Spaces:
Sleeping
Sleeping
| #!/usr/bin/python | |
| #-*- coding: utf-8 -*- | |
| import torch | |
| import torch.nn as nn | |
| def save(model, filename): | |
| with open(filename, "wb") as f: | |
| torch.save(model, f); | |
| print("%s saved."%filename); | |
| def load(filename): | |
| net = torch.load(filename) | |
| return net; | |
| class S(nn.Module): | |
| def __init__(self, num_layers_in_fc_layers = 1024): | |
| super(S, self).__init__(); | |
| self.__nFeatures__ = 24; | |
| self.__nChs__ = 32; | |
| self.__midChs__ = 32; | |
| self.netcnnaud = nn.Sequential( | |
| nn.Conv2d(1, 64, kernel_size=(3,3), stride=(1,1), padding=(1,1)), | |
| nn.BatchNorm2d(64), | |
| nn.ReLU(inplace=True), | |
| nn.MaxPool2d(kernel_size=(1,1), stride=(1,1)), | |
| nn.Conv2d(64, 192, kernel_size=(3,3), stride=(1,1), padding=(1,1)), | |
| nn.BatchNorm2d(192), | |
| nn.ReLU(inplace=True), | |
| nn.MaxPool2d(kernel_size=(3,3), stride=(1,2)), | |
| nn.Conv2d(192, 384, kernel_size=(3,3), padding=(1,1)), | |
| nn.BatchNorm2d(384), | |
| nn.ReLU(inplace=True), | |
| nn.Conv2d(384, 256, kernel_size=(3,3), padding=(1,1)), | |
| nn.BatchNorm2d(256), | |
| nn.ReLU(inplace=True), | |
| nn.Conv2d(256, 256, kernel_size=(3,3), padding=(1,1)), | |
| nn.BatchNorm2d(256), | |
| nn.ReLU(inplace=True), | |
| nn.MaxPool2d(kernel_size=(3,3), stride=(2,2)), | |
| nn.Conv2d(256, 512, kernel_size=(5,4), padding=(0,0)), | |
| nn.BatchNorm2d(512), | |
| nn.ReLU(), | |
| ); | |
| self.netfcaud = nn.Sequential( | |
| nn.Linear(512, 512), | |
| nn.BatchNorm1d(512), | |
| nn.ReLU(), | |
| nn.Linear(512, num_layers_in_fc_layers), | |
| ); | |
| self.netfclip = nn.Sequential( | |
| nn.Linear(512, 512), | |
| nn.BatchNorm1d(512), | |
| nn.ReLU(), | |
| nn.Linear(512, num_layers_in_fc_layers), | |
| ); | |
| self.netcnnlip = nn.Sequential( | |
| nn.Conv3d(3, 96, kernel_size=(5,7,7), stride=(1,2,2), padding=0), | |
| nn.BatchNorm3d(96), | |
| nn.ReLU(inplace=True), | |
| nn.MaxPool3d(kernel_size=(1,3,3), stride=(1,2,2)), | |
| nn.Conv3d(96, 256, kernel_size=(1,5,5), stride=(1,2,2), padding=(0,1,1)), | |
| nn.BatchNorm3d(256), | |
| nn.ReLU(inplace=True), | |
| nn.MaxPool3d(kernel_size=(1,3,3), stride=(1,2,2), padding=(0,1,1)), | |
| nn.Conv3d(256, 256, kernel_size=(1,3,3), padding=(0,1,1)), | |
| nn.BatchNorm3d(256), | |
| nn.ReLU(inplace=True), | |
| nn.Conv3d(256, 256, kernel_size=(1,3,3), padding=(0,1,1)), | |
| nn.BatchNorm3d(256), | |
| nn.ReLU(inplace=True), | |
| nn.Conv3d(256, 256, kernel_size=(1,3,3), padding=(0,1,1)), | |
| nn.BatchNorm3d(256), | |
| nn.ReLU(inplace=True), | |
| nn.MaxPool3d(kernel_size=(1,3,3), stride=(1,2,2)), | |
| nn.Conv3d(256, 512, kernel_size=(1,6,6), padding=0), | |
| nn.BatchNorm3d(512), | |
| nn.ReLU(inplace=True), | |
| ); | |
| def forward_aud(self, x): | |
| mid = self.netcnnaud(x); # N x ch x 24 x M | |
| mid = mid.view((mid.size()[0], -1)); # N x (ch x 24) | |
| out = self.netfcaud(mid); | |
| return out; | |
| def forward_lip(self, x): | |
| mid = self.netcnnlip(x); | |
| mid = mid.view((mid.size()[0], -1)); # N x (ch x 24) | |
| out = self.netfclip(mid); | |
| return out; | |
| def forward_lipfeat(self, x): | |
| mid = self.netcnnlip(x); | |
| out = mid.view((mid.size()[0], -1)); # N x (ch x 24) | |
| return out; |