nanochat-d34-rl-hf
This is a pankajmathur/nanochat-d34-rl converted to HuggingFace transformers format.
Usage
Install Transformer Library from Github with nanochat support
!pip install -q git+https://github.com/huggingface/transformers.git
Use dedicated NanoChatForCausalLM and PreTrainedTokenizerFast packages from Transformer Library
import torch
from transformers import NanoChatForCausalLM, PreTrainedTokenizerFast
# Load the converted model and tokenizer
tokenizer = PreTrainedTokenizerFast.from_pretrained("pankajmathur/nanochat-d34-rl-hf")
model = NanoChatForCausalLM.from_pretrained(
"pankajmathur/nanochat-d34-rl-hf",
torch_dtype=torch.bfloat16,
device_map="auto"
)
# Generate text
prompt = """
Julie is reading a 120-page book. Yesterday, she was able to read 12 pages and today,
she read twice as many pages as yesterday.
If she wants to read half of the remaining pages tomorrow, how many pages should she read?
"""
inputs = tokenizer(prompt, return_tensors="pt")
input_ids = inputs["input_ids"].to(model.device)
with torch.no_grad():
outputs = model.generate(
input_ids,
max_new_tokens=8192,
do_sample=True,
temperature=0.7,
top_p=0.9,
pad_token_id=tokenizer.eos_token_id
)
response = tokenizer.decode(outputs[0], skip_special_tokens=True)
print(f"🤖 Response:\n{response}")
License
MIT License
- Downloads last month
- 31
Model tree for pankajmathur/nanochat-d34-rl-hf
Base model
karpathy/nanochat-d34
Finetuned
pankajmathur/nanochat-d34-finetuned
Finetuned
pankajmathur/nanochat-d34-sft-hf