Spaces:
Paused
Paused
File size: 37,502 Bytes
7b88b54 493a451 7b88b54 493a451 7b88b54 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 |
""" Interactive Gradio UI for exploring the local SPECTER2 corpus."""
from __future__ import annotations
from collections import Counter, defaultdict
import subprocess
import sys
import time
from functools import lru_cache
from pathlib import Path
from typing import Any, Dict, List, Sequence, Set, Tuple
import gradio as gr
import numpy as np
import pandas as pd
import plotly.express as px
import plotly.graph_objects as go
import matplotlib.pyplot as plt
from matplotlib.collections import LineCollection
from matplotlib.colors import to_rgba
from matplotlib.figure import Figure
FULLSCREEN_JS = """
() => {
const container = document.getElementById('embedding-plot');
if (!container) return;
const plot = container.querySelector('.js-plotly-plot') || container;
if (!document.fullscreenElement) {
if (plot.requestFullscreen) {
plot.requestFullscreen();
} else if (plot.webkitRequestFullscreen) {
plot.webkitRequestFullscreen();
}
} else {
if (document.exitFullscreen) {
document.exitFullscreen();
} else if (document.webkitExitFullscreen) {
document.webkitExitFullscreen();
}
}
}
"""
ORBIT_JS = """
() => {
const container = document.getElementById('embedding-plot');
if (!container) return;
const plot = container.querySelector('.js-plotly-plot');
if (!plot) return;
window._plotOrbitIntervals = window._plotOrbitIntervals || {};
const key = 'embedding-plot';
if (window._plotOrbitIntervals[key]) {
clearInterval(window._plotOrbitIntervals[key]);
delete window._plotOrbitIntervals[key];
return;
}
let angle = 0;
const radius = 1.6;
window._plotOrbitIntervals[key] = setInterval(() => {
const updatedPlot = container.querySelector('.js-plotly-plot');
if (!updatedPlot) {
clearInterval(window._plotOrbitIntervals[key]);
delete window._plotOrbitIntervals[key];
return;
}
angle = (angle + 2) % 360;
const rad = angle * Math.PI / 180;
Plotly.relayout(updatedPlot, {
'scene.camera.eye': {
x: radius * Math.cos(rad),
y: radius * Math.sin(rad),
z: 0.9,
},
});
}, 50);
}
"""
CUSTOM_JS = """
function(componentId, action) {
const el = document.getElementById(componentId);
if (!el) return;
if (action === "orbit") {
if (window._orbitIntervals === undefined) {
window._orbitIntervals = {};
}
if (window._orbitIntervals[componentId]) {
clearInterval(window._orbitIntervals[componentId]);
delete window._orbitIntervals[componentId];
} else {
let angle = 0;
const interval = setInterval(() => {
angle = (angle + 2) % 360;
const rad = angle * Math.PI / 180;
const r = 1.6;
const layout = {
scene: {camera: {eye: {x: r * Math.cos(rad), y: r * Math.sin(rad), z: 0.9}}}
};
Plotly.relayout(el, layout);
}, 50);
window._orbitIntervals[componentId] = interval;
}
} else if (action === "fullscreen") {
const container = el.closest("div.svelte-1ipelgc");
const target = container || el;
if (!document.fullscreenElement) {
target.requestFullscreen?.();
} else {
document.exitFullscreen?.();
}
}
}
"""
from pipeline.embed import Specter2Embedder
from pipeline.storage import load_embeddings, load_canonical_corpus
INDEX_DIR = Path(__file__).resolve().parents[1] / "index"
CORPUS_PATH = INDEX_DIR / "corpus.json"
EMBEDDINGS_PATH = INDEX_DIR / "embeddings.npy"
DEFAULT_COLOR_BASIS = "Cluster"
DEFAULT_PALETTE = "Plotly"
COLOR_BASIS_OPTIONS: Dict[str, str] = {
"Cluster": "cluster",
"Primary Category": "primary_category",
}
PALETTE_OPTIONS: Dict[str, List[str]] = {
"Plotly": px.colors.qualitative.Plotly,
"Bold": px.colors.qualitative.Bold,
"Vivid": px.colors.qualitative.Vivid,
"Pastel": px.colors.qualitative.Pastel,
"Safe": px.colors.qualitative.Safe,
}
MAX_EDGE_RENDER = 2000
def _float_rgba_to_plotly(rgba: Tuple[float, float, float, float], alpha: float | None = None) -> str:
r, g, b, a = rgba
if alpha is not None:
a = alpha
return f"rgba({int(r * 255)}, {int(g * 255)}, {int(b * 255)}, {a:.2f})"
def _build_cluster_color_map(cluster_ids: Sequence[int], palette: Sequence[Tuple[float, float, float, float]]) -> Dict[int, Tuple[float, float, float, float]]:
unique_ids = sorted(set(int(cid) for cid in cluster_ids))
color_map: Dict[int, Tuple[float, float, float, float]] = {}
for idx, cluster_id in enumerate(unique_ids):
color_map[cluster_id] = palette[idx % len(palette)]
return color_map
def _build_cluster_overview(papers: Sequence[Dict[str, Any]]) -> pd.DataFrame:
clusters: Dict[int, Dict[str, Any]] = defaultdict(lambda: {
"cluster_id": None,
"size": 0,
"categories": Counter(),
"sample_titles": [],
})
for paper in papers:
cluster_id = int(paper.get("cluster_id", -1))
entry = clusters[cluster_id]
entry["cluster_id"] = cluster_id
entry["size"] += 1
category = paper.get("primary_category") or "unknown"
entry["categories"][category] += 1
if len(entry["sample_titles"]) < 3:
entry["sample_titles"].append(paper.get("title", "(untitled)"))
entry["major_category"] = category.split(".")[0] if "." in category else category
overview_rows = []
for data in clusters.values():
dominant_category = data["categories"].most_common(1)[0][0] if data["categories"] else "unknown"
overview_rows.append(
{
"cluster_id": data["cluster_id"],
"size": data["size"],
"major_category": data.get("major_category", "unknown"),
"dominant_category": dominant_category,
"sample_titles": " | ".join(data["sample_titles"]),
}
)
overview_rows.sort(key=lambda row: row["cluster_id"])
return pd.DataFrame(overview_rows)
def _build_cluster_hierarchy_json(papers: Sequence[Dict[str, Any]]) -> Dict[str, Any]:
hierarchy: Dict[str, Dict[str, List[Dict[str, Any]]]] = defaultdict(lambda: defaultdict(list))
for paper in papers:
cluster_id = int(paper.get("cluster_id", -1))
category = paper.get("primary_category") or "unknown"
major = category.split(".")[0] if "." in category else category
hierarchy[major][category].append(
{
"cluster_id": cluster_id,
"paper_id": paper.get("paper_id"),
"title": paper.get("title"),
}
)
major_payload = []
for major, subcategories in hierarchy.items():
sub_payload = []
for category, clusters in sorted(subcategories.items()):
clusters_sorted = sorted(clusters, key=lambda c: c["cluster_id"])
sub_payload.append({
"category": category,
"clusters": clusters_sorted,
"cluster_ids": sorted({entry["cluster_id"] for entry in clusters_sorted}),
})
major_payload.append({
"major": major,
"subcategories": sub_payload,
})
major_payload.sort(key=lambda entry: entry["major"])
return {"major_categories": major_payload}
def _filter_edges(edges: Sequence[Dict[str, Any]], selected: Set[int]) -> List[Dict[str, Any]]:
"""Return only edges whose endpoints are in the selected set."""
return [
edge
for edge in edges
if int(edge.get("source", -1)) in selected and int(edge.get("target", -1)) in selected
]
def _normalise_embeddings(vectors: np.ndarray) -> np.ndarray:
"""Return L2-normalised embeddings, guarding against zero vectors."""
if vectors.size == 0:
return vectors
norms = np.linalg.norm(vectors, axis=1, keepdims=True)
norms[norms == 0] = 1.0
return vectors / norms
@lru_cache(maxsize=1)
def load_resources() -> Tuple[
Dict[str, Any],
List[Dict[str, Any]],
np.ndarray,
np.ndarray,
np.ndarray,
np.ndarray,
List[Dict[str, Any]],
List[Dict[str, Any]],
]:
"""Load canonical corpus data, embeddings, and graph metadata from disk."""
if not CORPUS_PATH.exists() or not EMBEDDINGS_PATH.exists():
raise FileNotFoundError(
"Corpus artifacts not found. Run `python -m pipeline.build_corpus` first."
)
corpus_doc = load_canonical_corpus(CORPUS_PATH)
papers = corpus_doc.get("papers", [])
embeddings = load_embeddings(EMBEDDINGS_PATH)
if embeddings.shape[0] != len(papers):
raise ValueError(
"Mismatch between embeddings and canonical corpus entries. Rebuild the corpus to continue."
)
papers_sorted = sorted(papers, key=lambda entry: entry.get("embedding_idx", 0))
if not all(paper.get("embedding_idx") == idx for idx, paper in enumerate(papers_sorted)):
raise ValueError("Embedding indices in canonical corpus do not match their positions; rebuild the corpus.")
umap_2d = np.array([paper.get("umap_2d", [0.0, 0.0]) for paper in papers_sorted], dtype=np.float32)
umap_3d = np.array([paper.get("umap_3d", [0.0, 0.0, 0.0]) for paper in papers_sorted], dtype=np.float32)
normalised = _normalise_embeddings(embeddings.astype(np.float32))
graph_edges = corpus_doc.get("graph", {}).get("edges", [])
cluster_metadata = corpus_doc.get("clusters", [])
return (
corpus_doc,
papers_sorted,
embeddings,
normalised,
umap_2d,
umap_3d,
graph_edges,
cluster_metadata,
)
@lru_cache(maxsize=1)
def get_embedder(device: str | None = None) -> Specter2Embedder:
"""Instantiate the Specter2 embedder once."""
return Specter2Embedder(device=device)
@lru_cache(maxsize=1)
def _cluster_options() -> List[str]:
"""Return the cluster dropdown options (All + IDs)."""
(_, papers, *_rest) = load_resources()
cluster_ids = sorted({int(paper.get("cluster_id", 0)) for paper in papers})
return ["All"] + [str(cluster_id) for cluster_id in cluster_ids]
def _resolve_color_basis(choice: str) -> str:
return COLOR_BASIS_OPTIONS.get(choice, COLOR_BASIS_OPTIONS[DEFAULT_COLOR_BASIS])
def _resolve_palette(choice: str) -> List[Tuple[float, float, float, float]]:
palette = PALETTE_OPTIONS.get(choice, PALETTE_OPTIONS[DEFAULT_PALETTE])
resolved: List[Tuple[float, float, float, float]] = []
for color in palette:
try:
resolved.append(to_rgba(color))
except ValueError:
if color.startswith("rgb"):
parts = color[color.find("(") + 1 : color.find(")")].split(",")
floats = tuple(float(part.strip()) / 255.0 for part in parts)
resolved.append((*floats, 1.0))
else:
raise
if not resolved:
resolved.append((0.2, 0.4, 0.8, 1.0))
return resolved
def _hover_text_for_papers(papers: Sequence[Dict[str, Any]]) -> np.ndarray:
"""Generate hover text for each paper."""
hover = []
for paper in papers:
hover.append(
"<br>".join(
[
paper.get("title", "(untitled)"),
f"ID: {paper.get('paper_id', 'n/a')}",
f"Cluster: {paper.get('cluster_id', 'n/a')}",
f"Category: {paper.get('primary_category', 'unknown')}",
f"Authors: {', '.join(paper.get('authors', [])[:3])}" + ("…" if len(paper.get('authors', [])) > 3 else ""),
]
)
)
return np.array(hover)
def _group_points(labels: np.ndarray, palette: Sequence[str]) -> List[Tuple[str, np.ndarray, str]]:
"""Return masking information for each unique label."""
unique = sorted(np.unique(labels))
groups: List[Tuple[str, np.ndarray, str]] = []
for idx, label in enumerate(unique):
mask = labels == label
color = palette[idx % len(palette)]
groups.append((label, mask, color))
return groups
def _build_2d_plot(
coords: np.ndarray,
original_indices: Sequence[int],
labels: np.ndarray,
hover_text: np.ndarray,
edges: Sequence[Dict[str, Any]],
clusters: Sequence[Dict[str, Any]],
cluster_ids_subset: np.ndarray,
point_color_map: Dict[str, Tuple[float, float, float, float]],
cluster_color_map: Dict[int, Tuple[float, float, float, float]],
) -> plt.Figure:
fig, ax = plt.subplots(figsize=(6.8, 6.2), dpi=120)
if coords.shape[0] < 1:
ax.set_title("Corpus Embedding Map (2D)")
ax.axis("off")
return fig
label_order = sorted(set(labels))
for label in label_order:
mask = labels == label
if not np.any(mask):
continue
rgba = point_color_map.get(label)
if rgba is None:
rgba = (0.25, 0.5, 0.85, 1.0)
ax.scatter(
coords[mask, 0],
coords[mask, 1],
s=26,
c=[rgba],
alpha=0.9,
linewidths=0.3,
edgecolors="#f5f5f5",
label=label,
)
if edges:
index_map = {orig_idx: pos for pos, orig_idx in enumerate(original_indices)}
segment_map: Dict[int, List[List[Tuple[float, float]]]] = defaultdict(list)
for edge in edges[:MAX_EDGE_RENDER]:
source = int(edge["source"])
target = int(edge["target"])
if source not in index_map or target not in index_map:
continue
src_idx = index_map[source]
tgt_idx = index_map[target]
cluster_id = int(cluster_ids_subset[src_idx]) if src_idx < len(cluster_ids_subset) else -1
segment_map[cluster_id].append(
[
(coords[src_idx, 0], coords[src_idx, 1]),
(coords[tgt_idx, 0], coords[tgt_idx, 1]),
]
)
for cluster_id, segments in segment_map.items():
base = cluster_color_map.get(cluster_id, (0.55, 0.55, 0.55, 1.0))
lc = LineCollection(
segments,
colors=[(base[0], base[1], base[2], 0.22)],
linewidths=0.55,
)
ax.add_collection(lc)
for cluster in clusters:
centroid = cluster.get("centroid_2d")
if not centroid:
continue
cluster_id = int(cluster.get("cluster_id", -1))
rgba = cluster_color_map.get(cluster_id, (0.1, 0.1, 0.1, 1.0))
ax.scatter(
centroid[0],
centroid[1],
s=150,
marker="D",
c=[rgba],
edgecolors="#222222",
linewidths=0.6,
alpha=0.95,
)
ax.text(
centroid[0],
centroid[1],
f"C{cluster['cluster_id']}",
fontsize=9,
ha="center",
va="bottom",
color="#222222",
)
ax.set_title("Corpus Embedding Map (2D)")
ax.set_xlabel("UMAP 1")
ax.set_ylabel("UMAP 2")
ax.tick_params(labelsize=8)
ax.set_aspect("equal", adjustable="datalim")
ax.grid(alpha=0.15, linestyle="--", linewidth=0.45)
ax.legend(loc="upper center", bbox_to_anchor=(0.5, -0.16), ncol=4, fontsize=7, frameon=False)
fig.tight_layout()
return fig
def _build_3d_figure(
coords: np.ndarray,
original_indices: Sequence[int],
labels: np.ndarray,
hover_text: np.ndarray,
edges: Sequence[Dict[str, Any]],
clusters: Sequence[Dict[str, Any]],
cluster_ids_subset: np.ndarray,
embedding_indices_subset: np.ndarray,
point_color_map: Dict[str, Tuple[float, float, float, float]],
cluster_color_map: Dict[int, Tuple[float, float, float, float]],
) -> go.Figure:
"""Generate a 3D Plotly figure for the embedding map."""
fig = go.Figure()
if coords.shape[0] < 1:
fig.update_layout(title="Corpus Embedding Map (3D)")
return fig
label_order = sorted(set(labels))
for label in label_order:
mask = labels == label
if not np.any(mask):
continue
rgba = point_color_map.get(label)
rgba_str = _float_rgba_to_plotly(rgba) if rgba else "rgba(52, 120, 198, 0.9)"
fig.add_trace(
go.Scatter3d(
x=coords[mask, 0],
y=coords[mask, 1],
z=coords[mask, 2],
mode="markers",
marker=dict(color=rgba_str, size=4.8, opacity=0.9, line=dict(width=0.6, color="#101010"), symbol="circle"),
name=str(label),
hovertext=hover_text[mask],
hoverinfo="text",
customdata=embedding_indices_subset[mask][:, None],
)
)
if edges:
index_map = {orig_idx: pos for pos, orig_idx in enumerate(original_indices)}
edge_segments: Dict[int, Dict[str, List[float]]] = defaultdict(lambda: {"x": [], "y": [], "z": []})
for edge in edges[:MAX_EDGE_RENDER]:
source = int(edge["source"])
target = int(edge["target"])
if source not in index_map or target not in index_map:
continue
src_idx = index_map[source]
tgt_idx = index_map[target]
cluster_id = int(cluster_ids_subset[src_idx]) if src_idx < len(cluster_ids_subset) else -1
seg = edge_segments[cluster_id]
seg["x"].extend([coords[src_idx, 0], coords[tgt_idx, 0], None])
seg["y"].extend([coords[src_idx, 1], coords[tgt_idx, 1], None])
seg["z"].extend([coords[src_idx, 2], coords[tgt_idx, 2], None])
for cluster_id, seg in edge_segments.items():
cluster_color = cluster_color_map.get(cluster_id, (0.4, 0.4, 0.4, 1.0))
fig.add_trace(
go.Scatter3d(
x=seg["x"],
y=seg["y"],
z=seg["z"],
mode="lines",
line=dict(color=_float_rgba_to_plotly(cluster_color, alpha=0.18), width=1.3),
hoverinfo="none",
name=f"Cluster {cluster_id} edges",
showlegend=False,
)
)
if clusters:
fig.add_trace(
go.Scatter3d(
x=[c["centroid_3d"][0] for c in clusters],
y=[c["centroid_3d"][1] for c in clusters],
z=[c["centroid_3d"][2] for c in clusters],
mode="markers+text",
marker=dict(
symbol="diamond",
size=12,
color=[_float_rgba_to_plotly(cluster_color_map.get(int(c["cluster_id"]), (0.3, 0.3, 0.3, 1.0))) for c in clusters],
line=dict(width=1.5, color="#222222"),
),
text=[f"C{c['cluster_id']}" for c in clusters],
textposition="top center",
hovertext=[f"Cluster {c['cluster_id']}<br>Size: {c['size']}" for c in clusters],
hoverinfo="text",
name="Centroids",
showlegend=False,
)
)
fig.update_layout(
title="Corpus Embedding Map (3D)",
scene=dict(
xaxis_title="UMAP 1",
yaxis_title="UMAP 2",
zaxis_title="UMAP 3",
xaxis=dict(showgrid=True, zeroline=False, showbackground=False),
yaxis=dict(showgrid=True, zeroline=False, showbackground=False),
zaxis=dict(showgrid=True, zeroline=False, showbackground=False),
),
legend=dict(orientation="h", y=-0.1),
margin=dict(l=10, r=10, t=60, b=10),
template="plotly_white",
scene_camera=dict(eye=dict(x=1.6, y=1.6, z=0.9)),
hovermode="closest",
)
return fig
def render_plots(
show_edges: bool,
cluster_choice: str,
color_choice: str,
palette_choice: str,
) -> Tuple[Figure, go.Figure, pd.DataFrame, Dict[str, Any], Dict[str, Dict[str, Any]], List[Tuple[str, str]], Dict[str, Any]]:
"""Render the 2D and 3D figures with the requested options."""
(
_corpus,
papers,
_embeddings,
_normalised,
umap_2d,
umap_3d,
graph_edges,
cluster_metadata,
) = load_resources()
cluster_ids = np.array([paper.get("cluster_id", 0) for paper in papers], dtype=int)
if cluster_choice != "All":
cluster_value = int(cluster_choice)
mask = cluster_ids == cluster_value
clusters_for_plot = [c for c in cluster_metadata if int(c.get("cluster_id", -1)) == cluster_value]
else:
mask = np.ones(len(papers), dtype=bool)
clusters_for_plot = cluster_metadata
selected_indices = np.where(mask)[0]
if selected_indices.size == 0:
metrics_empty = {
"clusters": 0,
"points": 0,
"edges": 0,
"render_ms": {"2d": 0.0, "3d": 0.0},
}
return go.Figure(), go.Figure(), pd.DataFrame(), {}, {}, [], metrics_empty
filtered_papers = [papers[idx] for idx in selected_indices]
coords_2d = umap_2d[selected_indices]
coords_3d = umap_3d[selected_indices]
cluster_ids_subset = cluster_ids[selected_indices]
embedding_indices_subset = np.array([int(filtered_papers[i].get("embedding_idx", selected_indices[i])) for i in range(len(filtered_papers))])
selected_set = {int(idx) for idx in selected_indices.tolist()}
filtered_edges = _filter_edges(graph_edges, selected_set) if show_edges else []
color_basis_key = _resolve_color_basis(color_choice)
palette = _resolve_palette(palette_choice)
cluster_palette = _resolve_palette(DEFAULT_PALETTE)
cluster_color_map = _build_cluster_color_map(cluster_ids, cluster_palette)
if color_basis_key == "cluster":
label_values = np.array([str(paper.get("cluster_id", "unknown")) for paper in filtered_papers])
point_color_map = {str(cluster_id): cluster_color_map.get(int(cluster_id), (0.2, 0.4, 0.8, 1.0)) for cluster_id in label_values}
else:
label_values = np.array([paper.get("primary_category") or "unknown" for paper in filtered_papers])
unique_labels = sorted(set(label_values))
point_color_map = {label: palette[idx % len(palette)] for idx, label in enumerate(unique_labels)}
hover_text = _hover_text_for_papers(filtered_papers)
start_2d = time.perf_counter()
fig2d = _build_2d_plot(
coords_2d,
selected_indices,
label_values,
hover_text,
filtered_edges,
clusters_for_plot,
cluster_ids_subset,
point_color_map,
cluster_color_map,
)
render_2d_ms = (time.perf_counter() - start_2d) * 1000.0
start_3d = time.perf_counter()
fig3d = _build_3d_figure(
coords_3d,
selected_indices,
label_values,
hover_text,
filtered_edges,
clusters_for_plot,
cluster_ids_subset,
embedding_indices_subset,
point_color_map,
cluster_color_map,
)
render_3d_ms = (time.perf_counter() - start_3d) * 1000.0
overview_df = _build_cluster_overview(filtered_papers)
hierarchy_json = _build_cluster_hierarchy_json(filtered_papers)
paper_lookup = {
str(int(embedding_indices_subset[i])): {
"title": paper.get("title", "(untitled)"),
"paper_id": paper.get("paper_id"),
"cluster_id": paper.get("cluster_id"),
"primary_category": paper.get("primary_category"),
"authors": paper.get("authors", []),
"abstract": paper.get("abstract", ""),
"published": paper.get("published"),
"url": paper.get("meta", {}).get("url") if isinstance(paper.get("meta"), dict) else paper.get("url"),
}
for i, paper in enumerate(filtered_papers)
}
paper_options = [
(f"{details['title']} (C{details['cluster_id']})", str(idx))
for idx, details in paper_lookup.items()
]
metrics = {
"clusters": int(len(set(cluster_ids_subset))),
"points": int(len(selected_indices)),
"edges": int(len(filtered_edges)),
"render_ms": {
"2d": round(render_2d_ms, 2),
"3d": round(render_3d_ms, 2),
},
}
return fig2d, fig3d, overview_df, hierarchy_json, paper_lookup, paper_options, metrics
def refresh_embedding_plot() -> None:
"""Clear caches to force plot regeneration on next render."""
load_resources.cache_clear()
get_embedding_plots.cache_clear()
@lru_cache(maxsize=1)
def get_embedding_plots() -> Tuple[Figure, go.Figure, pd.DataFrame, Dict[str, Any], Dict[str, Dict[str, Any]], List[Tuple[str, str]], Dict[str, Any]]:
"""Return cached 2D and 3D plots plus cluster summaries using default settings."""
return render_plots(
show_edges=True,
cluster_choice="All",
color_choice=DEFAULT_COLOR_BASIS,
palette_choice=DEFAULT_PALETTE,
)
def _format_results(indices: np.ndarray, scores: np.ndarray, papers: Sequence[Dict[str, Any]]) -> List[List[Any]]:
"""Convert ranked results into display-friendly rows."""
formatted: List[List[Any]] = []
for rank, (idx, score) in enumerate(zip(indices, scores), start=1):
paper = papers[int(idx)]
abstract = str(paper.get("abstract", "")).strip()
summary = abstract[:220] + ("…" if len(abstract) > 220 else "")
formatted.append(
[
rank,
round(float(score), 4),
paper.get("title", "(untitled)"),
paper.get("paper_id", "N/A"),
summary,
]
)
return formatted
def search_corpus(query: str, top_k: int) -> List[List[Any]]:
"""Perform a cosine-similarity search over the local corpus."""
query = (query or "").strip()
if not query:
return []
_, papers, embeddings, normalised, _, _, _, _ = load_resources()
embedder = get_embedder(None)
query_vector = embedder.embed_query(query)
query_norm = query_vector / np.linalg.norm(query_vector)
scores = normalised @ query_norm
top_k = max(1, min(int(top_k), len(papers)))
ranked_indices = np.argsort(scores)[::-1][:top_k]
ranked_scores = scores[ranked_indices]
return _format_results(ranked_indices, ranked_scores, papers)
def _refresh_and_render(
show_edges: bool,
cluster_choice: str,
color_choice: str,
palette_choice: str,
) -> Tuple[Figure, go.Figure, pd.DataFrame, Dict[str, Any], Dict[str, Dict[str, Any]], List[Tuple[str, str]], Dict[str, Any]]:
refresh_embedding_plot()
return render_plots(show_edges, cluster_choice, color_choice, palette_choice)
def build_interface() -> gr.Blocks:
"""Assemble and return the Gradio Blocks interface."""
with gr.Blocks(title="NexaSci Mini Corpus Search") as demo:
gr.Markdown(
"""
# NexaSci Corpus Explorer
Enter a short description or paper title to retrieve the closest papers from the locally built corpus.
"""
)
with gr.Accordion("Corpus Builder", open=False):
categories_box = gr.Textbox(
label="Categories",
value="cs.AI cs.LG cs.CL stat.ML",
placeholder="Space-separated arXiv categories",
)
max_papers_slider = gr.Slider(label="Max papers", minimum=100, maximum=1000, step=50, value=500)
num_clusters_slider = gr.Slider(label="KMeans clusters", minimum=5, maximum=60, step=5, value=30)
batch_size_slider = gr.Slider(label="Embedding batch size", minimum=4, maximum=64, step=4, value=16)
build_button = gr.Button("Build Corpus", variant="primary")
build_status = gr.Markdown()
with gr.Row():
show_edges_checkbox = gr.Checkbox(label="Show graph edges", value=True)
cluster_dropdown = gr.Dropdown(
label="Cluster filter",
value="All",
choices=_cluster_options(),
)
color_basis_dropdown = gr.Radio(
label="Color by",
choices=list(COLOR_BASIS_OPTIONS.keys()),
value=DEFAULT_COLOR_BASIS,
)
palette_dropdown = gr.Dropdown(
label="Color palette",
choices=list(PALETTE_OPTIONS.keys()),
value=DEFAULT_PALETTE,
)
initial_2d, initial_3d, initial_overview, initial_hierarchy, initial_lookup, initial_options, initial_metrics = get_embedding_plots()
view_selector = gr.Radio(
label="Visualization",
choices=["2D", "3D"],
value="2D",
interactive=True,
)
embedding_plot = gr.Plot(label="Embedding", value=initial_2d, elem_id="embedding-plot")
controls_row = gr.Row()
with controls_row:
orbit_button = gr.Button("Toggle Orbit", variant="secondary")
fullscreen_button = gr.Button("Fullscreen", variant="secondary")
cluster_overview_table = gr.Dataframe(
value=initial_overview,
label="Cluster Overview",
interactive=False,
)
cluster_hierarchy_json = gr.JSON(value=initial_hierarchy, label="Cluster Hierarchy")
paper_state = gr.State(initial_lookup)
gr.Markdown("## Paper Details")
paper_selector = gr.Dropdown(
choices=initial_options,
label="Select Paper",
value=None,
)
paper_detail_display = gr.Markdown("Select a paper from the dropdown.")
metrics_json = gr.JSON(value=initial_metrics, label="Render Metrics")
def _build_corpus(max_papers: int, categories: str, num_clusters: int, batch_size: int,
show_edges: bool, cluster_choice: str, color_choice: str, palette_choice: str, view: str):
cat_list = [c.strip() for c in categories.split() if c.strip()]
if not cat_list:
cat_list = ["cs.AI"]
cmd = [
sys.executable,
"-m",
"pipeline.build_corpus",
"--categories",
*cat_list,
"--max-papers",
str(int(max_papers)),
"--num-clusters",
str(int(num_clusters)),
"--batch-size",
str(int(batch_size)),
]
start = time.perf_counter()
result = subprocess.run(cmd, capture_output=True, text=True)
elapsed = time.perf_counter() - start
if result.returncode != 0:
logs = (result.stderr or result.stdout or "").strip()
if len(logs) > 800:
logs = "..." + logs[-800:]
status = f"❌ Corpus build failed in {elapsed:.1f}s\n```\n{logs}\n```"
else:
logs = (result.stdout or "Success").strip()
if len(logs) > 800:
logs = "..." + logs[-800:]
status = f"✅ Corpus rebuilt with {int(max_papers)} papers in {elapsed:.1f}s\n```\n{logs}\n```"
fig2d, fig3d, overview, hierarchy, lookup, options, metrics = _refresh_and_render(
show_edges, cluster_choice, color_choice, palette_choice
)
return (
status,
fig2d if view == "2D" else fig3d,
overview,
hierarchy,
lookup,
gr.update(choices=options, value=None),
"Select a paper from the dropdown.",
metrics,
)
def _update_plots(show_edges: bool, cluster_choice: str, color_choice: str, palette_choice: str):
return render_plots(show_edges, cluster_choice, color_choice, palette_choice)
refresh_button = gr.Button("Refresh Data")
def _refresh_and_update(show_edges: bool, cluster_choice: str, color_choice: str, palette_choice: str, view: str):
fig2d, fig3d, overview, hierarchy, lookup, options, metrics = _refresh_and_render(
show_edges, cluster_choice, color_choice, palette_choice
)
if view == "3D":
fig3d.update_layout(margin=dict(l=10, r=10, t=60, b=10))
return (
fig2d if view == "2D" else fig3d,
overview,
hierarchy,
lookup,
gr.update(choices=options, value=None),
"Select a paper from the dropdown.",
metrics,
)
refresh_button.click(
_refresh_and_update,
inputs=[show_edges_checkbox, cluster_dropdown, color_basis_dropdown, palette_dropdown, view_selector],
outputs=[embedding_plot, cluster_overview_table, cluster_hierarchy_json, paper_state, paper_selector, paper_detail_display, metrics_json],
)
def _update_visual(show_edges: bool, cluster_choice: str, color_choice: str, palette_choice: str, view: str):
fig2d, fig3d, overview, hierarchy, lookup, options, metrics = _update_plots(
show_edges, cluster_choice, color_choice, palette_choice
)
return (
fig2d if view == "2D" else fig3d,
overview,
hierarchy,
lookup,
gr.update(choices=options, value=None),
"Select a paper from the dropdown.",
metrics,
)
view_selector.change(
_update_visual,
inputs=[show_edges_checkbox, cluster_dropdown, color_basis_dropdown, palette_dropdown, view_selector],
outputs=[embedding_plot, cluster_overview_table, cluster_hierarchy_json, paper_state, paper_selector, paper_detail_display, metrics_json],
)
for control in [show_edges_checkbox, cluster_dropdown, color_basis_dropdown, palette_dropdown]:
control.change(
_update_visual,
inputs=[show_edges_checkbox, cluster_dropdown, color_basis_dropdown, palette_dropdown, view_selector],
outputs=[embedding_plot, cluster_overview_table, cluster_hierarchy_json, paper_state, paper_selector, paper_detail_display, metrics_json],
)
orbit_button.click(None, inputs=None, outputs=None, js=ORBIT_JS)
fullscreen_button.click(None, inputs=None, outputs=None, js=FULLSCREEN_JS)
build_button.click(
_build_corpus,
inputs=[
max_papers_slider,
categories_box,
num_clusters_slider,
batch_size_slider,
show_edges_checkbox,
cluster_dropdown,
color_basis_dropdown,
palette_dropdown,
view_selector,
],
outputs=[
build_status,
embedding_plot,
cluster_overview_table,
cluster_hierarchy_json,
paper_state,
paper_selector,
paper_detail_display,
metrics_json,
],
)
gr.Markdown("## Semantic Search")
with gr.Row():
query_input = gr.Textbox(
label="Query",
placeholder="e.g. graph neural networks for chemistry",
lines=2,
)
topk_slider = gr.Slider(
label="Top K Results",
minimum=1,
maximum=20,
step=1,
value=5,
)
results_table = gr.Dataframe(
headers=["rank", "score", "title", "paper_id", "summary"],
label="Results",
datatype=["number", "number", "str", "str", "str"],
interactive=False,
)
submit_btn = gr.Button("Search")
submit_btn.click(search_corpus, inputs=[query_input, topk_slider], outputs=[results_table])
def _format_details(selection: str | None, paper_map: Dict[str, Dict[str, Any]]):
if not selection:
return "Select a paper from the dropdown."
details = paper_map.get(selection)
if not details:
return "No details available for this paper."
authors = ", ".join(details.get("authors", [])) or "Unknown"
lines = [
f"### {details.get('title', '(untitled)')}",
f"**Paper ID:** {details.get('paper_id', 'N/A')}",
f"**Cluster:** {details.get('cluster_id', 'N/A')} | **Category:** {details.get('primary_category', 'unknown')}",
f"**Authors:** {authors}",
f"**Published:** {details.get('published', 'N/A')}",
"",
details.get("abstract", "No abstract available."),
]
url = details.get("url")
if url:
lines.append(f"\n[View paper]({url})")
return "\n\n".join(lines)
paper_selector.change(_format_details, inputs=[paper_selector, paper_state], outputs=paper_detail_display)
return demo
def main() -> None:
"""Launch the Gradio demo."""
interface = build_interface()
interface.launch()
if __name__ == "__main__": # pragma: no cover - manual launch helper
main()
|