manim-mcp / IMPROVEMENTS.md
bhaveshgoel07's picture
Deploy code fixes (clean history)
fff13d1

A newer version of the Gradio SDK is available: 6.1.0

Upgrade

NeuroAnim Improvements Guide

This document outlines improvements made and further recommendations for enhancing the NeuroAnim system's code generation, script writing, and overall quality.


βœ… Issues Fixed

1. Audio Generation Problem - RESOLVED

Problem: Narration text contained prefixes like "Narration Script:\n\n" which were being sent to TTS, causing poor audio quality or failures.

Solution Implemented:

  • Added _clean_narration_text() method in orchestrator.py that strips prefixes and formatting artifacts
  • Updated generate_narration() in mcp_servers/creative.py to return clean text without prefixes
  • Improved prompt to explicitly instruct the model not to add labels

Location:

  • orchestrator.py lines 353-389 (new method)
  • mcp_servers/creative.py lines 558-608 (improved prompt and cleaning)

🎯 Recommendations for Further Improvements

2. Manim Code Generation Quality

Current Issues:

  • Syntax errors (unclosed parentheses, brackets)
  • Invalid color names (DARK_GREEN, LIGHT_BLUE don't exist in Manim)
  • Incorrect animation method names (using lowercase instead of capitalized)
  • Missing imports or incomplete code blocks
  • Using deprecated Manim classes or methods

Improvements Made:

βœ… Enhanced prompts in mcp_servers/creative.py with explicit requirements:

  • List of valid color constants
  • Correct animation method names with capitalization
  • Use of MovingCameraScene for better flexibility
  • Syntax validation requirements

Additional Recommendations:

A. Add Code Post-Processing Pipeline

Create utils/code_validator.py:

import ast
import re
from typing import Dict, List, Optional

class ManimCodeValidator:
    """Validate and fix common Manim code issues."""
    
    VALID_COLORS = {
        'WHITE', 'BLACK', 'GRAY', 'GREY', 'LIGHT_GRAY', 'DARK_GRAY',
        'RED', 'GREEN', 'BLUE', 'YELLOW', 'ORANGE', 'PINK', 'PURPLE',
        'TEAL', 'GOLD', 'MAROON', 'RED_A', 'RED_B', 'RED_C', 'RED_D',
        'RED_E', 'GREEN_A', 'GREEN_B', 'GREEN_C', 'GREEN_D', 'GREEN_E',
        'BLUE_A', 'BLUE_B', 'BLUE_C', 'BLUE_D', 'BLUE_E'
    }
    
    INVALID_COLOR_REPLACEMENTS = {
        'DARK_GREEN': 'GREEN_D',
        'LIGHT_GREEN': 'GREEN_A',
        'DARK_BLUE': 'BLUE_D',
        'LIGHT_BLUE': 'BLUE_A',
        'DARK_RED': 'RED_D',
        'LIGHT_RED': 'RED_A',
    }
    
    @staticmethod
    def validate_syntax(code: str) -> Dict[str, any]:
        """Check if code has valid Python syntax."""
        try:
            ast.parse(code)
            return {"valid": True, "errors": []}
        except SyntaxError as e:
            return {
                "valid": False,
                "errors": [f"Syntax error at line {e.lineno}: {e.msg}"]
            }
    
    @staticmethod
    def fix_colors(code: str) -> str:
        """Replace invalid color names with valid ones."""
        for invalid, valid in ManimCodeValidator.INVALID_COLOR_REPLACEMENTS.items():
            code = re.sub(rf'\b{invalid}\b', valid, code)
        return code
    
    @staticmethod
    def ensure_imports(code: str) -> str:
        """Ensure proper Manim imports exist."""
        if 'from manim import' not in code and 'import manim' not in code:
            code = 'from manim import *\n\n' + code
        return code
    
    @staticmethod
    def fix_common_issues(code: str) -> str:
        """Apply common fixes to generated code."""
        # Fix colors
        code = ManimCodeValidator.fix_colors(code)
        
        # Ensure imports
        code = ManimCodeValidator.ensure_imports(code)
        
        # Fix common typos in animation methods
        typo_fixes = {
            r'\.fadein\(': '.FadeIn(',
            r'\.fadeout\(': '.FadeOut(',
            r'\.write\(': '.Write(',
            r'\.create\(': '.Create(',
            r'self\.play\(flash\(': 'self.play(Flash(',
            r'self\.play\(indicate\(': 'self.play(Indicate(',
        }
        
        for pattern, replacement in typo_fixes.items():
            code = re.sub(pattern, replacement, code, flags=re.IGNORECASE)
        
        return code

B. Implement Multi-Stage Validation

In orchestrator.py, enhance _generate_and_validate_code():

async def _generate_and_validate_code(
    self, topic: str, concept_plan: str, max_retries: int = 3
) -> str:
    """Generate and validate Manim code with multiple checks."""
    
    from utils.code_validator import ManimCodeValidator
    validator = ManimCodeValidator()
    
    for attempt in range(max_retries):
        # Generate code
        code_result = await self.call_tool(...)
        raw_code = self._extract_python_code(code_result["text"])
        
        # Stage 1: Fix common issues
        fixed_code = validator.fix_common_issues(raw_code)
        
        # Stage 2: Syntax validation
        syntax_check = validator.validate_syntax(fixed_code)
        if not syntax_check["valid"]:
            logger.warning(f"Syntax error in attempt {attempt + 1}")
            # Retry with error feedback
            continue
        
        # Stage 3: Test import (optional, quick check)
        try:
            compile(fixed_code, '<string>', 'exec')
        except Exception as e:
            logger.warning(f"Compilation error: {e}")
            continue
        
        return fixed_code
    
    raise Exception("Failed to generate valid code after retries")

C. Use Few-Shot Examples in Prompts

Add working examples to the code generation prompt:

EXAMPLE_CODE = '''
from manim import *

class ExampleScene(MovingCameraScene):
    def construct(self):
        # Title
        title = Text("Example Animation", font_size=48)
        title.to_edge(UP)
        self.play(Write(title))
        self.wait(1)
        
        # Create objects
        circle = Circle(radius=1, color=BLUE)
        square = Square(side_length=2, color=RED)
        square.next_to(circle, RIGHT, buff=1)
        
        # Animate
        self.play(Create(circle), Create(square))
        self.wait(1)
        self.play(circle.animate.shift(RIGHT * 2))
        self.wait(1)
'''

# Include in prompt:
prompt = f"""
Here's an example of proper Manim code structure:

{EXAMPLE_CODE}

Now generate similar code for: {concept}
...
"""

3. Script Writing (Narration) Quality

Current Issues:

  • Sometimes too technical or too simple for the audience
  • Inconsistent pacing
  • May include unnecessary conversational elements
  • Duration mismatch with actual content

Improvements Made:

βœ… Completely rewritten prompt in mcp_servers/creative.py:

  • Clear instruction to output only spoken text
  • Word count guidance based on duration
  • Explicit formatting requirements
  • Post-processing to remove prefixes

Additional Recommendations:

A. Add Narration Quality Scoring

Create utils/narration_analyzer.py:

class NarrationAnalyzer:
    """Analyze and score narration quality."""
    
    @staticmethod
    def estimate_duration(text: str, wpm: int = 150) -> float:
        """Estimate speaking duration in seconds."""
        word_count = len(text.split())
        return (word_count / wpm) * 60
    
    @staticmethod
    def check_reading_level(text: str) -> Dict:
        """Analyze text complexity."""
        # Could use textstat library
        import textstat
        
        return {
            "flesch_reading_ease": textstat.flesch_reading_ease(text),
            "grade_level": textstat.flesch_kincaid_grade(text),
            "syllable_count": textstat.syllable_count(text),
        }
    
    @staticmethod
    def validate_audience_match(text: str, audience: str) -> bool:
        """Check if text matches target audience."""
        grade_map = {
            "elementary": (3, 5),
            "middle_school": (6, 8),
            "high_school": (9, 12),
            "undergraduate": (13, 16),
        }
        
        if audience not in grade_map:
            return True
        
        min_grade, max_grade = grade_map[audience]
        actual_grade = textstat.flesch_kincaid_grade(text)
        
        return min_grade <= actual_grade <= max_grade + 2

B. Implement Iterative Refinement

async def generate_refined_narration(self, topic, audience, duration, max_attempts=2):
    """Generate narration with quality checks and refinement."""
    
    analyzer = NarrationAnalyzer()
    
    for attempt in range(max_attempts):
        # Generate narration
        narration = await self.generate_narration(...)
        
        # Check duration match
        estimated_duration = analyzer.estimate_duration(narration)
        target_duration = duration * 60
        
        if abs(estimated_duration - target_duration) > 15:  # 15 sec tolerance
            feedback = f"Duration mismatch: got {estimated_duration}s, need {target_duration}s"
            # Regenerate with feedback
            continue
        
        # Check audience match
        if not analyzer.validate_audience_match(narration, audience):
            feedback = f"Complexity doesn't match {audience} level"
            continue
        
        return narration
    
    # Return best attempt even if not perfect
    return narration

C. Use Structured Output Format

Modify prompt to request JSON structure:

prompt = f"""
Generate narration in JSON format:

{{
    "narration": "The actual spoken text...",
    "key_points": ["point 1", "point 2"],
    "transitions": ["0:00 - Introduction", "0:30 - Main concept"],
    "emphasis_words": ["important", "theorem", "result"]
}}

Topic: {concept}
Audience: {target_audience}
Duration: {duration} seconds
"""

# Parse and extract just the narration part
result = json.loads(response)
narration_text = result["narration"]

4. Overall System Improvements

A. Add Caching Layer

Save generated components to avoid regeneration:

import hashlib
import json
from pathlib import Path

class GenerationCache:
    """Cache generated content."""
    
    def __init__(self, cache_dir: Path = Path("cache")):
        self.cache_dir = cache_dir
        self.cache_dir.mkdir(exist_ok=True)
    
    def _get_hash(self, topic: str, params: Dict) -> str:
        """Generate cache key."""
        key = f"{topic}_{json.dumps(params, sort_keys=True)}"
        return hashlib.md5(key.encode()).hexdigest()
    
    def get_narration(self, topic: str, audience: str) -> Optional[str]:
        """Retrieve cached narration."""
        key = self._get_hash(topic, {"audience": audience, "type": "narration"})
        cache_file = self.cache_dir / f"{key}.txt"
        
        if cache_file.exists():
            return cache_file.read_text()
        return None
    
    def save_narration(self, topic: str, audience: str, content: str):
        """Save narration to cache."""
        key = self._get_hash(topic, {"audience": audience, "type": "narration"})
        cache_file = self.cache_dir / f"{key}.txt"
        cache_file.write_text(content)

B. Implement Quality Metrics Dashboard

Track generation success rates, error types, average durations:

class MetricsCollector:
    """Collect and report system metrics."""
    
    def __init__(self):
        self.metrics = {
            "total_generations": 0,
            "successful_generations": 0,
            "failed_generations": 0,
            "errors": {},
            "average_duration": 0,
        }
    
    def record_success(self, duration: float):
        self.metrics["total_generations"] += 1
        self.metrics["successful_generations"] += 1
        self._update_average_duration(duration)
    
    def record_failure(self, error_type: str):
        self.metrics["total_generations"] += 1
        self.metrics["failed_generations"] += 1
        self.metrics["errors"][error_type] = self.metrics["errors"].get(error_type, 0) + 1
    
    def get_report(self) -> Dict:
        """Get metrics report."""
        success_rate = (
            self.metrics["successful_generations"] / self.metrics["total_generations"]
            if self.metrics["total_generations"] > 0
            else 0
        )
        
        return {
            **self.metrics,
            "success_rate": success_rate,
        }

C. Add Preview Mode

Generate low-quality preview before full render:

async def generate_preview(self, topic: str, audience: str) -> Dict:
    """Generate quick preview without full rendering."""
    
    # Generate only concept plan and narration
    concept = await self.generate_concept(topic, audience)
    narration = await self.generate_narration(topic, concept, audience)
    
    # Generate code but don't render
    code = await self.generate_code(topic, concept)
    
    return {
        "concept": concept,
        "narration": narration,
        "code": code,
        "estimated_duration": len(narration.split()) / 150 * 60,
    }

D. Error Recovery Strategies

Implement better fallback mechanisms:

class GenerationStrategy:
    """Handle generation with multiple fallback strategies."""
    
    async def generate_with_fallback(self, primary_fn, fallback_fn, *args):
        """Try primary method, fall back if it fails."""
        try:
            return await primary_fn(*args)
        except Exception as e:
            logger.warning(f"Primary method failed: {e}, trying fallback")
            return await fallback_fn(*args)
    
    async def generate_code_resilient(self, topic: str, concept: str):
        """Generate code with multiple strategies."""
        
        strategies = [
            ("Complex with camera", lambda: self.generate_with_camera_scene(topic)),
            ("Simple Scene", lambda: self.generate_simple_scene(topic)),
            ("Template-based", lambda: self.use_code_template(topic)),
        ]
        
        for strategy_name, strategy_fn in strategies:
            try:
                logger.info(f"Trying strategy: {strategy_name}")
                return await strategy_fn()
            except Exception as e:
                logger.warning(f"Strategy {strategy_name} failed: {e}")
                continue
        
        raise Exception("All code generation strategies failed")

πŸ“‹ Implementation Priority

High Priority (Immediate)

  1. βœ… Fix audio generation (DONE)
  2. βœ… Improve narration prompts (DONE)
  3. βœ… Add Gradio frontend (DONE)
  4. πŸ”² Implement code validator with post-processing
  5. πŸ”² Add syntax validation before rendering

Medium Priority (Next Sprint)

  1. πŸ”² Add narration quality analyzer
  2. πŸ”² Implement caching layer
  3. πŸ”² Add preview mode
  4. πŸ”² Enhance error recovery

Low Priority (Future)

  1. πŸ”² Metrics dashboard
  2. πŸ”² Advanced code templates
  3. πŸ”² Multi-model ensemble for better quality
  4. πŸ”² User feedback loop for iterative improvement

πŸ§ͺ Testing Recommendations

Unit Tests

def test_narration_cleaning():
    """Test narration text cleaning."""
    dirty = "Narration Script:\n\nThis is the actual text"
    clean = orchestrator._clean_narration_text(dirty)
    assert clean == "This is the actual text"

def test_code_validation():
    """Test Manim code validation."""
    invalid_code = "circle = Circle(color=DARK_GREEN)"
    fixed = validator.fix_colors(invalid_code)
    assert "GREEN_D" in fixed

def test_duration_estimation():
    """Test narration duration estimation."""
    text = "This is a test " * 150  # 150 words
    duration = analyzer.estimate_duration(text, wpm=150)
    assert 59 <= duration <= 61  # Should be ~60 seconds

Integration Tests

async def test_full_pipeline():
    """Test complete generation pipeline."""
    orchestrator = NeuroAnimOrchestrator()
    await orchestrator.initialize()
    
    result = await orchestrator.generate_animation(
        topic="Test Topic",
        target_audience="high_school",
        animation_length_minutes=1.0
    )
    
    assert result["success"]
    assert Path(result["output_file"]).exists()
    assert len(result["narration"]) > 50
    assert "from manim import" in result["manim_code"]

πŸ“Š Success Metrics

Track these to measure improvement:

  1. Code Generation Success Rate: % of generated code that renders without errors
  2. Audio Quality Score: User ratings or automated speech quality metrics
  3. Narration Accuracy: Duration match, audience level match
  4. End-to-End Success: % of complete generations without manual intervention
  5. User Satisfaction: Feedback scores from Gradio interface

Target Goals:

  • Code success rate: >85%
  • Audio quality: >4/5
  • Duration accuracy: Β±10 seconds
  • End-to-end success: >75%

πŸ”§ Configuration Best Practices

Create config.yaml for easy tuning:

generation:
  max_retries: 3
  timeout_seconds: 300
  
narration:
  words_per_minute: 150
  min_words: 50
  max_words: 1000
  
code_generation:
  temperature: 0.3
  max_tokens: 2048
  default_scene_class: "MovingCameraScene"
  
rendering:
  quality: "medium"
  frame_rate: 30
  format: "mp4"
  
audio:
  primary_provider: "elevenlabs"
  fallback_providers: ["huggingface", "gtts"]
  default_voice: "rachel"

πŸŽ“ Educational Content Guidelines

To maximize educational value:

  1. Clear Learning Objectives: Start narration with "In this video, you'll learn..."
  2. Progressive Complexity: Build from simple to complex
  3. Visual-Audio Sync: Time narration with visual reveals
  4. Repetition: Reinforce key concepts 2-3 times
  5. Real-World Connections: Include practical applications
  6. Assessment: Quiz questions that test understanding, not memorization

πŸ“ Future Enhancements

  1. Multi-Language Support: Generate narration in multiple languages
  2. Custom Voice Cloning: Use teacher's voice with ElevenLabs
  3. Interactive Elements: Clickable annotations in video
  4. Series Generation: Create multi-video curriculum
  5. Adaptive Learning: Adjust complexity based on quiz results
  6. Collaborative Editing: Allow teachers to refine generated content

Document Version: 1.0
Last Updated: 2024
Status: Living document - update as improvements are implemented