AI & ML interests

None defined yet.

Recent Activity

hesamation 
posted an update 4 days ago
view post
Post
2775
this is big... 50 AI researchers from Bytedance, Alibaba, Tencent, and other labs/universities just published a 300-page paper with surprising lessons about coding models and agents (data, pre and post-training, etc).

key highlights:

> small LLMs can beat proprietary giants
RL (RLVR specifically) gives small open-source models an edge over big models in reasoning. a 14B model trained with RLVR on high-quality verified problems can match the performance of OpenAI's o3.

> models have a hard time learning Python.
mixing language models during pre-training is good, but Python behaves different from statically typed languages. languages with similar syntax (Java and C#, or JavaScript and TypeScript) creates high positive synergy. mixing Python heavily into the training of statically typed languages can actually hurt because of Python's dynamic typing.

> not all languages are equal (coding scaling laws)
the amount of data required to specialize a model on a language drastically depends on the language. paper argues like C# and Java are easier to learn (less training data required). languages like Python and Javascript are actually more tricky to learn, ironically (you see AI most used for these languages :)

> MoE vs Dense (ability vs stability)
MoE models offer higher capacity, but are much more fragile during SFT than dense models. hyperparams in training have a more drastic effect in MoE models, while dense models are more stable. MoE models also require constant learning rate schedules to avoid routing instability.

> code models are "insecure" by default (duh)
training on public repos makes models learn years of accumulated insecure coding patterns. safety fine-tuning often fails to work much on code. a model might refuse to write a hate speech email but will happily generate a SQL-injection vulnerable function because it "works."

read the full paper:
From Code Foundation Models to Agents and Applications: A Practical Guide to Code Intelligence (2511.18538)
Sri-Vigneshwar-DJ 
posted an update 2 months ago
view post
Post
327
Do you think domain-specific embedding fine-tuners are needed?
I've been working with embeddings for marketing use cases and noticed something: most embeddings don't get marketing concepts very well. They're trained in general-purpose ways.
The Issue I'm Seeing
When I search marketing content with general embeddings:

"organic growth" returns farming articles
"conversion funnel" matches industrial equipment
"brand lift" doesn't connect to campaign effectiveness
Marketing jargon like CAC, ROAS, CTR aren't properly understood

My Question
Do you think domain-specific embeddings are needed for marketing?
Some thoughts:

Marketing has its own vocabulary and concept relationships
General models trained on Wikipedia/web crawl miss these nuances
But is fine-tuning worth the effort vs just using more retrieval tricks?

Quick Example
I fine-tuned all-mpnet-base-v2 on ~1000 marketing concept pairs and saw 15-20% better retrieval accuracy. But I'm curious:

Has anyone else tried this for marketing or other domains?
When do you think domain-specific embeddings are actually necessary vs overkill?
Are there better approaches I'm missing?

https://huggingface.co/blog/Sri-Vigneshwar-DJ/why-your-marketing-rag-system-needs-domain-specifi
  • 6 replies
·
Sri-Vigneshwar-DJ 
posted an update 2 months ago
view post
Post
4427
🚀 Exciting News! We've released a Performance Marketing Expert Dataset from Hawky.ai [www.hawky.ai] Hawky-ai


This dataset empowers AI models with cutting-edge strategies for Meta, Google Ads, and TikTok campaigns. It includes:
1. Multi-platform strategies for e-commerce, DTC, B2B, and more
2. Creative optimization and audience targeting insights
3. ROI-driven recommendations based on 2025 best practices

Sri-Vigneshwar-DJ/Performance-Marketing-Data
Sri-Vigneshwar-DJ 
posted an update 2 months ago
view post
Post
3331
🚀 Qwen3-Omni for Marketing: A Game-Changer

Just wanted to share something exciting I've been exploring—Qwen3-Omni and how it's transforming marketing workflows.

What makes it special? At Hawky.ai we are started experimenting with Qwen3 recently for Analysis and Optimization.

Unlike traditional tools that look at text, images, or audio separately, Qwen3-Omni analyzes everything together. It handles 119 languages, processes 40-minute audio sequences, and understands both images and videos—all at once.

The cool part? It's 2-3x faster than similar models thanks to its MoE architecture.

Real applications I'm seeing:
Ad Analysis: It scores video ads by combining visual elements, audio tone, and text—giving 25% better CTR predictions than single-mode tools.
Campaign Localization: Drop in one ad, get 10 localized versions with native voiceovers in under a minute. Perfect for testing across markets.

Market Research: Feed it competitor content, podcasts, or UGC videos. It extracts actionable insights like "3-second hooks boost retention by 15%" and saves about 70% of analysis time.

Quality Checks: Automatically catches lip-sync errors and audio-visual mismatches.

Full technical breakdown: https://huggingface.co/blog/Sri-Vigneshwar-DJ/hawky-aiqwen3-omni-advanced-architecture-and-marke

Has anyone else been experimenting with multimodal models for marketing? Would love to hear what you're building!

#MultimodalAI #MarTech #OpenSource
hesamation 
posted an update 3 months ago
view post
Post
10284
a senior engineer at google just dropped a 400-page free book on docs for review: agentic design patterns.

the table of contents looks like everything you need to know about agents + code:
> advanced prompt techniques
> multi-agent patterns
> tool use and MCP
> you name it

read it here: https://docs.google.com/document/d/1rsaK53T3Lg5KoGwvf8ukOUvbELRtH-V0LnOIFDxBryE/edit?tab=t.0#heading=h.pxcur8v2qagu

you can also pre-order on Amazon (published by Springer) and the royalties goes to Save the Children: https://www.amazon.com/Agentic-Design-Patterns-Hands-Intelligent/dp/3032014018/