mdeberta-semeval25_narratives09_maxf1_fold2
This model is a fine-tuned version of microsoft/mdeberta-v3-base on the None dataset. It achieves the following results on the evaluation set:
- Loss: 4.2924
- Precision Samples: 0.3835
- Recall Samples: 0.7260
- F1 Samples: 0.4634
- Precision Macro: 0.7151
- Recall Macro: 0.4542
- F1 Macro: 0.2876
- Precision Micro: 0.3288
- Recall Micro: 0.6993
- F1 Micro: 0.4473
- Precision Weighted: 0.4996
- Recall Weighted: 0.6993
- F1 Weighted: 0.3945
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 32
- eval_batch_size: 32
- seed: 42
- optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- num_epochs: 10
Training results
| Training Loss | Epoch | Step | Validation Loss | Precision Samples | Recall Samples | F1 Samples | Precision Macro | Recall Macro | F1 Macro | Precision Micro | Recall Micro | F1 Micro | Precision Weighted | Recall Weighted | F1 Weighted |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| 5.4789 | 1.0 | 19 | 5.4032 | 1.0 | 0.0 | 0.0 | 1.0 | 0.0476 | 0.0476 | 1.0 | 0.0 | 0.0 | 1.0 | 0.0 | 0.0 |
| 5.2625 | 2.0 | 38 | 5.1900 | 0.2862 | 0.3454 | 0.2875 | 0.9023 | 0.1688 | 0.1126 | 0.2993 | 0.2971 | 0.2982 | 0.7626 | 0.2971 | 0.1551 |
| 4.6987 | 3.0 | 57 | 4.9994 | 0.3075 | 0.4170 | 0.3242 | 0.8697 | 0.2013 | 0.1334 | 0.3152 | 0.3768 | 0.3432 | 0.6836 | 0.3768 | 0.2102 |
| 4.5529 | 4.0 | 76 | 4.7748 | 0.3609 | 0.5142 | 0.3956 | 0.8025 | 0.2616 | 0.1706 | 0.3299 | 0.4601 | 0.3843 | 0.5944 | 0.4601 | 0.2532 |
| 4.2214 | 5.0 | 95 | 4.5893 | 0.3386 | 0.6308 | 0.4087 | 0.7724 | 0.3379 | 0.2022 | 0.3141 | 0.5725 | 0.4056 | 0.5535 | 0.5725 | 0.3059 |
| 4.0347 | 6.0 | 114 | 4.4605 | 0.3553 | 0.6856 | 0.4302 | 0.7133 | 0.3972 | 0.2396 | 0.3092 | 0.6486 | 0.4187 | 0.4927 | 0.6486 | 0.3504 |
| 4.0031 | 7.0 | 133 | 4.3696 | 0.3480 | 0.6976 | 0.4299 | 0.7169 | 0.4262 | 0.2524 | 0.3090 | 0.6739 | 0.4237 | 0.4939 | 0.6739 | 0.3596 |
| 3.8849 | 8.0 | 152 | 4.3297 | 0.3646 | 0.7105 | 0.4444 | 0.7205 | 0.4312 | 0.2570 | 0.3170 | 0.6812 | 0.4327 | 0.5006 | 0.6812 | 0.3678 |
| 3.8207 | 9.0 | 171 | 4.3091 | 0.3659 | 0.7131 | 0.4474 | 0.7203 | 0.4422 | 0.2781 | 0.3183 | 0.6884 | 0.4353 | 0.4987 | 0.6884 | 0.3819 |
| 4.3441 | 10.0 | 190 | 4.2924 | 0.3835 | 0.7260 | 0.4634 | 0.7151 | 0.4542 | 0.2876 | 0.3288 | 0.6993 | 0.4473 | 0.4996 | 0.6993 | 0.3945 |
Framework versions
- Transformers 4.46.0
- Pytorch 2.3.1
- Datasets 2.21.0
- Tokenizers 0.20.1
- Downloads last month
- 7
Model tree for g-assismoraes/mdeberta-semeval25_narratives09_maxf1_fold2
Base model
microsoft/mdeberta-v3-base