Spaces:
Paused
Paused
Update app.py
Browse files
app.py
CHANGED
|
@@ -1,7 +1,1031 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
import gradio as gr
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 2 |
|
| 3 |
-
def greet(name):
|
| 4 |
-
return "Hello " + name + "!!"
|
| 5 |
|
| 6 |
-
|
| 7 |
-
|
|
|
|
| 1 |
+
""" Interactive Gradio UI for exploring the local SPECTER2 corpus."""
|
| 2 |
+
|
| 3 |
+
from __future__ import annotations
|
| 4 |
+
|
| 5 |
+
from collections import Counter, defaultdict
|
| 6 |
+
import subprocess
|
| 7 |
+
import sys
|
| 8 |
+
import time
|
| 9 |
+
from functools import lru_cache
|
| 10 |
+
from pathlib import Path
|
| 11 |
+
from typing import Any, Dict, List, Sequence, Set, Tuple
|
| 12 |
+
|
| 13 |
import gradio as gr
|
| 14 |
+
import numpy as np
|
| 15 |
+
import pandas as pd
|
| 16 |
+
import plotly.express as px
|
| 17 |
+
import plotly.graph_objects as go
|
| 18 |
+
import matplotlib.pyplot as plt
|
| 19 |
+
from matplotlib.collections import LineCollection
|
| 20 |
+
from matplotlib.colors import to_rgba
|
| 21 |
+
from matplotlib.figure import Figure
|
| 22 |
+
|
| 23 |
+
FULLSCREEN_JS = """
|
| 24 |
+
() => {
|
| 25 |
+
const container = document.getElementById('embedding-plot');
|
| 26 |
+
if (!container) return;
|
| 27 |
+
const plot = container.querySelector('.js-plotly-plot') || container;
|
| 28 |
+
if (!document.fullscreenElement) {
|
| 29 |
+
if (plot.requestFullscreen) {
|
| 30 |
+
plot.requestFullscreen();
|
| 31 |
+
} else if (plot.webkitRequestFullscreen) {
|
| 32 |
+
plot.webkitRequestFullscreen();
|
| 33 |
+
}
|
| 34 |
+
} else {
|
| 35 |
+
if (document.exitFullscreen) {
|
| 36 |
+
document.exitFullscreen();
|
| 37 |
+
} else if (document.webkitExitFullscreen) {
|
| 38 |
+
document.webkitExitFullscreen();
|
| 39 |
+
}
|
| 40 |
+
}
|
| 41 |
+
}
|
| 42 |
+
"""
|
| 43 |
+
|
| 44 |
+
ORBIT_JS = """
|
| 45 |
+
() => {
|
| 46 |
+
const container = document.getElementById('embedding-plot');
|
| 47 |
+
if (!container) return;
|
| 48 |
+
const plot = container.querySelector('.js-plotly-plot');
|
| 49 |
+
if (!plot) return;
|
| 50 |
+
window._plotOrbitIntervals = window._plotOrbitIntervals || {};
|
| 51 |
+
const key = 'embedding-plot';
|
| 52 |
+
if (window._plotOrbitIntervals[key]) {
|
| 53 |
+
clearInterval(window._plotOrbitIntervals[key]);
|
| 54 |
+
delete window._plotOrbitIntervals[key];
|
| 55 |
+
return;
|
| 56 |
+
}
|
| 57 |
+
let angle = 0;
|
| 58 |
+
const radius = 1.6;
|
| 59 |
+
window._plotOrbitIntervals[key] = setInterval(() => {
|
| 60 |
+
const updatedPlot = container.querySelector('.js-plotly-plot');
|
| 61 |
+
if (!updatedPlot) {
|
| 62 |
+
clearInterval(window._plotOrbitIntervals[key]);
|
| 63 |
+
delete window._plotOrbitIntervals[key];
|
| 64 |
+
return;
|
| 65 |
+
}
|
| 66 |
+
angle = (angle + 2) % 360;
|
| 67 |
+
const rad = angle * Math.PI / 180;
|
| 68 |
+
Plotly.relayout(updatedPlot, {
|
| 69 |
+
'scene.camera.eye': {
|
| 70 |
+
x: radius * Math.cos(rad),
|
| 71 |
+
y: radius * Math.sin(rad),
|
| 72 |
+
z: 0.9,
|
| 73 |
+
},
|
| 74 |
+
});
|
| 75 |
+
}, 50);
|
| 76 |
+
}
|
| 77 |
+
"""
|
| 78 |
+
|
| 79 |
+
CUSTOM_JS = """
|
| 80 |
+
function(componentId, action) {
|
| 81 |
+
const el = document.getElementById(componentId);
|
| 82 |
+
if (!el) return;
|
| 83 |
+
if (action === "orbit") {
|
| 84 |
+
if (window._orbitIntervals === undefined) {
|
| 85 |
+
window._orbitIntervals = {};
|
| 86 |
+
}
|
| 87 |
+
if (window._orbitIntervals[componentId]) {
|
| 88 |
+
clearInterval(window._orbitIntervals[componentId]);
|
| 89 |
+
delete window._orbitIntervals[componentId];
|
| 90 |
+
} else {
|
| 91 |
+
let angle = 0;
|
| 92 |
+
const interval = setInterval(() => {
|
| 93 |
+
angle = (angle + 2) % 360;
|
| 94 |
+
const rad = angle * Math.PI / 180;
|
| 95 |
+
const r = 1.6;
|
| 96 |
+
const layout = {
|
| 97 |
+
scene: {camera: {eye: {x: r * Math.cos(rad), y: r * Math.sin(rad), z: 0.9}}}
|
| 98 |
+
};
|
| 99 |
+
Plotly.relayout(el, layout);
|
| 100 |
+
}, 50);
|
| 101 |
+
window._orbitIntervals[componentId] = interval;
|
| 102 |
+
}
|
| 103 |
+
} else if (action === "fullscreen") {
|
| 104 |
+
const container = el.closest("div.svelte-1ipelgc");
|
| 105 |
+
const target = container || el;
|
| 106 |
+
if (!document.fullscreenElement) {
|
| 107 |
+
target.requestFullscreen?.();
|
| 108 |
+
} else {
|
| 109 |
+
document.exitFullscreen?.();
|
| 110 |
+
}
|
| 111 |
+
}
|
| 112 |
+
}
|
| 113 |
+
"""
|
| 114 |
+
|
| 115 |
+
from pipeline.embed import Specter2Embedder
|
| 116 |
+
from pipeline.storage import load_embeddings, load_canonical_corpus
|
| 117 |
+
|
| 118 |
+
INDEX_DIR = Path(__file__).resolve().parents[1] / "index"
|
| 119 |
+
CORPUS_PATH = INDEX_DIR / "corpus.json"
|
| 120 |
+
EMBEDDINGS_PATH = INDEX_DIR / "embeddings.npy"
|
| 121 |
+
|
| 122 |
+
DEFAULT_COLOR_BASIS = "Cluster"
|
| 123 |
+
DEFAULT_PALETTE = "Plotly"
|
| 124 |
+
|
| 125 |
+
COLOR_BASIS_OPTIONS: Dict[str, str] = {
|
| 126 |
+
"Cluster": "cluster",
|
| 127 |
+
"Primary Category": "primary_category",
|
| 128 |
+
}
|
| 129 |
+
|
| 130 |
+
PALETTE_OPTIONS: Dict[str, List[str]] = {
|
| 131 |
+
"Plotly": px.colors.qualitative.Plotly,
|
| 132 |
+
"Bold": px.colors.qualitative.Bold,
|
| 133 |
+
"Vivid": px.colors.qualitative.Vivid,
|
| 134 |
+
"Pastel": px.colors.qualitative.Pastel,
|
| 135 |
+
"Safe": px.colors.qualitative.Safe,
|
| 136 |
+
}
|
| 137 |
+
|
| 138 |
+
MAX_EDGE_RENDER = 2000
|
| 139 |
+
|
| 140 |
+
|
| 141 |
+
def _float_rgba_to_plotly(rgba: Tuple[float, float, float, float], alpha: float | None = None) -> str:
|
| 142 |
+
r, g, b, a = rgba
|
| 143 |
+
if alpha is not None:
|
| 144 |
+
a = alpha
|
| 145 |
+
return f"rgba({int(r * 255)}, {int(g * 255)}, {int(b * 255)}, {a:.2f})"
|
| 146 |
+
|
| 147 |
+
|
| 148 |
+
def _build_cluster_color_map(cluster_ids: Sequence[int], palette: Sequence[Tuple[float, float, float, float]]) -> Dict[int, Tuple[float, float, float, float]]:
|
| 149 |
+
unique_ids = sorted(set(int(cid) for cid in cluster_ids))
|
| 150 |
+
color_map: Dict[int, Tuple[float, float, float, float]] = {}
|
| 151 |
+
for idx, cluster_id in enumerate(unique_ids):
|
| 152 |
+
color_map[cluster_id] = palette[idx % len(palette)]
|
| 153 |
+
return color_map
|
| 154 |
+
|
| 155 |
+
|
| 156 |
+
def _build_cluster_overview(papers: Sequence[Dict[str, Any]]) -> pd.DataFrame:
|
| 157 |
+
clusters: Dict[int, Dict[str, Any]] = defaultdict(lambda: {
|
| 158 |
+
"cluster_id": None,
|
| 159 |
+
"size": 0,
|
| 160 |
+
"categories": Counter(),
|
| 161 |
+
"sample_titles": [],
|
| 162 |
+
})
|
| 163 |
+
|
| 164 |
+
for paper in papers:
|
| 165 |
+
cluster_id = int(paper.get("cluster_id", -1))
|
| 166 |
+
entry = clusters[cluster_id]
|
| 167 |
+
entry["cluster_id"] = cluster_id
|
| 168 |
+
entry["size"] += 1
|
| 169 |
+
category = paper.get("primary_category") or "unknown"
|
| 170 |
+
entry["categories"][category] += 1
|
| 171 |
+
if len(entry["sample_titles"]) < 3:
|
| 172 |
+
entry["sample_titles"].append(paper.get("title", "(untitled)"))
|
| 173 |
+
entry["major_category"] = category.split(".")[0] if "." in category else category
|
| 174 |
+
|
| 175 |
+
overview_rows = []
|
| 176 |
+
for data in clusters.values():
|
| 177 |
+
dominant_category = data["categories"].most_common(1)[0][0] if data["categories"] else "unknown"
|
| 178 |
+
overview_rows.append(
|
| 179 |
+
{
|
| 180 |
+
"cluster_id": data["cluster_id"],
|
| 181 |
+
"size": data["size"],
|
| 182 |
+
"major_category": data.get("major_category", "unknown"),
|
| 183 |
+
"dominant_category": dominant_category,
|
| 184 |
+
"sample_titles": " | ".join(data["sample_titles"]),
|
| 185 |
+
}
|
| 186 |
+
)
|
| 187 |
+
|
| 188 |
+
overview_rows.sort(key=lambda row: row["cluster_id"])
|
| 189 |
+
return pd.DataFrame(overview_rows)
|
| 190 |
+
|
| 191 |
+
|
| 192 |
+
def _build_cluster_hierarchy_json(papers: Sequence[Dict[str, Any]]) -> Dict[str, Any]:
|
| 193 |
+
hierarchy: Dict[str, Dict[str, List[Dict[str, Any]]]] = defaultdict(lambda: defaultdict(list))
|
| 194 |
+
for paper in papers:
|
| 195 |
+
cluster_id = int(paper.get("cluster_id", -1))
|
| 196 |
+
category = paper.get("primary_category") or "unknown"
|
| 197 |
+
major = category.split(".")[0] if "." in category else category
|
| 198 |
+
hierarchy[major][category].append(
|
| 199 |
+
{
|
| 200 |
+
"cluster_id": cluster_id,
|
| 201 |
+
"paper_id": paper.get("paper_id"),
|
| 202 |
+
"title": paper.get("title"),
|
| 203 |
+
}
|
| 204 |
+
)
|
| 205 |
+
|
| 206 |
+
major_payload = []
|
| 207 |
+
for major, subcategories in hierarchy.items():
|
| 208 |
+
sub_payload = []
|
| 209 |
+
for category, clusters in sorted(subcategories.items()):
|
| 210 |
+
clusters_sorted = sorted(clusters, key=lambda c: c["cluster_id"])
|
| 211 |
+
sub_payload.append({
|
| 212 |
+
"category": category,
|
| 213 |
+
"clusters": clusters_sorted,
|
| 214 |
+
"cluster_ids": sorted({entry["cluster_id"] for entry in clusters_sorted}),
|
| 215 |
+
})
|
| 216 |
+
major_payload.append({
|
| 217 |
+
"major": major,
|
| 218 |
+
"subcategories": sub_payload,
|
| 219 |
+
})
|
| 220 |
+
|
| 221 |
+
major_payload.sort(key=lambda entry: entry["major"])
|
| 222 |
+
return {"major_categories": major_payload}
|
| 223 |
+
|
| 224 |
+
|
| 225 |
+
def _filter_edges(edges: Sequence[Dict[str, Any]], selected: Set[int]) -> List[Dict[str, Any]]:
|
| 226 |
+
"""Return only edges whose endpoints are in the selected set."""
|
| 227 |
+
|
| 228 |
+
return [
|
| 229 |
+
edge
|
| 230 |
+
for edge in edges
|
| 231 |
+
if int(edge.get("source", -1)) in selected and int(edge.get("target", -1)) in selected
|
| 232 |
+
]
|
| 233 |
+
|
| 234 |
+
|
| 235 |
+
def _normalise_embeddings(vectors: np.ndarray) -> np.ndarray:
|
| 236 |
+
"""Return L2-normalised embeddings, guarding against zero vectors."""
|
| 237 |
+
|
| 238 |
+
if vectors.size == 0:
|
| 239 |
+
return vectors
|
| 240 |
+
norms = np.linalg.norm(vectors, axis=1, keepdims=True)
|
| 241 |
+
norms[norms == 0] = 1.0
|
| 242 |
+
return vectors / norms
|
| 243 |
+
|
| 244 |
+
|
| 245 |
+
@lru_cache(maxsize=1)
|
| 246 |
+
def load_resources() -> Tuple[
|
| 247 |
+
Dict[str, Any],
|
| 248 |
+
List[Dict[str, Any]],
|
| 249 |
+
np.ndarray,
|
| 250 |
+
np.ndarray,
|
| 251 |
+
np.ndarray,
|
| 252 |
+
np.ndarray,
|
| 253 |
+
List[Dict[str, Any]],
|
| 254 |
+
List[Dict[str, Any]],
|
| 255 |
+
]:
|
| 256 |
+
"""Load canonical corpus data, embeddings, and graph metadata from disk."""
|
| 257 |
+
|
| 258 |
+
if not CORPUS_PATH.exists() or not EMBEDDINGS_PATH.exists():
|
| 259 |
+
raise FileNotFoundError(
|
| 260 |
+
"Corpus artifacts not found. Run `python -m pipeline.build_corpus` first."
|
| 261 |
+
)
|
| 262 |
+
|
| 263 |
+
corpus_doc = load_canonical_corpus(CORPUS_PATH)
|
| 264 |
+
papers = corpus_doc.get("papers", [])
|
| 265 |
+
embeddings = load_embeddings(EMBEDDINGS_PATH)
|
| 266 |
+
|
| 267 |
+
if embeddings.shape[0] != len(papers):
|
| 268 |
+
raise ValueError(
|
| 269 |
+
"Mismatch between embeddings and canonical corpus entries. Rebuild the corpus to continue."
|
| 270 |
+
)
|
| 271 |
+
|
| 272 |
+
papers_sorted = sorted(papers, key=lambda entry: entry.get("embedding_idx", 0))
|
| 273 |
+
if not all(paper.get("embedding_idx") == idx for idx, paper in enumerate(papers_sorted)):
|
| 274 |
+
raise ValueError("Embedding indices in canonical corpus do not match their positions; rebuild the corpus.")
|
| 275 |
+
|
| 276 |
+
umap_2d = np.array([paper.get("umap_2d", [0.0, 0.0]) for paper in papers_sorted], dtype=np.float32)
|
| 277 |
+
umap_3d = np.array([paper.get("umap_3d", [0.0, 0.0, 0.0]) for paper in papers_sorted], dtype=np.float32)
|
| 278 |
+
|
| 279 |
+
normalised = _normalise_embeddings(embeddings.astype(np.float32))
|
| 280 |
+
graph_edges = corpus_doc.get("graph", {}).get("edges", [])
|
| 281 |
+
cluster_metadata = corpus_doc.get("clusters", [])
|
| 282 |
+
return (
|
| 283 |
+
corpus_doc,
|
| 284 |
+
papers_sorted,
|
| 285 |
+
embeddings,
|
| 286 |
+
normalised,
|
| 287 |
+
umap_2d,
|
| 288 |
+
umap_3d,
|
| 289 |
+
graph_edges,
|
| 290 |
+
cluster_metadata,
|
| 291 |
+
)
|
| 292 |
+
|
| 293 |
+
|
| 294 |
+
@lru_cache(maxsize=1)
|
| 295 |
+
def get_embedder(device: str | None = None) -> Specter2Embedder:
|
| 296 |
+
"""Instantiate the Specter2 embedder once."""
|
| 297 |
+
|
| 298 |
+
return Specter2Embedder(device=device)
|
| 299 |
+
|
| 300 |
+
|
| 301 |
+
@lru_cache(maxsize=1)
|
| 302 |
+
def _cluster_options() -> List[str]:
|
| 303 |
+
"""Return the cluster dropdown options (All + IDs)."""
|
| 304 |
+
|
| 305 |
+
(_, papers, *_rest) = load_resources()
|
| 306 |
+
cluster_ids = sorted({int(paper.get("cluster_id", 0)) for paper in papers})
|
| 307 |
+
return ["All"] + [str(cluster_id) for cluster_id in cluster_ids]
|
| 308 |
+
|
| 309 |
+
|
| 310 |
+
def _resolve_color_basis(choice: str) -> str:
|
| 311 |
+
return COLOR_BASIS_OPTIONS.get(choice, COLOR_BASIS_OPTIONS[DEFAULT_COLOR_BASIS])
|
| 312 |
+
|
| 313 |
+
|
| 314 |
+
def _resolve_palette(choice: str) -> List[Tuple[float, float, float, float]]:
|
| 315 |
+
palette = PALETTE_OPTIONS.get(choice, PALETTE_OPTIONS[DEFAULT_PALETTE])
|
| 316 |
+
resolved: List[Tuple[float, float, float, float]] = []
|
| 317 |
+
for color in palette:
|
| 318 |
+
try:
|
| 319 |
+
resolved.append(to_rgba(color))
|
| 320 |
+
except ValueError:
|
| 321 |
+
if color.startswith("rgb"):
|
| 322 |
+
parts = color[color.find("(") + 1 : color.find(")")].split(",")
|
| 323 |
+
floats = tuple(float(part.strip()) / 255.0 for part in parts)
|
| 324 |
+
resolved.append((*floats, 1.0))
|
| 325 |
+
else:
|
| 326 |
+
raise
|
| 327 |
+
if not resolved:
|
| 328 |
+
resolved.append((0.2, 0.4, 0.8, 1.0))
|
| 329 |
+
return resolved
|
| 330 |
+
|
| 331 |
+
|
| 332 |
+
def _hover_text_for_papers(papers: Sequence[Dict[str, Any]]) -> np.ndarray:
|
| 333 |
+
"""Generate hover text for each paper."""
|
| 334 |
+
|
| 335 |
+
hover = []
|
| 336 |
+
for paper in papers:
|
| 337 |
+
hover.append(
|
| 338 |
+
"<br>".join(
|
| 339 |
+
[
|
| 340 |
+
paper.get("title", "(untitled)"),
|
| 341 |
+
f"ID: {paper.get('paper_id', 'n/a')}",
|
| 342 |
+
f"Cluster: {paper.get('cluster_id', 'n/a')}",
|
| 343 |
+
f"Category: {paper.get('primary_category', 'unknown')}",
|
| 344 |
+
f"Authors: {', '.join(paper.get('authors', [])[:3])}" + ("…" if len(paper.get('authors', [])) > 3 else ""),
|
| 345 |
+
]
|
| 346 |
+
)
|
| 347 |
+
)
|
| 348 |
+
return np.array(hover)
|
| 349 |
+
|
| 350 |
+
|
| 351 |
+
def _group_points(labels: np.ndarray, palette: Sequence[str]) -> List[Tuple[str, np.ndarray, str]]:
|
| 352 |
+
"""Return masking information for each unique label."""
|
| 353 |
+
|
| 354 |
+
unique = sorted(np.unique(labels))
|
| 355 |
+
groups: List[Tuple[str, np.ndarray, str]] = []
|
| 356 |
+
for idx, label in enumerate(unique):
|
| 357 |
+
mask = labels == label
|
| 358 |
+
color = palette[idx % len(palette)]
|
| 359 |
+
groups.append((label, mask, color))
|
| 360 |
+
return groups
|
| 361 |
+
|
| 362 |
+
|
| 363 |
+
def _build_2d_plot(
|
| 364 |
+
coords: np.ndarray,
|
| 365 |
+
original_indices: Sequence[int],
|
| 366 |
+
labels: np.ndarray,
|
| 367 |
+
hover_text: np.ndarray,
|
| 368 |
+
edges: Sequence[Dict[str, Any]],
|
| 369 |
+
clusters: Sequence[Dict[str, Any]],
|
| 370 |
+
cluster_ids_subset: np.ndarray,
|
| 371 |
+
point_color_map: Dict[str, Tuple[float, float, float, float]],
|
| 372 |
+
cluster_color_map: Dict[int, Tuple[float, float, float, float]],
|
| 373 |
+
) -> plt.Figure:
|
| 374 |
+
fig, ax = plt.subplots(figsize=(6.8, 6.2), dpi=120)
|
| 375 |
+
|
| 376 |
+
if coords.shape[0] < 1:
|
| 377 |
+
ax.set_title("Corpus Embedding Map (2D)")
|
| 378 |
+
ax.axis("off")
|
| 379 |
+
return fig
|
| 380 |
+
|
| 381 |
+
label_order = sorted(set(labels))
|
| 382 |
+
|
| 383 |
+
for label in label_order:
|
| 384 |
+
mask = labels == label
|
| 385 |
+
if not np.any(mask):
|
| 386 |
+
continue
|
| 387 |
+
rgba = point_color_map.get(label)
|
| 388 |
+
if rgba is None:
|
| 389 |
+
rgba = (0.25, 0.5, 0.85, 1.0)
|
| 390 |
+
ax.scatter(
|
| 391 |
+
coords[mask, 0],
|
| 392 |
+
coords[mask, 1],
|
| 393 |
+
s=26,
|
| 394 |
+
c=[rgba],
|
| 395 |
+
alpha=0.9,
|
| 396 |
+
linewidths=0.3,
|
| 397 |
+
edgecolors="#f5f5f5",
|
| 398 |
+
label=label,
|
| 399 |
+
)
|
| 400 |
+
|
| 401 |
+
if edges:
|
| 402 |
+
index_map = {orig_idx: pos for pos, orig_idx in enumerate(original_indices)}
|
| 403 |
+
segment_map: Dict[int, List[List[Tuple[float, float]]]] = defaultdict(list)
|
| 404 |
+
for edge in edges[:MAX_EDGE_RENDER]:
|
| 405 |
+
source = int(edge["source"])
|
| 406 |
+
target = int(edge["target"])
|
| 407 |
+
if source not in index_map or target not in index_map:
|
| 408 |
+
continue
|
| 409 |
+
src_idx = index_map[source]
|
| 410 |
+
tgt_idx = index_map[target]
|
| 411 |
+
cluster_id = int(cluster_ids_subset[src_idx]) if src_idx < len(cluster_ids_subset) else -1
|
| 412 |
+
segment_map[cluster_id].append(
|
| 413 |
+
[
|
| 414 |
+
(coords[src_idx, 0], coords[src_idx, 1]),
|
| 415 |
+
(coords[tgt_idx, 0], coords[tgt_idx, 1]),
|
| 416 |
+
]
|
| 417 |
+
)
|
| 418 |
+
|
| 419 |
+
for cluster_id, segments in segment_map.items():
|
| 420 |
+
base = cluster_color_map.get(cluster_id, (0.55, 0.55, 0.55, 1.0))
|
| 421 |
+
lc = LineCollection(
|
| 422 |
+
segments,
|
| 423 |
+
colors=[(base[0], base[1], base[2], 0.22)],
|
| 424 |
+
linewidths=0.55,
|
| 425 |
+
)
|
| 426 |
+
ax.add_collection(lc)
|
| 427 |
+
|
| 428 |
+
for cluster in clusters:
|
| 429 |
+
centroid = cluster.get("centroid_2d")
|
| 430 |
+
if not centroid:
|
| 431 |
+
continue
|
| 432 |
+
cluster_id = int(cluster.get("cluster_id", -1))
|
| 433 |
+
rgba = cluster_color_map.get(cluster_id, (0.1, 0.1, 0.1, 1.0))
|
| 434 |
+
ax.scatter(
|
| 435 |
+
centroid[0],
|
| 436 |
+
centroid[1],
|
| 437 |
+
s=150,
|
| 438 |
+
marker="D",
|
| 439 |
+
c=[rgba],
|
| 440 |
+
edgecolors="#222222",
|
| 441 |
+
linewidths=0.6,
|
| 442 |
+
alpha=0.95,
|
| 443 |
+
)
|
| 444 |
+
ax.text(
|
| 445 |
+
centroid[0],
|
| 446 |
+
centroid[1],
|
| 447 |
+
f"C{cluster['cluster_id']}",
|
| 448 |
+
fontsize=9,
|
| 449 |
+
ha="center",
|
| 450 |
+
va="bottom",
|
| 451 |
+
color="#222222",
|
| 452 |
+
)
|
| 453 |
+
|
| 454 |
+
ax.set_title("Corpus Embedding Map (2D)")
|
| 455 |
+
ax.set_xlabel("UMAP 1")
|
| 456 |
+
ax.set_ylabel("UMAP 2")
|
| 457 |
+
ax.tick_params(labelsize=8)
|
| 458 |
+
ax.set_aspect("equal", adjustable="datalim")
|
| 459 |
+
ax.grid(alpha=0.15, linestyle="--", linewidth=0.45)
|
| 460 |
+
ax.legend(loc="upper center", bbox_to_anchor=(0.5, -0.16), ncol=4, fontsize=7, frameon=False)
|
| 461 |
+
fig.tight_layout()
|
| 462 |
+
return fig
|
| 463 |
+
|
| 464 |
+
|
| 465 |
+
def _build_3d_figure(
|
| 466 |
+
coords: np.ndarray,
|
| 467 |
+
original_indices: Sequence[int],
|
| 468 |
+
labels: np.ndarray,
|
| 469 |
+
hover_text: np.ndarray,
|
| 470 |
+
edges: Sequence[Dict[str, Any]],
|
| 471 |
+
clusters: Sequence[Dict[str, Any]],
|
| 472 |
+
cluster_ids_subset: np.ndarray,
|
| 473 |
+
embedding_indices_subset: np.ndarray,
|
| 474 |
+
point_color_map: Dict[str, Tuple[float, float, float, float]],
|
| 475 |
+
cluster_color_map: Dict[int, Tuple[float, float, float, float]],
|
| 476 |
+
) -> go.Figure:
|
| 477 |
+
"""Generate a 3D Plotly figure for the embedding map."""
|
| 478 |
+
|
| 479 |
+
fig = go.Figure()
|
| 480 |
+
|
| 481 |
+
if coords.shape[0] < 1:
|
| 482 |
+
fig.update_layout(title="Corpus Embedding Map (3D)")
|
| 483 |
+
return fig
|
| 484 |
+
|
| 485 |
+
label_order = sorted(set(labels))
|
| 486 |
+
for label in label_order:
|
| 487 |
+
mask = labels == label
|
| 488 |
+
if not np.any(mask):
|
| 489 |
+
continue
|
| 490 |
+
rgba = point_color_map.get(label)
|
| 491 |
+
rgba_str = _float_rgba_to_plotly(rgba) if rgba else "rgba(52, 120, 198, 0.9)"
|
| 492 |
+
fig.add_trace(
|
| 493 |
+
go.Scatter3d(
|
| 494 |
+
x=coords[mask, 0],
|
| 495 |
+
y=coords[mask, 1],
|
| 496 |
+
z=coords[mask, 2],
|
| 497 |
+
mode="markers",
|
| 498 |
+
marker=dict(color=rgba_str, size=4.8, opacity=0.9, line=dict(width=0.6, color="#101010"), symbol="circle"),
|
| 499 |
+
name=str(label),
|
| 500 |
+
hovertext=hover_text[mask],
|
| 501 |
+
hoverinfo="text",
|
| 502 |
+
customdata=embedding_indices_subset[mask][:, None],
|
| 503 |
+
)
|
| 504 |
+
)
|
| 505 |
+
|
| 506 |
+
if edges:
|
| 507 |
+
index_map = {orig_idx: pos for pos, orig_idx in enumerate(original_indices)}
|
| 508 |
+
edge_segments: Dict[int, Dict[str, List[float]]] = defaultdict(lambda: {"x": [], "y": [], "z": []})
|
| 509 |
+
for edge in edges[:MAX_EDGE_RENDER]:
|
| 510 |
+
source = int(edge["source"])
|
| 511 |
+
target = int(edge["target"])
|
| 512 |
+
if source not in index_map or target not in index_map:
|
| 513 |
+
continue
|
| 514 |
+
src_idx = index_map[source]
|
| 515 |
+
tgt_idx = index_map[target]
|
| 516 |
+
cluster_id = int(cluster_ids_subset[src_idx]) if src_idx < len(cluster_ids_subset) else -1
|
| 517 |
+
seg = edge_segments[cluster_id]
|
| 518 |
+
seg["x"].extend([coords[src_idx, 0], coords[tgt_idx, 0], None])
|
| 519 |
+
seg["y"].extend([coords[src_idx, 1], coords[tgt_idx, 1], None])
|
| 520 |
+
seg["z"].extend([coords[src_idx, 2], coords[tgt_idx, 2], None])
|
| 521 |
+
|
| 522 |
+
for cluster_id, seg in edge_segments.items():
|
| 523 |
+
cluster_color = cluster_color_map.get(cluster_id, (0.4, 0.4, 0.4, 1.0))
|
| 524 |
+
fig.add_trace(
|
| 525 |
+
go.Scatter3d(
|
| 526 |
+
x=seg["x"],
|
| 527 |
+
y=seg["y"],
|
| 528 |
+
z=seg["z"],
|
| 529 |
+
mode="lines",
|
| 530 |
+
line=dict(color=_float_rgba_to_plotly(cluster_color, alpha=0.18), width=1.3),
|
| 531 |
+
hoverinfo="none",
|
| 532 |
+
name=f"Cluster {cluster_id} edges",
|
| 533 |
+
showlegend=False,
|
| 534 |
+
)
|
| 535 |
+
)
|
| 536 |
+
|
| 537 |
+
if clusters:
|
| 538 |
+
fig.add_trace(
|
| 539 |
+
go.Scatter3d(
|
| 540 |
+
x=[c["centroid_3d"][0] for c in clusters],
|
| 541 |
+
y=[c["centroid_3d"][1] for c in clusters],
|
| 542 |
+
z=[c["centroid_3d"][2] for c in clusters],
|
| 543 |
+
mode="markers+text",
|
| 544 |
+
marker=dict(
|
| 545 |
+
symbol="diamond",
|
| 546 |
+
size=12,
|
| 547 |
+
color=[_float_rgba_to_plotly(cluster_color_map.get(int(c["cluster_id"]), (0.3, 0.3, 0.3, 1.0))) for c in clusters],
|
| 548 |
+
line=dict(width=1.5, color="#222222"),
|
| 549 |
+
),
|
| 550 |
+
text=[f"C{c['cluster_id']}" for c in clusters],
|
| 551 |
+
textposition="top center",
|
| 552 |
+
hovertext=[f"Cluster {c['cluster_id']}<br>Size: {c['size']}" for c in clusters],
|
| 553 |
+
hoverinfo="text",
|
| 554 |
+
name="Centroids",
|
| 555 |
+
showlegend=False,
|
| 556 |
+
)
|
| 557 |
+
)
|
| 558 |
+
|
| 559 |
+
fig.update_layout(
|
| 560 |
+
title="Corpus Embedding Map (3D)",
|
| 561 |
+
scene=dict(
|
| 562 |
+
xaxis_title="UMAP 1",
|
| 563 |
+
yaxis_title="UMAP 2",
|
| 564 |
+
zaxis_title="UMAP 3",
|
| 565 |
+
xaxis=dict(showgrid=True, zeroline=False, showbackground=False),
|
| 566 |
+
yaxis=dict(showgrid=True, zeroline=False, showbackground=False),
|
| 567 |
+
zaxis=dict(showgrid=True, zeroline=False, showbackground=False),
|
| 568 |
+
),
|
| 569 |
+
legend=dict(orientation="h", y=-0.1),
|
| 570 |
+
margin=dict(l=10, r=10, t=60, b=10),
|
| 571 |
+
template="plotly_white",
|
| 572 |
+
scene_camera=dict(eye=dict(x=1.6, y=1.6, z=0.9)),
|
| 573 |
+
hovermode="closest",
|
| 574 |
+
)
|
| 575 |
+
return fig
|
| 576 |
+
|
| 577 |
+
|
| 578 |
+
def render_plots(
|
| 579 |
+
show_edges: bool,
|
| 580 |
+
cluster_choice: str,
|
| 581 |
+
color_choice: str,
|
| 582 |
+
palette_choice: str,
|
| 583 |
+
) -> Tuple[Figure, go.Figure, pd.DataFrame, Dict[str, Any], Dict[str, Dict[str, Any]], List[Tuple[str, str]], Dict[str, Any]]:
|
| 584 |
+
"""Render the 2D and 3D figures with the requested options."""
|
| 585 |
+
|
| 586 |
+
(
|
| 587 |
+
_corpus,
|
| 588 |
+
papers,
|
| 589 |
+
_embeddings,
|
| 590 |
+
_normalised,
|
| 591 |
+
umap_2d,
|
| 592 |
+
umap_3d,
|
| 593 |
+
graph_edges,
|
| 594 |
+
cluster_metadata,
|
| 595 |
+
) = load_resources()
|
| 596 |
+
|
| 597 |
+
cluster_ids = np.array([paper.get("cluster_id", 0) for paper in papers], dtype=int)
|
| 598 |
+
if cluster_choice != "All":
|
| 599 |
+
cluster_value = int(cluster_choice)
|
| 600 |
+
mask = cluster_ids == cluster_value
|
| 601 |
+
clusters_for_plot = [c for c in cluster_metadata if int(c.get("cluster_id", -1)) == cluster_value]
|
| 602 |
+
else:
|
| 603 |
+
mask = np.ones(len(papers), dtype=bool)
|
| 604 |
+
clusters_for_plot = cluster_metadata
|
| 605 |
+
|
| 606 |
+
selected_indices = np.where(mask)[0]
|
| 607 |
+
if selected_indices.size == 0:
|
| 608 |
+
metrics_empty = {
|
| 609 |
+
"clusters": 0,
|
| 610 |
+
"points": 0,
|
| 611 |
+
"edges": 0,
|
| 612 |
+
"render_ms": {"2d": 0.0, "3d": 0.0},
|
| 613 |
+
}
|
| 614 |
+
return go.Figure(), go.Figure(), pd.DataFrame(), {}, {}, [], metrics_empty
|
| 615 |
+
|
| 616 |
+
filtered_papers = [papers[idx] for idx in selected_indices]
|
| 617 |
+
coords_2d = umap_2d[selected_indices]
|
| 618 |
+
coords_3d = umap_3d[selected_indices]
|
| 619 |
+
cluster_ids_subset = cluster_ids[selected_indices]
|
| 620 |
+
embedding_indices_subset = np.array([int(filtered_papers[i].get("embedding_idx", selected_indices[i])) for i in range(len(filtered_papers))])
|
| 621 |
+
|
| 622 |
+
selected_set = {int(idx) for idx in selected_indices.tolist()}
|
| 623 |
+
filtered_edges = _filter_edges(graph_edges, selected_set) if show_edges else []
|
| 624 |
+
|
| 625 |
+
color_basis_key = _resolve_color_basis(color_choice)
|
| 626 |
+
palette = _resolve_palette(palette_choice)
|
| 627 |
+
cluster_palette = _resolve_palette(DEFAULT_PALETTE)
|
| 628 |
+
cluster_color_map = _build_cluster_color_map(cluster_ids, cluster_palette)
|
| 629 |
+
|
| 630 |
+
if color_basis_key == "cluster":
|
| 631 |
+
label_values = np.array([str(paper.get("cluster_id", "unknown")) for paper in filtered_papers])
|
| 632 |
+
point_color_map = {str(cluster_id): cluster_color_map.get(int(cluster_id), (0.2, 0.4, 0.8, 1.0)) for cluster_id in label_values}
|
| 633 |
+
else:
|
| 634 |
+
label_values = np.array([paper.get("primary_category") or "unknown" for paper in filtered_papers])
|
| 635 |
+
unique_labels = sorted(set(label_values))
|
| 636 |
+
point_color_map = {label: palette[idx % len(palette)] for idx, label in enumerate(unique_labels)}
|
| 637 |
+
|
| 638 |
+
hover_text = _hover_text_for_papers(filtered_papers)
|
| 639 |
+
|
| 640 |
+
start_2d = time.perf_counter()
|
| 641 |
+
fig2d = _build_2d_plot(
|
| 642 |
+
coords_2d,
|
| 643 |
+
selected_indices,
|
| 644 |
+
label_values,
|
| 645 |
+
hover_text,
|
| 646 |
+
filtered_edges,
|
| 647 |
+
clusters_for_plot,
|
| 648 |
+
cluster_ids_subset,
|
| 649 |
+
point_color_map,
|
| 650 |
+
cluster_color_map,
|
| 651 |
+
)
|
| 652 |
+
render_2d_ms = (time.perf_counter() - start_2d) * 1000.0
|
| 653 |
+
|
| 654 |
+
start_3d = time.perf_counter()
|
| 655 |
+
fig3d = _build_3d_figure(
|
| 656 |
+
coords_3d,
|
| 657 |
+
selected_indices,
|
| 658 |
+
label_values,
|
| 659 |
+
hover_text,
|
| 660 |
+
filtered_edges,
|
| 661 |
+
clusters_for_plot,
|
| 662 |
+
cluster_ids_subset,
|
| 663 |
+
embedding_indices_subset,
|
| 664 |
+
point_color_map,
|
| 665 |
+
cluster_color_map,
|
| 666 |
+
)
|
| 667 |
+
render_3d_ms = (time.perf_counter() - start_3d) * 1000.0
|
| 668 |
+
|
| 669 |
+
overview_df = _build_cluster_overview(filtered_papers)
|
| 670 |
+
hierarchy_json = _build_cluster_hierarchy_json(filtered_papers)
|
| 671 |
+
|
| 672 |
+
paper_lookup = {
|
| 673 |
+
str(int(embedding_indices_subset[i])): {
|
| 674 |
+
"title": paper.get("title", "(untitled)"),
|
| 675 |
+
"paper_id": paper.get("paper_id"),
|
| 676 |
+
"cluster_id": paper.get("cluster_id"),
|
| 677 |
+
"primary_category": paper.get("primary_category"),
|
| 678 |
+
"authors": paper.get("authors", []),
|
| 679 |
+
"abstract": paper.get("abstract", ""),
|
| 680 |
+
"published": paper.get("published"),
|
| 681 |
+
"url": paper.get("meta", {}).get("url") if isinstance(paper.get("meta"), dict) else paper.get("url"),
|
| 682 |
+
}
|
| 683 |
+
for i, paper in enumerate(filtered_papers)
|
| 684 |
+
}
|
| 685 |
+
|
| 686 |
+
paper_options = [
|
| 687 |
+
(f"{details['title']} (C{details['cluster_id']})", str(idx))
|
| 688 |
+
for idx, details in paper_lookup.items()
|
| 689 |
+
]
|
| 690 |
+
metrics = {
|
| 691 |
+
"clusters": int(len(set(cluster_ids_subset))),
|
| 692 |
+
"points": int(len(selected_indices)),
|
| 693 |
+
"edges": int(len(filtered_edges)),
|
| 694 |
+
"render_ms": {
|
| 695 |
+
"2d": round(render_2d_ms, 2),
|
| 696 |
+
"3d": round(render_3d_ms, 2),
|
| 697 |
+
},
|
| 698 |
+
}
|
| 699 |
+
|
| 700 |
+
return fig2d, fig3d, overview_df, hierarchy_json, paper_lookup, paper_options, metrics
|
| 701 |
+
|
| 702 |
+
|
| 703 |
+
def refresh_embedding_plot() -> None:
|
| 704 |
+
"""Clear caches to force plot regeneration on next render."""
|
| 705 |
+
|
| 706 |
+
load_resources.cache_clear()
|
| 707 |
+
get_embedding_plots.cache_clear()
|
| 708 |
+
|
| 709 |
+
|
| 710 |
+
@lru_cache(maxsize=1)
|
| 711 |
+
def get_embedding_plots() -> Tuple[Figure, go.Figure, pd.DataFrame, Dict[str, Any], Dict[str, Dict[str, Any]], List[Tuple[str, str]], Dict[str, Any]]:
|
| 712 |
+
"""Return cached 2D and 3D plots plus cluster summaries using default settings."""
|
| 713 |
+
return render_plots(
|
| 714 |
+
show_edges=True,
|
| 715 |
+
cluster_choice="All",
|
| 716 |
+
color_choice=DEFAULT_COLOR_BASIS,
|
| 717 |
+
palette_choice=DEFAULT_PALETTE,
|
| 718 |
+
)
|
| 719 |
+
|
| 720 |
+
|
| 721 |
+
def _format_results(indices: np.ndarray, scores: np.ndarray, papers: Sequence[Dict[str, Any]]) -> List[List[Any]]:
|
| 722 |
+
"""Convert ranked results into display-friendly rows."""
|
| 723 |
+
|
| 724 |
+
formatted: List[List[Any]] = []
|
| 725 |
+
for rank, (idx, score) in enumerate(zip(indices, scores), start=1):
|
| 726 |
+
paper = papers[int(idx)]
|
| 727 |
+
abstract = str(paper.get("abstract", "")).strip()
|
| 728 |
+
summary = abstract[:220] + ("…" if len(abstract) > 220 else "")
|
| 729 |
+
formatted.append(
|
| 730 |
+
[
|
| 731 |
+
rank,
|
| 732 |
+
round(float(score), 4),
|
| 733 |
+
paper.get("title", "(untitled)"),
|
| 734 |
+
paper.get("paper_id", "N/A"),
|
| 735 |
+
summary,
|
| 736 |
+
]
|
| 737 |
+
)
|
| 738 |
+
return formatted
|
| 739 |
+
|
| 740 |
+
|
| 741 |
+
def search_corpus(query: str, top_k: int) -> List[List[Any]]:
|
| 742 |
+
"""Perform a cosine-similarity search over the local corpus."""
|
| 743 |
+
|
| 744 |
+
query = (query or "").strip()
|
| 745 |
+
if not query:
|
| 746 |
+
return []
|
| 747 |
+
|
| 748 |
+
_, papers, embeddings, normalised, _, _, _, _ = load_resources()
|
| 749 |
+
embedder = get_embedder(None)
|
| 750 |
+
|
| 751 |
+
query_vector = embedder.embed_query(query)
|
| 752 |
+
query_norm = query_vector / np.linalg.norm(query_vector)
|
| 753 |
+
|
| 754 |
+
scores = normalised @ query_norm
|
| 755 |
+
top_k = max(1, min(int(top_k), len(papers)))
|
| 756 |
+
ranked_indices = np.argsort(scores)[::-1][:top_k]
|
| 757 |
+
ranked_scores = scores[ranked_indices]
|
| 758 |
+
|
| 759 |
+
return _format_results(ranked_indices, ranked_scores, papers)
|
| 760 |
+
|
| 761 |
+
|
| 762 |
+
def _refresh_and_render(
|
| 763 |
+
show_edges: bool,
|
| 764 |
+
cluster_choice: str,
|
| 765 |
+
color_choice: str,
|
| 766 |
+
palette_choice: str,
|
| 767 |
+
) -> Tuple[Figure, go.Figure, pd.DataFrame, Dict[str, Any], Dict[str, Dict[str, Any]], List[Tuple[str, str]], Dict[str, Any]]:
|
| 768 |
+
refresh_embedding_plot()
|
| 769 |
+
return render_plots(show_edges, cluster_choice, color_choice, palette_choice)
|
| 770 |
+
|
| 771 |
+
|
| 772 |
+
def build_interface() -> gr.Blocks:
|
| 773 |
+
"""Assemble and return the Gradio Blocks interface."""
|
| 774 |
+
|
| 775 |
+
with gr.Blocks(title="NexaSci Mini Corpus Search") as demo:
|
| 776 |
+
gr.Markdown(
|
| 777 |
+
"""
|
| 778 |
+
# NexaSci Corpus Explorer
|
| 779 |
+
Enter a short description or paper title to retrieve the closest papers from the locally built corpus.
|
| 780 |
+
"""
|
| 781 |
+
)
|
| 782 |
+
|
| 783 |
+
with gr.Accordion("Corpus Builder", open=False):
|
| 784 |
+
categories_box = gr.Textbox(
|
| 785 |
+
label="Categories",
|
| 786 |
+
value="cs.AI cs.LG cs.CL stat.ML",
|
| 787 |
+
placeholder="Space-separated arXiv categories",
|
| 788 |
+
)
|
| 789 |
+
max_papers_slider = gr.Slider(label="Max papers", minimum=100, maximum=1000, step=50, value=500)
|
| 790 |
+
num_clusters_slider = gr.Slider(label="KMeans clusters", minimum=5, maximum=60, step=5, value=30)
|
| 791 |
+
batch_size_slider = gr.Slider(label="Embedding batch size", minimum=4, maximum=64, step=4, value=16)
|
| 792 |
+
build_button = gr.Button("Build Corpus", variant="primary")
|
| 793 |
+
build_status = gr.Markdown()
|
| 794 |
+
|
| 795 |
+
with gr.Row():
|
| 796 |
+
show_edges_checkbox = gr.Checkbox(label="Show graph edges", value=True)
|
| 797 |
+
cluster_dropdown = gr.Dropdown(
|
| 798 |
+
label="Cluster filter",
|
| 799 |
+
value="All",
|
| 800 |
+
choices=_cluster_options(),
|
| 801 |
+
)
|
| 802 |
+
color_basis_dropdown = gr.Radio(
|
| 803 |
+
label="Color by",
|
| 804 |
+
choices=list(COLOR_BASIS_OPTIONS.keys()),
|
| 805 |
+
value=DEFAULT_COLOR_BASIS,
|
| 806 |
+
)
|
| 807 |
+
palette_dropdown = gr.Dropdown(
|
| 808 |
+
label="Color palette",
|
| 809 |
+
choices=list(PALETTE_OPTIONS.keys()),
|
| 810 |
+
value=DEFAULT_PALETTE,
|
| 811 |
+
)
|
| 812 |
+
|
| 813 |
+
initial_2d, initial_3d, initial_overview, initial_hierarchy, initial_lookup, initial_options, initial_metrics = get_embedding_plots()
|
| 814 |
+
|
| 815 |
+
view_selector = gr.Radio(
|
| 816 |
+
label="Visualization",
|
| 817 |
+
choices=["2D", "3D"],
|
| 818 |
+
value="2D",
|
| 819 |
+
interactive=True,
|
| 820 |
+
)
|
| 821 |
+
embedding_plot = gr.Plot(label="Embedding", value=initial_2d, elem_id="embedding-plot")
|
| 822 |
+
controls_row = gr.Row()
|
| 823 |
+
with controls_row:
|
| 824 |
+
orbit_button = gr.Button("Toggle Orbit", variant="secondary")
|
| 825 |
+
fullscreen_button = gr.Button("Fullscreen", variant="secondary")
|
| 826 |
+
|
| 827 |
+
cluster_overview_table = gr.Dataframe(
|
| 828 |
+
value=initial_overview,
|
| 829 |
+
label="Cluster Overview",
|
| 830 |
+
interactive=False,
|
| 831 |
+
)
|
| 832 |
+
cluster_hierarchy_json = gr.JSON(value=initial_hierarchy, label="Cluster Hierarchy")
|
| 833 |
+
paper_state = gr.State(initial_lookup)
|
| 834 |
+
gr.Markdown("## Paper Details")
|
| 835 |
+
paper_selector = gr.Dropdown(
|
| 836 |
+
choices=initial_options,
|
| 837 |
+
label="Select Paper",
|
| 838 |
+
value=None,
|
| 839 |
+
)
|
| 840 |
+
paper_detail_display = gr.Markdown("Select a paper from the dropdown.")
|
| 841 |
+
metrics_json = gr.JSON(value=initial_metrics, label="Render Metrics")
|
| 842 |
+
|
| 843 |
+
def _build_corpus(max_papers: int, categories: str, num_clusters: int, batch_size: int,
|
| 844 |
+
show_edges: bool, cluster_choice: str, color_choice: str, palette_choice: str, view: str):
|
| 845 |
+
cat_list = [c.strip() for c in categories.split() if c.strip()]
|
| 846 |
+
if not cat_list:
|
| 847 |
+
cat_list = ["cs.AI"]
|
| 848 |
+
cmd = [
|
| 849 |
+
sys.executable,
|
| 850 |
+
"-m",
|
| 851 |
+
"pipeline.build_corpus",
|
| 852 |
+
"--categories",
|
| 853 |
+
*cat_list,
|
| 854 |
+
"--max-papers",
|
| 855 |
+
str(int(max_papers)),
|
| 856 |
+
"--num-clusters",
|
| 857 |
+
str(int(num_clusters)),
|
| 858 |
+
"--batch-size",
|
| 859 |
+
str(int(batch_size)),
|
| 860 |
+
]
|
| 861 |
+
start = time.perf_counter()
|
| 862 |
+
result = subprocess.run(cmd, capture_output=True, text=True)
|
| 863 |
+
elapsed = time.perf_counter() - start
|
| 864 |
+
if result.returncode != 0:
|
| 865 |
+
logs = (result.stderr or result.stdout or "").strip()
|
| 866 |
+
if len(logs) > 800:
|
| 867 |
+
logs = "..." + logs[-800:]
|
| 868 |
+
status = f"❌ Corpus build failed in {elapsed:.1f}s\n```\n{logs}\n```"
|
| 869 |
+
else:
|
| 870 |
+
logs = (result.stdout or "Success").strip()
|
| 871 |
+
if len(logs) > 800:
|
| 872 |
+
logs = "..." + logs[-800:]
|
| 873 |
+
status = f"✅ Corpus rebuilt with {int(max_papers)} papers in {elapsed:.1f}s\n```\n{logs}\n```"
|
| 874 |
+
|
| 875 |
+
fig2d, fig3d, overview, hierarchy, lookup, options, metrics = _refresh_and_render(
|
| 876 |
+
show_edges, cluster_choice, color_choice, palette_choice
|
| 877 |
+
)
|
| 878 |
+
return (
|
| 879 |
+
status,
|
| 880 |
+
fig2d if view == "2D" else fig3d,
|
| 881 |
+
overview,
|
| 882 |
+
hierarchy,
|
| 883 |
+
lookup,
|
| 884 |
+
gr.update(choices=options, value=None),
|
| 885 |
+
"Select a paper from the dropdown.",
|
| 886 |
+
metrics,
|
| 887 |
+
)
|
| 888 |
+
|
| 889 |
+
def _update_plots(show_edges: bool, cluster_choice: str, color_choice: str, palette_choice: str):
|
| 890 |
+
return render_plots(show_edges, cluster_choice, color_choice, palette_choice)
|
| 891 |
+
|
| 892 |
+
refresh_button = gr.Button("Refresh Data")
|
| 893 |
+
|
| 894 |
+
def _refresh_and_update(show_edges: bool, cluster_choice: str, color_choice: str, palette_choice: str, view: str):
|
| 895 |
+
fig2d, fig3d, overview, hierarchy, lookup, options, metrics = _refresh_and_render(
|
| 896 |
+
show_edges, cluster_choice, color_choice, palette_choice
|
| 897 |
+
)
|
| 898 |
+
if view == "3D":
|
| 899 |
+
fig3d.update_layout(margin=dict(l=10, r=10, t=60, b=10))
|
| 900 |
+
return (
|
| 901 |
+
fig2d if view == "2D" else fig3d,
|
| 902 |
+
overview,
|
| 903 |
+
hierarchy,
|
| 904 |
+
lookup,
|
| 905 |
+
gr.update(choices=options, value=None),
|
| 906 |
+
"Select a paper from the dropdown.",
|
| 907 |
+
metrics,
|
| 908 |
+
)
|
| 909 |
+
|
| 910 |
+
refresh_button.click(
|
| 911 |
+
_refresh_and_update,
|
| 912 |
+
inputs=[show_edges_checkbox, cluster_dropdown, color_basis_dropdown, palette_dropdown, view_selector],
|
| 913 |
+
outputs=[embedding_plot, cluster_overview_table, cluster_hierarchy_json, paper_state, paper_selector, paper_detail_display, metrics_json],
|
| 914 |
+
)
|
| 915 |
+
|
| 916 |
+
def _update_visual(show_edges: bool, cluster_choice: str, color_choice: str, palette_choice: str, view: str):
|
| 917 |
+
fig2d, fig3d, overview, hierarchy, lookup, options, metrics = _update_plots(
|
| 918 |
+
show_edges, cluster_choice, color_choice, palette_choice
|
| 919 |
+
)
|
| 920 |
+
return (
|
| 921 |
+
fig2d if view == "2D" else fig3d,
|
| 922 |
+
overview,
|
| 923 |
+
hierarchy,
|
| 924 |
+
lookup,
|
| 925 |
+
gr.update(choices=options, value=None),
|
| 926 |
+
"Select a paper from the dropdown.",
|
| 927 |
+
metrics,
|
| 928 |
+
)
|
| 929 |
+
|
| 930 |
+
view_selector.change(
|
| 931 |
+
_update_visual,
|
| 932 |
+
inputs=[show_edges_checkbox, cluster_dropdown, color_basis_dropdown, palette_dropdown, view_selector],
|
| 933 |
+
outputs=[embedding_plot, cluster_overview_table, cluster_hierarchy_json, paper_state, paper_selector, paper_detail_display, metrics_json],
|
| 934 |
+
)
|
| 935 |
+
|
| 936 |
+
for control in [show_edges_checkbox, cluster_dropdown, color_basis_dropdown, palette_dropdown]:
|
| 937 |
+
control.change(
|
| 938 |
+
_update_visual,
|
| 939 |
+
inputs=[show_edges_checkbox, cluster_dropdown, color_basis_dropdown, palette_dropdown, view_selector],
|
| 940 |
+
outputs=[embedding_plot, cluster_overview_table, cluster_hierarchy_json, paper_state, paper_selector, paper_detail_display, metrics_json],
|
| 941 |
+
)
|
| 942 |
+
|
| 943 |
+
orbit_button.click(None, inputs=None, outputs=None, js=ORBIT_JS)
|
| 944 |
+
fullscreen_button.click(None, inputs=None, outputs=None, js=FULLSCREEN_JS)
|
| 945 |
+
|
| 946 |
+
build_button.click(
|
| 947 |
+
_build_corpus,
|
| 948 |
+
inputs=[
|
| 949 |
+
max_papers_slider,
|
| 950 |
+
categories_box,
|
| 951 |
+
num_clusters_slider,
|
| 952 |
+
batch_size_slider,
|
| 953 |
+
show_edges_checkbox,
|
| 954 |
+
cluster_dropdown,
|
| 955 |
+
color_basis_dropdown,
|
| 956 |
+
palette_dropdown,
|
| 957 |
+
view_selector,
|
| 958 |
+
],
|
| 959 |
+
outputs=[
|
| 960 |
+
build_status,
|
| 961 |
+
embedding_plot,
|
| 962 |
+
cluster_overview_table,
|
| 963 |
+
cluster_hierarchy_json,
|
| 964 |
+
paper_state,
|
| 965 |
+
paper_selector,
|
| 966 |
+
paper_detail_display,
|
| 967 |
+
metrics_json,
|
| 968 |
+
],
|
| 969 |
+
)
|
| 970 |
+
|
| 971 |
+
gr.Markdown("## Semantic Search")
|
| 972 |
+
|
| 973 |
+
with gr.Row():
|
| 974 |
+
query_input = gr.Textbox(
|
| 975 |
+
label="Query",
|
| 976 |
+
placeholder="e.g. graph neural networks for chemistry",
|
| 977 |
+
lines=2,
|
| 978 |
+
)
|
| 979 |
+
topk_slider = gr.Slider(
|
| 980 |
+
label="Top K Results",
|
| 981 |
+
minimum=1,
|
| 982 |
+
maximum=20,
|
| 983 |
+
step=1,
|
| 984 |
+
value=5,
|
| 985 |
+
)
|
| 986 |
+
|
| 987 |
+
results_table = gr.Dataframe(
|
| 988 |
+
headers=["rank", "score", "title", "paper_id", "summary"],
|
| 989 |
+
label="Results",
|
| 990 |
+
datatype=["number", "number", "str", "str", "str"],
|
| 991 |
+
interactive=False,
|
| 992 |
+
)
|
| 993 |
+
|
| 994 |
+
submit_btn = gr.Button("Search")
|
| 995 |
+
submit_btn.click(search_corpus, inputs=[query_input, topk_slider], outputs=[results_table])
|
| 996 |
+
|
| 997 |
+
def _format_details(selection: str | None, paper_map: Dict[str, Dict[str, Any]]):
|
| 998 |
+
if not selection:
|
| 999 |
+
return "Select a paper from the dropdown."
|
| 1000 |
+
details = paper_map.get(selection)
|
| 1001 |
+
if not details:
|
| 1002 |
+
return "No details available for this paper."
|
| 1003 |
+
authors = ", ".join(details.get("authors", [])) or "Unknown"
|
| 1004 |
+
lines = [
|
| 1005 |
+
f"### {details.get('title', '(untitled)')}",
|
| 1006 |
+
f"**Paper ID:** {details.get('paper_id', 'N/A')}",
|
| 1007 |
+
f"**Cluster:** {details.get('cluster_id', 'N/A')} | **Category:** {details.get('primary_category', 'unknown')}",
|
| 1008 |
+
f"**Authors:** {authors}",
|
| 1009 |
+
f"**Published:** {details.get('published', 'N/A')}",
|
| 1010 |
+
"",
|
| 1011 |
+
details.get("abstract", "No abstract available."),
|
| 1012 |
+
]
|
| 1013 |
+
url = details.get("url")
|
| 1014 |
+
if url:
|
| 1015 |
+
lines.append(f"\n[View paper]({url})")
|
| 1016 |
+
return "\n\n".join(lines)
|
| 1017 |
+
|
| 1018 |
+
paper_selector.change(_format_details, inputs=[paper_selector, paper_state], outputs=paper_detail_display)
|
| 1019 |
+
|
| 1020 |
+
return demo
|
| 1021 |
+
|
| 1022 |
+
|
| 1023 |
+
def main() -> None:
|
| 1024 |
+
"""Launch the Gradio demo."""
|
| 1025 |
+
|
| 1026 |
+
interface = build_interface()
|
| 1027 |
+
interface.launch()
|
| 1028 |
|
|
|
|
|
|
|
| 1029 |
|
| 1030 |
+
if __name__ == "__main__": # pragma: no cover - manual launch helper
|
| 1031 |
+
main()
|