distilhubert-finetuned-gtzan
This model is a fine-tuned version of ntu-spml/distilhubert on the GTZAN dataset. It achieves the following results on the evaluation set:
- Loss: 0.6457
- Accuracy: 0.82
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- optimizer: Use OptimizerNames.ADAMW_TORCH_FUSED with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 10
- mixed_precision_training: Native AMP
Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|---|---|---|---|---|
| 1.9241 | 1.0 | 113 | 1.8301 | 0.51 |
| 1.1746 | 2.0 | 226 | 1.3230 | 0.62 |
| 1.0832 | 3.0 | 339 | 1.0935 | 0.72 |
| 0.686 | 4.0 | 452 | 0.8558 | 0.74 |
| 0.5173 | 5.0 | 565 | 0.7105 | 0.78 |
| 0.4431 | 6.0 | 678 | 0.6421 | 0.81 |
| 0.2764 | 7.0 | 791 | 0.6727 | 0.8 |
| 0.1549 | 8.0 | 904 | 0.6605 | 0.84 |
| 0.1832 | 9.0 | 1017 | 0.6764 | 0.82 |
| 0.1056 | 10.0 | 1130 | 0.6457 | 0.82 |
Framework versions
- Transformers 4.57.2
- Pytorch 2.9.0+cu126
- Datasets 3.6.0
- Tokenizers 0.22.1
- Downloads last month
- 77
Model tree for smallsuper/distilhubert-finetuned-gtzan
Base model
ntu-spml/distilhubertDataset used to train smallsuper/distilhubert-finetuned-gtzan
Evaluation results
- Accuracy on GTZANself-reported0.820