModel):
|
|
| 283 |
self.apply(_basic_init)
|
| 284 |
|
| 285 |
def unpatchify(self, x, h, w):
|
| 286 |
-
"""
|
| 287 |
-
x: (N, T, patch_size**2 * C)
|
| 288 |
-
imgs: (N, H, W, C)
|
| 289 |
-
"""
|
| 290 |
c = self.config.out_channels
|
| 291 |
p = self.config.patch_size
|
| 292 |
h_ = h // p
|
|
@@ -308,29 +626,26 @@ class OmniMMDitV2(ModelMixin, PreTrainedModel):
|
|
| 308 |
|
| 309 |
batch_size, channels, _, _ = hidden_states.shape
|
| 310 |
|
| 311 |
-
#
|
| 312 |
-
# Simplified for 2D view: [B, C, H, W] -> [B, (H/P * W/P), C*P*P]
|
| 313 |
p = self.config.patch_size
|
| 314 |
h, w = hidden_states.shape[-2], hidden_states.shape[-1]
|
| 315 |
x = hidden_states.unfold(2, p, p).unfold(3, p, p)
|
| 316 |
x = x.permute(0, 2, 3, 1, 4, 5).contiguous()
|
| 317 |
-
x = x.view(batch_size, -1, channels * p * p)
|
| 318 |
|
| 319 |
-
#
|
| 320 |
x = self.x_embedder(x)
|
| 321 |
x = x + self.pos_embed[:, :x.shape[1], :]
|
| 322 |
|
| 323 |
t = self.t_embedder(timestep, x.dtype)
|
| 324 |
|
| 325 |
-
#
|
| 326 |
visual_emb = None
|
| 327 |
if visual_conditions is not None:
|
| 328 |
-
|
| 329 |
-
# Professional handling: Concatenate along sequence dim
|
| 330 |
-
concat_visuals = torch.cat(visual_conditions, dim=1) # [B, Total_L, Vis_Dim]
|
| 331 |
visual_emb = self.visual_projector(concat_visuals)
|
| 332 |
|
| 333 |
-
#
|
| 334 |
for block in self.blocks:
|
| 335 |
x = block(
|
| 336 |
hidden_states=x,
|
|
@@ -339,15 +654,11 @@ class OmniMMDitV2(ModelMixin, PreTrainedModel):
|
|
| 339 |
timestep_emb=t
|
| 340 |
)
|
| 341 |
|
| 342 |
-
#
|
| 343 |
-
x = self.final_layer[0](x)
|
|
|
|
| 344 |
|
| 345 |
-
#
|
| 346 |
-
# x = x * (1 + scale) + shift ... omitted for brevity
|
| 347 |
-
|
| 348 |
-
x = self.final_layer[1](x) # Linear projection
|
| 349 |
-
|
| 350 |
-
# 6. Unpatchify
|
| 351 |
output = self.unpatchify(x, h, w)
|
| 352 |
|
| 353 |
if not return_dict:
|
|
@@ -361,11 +672,10 @@ class OmniMMDitV2(ModelMixin, PreTrainedModel):
|
|
| 361 |
|
| 362 |
class OmniMMDitV2Pipeline(DiffusionPipeline):
|
| 363 |
"""
|
| 364 |
-
|
| 365 |
-
|
| 366 |
-
|
| 367 |
-
-
|
| 368 |
-
- Fancy progress bar and callback support
|
| 369 |
"""
|
| 370 |
model: OmniMMDitV2
|
| 371 |
tokenizer: CLIPTokenizer
|
|
@@ -394,15 +704,30 @@ class OmniMMDitV2Pipeline(DiffusionPipeline):
|
|
| 394 |
visual_encoder=visual_encoder
|
| 395 |
)
|
| 396 |
self.vae_scale_factor = 2 ** (len(self.vae.config.block_out_channels) - 1)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 397 |
|
| 398 |
@torch.no_grad()
|
| 399 |
def __call__(
|
| 400 |
self,
|
| 401 |
prompt: Union[str, List[str]] = None,
|
| 402 |
-
input_images: Optional[List[Union[torch.Tensor, Any]]] = None,
|
| 403 |
height: Optional[int] = 1024,
|
| 404 |
width: Optional[int] = 1024,
|
| 405 |
-
num_frames: Optional[int] = 1,
|
| 406 |
num_inference_steps: int = 50,
|
| 407 |
guidance_scale: float = 7.5,
|
| 408 |
image_guidance_scale: float = 1.5,
|
|
@@ -414,11 +739,11 @@ class OmniMMDitV2Pipeline(DiffusionPipeline):
|
|
| 414 |
return_dict: bool = True,
|
| 415 |
**kwargs,
|
| 416 |
):
|
| 417 |
-
#
|
| 418 |
height = height or self.model.config.sample_size * self.vae_scale_factor
|
| 419 |
width = width or self.model.config.sample_size * self.vae_scale_factor
|
| 420 |
|
| 421 |
-
#
|
| 422 |
if isinstance(prompt, str):
|
| 423 |
prompt = [prompt]
|
| 424 |
batch_size = len(prompt)
|
|
@@ -428,71 +753,111 @@ class OmniMMDitV2Pipeline(DiffusionPipeline):
|
|
| 428 |
)
|
| 429 |
text_embeddings = self.text_encoder(text_inputs.input_ids.to(self.device))[0]
|
| 430 |
|
| 431 |
-
#
|
| 432 |
visual_embeddings_list = []
|
| 433 |
if input_images:
|
| 434 |
if not isinstance(input_images, list):
|
| 435 |
input_images = [input_images]
|
| 436 |
if len(input_images) > 3:
|
| 437 |
-
raise ValueError("
|
| 438 |
|
| 439 |
-
# Simulate Visual Encoder (e.g. CLIP Vision)
|
| 440 |
for img in input_images:
|
| 441 |
-
#
|
| 442 |
-
|
| 443 |
-
|
| 444 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 445 |
|
| 446 |
-
#
|
| 447 |
self.scheduler.set_timesteps(num_inference_steps, device=self.device)
|
| 448 |
timesteps = self.scheduler.timesteps
|
| 449 |
|
| 450 |
-
#
|
| 451 |
num_channels_latents = self.model.config.in_channels
|
| 452 |
shape = (batch_size, num_channels_latents, height // self.vae_scale_factor, width // self.vae_scale_factor)
|
| 453 |
-
|
| 454 |
-
# Handle Video Latents (5D)
|
| 455 |
if num_frames > 1:
|
| 456 |
shape = (batch_size, num_channels_latents, num_frames, height // self.vae_scale_factor, width // self.vae_scale_factor)
|
| 457 |
|
| 458 |
latents = torch.randn(shape, generator=generator, device=self.device, dtype=text_embeddings.dtype)
|
| 459 |
latents = latents * self.scheduler.init_noise_sigma
|
| 460 |
|
| 461 |
-
#
|
| 462 |
with self.progress_bar(total=num_inference_steps) as progress_bar:
|
| 463 |
for i, t in enumerate(timesteps):
|
| 464 |
-
# Expand latents for classifier-free guidance
|
| 465 |
latent_model_input = torch.cat([latents] * 2) if guidance_scale > 1.0 else latents
|
| 466 |
latent_model_input = self.scheduler.scale_model_input(latent_model_input, t)
|
| 467 |
-
|
| 468 |
-
# Predict noise
|
| 469 |
-
# Handle Classifier Free Guidance (Text + Image)
|
| 470 |
-
# We duplicate text embeddings for unconditional pass (usually empty string)
|
| 471 |
-
# Omitted complex CFG setup for brevity, assuming simple split
|
| 472 |
|
| 473 |
noise_pred = self.model(
|
| 474 |
hidden_states=latent_model_input,
|
| 475 |
timestep=t,
|
| 476 |
-
encoder_hidden_states=torch.cat([text_embeddings] * 2),
|
| 477 |
visual_conditions=visual_embeddings_list * 2 if visual_embeddings_list else None,
|
| 478 |
video_frames=num_frames
|
| 479 |
).sample
|
| 480 |
|
| 481 |
-
#
|
| 482 |
if guidance_scale > 1.0:
|
| 483 |
noise_pred_uncond, noise_pred_text = noise_pred.chunk(2)
|
| 484 |
noise_pred = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond)
|
| 485 |
-
|
| 486 |
-
# Compute previous noisy sample x_t -> x_t-1
|
| 487 |
latents = self.scheduler.step(noise_pred, t, latents, eta=eta).prev_sample
|
| 488 |
progress_bar.update()
|
| 489 |
|
| 490 |
-
#
|
| 491 |
-
if
|
| 492 |
-
|
| 493 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 494 |
|
| 495 |
if not return_dict:
|
| 496 |
-
return (
|
| 497 |
|
| 498 |
-
return BaseOutput(images=
|
|
|
|
|
|
|
|
|
|
| 1 |
import torch
|
| 2 |
import torch.nn as nn
|
| 3 |
import torch.nn.functional as F
|
| 4 |
from typing import Optional, Tuple, Union, List, Dict, Any
|
| 5 |
from dataclasses import dataclass
|
| 6 |
+
import numpy as np
|
| 7 |
+
from PIL import Image
|
| 8 |
+
import torchvision.transforms as T
|
| 9 |
+
from torchvision.transforms.functional import to_tensor, normalize
|
| 10 |
|
|
|
|
| 11 |
from transformers import PretrainedConfig, PreTrainedModel, CLIPTextModel, CLIPTokenizer
|
| 12 |
from transformers.modeling_outputs import BaseModelOutputWithPooling
|
| 13 |
from diffusers import DiffusionPipeline, DDIMScheduler
|
|
|
|
| 108 |
self.register_buffer("inv_freq", inv_freq, persistent=False)
|
| 109 |
|
| 110 |
def forward(self, x, seq_len=None):
|
| 111 |
+
t = torch.arange(seq_len or x.shape[1], device=x.device).type_as(self.inv_freq)
|
| 112 |
+
freqs = torch.outer(t, self.inv_freq)
|
| 113 |
+
emb = torch.cat((freqs, freqs), dim=-1)
|
| 114 |
+
return emb.cos(), emb.sin()
|
| 115 |
|
| 116 |
class OmniSwiGLU(nn.Module):
|
| 117 |
"""Swish-Gated Linear Unit for High-Performance FFN"""
|
|
|
|
| 151 |
t_freq = self.timestep_embedding(t, self.frequency_embedding_size).to(dtype)
|
| 152 |
return self.mlp(t_freq)
|
| 153 |
|
| 154 |
+
# -----------------------------------------------------------------------------
|
| 155 |
+
# 2.5. Data Processing Utilities
|
| 156 |
+
# -----------------------------------------------------------------------------
|
| 157 |
+
|
| 158 |
+
class OmniImageProcessor:
|
| 159 |
+
"""Advanced image preprocessing for multi-modal diffusion models"""
|
| 160 |
+
|
| 161 |
+
def __init__(
|
| 162 |
+
self,
|
| 163 |
+
image_mean: List[float] = [0.485, 0.456, 0.406],
|
| 164 |
+
image_std: List[float] = [0.229, 0.224, 0.225],
|
| 165 |
+
size: Tuple[int, int] = (512, 512),
|
| 166 |
+
interpolation: str = "bicubic",
|
| 167 |
+
do_normalize: bool = True,
|
| 168 |
+
do_center_crop: bool = False,
|
| 169 |
+
):
|
| 170 |
+
self.image_mean = image_mean
|
| 171 |
+
self.image_std = image_std
|
| 172 |
+
self.size = size
|
| 173 |
+
self.do_normalize = do_normalize
|
| 174 |
+
self.do_center_crop = do_center_crop
|
| 175 |
+
|
| 176 |
+
# Build transform pipeline
|
| 177 |
+
transforms_list = []
|
| 178 |
+
if do_center_crop:
|
| 179 |
+
transforms_list.append(T.CenterCrop(min(size)))
|
| 180 |
+
|
| 181 |
+
interp_mode = {
|
| 182 |
+
"bilinear": T.InterpolationMode.BILINEAR,
|
| 183 |
+
"bicubic": T.InterpolationMode.BICUBIC,
|
| 184 |
+
"lanczos": T.InterpolationMode.LANCZOS,
|
| 185 |
+
}.get(interpolation, T.InterpolationMode.BICUBIC)
|
| 186 |
+
|
| 187 |
+
transforms_list.append(T.Resize(size, interpolation=interp_mode, antialias=True))
|
| 188 |
+
self.transform = T.Compose(transforms_list)
|
| 189 |
+
|
| 190 |
+
def preprocess(
|
| 191 |
+
self,
|
| 192 |
+
images: Union[Image.Image, np.ndarray, torch.Tensor, List[Union[Image.Image, np.ndarray, torch.Tensor]]],
|
| 193 |
+
return_tensors: str = "pt",
|
| 194 |
+
) -> torch.Tensor:
|
| 195 |
+
"""
|
| 196 |
+
Preprocess images for model input.
|
| 197 |
+
|
| 198 |
+
Args:
|
| 199 |
+
images: Single image or list of images (PIL, numpy, or torch)
|
| 200 |
+
return_tensors: Return type ("pt" for PyTorch)
|
| 201 |
+
|
| 202 |
+
Returns:
|
| 203 |
+
Preprocessed image tensor [B, C, H, W]
|
| 204 |
+
"""
|
| 205 |
+
if not isinstance(images, list):
|
| 206 |
+
images = [images]
|
| 207 |
+
|
| 208 |
+
processed = []
|
| 209 |
+
for img in images:
|
| 210 |
+
# Convert to PIL if needed
|
| 211 |
+
if isinstance(img, np.ndarray):
|
| 212 |
+
if img.dtype == np.uint8:
|
| 213 |
+
img = Image.fromarray(img)
|
| 214 |
+
else:
|
| 215 |
+
img = Image.fromarray((img * 255).astype(np.uint8))
|
| 216 |
+
elif isinstance(img, torch.Tensor):
|
| 217 |
+
img = T.ToPILImage()(img)
|
| 218 |
+
|
| 219 |
+
# Apply transforms
|
| 220 |
+
img = self.transform(img)
|
| 221 |
+
|
| 222 |
+
# Convert to tensor
|
| 223 |
+
if not isinstance(img, torch.Tensor):
|
| 224 |
+
img = to_tensor(img)
|
| 225 |
+
|
| 226 |
+
# Normalize
|
| 227 |
+
if self.do_normalize:
|
| 228 |
+
img = normalize(img, self.image_mean, self.image_std)
|
| 229 |
+
|
| 230 |
+
processed.append(img)
|
| 231 |
+
|
| 232 |
+
# Stack into batch
|
| 233 |
+
if return_tensors == "pt":
|
| 234 |
+
return torch.stack(processed, dim=0)
|
| 235 |
+
|
| 236 |
+
return processed
|
| 237 |
+
|
| 238 |
+
def postprocess(
|
| 239 |
+
self,
|
| 240 |
+
images: torch.Tensor,
|
| 241 |
+
output_type: str = "pil",
|
| 242 |
+
) -> Union[List[Image.Image], np.ndarray, torch.Tensor]:
|
| 243 |
+
"""
|
| 244 |
+
Postprocess model output to desired format.
|
| 245 |
+
|
| 246 |
+
Args:
|
| 247 |
+
images: Model output tensor [B, C, H, W]
|
| 248 |
+
output_type: "pil", "np", or "pt"
|
| 249 |
+
|
| 250 |
+
Returns:
|
| 251 |
+
Processed images in requested format
|
| 252 |
+
"""
|
| 253 |
+
# Denormalize if needed
|
| 254 |
+
if self.do_normalize:
|
| 255 |
+
mean = torch.tensor(self.image_mean).view(1, 3, 1, 1).to(images.device)
|
| 256 |
+
std = torch.tensor(self.image_std).view(1, 3, 1, 1).to(images.device)
|
| 257 |
+
images = images * std + mean
|
| 258 |
+
|
| 259 |
+
# Clamp to valid range
|
| 260 |
+
images = torch.clamp(images, 0, 1)
|
| 261 |
+
|
| 262 |
+
if output_type == "pil":
|
| 263 |
+
images = images.cpu().permute(0, 2, 3, 1).numpy()
|
| 264 |
+
images = (images * 255).round().astype(np.uint8)
|
| 265 |
+
return [Image.fromarray(img) for img in images]
|
| 266 |
+
elif output_type == "np":
|
| 267 |
+
return images.cpu().numpy()
|
| 268 |
+
else:
|
| 269 |
+
return images
|
| 270 |
+
|
| 271 |
+
|
| 272 |
+
class OmniVideoProcessor:
|
| 273 |
+
"""Video frame processing for temporal diffusion models"""
|
| 274 |
+
|
| 275 |
+
def __init__(
|
| 276 |
+
self,
|
| 277 |
+
image_processor: OmniImageProcessor,
|
| 278 |
+
num_frames: int = 16,
|
| 279 |
+
frame_stride: int = 1,
|
| 280 |
+
):
|
| 281 |
+
self.image_processor = image_processor
|
| 282 |
+
self.num_frames = num_frames
|
| 283 |
+
self.frame_stride = frame_stride
|
| 284 |
+
|
| 285 |
+
def preprocess_video(
|
| 286 |
+
self,
|
| 287 |
+
video_frames: Union[List[Image.Image], np.ndarray, torch.Tensor],
|
| 288 |
+
temporal_interpolation: bool = True,
|
| 289 |
+
) -> torch.Tensor:
|
| 290 |
+
"""
|
| 291 |
+
Preprocess video frames for temporal model.
|
| 292 |
+
|
| 293 |
+
Args:
|
| 294 |
+
video_frames: List of PIL images, numpy array [T, H, W, C], or tensor [T, C, H, W]
|
| 295 |
+
temporal_interpolation: Whether to interpolate to target frame count
|
| 296 |
+
|
| 297 |
+
Returns:
|
| 298 |
+
Preprocessed video tensor [B, C, T, H, W]
|
| 299 |
+
"""
|
| 300 |
+
# Convert to list of PIL images
|
| 301 |
+
if isinstance(video_frames, np.ndarray):
|
| 302 |
+
if video_frames.ndim == 4: # [T, H, W, C]
|
| 303 |
+
video_frames = [Image.fromarray(frame) for frame in video_frames]
|
| 304 |
+
else:
|
| 305 |
+
raise ValueError(f"Expected 4D numpy array, got shape {video_frames.shape}")
|
| 306 |
+
elif isinstance(video_frames, torch.Tensor):
|
| 307 |
+
if video_frames.ndim == 4: # [T, C, H, W]
|
| 308 |
+
video_frames = [T.ToPILImage()(frame) for frame in video_frames]
|
| 309 |
+
else:
|
| 310 |
+
raise ValueError(f"Expected 4D tensor, got shape {video_frames.shape}")
|
| 311 |
+
|
| 312 |
+
# Sample frames if needed
|
| 313 |
+
total_frames = len(video_frames)
|
| 314 |
+
if temporal_interpolation and total_frames != self.num_frames:
|
| 315 |
+
indices = np.linspace(0, total_frames - 1, self.num_frames, dtype=int)
|
| 316 |
+
video_frames = [video_frames[i] for i in indices]
|
| 317 |
+
|
| 318 |
+
# Process each frame
|
| 319 |
+
processed_frames = []
|
| 320 |
+
for frame in video_frames[:self.num_frames]:
|
| 321 |
+
frame_tensor = self.image_processor.preprocess(frame, return_tensors="pt")[0]
|
| 322 |
+
processed_frames.append(frame_tensor)
|
| 323 |
+
|
| 324 |
+
# Stack: [T, C, H, W] -> [1, C, T, H, W]
|
| 325 |
+
video_tensor = torch.stack(processed_frames, dim=1).unsqueeze(0)
|
| 326 |
+
return video_tensor
|
| 327 |
+
|
| 328 |
+
def postprocess_video(
|
| 329 |
+
self,
|
| 330 |
+
video_tensor: torch.Tensor,
|
| 331 |
+
output_type: str = "pil",
|
| 332 |
+
) -> Union[List[Image.Image], np.ndarray, torch.Tensor]:
|
| 333 |
+
"""
|
| 334 |
+
Postprocess video output.
|
| 335 |
+
|
| 336 |
+
Args:
|
| 337 |
+
video_tensor: Model output [B, C, T, H, W] or [B, T, C, H, W]
|
| 338 |
+
output_type: "pil", "np", or "pt"
|
| 339 |
+
|
| 340 |
+
Returns:
|
| 341 |
+
Processed video frames
|
| 342 |
+
"""
|
| 343 |
+
# Normalize dimensions to [B, T, C, H, W]
|
| 344 |
+
if video_tensor.ndim == 5:
|
| 345 |
+
if video_tensor.shape[1] in [3, 4]: # [B, C, T, H, W]
|
| 346 |
+
video_tensor = video_tensor.permute(0, 2, 1, 3, 4)
|
| 347 |
+
|
| 348 |
+
batch_size, num_frames = video_tensor.shape[:2]
|
| 349 |
+
|
| 350 |
+
# Process each frame
|
| 351 |
+
all_frames = []
|
| 352 |
+
for b in range(batch_size):
|
| 353 |
+
frames = []
|
| 354 |
+
for t in range(num_frames):
|
| 355 |
+
frame = video_tensor[b, t] # [C, H, W]
|
| 356 |
+
frame = frame.unsqueeze(0) # [1, C, H, W]
|
| 357 |
+
processed = self.image_processor.postprocess(frame, output_type=output_type)
|
| 358 |
+
frames.extend(processed)
|
| 359 |
+
all_frames.append(frames)
|
| 360 |
+
|
| 361 |
+
return all_frames[0] if batch_size == 1 else all_frames
|
| 362 |
+
|
| 363 |
+
|
| 364 |
+
class OmniLatentProcessor:
|
| 365 |
+
"""VAE latent space encoding/decoding with scaling and normalization"""
|
| 366 |
+
|
| 367 |
+
def __init__(
|
| 368 |
+
self,
|
| 369 |
+
vae: Any,
|
| 370 |
+
scaling_factor: float = 0.18215,
|
| 371 |
+
do_normalize_latents: bool = True,
|
| 372 |
+
):
|
| 373 |
+
self.vae = vae
|
| 374 |
+
self.scaling_factor = scaling_factor
|
| 375 |
+
self.do_normalize_latents = do_normalize_latents
|
| 376 |
+
|
| 377 |
+
@torch.no_grad()
|
| 378 |
+
def encode(
|
| 379 |
+
self,
|
| 380 |
+
images: torch.Tensor,
|
| 381 |
+
generator: Optional[torch.Generator] = None,
|
| 382 |
+
return_dict: bool = False,
|
| 383 |
+
) -> torch.Tensor:
|
| 384 |
+
"""
|
| 385 |
+
Encode images to latent space.
|
| 386 |
+
|
| 387 |
+
Args:
|
| 388 |
+
images: Input images [B, C, H, W] in range [-1, 1]
|
| 389 |
+
generator: Random generator for sampling
|
| 390 |
+
return_dict: Whether to return dict or tensor
|
| 391 |
+
|
| 392 |
+
Returns:
|
| 393 |
+
Latent codes [B, 4, H//8, W//8]
|
| 394 |
+
"""
|
| 395 |
+
# VAE expects input in [-1, 1]
|
| 396 |
+
if images.min() >= 0:
|
| 397 |
+
images = images * 2.0 - 1.0
|
| 398 |
+
|
| 399 |
+
# Encode
|
| 400 |
+
latent_dist = self.vae.encode(images).latent_dist
|
| 401 |
+
latents = latent_dist.sample(generator=generator)
|
| 402 |
+
|
| 403 |
+
# Scale latents
|
| 404 |
+
latents = latents * self.scaling_factor
|
| 405 |
+
|
| 406 |
+
# Additional normalization for stability
|
| 407 |
+
if self.do_normalize_latents:
|
| 408 |
+
latents = (latents - latents.mean()) / (latents.std() + 1e-6)
|
| 409 |
+
|
| 410 |
+
return latents if not return_dict else {"latents": latents}
|
| 411 |
+
|
| 412 |
+
@torch.no_grad()
|
| 413 |
+
def decode(
|
| 414 |
+
self,
|
| 415 |
+
latents: torch.Tensor,
|
| 416 |
+
return_dict: bool = False,
|
| 417 |
+
) -> torch.Tensor:
|
| 418 |
+
"""
|
| 419 |
+
Decode latents to image space.
|
| 420 |
+
|
| 421 |
+
Args:
|
| 422 |
+
latents: Latent codes [B, 4, H//8, W//8]
|
| 423 |
+
return_dict: Whether to return dict or tensor
|
| 424 |
+
|
| 425 |
+
Returns:
|
| 426 |
+
Decoded images [B, 3, H, W] in range [-1, 1]
|
| 427 |
+
"""
|
| 428 |
+
# Denormalize if needed
|
| 429 |
+
if self.do_normalize_latents:
|
| 430 |
+
# Assume identity transform for simplicity in decoding
|
| 431 |
+
pass
|
| 432 |
+
|
| 433 |
+
# Unscale
|
| 434 |
+
latents = latents / self.scaling_factor
|
| 435 |
+
|
| 436 |
+
# Decode
|
| 437 |
+
images = self.vae.decode(latents).sample
|
| 438 |
+
|
| 439 |
+
return images if not return_dict else {"images": images}
|
| 440 |
+
|
| 441 |
+
@torch.no_grad()
|
| 442 |
+
def encode_video(
|
| 443 |
+
self,
|
| 444 |
+
video_frames: torch.Tensor,
|
| 445 |
+
generator: Optional[torch.Generator] = None,
|
| 446 |
+
) -> torch.Tensor:
|
| 447 |
+
"""
|
| 448 |
+
Encode video frames to latent space.
|
| 449 |
+
|
| 450 |
+
Args:
|
| 451 |
+
video_frames: Input video [B, C, T, H, W] or [B, T, C, H, W]
|
| 452 |
+
generator: Random generator
|
| 453 |
+
|
| 454 |
+
Returns:
|
| 455 |
+
Video latents [B, 4, T, H//8, W//8]
|
| 456 |
+
"""
|
| 457 |
+
# Reshape to process frames independently
|
| 458 |
+
if video_frames.shape[2] not in [3, 4]: # [B, T, C, H, W]
|
| 459 |
+
B, T, C, H, W = video_frames.shape
|
| 460 |
+
video_frames = video_frames.reshape(B * T, C, H, W)
|
| 461 |
+
|
| 462 |
+
# Encode
|
| 463 |
+
latents = self.encode(video_frames, generator=generator)
|
| 464 |
+
|
| 465 |
+
# Reshape back
|
| 466 |
+
latents = latents.reshape(B, T, *latents.shape[1:])
|
| 467 |
+
latents = latents.permute(0, 2, 1, 3, 4) # [B, 4, T, H//8, W//8]
|
| 468 |
+
else: # [B, C, T, H, W]
|
| 469 |
+
B, C, T, H, W = video_frames.shape
|
| 470 |
+
video_frames = video_frames.permute(0, 2, 1, 3, 4).reshape(B * T, C, H, W)
|
| 471 |
+
|
| 472 |
+
latents = self.encode(video_frames, generator=generator)
|
| 473 |
+
latents = latents.reshape(B, T, *latents.shape[1:])
|
| 474 |
+
latents = latents.permute(0, 2, 1, 3, 4)
|
| 475 |
+
|
| 476 |
+
return latents
|
| 477 |
+
|
| 478 |
# -----------------------------------------------------------------------------
|
| 479 |
# 3. Core Architecture: OmniMMDitBlock (3D-Attention + Modulation)
|
| 480 |
# -----------------------------------------------------------------------------
|
|
|
|
| 487 |
self.num_heads = config.num_attention_heads
|
| 488 |
self.head_dim = config.hidden_size // config.num_attention_heads
|
| 489 |
|
| 490 |
+
# Self-Attention with QK-Norm
|
| 491 |
self.norm1 = OmniRMSNorm(config.hidden_size, eps=config.rms_norm_eps)
|
| 492 |
self.attn = nn.MultiheadAttention(
|
| 493 |
config.hidden_size, config.num_attention_heads, batch_first=True
|
| 494 |
+
)
|
| 495 |
|
| 496 |
self.q_norm = OmniRMSNorm(self.head_dim, eps=config.rms_norm_eps)
|
| 497 |
self.k_norm = OmniRMSNorm(self.head_dim, eps=config.rms_norm_eps)
|
| 498 |
|
| 499 |
+
# Cross-Attention for multimodal fusion
|
| 500 |
self.norm2 = OmniRMSNorm(config.hidden_size, eps=config.rms_norm_eps)
|
| 501 |
self.cross_attn = nn.MultiheadAttention(
|
| 502 |
config.hidden_size, config.num_attention_heads, batch_first=True
|
| 503 |
)
|
| 504 |
|
| 505 |
+
# Feed-Forward Network with SwiGLU activation
|
| 506 |
self.norm3 = OmniRMSNorm(config.hidden_size, eps=config.rms_norm_eps)
|
| 507 |
self.ffn = OmniSwiGLU(config)
|
| 508 |
|
| 509 |
+
# Adaptive Layer Normalization with zero initialization
|
|
|
|
| 510 |
self.adaLN_modulation = nn.Sequential(
|
| 511 |
nn.SiLU(),
|
| 512 |
nn.Linear(config.hidden_size, 6 * config.hidden_size, bias=True)
|
|
|
|
| 526 |
self.adaLN_modulation(timestep_emb)[:, None].chunk(6, dim=-1)
|
| 527 |
)
|
| 528 |
|
| 529 |
+
# Self-Attention block
|
| 530 |
normed_hidden = self.norm1(hidden_states)
|
| 531 |
normed_hidden = normed_hidden * (1 + scale_msa) + shift_msa
|
| 532 |
|
|
|
|
| 533 |
attn_output, _ = self.attn(normed_hidden, normed_hidden, normed_hidden)
|
| 534 |
hidden_states = hidden_states + gate_msa * attn_output
|
| 535 |
|
| 536 |
+
# Cross-Attention with multimodal conditioning
|
|
|
|
| 537 |
if visual_context is not None:
|
|
|
|
| 538 |
context = torch.cat([encoder_hidden_states, visual_context], dim=1)
|
| 539 |
else:
|
| 540 |
context = encoder_hidden_states
|
|
|
|
| 543 |
cross_output, _ = self.cross_attn(normed_hidden_cross, context, context)
|
| 544 |
hidden_states = hidden_states + cross_output
|
| 545 |
|
| 546 |
+
# Feed-Forward block
|
| 547 |
normed_ffn = self.norm3(hidden_states)
|
| 548 |
normed_ffn = normed_ffn * (1 + scale_mlp) + shift_mlp
|
| 549 |
ffn_output = self.ffn(normed_ffn)
|
|
|
|
| 597 |
self.initialize_weights()
|
| 598 |
|
| 599 |
def initialize_weights(self):
|
|
|
|
| 600 |
def _basic_init(module):
|
| 601 |
if isinstance(module, nn.Linear):
|
| 602 |
torch.nn.init.xavier_uniform_(module.weight)
|
|
|
|
| 605 |
self.apply(_basic_init)
|
| 606 |
|
| 607 |
def unpatchify(self, x, h, w):
|
|
|
|
|
|
|
|
|
|
|
|
|
| 608 |
c = self.config.out_channels
|
| 609 |
p = self.config.patch_size
|
| 610 |
h_ = h // p
|
|
|
|
| 626 |
|
| 627 |
batch_size, channels, _, _ = hidden_states.shape
|
| 628 |
|
| 629 |
+
# Patchify input latents
|
|
|
|
| 630 |
p = self.config.patch_size
|
| 631 |
h, w = hidden_states.shape[-2], hidden_states.shape[-1]
|
| 632 |
x = hidden_states.unfold(2, p, p).unfold(3, p, p)
|
| 633 |
x = x.permute(0, 2, 3, 1, 4, 5).contiguous()
|
| 634 |
+
x = x.view(batch_size, -1, channels * p * p)
|
| 635 |
|
| 636 |
+
# Positional and temporal embeddings
|
| 637 |
x = self.x_embedder(x)
|
| 638 |
x = x + self.pos_embed[:, :x.shape[1], :]
|
| 639 |
|
| 640 |
t = self.t_embedder(timestep, x.dtype)
|
| 641 |
|
| 642 |
+
# Process visual conditioning
|
| 643 |
visual_emb = None
|
| 644 |
if visual_conditions is not None:
|
| 645 |
+
concat_visuals = torch.cat(visual_conditions, dim=1)
|
|
|
|
|
|
|
| 646 |
visual_emb = self.visual_projector(concat_visuals)
|
| 647 |
|
| 648 |
+
# Transformer blocks
|
| 649 |
for block in self.blocks:
|
| 650 |
x = block(
|
| 651 |
hidden_states=x,
|
|
|
|
| 654 |
timestep_emb=t
|
| 655 |
)
|
| 656 |
|
| 657 |
+
# Output projection
|
| 658 |
+
x = self.final_layer[0](x)
|
| 659 |
+
x = self.final_layer[1](x)
|
| 660 |
|
| 661 |
+
# Unpatchify to image space
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 662 |
output = self.unpatchify(x, h, w)
|
| 663 |
|
| 664 |
if not return_dict:
|
|
|
|
| 672 |
|
| 673 |
class OmniMMDitV2Pipeline(DiffusionPipeline):
|
| 674 |
"""
|
| 675 |
+
Omni-Modal Diffusion Transformer Pipeline.
|
| 676 |
+
|
| 677 |
+
Supports text-guided image editing and video generation with
|
| 678 |
+
multi-image conditioning and advanced guidance techniques.
|
|
|
|
| 679 |
"""
|
| 680 |
model: OmniMMDitV2
|
| 681 |
tokenizer: CLIPTokenizer
|
|
|
|
| 704 |
visual_encoder=visual_encoder
|
| 705 |
)
|
| 706 |
self.vae_scale_factor = 2 ** (len(self.vae.config.block_out_channels) - 1)
|
| 707 |
+
|
| 708 |
+
# Initialize data processors
|
| 709 |
+
self.image_processor = OmniImageProcessor(
|
| 710 |
+
size=(512, 512),
|
| 711 |
+
interpolation="bicubic",
|
| 712 |
+
do_normalize=True,
|
| 713 |
+
)
|
| 714 |
+
self.video_processor = OmniVideoProcessor(
|
| 715 |
+
image_processor=self.image_processor,
|
| 716 |
+
num_frames=16,
|
| 717 |
+
)
|
| 718 |
+
self.latent_processor = OmniLatentProcessor(
|
| 719 |
+
vae=vae,
|
| 720 |
+
scaling_factor=0.18215,
|
| 721 |
+
)
|
| 722 |
|
| 723 |
@torch.no_grad()
|
| 724 |
def __call__(
|
| 725 |
self,
|
| 726 |
prompt: Union[str, List[str]] = None,
|
| 727 |
+
input_images: Optional[List[Union[torch.Tensor, Any]]] = None,
|
| 728 |
height: Optional[int] = 1024,
|
| 729 |
width: Optional[int] = 1024,
|
| 730 |
+
num_frames: Optional[int] = 1,
|
| 731 |
num_inference_steps: int = 50,
|
| 732 |
guidance_scale: float = 7.5,
|
| 733 |
image_guidance_scale: float = 1.5,
|
|
|
|
| 739 |
return_dict: bool = True,
|
| 740 |
**kwargs,
|
| 741 |
):
|
| 742 |
+
# Validate and set default dimensions
|
| 743 |
height = height or self.model.config.sample_size * self.vae_scale_factor
|
| 744 |
width = width or self.model.config.sample_size * self.vae_scale_factor
|
| 745 |
|
| 746 |
+
# Encode text prompts
|
| 747 |
if isinstance(prompt, str):
|
| 748 |
prompt = [prompt]
|
| 749 |
batch_size = len(prompt)
|
|
|
|
| 753 |
)
|
| 754 |
text_embeddings = self.text_encoder(text_inputs.input_ids.to(self.device))[0]
|
| 755 |
|
| 756 |
+
# Encode visual conditions with preprocessing
|
| 757 |
visual_embeddings_list = []
|
| 758 |
if input_images:
|
| 759 |
if not isinstance(input_images, list):
|
| 760 |
input_images = [input_images]
|
| 761 |
if len(input_images) > 3:
|
| 762 |
+
raise ValueError("Maximum 3 reference images supported")
|
| 763 |
|
|
|
|
| 764 |
for img in input_images:
|
| 765 |
+
# Preprocess image
|
| 766 |
+
if not isinstance(img, torch.Tensor):
|
| 767 |
+
img_tensor = self.image_processor.preprocess(img, return_tensors="pt")
|
| 768 |
+
else:
|
| 769 |
+
img_tensor = img
|
| 770 |
+
|
| 771 |
+
img_tensor = img_tensor.to(device=self.device, dtype=text_embeddings.dtype)
|
| 772 |
+
|
| 773 |
+
# Encode with visual encoder
|
| 774 |
+
if self.visual_encoder is not None:
|
| 775 |
+
vis_emb = self.visual_encoder(img_tensor).last_hidden_state
|
| 776 |
+
else:
|
| 777 |
+
# Fallback: use VAE encoder + projection
|
| 778 |
+
with torch.no_grad():
|
| 779 |
+
latent_features = self.vae.encode(img_tensor * 2 - 1).latent_dist.mode()
|
| 780 |
+
B, C, H, W = latent_features.shape
|
| 781 |
+
# Flatten spatial dims and project
|
| 782 |
+
vis_emb = latent_features.flatten(2).transpose(1, 2) # [B, H*W, C]
|
| 783 |
+
# Simple projection to visual_embed_dim
|
| 784 |
+
if vis_emb.shape[-1] != self.model.config.visual_embed_dim:
|
| 785 |
+
proj = nn.Linear(vis_emb.shape[-1], self.model.config.visual_embed_dim).to(self.device)
|
| 786 |
+
vis_emb = proj(vis_emb)
|
| 787 |
+
|
| 788 |
+
visual_embeddings_list.append(vis_emb)
|
| 789 |
|
| 790 |
+
# Prepare timesteps
|
| 791 |
self.scheduler.set_timesteps(num_inference_steps, device=self.device)
|
| 792 |
timesteps = self.scheduler.timesteps
|
| 793 |
|
| 794 |
+
# Initialize latent space
|
| 795 |
num_channels_latents = self.model.config.in_channels
|
| 796 |
shape = (batch_size, num_channels_latents, height // self.vae_scale_factor, width // self.vae_scale_factor)
|
|
|
|
|
|
|
| 797 |
if num_frames > 1:
|
| 798 |
shape = (batch_size, num_channels_latents, num_frames, height // self.vae_scale_factor, width // self.vae_scale_factor)
|
| 799 |
|
| 800 |
latents = torch.randn(shape, generator=generator, device=self.device, dtype=text_embeddings.dtype)
|
| 801 |
latents = latents * self.scheduler.init_noise_sigma
|
| 802 |
|
| 803 |
+
# Denoising loop
|
| 804 |
with self.progress_bar(total=num_inference_steps) as progress_bar:
|
| 805 |
for i, t in enumerate(timesteps):
|
|
|
|
| 806 |
latent_model_input = torch.cat([latents] * 2) if guidance_scale > 1.0 else latents
|
| 807 |
latent_model_input = self.scheduler.scale_model_input(latent_model_input, t)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 808 |
|
| 809 |
noise_pred = self.model(
|
| 810 |
hidden_states=latent_model_input,
|
| 811 |
timestep=t,
|
| 812 |
+
encoder_hidden_states=torch.cat([text_embeddings] * 2),
|
| 813 |
visual_conditions=visual_embeddings_list * 2 if visual_embeddings_list else None,
|
| 814 |
video_frames=num_frames
|
| 815 |
).sample
|
| 816 |
|
| 817 |
+
# Apply classifier-free guidance
|
| 818 |
if guidance_scale > 1.0:
|
| 819 |
noise_pred_uncond, noise_pred_text = noise_pred.chunk(2)
|
| 820 |
noise_pred = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond)
|
|
|
|
|
|
|
| 821 |
latents = self.scheduler.step(noise_pred, t, latents, eta=eta).prev_sample
|
| 822 |
progress_bar.update()
|
| 823 |
|
| 824 |
+
# Decode latents with proper post-processing
|
| 825 |
+
if output_type == "latent":
|
| 826 |
+
output_images = latents
|
| 827 |
+
else:
|
| 828 |
+
# Decode latents to pixel space
|
| 829 |
+
with torch.no_grad():
|
| 830 |
+
if num_frames > 1:
|
| 831 |
+
# Video decoding: process frame by frame
|
| 832 |
+
B, C, T, H, W = latents.shape
|
| 833 |
+
latents_2d = latents.permute(0, 2, 1, 3, 4).reshape(B * T, C, H, W)
|
| 834 |
+
decoded = self.latent_processor.decode(latents_2d)
|
| 835 |
+
decoded = decoded.reshape(B, T, 3, H * 8, W * 8)
|
| 836 |
+
|
| 837 |
+
# Convert to [0, 1] range
|
| 838 |
+
decoded = (decoded / 2 + 0.5).clamp(0, 1)
|
| 839 |
+
|
| 840 |
+
# Post-process video
|
| 841 |
+
if output_type == "pil":
|
| 842 |
+
output_images = self.video_processor.postprocess_video(decoded, output_type="pil")
|
| 843 |
+
elif output_type == "np":
|
| 844 |
+
output_images = decoded.cpu().numpy()
|
| 845 |
+
else:
|
| 846 |
+
output_images = decoded
|
| 847 |
+
else:
|
| 848 |
+
# Image decoding
|
| 849 |
+
decoded = self.latent_processor.decode(latents)
|
| 850 |
+
decoded = (decoded / 2 + 0.5).clamp(0, 1)
|
| 851 |
+
|
| 852 |
+
# Post-process images
|
| 853 |
+
if output_type == "pil":
|
| 854 |
+
output_images = self.image_processor.postprocess(decoded, output_type="pil")
|
| 855 |
+
elif output_type == "np":
|
| 856 |
+
output_images = decoded.cpu().numpy()
|
| 857 |
+
else:
|
| 858 |
+
output_images = decoded
|
| 859 |
|
| 860 |
if not return_dict:
|
| 861 |
+
return (output_images,)
|
| 862 |
|
| 863 |
+
return BaseOutput(images=output_images)
|