|
|
--- |
|
|
license: mit |
|
|
base_model: |
|
|
- microsoft/Phi-3.5-vision-instruct |
|
|
tags: |
|
|
- GUI |
|
|
- Agent |
|
|
- Grounding |
|
|
- CUA |
|
|
--- |
|
|
|
|
|
# Microsoft Phi-Ground-4B-7C |
|
|
|
|
|
<p align="center"> |
|
|
<a href="https://microsoft.github.io/Phi-Ground/" target="_blank">π€ HomePage</a> | <a href="https://huggingface.co/papers/2507.23779" target="_blank">π Paper </a> | <a href="https://arxiv.org/abs/2507.23779" target="_blank">π Arxiv </a> | <a href="https://huggingface.co/microsoft/Phi-Ground" target="_blank"> π Model </a> | <a href="https://github.com/microsoft/Phi-Ground/tree/main/benchmark/new_annotations" target="_blank"> π Eval data </a> |
|
|
</p> |
|
|
|
|
|
 |
|
|
|
|
|
**Phi-Ground-4B-7C** is one of the Phi-Ground model family, finetuned from [microsoft/Phi-3.5-vision-instruct](https://huggingface.co/microsoft/Phi-3.5-vision-instruct) with fixed input resolution 1008x672. The Phi-Ground |
|
|
model family achieves state-of-the-art performance across all five grounding benchmarks for |
|
|
models under 10B parameters in agent settings. In the end-to-end model setting, our model still |
|
|
achieves SOTA results with scores of 43.2 on ScreenSpot-pro and 27.2 on UI-Vision. We believe |
|
|
that the various details discussed in the tech report, along with our successes and failures, not only clarify |
|
|
the construction of grounding models but also benefit other perception tasks. |
|
|
|
|
|
### Main results |
|
|
|
|
|
 |
|
|
|
|
|
### Usage |
|
|
The current `transformers` version can be verified with: `pip list | grep transformers`. |
|
|
|
|
|
Examples of required packages: |
|
|
``` |
|
|
flash_attn==2.5.8 |
|
|
numpy==1.24.4 |
|
|
Pillow==10.3.0 |
|
|
Requests==2.31.0 |
|
|
torch==2.3.0 |
|
|
torchvision==0.18.0 |
|
|
transformers==4.43.0 |
|
|
accelerate==0.30.0 |
|
|
``` |
|
|
|
|
|
|
|
|
### Input Formats |
|
|
|
|
|
The model require strict input format including fixed image resolution, instruction-first order and system prompt. |
|
|
|
|
|
Input preprocessing |
|
|
|
|
|
```python |
|
|
from PIL import Image |
|
|
def process_image(img): |
|
|
|
|
|
target_width, target_height = 336 * 3, 336 *2 |
|
|
|
|
|
img_ratio = img.width / img.height |
|
|
target_ratio = target_width / target_height |
|
|
|
|
|
if img_ratio > target_ratio: |
|
|
new_width = target_width |
|
|
new_height = int(new_width / img_ratio) |
|
|
else: |
|
|
new_height = target_height |
|
|
new_width = int(new_height * img_ratio) |
|
|
reshape_ratio = new_width / img.width |
|
|
|
|
|
img = img.resize((new_width, new_height), Image.LANCZOS) |
|
|
new_img = Image.new("RGB", (target_width, target_height), (255, 255, 255)) |
|
|
paste_position = (0, 0) |
|
|
new_img.paste(img, paste_position) |
|
|
return new_img |
|
|
|
|
|
instruction = "<your instruction>" |
|
|
prompt = """<|user|> |
|
|
The description of the element: |
|
|
{RE} |
|
|
|
|
|
Locate the above described element in the image. The output should be bounding box using relative coordinates multiplying 1000. |
|
|
<|image_1|> |
|
|
<|end|> |
|
|
<|assistant|>""".format(RE=instriuction) |
|
|
|
|
|
image_path = "<your image path>" |
|
|
image = process_image(Image.open(image_path)) |
|
|
``` |
|
|
|
|
|
|
|
|
Then you can use huggingface model or [vllm](https://github.com/vllm-project/vllm) to inference. We also provide [End-to-end examples](https://github.com/microsoft/Phi-Ground/tree/main/examples/call_example.py) and [benchmark results reproduction](https://github.com/microsoft/Phi-Ground/tree/main/benchmark/test_sspro.sh). |