ASR-to-Bash (GGUF)

Fine-tuned FunctionGemma (270M) model that converts ASR (speech-to-text) transcriptions into executable bash commands.

Usage

# For llama.cpp / Ollama usage
# llama-cli -m asr-to-bash-q4_k_m.gguf -p 'Convert: list all files'

# Or with Python:
from transformers import AutoModelForCausalLM, AutoTokenizer

model = AutoModelForCausalLM.from_pretrained("marksverdhai/asr-to-bash")
tokenizer = AutoTokenizer.from_pretrained("marksverdhai/asr-to-bash")

messages = [
    {"role": "system", "content": "You are a helpful assistant that converts spoken commands into bash commands."},
    {"role": "user", "content": "Convert this spoken command to bash: list all files including hidden ones"}
]

inputs = tokenizer.apply_chat_template(messages, return_tensors="pt")
outputs = model.generate(inputs, max_new_tokens=50)
print(tokenizer.decode(outputs[0]))
# Output: ls -la

Examples

ASR Transcription Bash Command
"list all files" ls -la
"git status" git status
"change directory to home" cd ~
"kill process one two three four" kill 1234
"show running containers" docker ps

Training

Fine-tuned using Unsloth with LoRA on a custom dataset of ~100 ASR transcription to bash command pairs.

  • Base model: google/functiongemma-270m-it
  • LoRA rank: 16
  • Training epochs: 3
Downloads last month
77
GGUF
Model size
0.3B params
Architecture
gemma3
Hardware compatibility
Log In to view the estimation

4-bit

16-bit

Inference Providers NEW
This model isn't deployed by any Inference Provider. ๐Ÿ™‹ Ask for provider support

Model tree for marksverdhai/asr-to-bash-gguf

Quantized
(25)
this model