File size: 3,580 Bytes
579f772
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
#!/usr/bin/python
#-*- coding: utf-8 -*-

import torch
import torch.nn as nn

def save(model, filename):
    with open(filename, "wb") as f:
        torch.save(model, f);
        print("%s saved."%filename);

def load(filename):
    net = torch.load(filename)
    return net;
    
class S(nn.Module):
    def __init__(self, num_layers_in_fc_layers = 1024):
        super(S, self).__init__();

        self.__nFeatures__ = 24;
        self.__nChs__ = 32;
        self.__midChs__ = 32;

        self.netcnnaud = nn.Sequential(
            nn.Conv2d(1, 64, kernel_size=(3,3), stride=(1,1), padding=(1,1)),
            nn.BatchNorm2d(64),
            nn.ReLU(inplace=True),
            nn.MaxPool2d(kernel_size=(1,1), stride=(1,1)),

            nn.Conv2d(64, 192, kernel_size=(3,3), stride=(1,1), padding=(1,1)),
            nn.BatchNorm2d(192),
            nn.ReLU(inplace=True),
            nn.MaxPool2d(kernel_size=(3,3), stride=(1,2)),

            nn.Conv2d(192, 384, kernel_size=(3,3), padding=(1,1)),
            nn.BatchNorm2d(384),
            nn.ReLU(inplace=True),

            nn.Conv2d(384, 256, kernel_size=(3,3), padding=(1,1)),
            nn.BatchNorm2d(256),
            nn.ReLU(inplace=True),

            nn.Conv2d(256, 256, kernel_size=(3,3), padding=(1,1)),
            nn.BatchNorm2d(256),
            nn.ReLU(inplace=True),
            nn.MaxPool2d(kernel_size=(3,3), stride=(2,2)),
            
            nn.Conv2d(256, 512, kernel_size=(5,4), padding=(0,0)),
            nn.BatchNorm2d(512),
            nn.ReLU(),
        );

        self.netfcaud = nn.Sequential(
            nn.Linear(512, 512),
            nn.BatchNorm1d(512),
            nn.ReLU(),
            nn.Linear(512, num_layers_in_fc_layers),
        );

        self.netfclip = nn.Sequential(
            nn.Linear(512, 512),
            nn.BatchNorm1d(512),
            nn.ReLU(),
            nn.Linear(512, num_layers_in_fc_layers),
        );

        self.netcnnlip = nn.Sequential(
            nn.Conv3d(3, 96, kernel_size=(5,7,7), stride=(1,2,2), padding=0),
            nn.BatchNorm3d(96),
            nn.ReLU(inplace=True),
            nn.MaxPool3d(kernel_size=(1,3,3), stride=(1,2,2)),

            nn.Conv3d(96, 256, kernel_size=(1,5,5), stride=(1,2,2), padding=(0,1,1)),
            nn.BatchNorm3d(256),
            nn.ReLU(inplace=True),
            nn.MaxPool3d(kernel_size=(1,3,3), stride=(1,2,2), padding=(0,1,1)),

            nn.Conv3d(256, 256, kernel_size=(1,3,3), padding=(0,1,1)),
            nn.BatchNorm3d(256),
            nn.ReLU(inplace=True),

            nn.Conv3d(256, 256, kernel_size=(1,3,3), padding=(0,1,1)),
            nn.BatchNorm3d(256),
            nn.ReLU(inplace=True),

            nn.Conv3d(256, 256, kernel_size=(1,3,3), padding=(0,1,1)),
            nn.BatchNorm3d(256),
            nn.ReLU(inplace=True),
            nn.MaxPool3d(kernel_size=(1,3,3), stride=(1,2,2)),

            nn.Conv3d(256, 512, kernel_size=(1,6,6), padding=0),
            nn.BatchNorm3d(512),
            nn.ReLU(inplace=True),
        );

    def forward_aud(self, x):

        mid = self.netcnnaud(x); # N x ch x 24 x M
        mid = mid.view((mid.size()[0], -1)); # N x (ch x 24)
        out = self.netfcaud(mid);

        return out;

    def forward_lip(self, x):

        mid = self.netcnnlip(x); 
        mid = mid.view((mid.size()[0], -1)); # N x (ch x 24)
        out = self.netfclip(mid);

        return out;

    def forward_lipfeat(self, x):

        mid = self.netcnnlip(x);
        out = mid.view((mid.size()[0], -1)); # N x (ch x 24)

        return out;