hexsha
string
size
int64
ext
string
lang
string
max_stars_repo_path
string
max_stars_repo_name
string
max_stars_repo_head_hexsha
string
max_stars_repo_licenses
list
max_stars_count
int64
max_stars_repo_stars_event_min_datetime
string
max_stars_repo_stars_event_max_datetime
string
max_issues_repo_path
string
max_issues_repo_name
string
max_issues_repo_head_hexsha
string
max_issues_repo_licenses
list
max_issues_count
int64
max_issues_repo_issues_event_min_datetime
string
max_issues_repo_issues_event_max_datetime
string
max_forks_repo_path
string
max_forks_repo_name
string
max_forks_repo_head_hexsha
string
max_forks_repo_licenses
list
max_forks_count
int64
max_forks_repo_forks_event_min_datetime
string
max_forks_repo_forks_event_max_datetime
string
content
string
avg_line_length
float64
max_line_length
int64
alphanum_fraction
float64
qsc_code_num_words_quality_signal
int64
qsc_code_num_chars_quality_signal
float64
qsc_code_mean_word_length_quality_signal
float64
qsc_code_frac_words_unique_quality_signal
float64
qsc_code_frac_chars_top_2grams_quality_signal
float64
qsc_code_frac_chars_top_3grams_quality_signal
float64
qsc_code_frac_chars_top_4grams_quality_signal
float64
qsc_code_frac_chars_dupe_5grams_quality_signal
float64
qsc_code_frac_chars_dupe_6grams_quality_signal
float64
qsc_code_frac_chars_dupe_7grams_quality_signal
float64
qsc_code_frac_chars_dupe_8grams_quality_signal
float64
qsc_code_frac_chars_dupe_9grams_quality_signal
float64
qsc_code_frac_chars_dupe_10grams_quality_signal
float64
qsc_code_frac_chars_replacement_symbols_quality_signal
float64
qsc_code_frac_chars_digital_quality_signal
float64
qsc_code_frac_chars_whitespace_quality_signal
float64
qsc_code_size_file_byte_quality_signal
float64
qsc_code_num_lines_quality_signal
float64
qsc_code_num_chars_line_max_quality_signal
float64
qsc_code_num_chars_line_mean_quality_signal
float64
qsc_code_frac_chars_alphabet_quality_signal
float64
qsc_code_frac_chars_comments_quality_signal
float64
qsc_code_cate_xml_start_quality_signal
float64
qsc_code_frac_lines_dupe_lines_quality_signal
float64
qsc_code_cate_autogen_quality_signal
float64
qsc_code_frac_lines_long_string_quality_signal
float64
qsc_code_frac_chars_string_length_quality_signal
float64
qsc_code_frac_chars_long_word_length_quality_signal
float64
qsc_code_frac_lines_string_concat_quality_signal
float64
qsc_code_cate_encoded_data_quality_signal
float64
qsc_code_frac_chars_hex_words_quality_signal
float64
qsc_code_frac_lines_prompt_comments_quality_signal
float64
qsc_code_frac_lines_assert_quality_signal
float64
qsc_codepython_cate_ast_quality_signal
float64
qsc_codepython_frac_lines_func_ratio_quality_signal
float64
qsc_codepython_cate_var_zero_quality_signal
bool
qsc_codepython_frac_lines_pass_quality_signal
float64
qsc_codepython_frac_lines_import_quality_signal
float64
qsc_codepython_frac_lines_simplefunc_quality_signal
float64
qsc_codepython_score_lines_no_logic_quality_signal
float64
qsc_codepython_frac_lines_print_quality_signal
float64
qsc_code_num_words
int64
qsc_code_num_chars
int64
qsc_code_mean_word_length
int64
qsc_code_frac_words_unique
null
qsc_code_frac_chars_top_2grams
int64
qsc_code_frac_chars_top_3grams
int64
qsc_code_frac_chars_top_4grams
int64
qsc_code_frac_chars_dupe_5grams
int64
qsc_code_frac_chars_dupe_6grams
int64
qsc_code_frac_chars_dupe_7grams
int64
qsc_code_frac_chars_dupe_8grams
int64
qsc_code_frac_chars_dupe_9grams
int64
qsc_code_frac_chars_dupe_10grams
int64
qsc_code_frac_chars_replacement_symbols
int64
qsc_code_frac_chars_digital
int64
qsc_code_frac_chars_whitespace
int64
qsc_code_size_file_byte
int64
qsc_code_num_lines
int64
qsc_code_num_chars_line_max
int64
qsc_code_num_chars_line_mean
int64
qsc_code_frac_chars_alphabet
int64
qsc_code_frac_chars_comments
int64
qsc_code_cate_xml_start
int64
qsc_code_frac_lines_dupe_lines
int64
qsc_code_cate_autogen
int64
qsc_code_frac_lines_long_string
int64
qsc_code_frac_chars_string_length
int64
qsc_code_frac_chars_long_word_length
int64
qsc_code_frac_lines_string_concat
null
qsc_code_cate_encoded_data
int64
qsc_code_frac_chars_hex_words
int64
qsc_code_frac_lines_prompt_comments
int64
qsc_code_frac_lines_assert
int64
qsc_codepython_cate_ast
int64
qsc_codepython_frac_lines_func_ratio
int64
qsc_codepython_cate_var_zero
int64
qsc_codepython_frac_lines_pass
int64
qsc_codepython_frac_lines_import
int64
qsc_codepython_frac_lines_simplefunc
int64
qsc_codepython_score_lines_no_logic
int64
qsc_codepython_frac_lines_print
int64
effective
string
hits
int64
b5205edd8aab4d0aa6260c04b7e15a833d448e5d
298
py
Python
challenges/fifo-animal-shelter/pets.py
jeremyCtown/data-structures-and-algorithms
d4ba8741f858fb5298f8ce560240373fb7742e20
[ "MIT" ]
null
null
null
challenges/fifo-animal-shelter/pets.py
jeremyCtown/data-structures-and-algorithms
d4ba8741f858fb5298f8ce560240373fb7742e20
[ "MIT" ]
null
null
null
challenges/fifo-animal-shelter/pets.py
jeremyCtown/data-structures-and-algorithms
d4ba8741f858fb5298f8ce560240373fb7742e20
[ "MIT" ]
null
null
null
class Dog: """ Creates dog object """ def __init__(self): self.val = 'dog' def __repr__(self): return self.val class Cat: """ Creates cat object """ def __init__(self): self.val = 'cat' def __repr__(self): return self.val
14.190476
24
0.516779
34
298
4.058824
0.323529
0.202899
0.188406
0.246377
0.695652
0.695652
0
0
0
0
0
0
0.362416
298
20
25
14.9
0.726316
0.124161
0
0.6
0
0
0.026087
0
0
0
0
0
0
1
0.4
false
0
0
0.2
0.8
0
0
0
0
null
1
1
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
null
0
0
0
0
0
1
0
0
0
1
1
0
0
6
b576d5aece893c6e7258835bd199ea37f39fabca
6,685
py
Python
ckanext/satreasury/tests/test_plugin.py
OpenUpSA/ckanext-satreasury
b6e71009ee5fdfe8cc477304b10536b5af614de6
[ "MIT" ]
1
2019-09-08T08:56:54.000Z
2019-09-08T08:56:54.000Z
ckanext/satreasury/tests/test_plugin.py
vulekamali/ckanext-satreasury
b6e71009ee5fdfe8cc477304b10536b5af614de6
[ "MIT" ]
3
2020-03-24T17:05:46.000Z
2021-02-02T22:01:44.000Z
ckanext/satreasury/tests/test_plugin.py
vulekamali/ckanext-satreasury
b6e71009ee5fdfe8cc477304b10536b5af614de6
[ "MIT" ]
1
2019-05-30T19:30:22.000Z
2019-05-30T19:30:22.000Z
import json import unittest from functools import partial import ckan.model as model import responses from ckanext.satreasury.plugin import SATreasuryDatasetPlugin from mock import MagicMock, Mock, PropertyMock, patch TRAVIS_ENDPOINT = "https://api.travis-ci.org/repo/vulekamali%2Fstatic-budget-portal" TRAVIS_COMMIT_MESSAGE = 'Rebuild with new/modified dataset' TRAVIS_WEB_URL = "https://travis-ci.org/vulekamali/static-budget-portal/builds/" class TestNotifyMethod(unittest.TestCase): @responses.activate def setUp(self): self.entity = Mock(spec=model.Package) self.entity.owner_org = PropertyMock(return_value=True) self.plugin = SATreasuryDatasetPlugin() flash_success_patch = patch( 'ckanext.satreasury.plugin.ckan_helpers.flash_success') self.flash_success_mock = flash_success_patch.start() flash_error_patch = patch( 'ckanext.satreasury.plugin.ckan_helpers.flash_error') self.flash_error_mock = flash_error_patch.start() self.addCleanup(flash_success_patch.stop) @patch( 'ckanext.satreasury.plugin.travis.build_trigger_enabled', return_value=True) def test_notify_already_building(self, build_trigger_enabled_mock): with responses.RequestsMock() as rsps: rsps.add( responses.GET, "https://api.travis-ci.org/repo/vulekamali%2Fstatic-budget-portal/builds", json={ 'builds': [ { 'id': 535878234, 'commit': { 'message': TRAVIS_COMMIT_MESSAGE }, }]}, status=200, content_type='application/json') self.plugin.notify(self.entity, None) message = "vulekamali will be updated in less than an hour. <a href='https://travis-ci.org/vulekamali/static-budget-portal/builds/535878234' >Check progress of the update process.</a>" self.flash_success_mock.assert_called_with( message, allow_html=True) @patch( 'ckanext.satreasury.plugin.travis.build_trigger_enabled', return_value=True) def test_notify_build_triggered(self, build_trigger_enabled_mock): with responses.RequestsMock() as rsps: rsps.add( responses.GET, "https://api.travis-ci.org/repo/vulekamali%2Fstatic-budget-portal/builds", json={ 'builds': []}, status=200, content_type='application/json') rsps.add( responses.POST, "https://api.travis-ci.org/repo/vulekamali%2Fstatic-budget-portal/requests", json={ 'request': { 'id': 12345}}, status=200, content_type='application/json') rsps.add( responses.GET, "https://api.travis-ci.org/repo/vulekamali%2Fstatic-budget-portal/request/12345", json={ 'builds': [ { 'commit': { 'message': TRAVIS_COMMIT_MESSAGE}, 'id': 535878234, }]}, status=200, content_type='application/json') self.plugin.notify(self.entity, None) message = "vulekamali will be updated in less than an hour. <a href='https://travis-ci.org/vulekamali/static-budget-portal/builds/535878234' >Check progress of the update process.</a>" self.flash_success_mock.assert_called_with( message, allow_html=True) @patch( 'ckanext.satreasury.plugin.travis.build_trigger_enabled', return_value=True) def test_notify_build_request_but_no_build(self, build_trigger_enabled_mock): with responses.RequestsMock() as rsps: rsps.add( responses.GET, "https://api.travis-ci.org/repo/vulekamali%2Fstatic-budget-portal/builds", json={ 'builds': []}, status=200, content_type='application/json') rsps.add( responses.POST, "https://api.travis-ci.org/repo/vulekamali%2Fstatic-budget-portal/requests", json={ 'request': { 'id': 12345}}, status=200, content_type='application/json') rsps.add( responses.GET, "https://api.travis-ci.org/repo/vulekamali%2Fstatic-budget-portal/request/12345", json={ 'builds': []}, status=200, content_type='application/json') self.plugin.notify(self.entity, None) message = "vulekamali will be updated in less than an hour. <a href='https://travis-ci.org/vulekamali/static-budget-portal/builds/' >Check progress of the update process.</a>" self.flash_success_mock.assert_called_with( message, allow_html=True) @patch( 'ckanext.satreasury.plugin.travis.build_trigger_enabled', return_value=True) def test_notify_build_trigger_errored(self, build_trigger_enabled_mock): with responses.RequestsMock() as rsps: rsps.add( responses.GET, "https://api.travis-ci.org/repo/vulekamali%2Fstatic-budget-portal/builds", json={ 'builds': []}, status=200, content_type='application/json') rsps.add( responses.POST, "https://api.travis-ci.org/repo/vulekamali%2Fstatic-budget-portal/requests", json={ 'request': { 'id': 12345}}, status=500, content_type='application/json') self.plugin.notify(self.entity, None) message = 'An error occurred when updating the static site data. Technical details: 500 Server Error: Internal Server Error for url: https://api.travis-ci.org/repo/vulekamali%2Fstatic-budget-portal/requests' self.flash_error_mock.assert_called_with(message) @patch( 'ckanext.satreasury.plugin.travis.build_trigger_enabled', return_value=False) def test_notify_build_not_enabled(self, build_trigger_enabled_mock): self.plugin.notify(self.entity, None) self.assertTrue(True)
43.129032
219
0.57457
680
6,685
5.491176
0.179412
0.032137
0.044189
0.047134
0.778254
0.746652
0.738618
0.738618
0.712373
0.698982
0
0.022522
0.322513
6,685
154
220
43.409091
0.801943
0
0
0.723404
0
0.092199
0.318325
0.055647
0
0
0
0
0.035461
1
0.042553
false
0
0.049645
0
0.099291
0
0
0
0
null
0
0
0
0
1
1
1
1
1
0
0
0
0
0
0
0
0
0
0
1
0
0
0
0
null
0
0
0
0
0
0
0
0
0
0
0
0
0
6
a97015a85173cf78e85bed10e73b68dc69502a9d
78
py
Python
pydemic/report/__init__.py
GCES-Pydemic/pydemic
f221aa16e6a32ed1303fa11ebf8a357643f683d5
[ "MIT" ]
null
null
null
pydemic/report/__init__.py
GCES-Pydemic/pydemic
f221aa16e6a32ed1303fa11ebf8a357643f683d5
[ "MIT" ]
null
null
null
pydemic/report/__init__.py
GCES-Pydemic/pydemic
f221aa16e6a32ed1303fa11ebf8a357643f683d5
[ "MIT" ]
null
null
null
from .report_group import GroupReport from .report_single import SingleReport
26
39
0.871795
10
78
6.6
0.7
0.30303
0
0
0
0
0
0
0
0
0
0
0.102564
78
2
40
39
0.942857
0
0
0
0
0
0
0
0
0
0
0
0
1
0
true
0
1
0
1
0
1
0
0
null
1
0
0
0
0
0
0
0
0
0
0
0
0
1
0
0
0
0
0
0
0
0
0
0
null
0
0
0
0
0
0
1
0
1
0
1
0
0
6
a9939846090c5322d4926d75f10b1fc68c18dada
153
py
Python
{{cookiecutter.repo_name}}/{{cookiecutter.package_name}}/{{cookiecutter.package_name}}.py
numengo/cc-py-setup
392dfb85acb9052bf48586b9be98fc1f591d8991
[ "ISC", "Apache-2.0", "MIT" ]
3
2018-02-16T17:10:15.000Z
2018-03-01T19:38:54.000Z
{{cookiecutter.repo_name}}/{{cookiecutter.package_name}}/{{cookiecutter.package_name}}.py
numengo/cc-py-setup
392dfb85acb9052bf48586b9be98fc1f591d8991
[ "ISC", "Apache-2.0", "MIT" ]
null
null
null
{{cookiecutter.repo_name}}/{{cookiecutter.package_name}}/{{cookiecutter.package_name}}.py
numengo/cc-py-setup
392dfb85acb9052bf48586b9be98fc1f591d8991
[ "ISC", "Apache-2.0", "MIT" ]
null
null
null
# -*- coding: utf-8 -*- """Main module {{cookiecutter.project_name}} """ from __future__ import absolute_import from __future__ import unicode_literals
25.5
48
0.751634
18
153
5.777778
0.777778
0.192308
0.307692
0
0
0
0
0
0
0
0
0.007407
0.117647
153
5
49
30.6
0.762963
0.424837
0
0
0
0
0
0
0
0
0
0
0
1
0
true
0
1
0
1
0
1
0
0
null
0
1
0
0
0
0
0
0
0
0
0
0
0
1
0
0
0
0
0
0
0
0
0
0
null
0
0
0
0
0
0
1
0
1
0
1
0
0
6
8d3e794674c7c132a4877a4a375649bf2399c45b
2,639
py
Python
venv/lib/python3.8/site-packages/keras/api/_v2/keras/applications/__init__.py
JIANG-CX/data_labeling
8d2470bbb537dfc09ed2f7027ed8ee7de6447248
[ "MIT" ]
1
2021-05-24T10:08:51.000Z
2021-05-24T10:08:51.000Z
venv/lib/python3.8/site-packages/keras/api/_v2/keras/applications/__init__.py
JIANG-CX/data_labeling
8d2470bbb537dfc09ed2f7027ed8ee7de6447248
[ "MIT" ]
null
null
null
venv/lib/python3.8/site-packages/keras/api/_v2/keras/applications/__init__.py
JIANG-CX/data_labeling
8d2470bbb537dfc09ed2f7027ed8ee7de6447248
[ "MIT" ]
null
null
null
# This file is MACHINE GENERATED! Do not edit. # Generated by: tensorflow/python/tools/api/generator/create_python_api.py script. """Public API for tf.keras.applications namespace. """ from __future__ import print_function as _print_function import sys as _sys from keras.api._v2.keras.applications import densenet from keras.api._v2.keras.applications import efficientnet from keras.api._v2.keras.applications import imagenet_utils from keras.api._v2.keras.applications import inception_resnet_v2 from keras.api._v2.keras.applications import inception_v3 from keras.api._v2.keras.applications import mobilenet from keras.api._v2.keras.applications import mobilenet_v2 from keras.api._v2.keras.applications import mobilenet_v3 from keras.api._v2.keras.applications import nasnet from keras.api._v2.keras.applications import resnet from keras.api._v2.keras.applications import resnet50 from keras.api._v2.keras.applications import resnet_v2 from keras.api._v2.keras.applications import vgg16 from keras.api._v2.keras.applications import vgg19 from keras.api._v2.keras.applications import xception from keras.applications.densenet import DenseNet121 from keras.applications.densenet import DenseNet169 from keras.applications.densenet import DenseNet201 from keras.applications.efficientnet import EfficientNetB0 from keras.applications.efficientnet import EfficientNetB1 from keras.applications.efficientnet import EfficientNetB2 from keras.applications.efficientnet import EfficientNetB3 from keras.applications.efficientnet import EfficientNetB4 from keras.applications.efficientnet import EfficientNetB5 from keras.applications.efficientnet import EfficientNetB6 from keras.applications.efficientnet import EfficientNetB7 from keras.applications.inception_resnet_v2 import InceptionResNetV2 from keras.applications.inception_v3 import InceptionV3 from keras.applications.mobilenet import MobileNet from keras.applications.mobilenet_v2 import MobileNetV2 from keras.applications.mobilenet_v3 import MobileNetV3Large from keras.applications.mobilenet_v3 import MobileNetV3Small from keras.applications.nasnet import NASNetLarge from keras.applications.nasnet import NASNetMobile from keras.applications.resnet import ResNet101 from keras.applications.resnet import ResNet152 from keras.applications.resnet import ResNet50 from keras.applications.resnet_v2 import ResNet101V2 from keras.applications.resnet_v2 import ResNet152V2 from keras.applications.resnet_v2 import ResNet50V2 from keras.applications.vgg16 import VGG16 from keras.applications.vgg19 import VGG19 from keras.applications.xception import Xception del _print_function
47.981818
82
0.869269
346
2,639
6.50578
0.196532
0.332297
0.261217
0.093292
0.617948
0.359396
0.278987
0.180364
0.039982
0
0
0.034142
0.078818
2,639
54
83
48.87037
0.891814
0.065934
0
0
1
0
0
0
0
0
0
0
0
1
0
true
0
0.978261
0
0.978261
0.043478
0
0
0
null
1
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
0
0
0
null
0
0
0
0
0
0
1
0
1
0
1
0
0
6
8d6c38dd172b4fa935c4b931081b7a40d9bc40a8
6,045
py
Python
Spark/spark_media_localidad.py
Dielam/Dielam.github.io
19f01d693ef2c590f3ac35a3a143ae3dedf8594e
[ "MIT" ]
null
null
null
Spark/spark_media_localidad.py
Dielam/Dielam.github.io
19f01d693ef2c590f3ac35a3a143ae3dedf8594e
[ "MIT" ]
null
null
null
Spark/spark_media_localidad.py
Dielam/Dielam.github.io
19f01d693ef2c590f3ac35a3a143ae3dedf8594e
[ "MIT" ]
1
2020-12-23T16:45:20.000Z
2020-12-23T16:45:20.000Z
#!/usr/bin/python import sys from pyspark import SparkContext from shutil import rmtree import os.path as path def generar(line): array = [] array.append(line[0]) array.append(line[1]) aux = line[2] ini = 2 fin = 18 if aux != "I" and aux != "D" and aux != "N": aux = line[3] ini = 3 fin = 19 array.append(aux) ini+=1 for i in range(ini, fin): if line[i] == '': array.append("0") else: array.append(line[i]) return array if len(sys.argv) > 1: if path.exists("output"): rmtree("output") sc = SparkContext() localidad = sys.argv[1] localidadRDD = sc.textFile("Gasolineras.csv") localidadRDD = localidadRDD.map(lambda line: line.encode("ascii", "ignore")) localidadRDD = localidadRDD.map(lambda rows: rows.split(",")) localidadRDD = localidadRDD.filter(lambda rows: localidad == rows[5]) localidadRDD = localidadRDD.map(lambda rows: (rows[5], rows[7], rows[8], rows[9],rows[10], rows[11], rows[12], rows[13], rows[14], rows[15], rows[16], rows[17], rows[18], rows[19], rows[20], rows[21], rows[22], rows[23], rows[24])) datosRDD = localidadRDD.map(generar) if datosRDD.isEmpty(): result = sc.parallelize("0") result.saveAsTextFile("output") else: precioRDD = datosRDD.map(lambda rows: ([rows[0], float(rows[5])])) precioRDD = precioRDD.reduceByKey(lambda x,y: x+y) tamRDD = datosRDD.count() mediaTotal = precioRDD.map(lambda rows: ([rows[1], int(tamRDD)])) mediaTotal = mediaTotal.map(lambda calc:(calc[0]/calc[1])) mediaTotal.saveAsTextFile("output/media_localidad_gasolina_95.txt") precioRDD = datosRDD.map(lambda rows: ([rows[0], float(rows[6])])) precioRDD = precioRDD.reduceByKey(lambda x,y: x+y) tamRDD = datosRDD.count() mediaTotal = precioRDD.map(lambda rows: ([rows[1], int(tamRDD)])) mediaTotal = mediaTotal.map(lambda calc:(calc[0]/calc[1])) mediaTotal.saveAsTextFile("output/media_localidad_gasoleo_a.txt") precioRDD = datosRDD.map(lambda rows: ([rows[0], float(rows[7])])) precioRDD = precioRDD.reduceByKey(lambda x,y: x+y) tamRDD = datosRDD.count() mediaTotal = precioRDD.map(lambda rows: ([rows[1], int(tamRDD)])) mediaTotal = mediaTotal.map(lambda calc:(calc[0]/calc[1])) mediaTotal.saveAsTextFile("output/media_localidad_gasoleo_b.txt") precioRDD = datosRDD.map(lambda rows: ([rows[0], float(rows[8])])) precioRDD = precioRDD.reduceByKey(lambda x,y: x+y) tamRDD = datosRDD.count() mediaTotal = precioRDD.map(lambda rows: ([rows[1], int(tamRDD)])) mediaTotal = mediaTotal.map(lambda calc:(calc[0]/calc[1])) mediaTotal.saveAsTextFile("output/media_localidad_bioetanol.txt") precioRDD = datosRDD.map(lambda rows: ([rows[0], float(rows[9])])) precioRDD = precioRDD.reduceByKey(lambda x,y: x+y) tamRDD = datosRDD.count() mediaTotal = precioRDD.map(lambda rows: ([rows[1], int(tamRDD)])) mediaTotal = mediaTotal.map(lambda calc:(calc[0]/calc[1])) mediaTotal.saveAsTextFile("output/media_localidad_nuevo_gasoleo_a.txt") precioRDD = datosRDD.map(lambda rows: ([rows[0], float(rows[10])])) precioRDD = precioRDD.reduceByKey(lambda x,y: x+y) tamRDD = datosRDD.count() mediaTotal = precioRDD.map(lambda rows: ([rows[1], int(tamRDD)])) mediaTotal = mediaTotal.map(lambda calc:(calc[0]/calc[1])) mediaTotal.saveAsTextFile("output/media_localidad_biodiesel.txt") precioRDD = datosRDD.map(lambda rows: ([rows[0], float(rows[11])])) precioRDD = precioRDD.reduceByKey(lambda x,y: x+y) tamRDD = datosRDD.count() mediaTotal = precioRDD.map(lambda rows: ([rows[1], int(tamRDD)])) mediaTotal = mediaTotal.map(lambda calc:(calc[0]/calc[1])) mediaTotal.saveAsTextFile("output/media_localidad_ester_metilico.txt") precioRDD = datosRDD.map(lambda rows: ([rows[0], float(rows[12])])) precioRDD = precioRDD.reduceByKey(lambda x,y: x+y) tamRDD = datosRDD.count() mediaTotal = precioRDD.map(lambda rows: ([rows[1], int(tamRDD)])) mediaTotal = mediaTotal.map(lambda calc:(calc[0]/calc[1])) mediaTotal.saveAsTextFile("output/media_localidad_bioalcohol.txt") precioRDD = datosRDD.map(lambda rows: ([rows[0], float(rows[13])])) precioRDD = precioRDD.reduceByKey(lambda x,y: x+y) tamRDD = datosRDD.count() mediaTotal = precioRDD.map(lambda rows: ([rows[1], int(tamRDD)])) mediaTotal = mediaTotal.map(lambda calc:(calc[0]/calc[1])) mediaTotal.saveAsTextFile("output/media_localidad_gasolina_98.txt") precioRDD = datosRDD.map(lambda rows: ([rows[0], float(rows[14])])) precioRDD = precioRDD.reduceByKey(lambda x,y: x+y) tamRDD = datosRDD.count() mediaTotal = precioRDD.map(lambda rows: ([rows[1], int(tamRDD)])) mediaTotal = mediaTotal.map(lambda calc:(calc[0]/calc[1])) mediaTotal.saveAsTextFile("output/media_localidad_gas_natural_comprimido.txt") precioRDD = datosRDD.map(lambda rows: ([rows[0], float(rows[15])])) precioRDD = precioRDD.reduceByKey(lambda x,y: x+y) tamRDD = datosRDD.count() mediaTotal = precioRDD.map(lambda rows: ([rows[1], int(tamRDD)])) mediaTotal = mediaTotal.map(lambda calc:(calc[0]/calc[1])) mediaTotal.saveAsTextFile("output/media_localidad_gas_natural_licuado.txt") precioRDD = datosRDD.map(lambda rows: ([rows[0], float(rows[16])])) precioRDD = precioRDD.reduceByKey(lambda x,y: x+y) tamRDD = datosRDD.count() mediaTotal = precioRDD.map(lambda rows: ([rows[1], int(tamRDD)])) mediaTotal = mediaTotal.map(lambda calc:(calc[0]/calc[1])) mediaTotal.saveAsTextFile("output/media_localidad_gas_licuados_del_petr.txt") else: print "Error no ha introducido localidad."
45.451128
235
0.643176
754
6,045
5.106101
0.151194
0.091169
0.087792
0.114805
0.778442
0.778442
0.757143
0.757143
0.757143
0.745714
0
0.025057
0.201158
6,045
132
236
45.795455
0.77221
0.002647
0
0.455357
0
0
0.094061
0.080126
0
0
0
0
0
0
null
null
0
0.035714
null
null
0.008929
0
0
0
null
0
0
0
0
1
1
1
1
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
null
0
0
0
0
1
0
0
0
0
0
0
0
0
6
a5d187baa7ec34c04b159476ef8dc6d77a915eac
4,175
py
Python
generated/azure-cli/aro/custom.py
audevbot/autorest.devops.debug
a507fb6e2dd7826212537f27d583f203aac1c28f
[ "MIT" ]
null
null
null
generated/azure-cli/aro/custom.py
audevbot/autorest.devops.debug
a507fb6e2dd7826212537f27d583f203aac1c28f
[ "MIT" ]
null
null
null
generated/azure-cli/aro/custom.py
audevbot/autorest.devops.debug
a507fb6e2dd7826212537f27d583f203aac1c28f
[ "MIT" ]
null
null
null
# -------------------------------------------------------------------------------------------- # Copyright (c) Microsoft Corporation. All rights reserved. # Licensed under the MIT License. See License.txt in the project root for license information. # -------------------------------------------------------------------------------------------- # pylint: disable=line-too-long # pylint: disable=too-many-statements # pylint: disable=too-many-lines # pylint: disable=too-many-locals # pylint: disable=unused-argument import json # module equivalent: azure_rm_openshiftmanagedcluster # URL: /subscriptions/{{ subscription_id }}/resourceGroups/{{ resource_group }}/providers/Microsoft.ContainerService/openShiftManagedClusters/{{ open_shift_managed_cluster_name }} def create_aro(cmd, client, resource_group, name, location, open_shift_version, tags=None, plan=None, network_profile=None, router_profiles=None, master_pool_profile=None, agent_pool_profiles=None, auth_profile=None): body = {} body['location'] = location # str body['tags'] = tags # dictionary body['plan'] = json.loads(plan) if isinstance(plan, str) else plan body['open_shift_version'] = open_shift_version # str body['network_profile'] = json.loads(network_profile) if isinstance(network_profile, str) else network_profile body['router_profiles'] = json.loads(router_profiles) if isinstance(router_profiles, str) else router_profiles body['master_pool_profile'] = json.loads(master_pool_profile) if isinstance(master_pool_profile, str) else master_pool_profile body['agent_pool_profiles'] = json.loads(agent_pool_profiles) if isinstance(agent_pool_profiles, str) else agent_pool_profiles body['auth_profile'] = json.loads(auth_profile) if isinstance(auth_profile, str) else auth_profile return client.create_or_update(resource_group_name=resource_group, resource_name=name, parameters=body) # module equivalent: azure_rm_openshiftmanagedcluster # URL: /subscriptions/{{ subscription_id }}/resourceGroups/{{ resource_group }}/providers/Microsoft.ContainerService/openShiftManagedClusters/{{ open_shift_managed_cluster_name }} def update_aro(cmd, client, body, resource_group, name, location, open_shift_version, tags=None, plan=None, network_profile=None, router_profiles=None, master_pool_profile=None, agent_pool_profiles=None, auth_profile=None): body = client.get(resource_group_name=resource_group, resource_name=name).as_dict() body.location = location # str body.tags = tags # dictionary body.plan = json.loads(plan) if isinstance(plan, str) else plan body.open_shift_version = open_shift_version # str body.network_profile = json.loads(network_profile) if isinstance(network_profile, str) else network_profile body.router_profiles = json.loads(router_profiles) if isinstance(router_profiles, str) else router_profiles body.master_pool_profile = json.loads(master_pool_profile) if isinstance(master_pool_profile, str) else master_pool_profile body.agent_pool_profiles = json.loads(agent_pool_profiles) if isinstance(agent_pool_profiles, str) else agent_pool_profiles body.auth_profile = json.loads(auth_profile) if isinstance(auth_profile, str) else auth_profile return client.create_or_update(resource_group_name=resource_group, resource_name=name, parameters=body) # module equivalent: azure_rm_openshiftmanagedcluster # URL: /subscriptions/{{ subscription_id }}/resourceGroups/{{ resource_group }}/providers/Microsoft.ContainerService/openShiftManagedClusters/{{ open_shift_managed_cluster_name }} def list_aro(cmd, client, resource_group): if resource_group is not None: return client.list_by_resource_group(resource_group_name=resource_group) return client.list()
55.666667
180
0.683353
469
4,175
5.793177
0.187633
0.076555
0.062569
0.036805
0.859036
0.834376
0.834376
0.834376
0.817446
0.817446
0
0
0.191617
4,175
74
181
56.418919
0.805037
0.293413
0
0.461538
0
0
0.039944
0
0
0
0
0
0
1
0.057692
false
0
0.019231
0
0.153846
0
0
0
0
null
0
0
0
1
1
1
1
1
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
null
0
0
0
0
0
0
0
0
0
0
0
0
0
6
a5f2ce8d23f3ea07c4d73928966352c760c23c7e
47
py
Python
scripts/portal/OutElfKingRoom.py
G00dBye/YYMS
1de816fc842b6598d5b4b7896b6ab0ee8f7cdcfb
[ "MIT" ]
54
2019-04-16T23:24:48.000Z
2021-12-18T11:41:50.000Z
scripts/portal/OutElfKingRoom.py
G00dBye/YYMS
1de816fc842b6598d5b4b7896b6ab0ee8f7cdcfb
[ "MIT" ]
3
2019-05-19T15:19:41.000Z
2020-04-27T16:29:16.000Z
scripts/portal/OutElfKingRoom.py
G00dBye/YYMS
1de816fc842b6598d5b4b7896b6ab0ee8f7cdcfb
[ "MIT" ]
49
2020-11-25T23:29:16.000Z
2022-03-26T16:20:24.000Z
# 101050010 sm.warp(101050000, 7) sm.dispose()
11.75
21
0.723404
7
47
4.857143
0.857143
0
0
0
0
0
0
0
0
0
0
0.452381
0.106383
47
3
22
15.666667
0.357143
0.191489
0
0
0
0
0
0
0
0
0
0
0
1
0
true
0
0
0
0
0
1
1
0
null
0
0
0
0
0
0
0
0
0
0
1
0
0
1
0
0
1
0
0
0
0
0
0
0
null
0
0
0
0
0
0
1
0
0
0
0
0
0
6
93cf143d7b69f8a96f36f23910ce3b0b601f20d1
436
py
Python
lib/googlecloudsdk/third_party/apis/bigtableclusteradmin/v1/__init__.py
bopopescu/SDK
e6d9aaee2456f706d1d86e8ec2a41d146e33550d
[ "Apache-2.0" ]
null
null
null
lib/googlecloudsdk/third_party/apis/bigtableclusteradmin/v1/__init__.py
bopopescu/SDK
e6d9aaee2456f706d1d86e8ec2a41d146e33550d
[ "Apache-2.0" ]
null
null
null
lib/googlecloudsdk/third_party/apis/bigtableclusteradmin/v1/__init__.py
bopopescu/SDK
e6d9aaee2456f706d1d86e8ec2a41d146e33550d
[ "Apache-2.0" ]
2
2020-11-04T03:08:21.000Z
2020-11-05T08:14:41.000Z
"""Common imports for generated bigtableclusteradmin client library.""" # pylint:disable=wildcard-import import pkgutil from googlecloudsdk.third_party.apitools.base.py import * from googlecloudsdk.third_party.apis.bigtableclusteradmin.v1.bigtableclusteradmin_v1_client import * from googlecloudsdk.third_party.apis.bigtableclusteradmin.v1.bigtableclusteradmin_v1_messages import * __path__ = pkgutil.extend_path(__path__, __name__)
39.636364
102
0.855505
49
436
7.204082
0.510204
0.249292
0.195467
0.23796
0.464589
0.464589
0.464589
0.464589
0.464589
0.464589
0
0.009852
0.068807
436
10
103
43.6
0.859606
0.222477
0
0
1
0
0
0
0
0
0
0
0
1
0
false
0
0.8
0
0.8
0
0
0
0
null
1
1
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
0
0
0
null
0
0
0
0
0
0
0
0
1
0
1
0
0
6
93d7075c75f515ae6f7dbc9fddf988695545df0c
2,715
py
Python
src/traquitanas/geo/layers.py
traquitanas/traquitanas
788a536de4c762b050e9d09c55b15e4d0bee3434
[ "MIT" ]
null
null
null
src/traquitanas/geo/layers.py
traquitanas/traquitanas
788a536de4c762b050e9d09c55b15e4d0bee3434
[ "MIT" ]
null
null
null
src/traquitanas/geo/layers.py
traquitanas/traquitanas
788a536de4c762b050e9d09c55b15e4d0bee3434
[ "MIT" ]
1
2021-10-07T20:58:56.000Z
2021-10-07T20:58:56.000Z
import folium def add_lyr_google_hybrid(min_zoom, max_zoom): row = { 'link': 'https://mt1.google.com/vt/lyrs=y&x={x}&y={y}&z={z}', 'name': 'Google Hybrid', 'attribution': 'https://www.google.com/maps', } lyr = folium.TileLayer( tiles=row['link'], attr=('<a href="{}" target="blank">{}</a>'.format(row['attribution'], row['name'])), name=row['name'], min_zoom=min_zoom, max_zoom=max_zoom, subdomains=['mt0', 'mt1', 'mt2', 'mt3'], overlay=False, control=True, show=True, ) return lyr def add_lyr_google_satellite(min_zoom, max_zoom): row = { 'link': 'https://mt1.google.com/vt/lyrs=s&x={x}&y={y}&z={z}', 'name': 'Google Satelite', 'attribution': 'https://www.google.com/maps', } lyr = folium.TileLayer( tiles=row['link'], attr=('<a href="{}" target="blank">{}</a>'.format(row['attribution'], row['name'])), name=row['name'], min_zoom=min_zoom, max_zoom=max_zoom, subdomains=['mt0', 'mt1', 'mt2', 'mt3'], overlay=False, control=True, show=False, ) return lyr def add_lyr_google_terrain(min_zoom, max_zoom): row = { 'link': 'https://mt1.google.com/vt/lyrs=p&x={x}&y={y}&z={z}', 'name': 'Google Terrain', 'attribution': 'https://www.google.com/maps', } lyr = folium.TileLayer( tiles=row['link'], attr=('<a href="{}" target="blank">{}</a>'.format(row['attribution'], row['name'])), name=row['name'], min_zoom=min_zoom, max_zoom=max_zoom, subdomains=['mt0', 'mt1', 'mt2', 'mt3'], overlay=False, control=True, show=False, ) return lyr def add_lyr_google_streets(min_zoom, max_zoom): row = { 'link': 'https://mt1.google.com/vt/lyrs=m&x={x}&y={y}&z={z}', 'name': 'Google Streets', 'attribution': 'https://www.google.com/maps', } lyr = folium.TileLayer( tiles=row['link'], attr=('<a href="{}" target="blank">{}</a>'.format(row['attribution'], row['name'])), name=row['name'], min_zoom=min_zoom, max_zoom=max_zoom, subdomains=['mt0', 'mt1', 'mt2', 'mt3'], overlay=False, control=True, show=False, ) return lyr def add_lyr_cartodbpositron(min_zoom, max_zoom): lyr = folium.TileLayer( tiles='cartodbpositron', attr='Carto', name='CartoDB Positron', min_zoom=min_zoom, max_zoom=max_zoom, overlay=False, control=True, show=False, ) return lyr if __name__ == '__main__': pass
27.15
92
0.537385
336
2,715
4.1875
0.166667
0.074627
0.117271
0.099502
0.857143
0.857143
0.840085
0.840085
0.745558
0.745558
0
0.01003
0.265562
2,715
99
93
27.424242
0.695587
0
0
0.666667
0
0.045977
0.279926
0.030939
0
0
0
0
0
1
0.057471
false
0.011494
0.011494
0
0.126437
0
0
0
0
null
0
0
0
1
1
1
1
1
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
null
0
0
0
0
0
0
0
0
0
0
0
0
0
6
93e030c92ac6f8fce1b888c7a5422a8bac82faba
144
py
Python
makesolid/__init__.py
aarchiba/makesolid
121fca121a838fa4d62ae96ce1fc81dba64c2198
[ "MIT" ]
null
null
null
makesolid/__init__.py
aarchiba/makesolid
121fca121a838fa4d62ae96ce1fc81dba64c2198
[ "MIT" ]
null
null
null
makesolid/__init__.py
aarchiba/makesolid
121fca121a838fa4d62ae96ce1fc81dba64c2198
[ "MIT" ]
null
null
null
# -*- coding: utf-8 -*- from __future__ import division, print_function from ._mesh import * from ._openscad import * from ._threads import *
18
47
0.722222
18
144
5.333333
0.666667
0.208333
0
0
0
0
0
0
0
0
0
0.008333
0.166667
144
7
48
20.571429
0.791667
0.145833
0
0
0
0
0
0
0
0
0
0
0
1
0
true
0
1
0
1
0.25
1
0
0
null
1
0
0
0
0
0
0
0
0
0
0
0
0
1
0
0
0
0
0
0
0
0
0
0
null
0
0
0
0
0
0
1
0
1
0
1
0
0
6
f55005f6eda0c8aeadd07c4aee7c84c8198766c5
11
py
Python
src/__init__.py
Peefy/StatisticalLearningMethod.Python
7324d51b58932052bc518b9e82f64b76f0c39bf0
[ "Apache-2.0" ]
1
2018-10-05T08:20:50.000Z
2018-10-05T08:20:50.000Z
src/__init__.py
Peefy/StatisticalLearningMethod.Python
7324d51b58932052bc518b9e82f64b76f0c39bf0
[ "Apache-2.0" ]
null
null
null
src/__init__.py
Peefy/StatisticalLearningMethod.Python
7324d51b58932052bc518b9e82f64b76f0c39bf0
[ "Apache-2.0" ]
null
null
null
# pdf.244
3.666667
9
0.545455
2
11
3
1
0
0
0
0
0
0
0
0
0
0
0.375
0.272727
11
2
10
5.5
0.375
0.636364
0
null
0
null
0
0
null
0
0
0
null
1
null
true
0
0
null
null
null
1
1
0
null
0
0
0
0
0
0
0
0
0
0
1
0
0
1
0
0
1
0
0
0
0
0
0
0
null
0
0
0
0
0
0
1
0
0
0
0
0
0
6
f56fadc40b0f5bac091cf8c15f4a134f11cb883f
49
py
Python
sfrmaker/test/test_nhdplus_utils.py
mnfienen/sfrmaker
f3ee175c67c80df15bff509235d9a6218bfc6b0b
[ "CC0-1.0" ]
17
2015-08-15T02:20:04.000Z
2020-04-30T17:36:21.000Z
sfrmaker/test/test_nhdplus_utils.py
rfrederiksen/sfrmaker
7e66d67d6cb0ad84fbb9994402f0baaf5b3fcd01
[ "CC0-1.0" ]
15
2015-03-04T16:57:13.000Z
2020-01-14T16:29:18.000Z
sfrmaker/test/test_nhdplus_utils.py
rfrederiksen/sfrmaker
7e66d67d6cb0ad84fbb9994402f0baaf5b3fcd01
[ "CC0-1.0" ]
9
2015-08-18T14:15:07.000Z
2020-04-28T18:45:21.000Z
# TODO: add unit tests for test_nhdplus_utils.py
24.5
48
0.795918
9
49
4.111111
1
0
0
0
0
0
0
0
0
0
0
0
0.142857
49
1
49
49
0.880952
0.938776
0
null
0
null
0
0
null
0
0
1
null
1
null
true
0
0
null
null
null
1
1
0
null
0
0
0
0
0
0
0
0
0
0
0
0
0
1
0
0
0
1
0
0
0
0
0
0
null
0
0
1
0
0
0
1
0
0
0
0
0
0
6
193b0ac325ef43006df164a8a14a3f901439a20c
185
py
Python
main_app/forms.py
reeshabhkumarranjan/SocPay
ba3f3ea0b7b814e1ca40293b14f192b6d40adbbd
[ "MIT" ]
null
null
null
main_app/forms.py
reeshabhkumarranjan/SocPay
ba3f3ea0b7b814e1ca40293b14f192b6d40adbbd
[ "MIT" ]
null
null
null
main_app/forms.py
reeshabhkumarranjan/SocPay
ba3f3ea0b7b814e1ca40293b14f192b6d40adbbd
[ "MIT" ]
null
null
null
from django.forms import ModelForm # class add_money_form(ModelForm): # class Meta: # model = Transaction # fields = ['transaction_user_2', 'transaction_amount']
20.555556
63
0.675676
20
185
6
0.8
0.233333
0
0
0
0
0
0
0
0
0
0.006993
0.227027
185
8
64
23.125
0.832168
0.745946
0
0
0
0
0
0
0
0
0
0
0
1
0
true
0
1
0
1
0
1
0
0
null
1
0
0
0
0
0
0
0
0
0
0
0
0
1
0
0
0
0
0
0
0
0
0
0
null
0
0
0
0
0
0
1
0
1
0
1
0
0
6
195268ef4f0f6c79ac3ca7cf1356d6b54616df26
31
py
Python
src/__init__.py
abdelsamea/DeTraC
2c94d55908285fc9cbb24086da63078ee917525a
[ "MIT" ]
1
2020-09-17T14:17:50.000Z
2020-09-17T14:17:50.000Z
src/__init__.py
arkkhanu/DeTraC_COVId19
ab03719b49a1a048f74f08600a6670f6757bbe60
[ "MIT" ]
null
null
null
src/__init__.py
arkkhanu/DeTraC_COVId19
ab03719b49a1a048f74f08600a6670f6757bbe60
[ "MIT" ]
1
2021-04-14T08:52:36.000Z
2021-04-14T08:52:36.000Z
import tools import frameworks
10.333333
17
0.870968
4
31
6.75
0.75
0
0
0
0
0
0
0
0
0
0
0
0.129032
31
2
18
15.5
1
0
0
0
0
0
0
0
0
0
0
0
0
1
0
true
0
1
0
1
0
1
1
0
null
0
0
0
0
0
0
0
0
0
0
0
0
0
1
0
0
0
0
0
0
0
0
0
0
null
0
0
0
0
0
0
1
0
1
0
1
0
0
6
19618fa1e0fd69bf4ce89b6dd9ce0cf4d5bdf4a2
33
py
Python
PosPy/__init__.py
richierh/PointofSalePy
54fc11b5f167d361c75b6b1cb890c7020393d46c
[ "Apache-2.0" ]
null
null
null
PosPy/__init__.py
richierh/PointofSalePy
54fc11b5f167d361c75b6b1cb890c7020393d46c
[ "Apache-2.0" ]
null
null
null
PosPy/__init__.py
richierh/PointofSalePy
54fc11b5f167d361c75b6b1cb890c7020393d46c
[ "Apache-2.0" ]
null
null
null
#!usr/bin/python import __main__
11
16
0.787879
5
33
4.4
1
0
0
0
0
0
0
0
0
0
0
0
0.090909
33
2
17
16.5
0.733333
0.454545
0
0
0
0
0
0
0
0
0
0
0
1
0
true
0
1
0
1
0
1
1
0
null
0
0
0
0
0
0
0
0
0
0
0
0
0
1
0
0
0
0
0
0
0
0
0
0
null
0
0
0
0
0
0
1
0
1
0
1
0
0
6
5fd5ed7c8159f71250918b127471e85178346d85
31
py
Python
utils_folder/__init__.py
codevideo/Airsim_Test
0b47665c67ba674d277fc8de58739a59648bb7eb
[ "MIT" ]
null
null
null
utils_folder/__init__.py
codevideo/Airsim_Test
0b47665c67ba674d277fc8de58739a59648bb7eb
[ "MIT" ]
null
null
null
utils_folder/__init__.py
codevideo/Airsim_Test
0b47665c67ba674d277fc8de58739a59648bb7eb
[ "MIT" ]
null
null
null
from .image_generator import *
15.5
30
0.806452
4
31
6
1
0
0
0
0
0
0
0
0
0
0
0
0.129032
31
1
31
31
0.888889
0
0
0
0
0
0
0
0
0
0
0
0
1
0
true
0
1
0
1
0
1
1
0
null
0
0
0
0
0
0
0
0
0
0
0
0
0
1
0
0
0
0
0
0
0
0
0
0
null
0
0
0
0
0
0
1
0
1
0
1
0
0
6
5fee310b12b10f820f272b0dba6075da741be40b
9,817
py
Python
nexusmaker/tests/test_CognateParser.py
SimonGreenhill/NexusMaker
12591bd4217bc1ba4477845e524083c2164df91a
[ "BSD-3-Clause" ]
null
null
null
nexusmaker/tests/test_CognateParser.py
SimonGreenhill/NexusMaker
12591bd4217bc1ba4477845e524083c2164df91a
[ "BSD-3-Clause" ]
2
2017-10-12T08:59:51.000Z
2021-05-31T00:37:16.000Z
nexusmaker/tests/test_CognateParser.py
SimonGreenhill/NexusMaker
12591bd4217bc1ba4477845e524083c2164df91a
[ "BSD-3-Clause" ]
1
2017-10-12T08:59:09.000Z
2017-10-12T08:59:09.000Z
import unittest from nexusmaker import CognateParser class TestCognateParser(unittest.TestCase): def test_simple(self): self.assertEqual(CognateParser().parse_cognate('1'), ['1']) self.assertEqual(CognateParser().parse_cognate('10'), ['10']) self.assertEqual(CognateParser().parse_cognate('100'), ['100']) self.assertEqual(CognateParser().parse_cognate('111'), ['111']) def test_subset(self): self.assertEqual(CognateParser().parse_cognate('1,2'), ['1', '2']) self.assertEqual(CognateParser().parse_cognate('1 , 2'), ['1', '2']) def test_dubious(self): self.assertEqual(CognateParser().parse_cognate('1?'), ['u_1']) self.assertEqual(CognateParser().parse_cognate('?'), ['u_1']) def test_dubious_subset(self): self.assertEqual(CognateParser().parse_cognate('1, 2?'), ['1']) self.assertEqual(CognateParser().parse_cognate('1?, 2'), ['2']) self.assertEqual(CognateParser().parse_cognate('91?, 42'), ['42']) self.assertEqual(CognateParser().parse_cognate('?, 31'), ['31']) # note that both of these are dubious, should become a unique # state instead self.assertEqual(CognateParser().parse_cognate('1?, 2?'), ['u_1']) def test_bad_entries_uniques(self): # coded as x self.assertEqual(CognateParser(uniques=True).parse_cognate('X'), ['u_1']) self.assertEqual(CognateParser(uniques=True).parse_cognate('x'), ['u_1']) def test_bad_entries_in_forms_uniques(self): # coded as x self.assertEqual(CognateParser(uniques=True).parse_cognate('X20'), ['u_1']) self.assertEqual(CognateParser(uniques=True).parse_cognate('x20'), ['u_1']) def test_bad_entries_nouniques(self): self.assertEqual(CognateParser(uniques=False).parse_cognate('X'), []) self.assertEqual(CognateParser(uniques=False).parse_cognate('x'), []) def test_s_entries_uniques(self): # entries that are in the wrong word (e.g. you sg. not you pl.) self.assertEqual(CognateParser(uniques=True).parse_cognate('s'), ['u_1']) def test_s_entries_nouniques(self): # entries that are in the wrong word (e.g. you sg. not you pl.) self.assertEqual(CognateParser(uniques=False).parse_cognate('s'), []) def test_empty_entries(self): with self.assertRaises(ValueError): CognateParser(uniques=False).parse_cognate(',,') def test_is_unique_cognateset(self): self.assertEqual(CognateParser().is_unique_cognateset('u_1'), True) self.assertEqual( CognateParser().is_unique_cognateset('u_1', labelled=False), True ) self.assertEqual( CognateParser().is_unique_cognateset('hand_u_1', labelled=False), False ) self.assertEqual( CognateParser().is_unique_cognateset('hand_u_1', labelled=True), True ) def test_add_unique(self): CP = CognateParser() self.assertEqual(CP.parse_cognate(''), ['u_1']) self.assertEqual(CP.parse_cognate(''), ['u_2']) self.assertEqual(CP.parse_cognate(''), ['u_3']) self.assertEqual(CP.parse_cognate(''), ['u_4']) def test_no_uniques(self): CP = CognateParser(uniques=False) self.assertEqual(CP.parse_cognate(''), []) self.assertEqual(CP.parse_cognate(''), []) self.assertEqual(CP.parse_cognate(''), []) def test_dubious_with_no_strict(self): self.assertEqual(CognateParser(strict=False).parse_cognate('1?'), ['1']) self.assertEqual(CognateParser(strict=False).parse_cognate('1, 2?'), ['1', '2']) def test_null(self): self.assertEqual(CognateParser().parse_cognate(None), ['u_1']) def test_bad_cog_int(self): with self.assertRaises(ValueError): CognateParser().parse_cognate(1) def test_complicated_strict_unique(self): CP = CognateParser(strict=True, uniques=True) # # 3. right # Maori katau 5, 40 # Maori matau 5 # South Island Maori tika self.assertEqual(CP.parse_cognate('5, 40'), ['5', '40']) self.assertEqual(CP.parse_cognate('5'), ['5']) self.assertEqual(CP.parse_cognate(''), ['u_1']) # # 8. turn # Maori huri 15 # South Island Maori tahuli 15 # South Island Maori tahuri to turn, to turn around 15 self.assertEqual(CP.parse_cognate('15'), ['15']) self.assertEqual(CP.parse_cognate('15'), ['15']) self.assertEqual(CP.parse_cognate('15'), ['15']) # # 20. to know # Maori moohio 52 # South Island Maori matau 1 # South Island Maori mohio to know 52 # South Island Maori ara to know, to awake self.assertEqual(CP.parse_cognate('52'), ['52']) self.assertEqual(CP.parse_cognate('1'), ['1']) self.assertEqual(CP.parse_cognate('52'), ['52']) self.assertEqual(CP.parse_cognate(''), ["u_2"]) # # 36: to spit # Maori tuha 19, 34? # South Island Maori huare 18 # South Island Maori tuha to expectorate, to spit 19, 34? self.assertEqual(CP.parse_cognate('19, 34?'), ['19']) self.assertEqual(CP.parse_cognate('18'), ['18']) self.assertEqual(CP.parse_cognate('19, 34?'), ['19']) def test_complicated_nostrict_unique(self): CP = CognateParser(strict=False, uniques=True) # # 3. right # Maori katau 5, 40 # Maori matau 5 # South Island Maori tika self.assertEqual(CP.parse_cognate('5, 40'), ['5', '40']) self.assertEqual(CP.parse_cognate('5'), ['5']) self.assertEqual(CP.parse_cognate(''), ['u_1']) # # 8. turn # Maori huri 15 # South Island Maori tahuli 15 # South Island Maori tahuri to turn, to turn around 15 self.assertEqual(CP.parse_cognate('15'), ['15']) self.assertEqual(CP.parse_cognate('15'), ['15']) self.assertEqual(CP.parse_cognate('15'), ['15']) # # 20. to know # Maori moohio 52 # South Island Maori matau 1 # South Island Maori mohio to know 52 # South Island Maori ara to know, to awake self.assertEqual(CP.parse_cognate('52'), ['52']) self.assertEqual(CP.parse_cognate('1'), ['1']) self.assertEqual(CP.parse_cognate('52'), ['52']) self.assertEqual(CP.parse_cognate(''), ["u_2"]) # # 36: to spit # Maori tuha 19, 34? # South Island Maori huare 18 # South Island Maori tuha to expectorate, to spit 19, 34? self.assertEqual(CP.parse_cognate('19, 34?'), ['19', '34']) self.assertEqual(CP.parse_cognate('18'), ['18']) self.assertEqual(CP.parse_cognate('19, 34?'), ['19', '34']) def test_complicated_nostrict_nounique(self): CP = CognateParser(strict=False, uniques=False) # # 3. right # Maori katau 5, 40 # Maori matau 5 # South Island Maori tika self.assertEqual(CP.parse_cognate('5, 40'), ['5', '40']) self.assertEqual(CP.parse_cognate('5'), ['5']) self.assertEqual(CP.parse_cognate(''), []) # # 8. turn # Maori huri 15 # South Island Maori tahuli 15 # South Island Maori tahuri to turn, to turn around 15 self.assertEqual(CP.parse_cognate('15'), ['15']) self.assertEqual(CP.parse_cognate('15'), ['15']) self.assertEqual(CP.parse_cognate('15'), ['15']) # # 20. to know # Maori moohio 52 # South Island Maori matau 1 # South Island Maori mohio to know 52 # South Island Maori ara to know, to awake self.assertEqual(CP.parse_cognate('52'), ['52']) self.assertEqual(CP.parse_cognate('1'), ['1']) self.assertEqual(CP.parse_cognate('52'), ['52']) self.assertEqual(CP.parse_cognate(''), []) # # 36: to spit # Maori tuha 19, 34? # South Island Maori huare 18 # South Island Maori tuha to expectorate, to spit 19, 34? self.assertEqual(CP.parse_cognate('19, 34?'), ['19', '34']) self.assertEqual(CP.parse_cognate('18'), ['18']) self.assertEqual(CP.parse_cognate('19, 34?'), ['19', '34']) def test_complicated_with_slash(self): CP = CognateParser(strict=True, uniques=True) self.assertEqual(CP.parse_cognate('53/54'), ['53', '54']) def test_combined_cognate(self): self.assertEqual(CognateParser().parse_cognate('1a'), ['1', '1a']) self.assertEqual(CognateParser().parse_cognate('2b'), ['2', '2b']) self.assertEqual(CognateParser().parse_cognate('3az'), ['3', '3az']) self.assertEqual(CognateParser().parse_cognate('45c'), ['45', '45c']) self.assertEqual(CognateParser().parse_cognate('1a,2b'), ['1', '1a', '2', '2b']) def test_trailing_dash(self): with self.assertRaises(ValueError): CognateParser().parse_cognate('1-') def test_semicolon(self): with self.assertRaises(ValueError): CognateParser().parse_cognate('2, 63; 87') def test_sorting(self): self.assertEqual(CognateParser(sort=True).parse_cognate('2, 1'), ['1', '2']) self.assertEqual(CognateParser(sort=False).parse_cognate('2, 1'), ['2', '1'])
44.220721
88
0.581237
1,143
9,817
4.843395
0.112861
0.222182
0.144328
0.186777
0.864342
0.801481
0.719653
0.651734
0.582731
0.574603
0
0.049889
0.266986
9,817
221
89
44.420814
0.719427
0.192727
0
0.418605
0
0
0.051687
0
0
0
0
0
0.666667
1
0.186047
false
0
0.015504
0
0.209302
0
0
0
0
null
1
0
1
1
1
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
null
0
0
0
1
0
0
0
0
0
0
0
0
0
6
2717b6d6d414bb9ece4ff0a008bac03ea5586ef2
27
py
Python
api/web/__init__.py
AutoCoinDCF/NEW_API
f4abc48fff907a0785372b941afcd67e62eec825
[ "Apache-2.0" ]
null
null
null
api/web/__init__.py
AutoCoinDCF/NEW_API
f4abc48fff907a0785372b941afcd67e62eec825
[ "Apache-2.0" ]
null
null
null
api/web/__init__.py
AutoCoinDCF/NEW_API
f4abc48fff907a0785372b941afcd67e62eec825
[ "Apache-2.0" ]
null
null
null
from .webapi import WebAPI
13.5
26
0.814815
4
27
5.5
0.75
0
0
0
0
0
0
0
0
0
0
0
0.148148
27
1
27
27
0.956522
0
0
0
0
0
0
0
0
0
0
0
0
1
0
true
0
1
0
1
0
1
1
0
null
0
0
0
0
0
0
0
0
0
0
0
0
0
1
0
0
0
0
0
0
0
0
0
0
null
0
0
0
0
0
0
1
0
1
0
1
0
0
6
2726aff9726f405364127c08f5f1c2bf93aa5997
91
py
Python
src/rocket/stage2/src/errors/src/SensorOverload.py
proballstar/atlas
6e4eb36b7e43e750dbb281c2051439198c82f296
[ "MIT" ]
null
null
null
src/rocket/stage2/src/errors/src/SensorOverload.py
proballstar/atlas
6e4eb36b7e43e750dbb281c2051439198c82f296
[ "MIT" ]
null
null
null
src/rocket/stage2/src/errors/src/SensorOverload.py
proballstar/atlas
6e4eb36b7e43e750dbb281c2051439198c82f296
[ "MIT" ]
null
null
null
def init(): # @TODO(aaronhma): UPDATE def catchErrors(): # @TODO(aaronhma): UPDATE
18.2
29
0.626374
10
91
5.7
0.6
0.421053
0.631579
0
0
0
0
0
0
0
0
0
0.197802
91
5
30
18.2
0.780822
0.516484
0
0
0
0
0
0
0
0
0
0.2
0
0
null
null
0
0
null
null
0
1
0
0
null
1
1
0
0
0
0
0
0
0
0
0
0
0
1
0
0
0
0
0
0
0
0
0
0
null
0
0
1
0
1
0
0
0
0
0
0
0
0
6
2775121ab7502b6919cf78437931035cd8b7a2d9
158
py
Python
src/onegov/user/auth/clients/__init__.py
politbuero-kampagnen/onegov-cloud
20148bf321b71f617b64376fe7249b2b9b9c4aa9
[ "MIT" ]
null
null
null
src/onegov/user/auth/clients/__init__.py
politbuero-kampagnen/onegov-cloud
20148bf321b71f617b64376fe7249b2b9b9c4aa9
[ "MIT" ]
null
null
null
src/onegov/user/auth/clients/__init__.py
politbuero-kampagnen/onegov-cloud
20148bf321b71f617b64376fe7249b2b9b9c4aa9
[ "MIT" ]
null
null
null
from onegov.user.auth.clients.kerberos import KerberosClient from onegov.user.auth.clients.ldap import LDAPClient __all__ = ('KerberosClient', 'LDAPClient')
31.6
60
0.816456
19
158
6.578947
0.578947
0.16
0.224
0.288
0.4
0
0
0
0
0
0
0
0.082278
158
4
61
39.5
0.862069
0
0
0
0
0
0.151899
0
0
0
0
0
0
1
0
false
0
0.666667
0
0.666667
0
1
0
0
null
0
1
1
0
0
0
0
0
0
0
0
0
0
1
0
0
0
0
0
0
0
0
0
0
null
0
0
0
0
0
0
0
0
1
0
1
0
0
6
27abe035638fda37c09ec1990dca44e2161d8667
30
py
Python
onepassword/__init__.py
jemmyw/1pass
8dbfa5e062ce08e26c5619dbdb2b27323e5b3dc9
[ "MIT" ]
1
2016-11-14T22:16:48.000Z
2016-11-14T22:16:48.000Z
onepassword/__init__.py
elliotchance/1pass
4bd45a52476c410c6e5b51f90fd46cbdd436807f
[ "MIT" ]
null
null
null
onepassword/__init__.py
elliotchance/1pass
4bd45a52476c410c6e5b51f90fd46cbdd436807f
[ "MIT" ]
null
null
null
from keychain import Keychain
15
29
0.866667
4
30
6.5
0.75
0
0
0
0
0
0
0
0
0
0
0
0.133333
30
1
30
30
1
0
0
0
0
0
0
0
0
0
0
0
0
1
0
true
0
1
0
1
0
1
1
0
null
0
0
0
0
0
0
0
0
0
0
0
0
0
1
0
0
0
0
0
0
0
0
0
0
null
0
0
0
0
0
0
1
0
1
0
1
0
0
6
fd9dfebdc3992ce7b8a849f7cc5d3d65ff09d8f0
352
py
Python
src/tweetvalidator/data_processing/__init__.py
JoshuaGRubin/AI-Tweet-Validator
c011b08163cfd322c637c2296dab7ae41a64ae71
[ "MIT" ]
5
2019-06-27T02:18:08.000Z
2020-03-09T22:03:09.000Z
src/tweetvalidator/data_processing/__init__.py
JoshuaGRubin/AI-Tweet-Validator
c011b08163cfd322c637c2296dab7ae41a64ae71
[ "MIT" ]
11
2020-01-28T22:50:34.000Z
2022-02-10T00:31:21.000Z
src/tweetvalidator/data_processing/__init__.py
JoshuaGRubin/AI-Text-Validator
c011b08163cfd322c637c2296dab7ae41a64ae71
[ "MIT" ]
1
2020-02-21T03:38:12.000Z
2020-02-21T03:38:12.000Z
#!/usr/bin/env python3 # -*- coding: utf-8 -*- from .filter_tweets import filter_tweets_from_directories from .filter_tweets import filter_tweets_from_files from .download_tweets import get_tweets_by_user from .embed_tweets import SentenceEncoder from .embed_tweets import embed_tweets_from_file from .embed_tweets import embed_tweets_from_directories
39.111111
57
0.855114
52
352
5.384615
0.384615
0.257143
0.160714
0.225
0.528571
0.528571
0.528571
0
0
0
0
0.006231
0.088068
352
8
58
44
0.866044
0.122159
0
0
0
0
0
0
0
0
0
0
0
1
0
true
0
1
0
1
0
0
0
0
null
1
0
1
0
0
0
0
0
0
0
0
0
0
1
0
0
0
0
0
0
0
0
0
0
null
0
0
0
0
0
0
1
0
1
0
1
0
0
6
8bf7c2002c8b113a9de4b7623d703ed3f154d1fb
118
py
Python
code/super_minitaur/script/lpmslib/lputils.py
buenos-dan/quadrupedal_robot
605054c027e20b83e347f2aa175c03c965e72983
[ "MIT" ]
5
2019-03-22T06:39:42.000Z
2021-07-27T13:56:45.000Z
code/super_minitaur/script/lpmslib/lputils.py
buenos-dan/quadrupedal_robot
605054c027e20b83e347f2aa175c03c965e72983
[ "MIT" ]
null
null
null
code/super_minitaur/script/lpmslib/lputils.py
buenos-dan/quadrupedal_robot
605054c027e20b83e347f2aa175c03c965e72983
[ "MIT" ]
2
2021-02-16T09:52:04.000Z
2021-11-30T12:12:55.000Z
#helpers def logd(tag, msg): print "[Debug-"+tag+"]", msg def loge(tag, msg): print "[Error-"+tag+"]", msg
13.111111
32
0.550847
17
118
3.823529
0.529412
0.369231
0.338462
0
0
0
0
0
0
0
0
0
0.20339
118
8
33
14.75
0.691489
0.059322
0
0
0
0
0.148148
0
0
0
0
0
0
0
null
null
0
0
null
null
0.5
1
0
0
null
1
1
0
0
0
0
0
0
0
0
0
0
0
1
0
0
0
0
0
0
0
0
0
0
null
0
0
0
0
1
0
0
0
0
0
0
1
0
6
e300c54c781958b660c0d153f40329e21fe52fd9
6,539
py
Python
three_d_resnet_builder/builder.py
thauptmann/3D-ResNet-for-Keras
ac1b8b3d0032c9af832cc945bc57a63106366e54
[ "MIT" ]
4
2021-05-23T09:30:40.000Z
2021-12-29T16:14:46.000Z
three_d_resnet_builder/builder.py
thauptmann/3D-ResNet-for-Keras
ac1b8b3d0032c9af832cc945bc57a63106366e54
[ "MIT" ]
3
2021-06-24T09:26:58.000Z
2022-01-06T11:01:59.000Z
three_d_resnet_builder/builder.py
thauptmann/3D-ResNet-for-Keras
ac1b8b3d0032c9af832cc945bc57a63106366e54
[ "MIT" ]
3
2021-06-07T18:11:34.000Z
2021-12-22T01:57:03.000Z
from . import three_D_resnet from .kernel import get_kernel_to_name def build_three_d_resnet(input_shape, output_shape, repetitions, output_activation, regularizer=None, squeeze_and_excitation=False, use_bottleneck=False, kernel_size=3, kernel_name='3D'): """Return a full customizable resnet. :param input_shape: The input shape of the network as (frames, height, width, channel) :param output_shape: The output shape. Dependant on the task of the network. :param repetitions: Define the repetitions of the Residual Blocks e.g. (2, 2, 2, 2) for ResNet-18 :param output_activation: Define the used output activation. Also depends on the task of the network. :param regularizer: Define the regularizer to use. E.g. "l1" or "l2" :param squeeze_and_excitation: Activate or deactivate SE-Paths. :param use_bottleneck: Activate bottleneck layers. Recommended for networks with many layers. :param kernel_size: Set the kernel size. Don't need to be changes in almost all cases. It's just exist for customization purposes. :param kernel_name: :return: Return the built network. """ conv_kernel = get_kernel_to_name(kernel_name) return three_D_resnet.ThreeDConvolutionResNet(input_shape, output_shape, repetitions, output_activation, regularizer, squeeze_and_excitation, use_bottleneck, kernel_size, kernel=conv_kernel) def build_three_d_resnet_18(input_shape, output_shape, output_activation, regularizer=None, squeeze_and_excitation=False, kernel_name='3D'): """Return a customizable resnet_18. :param input_shape: The input shape of the network as (frames, height, width, channel) :param output_shape: The output shape. Dependant on the task of the network. :param output_activation: Define the used output activation. Also depends on the task of the network. :param regularizer: Defines the regularizer to use. E.g. "l1" or "l2" :param squeeze_and_excitation:Activate or deactivate SE-Paths. :param kernel_name: :return: The built ResNet-18 """ conv_kernel = get_kernel_to_name(kernel_name) return three_D_resnet.ThreeDConvolutionResNet(input_shape, output_shape, output_activation, (2, 2, 2, 2), regularizer, squeeze_and_excitation, kernel=conv_kernel) def build_three_d_resnet_34(input_shape, output_shape, output_activation, regularizer=None, squeeze_and_excitation=False, kernel_name='3D'): """Return a customizable resnet_34. :param input_shape: The input shape of the network as (frames, height, width, channel) :param output_shape: The output shape. Dependant on the task of the network. :param output_activation: Define the used output activation. Also depends on the task of the network. :param regularizer: Defines the regularizer to use. E.g. "l1" or "l2" :param squeeze_and_excitation:Activate or deactivate SE-Paths. :param kernel_name: :return: The built ResNet-34 """ conv_kernel = get_kernel_to_name(kernel_name) return three_D_resnet.ThreeDConvolutionResNet(input_shape, output_shape, output_activation, (3, 4, 6, 3), regularizer, squeeze_and_excitation, kernel=conv_kernel) def build_three_d_resnet_50(input_shape, output_shape, output_activation, regularizer=None, squeeze_and_excitation=False, kernel_name='3D'): """Return a customizable resnet_50. :param input_shape: The input shape of the network as (frames, height, width, channels) :param output_shape: The output shape. Dependant on the task of the network. :param output_activation: Define the used output activation. Also depends on the task of the network. :param regularizer: Defines the regularizer to use. E.g. "l1" or "l2" :param squeeze_and_excitation:Activate or deactivate SE-Paths. :param kernel_name: :return: The built ResNet-50 """ conv_kernel = get_kernel_to_name(kernel_name) return three_D_resnet.ThreeDConvolutionResNet(input_shape, output_shape, output_activation, (3, 4, 6, 3), regularizer, squeeze_and_excitation, use_bottleneck=True, kernel=conv_kernel) def build_three_d_resnet_102(input_shape, output_shape, output_activation, regularizer=None, squeeze_and_excitation=False, kernel_name='3D'): """Return a customizable resnet_102. :param input_shape: The input shape of the network as (frames, height, width, channel) :param output_shape: The output shape. Dependant on the task of the network. :param output_activation: Define the used output activation. Also depends on the task of the network. :param regularizer: Defines the regularizer to use. E.g. "l1" or "l2" :param squeeze_and_excitation:Activate or deactivate SE-Paths. :param kernel_name: :return: The built ResNet-102 """ conv_kernel = get_kernel_to_name(kernel_name) return three_D_resnet.ThreeDConvolutionResNet(input_shape, output_shape, output_activation, (3, 4, 23, 3), regularizer, squeeze_and_excitation, use_bottleneck=True, kernel=conv_kernel) def build_three_d_resnet_152(input_shape, output_shape, output_activation, regularizer=None, squeeze_and_excitation=False, kernel_name='3D'): """ Return a customizable resnet_152 :param input_shape: The input shape of the network as (frames, height, width, channel) :param output_shape: The output shape. Dependant on the task of the network. :param output_activation: Define the used output activation. Also depends on the task of the network. :param regularizer: Defines the regularizer to use. E.g. "l1" or "l2" :param squeeze_and_excitation:Activate or deactivate SE-Paths. :param kernel_name: :return: The built ResNet-152 """ conv_kernel = get_kernel_to_name(kernel_name) return three_D_resnet.ThreeDConvolutionResNet(input_shape, output_shape, output_activation, (3, 8, 36, 3), regularizer, squeeze_and_excitation, use_bottleneck=True, kernel=conv_kernel)
57.867257
115
0.692002
850
6,539
5.097647
0.114118
0.055389
0.083083
0.058158
0.89453
0.88553
0.877914
0.877914
0.840526
0.840526
0
0.016663
0.238263
6,539
112
116
58.383929
0.853242
0.493348
0
0.611111
0
0
0.003913
0
0
0
0
0
0
1
0.166667
false
0
0.055556
0
0.388889
0
0
0
0
null
0
0
0
1
1
1
1
1
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
null
0
0
0
0
0
0
0
0
0
0
0
0
0
6
e323ed5e92eb5da83c0443afabf48a5b468396f3
176
py
Python
gd/utils/crypto/__init__.py
scottwedge/gd.py
328c9833abc949b1c9ac0eabe276bd66fead4c2c
[ "MIT" ]
null
null
null
gd/utils/crypto/__init__.py
scottwedge/gd.py
328c9833abc949b1c9ac0eabe276bd66fead4c2c
[ "MIT" ]
null
null
null
gd/utils/crypto/__init__.py
scottwedge/gd.py
328c9833abc949b1c9ac0eabe276bd66fead4c2c
[ "MIT" ]
null
null
null
"""Main module for operating on crypted/encoded strings in Geometry Dash""" from gd.utils.crypto.coders import Coder from gd.utils.crypto.xor_cipher import XORCipher as xor
44
76
0.795455
28
176
4.964286
0.785714
0.086331
0.158273
0.244604
0
0
0
0
0
0
0
0
0.130682
176
3
77
58.666667
0.908497
0.392045
0
0
0
0
0
0
0
0
0
0
0
1
0
true
0
1
0
1
0
1
0
0
null
0
0
1
0
0
0
0
0
0
0
0
0
0
1
0
0
0
0
0
0
0
0
0
0
null
0
0
0
0
0
0
1
0
1
0
1
0
0
6
e33da7e662f4c2fc76532c7c89e8edb38e2cccee
96
py
Python
venv/lib/python3.8/site-packages/filelock/_error.py
GiulianaPola/select_repeats
17a0d053d4f874e42cf654dd142168c2ec8fbd11
[ "MIT" ]
2
2022-03-13T01:58:52.000Z
2022-03-31T06:07:54.000Z
venv/lib/python3.8/site-packages/filelock/_error.py
DesmoSearch/Desmobot
b70b45df3485351f471080deb5c785c4bc5c4beb
[ "MIT" ]
19
2021-11-20T04:09:18.000Z
2022-03-23T15:05:55.000Z
venv/lib/python3.8/site-packages/filelock/_error.py
DesmoSearch/Desmobot
b70b45df3485351f471080deb5c785c4bc5c4beb
[ "MIT" ]
null
null
null
/home/runner/.cache/pip/pool/ab/0b/2c/7ae80e56fd2208fbee5ef317ac009972f468b5601f62f8f799f9d9279a
96
96
0.895833
9
96
9.555556
1
0
0
0
0
0
0
0
0
0
0
0.40625
0
96
1
96
96
0.489583
0
0
0
0
0
0
0
0
1
0
0
0
0
null
null
0
0
null
null
0
1
0
0
null
0
0
0
0
0
0
0
0
0
0
1
0
0
1
0
0
1
0
0
0
0
0
0
0
null
1
0
0
0
1
0
0
0
0
0
0
0
0
6
8b6db37566c6d60a2bd9e55330800dc0a7ad705e
8,558
py
Python
tests/test_simba.py
SIMBAChain/libsimba.py-platform
a815105a5ed84564c7eafbe01281473cebfb44e5
[ "MIT" ]
null
null
null
tests/test_simba.py
SIMBAChain/libsimba.py-platform
a815105a5ed84564c7eafbe01281473cebfb44e5
[ "MIT" ]
2
2022-02-25T05:03:13.000Z
2022-03-09T13:56:56.000Z
tests/test_simba.py
SIMBAChain/libsimba.py-platform
a815105a5ed84564c7eafbe01281473cebfb44e5
[ "MIT" ]
null
null
null
import unittest from unittest.mock import patch from libsimba.simba import Simba class TestSimba(unittest.TestCase): def setUp(self): self.simba = Simba() patcher_send = patch("libsimba.simba_request.SimbaRequest.send") patcher_init = patch("libsimba.simba_request.SimbaRequest.__init__") self.addCleanup(patcher_send.stop) self.addCleanup(patcher_init.stop) self.mock_send = patcher_send.start() self.mock_init = patcher_init.start() self.mock_init.return_value = None def test_submit_transaction_by_address(self): resp = self.simba.submit_transaction_by_address( "app_id", "contract", "identifier", "method", {"key": "value"}, ) self.mock_send.assert_called_once_with(headers={}, json_payload={"key": "value"}) self.mock_init.assert_called_once_with( '/v2/apps/app_id/contract/contract/address/identifier/method/', {}, method='POST') def test_submit_transaction_by_address_with_params(self): resp = self.simba.submit_transaction_by_address( "app_id", "contract", "identifier", "method", {"key": "value"}, query_args={"bob": "boby"}, sender_address="0x1773", ) self.mock_send.assert_called_once_with( headers={'txn-sender': '0x1773'}, json_payload={"key": "value"}) self.mock_init.assert_called_once_with( '/v2/apps/app_id/contract/contract/address/identifier/method/', {"bob": "boby"}, method='POST') def test_submit_transaction_by_asset(self): resp = self.simba.submit_transaction_by_asset( "app_id", "contract", "identifier", "method", {"key": "value"}, ) self.mock_send.assert_called_once_with(headers={}, json_payload={"key": "value"}) self.mock_init.assert_called_once_with( '/v2/apps/app_id/contract/contract/asset/identifier/method/', {}, method='POST') def test_submit_transaction_by_asset_with_params(self): resp = self.simba.submit_transaction_by_asset( "app_id", "contract", "identifier", "method", {"key": "value"}, query_args={"bob": "boby"}, sender_address="0x1773", ) self.mock_send.assert_called_once_with( headers={'txn-sender': '0x1773'}, json_payload={"key": "value"}) self.mock_init.assert_called_once_with( '/v2/apps/app_id/contract/contract/asset/identifier/method/', {"bob": "boby"}, method='POST') def test_submit_contract_method(self): resp = self.simba.submit_contract_method( "app_id", "contract", "method", {"key": "value"}, ) self.mock_send.assert_called_once_with(headers={}, json_payload={"key": "value"}) self.mock_init.assert_called_once_with( '/v2/apps/app_id/contract/contract/method/', {}, method='POST') def test_submit_contract_method_with_params(self): resp = self.simba.submit_contract_method( "app_id", "contract", "method", {"key": "value"}, query_args={"bob": "boby"}, sender_address="0x1773", ) self.mock_send.assert_called_once_with( headers={'txn-sender': '0x1773'}, json_payload={"key": "value"}) self.mock_init.assert_called_once_with( '/v2/apps/app_id/contract/contract/method/', {"bob": "boby"}, method='POST') def test_submit_transaction_by_address_async(self): resp = self.simba.submit_transaction_by_address_async( "app_id", "contract", "identifier", "method", {"key": "value"}, ) self.mock_send.assert_called_once_with(headers={}, json_payload={"key": "value"}) self.mock_init.assert_called_once_with( '/v2/apps/app_id/async/contract/contract/address/identifier/method/', {}, method='POST') def test_submit_transaction_by_address_async_with_params(self): resp = self.simba.submit_transaction_by_address_async( "app_id", "contract", "identifier", "method", {"key": "value"}, query_args={"bob": "boby"}, sender_address="0x1773", ) self.mock_send.assert_called_once_with( headers={'txn-sender': '0x1773'}, json_payload={"key": "value"}) self.mock_init.assert_called_once_with( '/v2/apps/app_id/async/contract/contract/address/identifier/method/', {"bob": "boby"}, method='POST') def test_submit_transaction_by_asset_async(self): resp = self.simba.submit_transaction_by_asset_async( "app_id", "contract", "identifier", "method", {"key": "value"}, ) self.mock_send.assert_called_once_with(headers={}, json_payload={"key": "value"}) self.mock_init.assert_called_once_with( '/v2/apps/app_id/async/contract/contract/asset/identifier/method/', {}, method='POST') def test_submit_transaction_by_asset_async_with_params(self): resp = self.simba.submit_transaction_by_asset_async( "app_id", "contract", "identifier", "method", {"key": "value"}, query_args={"bob": "boby"}, sender_address="0x1773", ) self.mock_send.assert_called_once_with( headers={'txn-sender': '0x1773'}, json_payload={"key": "value"}) self.mock_init.assert_called_once_with( '/v2/apps/app_id/async/contract/contract/asset/identifier/method/', {"bob": "boby"}, method='POST') def test_submit_contract_method_async(self): resp = self.simba.submit_contract_method_async( "app_id", "contract", "method", {"key": "value"}, ) self.mock_send.assert_called_once_with(headers={}, json_payload={"key": "value"}) self.mock_init.assert_called_once_with( '/v2/apps/app_id/async/contract/contract/method/', {}, method='POST') def test_submit_contract_method_async_with_params(self): resp = self.simba.submit_contract_method_async( "app_id", "contract", "method", {"key": "value"}, query_args={"bob": "boby"}, sender_address="0x1773", ) self.mock_send.assert_called_once_with( headers={'txn-sender': '0x1773'}, json_payload={"key": "value"}) self.mock_init.assert_called_once_with( '/v2/apps/app_id/async/contract/contract/method/', {"bob": "boby"}, method='POST') def test_create_contract_instance(self): resp = self.simba.create_contract_instance( "app_id", "contract", ) self.mock_send.assert_called_once_with(headers={}) self.mock_init.assert_called_once_with( '/v2/apps/app_id/new/contract/', {}, method='POST') def test_create_contract_instance_with_params(self): resp = self.simba.create_contract_instance( "app_id", "contract", query_args={"bob": "boby"}, sender_address="0x1773", ) self.mock_send.assert_called_once_with( headers={'txn-sender': '0x1773'}) self.mock_init.assert_called_once_with( '/v2/apps/app_id/new/contract/', {"bob": "boby"}, method='POST') def test_submit_signed_transaction(self): resp = self.simba.submit_signed_transaction( "app_id", "tnx-id", {"txn": "data"}, ) self.mock_send.assert_called_once_with(json_payload={'transaction': {'txn': 'data'}}) self.mock_init.assert_called_once_with( '/v2/apps/app_id/transactions/tnx-id/', {}, method='POST') def test_submit_signed_transaction_with_params(self): resp = self.simba.submit_signed_transaction( "app_id", "tnx-id", {"txn": "data"}, query_args={"bob": "boby"}, ) self.mock_send.assert_called_once_with(json_payload={'transaction': {'txn': 'data'}}) self.mock_init.assert_called_once_with( '/v2/apps/app_id/transactions/tnx-id/', {'bob': 'boby'}, method='POST')
38.9
113
0.592545
950
8,558
4.991579
0.066316
0.059047
0.107971
0.134964
0.93062
0.915015
0.905947
0.872628
0.862294
0.849431
0
0.013692
0.266067
8,558
219
114
39.077626
0.741283
0
0
0.680203
0
0
0.21391
0.103565
0
0
0.009819
0
0.162437
1
0.086294
false
0
0.015228
0
0.106599
0
0
0
0
null
0
0
0
1
1
1
1
1
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
null
0
0
0
0
0
0
0
0
0
0
0
0
0
6
8b85c3050d99d93fcfb7dcf610efc1fcee13814c
6,645
py
Python
src/werdich_cfr/code_not_used/Shinichi_3D_Inception_Model.py
awerdich/werdich-cfr
39d9a7f05d0a92304a6dd60df0124068735222ad
[ "MIT" ]
null
null
null
src/werdich_cfr/code_not_used/Shinichi_3D_Inception_Model.py
awerdich/werdich-cfr
39d9a7f05d0a92304a6dd60df0124068735222ad
[ "MIT" ]
null
null
null
src/werdich_cfr/code_not_used/Shinichi_3D_Inception_Model.py
awerdich/werdich-cfr
39d9a7f05d0a92304a6dd60df0124068735222ad
[ "MIT" ]
null
null
null
def inception_module(x,filters_1x1,filters_3x3_reduce,filters_3x3,filters_5x5_reduce,filters_5x5,filters_pool_proj,trainable=True): conv_1x1 = Conv3D(filters_1x1, (1,1,1), padding='same', activation='relu',kernel_initializer=kernel_init, bias_initializer=bias_init,trainable=trainable)(x) conv_3x3 = Conv3D(filters_3x3_reduce, (1,1,1), padding='same', activation='relu',kernel_initializer=kernel_init, bias_initializer=bias_init,trainable=trainable)(x) conv_1x1 = BatchNormalization(scale=False,trainable=trainable)(conv_1x1) conv_3x3 = BatchNormalization(scale=False,trainable=trainable)(conv_3x3) conv_3x3 = Conv3D(filters_3x3, (3,3,3), padding='same', activation='relu',kernel_initializer=kernel_init, bias_initializer=bias_init,trainable=trainable)(conv_3x3) conv_3x3 = BatchNormalization(scale=False,trainable=trainable)(conv_3x3) conv_5x5 = Conv3D(filters_5x5_reduce, (1,1,1), padding='same', activation='relu',kernel_initializer=kernel_init, bias_initializer=bias_init,trainable=trainable)(x) conv_5x5 = BatchNormalization(scale=False,trainable=trainable)(conv_5x5) conv_5x5 = Conv3D(filters_5x5, (3,3,3),strides=(1,1,1), padding='same', activation='relu',kernel_initializer=kernel_init, bias_initializer=bias_init,trainable=trainable)(conv_5x5) conv_5x5 = BatchNormalization(scale=False,trainable=trainable)(conv_5x5) conv_5x5 = Conv3D(filters_5x5, (3,3,3),strides=(1,1,1), padding='same', activation='relu',kernel_initializer=kernel_init, bias_initializer=bias_init,trainable=trainable)(conv_5x5) #conv_7x7 = BatchNormalization()(conv_5x5) #conv_7x7 = Conv3D(filters_5x5, (3,3,3),strides=(1,1,1), padding='same', activation='relu',kernel_initializer=kernel_init, bias_initializer=bias_init)(conv_7x7) pool_proj = MaxPooling3D((3,3,3), strides=(1,1,1), padding='same')(x) pool_proj = Conv3D(filters_pool_proj, (1,1,1), padding='same', activation='relu',kernel_initializer=kernel_init, bias_initializer=bias_init,trainable=trainable)(pool_proj) output = concatenate([conv_1x1, conv_3x3, conv_5x5, pool_proj], axis=4) return output def get_models(Inbatchsize): trainable=True #False inputEco=Input(shape=SHAPE) inputScale=Input(shape=(1,)) inputInvScale=Input(shape=(1,)) filters=64#48 x=inputEco # x=BatchNormalization()(x) x=Conv3D(filters,(7,7,7),padding='same',strides=(2,2,2),activation='relu',kernel_initializer=kernel_init, bias_initializer=bias_init,trainable=trainable)(x) x=BatchNormalization(scale=False,trainable=trainable)(x) x=MaxPooling3D(pool_size=(3,3,3),padding='same',strides=(2,2,2))(x) x=Conv3D(filters,(1,1,1),padding='same',strides=(1,1,1),activation='relu',kernel_initializer=kernel_init, bias_initializer=bias_init,trainable=trainable)(x) x=BatchNormalization(scale=False,trainable=trainable)(x) x=Conv3D(filters*3,(3,3,3),padding='same',strides=(1,1,1),activation='relu',kernel_initializer=kernel_init, bias_initializer=bias_init,trainable=trainable)(x) x=BatchNormalization(scale=False,trainable=trainable)(x) x=inception_module(x,filters_1x1=filters,filters_3x3_reduce=int(filters*1.5),filters_3x3=filters*4,filters_5x5_reduce=int(filters/4),filters_5x5=int(filters/2),filters_pool_proj=int(filters/2),trainable=trainable) x=BatchNormalization(scale=False,trainable=trainable)(x) x=inception_module(x,filters_1x1=filters*2,filters_3x3_reduce=filters*2,filters_3x3=filters*3,filters_5x5_reduce=int(filters/2),filters_5x5=filters*3,filters_pool_proj=filters,trainable=trainable) x=BatchNormalization(scale=False,trainable=trainable)(x) x=MaxPooling3D(pool_size=(1,3,3),padding='same',strides=(2,2,2))(x) #(1,3,3) x=inception_module(x,filters_1x1=filters*3,filters_3x3_reduce=int(filters*1.5),filters_3x3=int(filters*3.25),filters_5x5_reduce=int(filters/4),filters_5x5=int(filters*0.75),filters_pool_proj=filters,trainable=trainable) x=BatchNormalization(scale=False,trainable=trainable)(x) x=inception_module(x,filters_1x1=int(filters*2.5),filters_3x3_reduce=int(filters*1.75),filters_3x3=int(filters*3.5),filters_5x5_reduce=int(filters*0.375),filters_5x5=filters,filters_pool_proj=filters,trainable=trainable) x=BatchNormalization(scale=False,trainable=trainable)(x) x=inception_module(x,filters_1x1=filters*2,filters_3x3_reduce=filters*2,filters_3x3=filters*4,filters_5x5_reduce=int(filters*0.375),filters_5x5=filters,filters_pool_proj=filters,trainable=trainable) x=BatchNormalization(scale=False,trainable=trainable)(x) x=inception_module(x,filters_1x1=int(filters*1.75),filters_3x3_reduce=int(filters*2.25),filters_3x3=int(filters*4.5),filters_5x5_reduce=int(filters/2),filters_5x5=filters,filters_pool_proj=filters,trainable=trainable) x=BatchNormalization(scale=False,trainable=trainable)(x) x=inception_module(x,filters_1x1=filters*4,filters_3x3_reduce=int(filters*2.5),filters_3x3=filters*5,filters_5x5_reduce=int(filters/2),filters_5x5=filters*2,filters_pool_proj=filters*2,trainable=trainable) x=BatchNormalization(scale=False,trainable=trainable)(x) x=MaxPooling3D((1,3,3), strides=(2,2,2))(x) #(2,3,3) padding='same' x=inception_module(x,filters_1x1=filters*4,filters_3x3_reduce=int(filters*2.5),filters_3x3=filters*5,filters_5x5_reduce=int(filters/2),filters_5x5=filters*2,filters_pool_proj=filters*2,trainable=trainable) x=BatchNormalization(scale=False,trainable=trainable)(x) x=inception_module(x,filters_1x1=filters*6,filters_3x3_reduce=filters*3,filters_3x3=filters*6,filters_5x5_reduce=int(filters*0.75),filters_5x5=filters*2,filters_pool_proj=filters*2,trainable=trainable) x=BatchNormalization(scale=False,trainable=trainable)(x) x=MaxPooling3D(pool_size=(1,3,3),trainable=trainable)(x) x=inception_module(x,filters_1x1=filters*6,filters_3x3_reduce=filters*3,filters_3x3=filters*6,filters_5x5_reduce=int(filters*0.75),filters_5x5=filters*2,filters_pool_proj=filters*2,trainable=trainable) x=BatchNormalization(scale=False,trainable=trainable)(x) x=GlobalAveragePooling3D()(x) x=Dropout(0.4)(x) x=Dense(1,activation="relu",trainable=trainable)(x) x=BatchNormalization(scale=False,trainable=trainable)(x) a=inputScale #a=Dense(256,activation='relu')(a) a= multiply([x,a]) b=inputInvScale #b=Dense(256,activation='relu')(b) b=multiply([x,b]) x=concatenate([x,a,b]) x=BatchNormalization(scale=False,trainable=trainable)(x) #x=Dense(768,activation="relu")(x) #xa=BatchNormalization(scale=False)(x) #xa=Dropout(0.2)(xa) xa=Dense(1,name="reg")(x) model=Model([inputEco,inputScale,inputInvScale],xa) return model
89.797297
224
0.78164
1,000
6,645
4.995
0.068
0.151351
0.125526
0.148148
0.836837
0.814414
0.777177
0.77037
0.760561
0.720721
0
0.060958
0.066817
6,645
74
225
89.797297
0.744557
0.063205
0
0.378788
0
0
0.015932
0
0
0
0
0
0
1
0.030303
false
0
0
0
0.060606
0
0
0
0
null
0
0
0
1
1
1
1
1
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
null
0
0
0
0
0
0
0
0
0
0
0
0
0
6
8bd6939b53a3043718695a488bbde929cd4e44d7
423
py
Python
akagi/contents/__init__.py
pauchan/akagi
7cf1f5a52b8f1ebfdc74a527bf6b26254f99343b
[ "MIT" ]
26
2017-05-18T11:52:04.000Z
2018-08-25T22:03:07.000Z
akagi/contents/__init__.py
pauchan/akagi
7cf1f5a52b8f1ebfdc74a527bf6b26254f99343b
[ "MIT" ]
325
2017-05-08T07:22:28.000Z
2022-03-31T15:43:18.000Z
akagi/contents/__init__.py
pauchan/akagi
7cf1f5a52b8f1ebfdc74a527bf6b26254f99343b
[ "MIT" ]
7
2017-05-02T02:06:15.000Z
2020-04-09T05:32:11.000Z
# -*- coding: utf-8 -*- from akagi.contents import s3_content from akagi.contents import local_file_content from akagi.contents import spreadsheet_content from akagi.contents import url_content from akagi.contents.s3_content import S3Content from akagi.contents.local_file_content import LocalFileContent from akagi.contents.spreadsheet_content import SpreadsheetContent from akagi.contents.url_content import URLContent
35.25
65
0.858156
57
423
6.192982
0.298246
0.203966
0.385269
0.260623
0.254958
0
0
0
0
0
0
0.010417
0.092199
423
11
66
38.454545
0.908854
0.049645
0
0
0
0
0
0
0
0
0
0
0
1
0
true
0
1
0
1
0
0
0
0
null
1
1
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
null
0
0
0
0
0
0
1
0
1
0
1
0
0
6
4735d1f5a8954c473193826a0ee08dd64ab9a93e
35
py
Python
Training/pylens/__init__.py
Annarien/GravitationalLenses
c2606aacc62d2534fb199f5228dc21c0ea604251
[ "MIT" ]
null
null
null
Training/pylens/__init__.py
Annarien/GravitationalLenses
c2606aacc62d2534fb199f5228dc21c0ea604251
[ "MIT" ]
null
null
null
Training/pylens/__init__.py
Annarien/GravitationalLenses
c2606aacc62d2534fb199f5228dc21c0ea604251
[ "MIT" ]
null
null
null
import massmodel,pylens,MassModels
17.5
34
0.885714
4
35
7.75
1
0
0
0
0
0
0
0
0
0
0
0
0.057143
35
1
35
35
0.939394
0
0
0
0
0
0
0
0
0
0
0
0
1
0
true
0
1
0
1
0
1
1
0
null
0
0
0
0
0
0
0
0
0
0
0
0
0
1
0
0
0
0
0
0
0
0
0
0
null
0
0
0
0
0
0
1
0
1
0
1
0
0
6
47391c58cb36718e353c6d24ef9b6c3dc10d34e8
230
py
Python
propertiesTemplate/Fields/FieldTester.py
HenShalom/tableTransform
ede5c9ed3ecb32f74712778a6746b03773ac28ef
[ "Apache-2.0" ]
null
null
null
propertiesTemplate/Fields/FieldTester.py
HenShalom/tableTransform
ede5c9ed3ecb32f74712778a6746b03773ac28ef
[ "Apache-2.0" ]
null
null
null
propertiesTemplate/Fields/FieldTester.py
HenShalom/tableTransform
ede5c9ed3ecb32f74712778a6746b03773ac28ef
[ "Apache-2.0" ]
2
2019-11-20T02:47:23.000Z
2019-11-20T02:47:23.000Z
from propertiesTemplate.Fields.BasicField import BasicField from propertiesTemplate.Fields.ConstField import ConstField def get_field(value): if value[0] == '@': return BasicField(value) return ConstField(value)
25.555556
59
0.76087
25
230
6.96
0.52
0.252874
0.321839
0
0
0
0
0
0
0
0
0.005155
0.156522
230
8
60
28.75
0.891753
0
0
0
0
0
0.004348
0
0
0
0
0
0
1
0.166667
false
0
0.333333
0
0.833333
0
1
0
0
null
1
1
0
0
0
0
0
0
0
0
0
0
0
1
0
0
0
0
0
0
0
0
0
0
null
0
0
0
0
0
0
0
0
1
0
1
0
0
6
47a0a4fbe45ee5f24ba893991497ace327ecbebb
36
py
Python
lib/jnpr/eznc/runstat/__init__.py
cro/py-junos-eznc
4c111476cc8eb7599462379ddf55743ae30bbf5c
[ "Apache-2.0", "BSD-3-Clause" ]
null
null
null
lib/jnpr/eznc/runstat/__init__.py
cro/py-junos-eznc
4c111476cc8eb7599462379ddf55743ae30bbf5c
[ "Apache-2.0", "BSD-3-Clause" ]
null
null
null
lib/jnpr/eznc/runstat/__init__.py
cro/py-junos-eznc
4c111476cc8eb7599462379ddf55743ae30bbf5c
[ "Apache-2.0", "BSD-3-Clause" ]
null
null
null
from .rsmaker import RunstatMaker
9
33
0.805556
4
36
7.25
1
0
0
0
0
0
0
0
0
0
0
0
0.166667
36
3
34
12
0.966667
0
0
0
0
0
0
0
0
0
0
0
0
1
0
true
0
1
0
1
0
1
1
0
null
0
0
0
0
0
0
0
0
0
0
0
0
0
1
0
0
0
0
0
0
0
0
0
0
null
0
0
0
0
0
0
1
0
1
0
1
0
0
6
9a2bcb820df0cd2448d9d527aa5328ae749fbcf6
246
py
Python
calculations.py
DikshaAGowda/Project3
675d4d80ad4b44b3a49e8962c9f85709898d0a94
[ "MIT" ]
null
null
null
calculations.py
DikshaAGowda/Project3
675d4d80ad4b44b3a49e8962c9f85709898d0a94
[ "MIT" ]
null
null
null
calculations.py
DikshaAGowda/Project3
675d4d80ad4b44b3a49e8962c9f85709898d0a94
[ "MIT" ]
null
null
null
def addition(num1, num2): return num1 + num2 def subtraction(num1, num2): return num1 - num2 def multiplication(num1, num2): return num1 * num2 def division(num1, num2): if num2 == 0: return None return num1 / num2
17.571429
31
0.642276
33
246
4.787879
0.333333
0.405063
0.35443
0.341772
0.474684
0.474684
0
0
0
0
0
0.099448
0.264228
246
13
32
18.923077
0.773481
0
0
0
0
0
0
0
0
0
0
0
0
1
0.4
false
0
0
0.3
0.9
0
0
0
0
null
1
1
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
null
0
0
0
0
0
1
0
0
0
1
1
0
0
6
7bd5134da373e6ab71f1575fcac61884fd8fa7f9
41
py
Python
bot/run.py
anhhanuman/python-selenium
6dbb169282c44c50189447a1c9a303ae1a790a8b
[ "Apache-2.0" ]
null
null
null
bot/run.py
anhhanuman/python-selenium
6dbb169282c44c50189447a1c9a303ae1a790a8b
[ "Apache-2.0" ]
5
2021-09-02T13:02:25.000Z
2021-09-20T04:58:37.000Z
bot/run.py
anhhanuman/python-selenium
6dbb169282c44c50189447a1c9a303ae1a790a8b
[ "Apache-2.0" ]
null
null
null
from booking.constants import myConstant
20.5
40
0.878049
5
41
7.2
1
0
0
0
0
0
0
0
0
0
0
0
0.097561
41
1
41
41
0.972973
0
0
0
0
0
0
0
0
0
0
0
0
1
0
true
0
1
0
1
0
1
1
0
null
0
0
0
0
0
0
0
0
0
0
0
0
0
1
0
0
0
0
0
0
0
0
0
0
null
0
0
0
0
0
0
1
0
1
0
1
0
0
6
d0199dc840ae15f108dd63b1047696f29f1a9218
1,488
py
Python
tests/test_warp.py
Krande/ipygany
471355d043e3952ac68052613135fd5a5ee3a41b
[ "BSD-3-Clause" ]
450
2019-11-29T07:19:42.000Z
2022-03-27T08:38:18.000Z
tests/test_warp.py
Krande/ipygany
471355d043e3952ac68052613135fd5a5ee3a41b
[ "BSD-3-Clause" ]
47
2019-12-14T00:57:14.000Z
2022-01-27T16:14:40.000Z
tests/test_warp.py
Krande/ipygany
471355d043e3952ac68052613135fd5a5ee3a41b
[ "BSD-3-Clause" ]
51
2019-11-29T07:19:48.000Z
2022-03-25T13:07:19.000Z
import pytest from traitlets import TraitError from ipygany import PolyMesh, Warp from .utils import get_test_assets def test_default_input(): vertices, triangles, data_1d, data_3d = get_test_assets() poly = PolyMesh(vertices=vertices, triangle_indices=triangles, data=[data_1d, data_3d]) warped_mesh = Warp(poly) assert warped_mesh.input == (('1d', 'x'), 0, 0) poly = PolyMesh(vertices=vertices, triangle_indices=triangles, data=[data_3d]) warped_mesh = Warp(poly) assert warped_mesh.input == '3d' def test_input(): vertices, triangles, data_1d, data_3d = get_test_assets() poly = PolyMesh(vertices=vertices, triangle_indices=triangles, data=[data_1d, data_3d]) warped_mesh = Warp(poly) with pytest.raises(TraitError): warped_mesh.input = (('1d', 'x'), 0) warped_mesh.input = ('1d', 0, 0) assert warped_mesh.input == (('1d', 'x'), 0, 0) warped_mesh.input = ('1d', 0, 32) assert warped_mesh.input == (('1d', 'x'), 0, 32) warped_mesh.input = (0, 0, '1d') assert warped_mesh.input == (0, 0, ('1d', 'x')) with pytest.raises(TraitError): warped_mesh.input = ('3d', 0, 0) warped_mesh = Warp(poly, input=('1d', 0, 0)) assert warped_mesh.input == (('1d', 'x'), 0, 0) warped_mesh = Warp(poly, input=(0, 0, '1d')) assert warped_mesh.input == (0, 0, ('1d', 'x')) warped_mesh = Warp(warped_mesh, input=(0, '1d', 0)) assert warped_mesh.input == (0, ('1d', 'x'), 0)
26.571429
91
0.636425
212
1,488
4.273585
0.146226
0.220751
0.231788
0.18543
0.842163
0.794702
0.759382
0.610375
0.604857
0.543046
0
0.046823
0.196237
1,488
55
92
27.054545
0.710702
0
0
0.4375
0
0
0.026882
0
0
0
0
0
0.25
1
0.0625
false
0
0.125
0
0.1875
0
0
0
0
null
1
1
1
1
1
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
null
0
0
0
0
0
0
0
0
0
0
0
0
0
6
d06ac96e9708483c7fba688eecfd660ccb68f5f6
31
py
Python
Tasks_codes/task1_catdog.py
manasviaggarwal/tipr-second-assignment
45869a71c9de1a1d66c3581a06854f330f38e14d
[ "MIT" ]
null
null
null
Tasks_codes/task1_catdog.py
manasviaggarwal/tipr-second-assignment
45869a71c9de1a1d66c3581a06854f330f38e14d
[ "MIT" ]
null
null
null
Tasks_codes/task1_catdog.py
manasviaggarwal/tipr-second-assignment
45869a71c9de1a1d66c3581a06854f330f38e14d
[ "MIT" ]
null
null
null
ACCURACY :::62.86377259982597
15.5
30
0.774194
3
31
8
1
0
0
0
0
0
0
0
0
0
0
0.571429
0.096774
31
2
30
15.5
0.285714
0
0
0
0
0
0
0
0
0
0
0
0
0
null
null
0
0
null
null
0
1
1
0
null
0
0
0
0
0
0
0
0
0
0
1
0
0
1
0
0
1
0
0
0
0
0
0
0
null
0
0
0
0
1
0
0
0
0
0
0
0
0
6
d0703322f54aad95ad1c141cfb0733e4dbc48655
25
py
Python
src/masonite/events/__init__.py
cercos/masonite
f7f220efa7fae833683e9f07ce13c3795a87d3b8
[ "MIT" ]
1,816
2018-02-14T01:59:51.000Z
2022-03-31T17:09:20.000Z
src/masonite/events/__init__.py
cercos/masonite
f7f220efa7fae833683e9f07ce13c3795a87d3b8
[ "MIT" ]
340
2018-02-11T00:27:26.000Z
2022-03-21T12:00:24.000Z
src/masonite/events/__init__.py
cercos/masonite
f7f220efa7fae833683e9f07ce13c3795a87d3b8
[ "MIT" ]
144
2018-03-18T00:08:16.000Z
2022-02-26T01:51:58.000Z
from .Event import Event
12.5
24
0.8
4
25
5
0.75
0
0
0
0
0
0
0
0
0
0
0
0.16
25
1
25
25
0.952381
0
0
0
0
0
0
0
0
0
0
0
0
1
0
true
0
1
0
1
0
1
1
0
null
0
0
0
0
0
0
0
0
0
0
0
0
0
1
0
0
0
0
0
0
0
0
0
0
null
0
0
0
0
0
0
1
0
1
0
1
0
0
6
d0af98534b90208cb7e4f06f1ab2ae7e3d283c93
9,730
py
Python
server/plato/test/test_domains.py
zhlooking/plato
9daf0dfd8b376603453eadf2d981c71d3adb2632
[ "MIT" ]
null
null
null
server/plato/test/test_domains.py
zhlooking/plato
9daf0dfd8b376603453eadf2d981c71d3adb2632
[ "MIT" ]
null
null
null
server/plato/test/test_domains.py
zhlooking/plato
9daf0dfd8b376603453eadf2d981c71d3adb2632
[ "MIT" ]
null
null
null
import json from plato import db from plato.model.user import User from plato.test.base import BaseTestCase from plato.test.utils import add_user, add_domain class TestDomainService(BaseTestCase): def test_add_domain(self): '''Ensure a new domain can be added to database''' add_user('test', '[email protected]', 'test') with self.client: resp_login = self.client.post( '/auth/login', data=json.dumps(dict( email='[email protected]', password='test' )), content_type='application/json' ) response = self.client.post( '/domains', data=json.dumps(dict( domain='www.baidu.com', ip='http://111.13.100.91/', master=1 )), content_type='application/json', headers=dict( Authorization='Bearer ' + json.loads( resp_login.data.decode() )['auth_token'] ) ) data = json.loads(response.data.decode()) self.assertEqual(response.status_code, 201) self.assertIn('www.baidu.com was added!', data['message']) self.assertIn('success', data['status']) def test_add_duplicate_domain(self): '''Ensure error is thrown if user's email already exists''' add_user('test', '[email protected]', 'test') with self.client: resp_login = self.client.post( '/auth/login', data=json.dumps(dict( email='[email protected]', password='test' )), content_type='application/json' ) self.client.post( '/domains', data=json.dumps(dict( domain='www.baidu.com', ip='http://111.13.100.91/', master=1 )), content_type='application/json', headers=dict( Authorization='Bearer ' + json.loads( resp_login.data.decode() )['auth_token'] ) ) response = self.client.post( '/domains', data=json.dumps(dict( domain='www.baidu.com', ip='http://111.13.100.91/', master=1 )), content_type='application/json', headers=dict( Authorization='Bearer ' + json.loads( resp_login.data.decode() )['auth_token'] ) ) data = json.loads(response.data.decode()) self.assertEqual(response.status_code, 400) self.assertIn('Sorry, that domain already exists.', data['message']) self.assertIn('fail', data['status']) def test_add_domain_invalid_ip(self): add_user('test', '[email protected]', 'test') with self.client: resp_login = self.client.post( '/auth/login', data=json.dumps(dict( email='[email protected]', password='test' )), content_type='application/json' ) response = self.client.post( '/domains', data=json.dumps(dict( domain='www.baidu.com', master=1 )), content_type='application/json', headers=dict( Authorization='Bearer ' + json.loads( resp_login.data.decode() )['auth_token'] ) ) data = json.loads(response.data.decode()) self.assertEqual(response.status_code, 400) self.assertIn('Invalid payload', data['message']) self.assertIn('fail', data['status']) def test_add_domain_invalid_payload(self): add_user('test', '[email protected]', 'test') with self.client: resp_login = self.client.post( '/auth/login', data=json.dumps(dict( email='[email protected]', password='test' )), content_type='application/json' ) response = self.client.post( '/domains', data=json.dumps(dict( ip='http://111.13.100.91/', master=1 )), content_type='application/json', headers=dict( Authorization='Bearer ' + json.loads( resp_login.data.decode() )['auth_token'] ) ) data = json.loads(response.data.decode()) self.assertEqual(response.status_code, 400) self.assertIn('Invalid payload', data['message']) self.assertIn('fail', data['status']) def test_add_domain_invalid_master(self): add_user('test', '[email protected]', 'test') with self.client: resp_login = self.client.post( '/auth/login', data=json.dumps(dict( email='[email protected]', password='test' )), content_type='application/json' ) response = self.client.post( '/domains', data=json.dumps(dict( domain='www.baidu.com', ip='http://111.13.100.91/', )), content_type='application/json', headers=dict( Authorization='Bearer ' + json.loads( resp_login.data.decode() )['auth_token'] ) ) data = json.loads(response.data.decode()) self.assertEqual(response.status_code, 400) self.assertIn('Invalid payload', data['message']) self.assertIn('fail', data['status']) def test_single_domain(self): '''Ensure get single user behaves correctly''' domain = add_domain('www.baidu.com', 'http://10.0.0.122', 1) with self.client: response = self.client.get(f'/domain/{domain.id}') data = json.loads(response.data.decode()) self.assertEqual(response.status_code, 200) self.assertIn('www.baidu.com', data['data']['domain']) self.assertIn('http://10.0.0.122', data['data']['ip']) self.assertIn('success', data['status']) def test_single_domain_no_id(self): '''Ensure error is thrown if an id is not provided''' with self.client: response = self.client.get('domain/test_id') data = json.loads(response.data.decode()) self.assertEqual(response.status_code, 404) self.assertIn('Domain does not exist.', data['message']) self.assertIn('fail', data['status']) def test_single_domain_incorrect_id(self): '''Ensure error is thrown if the id is not correct''' with self.client: response = self.client.get('domain/666') data = json.loads(response.data.decode()) self.assertEqual(response.status_code, 404) self.assertIn('Domain does not exist.', data['message']) self.assertIn('fail', data['status']) def test_add_user_not_admin(self): add_user('test', '[email protected]', 'test') user = User.query.filter_by(email='[email protected]').first() user.admin = True db.session.commit() with self.client: # user login resp_login = self.client.post( '/auth/login', data=json.dumps(dict( email='[email protected]', password='test' )), content_type='application/json' ) response = self.client.post( '/domains', data=json.dumps(dict( domain='www.baidu.com', ip='http://111.13.100.91/', master=1 )), content_type='application/json', headers=dict( Authorization='Bearer ' + json.loads( resp_login.data.decode() )['auth_token'] ) ) data = json.loads(response.data.decode()) self.assertTrue(data['status'] == 'error') self.assertTrue( data['message'] == 'You have no permission to do that.') self.assertEqual(response.status_code, 403) def test_all_domains(self): add_domain('www.baidu.com', 'http://111.13.100.91/', 1) add_domain('www.google.com', 'http://111.13.100.92/', 1) with self.client: response = self.client.get('/domains') data = json.loads(response.data.decode()) self.assertEqual(response.status_code, 200) self.assertEqual(len(data['data']['domains']), 2) self.assertIn('www.google.com', data['data']['domains'][0]['domain']) self.assertIn('www.baidu.com', data['data']['domains'][1]['domain']) self.assertIn('http://111.13.100.92/', data['data']['domains'][0]['ip']) self.assertIn('http://111.13.100.91/', data['data']['domains'][1]['ip'])
39.076305
84
0.481809
957
9,730
4.805643
0.125392
0.058708
0.031094
0.048054
0.821918
0.798434
0.769515
0.729506
0.689498
0.689498
0
0.026941
0.385817
9,730
248
85
39.233871
0.742637
0.025385
0
0.734783
0
0
0.16538
0
0
0
0
0
0.147826
1
0.043478
false
0.026087
0.021739
0
0.069565
0
0
0
0
null
0
0
0
1
1
1
1
0
1
0
0
0
0
0
0
0
0
0
0
1
0
0
0
0
null
0
0
0
0
0
0
0
0
0
0
0
0
0
6
d0c3051d812d65b6baa90af1922f0a2918135e6d
128
py
Python
django_cenvars/tools/sanitize.py
martinphellwig/django-cenvars
2b7ae6e719fa6ae7ffb8f0cedad615114064dab1
[ "BSD-2-Clause" ]
null
null
null
django_cenvars/tools/sanitize.py
martinphellwig/django-cenvars
2b7ae6e719fa6ae7ffb8f0cedad615114064dab1
[ "BSD-2-Clause" ]
null
null
null
django_cenvars/tools/sanitize.py
martinphellwig/django-cenvars
2b7ae6e719fa6ae7ffb8f0cedad615114064dab1
[ "BSD-2-Clause" ]
null
null
null
""" Perform sanitization check prior of releasing the app as ready. """ def main(): "Perform sanitization checks" pass
16
63
0.695313
16
128
5.5625
0.875
0.426966
0
0
0
0
0
0
0
0
0
0
0.210938
128
7
64
18.285714
0.881188
0.710938
0
0
0
0
0.473684
0
0
0
0
0
0
1
0.333333
true
0.333333
0
0
0.333333
0
1
0
0
null
1
0
0
0
0
0
0
0
0
0
0
0
0
1
0
0
0
0
0
0
0
0
0
0
null
0
0
0
0
0
1
1
1
0
0
0
0
0
6
ef9bbe1541d0c953af96d087b8ca600f95dd7284
45
py
Python
way2sms/__init__.py
shubhamc183/way2sms
33d8c9e69ab9b053e50501baf887191c718d2d2a
[ "MIT" ]
38
2016-12-15T14:03:00.000Z
2022-03-22T01:28:29.000Z
way2sms/__init__.py
shubhamc183/way2sms
33d8c9e69ab9b053e50501baf887191c718d2d2a
[ "MIT" ]
10
2017-11-18T08:13:18.000Z
2020-09-06T11:18:32.000Z
way2sms/__init__.py
shubhamc183/way2sms
33d8c9e69ab9b053e50501baf887191c718d2d2a
[ "MIT" ]
41
2016-12-26T16:52:59.000Z
2022-03-22T01:31:40.000Z
""" Way2sms """ from way2sms.app import Sms
7.5
27
0.666667
6
45
5
0.833333
0
0
0
0
0
0
0
0
0
0
0.054054
0.177778
45
5
28
9
0.756757
0.155556
0
0
0
0
0
0
0
0
0
0
0
1
0
true
0
1
0
1
0
1
1
0
null
0
0
0
0
0
0
0
0
0
0
0
0
0
1
0
0
0
0
0
0
0
0
0
0
null
0
0
0
0
0
0
1
0
1
0
1
0
0
6
efd15e7fb718ba74481d809759853c9e66bc24c0
80
py
Python
bcap/__init__.py
keioku/bcap-python
5f1c912fcac515d8f26bda113f644d55a38e15d6
[ "MIT" ]
null
null
null
bcap/__init__.py
keioku/bcap-python
5f1c912fcac515d8f26bda113f644d55a38e15d6
[ "MIT" ]
null
null
null
bcap/__init__.py
keioku/bcap-python
5f1c912fcac515d8f26bda113f644d55a38e15d6
[ "MIT" ]
null
null
null
from .b_cap_client import BCapClient from .b_cap_exception import BCapException
26.666667
42
0.875
12
80
5.5
0.666667
0.151515
0.242424
0
0
0
0
0
0
0
0
0
0.1
80
2
43
40
0.916667
0
0
0
0
0
0
0
0
0
0
0
0
1
0
true
0
1
0
1
0
1
0
0
null
0
1
0
0
0
0
0
0
0
0
0
0
0
1
0
0
0
0
0
0
0
0
0
0
null
0
0
0
0
0
0
1
0
1
0
1
0
0
6
ef3ec4855031980afb1650987b97c64ce63c1807
5,476
py
Python
origin_response_test.py
dnsinogeorgos/lambdas
4294089b311585c18e101e776aa2e8ca211413cd
[ "Apache-2.0" ]
null
null
null
origin_response_test.py
dnsinogeorgos/lambdas
4294089b311585c18e101e776aa2e8ca211413cd
[ "Apache-2.0" ]
null
null
null
origin_response_test.py
dnsinogeorgos/lambdas
4294089b311585c18e101e776aa2e8ca211413cd
[ "Apache-2.0" ]
null
null
null
# pylint: disable=C0114 import unittest from origin_response import lambda_handler event = { "Records": [ { "cf": { "config": {"requestId": "thisfakeidisthisfakeidisthisfakeidis"}, "request": {"uri": ""}, "response": {"headers": {}, "status": 0}, } } ] } class TestLambdaHandler(unittest.TestCase): # pylint: disable=C0115 def test_success(self): """ This sends a success response Should return identical result with injected security headers """ event["Records"][0]["cf"]["request"]["uri"] = "/v2/examplefolder/" response = event["Records"][0]["cf"]["response"] result = lambda_handler(event, None) headers = response["headers"] headers["strict-transport-security"] = [ {"value": "max-age=63072000; includeSubdomains; preload"} ] headers["content-security-policy"] = [{"value": "default-src 'self' https://*"}] headers["x-content-type-options"] = [{"value": "nosniff"}] headers["x-frame-options"] = [{"value": "DENY"}] headers["x-xss-protection"] = [{"value": "1; mode=block"}] headers["referrer-policy"] = [{"value": "strict-origin-when-cross-origin"}] self.assertEqual(result, response) def test_not_found_with_slash(self): """ This sends a not found response for a URI with trailing slash Should return identical result with injected security headers """ event["Records"][0]["cf"]["request"]["uri"] = "/v2/examplefolder/" response = event["Records"][0]["cf"]["response"] response["status"] = 404 result = lambda_handler(event, None) headers = response["headers"] headers["strict-transport-security"] = [ {"value": "max-age=63072000; includeSubdomains; preload"} ] headers["content-security-policy"] = [ { "value": "default-src 'self' https://*.everypay.gr:443; script-src 'self' 'unsafe-inline' 'unsafe-eval' https://*.everypay.gr:443 http://www.google-analytics.com https://www.google-analytics.com https://ssl.google-analytics.com http://html5shim.googlecode.com https://html5shim.googlecode.com https://ajax.googleapis.com https://netdna.bootstrapcdn.com https://code.jquery.com https://*.doubleclick.net https://www.googletagmanager.com https://connect.facebook.net; img-src 'self' data: https://*.everypay.gr:443 http://www.google-analytics.com https://www.google-analytics.com https://ssl.google-analytics.com https://*.doubleclick.net; style-src 'self' 'unsafe-inline' 'unsafe-eval' https://*.everypay.gr:443 https://fonts.googleapis.com; font-src 'self' https://*.everypay.gr:443 https://themes.googleusercontent.com https://fonts.gstatic.com; frame-src 'self' https://*; object-src 'self' https://*.everypay.gr:443" # pylint: disable=C0301 # noqa: E501 } ] headers["x-content-type-options"] = [{"value": "nosniff"}] headers["x-frame-options"] = [{"value": "DENY"}] headers["x-xss-protection"] = [{"value": "1; mode=block"}] headers["referrer-policy"] = [{"value": "strict-origin-when-cross-origin"}] self.assertEqual(result, response) def test_not_found_without_slash(self): """ This sends a not found response for a URI without trailing slash Should return 302 redirect result tp the original URI appended with "/" and injected security headers """ event["Records"][0]["cf"]["request"]["uri"] = "/v2/examplefolder" response = event["Records"][0]["cf"]["response"] response["status"] = 404 result = lambda_handler(event, None) headers = response["headers"] headers["strict-transport-security"] = [ {"value": "max-age=63072000; includeSubdomains; preload"} ] headers["content-security-policy"] = [ { "value": "default-src 'self' https://*.everypay.gr:443; script-src 'self' 'unsafe-inline' 'unsafe-eval' https://*.everypay.gr:443 http://www.google-analytics.com https://www.google-analytics.com https://ssl.google-analytics.com http://html5shim.googlecode.com https://html5shim.googlecode.com https://ajax.googleapis.com https://netdna.bootstrapcdn.com https://code.jquery.com https://*.doubleclick.net https://www.googletagmanager.com https://connect.facebook.net; img-src 'self' data: https://*.everypay.gr:443 http://www.google-analytics.com https://www.google-analytics.com https://ssl.google-analytics.com https://*.doubleclick.net; style-src 'self' 'unsafe-inline' 'unsafe-eval' https://*.everypay.gr:443 https://fonts.googleapis.com; font-src 'self' https://*.everypay.gr:443 https://themes.googleusercontent.com https://fonts.gstatic.com; frame-src 'self' https://*; object-src 'self' https://*.everypay.gr:443" # pylint: disable=C0301 # noqa: E501 } ] headers["x-content-type-options"] = [{"value": "nosniff"}] headers["x-frame-options"] = [{"value": "DENY"}] headers["x-xss-protection"] = [{"value": "1; mode=block"}] headers["referrer-policy"] = [{"value": "strict-origin-when-cross-origin"}] headers["location"] = [{"key": "Location", "value": "/v2/examplefolder/"}] response["status"] = 302 self.assertEqual(result, response) if __name__ == "__main__": unittest.main()
58.255319
974
0.626004
618
5,476
5.511327
0.205502
0.056371
0.052848
0.063418
0.857017
0.857017
0.857017
0.857017
0.857017
0.857017
0
0.025316
0.192111
5,476
93
975
58.88172
0.744575
0.09076
0
0.542857
0
0.028571
0.599343
0.069581
0
0
0
0
0.042857
1
0.042857
false
0
0.028571
0
0.085714
0
0
0
0
null
0
0
0
1
1
1
1
1
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
null
0
0
0
0
0
0
0
0
0
0
0
0
0
6
32370b765a15f6662dcf75810cbf2bc84feab958
69
py
Python
tensorflow_toolkit/lpr/lpr/__init__.py
morkovka1337/openvino_training_extensions
846db45c264d6b061505213f51763520b9432ba9
[ "Apache-2.0" ]
256
2020-09-09T03:27:57.000Z
2022-03-30T10:06:06.000Z
tensorflow_toolkit/lpr/lpr/__init__.py
morkovka1337/openvino_training_extensions
846db45c264d6b061505213f51763520b9432ba9
[ "Apache-2.0" ]
604
2020-09-08T12:29:49.000Z
2022-03-31T21:51:08.000Z
tensorflow_toolkit/lpr/lpr/__init__.py
morkovka1337/openvino_training_extensions
846db45c264d6b061505213f51763520b9432ba9
[ "Apache-2.0" ]
160
2020-09-09T14:06:07.000Z
2022-03-30T14:50:48.000Z
from tfutils.helpers import import_transformer import_transformer()
17.25
46
0.869565
8
69
7.25
0.625
0.586207
0
0
0
0
0
0
0
0
0
0
0.086957
69
3
47
23
0.920635
0
0
0
0
0
0
0
0
0
0
0
0
1
0
true
0
1
0
1
0
1
0
0
null
1
0
0
0
0
0
0
0
0
0
0
0
0
1
0
0
0
0
0
0
0
0
0
0
null
0
0
0
0
0
0
1
0
1
0
1
0
0
6
08613adf55222eb81cf9aea8d6ff94d2cf2ab660
105
py
Python
groups/views.py
AliAkberAakash/learn-in-groups
850601ddd5520c850ebec12003c8337670762948
[ "MIT" ]
null
null
null
groups/views.py
AliAkberAakash/learn-in-groups
850601ddd5520c850ebec12003c8337670762948
[ "MIT" ]
null
null
null
groups/views.py
AliAkberAakash/learn-in-groups
850601ddd5520c850ebec12003c8337670762948
[ "MIT" ]
null
null
null
from django.shortcuts import render def group_list(request): return render(request, 'group_list.html')
21
42
0.8
15
105
5.466667
0.733333
0.219512
0
0
0
0
0
0
0
0
0
0
0.104762
105
4
43
26.25
0.87234
0
0
0
0
0
0.142857
0
0
0
0
0
0
1
0.333333
false
0
0.333333
0.333333
1
0
1
0
0
null
1
0
0
0
0
0
0
0
0
0
0
0
0
1
0
0
0
0
0
0
0
0
0
0
null
0
0
0
0
0
1
0
0
1
1
0
0
0
6
0874abf4b1ea7884b6edfbac6a754d49e5cc5678
154
py
Python
lichee/utils/__init__.py
Tencent/Lichee
7653becd6fbf8b0715f788af3c0507c012be08b4
[ "Apache-2.0" ]
91
2021-10-30T02:25:05.000Z
2022-03-28T06:51:52.000Z
lichee/utils/__init__.py
zhaijunyu/Lichee
7653becd6fbf8b0715f788af3c0507c012be08b4
[ "Apache-2.0" ]
1
2021-12-17T09:30:25.000Z
2022-03-05T12:30:13.000Z
lichee/utils/__init__.py
zhaijunyu/Lichee
7653becd6fbf8b0715f788af3c0507c012be08b4
[ "Apache-2.0" ]
17
2021-11-04T07:50:23.000Z
2022-03-24T14:24:11.000Z
# -*- coding: utf-8 -*- """ 工具包 """ from . import convertor from . import model_loader from . import storage from . import parallel from . import logging
15.4
26
0.688312
20
154
5.25
0.6
0.47619
0
0
0
0
0
0
0
0
0
0.007937
0.181818
154
9
27
17.111111
0.825397
0.168831
0
0
0
0
0
0
0
0
0
0
0
1
0
true
0
1
0
1
0
1
0
0
null
1
0
0
0
0
0
0
0
0
0
0
0
0
1
0
0
0
0
0
0
0
0
0
0
null
0
0
0
0
0
0
1
0
1
0
1
0
0
6
088c4b3ec59271d9af6031e07d4cb3e300f061c4
62
py
Python
hermes1d/__init__.py
certik/hermes1d-llnl
8e3b76fd3022af90e5c4c3923337a422d79604d5
[ "BSD-3-Clause" ]
1
2016-08-18T23:21:55.000Z
2016-08-18T23:21:55.000Z
hermes1d/__init__.py
certik/hermes1d-llnl
8e3b76fd3022af90e5c4c3923337a422d79604d5
[ "BSD-3-Clause" ]
null
null
null
hermes1d/__init__.py
certik/hermes1d-llnl
8e3b76fd3022af90e5c4c3923337a422d79604d5
[ "BSD-3-Clause" ]
null
null
null
from h1d_wrapper.h1d_wrapper import Element, Mesh, Linearizer
31
61
0.854839
9
62
5.666667
0.777778
0.392157
0
0
0
0
0
0
0
0
0
0.035714
0.096774
62
1
62
62
0.875
0
0
0
0
0
0
0
0
0
0
0
0
1
0
true
0
1
0
1
0
1
0
0
null
1
0
0
0
0
0
0
0
0
0
0
0
0
1
0
0
0
0
0
0
0
0
0
0
null
0
0
0
0
0
0
1
0
1
0
1
0
0
6
08e364b287cb5954101aa31b3cb5304b7c80b252
35
py
Python
excel4lib/macro/analysis/__init__.py
aaaddress1/boobsnail
c0c2067d7271ca76ee721998d28e8c3c81a48397
[ "MIT" ]
169
2021-05-26T13:35:16.000Z
2021-09-06T08:04:19.000Z
excel4lib/macro/analysis/__init__.py
H4xl0r/boobsnail
c0c2067d7271ca76ee721998d28e8c3c81a48397
[ "MIT" ]
2
2021-06-01T13:46:37.000Z
2021-07-12T19:06:37.000Z
excel4lib/macro/analysis/__init__.py
H4xl0r/boobsnail
c0c2067d7271ca76ee721998d28e8c3c81a48397
[ "MIT" ]
29
2021-05-27T17:28:29.000Z
2021-09-04T19:24:50.000Z
from .excel4_anti_analysis import *
35
35
0.857143
5
35
5.6
1
0
0
0
0
0
0
0
0
0
0
0.03125
0.085714
35
1
35
35
0.84375
0
0
0
0
0
0
0
0
0
0
0
0
1
0
true
0
1
0
1
0
1
1
0
null
0
0
0
0
0
0
0
0
0
0
0
0
0
1
0
0
0
0
0
0
0
0
0
0
null
0
0
0
0
0
0
1
0
1
0
1
0
0
6
3ed7524764506c9bf8a8c074a4bfe30279004c01
36
py
Python
example_package/model_eval.py
aaronengland/example_package
1e45fccc27af57b9d2bb58e16e58ef57d81b656e
[ "MIT" ]
null
null
null
example_package/model_eval.py
aaronengland/example_package
1e45fccc27af57b9d2bb58e16e58ef57d81b656e
[ "MIT" ]
null
null
null
example_package/model_eval.py
aaronengland/example_package
1e45fccc27af57b9d2bb58e16e58ef57d81b656e
[ "MIT" ]
null
null
null
# model eval def roc_curve(): pass
9
16
0.694444
6
36
4
1
0
0
0
0
0
0
0
0
0
0
0
0.194444
36
4
17
9
0.827586
0.277778
0
0
0
0
0
0
0
0
0
0
0
1
0.5
true
0.5
0
0
0.5
0
1
1
0
null
0
0
0
0
0
0
0
0
0
0
0
0
0
1
0
0
0
0
0
0
0
0
0
0
null
0
0
0
0
0
1
1
1
0
0
0
0
0
6
4104d25dc6796ebc87ccaf0dca4400cb888e648b
169
py
Python
AutotestWebD/all_models_for_mock/models/__init__.py
yangjourney/sosotest
2e88099a829749910ca325253c9b1a2e368d21a0
[ "MIT" ]
422
2019-08-18T05:04:20.000Z
2022-03-31T06:49:19.000Z
AutotestWebD/all_models_for_mock/models/__init__.py
LinSongJian1985/sosotest
091863dee531b5726650bb63efd6f169267cbeb4
[ "MIT" ]
10
2019-10-24T09:55:38.000Z
2021-09-29T17:28:43.000Z
AutotestWebD/all_models_for_mock/models/__init__.py
LinSongJian1985/sosotest
091863dee531b5726650bb63efd6f169267cbeb4
[ "MIT" ]
202
2019-08-18T05:04:27.000Z
2022-03-30T05:57:18.000Z
from all_models_for_mock.models.M0001_mock import * from all_models_for_mock.models.M0002_keywords import * from all_models_for_mock.models.M0003_statisic_task import *
42.25
60
0.87574
28
169
4.821429
0.428571
0.155556
0.288889
0.355556
0.666667
0.666667
0.474074
0
0
0
0
0.076433
0.071006
169
3
61
56.333333
0.783439
0
0
0
0
0
0
0
0
0
0
0
0
1
0
true
0
1
0
1
0
1
0
0
null
0
1
1
0
0
0
0
0
0
0
0
0
0
1
0
0
0
0
0
0
0
0
0
0
null
0
0
0
0
0
0
1
0
1
0
0
0
0
6
41252221870a25e5a2cfca108df770ea4c662895
2,955
py
Python
test/test_storage_v1beta1_api.py
Arvinhub/client-python
d67df30f635231d68dc4c20b9b7e234c616c1e6a
[ "Apache-2.0" ]
1
2021-06-16T02:57:18.000Z
2021-06-16T02:57:18.000Z
test/test_storage_v1beta1_api.py
Arvinhub/client-python
d67df30f635231d68dc4c20b9b7e234c616c1e6a
[ "Apache-2.0" ]
null
null
null
test/test_storage_v1beta1_api.py
Arvinhub/client-python
d67df30f635231d68dc4c20b9b7e234c616c1e6a
[ "Apache-2.0" ]
null
null
null
# coding: utf-8 """ Kubernetes No description provided (generated by Swagger Codegen https://github.com/swagger-api/swagger-codegen) OpenAPI spec version: unversioned Generated by: https://github.com/swagger-api/swagger-codegen.git Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. """ from __future__ import absolute_import import os import sys import unittest import k8sclient from k8sclient.rest import ApiException from k8sclient.apis.storage_v1beta1_api import StorageV1beta1Api class TestStorageV1beta1Api(unittest.TestCase): """ StorageV1beta1Api unit test stubs """ def setUp(self): self.api = k8sclient.apis.storage_v1beta1_api.StorageV1beta1Api() def tearDown(self): pass def test_create_storage_v1beta1_storage_class(self): """ Test case for create_storage_v1beta1_storage_class """ pass def test_delete_storage_v1beta1_collection_storage_class(self): """ Test case for delete_storage_v1beta1_collection_storage_class """ pass def test_delete_storage_v1beta1_storage_class(self): """ Test case for delete_storage_v1beta1_storage_class """ pass def test_get_storage_v1beta1_api_resources(self): """ Test case for get_storage_v1beta1_api_resources """ pass def test_list_storage_v1beta1_storage_class(self): """ Test case for list_storage_v1beta1_storage_class """ pass def test_patch_storage_v1beta1_storage_class(self): """ Test case for patch_storage_v1beta1_storage_class """ pass def test_read_storage_v1beta1_storage_class(self): """ Test case for read_storage_v1beta1_storage_class """ pass def test_replace_storage_v1beta1_storage_class(self): """ Test case for replace_storage_v1beta1_storage_class """ pass def test_watch_storage_v1beta1_storage_class(self): """ Test case for watch_storage_v1beta1_storage_class """ pass def test_watch_storage_v1beta1_storage_class_list(self): """ Test case for watch_storage_v1beta1_storage_class_list """ pass if __name__ == '__main__': unittest.main()
23.085938
105
0.666328
346
2,955
5.369942
0.33526
0.16577
0.18084
0.223897
0.543057
0.451561
0.436491
0.315931
0.159311
0.073197
0
0.028412
0.273435
2,955
127
106
23.267717
0.836982
0.441963
0
0.323529
1
0
0.006405
0
0
0
0
0
0
1
0.352941
false
0.323529
0.205882
0
0.588235
0
0
0
0
null
0
1
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
0
0
0
null
0
0
0
0
0
1
0
1
0
0
1
0
0
6
f5bc7050656c4c3afee2238a72f86661143054d5
598
py
Python
pysal/spreg/__init__.py
cubensys/pysal
8d50990f6e6603ba79ae1a887a20a1e3a0734e51
[ "MIT", "BSD-3-Clause" ]
null
null
null
pysal/spreg/__init__.py
cubensys/pysal
8d50990f6e6603ba79ae1a887a20a1e3a0734e51
[ "MIT", "BSD-3-Clause" ]
null
null
null
pysal/spreg/__init__.py
cubensys/pysal
8d50990f6e6603ba79ae1a887a20a1e3a0734e51
[ "MIT", "BSD-3-Clause" ]
1
2021-07-19T01:46:17.000Z
2021-07-19T01:46:17.000Z
from ols import * from diagnostics import * from diagnostics_sp import * from user_output import * from twosls import * from twosls_sp import * from error_sp import * from error_sp_het import * from error_sp_hom import * from ols_regimes import * from twosls_regimes import * from twosls_sp_regimes import * from error_sp_regimes import * from error_sp_het_regimes import * from error_sp_hom_regimes import * from probit import * from ml_lag import * from ml_lag_regimes import * from ml_error import * from ml_error_regimes import * from sur import * from sur_error import * from sur_lag import *
24.916667
34
0.807692
97
598
4.690722
0.164948
0.483516
0.298901
0.224176
0.305495
0.10989
0
0
0
0
0
0
0.153846
598
23
35
26
0.899209
0
0
0
0
0
0
0
0
0
0
0
0
1
0
true
0
1
0
1
0
0
0
0
null
1
1
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
null
0
0
0
0
0
0
1
0
1
0
1
0
0
6
f5bdaf65264833d8c298cbab96f3a7c910693f18
209
py
Python
tests/conftest.py
lambertsbennett/Encountertk
708aedb38cb1689da8d2f39c68bd8694c64a79da
[ "MIT" ]
null
null
null
tests/conftest.py
lambertsbennett/Encountertk
708aedb38cb1689da8d2f39c68bd8694c64a79da
[ "MIT" ]
null
null
null
tests/conftest.py
lambertsbennett/Encountertk
708aedb38cb1689da8d2f39c68bd8694c64a79da
[ "MIT" ]
null
null
null
from pytest import fixture from encountertk.e_model import EncounterModel, ps_encounter, mean_vol_encountered @fixture(scope='function') def EModel(): return EncounterModel(kernel=1,pop2c=[1],pop1c=[1])
26.125
82
0.789474
28
209
5.75
0.785714
0
0
0
0
0
0
0
0
0
0
0.026596
0.100478
209
7
83
29.857143
0.829787
0
0
0
0
0
0.038278
0
0
0
0
0
0
1
0.2
true
0
0.4
0.2
0.8
0
1
0
0
null
0
0
0
0
0
0
0
0
0
0
0
0
0
1
0
0
0
0
0
0
0
0
0
0
null
0
0
0
0
0
0
1
0
1
1
1
0
0
6
eb0939a06759c9dcb9a5c2eda6614c361061cde9
857
py
Python
pySINGLE/setup.py
piomonti/pySINGLE
2eae0b31334d8eae08fd7f96f591262c4abcf3d9
[ "MIT" ]
3
2015-12-21T15:14:08.000Z
2018-12-29T10:15:03.000Z
pySINGLE/setup.py
piomonti/pySINGLE
2eae0b31334d8eae08fd7f96f591262c4abcf3d9
[ "MIT" ]
null
null
null
pySINGLE/setup.py
piomonti/pySINGLE
2eae0b31334d8eae08fd7f96f591262c4abcf3d9
[ "MIT" ]
null
null
null
#from distutils.core import setup #from distutils.extension import Extension #from Cython.Distutils import build_ext #import numpy #setup( #cmdclass = {'build_ext': build_ext}, #ext_modules = [Extension("Z_shooting", ["Z_shooting.c"],)], #include_dirs=[numpy.get_include(),'.', ], #) from distutils.core import setup from distutils.extension import Extension from Cython.Distutils import build_ext from Cython.Build import cythonize import numpy #extension = [Extension("Z_shooting", ["Z_shooting.c"],),] setup( cmdclass = {'build_ext': build_ext}, ext_modules = [Extension("FastFused_01", ["FastFused_01.pyx"], include_dirs=[numpy.get_include()])] ) #setup( #cmdclass = {'build_ext': build_ext}, #ext_modules = cythonize("FastFused_01.pyx"), #include_dirs=[numpy.get_include(),'.', ], #)
27.645161
104
0.687281
103
857
5.485437
0.213592
0.113274
0.095575
0.111504
0.856637
0.810619
0.727434
0.727434
0.516814
0.346903
0
0.008345
0.161027
857
30
105
28.566667
0.777469
0.526254
0
0
0
0
0.102493
0
0
0
0
0
0
1
0
true
0
0.555556
0
0.555556
0
0
0
0
null
0
0
0
1
1
1
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
null
0
0
0
0
0
0
1
0
1
0
0
0
0
6
de1e40b74da53919bbdc4c6c8dda38d5aba2c247
27
py
Python
src/__init__.py
natrodrigues/face-recognition
00c78bea55d2738913cf5475056c2faf05fe960e
[ "MIT" ]
null
null
null
src/__init__.py
natrodrigues/face-recognition
00c78bea55d2738913cf5475056c2faf05fe960e
[ "MIT" ]
null
null
null
src/__init__.py
natrodrigues/face-recognition
00c78bea55d2738913cf5475056c2faf05fe960e
[ "MIT" ]
null
null
null
from . import frame_manager
27
27
0.851852
4
27
5.5
1
0
0
0
0
0
0
0
0
0
0
0
0.111111
27
1
27
27
0.916667
0
0
0
0
0
0
0
0
0
0
0
0
1
0
true
0
1
0
1
0
1
1
0
null
0
0
0
0
0
0
0
0
0
0
0
0
0
1
0
0
0
0
0
0
0
0
0
0
null
0
0
0
0
0
0
1
0
1
0
1
0
0
6
de53cfe343832488633720622d964252c48b5617
3,180
py
Python
test/test_postfix.py
JoseTomasTocino/toptal-calculator
baeb69fdeca81699d655e1f2f11f03f2a3972ab7
[ "Unlicense" ]
null
null
null
test/test_postfix.py
JoseTomasTocino/toptal-calculator
baeb69fdeca81699d655e1f2f11f03f2a3972ab7
[ "Unlicense" ]
null
null
null
test/test_postfix.py
JoseTomasTocino/toptal-calculator
baeb69fdeca81699d655e1f2f11f03f2a3972ab7
[ "Unlicense" ]
null
null
null
import unittest from calculator import tokens, evaluator from calculator.parser import tokenize, infix_to_postfix class MyTestPostfixCase(unittest.TestCase): def test_simple_operator(self): expression = "2 + 1" computed_token_list = tokenize(expression) postfix_token_list = infix_to_postfix(computed_token_list) token_list = [ tokens.OperandToken(2), tokens.OperandToken(1), tokens.PlusOperatorToken(), ] self.assertListEqual(postfix_token_list, token_list) def test_multiple_operators(self): expression = "2 + 1 * 5" computed_token_list = tokenize(expression) postfix_token_list = infix_to_postfix(computed_token_list) token_list = [ tokens.OperandToken(2), tokens.OperandToken(1), tokens.OperandToken(5), tokens.ProductOperatorToken(), tokens.PlusOperatorToken(), ] self.assertListEqual(postfix_token_list, token_list) def test_multiple_operators_reversed(self): expression = "2 * 1 + 5" computed_token_list = tokenize(expression) postfix_token_list = infix_to_postfix(computed_token_list) token_list = [ tokens.OperandToken(2), tokens.OperandToken(1), tokens.ProductOperatorToken(), tokens.OperandToken(5), tokens.PlusOperatorToken(), ] self.assertListEqual(postfix_token_list, token_list) def test_parenthesis(self): expression = "2 * (1 + 5)" computed_token_list = tokenize(expression) postfix_token_list = infix_to_postfix(computed_token_list) token_list = [ tokens.OperandToken(2), tokens.OperandToken(1), tokens.OperandToken(5), tokens.PlusOperatorToken(), tokens.ProductOperatorToken() ] self.assertListEqual(postfix_token_list, token_list) def test_missing_left_parenthesis(self): expression = "2 * 2) + 1 + 5" computed_token_list = tokenize(expression) with self.assertRaises(RuntimeError): postfix_token_list = infix_to_postfix(computed_token_list) def test_missing_right_parenthesis(self): expression = "2 * (1 + 5" computed_token_list = tokenize(expression) with self.assertRaises(RuntimeError): postfix_token_list = infix_to_postfix(computed_token_list) def test_simple_function(self): expression = "sin 5" computed_token_list = tokenize(expression) postfix_token_list = infix_to_postfix(computed_token_list) token_list = [ tokens.OperandToken(5), tokens.SinFunctionToken(), ] self.assertListEqual(postfix_token_list, token_list) def test_equation_in_postfix_not_allowed(self): with self.assertRaises(RuntimeError): evaluator.evaluate('(5 + 2)', True) with self.assertRaises(RuntimeError): evaluator.evaluate('x + 1', True) with self.assertRaises(RuntimeError): evaluator.evaluate('x = 5', True)
31.485149
70
0.646226
321
3,180
6.093458
0.155763
0.165644
0.121677
0.092025
0.808793
0.783231
0.75818
0.75818
0.702965
0.650818
0
0.015073
0.269811
3,180
100
71
31.8
0.827304
0
0
0.618421
0
0
0.025157
0
0
0
0
0
0.131579
1
0.105263
false
0
0.039474
0
0.157895
0
0
0
0
null
0
0
0
1
1
1
1
1
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
null
0
0
0
0
0
0
0
0
0
0
0
0
0
6
de69814605b1835959a1ffdafc1b9774d60d18ad
75
py
Python
utils/__init__.py
bitst0rm-st3/AutomaticPackageReloader
b48699420ccadb3c1a8796a1a7275f70089f0934
[ "MIT" ]
null
null
null
utils/__init__.py
bitst0rm-st3/AutomaticPackageReloader
b48699420ccadb3c1a8796a1a7275f70089f0934
[ "MIT" ]
null
null
null
utils/__init__.py
bitst0rm-st3/AutomaticPackageReloader
b48699420ccadb3c1a8796a1a7275f70089f0934
[ "MIT" ]
null
null
null
from .progress_bar import ProgressBar from .read_config import read_config
25
37
0.866667
11
75
5.636364
0.636364
0.322581
0
0
0
0
0
0
0
0
0
0
0.106667
75
2
38
37.5
0.925373
0
0
0
0
0
0
0
0
0
0
0
0
1
0
true
0
1
0
1
0
1
0
0
null
1
0
0
0
0
0
0
0
0
0
0
0
0
1
0
0
0
0
0
0
0
0
0
0
null
0
0
0
0
0
0
1
0
1
0
1
0
0
6
de93263b9043812ffa8057bd744f43dfad03bbdf
27
py
Python
py2ifttt/__init__.py
moevis/py2ifttt
99dc2be647c53c9279f2f212528fef7190de7476
[ "MIT" ]
3
2018-05-04T12:50:04.000Z
2020-02-28T03:22:53.000Z
py2ifttt/__init__.py
moevis/py2ifttt
99dc2be647c53c9279f2f212528fef7190de7476
[ "MIT" ]
null
null
null
py2ifttt/__init__.py
moevis/py2ifttt
99dc2be647c53c9279f2f212528fef7190de7476
[ "MIT" ]
null
null
null
from .py2ifttt import IFTTT
27
27
0.851852
4
27
5.75
1
0
0
0
0
0
0
0
0
0
0
0.041667
0.111111
27
1
27
27
0.916667
0
0
0
0
0
0
0
0
0
0
0
0
1
0
true
0
1
0
1
0
1
1
0
null
0
0
0
0
0
0
0
0
0
0
0
0
0
1
0
0
0
0
0
0
0
0
0
0
null
0
0
0
0
0
0
1
0
1
0
1
0
0
6
debc22c03ed999e303334d1da3320e421b5bfacc
119
py
Python
applications/jupyter-extension/nteract_on_jupyter/notebooks/utils/cb/python/__init__.py
jjhenkel/nteract
088222484b59af14b1da22de4d0990d8925adf95
[ "BSD-3-Clause" ]
null
null
null
applications/jupyter-extension/nteract_on_jupyter/notebooks/utils/cb/python/__init__.py
jjhenkel/nteract
088222484b59af14b1da22de4d0990d8925adf95
[ "BSD-3-Clause" ]
null
null
null
applications/jupyter-extension/nteract_on_jupyter/notebooks/utils/cb/python/__init__.py
jjhenkel/nteract
088222484b59af14b1da22de4d0990d8925adf95
[ "BSD-3-Clause" ]
null
null
null
from .surface import * from .modifiers import * from .evaluator import Evaluator from .lowlevel import display_results
23.8
37
0.815126
15
119
6.4
0.533333
0.208333
0
0
0
0
0
0
0
0
0
0
0.134454
119
4
38
29.75
0.932039
0
0
0
0
0
0
0
0
0
0
0
0
1
0
true
0
1
0
1
0
1
0
0
null
1
0
0
0
0
0
0
0
0
0
0
0
0
1
0
0
0
0
0
0
0
0
0
0
null
0
0
0
0
0
0
1
0
1
0
1
0
0
6
dec6337c650811d4d0bda0d9fb32eb5e333b7344
15,088
py
Python
Project-2/Ishan Pandey/job_compare.py
Mercury1508/IEEE-LEAD-2.0
91d24ccf2f24c62f92f0d23bcfcb3988e6d5acd8
[ "MIT" ]
1
2021-06-03T16:08:33.000Z
2021-06-03T16:08:33.000Z
Project-2/Ishan Pandey/job_compare.py
Mercury1508/IEEE-LEAD-2.0
91d24ccf2f24c62f92f0d23bcfcb3988e6d5acd8
[ "MIT" ]
16
2021-04-27T12:58:03.000Z
2021-05-28T14:02:14.000Z
Project-2/Ishan Pandey/job_compare.py
Mercury1508/IEEE-LEAD-2.0
91d24ccf2f24c62f92f0d23bcfcb3988e6d5acd8
[ "MIT" ]
70
2021-04-26T13:48:35.000Z
2021-05-28T21:04:34.000Z
# from job_scrapper_gui import naukri_gui from tkinter import * from PIL import ImageTk import PIL.Image import naukri_scrapper import linkedin_scrapper import indeed import simply_hired_scrapper from selenium import webdriver root = Tk() root.title("Compare Jobs") root.geometry("1000x670") root.configure(background='white') # ----------------Header GUI---------------- # -------Creating All labels-------- logo = ImageTk.PhotoImage(PIL.Image.open("./Images\compare.png")) header_frame = LabelFrame(bg="#135EC2",borderwidth=0,highlightthickness=0) # logo logo_label = Label(header_frame,image=logo,bg='#135EC2') # job title container job_title_frame = LabelFrame(header_frame,bg='#135EC2',borderwidth=0,highlightthickness=0) job_label = Label(job_title_frame,text="JOB TITLE",bg='#135EC2',fg="white",font=('Bahnschrift Light', 13, 'normal')) job_profile_box = Entry(job_title_frame, width=30, font=('Bahnschrift Light', 13, 'normal')) # location container location_frame = LabelFrame(header_frame,bg='#135EC2',borderwidth=0,highlightthickness=0) location_label = Label(location_frame,text="LOCATION",bg='#135EC2',fg="white",font=('Bahnschrift Light', 13, 'normal')) location_box = Entry(location_frame, width=30, font=('Bahnschrift Light', 13, 'normal')) # compare button container compare_button_frame = LabelFrame(header_frame,padx=50,pady=10,bg='#135EC2',borderwidth=0,highlightthickness=0) # ------labels created------- # ------packing labels------- header_frame.pack(fill=X) logo_label.grid(row=0,column=0,pady=3,padx=10) job_title_frame.grid(row=0,column=1,pady=10,padx=20) job_profile_box.pack() job_label.pack(side=LEFT) location_frame.grid(row=0,column=2,pady=10,padx=20) location_box.pack() location_label.pack(side=LEFT) compare_button_frame.grid(row=1,column=1,columnspan=2) # ------------Header GUI ends-------------- # ------------Compare JOBS GUI-------------- card_container = LabelFrame(root,bg="white",pady=20,borderwidth=0,highlightthickness=0) card_container.pack(fill=X) def visit(website): if website=="Naukri.com": url = str(naukri_scrapper.card_link) driver = webdriver.Chrome("./chromedriver.exe") driver.get(url) if website=="indeed.com": url = str(indeed.card_link) driver = webdriver.Chrome("./chromedriver.exe") driver.get(url) if website=="Linkedin": url = str(linkedin_scrapper.card_link) driver = webdriver.Chrome("./chromedriver.exe") driver.get(url) if website=="SimplyHired": url = str(simply_hired_scrapper.card_link) driver = webdriver.Chrome("./chromedriver.exe") driver.get(url) # ----Naukri.com GUI---- def naukri_gui(): if len(naukri_scrapper.cards)==0: error_card_frame = LabelFrame(card_container,bg="white") site_name_label = Label(error_card_frame,text="Naukri.com",bg="white",font=('Bahnschrift Light', 11, 'bold'),fg="#135EC2",highlightthickness=0) no_result_label = Label(error_card_frame,text="No result",bg="white",font=('Bahnschrift Light', 12, 'bold'),fg="#135EC2",highlightthickness=0) message_frame = LabelFrame(error_card_frame,bg="white",borderwidth=0,highlightthickness=0) message_lable = Label(message_frame,text="OOPS!!! check your keyword and try again",bg="white",font=('Bahnschrift Light', 10, 'bold'),fg="#135EC2",highlightthickness=0) error_card_frame.pack() site_name_label.pack(fill=X,pady=1) no_result_label.pack() message_frame.pack() message_lable.pack(side=LEFT) else : card_frame = LabelFrame(card_container,bg="white") site_name_frame = LabelFrame(card_frame,bg="white",borderwidth=0,highlightthickness=0) site_name_lable = Label(site_name_frame,text="Naukri.com",bg="white",font=('Bahnschrift Light', 11, 'bold'),fg="#135EC2",highlightthickness=0) visit_button = Button(site_name_frame,text="Visit",font=('Bahnschrift Light', 10, 'bold'),fg="#135EC2",bg="white",command=lambda: visit("Naukri.com")) head_frame = LabelFrame(card_frame,borderwidth=0,highlightthickness=0,bg="#135EC2") title_lable = Label(head_frame,text=naukri_scrapper.title,wraplength=300,font=('Bahnschrift Light', 13, 'bold'),bg="#135EC2",fg="white") company_name_lable = Label(head_frame,text=naukri_scrapper.company_name,wraplength=250,font=('Bahnschrift Light', 11, 'normal'),bg="#135EC2",fg="white") job_location_label = Label(head_frame,text=naukri_scrapper.job_location,wraplength=250,font=('Bahnschrift Light', 11, 'normal'),bg="#135EC2",fg="white") rating_label = Label(head_frame,text=f"Rating: {naukri_scrapper.rating}",font=('Bahnschrift Light', 11, 'normal'),bg="#135EC2",fg="white") salary_label = Label(head_frame,text=f"Salary: {naukri_scrapper.salary}",font=('Bahnschrift Light', 11, 'normal'),bg="#135EC2",fg="white") skills_label = Label(head_frame,text=f"Skills:\n{naukri_scrapper.skills}",wraplength=300,font=('Bahnschrift Light', 11, 'normal'),bg="#135EC2",fg="white") card_frame.grid(row=0,column=0,padx=100) site_name_frame.pack(fill=X) visit_button.pack(side=RIGHT,pady=1,padx=1) site_name_lable.pack(pady=1) head_frame.pack(fill=X) title_lable.pack() company_name_lable.pack() job_location_label.pack() rating_label.pack() salary_label.pack() skills_label.pack() # ----Naukir.com GUI completed---- # --------indeed GUI-------------- def indeed_gui(): if len(indeed.cards)==0: error_card_frame = LabelFrame(card_container,bg="white") site_name_label = Label(error_card_frame,text="indeed.com",bg="white",font=('Bahnschrift Light', 11, 'bold'),fg="#135EC2",highlightthickness=0) no_result_label = Label(error_card_frame,text="No result",bg="white",font=('Bahnschrift Light', 12, 'bold'),fg="#135EC2",highlightthickness=0) message_frame = LabelFrame(error_card_frame,bg="white",borderwidth=0,highlightthickness=0) message_lable = Label(message_frame,text="OOPS!!! check your keyword and try again",bg="white",font=('Bahnschrift Light', 10, 'bold'),fg="#135EC2",highlightthickness=0) error_card_frame.grid(row=0,column=1) site_name_label.pack(fill=X,pady=1) no_result_label.pack() message_frame.pack() message_lable.pack(side=LEFT) else: card_frame = LabelFrame(card_container,bg="white") site_name_frame = LabelFrame(card_frame,bg="white",borderwidth=0,highlightthickness=0) site_name_lable = Label(site_name_frame,text="indeed.com",bg="white",font=('Bahnschrift Light', 11, 'bold'),fg="#135EC2",highlightthickness=0) visit_button = Button(site_name_frame,text="Visit",font=('Bahnschrift Light', 10, 'bold'),fg="#135EC2",bg="white",command=lambda: visit("indeed.com")) head_frame = LabelFrame(card_frame,borderwidth=0,highlightthickness=0,bg="#135EC2") title_lable = Label(head_frame,text=indeed.title,wraplength=300,font=('Bahnschrift Light', 13, 'bold'),bg="#135EC2",fg="white") company_name_lable = Label(head_frame,text=indeed.company_name,wraplength=250,font=('Bahnschrift Light', 11, 'normal'),bg="#135EC2",fg="white") job_location_label = Label(head_frame,text=indeed.job_location,wraplength=250,font=('Bahnschrift Light', 11, 'normal'),bg="#135EC2",fg="white") rating_label = Label(head_frame,text=f"Rating: {indeed.rating}",font=('Bahnschrift Light', 11, 'normal'),bg="#135EC2",fg="white") salary_label = Label(head_frame,text=f"Salary: {indeed.salary}",font=('Bahnschrift Light', 11, 'normal'),bg="#135EC2",fg="white") card_frame.grid(row=0,column=1,padx=50) site_name_frame.pack(fill=X) visit_button.pack(side=RIGHT,pady=1,padx=1) site_name_lable.pack(pady=1) head_frame.pack(fill=X) title_lable.pack(padx=50) company_name_lable.pack() job_location_label.pack() rating_label.pack() salary_label.pack() # ----indeed GUI completed---- # -------Linkedin GUI--------- def linkedin_gui(): if len(linkedin_scrapper.cards)==0: error_card_frame = LabelFrame(card_container,bg="white") site_name_label = Label(error_card_frame,text="Linkedin",bg="white",font=('Bahnschrift Light', 11, 'bold'),fg="#135EC2",highlightthickness=0) no_result_label = Label(error_card_frame,text="No result",bg="white",font=('Bahnschrift Light', 12, 'bold'),fg="#135EC2",highlightthickness=0) message_frame = LabelFrame(error_card_frame,bg="white",borderwidth=0,highlightthickness=0) message_lable = Label(message_frame,text="OOPS!!! check your keyword and try again",bg="white",font=('Bahnschrift Light', 10, 'bold'),fg="#135EC2",highlightthickness=0) error_card_frame.grid(row=1,column=0) site_name_label.pack(fill=X,pady=1) no_result_label.pack() message_frame.pack() message_lable.pack(side=LEFT) else: card_frame = LabelFrame(card_container,bg="white") site_name_frame = LabelFrame(card_frame,bg="white",borderwidth=0,highlightthickness=0) site_name_lable = Label(site_name_frame,text="indeed.com",bg="white",font=('Bahnschrift Light', 11, 'bold'),fg="#135EC2",highlightthickness=0) visit_button = Button(site_name_frame,text="Visit",font=('Bahnschrift Light', 10, 'bold'),fg="#135EC2",bg="white",command=lambda: visit("Linkedin")) head_frame = LabelFrame(card_frame,borderwidth=0,highlightthickness=0,bg="#135EC2") title_lable = Label(head_frame,text=linkedin_scrapper.title,wraplength=300,font=('Bahnschrift Light', 13, 'bold'),bg="#135EC2",fg="white") company_name_lable = Label(head_frame,text=linkedin_scrapper.company_name,wraplength=250,font=('Bahnschrift Light', 11, 'normal'),bg="#135EC2",fg="white") job_location_label = Label(head_frame,text=linkedin_scrapper.job_location,wraplength=250,font=('Bahnschrift Light', 11, 'normal'),bg="#135EC2",fg="white") rating_label = Label(head_frame,text="Rating: Not Available",font=('Bahnschrift Light', 11, 'normal'),bg="#135EC2",fg="white") salary_label = Label(head_frame,text="Salary: Not Available",font=('Bahnschrift Light', 11, 'normal'),bg="#135EC2",fg="white") card_frame.grid(row=1,column=0,padx=100,pady=5) site_name_frame.pack(fill=X) visit_button.pack(side=RIGHT,pady=1,padx=1) site_name_lable.pack(pady=1) head_frame.pack(fill=X) title_lable.pack(padx=50) company_name_lable.pack(pady=5) job_location_label.pack(pady=5) rating_label.pack() salary_label.pack() # --------Linkedin GUI completed------------ # ---------SimplyHired GUI------------------ def simply_hired_gui(): if len(simply_hired_scrapper.cards)==0: error_card_frame = LabelFrame(card_container,bg="white",borderwidth=0,highlightthickness=0) site_name_label = Label(error_card_frame,text="SimplyHired",bg="white",font=('Bahnschrift Light', 11, 'bold'),fg="#135EC2",highlightthickness=0) no_result_label = Label(error_card_frame,text="No result",bg="white",font=('Bahnschrift Light', 12, 'bold'),fg="#135EC2",highlightthickness=0) message_frame = LabelFrame(error_card_frame,bg="white") message_lable = Label(message_frame,text="OOPS!!! check your keyword and try again",bg="white",font=('Bahnschrift Light', 10, 'bold'),fg="#135EC2",highlightthickness=0) error_card_frame.grid(row=1,column=1) site_name_label.pack(fill=X,pady=1) no_result_label.pack() message_frame.pack() message_lable.pack(side=LEFT) else: card_frame = LabelFrame(card_container,bg="white") site_name_frame = LabelFrame(card_frame,bg="white",borderwidth=0,highlightthickness=0) site_name_lable = Label(site_name_frame,text="indeed.com",bg="white",font=('Bahnschrift Light', 11, 'bold'),fg="#135EC2",highlightthickness=0) visit_button = Button(site_name_frame,text="Visit",font=('Bahnschrift Light', 10, 'bold'),fg="#135EC2",bg="white",command=lambda: visit("SimplyHired")) head_frame = LabelFrame(card_frame,borderwidth=0,highlightthickness=0,bg="#135EC2") title_lable = Label(head_frame,text=simply_hired_scrapper.title,wraplength=300,font=('Bahnschrift Light', 13, 'bold'),bg="#135EC2",fg="white") company_name_lable = Label(head_frame,text=simply_hired_scrapper.company_name,wraplength=250,font=('Bahnschrift Light', 11, 'normal'),bg="#135EC2",fg="white") job_location_label = Label(head_frame,text=simply_hired_scrapper.job_location,wraplength=250,font=('Bahnschrift Light', 11, 'normal'),bg="#135EC2",fg="white") rating_label = Label(head_frame,text="Rating: Not Available",font=('Bahnschrift Light', 11, 'normal'),bg="#135EC2",fg="white") salary_label = Label(head_frame,text="Salary: Not Available",font=('Bahnschrift Light', 11, 'normal'),bg="#135EC2",fg="white") card_frame.grid(row=1,column=1,padx=50,pady=5) site_name_frame.pack(fill=X) visit_button.pack(side=RIGHT,pady=1,padx=1) site_name_lable.pack(pady=1) head_frame.pack(fill=X) title_lable.pack(pady=5,padx=50) company_name_lable.pack(pady=5) job_location_label.pack(pady=5) rating_label.pack() salary_label.pack() # ----------SimplyHired GUI------------- def close(): global card_container card_container.pack_forget() card_container = LabelFrame(root,bg="white",pady=20,borderwidth=0,highlightthickness=0) card_container.pack(fill=X) is_both_empty = False def compare(): global card_container card_container.pack_forget() card_container = LabelFrame(root,bg="white",pady=20,borderwidth=0,highlightthickness=0) card_container.pack(fill=X) if not str(job_profile_box.get()) and not str(location_box.get()) : global is_both_empty is_both_empty=True message_frame = LabelFrame(card_container,bg="white",padx=20,pady=30) message_label = Label(message_frame,text="Please enter Job Title and Location to compare",font=('Bahnschrift Light', 14, 'bold'),bg="white",fg="#135EC2") close_button = Button(card_container,text="Close",font=('Bahnschrift Light', 14, 'bold'),bg="white",fg="#135EC2",command=close) message_frame.pack(pady=20) message_label.pack() close_button.pack() else: job_profile = str(job_profile_box.get()) location = str(location_box.get()) naukri_scrapper.naukri_search(job_profile,location,0) indeed.indeed_search(job_profile,location,0) linkedin_scrapper.linkedin_search(job_profile,location,0) simply_hired_scrapper.simplyhired_search(job_profile,location,0) naukri_gui() indeed_gui() linkedin_gui() simply_hired_gui() compare_button = Button(compare_button_frame,text="Comapre",padx=15,pady=7,font=('Bahnschrift Light', 12, 'bold'),bg="white",fg="#135EC2",command=compare) compare_button.pack() root.mainloop()
57.808429
176
0.696911
2,036
15,088
4.97053
0.073183
0.071146
0.094862
0.054348
0.808498
0.787352
0.762451
0.758103
0.741403
0.724802
0
0.03989
0.136002
15,088
261
177
57.808429
0.736422
0.039767
0
0.486239
0
0
0.176723
0.005598
0
0
0
0
0
1
0.03211
false
0
0.036697
0
0.068807
0
0
0
0
null
0
0
0
1
1
1
1
1
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
null
0
0
0
0
0
0
0
0
0
0
0
0
0
6
decfc0841b9274cca97b69d13faf37aa2232005f
58
py
Python
tests/cases/print.py
wisn/py2many
e33871a3e54971407319e9df28dcadcdc3a49140
[ "MIT" ]
1
2021-05-14T00:35:04.000Z
2021-05-14T00:35:04.000Z
tests/cases/print.py
wisn/py2many
e33871a3e54971407319e9df28dcadcdc3a49140
[ "MIT" ]
null
null
null
tests/cases/print.py
wisn/py2many
e33871a3e54971407319e9df28dcadcdc3a49140
[ "MIT" ]
null
null
null
def main(): print(2) print("b") print(2, "b")
11.6
17
0.448276
9
58
2.888889
0.555556
0.461538
0
0
0
0
0
0
0
0
0
0.05
0.310345
58
4
18
14.5
0.6
0
0
0
0
0
0.034483
0
0
0
0
0
0
1
0.25
true
0
0
0
0.25
0.75
1
0
0
null
1
0
0
0
0
0
0
0
0
0
0
0
0
1
0
0
0
0
0
0
0
0
0
0
null
0
0
0
0
0
1
1
0
0
0
0
1
0
6
a0e7af4439dc68e76e3dc02f0c28bddc41d0fe5c
7,662
py
Python
robosuite/models/objects/xml_objects.py
ClaireLC/robosuite
b5c37f1110aefc02106ffd2aed0dfb106bc1bb33
[ "MIT" ]
1
2021-12-22T13:10:46.000Z
2021-12-22T13:10:46.000Z
robosuite/models/objects/xml_objects.py
wangcongrobot/robosuite-jr
738be7a3a83447e78763f6a082faafc8b479c95d
[ "MIT" ]
null
null
null
robosuite/models/objects/xml_objects.py
wangcongrobot/robosuite-jr
738be7a3a83447e78763f6a082faafc8b479c95d
[ "MIT" ]
1
2020-12-29T01:38:01.000Z
2020-12-29T01:38:01.000Z
from robosuite.models.objects import MujocoXMLObject from robosuite.utils.mjcf_utils import xml_path_completion, array_to_string, string_to_array class BottleObject(MujocoXMLObject): """ Bottle object """ def __init__(self): super().__init__(xml_path_completion("objects/bottle.xml")) class CanObject(MujocoXMLObject): """ Coke can object (used in SawyerPickPlace) """ def __init__(self): super().__init__(xml_path_completion("objects/can.xml")) class LemonObject(MujocoXMLObject): """ Lemon object """ def __init__(self): super().__init__(xml_path_completion("objects/lemon.xml")) class MilkObject(MujocoXMLObject): """ Milk carton object (used in SawyerPickPlace) """ def __init__(self): super().__init__(xml_path_completion("objects/milk.xml")) class BreadObject(MujocoXMLObject): """ Bread loaf object (used in SawyerPickPlace) """ def __init__(self): super().__init__(xml_path_completion("objects/bread.xml")) class CerealObject(MujocoXMLObject): """ Cereal box object (used in SawyerPickPlace) """ def __init__(self): super().__init__(xml_path_completion("objects/cereal.xml")) class SquareNutObject(MujocoXMLObject): """ Square nut object (used in SawyerNutAssembly) """ def __init__(self): super().__init__(xml_path_completion("objects/square-nut.xml")) class RoundNutObject(MujocoXMLObject): """ Round nut (used in SawyerNutAssembly) """ def __init__(self): super().__init__(xml_path_completion("objects/round-nut.xml")) class MilkVisualObject(MujocoXMLObject): """ Visual fiducial of milk carton (used in SawyerPickPlace). Fiducial objects are not involved in collision physics. They provide a point of reference to indicate a position. """ def __init__(self): super().__init__(xml_path_completion("objects/milk-visual.xml")) class BreadVisualObject(MujocoXMLObject): """ Visual fiducial of bread loaf (used in SawyerPickPlace) """ def __init__(self): super().__init__(xml_path_completion("objects/bread-visual.xml")) class CerealVisualObject(MujocoXMLObject): """ Visual fiducial of cereal box (used in SawyerPickPlace) """ def __init__(self): super().__init__(xml_path_completion("objects/cereal-visual.xml")) class CanVisualObject(MujocoXMLObject): """ Visual fiducial of coke can (used in SawyerPickPlace) """ def __init__(self): super().__init__(xml_path_completion("objects/can-visual.xml")) class PlateWithHoleObject(MujocoXMLObject): """ Square plate with a hole in the center (used in BaxterPegInHole) """ def __init__(self): super().__init__(xml_path_completion("objects/plate-with-hole.xml")) class DoorPullNoLatchObject(MujocoXMLObject): """ Door: pull with no latch """ def __init__(self): #super().__init__(xml_path_completion("objects/door_dapg.xml")) super().__init__(xml_path_completion("objects/door_pull_no_latch.xml")) def set_goal_xpos(self, x_delta, y_delta): """ Sets x,y position of goal site in door model with x and y offset from door center""" door_center_site = self.worldbody.find("./body/body/body/site[@name='door_center']") door_center_pos = string_to_array(door_center_site.get("pos")) goal_site = self.worldbody.find("./body/body/body/site[@name='goal']") goal_site.set("pos", array_to_string([door_center_pos[0] + x_delta, door_center_pos[1] + y_delta, -1.0])) @property def handle_contact_geoms(self): return[ "handle_base", "handle", ] @property def door_contact_geoms(self): return[ "door_box", "door_r_cyl", "door_l_cyl", "l_frame", "r_frame", ] class DoorPullWithLatchObject(MujocoXMLObject): """ Door: pull with latch """ def __init__(self): #super().__init__(xml_path_completion("objects/door_dapg.xml")) super().__init__(xml_path_completion("objects/door_pull_with_latch.xml")) def set_goal_xpos(self, x_delta, y_delta): """ Sets x,y position of goal site in door model with x and y offset from door center""" door_center_site = self.worldbody.find("./body/body/body/site[@name='door_center']") door_center_pos = string_to_array(door_center_site.get("pos")) goal_site = self.worldbody.find("./body/body/body/site[@name='goal']") goal_site.set("pos", array_to_string([door_center_pos[0] + x_delta, door_center_pos[1] + y_delta, -1.0])) @property def handle_contact_geoms(self): return[ "handle_base", "handle", ] @property def door_contact_geoms(self): return[ "door_box", "door_r_cyl", "door_l_cyl", "l_frame", "r_frame", ] class DoorPullNoLatchRoomObject(MujocoXMLObject): """ Door: pull with latch with walls """ def __init__(self): super().__init__(xml_path_completion("objects/door_pull_no_latch_room.xml")) def set_goal_xpos(self, x_delta, y_delta): """ Sets x,y position of goal site in door model with x and y offset from door center""" door_center_site = self.worldbody.find("./body/body/body/site[@name='door_center']") door_center_pos = string_to_array(door_center_site.get("pos")) goal_site = self.worldbody.find("./body/body/body/site[@name='goal']") goal_site.set("pos", array_to_string([door_center_pos[0] + x_delta, door_center_pos[1] + y_delta, -1.0])) @property def handle_contact_geoms(self): return[ "handle_base", "handle", ] @property def door_contact_geoms(self): return[ "door_box", "door_r_cyl", "door_l_cyl", "l_frame", "r_frame", ] @property def wall_contact_geoms(self): return[ "wall_g0", "wall_g1", "wall_g2", "wall_g3", ] class DoorPullNoLatchRoomWideObject(MujocoXMLObject): """ Door: pull with no latch with walls """ def __init__(self): super().__init__(xml_path_completion("objects/door_pull_no_latch_room_wide.xml")) def set_goal_xpos(self, x_delta, y_delta): """ Sets x,y position of goal site in door model with x and y offset from door center""" door_center_site = self.worldbody.find("./body/body/body/site[@name='door_center']") door_center_pos = string_to_array(door_center_site.get("pos")) goal_site = self.worldbody.find("./body/body/body/site[@name='goal']") goal_site.set("pos", array_to_string([door_center_pos[0] + x_delta, door_center_pos[1] + y_delta, -1.0])) @property def handle_contact_geoms(self): return[ "handle_base", "handle", ] @property def door_contact_geoms(self): return[ "door_box", "door_r_cyl", "door_l_cyl", "l_frame", "r_frame", ] @property def wall_contact_geoms(self): return[ "wall_g0", "wall_g1", "wall_g2", "wall_g3", ] class EmptyWithGoalObject(MujocoXMLObject): """ Empty arena with goal site """ def __init__(self): super().__init__(xml_path_completion("objects/empty_with_goal.xml")) def set_goal_xpos(self, x_delta, y_delta): """ Sets x,y position of goal site in door model with x and y offset from door center""" goal_site = self.worldbody.find("./body/body/site[@name='goal']") goal_site.set("pos", array_to_string([x_delta, y_delta, 0]))
26.512111
111
0.658053
970
7,662
4.806186
0.123711
0.062205
0.076577
0.06864
0.743887
0.732304
0.719863
0.7145
0.7145
0.695624
0
0.004142
0.212216
7,662
288
112
26.604167
0.768224
0.178674
0
0.677419
0
0
0.18097
0.110982
0
0
0
0
0
1
0.212903
false
0
0.012903
0.064516
0.341935
0
0
0
0
null
0
0
0
0
1
1
1
1
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
null
0
0
0
0
0
1
0
0
0
0
0
0
0
6
9d192ebb1226024bcb7fe7faa5cd19ef549419f8
130
py
Python
illud/exceptions/quit_exception.py
AustinScola/illud
a6aca1de38bbe9d5a795aaa084bcbd6731767d18
[ "MIT" ]
1
2020-12-05T00:59:15.000Z
2020-12-05T00:59:15.000Z
illud/exceptions/quit_exception.py
AustinScola/illud
a6aca1de38bbe9d5a795aaa084bcbd6731767d18
[ "MIT" ]
112
2021-01-15T21:42:27.000Z
2021-04-17T19:11:21.000Z
illud/exceptions/quit_exception.py
AustinScola/illud
a6aca1de38bbe9d5a795aaa084bcbd6731767d18
[ "MIT" ]
null
null
null
"""Raised to quit.""" from illud.exception import IlludException class QuitException(IlludException): """Raised to quit."""
18.571429
42
0.723077
14
130
6.714286
0.714286
0.170213
0.255319
0
0
0
0
0
0
0
0
0
0.138462
130
6
43
21.666667
0.839286
0.238462
0
0
0
0
0
0
0
0
0
0
0
1
0
true
0
0.5
0
1
0
1
0
0
null
0
1
0
0
0
0
0
0
0
0
0
0
0
1
0
0
0
0
0
0
0
0
0
0
null
0
0
0
0
0
0
1
0
1
0
1
0
0
6
c2221b8872b6350f052296a7af3215fb075a5795
30
py
Python
src/python/src/rmq/items/__init__.py
halimov-oa/scrapy-boilerplate
fe3c552fed26bedb0618c245ab923aa34a89ac9d
[ "MIT" ]
34
2019-12-13T10:31:39.000Z
2022-03-09T15:59:07.000Z
src/python/src/rmq/items/__init__.py
halimov-oa/scrapy-boilerplate
fe3c552fed26bedb0618c245ab923aa34a89ac9d
[ "MIT" ]
49
2020-02-25T19:41:09.000Z
2022-02-27T12:05:25.000Z
src/python/src/rmq/items/__init__.py
halimov-oa/scrapy-boilerplate
fe3c552fed26bedb0618c245ab923aa34a89ac9d
[ "MIT" ]
23
2019-12-23T15:19:42.000Z
2022-03-09T16:00:15.000Z
from .rmq_item import RMQItem
15
29
0.833333
5
30
4.8
1
0
0
0
0
0
0
0
0
0
0
0
0.133333
30
1
30
30
0.923077
0
0
0
0
0
0
0
0
0
0
0
0
1
0
true
0
1
0
1
0
1
1
0
null
0
0
0
0
0
0
0
0
0
0
0
0
0
1
0
0
0
0
0
0
0
0
0
0
null
0
0
0
0
0
0
1
0
1
0
1
0
0
6
dfb68a5201db3b2abf55a2e729e1d1531d27950c
77
py
Python
src/buildercore/external.py
elifesciences/builder
161829686f777f7ac7f97bd970395886ba5089c1
[ "MIT" ]
11
2017-03-01T18:00:30.000Z
2021-12-10T05:11:02.000Z
src/buildercore/external.py
elifesciences/builder
161829686f777f7ac7f97bd970395886ba5089c1
[ "MIT" ]
397
2016-07-08T14:39:46.000Z
2022-03-30T12:45:09.000Z
src/buildercore/external.py
elifesciences/builder
161829686f777f7ac7f97bd970395886ba5089c1
[ "MIT" ]
14
2016-07-13T08:33:28.000Z
2020-04-22T21:42:21.000Z
import subprocess def execute(cmd): return subprocess.check_output(cmd)
15.4
39
0.779221
10
77
5.9
0.8
0
0
0
0
0
0
0
0
0
0
0
0.142857
77
4
40
19.25
0.893939
0
0
0
0
0
0
0
0
0
0
0
0
1
0.333333
false
0
0.333333
0.333333
1
0
1
0
0
null
0
0
0
0
0
0
0
0
0
0
0
0
0
1
0
0
0
0
0
0
0
0
0
0
null
0
0
0
0
0
1
0
0
1
1
1
0
0
6
dfc53823fb3adccd40e9762c665f5bb3deecbf27
95
py
Python
instance/config.py
antomuli/News_Highlight
9feb33c0a32fa78cd93f5ab2c74942a8ca281701
[ "Unlicense" ]
2
2020-03-23T23:16:51.000Z
2020-04-26T21:15:11.000Z
instance/config.py
antomuli/News_Highlight
9feb33c0a32fa78cd93f5ab2c74942a8ca281701
[ "Unlicense" ]
null
null
null
instance/config.py
antomuli/News_Highlight
9feb33c0a32fa78cd93f5ab2c74942a8ca281701
[ "Unlicense" ]
null
null
null
NEWS_API_KEY= '138b22df68394ecbaa9c9af0d0377adb' SECRET_KEY= 'f9bf78b9a18ce6d46a0cd2b0b86df9da'
47.5
48
0.905263
7
95
11.857143
0.857143
0
0
0
0
0
0
0
0
0
0
0.347826
0.031579
95
2
49
47.5
0.554348
0
0
0
0
0
0.666667
0.666667
0
0
0
0
0
1
0
false
0
0
0
0
0
1
0
1
null
0
0
0
0
0
0
0
0
0
0
1
0
0
1
0
0
0
0
0
0
0
0
1
1
null
0
0
0
0
0
0
0
0
0
0
0
0
0
6
dfe9372c929b790c9a52b80b77bdd70cddddba45
187
py
Python
problem1.py
bakwc/PyCodeMonkey
32ea3a8947133ee9f96bea269a5dfd7a5b264ac1
[ "MIT" ]
null
null
null
problem1.py
bakwc/PyCodeMonkey
32ea3a8947133ee9f96bea269a5dfd7a5b264ac1
[ "MIT" ]
null
null
null
problem1.py
bakwc/PyCodeMonkey
32ea3a8947133ee9f96bea269a5dfd7a5b264ac1
[ "MIT" ]
null
null
null
# find fibonacci number def myFib(n): pass def tests(): assert myFib(1) == 1 assert myFib(2) == 1 assert myFib(3) == 2 assert myFib(4) == 3 assert myFib(5) == 5
15.583333
24
0.561497
29
187
3.62069
0.482759
0.52381
0.228571
0
0
0
0
0
0
0
0
0.075758
0.294118
187
11
25
17
0.719697
0.112299
0
0
0
0
0
0
0
0
0
0
0.625
1
0.25
false
0.125
0
0
0.25
0
1
0
0
null
1
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
null
0
0
0
1
0
1
0
1
0
0
0
0
0
6
5f27a02869b20dee1a16b8900aaf7b0000709f7f
105
py
Python
discobot/utils.py
pythonology/disco
82cc0434e584a1053075b51f487a3ac9b03f6f7d
[ "MIT" ]
7
2016-04-13T23:03:36.000Z
2016-04-19T22:25:28.000Z
discobot/utils.py
pythonology/disco
82cc0434e584a1053075b51f487a3ac9b03f6f7d
[ "MIT" ]
2
2016-06-03T16:12:00.000Z
2021-03-25T21:40:27.000Z
discobot/utils.py
pythonology/disco
82cc0434e584a1053075b51f487a3ac9b03f6f7d
[ "MIT" ]
1
2016-04-13T18:43:19.000Z
2016-04-13T18:43:19.000Z
def make_attachment_uri(discriminator, filename): return 'disco://%s/%s' % (discriminator, filename)
35
54
0.733333
12
105
6.25
0.75
0.56
0
0
0
0
0
0
0
0
0
0
0.114286
105
2
55
52.5
0.806452
0
0
0
0
0
0.12381
0
0
0
0
0
0
1
0.5
false
0
0
0.5
1
0
1
0
0
null
1
0
0
0
0
0
0
0
0
0
0
0
0
1
0
0
0
0
0
0
0
0
0
0
null
0
0
0
0
0
1
0
0
0
1
1
0
0
6
a0595a142eaf248d183d94e735f0ba479dc117a7
48
py
Python
needlestack/indices/__init__.py
needlehaystack/needlestack
e00529a2a7c2d85059936a85f54dfb55e515b6ef
[ "Apache-2.0" ]
3
2019-10-03T22:15:21.000Z
2022-02-08T09:05:41.000Z
needlestack/indices/__init__.py
cungtv/needlestack
e00529a2a7c2d85059936a85f54dfb55e515b6ef
[ "Apache-2.0" ]
1
2021-04-30T21:08:47.000Z
2021-04-30T21:08:47.000Z
needlestack/indices/__init__.py
cungtv/needlestack
e00529a2a7c2d85059936a85f54dfb55e515b6ef
[ "Apache-2.0" ]
2
2019-08-02T19:13:09.000Z
2019-10-25T01:47:17.000Z
from needlestack.indices.index import BaseIndex
24
47
0.875
6
48
7
1
0
0
0
0
0
0
0
0
0
0
0
0.083333
48
1
48
48
0.954545
0
0
0
0
0
0
0
0
0
0
0
0
1
0
true
0
1
0
1
0
1
1
0
null
0
0
0
0
0
0
0
0
0
0
0
0
0
1
0
0
0
0
0
0
0
0
0
0
null
0
0
0
0
0
0
1
0
1
0
1
0
0
6
a08b15176907fc58ba9177ee950b34ee8cb64ffe
691
py
Python
cd4ml/problems/houses/features/feature_functions/feature_functions.py
camila-contreras/CD4ML-Scenarios
806f812990c7cf33b5f78456f0065012b5b4cd35
[ "MIT" ]
113
2020-03-31T20:36:39.000Z
2022-01-11T15:06:58.000Z
cd4ml/problems/houses/features/feature_functions/feature_functions.py
camila-contreras/CD4ML-Scenarios
806f812990c7cf33b5f78456f0065012b5b4cd35
[ "MIT" ]
7
2020-06-10T05:11:35.000Z
2022-01-06T02:55:21.000Z
cd4ml/problems/houses/features/feature_functions/feature_functions.py
camila-contreras/CD4ML-Scenarios
806f812990c7cf33b5f78456f0065012b5b4cd35
[ "MIT" ]
260
2020-03-21T19:42:26.000Z
2022-01-25T22:08:36.000Z
def zipcode_to_feature(zipcode, lookup, feature): results = lookup.get(zipcode) if results is None: return None else: return results[feature] def zipcode_to_state(zipcode, lookup): return zipcode_to_feature(zipcode, lookup, 'state') def avg_price_by_zipcode(zipcode, lookup): return zipcode_to_feature(zipcode, lookup, 'avg_price_in_zip') def num_in_zipcode(zipcode, lookup): return zipcode_to_feature(zipcode, lookup, 'num_in_zip') def avg_price_by_state(zipcode, lookup): return zipcode_to_feature(zipcode, lookup, 'avg_price_in_state') def num_in_state(zipcode, lookup): return zipcode_to_feature(zipcode, lookup, 'num_in_state')
25.592593
68
0.751085
98
691
4.94898
0.193878
0.294845
0.197938
0.284536
0.676289
0.616495
0.616495
0.616495
0.616495
0.457732
0
0
0.157742
691
26
69
26.576923
0.833333
0
0
0
0
0
0.088278
0
0
0
0
0
0
1
0.375
false
0
0
0.3125
0.8125
0
0
0
0
null
1
1
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
null
0
0
0
0
0
1
0
0
0
1
1
0
0
6
2602c88691bffc3721e77c257e3bfd7bb2de90f1
246
py
Python
skypy/galaxy/tests/test_import.py
ArthurTolley/skypy
5621877ada75c667b1af7e665b02a91026f7ef0f
[ "BSD-3-Clause" ]
1
2020-12-28T18:00:24.000Z
2020-12-28T18:00:24.000Z
skypy/galaxy/tests/test_import.py
ArthurTolley/skypy
5621877ada75c667b1af7e665b02a91026f7ef0f
[ "BSD-3-Clause" ]
2
2020-12-28T20:14:40.000Z
2020-12-28T21:49:27.000Z
skypy/galaxy/tests/test_import.py
ArthurTolley/skypy
5621877ada75c667b1af7e665b02a91026f7ef0f
[ "BSD-3-Clause" ]
null
null
null
def test_import(): import skypy.galaxy import skypy.galaxy.ellipticity import skypy.galaxy.luminosity import skypy.galaxy.redshift import skypy.galaxy.size import skypy.galaxy.spectrum import skypy.galaxy.stellar_mass
27.333333
36
0.756098
31
246
5.935484
0.387097
0.418478
0.646739
0
0
0
0
0
0
0
0
0
0.178862
246
8
37
30.75
0.910891
0
0
0
0
0
0
0
0
0
0
0
0
1
0.125
true
0
1
0
1.125
0
0
0
0
null
1
1
0
0
0
0
0
0
0
0
0
0
0
1
0
0
0
0
0
0
0
0
0
0
null
0
0
0
0
0
0
1
0
1
0
1
0
0
6
260c11b37ca0f5a211fd4291ad4e8a2a93dbd3d4
83
py
Python
pybktreespellchecker/__init__.py
tomasrasymas/pybktree-spell-checker
e1f7547957a4257a9b6ce470ebc8bcc95767c5d4
[ "MIT" ]
3
2019-01-07T21:34:29.000Z
2020-07-20T23:43:01.000Z
pybktreespellchecker/__init__.py
tomasrasymas/pybktree-spell-checker
e1f7547957a4257a9b6ce470ebc8bcc95767c5d4
[ "MIT" ]
null
null
null
pybktreespellchecker/__init__.py
tomasrasymas/pybktree-spell-checker
e1f7547957a4257a9b6ce470ebc8bcc95767c5d4
[ "MIT" ]
null
null
null
from .levenshtein_distance import levenshtein_distance from .bk_tree import BKTree
27.666667
54
0.879518
11
83
6.363636
0.636364
0.542857
0
0
0
0
0
0
0
0
0
0
0.096386
83
2
55
41.5
0.933333
0
0
0
0
0
0
0
0
0
0
0
0
1
0
true
0
1
0
1
0
1
0
0
null
1
0
0
0
0
0
0
0
0
0
0
0
0
1
0
0
0
0
0
0
0
0
0
0
null
0
0
0
0
0
0
1
0
1
0
1
0
0
6
cd26104c6eb130ab45214eda4f1934869ef8a4f2
3,524
py
Python
src/data_reader.py
jazzsewera/mops-projekt
75924546eb73c266ba81e8e22c68ad939dea19d6
[ "MIT" ]
null
null
null
src/data_reader.py
jazzsewera/mops-projekt
75924546eb73c266ba81e8e22c68ad939dea19d6
[ "MIT" ]
null
null
null
src/data_reader.py
jazzsewera/mops-projekt
75924546eb73c266ba81e8e22c68ad939dea19d6
[ "MIT" ]
null
null
null
from logger import Logger from numpy import average log = Logger(None) def show_queue_length_average(number_of_packets): timestamps = [] vals = [] if len(number_of_packets) == 0: log.info(f"Average number of packets: NO DATA") return 0 for k, v in number_of_packets.items(): timestamps.append(float(k)) vals.append(v) vals.pop() timedeltas = [] for i in range(len(timestamps) - 1): timedeltas.append(timestamps[i + 1] - timestamps[i]) av = average(vals, weights=timedeltas) log.info(f"Average number of packets: {av}") return av def show_average_queue_waiting_time_Q1(sent_packets): ts = [] if len(sent_packets) == 0: log.info(f"Average waiting time: NO DATA") return 0 for packet in sent_packets: ts.append(packet.out_of_queue_time - packet.in_queue_time) av = sum(ts) / len(ts) log.info(f"Average waiting time: {av}") return av def show_average_delay_Q1(sent_packets): ts = [] if len(sent_packets) == 0: log.info(f"Average delay time: NO DATA") return 0 for packet in sent_packets: ts.append(packet.in_second_queue_time - packet.in_queue_time) av = sum(ts) / len(ts) log.info(f"Average delay time: {av}") return av def show_average_server_load_Q1(sent_packets): if len(sent_packets) == 0: log.info(f"Average server load: NO DATA") return 0 av_service_time = ( sent_packets[0].in_second_queue_time - sent_packets[0].out_of_queue_time ) vals = [] for i in range(len(sent_packets) - 1): vals.append(sent_packets[i + 1].in_queue_time - sent_packets[i].in_queue_time) if sum(vals) == 0 or len(vals) == 0: log.info(f"Average server load: NO DATA") return 0 av_time_between_in_queue = sum(vals) / len(vals) influx = 1 / av_time_between_in_queue outflow = 1 / av_service_time av = influx / outflow log.info(f"Average server load: {av}") return av def show_average_queue_waiting_time_Q2(sent_packets): ts = [] if len(sent_packets) == 0: log.info(f"Average waiting time: NO DATA") return 0 for packet in sent_packets: ts.append(packet.out_of_second_queue - packet.in_second_queue_time) av = sum(ts) / len(ts) log.info(f"Average waiting time: {av}") return av def show_average_delay_Q2(sent_packets): ts = [] if len(sent_packets) == 0: log.info(f"Average delay time: NO DATA") return 0 for packet in sent_packets: ts.append(packet.out_of_system_time - packet.in_second_queue_time) av = sum(ts) / len(ts) log.info(f"Average delay time: {av}") return av def show_average_server_load_Q2(sent_packets): if len(sent_packets) == 0: log.info(f"Average server load: NO DATA") return 0 av_service_time = ( sent_packets[0].out_of_system_time - sent_packets[0].out_of_second_queue ) vals = [] for i in range(len(sent_packets) - 1): vals.append( sent_packets[i + 1].in_second_queue_time - sent_packets[i].in_second_queue_time ) if sum(vals) == 0 or len(vals) == 0: log.info(f"Average server load: NO DATA") return 0 av_time_between_in_queue = sum(vals) / len(vals) influx = 1 / av_time_between_in_queue outflow = 1 / av_service_time av = influx / outflow log.info(f"Average server load: {av}") return av
24.136986
86
0.638763
535
3,524
3.970093
0.106542
0.134652
0.060264
0.112994
0.842279
0.824388
0.767891
0.739642
0.739642
0.706686
0
0.015203
0.253405
3,524
145
87
24.303448
0.792094
0
0
0.65
0
0
0.124574
0
0
0
0
0
0
1
0.07
false
0
0.02
0
0.25
0
0
0
0
null
0
0
0
1
1
1
1
1
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
null
0
0
0
0
0
0
0
0
0
0
0
0
0
6
cd6412162ab8b14b43aaaa41358897ddfe50fe48
136
py
Python
dlpt/__init__.py
damogranlabs/dlpt
e4cdbaf4b5496ed985eb255b17294aa7cf3d35e4
[ "MIT" ]
5
2021-08-09T19:39:06.000Z
2022-03-22T11:21:29.000Z
dlpt/__init__.py
damogranlabs/dlpt
e4cdbaf4b5496ed985eb255b17294aa7cf3d35e4
[ "MIT" ]
null
null
null
dlpt/__init__.py
damogranlabs/dlpt
e4cdbaf4b5496ed985eb255b17294aa7cf3d35e4
[ "MIT" ]
null
null
null
from . import utils from . import pth from . import proc from . import log from . import json from . import time from . import importer
17
22
0.742647
21
136
4.809524
0.428571
0.693069
0
0
0
0
0
0
0
0
0
0
0.205882
136
7
23
19.428571
0.935185
0
0
0
0
0
0
0
0
0
0
0
0
1
0
true
0
1
0
1
0
1
0
0
null
1
0
0
0
0
0
0
0
0
0
0
0
0
1
0
0
0
0
0
0
0
0
0
0
null
0
0
0
0
0
0
1
0
1
0
1
0
0
6
cd6f36cb0dc0dd674280cb84b43ef766b0e9c395
14,691
py
Python
Draft/08_compare_original_GBS_Exome_biallelic_variation_alle_count.py
peipeiwang6/Genomic_prediction_in_Switchgrass
1fba3508c0d81d16e0629e3cf94ff4d174a85b13
[ "MIT" ]
null
null
null
Draft/08_compare_original_GBS_Exome_biallelic_variation_alle_count.py
peipeiwang6/Genomic_prediction_in_Switchgrass
1fba3508c0d81d16e0629e3cf94ff4d174a85b13
[ "MIT" ]
null
null
null
Draft/08_compare_original_GBS_Exome_biallelic_variation_alle_count.py
peipeiwang6/Genomic_prediction_in_Switchgrass
1fba3508c0d81d16e0629e3cf94ff4d174a85b13
[ "MIT" ]
null
null
null
''' imput1: exome capture, biallelic indel matrix input2: exome capture, biallelic SNP matrix input3: GBS, biallelic indel matrix input4: GBS, biallelic SNP matrix input5: allele count file for exome homozygous or heterozygous genotype input6: allele count file for GBS homozygous or heterozygous genotype input7: tetraploid or octaploid ''' import sys,os import numpy as np exome_indel = open(sys.argv[1],'r').readlines() exome_snp = open(sys.argv[2],'r').readlines() gbs_indel = open(sys.argv[3],'r').readlines() gbs_snp = open(sys.argv[4],'r').readlines() EP = {} #EP[pos] = 1 for inl in exome_indel[1:]: tem = inl.split('\t') EP[tem[0] + '_' + tem[1]] = 1 for inl in exome_snp[1:]: tem = inl.split('\t') EP[tem[0] + '_' + tem[1]] = 1 S = {} #shared position, S[pos] = 1 for inl in gbs_indel[1:]: tem = inl.split('\t') if tem[0] + '_' + tem[1] in EP: S[tem[0] + '_' + tem[1]] = 1 for inl in gbs_snp[1:]: tem = inl.split('\t') if tem[0] + '_' + tem[1] in EP: S[tem[0] + '_' + tem[1]] = 1 E = {} # E[pos][ind] = A/T G = {} # G[pos][ind] = A/T EN = {} # EN[i] = ind GN = {} # GN[i] = ind IND = {} # IND[ind] = 1 tem = exome_indel[0].strip().split('\t') for i in range(4,len(tem)): EN[i] = tem[i] IND[tem[i]] = 1 tem = gbs_indel[0].strip().split('\t') for i in range(4,len(tem)): GN[i] = tem[i] for inl in exome_indel[1:]: tem = inl.strip().split('\t') if tem[0] + '_' + tem[1] in S: pos = tem[0] + '_' + tem[1] E[pos] = {} E[pos]['ref'] = tem[2] E[pos]['alt'] = tem[3] for i in range(4,len(tem)): E[pos][EN[i]] = tem[i] for inl in exome_snp[1:]: tem = inl.strip().split('\t') if tem[0] + '_' + tem[1] in S: pos = tem[0] + '_' + tem[1] E[pos] = {} E[pos]['ref'] = tem[2] E[pos]['alt'] = tem[3] for i in range(4,len(tem)): E[pos][EN[i]] = tem[i] for inl in gbs_indel[1:]: tem = inl.strip().split('\t') if tem[0] + '_' + tem[1] in S: pos = tem[0] + '_' + tem[1] G[pos] = {} G[pos]['ref'] = tem[2] G[pos]['alt'] = tem[3] for i in range(4,len(tem)): G[pos][GN[i]] = tem[i] for inl in gbs_snp[1:]: tem = inl.strip().split('\t') if tem[0] + '_' + tem[1] in S: pos = tem[0] + '_' + tem[1] G[pos] = {} G[pos]['ref'] = tem[2] G[pos]['alt'] = tem[3] for i in range(4,len(tem)): G[pos][GN[i]] = tem[i] out = open('Biallelic_variation_%s_Exome_VS_GBS.txt'%sys.argv[7],'w') Ind = sorted(IND.keys()) title = 'Chr\tPos\tRef\tAlt' for ind in Ind: title = title + '\t' + ind out.write(title + '\n') for pos in S: res = pos.split('_')[0] + '\t' + pos.split('_')[1] if E[pos]['ref'] == G[pos]['ref']: res = res + '\t' + E[pos]['ref'] else: res = res + '\t' + E[pos]['ref'] + '|' + G[pos]['ref'] if E[pos]['alt'] == G[pos]['alt']: res = res + '\t' + E[pos]['alt'] else: res = res + '\t' + E[pos]['alt'] + '|' + G[pos]['alt'] for ind in Ind: if E[pos][ind] == G[pos][ind] or (E[pos][ind].split('/')[0] == G[pos][ind].split('/')[1] and E[pos][ind].split('/')[1] == G[pos][ind].split('/')[0]): res = res + '\t' + E[pos][ind] else: res = res + '\t' + E[pos][ind] + '|' + G[pos][ind] out.write(res + '\n') out.close() ori_exome_indel = open(sys.argv[1],'r').readlines() ori_exome_snp = open(sys.argv[2],'r').readlines() ori_gbs_indel = open(sys.argv[3],'r').readlines() ori_gbs_snp = open(sys.argv[4],'r').readlines() ori_out = open('Shared_Biallelic_variation_%s_original_Exome_VS_GBS.txt'%sys.argv[7],'w') out = open('Distribution_of_discrepancy_Biallelic_variation_%s_between_exome_and_GBS.txt'%sys.argv[7],'w') ori_out.write(title + '\n') O_exome = {} O_gbs = {} EN = {} # EN[i] = ind GN = {} # GN[i] = ind tem = ori_exome_indel[0].strip().split('\t') for i in range(4,len(tem)): EN[i] = tem[i] IND[tem[i]] = 1 tem = ori_gbs_indel[0].strip().split('\t') for i in range(4,len(tem)): GN[i] = tem[i] for inl in ori_exome_indel[1:]: tem = inl.strip().split('\t') if tem[0] + '_' + tem[1] in S: pos = tem[0] + '_' + tem[1] O_exome[pos] = {} O_exome[pos]['ref'] = tem[2] O_exome[pos]['alt'] = tem[3] for i in range(4,len(tem)): O_exome[pos][EN[i]] = tem[i] for inl in ori_exome_snp[1:]: tem = inl.strip().split('\t') if tem[0] + '_' + tem[1] in S: pos = tem[0] + '_' + tem[1] O_exome[pos] = {} O_exome[pos]['ref'] = tem[2] O_exome[pos]['alt'] = tem[3] for i in range(4,len(tem)): O_exome[pos][EN[i]] = tem[i] for inl in ori_gbs_indel[1:]: tem = inl.strip().split('\t') if tem[0] + '_' + tem[1] in S: pos = tem[0] + '_' + tem[1] O_gbs[pos] = {} O_gbs[pos]['ref'] = tem[2] O_gbs[pos]['alt'] = tem[3] for i in range(4,len(tem)): O_gbs[pos][GN[i]] = tem[i] for inl in ori_gbs_snp[1:]: tem = inl.strip().split('\t') if tem[0] + '_' + tem[1] in S: pos = tem[0] + '_' + tem[1] O_gbs[pos] = {} O_gbs[pos]['ref'] = tem[2] O_gbs[pos]['alt'] = tem[3] for i in range(4,len(tem)): O_gbs[pos][GN[i]] = tem[i] if sys.argv[7] == 'octaploid': N1 = 0 ### Exome has variation, GBS is ./. N2 = 0 ### have same variation N3 = 0 ### Exome has heteo(AATT), GBS has homo N3_02 = 0 ### Exome has heteo(ATTT or AAAT), GBS has homo N3_03 = 0 ### Exome has heteo(ATTT or AAAT), GBS has hetero(AATT) N4 = 0 ### Exome is ./., GBS has variation N5 = 0 ### Exome has homo, GBS has heteo(AATT) N5_02 = 0 ### Exome has homo, GBS has heteo(ATTT or AAAT) N5_03 = 0 ### Exome has hetero(AATT), GBS has heteo(ATTT or AAAT) N5_04 = 0 ### Exome has hetero(ATTT), GBS has heteo(TTTA) N6 = 0 ### both are ./. N7 = 0 ### both homo but different variation out.write('Chr\tpos\tID\tExome_SNP\tGBS_SNP\tType\n') for pos in S: res = pos.split('_')[0] + '\t' + pos.split('_')[1] if O_exome[pos]['ref'] == O_gbs[pos]['ref']: res = res + '\t' + O_exome[pos]['ref'] else: res = res + '\t' + O_exome[pos]['ref'] + '|' + O_gbs[pos]['ref'] print(pos) if O_exome[pos]['alt'] == O_gbs[pos]['alt']: res = res + '\t' + O_exome[pos]['alt'] else: res = res + '\t' + O_exome[pos]['alt'] + '|' + O_gbs[pos]['alt'] print(pos) for ind in Ind: if O_exome[pos][ind] == O_gbs[pos][ind] or sorted(O_exome[pos][ind].split('/')) == sorted(O_gbs[pos][ind].split('/')): res = res + '\t' + O_exome[pos][ind] else: res = res + '\t' + O_exome[pos][ind] + '|' + O_gbs[pos][ind] ### have same SNPs, AATT == TTAA, ATTT == TTTA if (O_exome[pos][ind] == O_gbs[pos][ind] or sorted(O_exome[pos][ind].split('/')) == sorted(O_gbs[pos][ind].split('/'))) and O_exome[pos][ind]!= './././.': N2 += 1 ### both are ./. elif O_exome[pos][ind] == O_gbs[pos][ind] and O_exome[pos][ind]== './././.': N6 += 1 ### Exome has SNPs, GBS is ./. elif O_exome[pos][ind] != './././.' and O_gbs[pos][ind] == './././.': N1 += 1 ### Exome is ./., GBS has SNPs elif O_exome[pos][ind] == './././.' and O_gbs[pos][ind] != './././.': N4 += 1 ### Exome has homo, GBS has hetero(AATT) elif len(np.unique(O_exome[pos][ind].split('/'))) == 1 and len(np.unique(O_gbs[pos][ind].split('/'))) == 2 and O_exome[pos][ind]!= './.' and O_gbs[pos][ind].split('/')[1] != O_gbs[pos][ind].split('/')[2]: N5 += 1 out.write('%s\t%s\t%s\t%s\t%s\tExome_homo_GBS_hetero_AATT\n'%(pos.split('_')[0],pos.split('_')[1],ind,O_exome[pos][ind],O_gbs[pos][ind])) ### Exome has homo, GBS has hetero(ATTT or AAAT) elif len(np.unique(O_exome[pos][ind].split('/'))) == 1 and len(np.unique(O_gbs[pos][ind].split('/'))) == 2 and O_exome[pos][ind]!= './.' and O_gbs[pos][ind].split('/')[1] == O_gbs[pos][ind].split('/')[2]: N5_02 += 1 out.write('%s\t%s\t%s\t%s\t%s\tExome_homo_GBS_hetero_ATTT\n'%(pos.split('_')[0],pos.split('_')[1],ind,O_exome[pos][ind],O_gbs[pos][ind])) ### Exome has AATT, GBS has hetero(ATTT or AAAT) elif len(np.unique(O_exome[pos][ind].split('/'))) == 2 and len(np.unique(O_gbs[pos][ind].split('/'))) == 2 and O_gbs[pos][ind].split('/')[1] == O_gbs[pos][ind].split('/')[2] and O_exome[pos][ind].split('/')[1] != O_exome[pos][ind].split('/')[2]: N5_03 += 1 out.write('%s\t%s\t%s\t%s\t%s\tExome_hetero_AATT_GBS_hetero_ATTT\n'%(pos.split('_')[0],pos.split('_')[1],ind,O_exome[pos][ind],O_gbs[pos][ind])) ### Exome has ATTT, GBS has heteroTTTA elif len(np.unique(O_exome[pos][ind].split('/'))) == 2 and len(np.unique(O_gbs[pos][ind].split('/'))) == 2 and O_gbs[pos][ind].split('/')[1] == O_gbs[pos][ind].split('/')[2] and O_exome[pos][ind].split('/')[1] == O_exome[pos][ind].split('/')[2] and sorted(O_exome[pos][ind].split('/')) != sorted(O_gbs[pos][ind].split('/')): N5_04 += 1 out.write('%s\t%s\t%s\t%s\t%s\tExome_hetero_ATTT_GBS_hetero_AAAT\n'%(pos.split('_')[0],pos.split('_')[1],ind,O_exome[pos][ind],O_gbs[pos][ind])) ### Exome has hetero(AATT), GBS has homo elif len(np.unique(O_exome[pos][ind].split('/'))) == 2 and len(np.unique(O_gbs[pos][ind].split('/'))) == 1 and O_exome[pos][ind].split('/')[1] != O_exome[pos][ind].split('/')[2] and O_gbs[pos][ind] != './.': N3 += 1 out.write('%s\t%s\t%s\t%s\t%s\tExome_hetero_AATT_GBS_homo\n'%(pos.split('_')[0],pos.split('_')[1],ind,O_exome[pos][ind],O_gbs[pos][ind])) ### Exome has hetero(ATTT or AAAT), GBS has homo elif len(np.unique(O_exome[pos][ind].split('/'))) == 2 and len(np.unique(O_gbs[pos][ind].split('/'))) == 1 and O_exome[pos][ind].split('/')[1] == O_exome[pos][ind].split('/')[2] and O_gbs[pos][ind] != './.': N3_02 += 1 out.write('%s\t%s\t%s\t%s\t%s\tExome_hetero_ATTT_GBS_homo\n'%(pos.split('_')[0],pos.split('_')[1],ind,O_exome[pos][ind],O_gbs[pos][ind])) ### Exome has hetero(ATTT or AAAT), GBS has hetero(AATT) elif len(np.unique(O_exome[pos][ind].split('/'))) == 2 and len(np.unique(O_gbs[pos][ind].split('/'))) == 2 and O_exome[pos][ind].split('/')[1] == O_exome[pos][ind].split('/')[2] and O_gbs[pos][ind].split('/')[1] != O_gbs[pos][ind].split('/')[2] : N3_03 += 1 out.write('%s\t%s\t%s\t%s\t%s\tExome_hetero_ATTT_GBS_hetero_AATT\n'%(pos.split('_')[0],pos.split('_')[1],ind,O_exome[pos][ind],O_gbs[pos][ind])) ### both homo, but diff elif len(np.unique(O_exome[pos][ind].split('/'))) == 1 and len(np.unique(O_gbs[pos][ind].split('/'))) == 1 and O_exome[pos][ind]!=O_gbs[pos][ind] and O_exome[pos][ind] != './././.' and O_gbs[pos][ind]!= './././.': N7 += 1 print([O_exome[pos][ind],O_gbs[pos][ind]]) out.write('%s\t%s\t%s\t%s\t%s\tBoth_homo_differ\n'%(pos.split('_')[0],pos.split('_')[1],ind,O_exome[pos][ind],O_gbs[pos][ind])) ori_out.write(res + '\n') ori_out.close() out.close() print([N1,N2,N3,N3_02,N3_03,N4,N5,N5_02,N5_03,N5_04,N6,N7]) if sys.argv[7] == 'tetraploid': N1 = 0 ### Exome has SNPs, GBS is ./. N2 = 0 ### have same SNPs N3 = 0 ### Exome has heteo, GBS has homo N4 = 0 ### Exome is ./., GBS has SNPs N5 = 0 ### Exome has homo, GBS has heteo N6 = 0 ### both are ./. N7 = 0 ### both homo but different SNPs out.write('Chr\tpos\tID\tExome_SNP\tGBS_SNP\tType\n') for pos in S: res = pos.split('_')[0] + '\t' + pos.split('_')[1] if O_exome[pos]['ref'] == O_gbs[pos]['ref']: res = res + '\t' + O_exome[pos]['ref'] else: res = res + '\t' + O_exome[pos]['ref'] + '|' + O_gbs[pos]['ref'] if O_exome[pos]['alt'] == O_gbs[pos]['alt']: res = res + '\t' + O_exome[pos]['alt'] else: res = res + '\t' + O_exome[pos]['alt'] + '|' + O_gbs[pos]['alt'] for ind in Ind: if O_exome[pos][ind] == O_gbs[pos][ind] or (O_exome[pos][ind].split('/')[0] == O_gbs[pos][ind].split('/')[1] and O_exome[pos][ind].split('/')[1] == O_gbs[pos][ind].split('/')[0]): res = res + '\t' + O_exome[pos][ind] else: res = res + '\t' + O_exome[pos][ind] + '|' + O_gbs[pos][ind] ### have same SNPs if (O_exome[pos][ind] == O_gbs[pos][ind] or (O_exome[pos][ind].split('/')[0] == O_gbs[pos][ind].split('/')[1] and O_exome[pos][ind].split('/')[1] == O_gbs[pos][ind].split('/')[0])) and O_exome[pos][ind]!= './.': N2 += 1 ### both are ./. elif O_exome[pos][ind] == O_gbs[pos][ind] and O_exome[pos][ind]== './.': N6 += 1 ### Exome has SNPs, GBS is ./. elif O_exome[pos][ind] != './.' and O_gbs[pos][ind] == './.': N1 += 1 ### Exome is ./., GBS has SNPs elif O_exome[pos][ind] == './.' and O_gbs[pos][ind] != './.': N4 += 1 ### Exome has homo, GBS has hetero elif O_exome[pos][ind].split('/')[0] == O_exome[pos][ind].split('/')[1] and O_exome[pos][ind]!= './.' and O_gbs[pos][ind].split('/')[0] != O_gbs[pos][ind].split('/')[1]: N5 += 1 out.write('%s\t%s\t%s\t%s\t%s\tExome_homo_GBS_hetero\n'%(pos.split('_')[0],pos.split('_')[1],ind,O_exome[pos][ind],O_gbs[pos][ind])) ### Exome has hetero, GBS has homo elif O_exome[pos][ind].split('/')[0] != O_exome[pos][ind].split('/')[1] and O_gbs[pos][ind].split('/')[0] == O_gbs[pos][ind].split('/')[1] and O_gbs[pos][ind] != './.': N3 += 1 out.write('%s\t%s\t%s\t%s\t%s\tExome_hetero_GBS_homo\n'%(pos.split('_')[0],pos.split('_')[1],ind,O_exome[pos][ind],O_gbs[pos][ind])) else: N7 += 1 print([O_exome[pos][ind],O_gbs[pos][ind]]) out.write('%s\t%s\t%s\t%s\t%s\tBoth_homo_differ\n'%(pos.split('_')[0],pos.split('_')[1],ind,O_exome[pos][ind],O_gbs[pos][ind])) ori_out.write(res + '\n') ori_out.close() out.close() print([N1,N2,N3,N4,N5,N6,N7]) inp = open('Distribution_of_discrepancy_Biallelic_variation_%s_between_exome_and_GBS.txt'%sys.argv[7],'r').readlines() out = open('Distribution_of_discrepancy_Biallelic_variation_%s_between_exome_and_GBS_alle_count.txt'%sys.argv[7],'w') P = {} for inl in inp[1:]: tem = inl.split('\t') chr = tem[0] pos = tem[1] ind = tem[2] if chr not in P: P[chr] = {} if pos not in P[chr]: P[chr][pos] = {} if ind not in P[chr][pos]: P[chr][pos][ind] = [0,0,0,0] Exome = open(sys.argv[5],'r') inl = Exome.readline() inl = Exome.readline() while inl: tem = inl.split('\t') chr = tem[0] pos = tem[1] ind = tem[2] if chr in P: if pos in P[chr]: if ind in P[chr][pos]: P[chr][pos][ind][0] = int(tem[6]) P[chr][pos][ind][1] = int(tem[7]) inl = Exome.readline() GBS = open(sys.argv[6],'r') inl = GBS.readline() inl = GBS.readline() while inl: tem = inl.split('\t') chr = tem[0] pos = tem[1] ind = tem[2] if chr in P: if pos in P[chr]: if ind in P[chr][pos]: P[chr][pos][ind][2] = int(tem[6]) P[chr][pos][ind][3] = int(tem[7]) inl = GBS.readline() out.write('Chr\tPos\tInd\tExome_SNP\tGBS_SNP\tType\tExome_alle_count\tExome_read_count\tGBS_alle_count\tGBS_read_count\n') for inl in inp[1:]: tem = inl.split('\t') chr = tem[0] pos = tem[1] ind = tem[2] if chr not in P: P[chr] = {} if pos not in P[chr]: P[chr][pos] = {} if ind not in P[chr][pos]: P[chr][pos][ind] = [0,0,0,0] out.write('%s\t%s\t%s\t%s\t%s\n'%(inl.strip(),P[chr][pos][ind][0],P[chr][pos][ind][1],P[chr][pos][ind][2],P[chr][pos][ind][3])) out.close()
39.176
327
0.571166
2,766
14,691
2.902386
0.04953
0.108371
0.095291
0.09716
0.857499
0.83844
0.808421
0.790857
0.734305
0.726707
0
0.029412
0.157579
14,691
374
328
39.280749
0.619263
0.11245
0
0.694006
0
0.037855
0.120663
0.080623
0
0
0
0
0
1
0
false
0
0.006309
0
0.006309
0.018927
0
0
0
null
0
0
0
1
1
1
1
1
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
null
0
0
0
0
0
0
0
0
0
0
0
0
0
6
cd83dd3751ba2089366bb8592c6a8484b3986736
1,167
py
Python
lib/utils/useragent.py
cckuailong/pocsploit
fe4a3154e59d2bebd55ccfdf62f4f7efb21b5a2a
[ "MIT" ]
106
2022-03-18T06:51:09.000Z
2022-03-31T19:11:41.000Z
lib/utils/useragent.py
cckuailong/pocsploit
fe4a3154e59d2bebd55ccfdf62f4f7efb21b5a2a
[ "MIT" ]
5
2022-03-27T07:37:32.000Z
2022-03-31T13:56:11.000Z
lib/utils/useragent.py
cckuailong/pocsploit
fe4a3154e59d2bebd55ccfdf62f4f7efb21b5a2a
[ "MIT" ]
30
2022-03-21T01:27:08.000Z
2022-03-31T12:28:01.000Z
import random from loguru import logger from lib.vars.vars import conf, th, paths from lib.vars.ua import UA_LIST def get_random_agent(): return random.sample(UA_LIST, 1)[0] def firefox(): return 'Mozilla/5.0 (Windows NT 5.1; rv:5.0) Gecko/20100101 Firefox/5.0' def ie(): return 'Mozilla/5.0 (compatible; MSIE 9.0; Windows NT 6.1; Trident/5.0; SLCC2; .NET CLR 2.0.50727; .NET CLR 3.5.30729; .NET CLR 3.0.30729; Media Center PC 6.0; .NET4.0C; .NET4.0E)' def chrome(): return 'Mozilla/5.0 (Windows NT 5.2) AppleWebKit/534.30 (KHTML, like Gecko) Chrome/12.0.742.122 Safari/534.30' def opera(): return 'Opera/9.80 (Windows NT 5.1; U; zh-cn) Presto/2.9.168 Version/11.50' def iphone(): return 'Mozilla/5.0 (iPhone; U; CPU iPhone OS 3_0 like Mac OS X; en-us) AppleWebKit/528.18 (KHTML, like Gecko) Version/4.0 Mobile/7A341 Safari/528.16' def google_bot(): return 'Mozilla/5.0 (compatible; Googlebot/2.1; +http://www.google.com/bot.html)' def msn_bot(): return 'msnbot/1.1 (+http://search.msn.com/msnbot.htm)' def yahoo_bot(): return 'Mozilla/5.0 (compatible; Yahoo! Slurp; http://help.yahoo.com/help/us/ysearch/slurp)'
28.463415
184
0.685518
217
1,167
3.64977
0.43318
0.022727
0.106061
0.113636
0.165404
0.133838
0.063131
0
0
0
0
0.120324
0.152528
1,167
40
185
29.175
0.680485
0
0
0
0
0.318182
0.636675
0
0
0
0
0
0
1
0.409091
true
0
0.181818
0.409091
1
0
0
0
0
null
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
1
0
null
0
0
0
0
0
1
1
0
0
1
1
0
0
6
cd99a356df7305e9c0faf645726124d17a3abcde
41
py
Python
app.py
blogsley/blogsley-flask-site
40df6641cce8336d790549b7edac4f83d8b8fb8e
[ "MIT" ]
1
2020-12-18T03:52:25.000Z
2020-12-18T03:52:25.000Z
app.py
blogsley/blogsley-flask-site
40df6641cce8336d790549b7edac4f83d8b8fb8e
[ "MIT" ]
3
2020-05-04T07:46:54.000Z
2022-02-10T19:39:19.000Z
app.py
blogsley/blogsley-flask-site
40df6641cce8336d790549b7edac4f83d8b8fb8e
[ "MIT" ]
null
null
null
from blogsley_site.app import create_app
20.5
40
0.878049
7
41
4.857143
0.857143
0
0
0
0
0
0
0
0
0
0
0
0.097561
41
1
41
41
0.918919
0
0
0
0
0
0
0
0
0
0
0
0
1
0
true
0
1
0
1
0
1
1
0
null
0
0
0
0
0
0
0
0
0
0
0
0
0
1
0
0
0
0
0
0
0
0
0
0
null
0
0
0
0
0
0
1
0
1
0
1
0
0
6
269836dc4bbab3746b4c28419c5eabb4308cb54c
37
py
Python
parser/__init__.py
jbudis/dante
90177c33825d5f9ce3fba5463092fbcf20b72fe2
[ "Apache-2.0" ]
4
2018-09-28T14:50:47.000Z
2021-08-09T12:46:12.000Z
parser/__init__.py
jbudis/dante
90177c33825d5f9ce3fba5463092fbcf20b72fe2
[ "Apache-2.0" ]
6
2019-01-02T13:08:31.000Z
2021-03-25T21:45:40.000Z
parser/__init__.py
jbudis/dante
90177c33825d5f9ce3fba5463092fbcf20b72fe2
[ "Apache-2.0" ]
1
2017-12-12T10:38:26.000Z
2017-12-12T10:38:26.000Z
from parser.readfile import ReadFile
18.5
36
0.864865
5
37
6.4
0.8
0
0
0
0
0
0
0
0
0
0
0
0.108108
37
1
37
37
0.969697
0
0
0
0
0
0
0
0
0
0
0
0
1
0
true
0
1
0
1
0
1
1
0
null
0
0
0
0
0
0
0
0
0
0
0
0
0
1
0
0
0
0
0
0
0
0
0
0
null
0
0
0
0
0
0
1
0
1
0
1
0
0
6
26c8a00c561378714f8ad7990f244b2a1e695121
671
py
Python
testsuite/tests/T618-047__Ada_2012/run_test.py
AdaCore/style_checker
17108ebfc44375498063ecdad6c6e4430458e60a
[ "CNRI-Python" ]
2
2017-10-22T18:04:26.000Z
2020-03-06T11:07:41.000Z
testsuite/tests/T618-047__Ada_2012/run_test.py
AdaCore/style_checker
17108ebfc44375498063ecdad6c6e4430458e60a
[ "CNRI-Python" ]
null
null
null
testsuite/tests/T618-047__Ada_2012/run_test.py
AdaCore/style_checker
17108ebfc44375498063ecdad6c6e4430458e60a
[ "CNRI-Python" ]
4
2018-05-22T12:08:54.000Z
2020-12-14T15:25:27.000Z
def test_pck_2012_adb(style_checker): """Style check test against pck_2012.adb.""" style_checker.set_year(2006) p = style_checker.run_style_checker('repo_name', 'pck_2012.ads') style_checker.assertEqual(p.status, 0, p.image) style_checker.assertRunOutputEmpty(p) def test_pck_2012_adb_with_alt_config_forcing_gnat2012(style_checker): """Style check test against pck_2012.adb with gnat12 config option.""" style_checker.set_year(2006) p = style_checker.run_style_checker( '--config', 'gnat2012_config.yaml', 'repo_name', 'pck_2012.ads') style_checker.assertEqual(p.status, 0, p.image) style_checker.assertRunOutputEmpty(p)
41.9375
74
0.754098
97
671
4.865979
0.309278
0.305085
0.084746
0.059322
0.84322
0.771186
0.771186
0.771186
0.771186
0.588983
0
0.075472
0.131148
671
15
75
44.733333
0.734134
0.153502
0
0.545455
0
0
0.125673
0
0
0
0
0
0.363636
1
0.181818
false
0
0
0
0.181818
0
0
0
0
null
1
0
0
1
1
1
1
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
null
0
0
0
0
0
0
0
0
0
0
0
0
0
6
f80f8be872541cb1fed210e79dd3fff53a87f8a4
9,733
py
Python
tests/test_Dirichlet_NL_Poisson.py
bond-anton/BDPoisson1D
538cedc187ce83e90f340cc085738671d325d2e1
[ "Apache-2.0" ]
null
null
null
tests/test_Dirichlet_NL_Poisson.py
bond-anton/BDPoisson1D
538cedc187ce83e90f340cc085738671d325d2e1
[ "Apache-2.0" ]
2
2017-07-21T22:10:19.000Z
2018-07-14T21:39:07.000Z
tests/test_Dirichlet_NL_Poisson.py
bond-anton/BDPoisson1D
538cedc187ce83e90f340cc085738671d325d2e1
[ "Apache-2.0" ]
null
null
null
import math as m import numpy as np from BDMesh import Mesh1DUniform from BDFunction1D import Function from BDFunction1D.Functional import Functional from BDFunction1D.Interpolation import InterpolateFunction from BDPoisson1D.DirichletNonLinear import dirichlet_non_linear_poisson_solver_arrays from BDPoisson1D.DirichletNonLinear import dirichlet_non_linear_poisson_solver from BDPoisson1D.DirichletNonLinear import dirichlet_non_linear_poisson_solver_mesh_arrays from BDPoisson1D.DirichletNonLinear import dirichlet_non_linear_poisson_solver_mesh from BDPoisson1D.DirichletNonLinear import dirichlet_non_linear_poisson_solver_recurrent_mesh from BDPoisson1D.DirichletNonLinear import dirichlet_non_linear_poisson_solver_amr import unittest class testPsi(Function): def evaluate_point(self, x): return m.exp(-x * 3.0) class testF(Functional): def __init__(self, Nd, kT, f): super(testF, self).__init__(f) self.Nd = Nd self.kT = kT def evaluate_point(self, x): return self.Nd * (1 - (m.exp(-self.f.evaluate_point(x) / self.kT))) class testdFdPsi(Functional): def __init__(self, Nd, kT, f): super(testdFdPsi, self).__init__(f) self.Nd = Nd self.kT = kT def evaluate_point(self, x): return self.Nd / self.kT * m.exp(-self.f.evaluate_point(x) / self.kT) class TestDirichletNL(unittest.TestCase): def setUp(self): self.Nd = 1.0 self.kT = 0.05 self.bc1 = 1.0 self.bc2 = 0.0 def test_dirichlet_poisson_solver_arrays(self): start = 0.0 stop = 4.0 nodes = np.linspace(start, stop, num=51, endpoint=True, dtype=np.float) Psi = testPsi() f = testF(self.Nd, self.kT, Psi) dfdPsi = testdFdPsi(self.Nd, self.kT, Psi) for i in range(100): result_1 = np.asarray(dirichlet_non_linear_poisson_solver_arrays(nodes, Psi.evaluate(nodes), f.evaluate(nodes), dfdPsi.evaluate(nodes), bc1=1, bc2=0, j=1, w=1)) Psi = InterpolateFunction(nodes, result_1[:, 0]) f.f = Psi dfdPsi.f = Psi nodes = np.linspace(start, stop, num=101, endpoint=True, dtype=np.float) Psi = testPsi() f.f = Psi dfdPsi.f = Psi for i in range(100): result_2 = np.asarray(dirichlet_non_linear_poisson_solver_arrays(nodes, Psi.evaluate(nodes), f.evaluate(nodes), dfdPsi.evaluate(nodes), bc1=1, bc2=0, j=1, w=1)) Psi = InterpolateFunction(nodes, result_2[:, 0]) f.f = Psi dfdPsi.f = Psi self.assertTrue(max(abs(result_2[:, 2])) < max(abs(result_1[:, 2]))) def test_dirichlet_poisson_solver(self): start = 0.0 stop = 4.0 nodes = np.linspace(start, stop, num=51, endpoint=True, dtype=np.float) Psi = testPsi() f = testF(self.Nd, self.kT, Psi) dfdPsi = testdFdPsi(self.Nd, self.kT, Psi) for i in range(100): Psi = dirichlet_non_linear_poisson_solver(nodes, Psi, f, dfdPsi, bc1=1, bc2=0, j=1, w=1) f.f = Psi dfdPsi.f = Psi error_1 = np.asarray(Psi.error(nodes)) nodes = np.linspace(start, stop, num=101, endpoint=True, dtype=np.float) Psi = testPsi() f.f = Psi dfdPsi.f = Psi for i in range(100): Psi = dirichlet_non_linear_poisson_solver(nodes, Psi, f, dfdPsi, bc1=1, bc2=0, j=1, w=1) f.f = Psi dfdPsi.f = Psi error_2 = np.asarray(Psi.error(nodes)) self.assertTrue(max(abs(error_2)) < max(abs(error_1))) def test_dirichlet_poisson_solver_mesh_arays(self): start = 0.0 stop = 4.0 step = 0.5 mesh_1 = Mesh1DUniform(start, stop, boundary_condition_1=1, boundary_condition_2=0, physical_step=step) Psi = testPsi() f = testF(self.Nd, self.kT, Psi) dfdPsi = testdFdPsi(self.Nd, self.kT, Psi) for i in range(100): dirichlet_non_linear_poisson_solver_mesh_arrays(mesh_1, Psi.evaluate(mesh_1.physical_nodes), f.evaluate(mesh_1.physical_nodes), dfdPsi.evaluate(mesh_1.physical_nodes), w=1) Psi = InterpolateFunction(mesh_1.physical_nodes, mesh_1.solution) f.f = Psi dfdPsi.f = Psi step = 0.1 mesh_2 = Mesh1DUniform(start, stop, boundary_condition_1=1, boundary_condition_2=0, physical_step=step) Psi = testPsi() f.f = Psi dfdPsi.f = Psi for i in range(100): dirichlet_non_linear_poisson_solver_mesh_arrays(mesh_2, Psi.evaluate(mesh_2.physical_nodes), f.evaluate(mesh_2.physical_nodes), dfdPsi.evaluate(mesh_2.physical_nodes), w=1) Psi = InterpolateFunction(mesh_2.physical_nodes, mesh_2.solution) f.f = Psi dfdPsi.f = Psi self.assertTrue(max(abs(np.asarray(mesh_2.residual))) < max(abs(np.asarray(mesh_1.residual)))) def test_dirichlet_poisson_solver_mesh(self): start = 0.0 stop = 4.0 step = 0.5 mesh_1 = Mesh1DUniform(start, stop, boundary_condition_1=1, boundary_condition_2=0, physical_step=step) Psi = testPsi() f = testF(self.Nd, self.kT, Psi) dfdPsi = testdFdPsi(self.Nd, self.kT, Psi) for i in range(100): dirichlet_non_linear_poisson_solver_mesh(mesh_1, Psi, f, dfdPsi, w=1) Psi = InterpolateFunction(mesh_1.physical_nodes, mesh_1.solution) f.f = Psi dfdPsi.f = Psi step = 0.1 mesh_2 = Mesh1DUniform(start, stop, boundary_condition_1=1, boundary_condition_2=0, physical_step=step) Psi = testPsi() f.f = Psi dfdPsi.f = Psi for i in range(100): dirichlet_non_linear_poisson_solver_mesh(mesh_2, Psi, f, dfdPsi, w=1) Psi = InterpolateFunction(mesh_2.physical_nodes, mesh_2.solution) f.f = Psi dfdPsi.f = Psi self.assertTrue(max(abs(np.asarray(mesh_2.residual))) < max(abs(np.asarray(mesh_1.residual)))) def test_dirichlet_poisson_solver_recurrent_mesh(self): start = 0.0 stop = 4.0 step = 0.5 threshold = 1e-6 max_iter = 1000 mesh_1 = Mesh1DUniform(start, stop, boundary_condition_1=1, boundary_condition_2=0, physical_step=step) Psi = testPsi() f = testF(self.Nd, self.kT, Psi) dfdPsi = testdFdPsi(self.Nd, self.kT, Psi) dirichlet_non_linear_poisson_solver_recurrent_mesh(mesh_1, Psi, f, dfdPsi, max_iter=max_iter, threshold=threshold) self.assertTrue(mesh_1.integrational_residual < threshold) def test_dirichlet_poisson_solver_mesh_amr(self): Psi = testPsi() f = testF(self.Nd, self.kT, Psi) dfdPsi = testdFdPsi(self.Nd, self.kT, Psi) start = 0.0 stop = 5 step = 0.433 bc1 = 1 bc2 = 0 residual_threshold = 1.5e-3 int_residual_threshold = 4e-4 mesh_refinement_threshold = 1e-7 max_iter = 1000 max_level = 20 # print('start') sol = dirichlet_non_linear_poisson_solver_amr(start, stop, step, Psi, f, dfdPsi, bc1, bc2, max_iter=max_iter, residual_threshold=residual_threshold, int_residual_threshold=int_residual_threshold, max_level=max_level, mesh_refinement_threshold=mesh_refinement_threshold) int_residual = np.trapz(sol.error(sol.x), sol.x) self.assertTrue(int_residual < int_residual_threshold) self.assertTrue(max(abs(np.asarray(sol.error(sol.x)))) < residual_threshold) residual_threshold = 1.5e-6 int_residual_threshold = 1.5e-4 mesh_refinement_threshold = 1e-5 max_iter = 1000 max_level = 20 sol = dirichlet_non_linear_poisson_solver_amr(start, stop, step, Psi, f, dfdPsi, bc1, bc2, max_iter=max_iter, residual_threshold=residual_threshold, int_residual_threshold=int_residual_threshold, max_level=max_level, mesh_refinement_threshold=mesh_refinement_threshold) int_residual = np.trapz(sol.error(sol.x), sol.x) self.assertTrue(int_residual < int_residual_threshold) self.assertTrue(max(abs(np.asarray(sol.error(sol.x)))) < residual_threshold)
44.646789
111
0.552348
1,152
9,733
4.4375
0.091146
0.018779
0.059859
0.083138
0.867567
0.809272
0.779147
0.75802
0.74198
0.728286
0
0.037245
0.360012
9,733
217
112
44.852535
0.783432
0.001438
0
0.661458
0
0
0
0
0
0
0
0
0.046875
1
0.0625
false
0
0.067708
0.015625
0.166667
0
0
0
0
null
0
0
0
1
1
1
1
1
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
null
0
0
0
0
0
0
0
0
0
0
0
0
0
6
f82d5b036daead0dff75c2761e785f8a14568edb
191
py
Python
src/Models/__init__.py
shulip/ShoppingMallSystem
01e5a04a8353ca319ed2dc002fc358f6e44c33dd
[ "MIT" ]
null
null
null
src/Models/__init__.py
shulip/ShoppingMallSystem
01e5a04a8353ca319ed2dc002fc358f6e44c33dd
[ "MIT" ]
null
null
null
src/Models/__init__.py
shulip/ShoppingMallSystem
01e5a04a8353ca319ed2dc002fc358f6e44c33dd
[ "MIT" ]
1
2021-04-22T15:14:21.000Z
2021-04-22T15:14:21.000Z
#!/usr/bin/env python # -*- coding:utf-8 -*- from .Contract import * from .Receivable import * from .Receipt import * from .Shop import * from .Statement import * from .Application import *
21.222222
26
0.701571
25
191
5.36
0.6
0.373134
0
0
0
0
0
0
0
0
0
0.00625
0.162304
191
9
26
21.222222
0.83125
0.219895
0
0
0
0
0
0
0
0
0
0
0
1
0
true
0
1
0
1
0
1
0
0
null
1
0
0
0
0
0
0
0
0
0
0
0
0
1
0
0
0
0
0
0
0
0
0
0
null
0
0
0
0
0
0
1
0
1
0
1
0
0
6
f83abdd41d8480514557524b539c95519e6c83ef
152
py
Python
__init__.py
cmt-qo/cm-flakes
c11f37b50b088cf5c876ef8a6161b7d8d775e99b
[ "MIT" ]
6
2019-11-04T07:04:24.000Z
2021-02-10T21:35:00.000Z
__init__.py
cmt-qo/cm-flakes
c11f37b50b088cf5c876ef8a6161b7d8d775e99b
[ "MIT" ]
null
null
null
__init__.py
cmt-qo/cm-flakes
c11f37b50b088cf5c876ef8a6161b7d8d775e99b
[ "MIT" ]
2
2020-08-07T09:29:41.000Z
2021-02-10T21:35:05.000Z
from .Camera import * from .GloveBox import * from .Microscope import * from .Stage import * from .UserInterface import * from .NeuralNetwork import *
25.333333
28
0.756579
18
152
6.388889
0.444444
0.434783
0
0
0
0
0
0
0
0
0
0
0.164474
152
6
29
25.333333
0.905512
0
0
0
0
0
0
0
0
0
0
0
0
1
0
true
0
1
0
1
0
1
0
0
null
1
0
0
0
0
0
0
0
0
0
0
0
0
1
0
0
0
0
0
0
0
0
0
0
null
0
0
0
0
0
0
1
0
1
0
1
0
0
6
f8b46b6ff72b56497017d6f934899df81b96c51a
32
py
Python
badge/__init__.py
krisgesling/swag-badge-skill
7640264880d8ae14f9c49c3ba40c6e388e58dcaf
[ "Apache-2.0" ]
1
2021-01-24T01:42:15.000Z
2021-01-24T01:42:15.000Z
badge/__init__.py
krisgesling/swag-badge-skill
7640264880d8ae14f9c49c3ba40c6e388e58dcaf
[ "Apache-2.0" ]
null
null
null
badge/__init__.py
krisgesling/swag-badge-skill
7640264880d8ae14f9c49c3ba40c6e388e58dcaf
[ "Apache-2.0" ]
null
null
null
from .client import MQTT_Client
16
31
0.84375
5
32
5.2
0.8
0
0
0
0
0
0
0
0
0
0
0
0.125
32
1
32
32
0.928571
0
0
0
0
0
0
0
0
0
0
0
0
1
0
true
0
1
0
1
0
1
1
0
null
0
0
0
0
0
0
0
0
0
0
0
0
0
1
0
0
0
0
0
0
0
0
0
0
null
0
0
0
0
0
0
1
0
1
0
1
0
0
6
3e09b3a92c71458b7e09905c1beec58ee515ed7a
106
py
Python
cython/wrap_c/test_cython_wrapper.py
tleonhardt/Python_Interface_Cpp
398eab0c6e7f5e0358edb6644c71b5fdc6b2606a
[ "MIT" ]
64
2017-03-10T09:32:22.000Z
2022-01-25T08:44:06.000Z
cython/wrap_c/test_cython_wrapper.py
tleonhardt/Python_Interface_Cpp
398eab0c6e7f5e0358edb6644c71b5fdc6b2606a
[ "MIT" ]
null
null
null
cython/wrap_c/test_cython_wrapper.py
tleonhardt/Python_Interface_Cpp
398eab0c6e7f5e0358edb6644c71b5fdc6b2606a
[ "MIT" ]
13
2017-03-13T23:28:56.000Z
2021-06-07T08:37:03.000Z
# coding=utf-8 import cyfib def test_valid(): assert (17711 == cyfib.compute_fibonacci_wrapper(20))
15.142857
57
0.726415
15
106
4.933333
0.933333
0
0
0
0
0
0
0
0
0
0
0.088889
0.150943
106
6
58
17.666667
0.733333
0.113208
0
0
0
0
0
0
0
0
0
0
0.333333
1
0.333333
true
0
0.333333
0
0.666667
0
1
0
0
null
0
0
0
0
0
0
0
0
0
0
0
0
0
1
0
0
0
0
0
0
0
0
0
0
null
0
0
0
0
0
1
1
0
1
0
1
0
0
6
3e2dc345629e84a8ce9faa979c3f69774ad29ef7
132
py
Python
backend/actions.py
HiroshiFuu/django-rest-drf-yasg-boilerplate
93221b2dbca0635eb42a18096e805b00f36ff9c1
[ "Apache-2.0" ]
null
null
null
backend/actions.py
HiroshiFuu/django-rest-drf-yasg-boilerplate
93221b2dbca0635eb42a18096e805b00f36ff9c1
[ "Apache-2.0" ]
null
null
null
backend/actions.py
HiroshiFuu/django-rest-drf-yasg-boilerplate
93221b2dbca0635eb42a18096e805b00f36ff9c1
[ "Apache-2.0" ]
null
null
null
from django.http import HttpResponseRedirect from django.urls import reverse from django.utils.translation import gettext_lazy as _
33
54
0.863636
18
132
6.222222
0.666667
0.267857
0
0
0
0
0
0
0
0
0
0
0.106061
132
3
55
44
0.949153
0
0
0
0
0
0
0
0
0
0
0
0
1
0
true
0
1
0
1
0
1
0
0
null
1
0
0
0
0
0
0
0
0
0
0
0
0
1
0
0
0
0
0
0
0
0
0
0
null
0
0
0
0
0
0
1
0
1
0
1
0
0
6
e42efd7b2e91e2b6ad55453d791a04774b95fe07
31
py
Python
swarm_tasks/utils/__init__.py
rmvanarse/swarm_tasks
3335297ba8fcdbff756ae519002bcce919d54a84
[ "MIT" ]
6
2021-03-13T12:54:18.000Z
2022-01-29T12:12:28.000Z
swarm_tasks/utils/__init__.py
rmvanarse/swarm_tasks
3335297ba8fcdbff756ae519002bcce919d54a84
[ "MIT" ]
null
null
null
swarm_tasks/utils/__init__.py
rmvanarse/swarm_tasks
3335297ba8fcdbff756ae519002bcce919d54a84
[ "MIT" ]
2
2021-08-06T15:02:15.000Z
2022-02-08T12:11:30.000Z
import swarm_tasks.utils.robot
15.5
30
0.870968
5
31
5.2
1
0
0
0
0
0
0
0
0
0
0
0
0.064516
31
1
31
31
0.896552
0
0
0
0
0
0
0
0
0
0
0
0
1
0
true
0
1
0
1
0
1
1
0
null
0
0
0
0
0
0
0
0
0
0
0
0
0
1
0
0
0
0
0
0
0
0
0
0
null
0
0
0
0
0
0
1
0
1
0
1
0
0
6
e44339ec7d8d98173878c5ddc15f39e511c628ec
258
py
Python
tests/test_example.py
akoul1/mvlearn
177d391bb12c6e94335720d9af3608bd719d8be1
[ "Apache-2.0" ]
null
null
null
tests/test_example.py
akoul1/mvlearn
177d391bb12c6e94335720d9af3608bd719d8be1
[ "Apache-2.0" ]
null
null
null
tests/test_example.py
akoul1/mvlearn
177d391bb12c6e94335720d9af3608bd719d8be1
[ "Apache-2.0" ]
null
null
null
import pytest from mvlearn.example.example import example_function def test_example_function(): """ Test that example function returns correct value. """ assert example_function() == "param" assert example_function("hello") == "hello"
21.5
53
0.713178
29
258
6.172414
0.517241
0.418994
0.234637
0
0
0
0
0
0
0
0
0
0.186047
258
11
54
23.454545
0.852381
0.189922
0
0
0
0
0.07772
0
0
0
0
0
0.4
1
0.2
true
0
0.4
0
0.6
0
1
0
0
null
1
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
null
0
0
0
0
0
0
1
0
1
0
1
0
0
6
901a2b9dfc7f70764388119a93640679584d1a0d
112
py
Python
scikits/datasmooth/__init__.py
jjstickel/scikit-datasmooth
976ab86998d1648506684360ab9d65b8a3ccf078
[ "BSD-3-Clause" ]
7
2015-06-18T15:34:28.000Z
2021-09-14T13:04:08.000Z
scikits/datasmooth/__init__.py
jjstickel/scikit-datasmooth
976ab86998d1648506684360ab9d65b8a3ccf078
[ "BSD-3-Clause" ]
2
2018-03-10T03:46:39.000Z
2018-11-27T18:55:13.000Z
scikits/datasmooth/__init__.py
jjstickel/scikit-datasmooth
976ab86998d1648506684360ab9d65b8a3ccf078
[ "BSD-3-Clause" ]
6
2015-03-29T07:36:18.000Z
2020-09-15T16:25:06.000Z
__version__ = '0.7.1' try: from regularsmooth import * except ImportError: from .regularsmooth import *
18.666667
32
0.714286
13
112
5.846154
0.769231
0.447368
0.605263
0
0
0
0
0
0
0
0
0.033333
0.196429
112
5
33
22.4
0.811111
0
0
0
0
0
0.044643
0
0
0
0
0
0
1
0
false
0
0.6
0
0.6
0
1
0
0
null
1
1
0
0
0
0
0
0
0
0
0
0
0
1
0
0
0
0
0
0
0
0
0
0
null
0
0
0
0
0
0
0
0
1
0
1
0
0
6
903f6e6ec0a321ed686c231ab9ebc657c40c7407
1,500
py
Python
models/DenseNet.py
Apollo1840/DeepECG
5132b5fc8f6b40c4b2f175cd5e56c4aec128ab3e
[ "MIT" ]
2
2020-11-16T10:50:56.000Z
2020-11-23T12:31:30.000Z
models/DenseNet.py
Apollo1840/DeepECG
5132b5fc8f6b40c4b2f175cd5e56c4aec128ab3e
[ "MIT" ]
null
null
null
models/DenseNet.py
Apollo1840/DeepECG
5132b5fc8f6b40c4b2f175cd5e56c4aec128ab3e
[ "MIT" ]
1
2020-08-05T00:23:54.000Z
2020-08-05T00:23:54.000Z
from keras.models import Sequential from keras.layers import Dense, Dropout def denseNet(input_dim, output_dim=4): model = Sequential() model.add(Dense(1024, input_shape=(input_dim,), kernel_initializer='normal', activation='relu')) model.add(Dense(1024, kernel_initializer='normal', activation='relu')) model.add(Dropout(0.5)) model.add(Dense(1024, kernel_initializer='normal', activation='relu')) model.add(Dense(1024, kernel_initializer='normal', activation='relu')) model.add(Dropout(0.5)) model.add(Dense(512, kernel_initializer='normal', activation='relu')) model.add(Dense(512, kernel_initializer='normal', activation='relu')) model.add(Dense(512, kernel_initializer='normal', activation='relu')) model.add(Dropout(0.5)) model.add(Dense(256, kernel_initializer='normal', activation='relu')) model.add(Dense(256, kernel_initializer='normal', activation='relu')) model.add(Dropout(0.5)) model.add(Dense(128, kernel_initializer='normal', activation='relu')) model.add(Dense(128, kernel_initializer='normal', activation='relu')) model.add(Dropout(0.5)) model.add(Dense(64, kernel_initializer='normal', activation='relu')) model.add(Dense(64, kernel_initializer='normal', activation='relu')) model.add(Dropout(0.5)) model.add(Dense(output_dim, kernel_initializer='normal', activation='softmax')) model.compile(loss='categorical_crossentropy', optimizer='adam', metrics=['accuracy']) return model
41.666667
100
0.719333
192
1,500
5.515625
0.203125
0.151086
0.17186
0.436261
0.78187
0.745042
0.745042
0.745042
0.745042
0.745042
0
0.040632
0.114
1,500
35
101
42.857143
0.756208
0
0
0.692308
0
0
0.119333
0.016
0
0
0
0
0
1
0.038462
false
0
0.076923
0
0.153846
0
0
0
0
null
0
0
1
0
1
1
1
1
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
null
0
0
0
0
0
0
0
0
0
0
0
0
0
6
5f3fad78b868dac1b90ecb78a5594353e0e31396
506
py
Python
dato-graphlab/src/config.py
warreee/apache-flink_vs_dato-graphlab
cd01cee208461479d3f27489ab45df439b8b9820
[ "Apache-2.0" ]
null
null
null
dato-graphlab/src/config.py
warreee/apache-flink_vs_dato-graphlab
cd01cee208461479d3f27489ab45df439b8b9820
[ "Apache-2.0" ]
null
null
null
dato-graphlab/src/config.py
warreee/apache-flink_vs_dato-graphlab
cd01cee208461479d3f27489ab45df439b8b9820
[ "Apache-2.0" ]
null
null
null
import os def getDataPath(): return os.getcwd().replace("dato-graphlab/src", "data/") def getSmall(): return getDataPath() + "sample-small.txt" def getMedium(): return getDataPath() + "sample-medium.txt" def getLarge(): return getDataPath() + "sample-large.txt" def getGoogle(): return getDataPath() + "web-Google.txt" def getStanford(): return getDataPath() + "web-Stanford.txt" def getOutputFolder(): return os.getcwd().replace("dato-graphlab/src", "results/")
16.322581
63
0.666008
57
506
5.912281
0.45614
0.252226
0.204748
0.124629
0.21365
0.21365
0.21365
0
0
0
0
0
0.167984
506
30
64
16.866667
0.800475
0
0
0
0
0
0.25
0
0
0
0
0
0
1
0.466667
true
0
0.066667
0.466667
1
0
0
0
0
null
1
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
null
0
0
0
0
0
1
1
0
0
1
1
0
0
6
5f4b11817e6c6f5664fb7eebcff8bd3df9ed5773
42
py
Python
varex/__init__.py
weiyi-bitw/varex
765e8876c0ced480a47c0e523736bd31b7897644
[ "MIT" ]
null
null
null
varex/__init__.py
weiyi-bitw/varex
765e8876c0ced480a47c0e523736bd31b7897644
[ "MIT" ]
null
null
null
varex/__init__.py
weiyi-bitw/varex
765e8876c0ced480a47c0e523736bd31b7897644
[ "MIT" ]
null
null
null
from .commons import VCFEntry, LabeledMat
21
41
0.833333
5
42
7
1
0
0
0
0
0
0
0
0
0
0
0
0.119048
42
1
42
42
0.945946
0
0
0
0
0
0
0
0
0
0
0
0
1
0
true
0
1
0
1
0
1
1
0
null
0
0
0
0
0
0
0
0
0
0
0
0
0
1
0
0
0
0
0
0
0
0
0
0
null
0
0
0
0
0
0
1
0
1
0
1
0
0
6
5f99e058ef025684556e0579c4ec1d81fb084ff1
8,288
py
Python
analyzer/views.py
jonfang/CMPE295_DataAnalyzer
6d74f55fa7e38ff8d25aecc388a5ed87c95037ae
[ "MIT" ]
1
2020-10-12T18:17:05.000Z
2020-10-12T18:17:05.000Z
analyzer/views.py
jonfang/CMPE295_DataAnalyzer
6d74f55fa7e38ff8d25aecc388a5ed87c95037ae
[ "MIT" ]
3
2019-11-19T20:41:50.000Z
2021-06-10T21:48:44.000Z
analyzer/views.py
jonfang/CMPE295_DataAnalyzer
6d74f55fa7e38ff8d25aecc388a5ed87c95037ae
[ "MIT" ]
2
2019-10-30T23:18:57.000Z
2019-11-23T00:23:17.000Z
from django.http import HttpResponse from pyspark.sql import SparkSession from django.shortcuts import render from datetime import datetime from core.chartfactory import createBarChart, createPieChart from core.dataprocessor import DataProcessor def sample(request): """ sample python report """ keys = ('Python', 'C++', 'Java', 'Perl', 'Scala', 'Lisp') values = [10,8,6,4,2,1] image_base64 = createBarChart(keys, values, 'Usage', 'Programming language usages') return render( request, 'analyzer/main.html', { 'name': "Jon", 'date': datetime.now(), 'image_base64':image_base64, } ) def home(request): return render( request, 'analyzer/home.html', ) def submit(request): data = {} if request.method == 'POST': keys = [] values = [] DataProcessor.getInstance().loadAndProcess(keys, values, report_type=7) image_base64 = createBarChart(keys, values, 'Company', 'Average Empoyee Rating') data = { "title": request.POST.get("title", "defaultTitle"), "description": request.POST.get("description", "defaultDescription"), "news": request.POST.get("news", "defaultNews"), "dataSet": request.POST.get("dataSet", "defaultDataset"), "bar": request.POST.get("bar", "defaultBar"), "pie": request.POST.get("pie", "defaultPie"), "report1":image_base64 } return render( request, 'analyzer/new.html', data ) def case1(request): keys = [] values = [] DataProcessor.getInstance().loadAndProcess(keys, values, report_type=1) image_base64 = createBarChart(keys, values, 'App Count', 'Google Play App Store Count By Category > 400 ') keys.clear() values.clear() DataProcessor.getInstance().loadAndProcess(keys, values, report_type=2) config = {'rotation':90} image_base64_1 = createBarChart(keys, values, 'App Count', 'Google Play App Store Count By Category < 400', configs=config) return render( request, 'analyzer/case1.html', { 'report1':image_base64, 'report2':image_base64_1 } ) def case2(request): keys = [] values = [] DataProcessor.getInstance().loadAndProcess(keys, values, report_type=5) image_base64 = createPieChart(keys, values, 'India trade import 2010-2018') keys.clear() values.clear() DataProcessor.getInstance().loadAndProcess(keys, values, report_type=5) config = {'rotation':90} image_base64_1 = createBarChart(keys, values, 'Total(millions $USD)', 'India trade import 2010-2018', configs=config) keys.clear() values.clear() DataProcessor.getInstance().loadAndProcess(keys, values, report_type=6) image_base64_2 = createPieChart(keys, values, 'India trade export 2010-2018') keys.clear() values.clear() DataProcessor.getInstance().loadAndProcess(keys, values, report_type=6) config = {'rotation':90} image_base64_3 = createBarChart(keys, values, 'Total(millions $USD)', 'India trade export 2010-2018', configs=config) return render( request, 'analyzer/case2.html', { 'report5a':image_base64, 'report5b':image_base64_1, 'report6a':image_base64_2, 'report6b':image_base64_3, } ) def case3(request): keys = [] values = [] DataProcessor.getInstance().loadAndProcess(keys, values, report_type=4) image_base64 = createPieChart(keys, values, 'Oakland Crime Rate 2011-2016') keys.clear() values.clear() DataProcessor.getInstance().loadAndProcess(keys, values, report_type=4) config = {'rotation':90} image_base64_1 = createBarChart(keys, values, 'Count', 'Oakland Crime Rate 2011-2016', configs=config) return render( request, 'analyzer/case3.html', { 'report4a':image_base64, 'report4b':image_base64_1, } ) #google play app report 1 def report1(request): keys = [] values = [] DataProcessor.getInstance().loadAndProcess(keys, values, report_type=1) image_base64 = createBarChart(keys, values, 'App Count', 'Google Play App Store Count By Category > 400') return render( request, 'analyzer/main.html', { 'name': "Jon", 'date': datetime.now(), 'image_base64':image_base64, } ) #google play app report 2 def report2(request): keys = [] values = [] DataProcessor.getInstance().loadAndProcess(keys, values, report_type=2) config = {'rotation':90} image_base64 = createBarChart(keys, values, 'App Count', 'Google Play App Store Count By Category < 400', configs=config) return render( request, 'analyzer/main.html', { 'name': "Jon", 'date': datetime.now(), 'image_base64':image_base64, } ) #google play app report 3 def report3(request): keys = [] values = [] DataProcessor.getInstance().loadAndProcess(keys, values, report_type=1) image_base64 = createBarChart(keys, values, 'App Count', 'Google Play App Store Count By Category > 400 ') keys.clear() values.clear() DataProcessor.getInstance().loadAndProcess(keys, values, report_type=2) config = {'rotation':90} image_base64_1 = createBarChart(keys, values, 'App Count', 'Google Play App Store Count By Category < 400', configs=config) return render( request, 'analyzer/main1.html', { 'name': "Jon", 'date': datetime.now(), 'image_base64':image_base64, 'image_base64_1':image_base64_1, } ) def report4(request): keys = [] values = [] DataProcessor.getInstance().loadAndProcess(keys, values, report_type=4) image_base64 = createPieChart(keys, values, 'Oakland Crime Rate 2011-2016') keys.clear() values.clear() DataProcessor.getInstance().loadAndProcess(keys, values, report_type=4) config = {'rotation':90} image_base64_1 = createBarChart(keys, values, 'Count', 'Oakland Crime Rate 2011-2016', configs=config) return render( request, 'analyzer/main1.html', { 'name': "Jon", 'date': datetime.now(), 'image_base64':image_base64, 'image_base64_1':image_base64_1, } ) def report5(request): keys = [] values = [] DataProcessor.getInstance().loadAndProcess(keys, values, report_type=5) image_base64 = createPieChart(keys, values, 'India trade import 2010-2018') keys.clear() values.clear() DataProcessor.getInstance().loadAndProcess(keys, values, report_type=5) config = {'rotation':90} image_base64_1 = createBarChart(keys, values, 'Total(millions $USD)', 'India trade import 2010-2018', configs=config) return render( request, 'analyzer/main1.html', { 'name': "Jon", 'date': datetime.now(), 'image_base64':image_base64, 'image_base64_1':image_base64_1, } ) def report6(request): keys = [] values = [] DataProcessor.getInstance().loadAndProcess(keys, values, report_type=6) image_base64 = createPieChart(keys, values, 'India trade export 2010-2018') keys.clear() values.clear() DataProcessor.getInstance().loadAndProcess(keys, values, report_type=6) config = {'rotation':90} image_base64_1 = createBarChart(keys, values, 'Total(millions $USD)', 'India trade export 2010-2018', configs=config) return render( request, 'analyzer/main1.html', { 'name': "Jon", 'date': datetime.now(), 'image_base64':image_base64, 'image_base64_1':image_base64_1, } )
35.418803
131
0.595077
836
8,288
5.789474
0.143541
0.115909
0.149174
0.164876
0.793182
0.78595
0.778512
0.778512
0.778512
0.764463
0
0.05204
0.28125
8,288
234
132
35.418803
0.76045
0.011221
0
0.611872
0
0
0.191245
0
0
0
0
0
0
1
0.054795
false
0
0.045662
0.004566
0.155251
0
0
0
0
null
0
0
1
0
1
1
1
1
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
null
0
0
0
0
0
0
0
0
0
0
0
0
0
6
398508cf7b96c7a53317b86338d3ac80d4ac69c4
106
py
Python
influxdb_client/client/__init__.py
rhajek/influxdb-client-python
852e6f1b1161df4d67eabc19cdb6b323a46b88e2
[ "MIT" ]
null
null
null
influxdb_client/client/__init__.py
rhajek/influxdb-client-python
852e6f1b1161df4d67eabc19cdb6b323a46b88e2
[ "MIT" ]
null
null
null
influxdb_client/client/__init__.py
rhajek/influxdb-client-python
852e6f1b1161df4d67eabc19cdb6b323a46b88e2
[ "MIT" ]
null
null
null
from __future__ import absolute_import from influxdb_client.client.influxdb_client import InfluxDBClient
26.5
65
0.896226
13
106
6.769231
0.538462
0.318182
0
0
0
0
0
0
0
0
0
0
0.084906
106
3
66
35.333333
0.907216
0
0
0
0
0
0
0
0
0
0
0
0
1
0
true
0
1
0
1
0
1
0
0
null
1
0
0
0
0
0
0
0
0
0
0
0
0
1
0
0
0
0
0
0
0
0
0
0
null
0
0
0
0
0
0
1
0
1
0
1
0
0
6
39d2a63c210e03ad35c58e5b3b5e1afaa5b2db56
36,251
py
Python
com/precisely/apis/model/validate_mailing_address_uscanapi_options.py
PreciselyData/PreciselyAPIsSDK-Python
28ffff0c96d81d3a53a5599c987d54d7b632b508
[ "Apache-2.0" ]
null
null
null
com/precisely/apis/model/validate_mailing_address_uscanapi_options.py
PreciselyData/PreciselyAPIsSDK-Python
28ffff0c96d81d3a53a5599c987d54d7b632b508
[ "Apache-2.0" ]
null
null
null
com/precisely/apis/model/validate_mailing_address_uscanapi_options.py
PreciselyData/PreciselyAPIsSDK-Python
28ffff0c96d81d3a53a5599c987d54d7b632b508
[ "Apache-2.0" ]
null
null
null
""" Precisely APIs Enhance & enrich your data, applications, business processes, and workflows with rich location, information, and identify APIs. # noqa: E501 The version of the OpenAPI document: 11.9.3 Generated by: https://openapi-generator.tech """ import re # noqa: F401 import sys # noqa: F401 from com.precisely.apis.model_utils import ( # noqa: F401 ApiTypeError, ModelComposed, ModelNormal, ModelSimple, cached_property, change_keys_js_to_python, convert_js_args_to_python_args, date, datetime, file_type, none_type, validate_get_composed_info, OpenApiModel ) from com.precisely.apis.exceptions import ApiAttributeError class ValidateMailingAddressUSCANAPIOptions(ModelNormal): """NOTE: This class is auto generated by OpenAPI Generator. Ref: https://openapi-generator.tech Do not edit the class manually. Attributes: allowed_values (dict): The key is the tuple path to the attribute and the for var_name this is (var_name,). The value is a dict with a capitalized key describing the allowed value and an allowed value. These dicts store the allowed enum values. attribute_map (dict): The key is attribute name and the value is json key in definition. discriminator_value_class_map (dict): A dict to go from the discriminator variable value to the discriminator class name. validations (dict): The key is the tuple path to the attribute and the for var_name this is (var_name,). The value is a dict that stores validations for max_length, min_length, max_items, min_items, exclusive_maximum, inclusive_maximum, exclusive_minimum, inclusive_minimum, and regex. additional_properties_type (tuple): A tuple of classes accepted as additional properties values. """ allowed_values = { } validations = { } @cached_property def additional_properties_type(): """ This must be a method because a model may have properties that are of type self, this must run after the class is loaded """ return (bool, date, datetime, dict, float, int, list, str, none_type,) # noqa: E501 _nullable = False @cached_property def openapi_types(): """ This must be a method because a model may have properties that are of type self, this must run after the class is loaded Returns openapi_types (dict): The key is attribute name and the value is attribute type. """ return { 'output_address_blocks': (str,), # noqa: E501 'perform_us_processing': (str,), # noqa: E501 'perform_dpv': (str,), # noqa: E501 'output_formatted_on_fail': (str,), # noqa: E501 'output_postal_code_separator': (str,), # noqa: E501 'output_country_format': (str,), # noqa: E501 'keep_multimatch': (str,), # noqa: E501 'output_casing': (str,), # noqa: E501 'maximum_results': (str,), # noqa: E501 'output_record_type': (str,), # noqa: E501 'output_field_level_return_codes': (str,), # noqa: E501 'dpv_determine_no_stat': (str,), # noqa: E501 'street_matching_strictness': (str,), # noqa: E501 'can_french_apartment_label': (str,), # noqa: E501 'output_abbreviated_alias': (str,), # noqa: E501 'dpv_successful_status_condition': (str,), # noqa: E501 'standard_address_pmb_line': (str,), # noqa: E501 'firm_matching_strictness': (str,), # noqa: E501 'can_rural_route_format': (str,), # noqa: E501 'can_prefer_house_num': (str,), # noqa: E501 'output_preferred_alias': (str,), # noqa: E501 'directional_matching_strictness': (str,), # noqa: E501 'extract_firm': (str,), # noqa: E501 'fail_on_cmra_match': (str,), # noqa: E501 'can_non_civic_format': (str,), # noqa: E501 'can_sslvr_flg': (str,), # noqa: E501 'output_street_name_alias': (str,), # noqa: E501 'perform_ews': (str,), # noqa: E501 'can_output_city_format': (str,), # noqa: E501 'dual_address_logic': (str,), # noqa: E501 'perform_suite_link': (str,), # noqa: E501 'can_standard_address_format': (str,), # noqa: E501 'output_preferred_city': (str,), # noqa: E501 'output_multinational_characters': (str,), # noqa: E501 'can_delivery_office_format': (str,), # noqa: E501 'perform_lacs_link': (str,), # noqa: E501 'can_dual_address_logic': (str,), # noqa: E501 'extract_urb': (str,), # noqa: E501 'standard_address_format': (str,), # noqa: E501 'can_french_format': (str,), # noqa: E501 'dpv_determine_vacancy': (str,), # noqa: E501 'can_english_apartment_label': (str,), # noqa: E501 'suppress_zplus_phantom_carrier_r777': (str,), # noqa: E501 'can_output_city_alias': (str,), # noqa: E501 'output_short_city_name': (str,), # noqa: E501 } @cached_property def discriminator(): return None attribute_map = { 'output_address_blocks': 'OutputAddressBlocks', # noqa: E501 'perform_us_processing': 'PerformUSProcessing', # noqa: E501 'perform_dpv': 'PerformDPV', # noqa: E501 'output_formatted_on_fail': 'OutputFormattedOnFail', # noqa: E501 'output_postal_code_separator': 'OutputPostalCodeSeparator', # noqa: E501 'output_country_format': 'OutputCountryFormat', # noqa: E501 'keep_multimatch': 'KeepMultimatch', # noqa: E501 'output_casing': 'OutputCasing', # noqa: E501 'maximum_results': 'MaximumResults', # noqa: E501 'output_record_type': 'OutputRecordType', # noqa: E501 'output_field_level_return_codes': 'OutputFieldLevelReturnCodes', # noqa: E501 'dpv_determine_no_stat': 'DPVDetermineNoStat', # noqa: E501 'street_matching_strictness': 'StreetMatchingStrictness', # noqa: E501 'can_french_apartment_label': 'CanFrenchApartmentLabel', # noqa: E501 'output_abbreviated_alias': 'OutputAbbreviatedAlias', # noqa: E501 'dpv_successful_status_condition': 'DPVSuccessfulStatusCondition', # noqa: E501 'standard_address_pmb_line': 'StandardAddressPMBLine', # noqa: E501 'firm_matching_strictness': 'FirmMatchingStrictness', # noqa: E501 'can_rural_route_format': 'CanRuralRouteFormat', # noqa: E501 'can_prefer_house_num': 'CanPreferHouseNum', # noqa: E501 'output_preferred_alias': 'OutputPreferredAlias', # noqa: E501 'directional_matching_strictness': 'DirectionalMatchingStrictness', # noqa: E501 'extract_firm': 'ExtractFirm', # noqa: E501 'fail_on_cmra_match': 'FailOnCMRAMatch', # noqa: E501 'can_non_civic_format': 'CanNonCivicFormat', # noqa: E501 'can_sslvr_flg': 'CanSSLVRFlg', # noqa: E501 'output_street_name_alias': 'OutputStreetNameAlias', # noqa: E501 'perform_ews': 'PerformEWS', # noqa: E501 'can_output_city_format': 'CanOutputCityFormat', # noqa: E501 'dual_address_logic': 'DualAddressLogic', # noqa: E501 'perform_suite_link': 'PerformSuiteLink', # noqa: E501 'can_standard_address_format': 'CanStandardAddressFormat', # noqa: E501 'output_preferred_city': 'OutputPreferredCity', # noqa: E501 'output_multinational_characters': 'OutputMultinationalCharacters', # noqa: E501 'can_delivery_office_format': 'CanDeliveryOfficeFormat', # noqa: E501 'perform_lacs_link': 'PerformLACSLink', # noqa: E501 'can_dual_address_logic': 'CanDualAddressLogic', # noqa: E501 'extract_urb': 'ExtractUrb', # noqa: E501 'standard_address_format': 'StandardAddressFormat', # noqa: E501 'can_french_format': 'CanFrenchFormat', # noqa: E501 'dpv_determine_vacancy': 'DPVDetermineVacancy', # noqa: E501 'can_english_apartment_label': 'CanEnglishApartmentLabel', # noqa: E501 'suppress_zplus_phantom_carrier_r777': 'SuppressZplusPhantomCarrierR777', # noqa: E501 'can_output_city_alias': 'CanOutputCityAlias', # noqa: E501 'output_short_city_name': 'OutputShortCityName', # noqa: E501 } read_only_vars = { } _composed_schemas = {} @classmethod @convert_js_args_to_python_args def _from_openapi_data(cls, *args, **kwargs): # noqa: E501 """ValidateMailingAddressUSCANAPIOptions - a model defined in OpenAPI Keyword Args: _check_type (bool): if True, values for parameters in openapi_types will be type checked and a TypeError will be raised if the wrong type is input. Defaults to True _path_to_item (tuple/list): This is a list of keys or values to drill down to the model in received_data when deserializing a response _spec_property_naming (bool): True if the variable names in the input data are serialized names, as specified in the OpenAPI document. False if the variable names in the input data are pythonic names, e.g. snake case (default) _configuration (Configuration): the instance to use when deserializing a file_type parameter. If passed, type conversion is attempted If omitted no type conversion is done. _visited_composed_classes (tuple): This stores a tuple of classes that we have traveled through so that if we see that class again we will not use its discriminator again. When traveling through a discriminator, the composed schema that is is traveled through is added to this set. For example if Animal has a discriminator petType and we pass in "Dog", and the class Dog allOf includes Animal, we move through Animal once using the discriminator, and pick Dog. Then in Dog, we will make an instance of the Animal class but this time we won't travel through its discriminator because we passed in _visited_composed_classes = (Animal,) output_address_blocks (str): Specifies whether to return a formatted version of the address.. [optional] if omitted the server will use the default value of "Y" # noqa: E501 perform_us_processing (str): Specifies whether or not to process U.S. addresses.. [optional] if omitted the server will use the default value of "Y" # noqa: E501 perform_dpv (str): Delivery Point Validation (DPV®) validates that a specific address exists. [optional] if omitted the server will use the default value of "N" # noqa: E501 output_formatted_on_fail (str): Specifies whether to return a formatted address when an address cannot be validated.. [optional] if omitted the server will use the default value of "N" # noqa: E501 output_postal_code_separator (str): Specifies whether to use separators (spaces or hyphens) in ZIP™ Codes or Canadian postal codes.. [optional] if omitted the server will use the default value of "Y" # noqa: E501 output_country_format (str): Specifies the format to use for the country name returned in the Country output field.. [optional] if omitted the server will use the default value of "E" # noqa: E501 keep_multimatch (str): Indicates whether to return multiple address for input addresses that have more than one possible matches.. [optional] if omitted the server will use the default value of "N" # noqa: E501 output_casing (str): Specifies the casing of the output address. M for mixed case and U for upper case.. [optional] if omitted the server will use the default value of "M" # noqa: E501 maximum_results (str): Specifies a number between 1 and 10 that indicates the maximum number of addresses to be returned.. [optional] if omitted the server will use the default value of "10" # noqa: E501 output_record_type (str): Specifies the type of the output record.. [optional] if omitted the server will use the default value of "A" # noqa: E501 output_field_level_return_codes (str): Identifies which output addresses are candidate addresses as value if Y for OutputFieldLevelReturnCodes.. [optional] if omitted the server will use the default value of "N" # noqa: E501 dpv_determine_no_stat (str): Determines the no stat status of an address which means it exists but cannot receive mails.. [optional] if omitted the server will use the default value of "N" # noqa: E501 street_matching_strictness (str): Specifies the algorithm to determe if an input address matches in the postal database.. [optional] if omitted the server will use the default value of "M" # noqa: E501 can_french_apartment_label (str): Specifies the default apartment label for the output if there is no apartment label in the input address. This is specific to French address. . [optional] if omitted the server will use the default value of "Appartement" # noqa: E501 output_abbreviated_alias (str): Specifies whether to use a street's abbreviated alias in the output if the output address line is longer than 31 characters.. [optional] if omitted the server will use the default value of "N" # noqa: E501 dpv_successful_status_condition (str): Selecting the match condition where a DPV result does NOT cause a record to fail.. [optional] if omitted the server will use the default value of "A" # noqa: E501 standard_address_pmb_line (str): Specifies where Private Mailbox (PMB) information is placed.. [optional] if omitted the server will use the default value of "N" # noqa: E501 firm_matching_strictness (str): Specifies the algorithm to determining if an input address matches in the postal database.. [optional] if omitted the server will use the default value of "M" # noqa: E501 can_rural_route_format (str): Specifies where to place rural route delivery information.. [optional] if omitted the server will use the default value of "A" # noqa: E501 can_prefer_house_num (str): Specifies whether to select a house number of postal code in case of conflict.. [optional] if omitted the server will use the default value of "N" # noqa: E501 output_preferred_alias (str): Specifies whether to use a street's preferred alias in the output.. [optional] if omitted the server will use the default value of "N" # noqa: E501 directional_matching_strictness (str): Specifies the algorithm to determine if an input address matches in the postal database.. [optional] if omitted the server will use the default value of "M" # noqa: E501 extract_firm (str): Specifies whether to extract the firm name from AddressLine1 through AddressLine4 and place it in the FirmName output field.. [optional] if omitted the server will use the default value of "N" # noqa: E501 fail_on_cmra_match (str): Specifies whether to consider Treat Commercial Mail Receiving Agency (CMRA) matches as failures?. [optional] if omitted the server will use the default value of "N" # noqa: E501 can_non_civic_format (str): Specifies whether or not non-civic keywords are abbreviated in the output. . [optional] if omitted the server will use the default value of "A" # noqa: E501 can_sslvr_flg (str): Changes the civic and/or suite information to match the LVR or single-single record.. [optional] if omitted the server will use the default value of "N" # noqa: E501 output_street_name_alias (str): Specifies how to handle street name aliases used in the input. This is specific to US.. [optional] if omitted the server will use the default value of "Y" # noqa: E501 perform_ews (str): Specifies the Early Warning System (EWS) that uses the USPS EWS File to validate addresses that are not in the ZIP + 4 database.. [optional] if omitted the server will use the default value of "N" # noqa: E501 can_output_city_format (str): Specifies whether to use the long, medium, or short version of the city if the city has a long name.. [optional] if omitted the server will use the default value of "D" # noqa: E501 dual_address_logic (str): Specifies how to return a match if multiple non-blank address lines are present or multiple address types are on the same address line. (U.S. addresses only.). [optional] if omitted the server will use the default value of "N" # noqa: E501 perform_suite_link (str): Specifies whether to perform SuiteLink processing.. [optional] if omitted the server will use the default value of "N" # noqa: E501 can_standard_address_format (str): Specifies where to place secondary address information in the output address.. [optional] if omitted the server will use the default value of "D" # noqa: E501 output_preferred_city (str): Specifies whether the preferred last line city name should be stored.. [optional] if omitted the server will use the default value of "Z" # noqa: E501 output_multinational_characters (str): Specifies whether to return multinational characters, including diacritical marks such as umlauts or accents.. [optional] if omitted the server will use the default value of "N" # noqa: E501 can_delivery_office_format (str): Specifies where to place station information.. [optional] if omitted the server will use the default value of "I" # noqa: E501 perform_lacs_link (str): Facilitates the conversion of rural route address converting into street-style address using the LACS.. [optional] if omitted the server will use the default value of "Y" # noqa: E501 can_dual_address_logic (str): Specifies whether ValidateMailingAddressUSCAN should return a street match or a PO Box/non-civic match when the address contains both civic and non-civic information.. [optional] if omitted the server will use the default value of "D" # noqa: E501 extract_urb (str): Specifies whether to extract the urbanization name from AddressLine1 through AddressLine4 and place it in the USUrbanName output field. . [optional] if omitted the server will use the default value of "N" # noqa: E501 standard_address_format (str): Specifies where to place secondary address information for U.S. addresses.. [optional] if omitted the server will use the default value of "C" # noqa: E501 can_french_format (str): Specifies how to determine the language (English or French) to use to format the address and directional.. [optional] if omitted the server will use the default value of "C" # noqa: E501 dpv_determine_vacancy (str): Determines if the location has been unoccupied for at least 90 days.. [optional] if omitted the server will use the default value of "N" # noqa: E501 can_english_apartment_label (str): Specifies the default apartment label to use in the output if there is no apartment label in the input address. rhis is specific to English addresses.. [optional] if omitted the server will use the default value of "Apt" # noqa: E501 suppress_zplus_phantom_carrier_r777 (str): Specifies whether to supress addresses with Carrier Route R777.. [optional] if omitted the server will use the default value of "N" # noqa: E501 can_output_city_alias (str): Specifies whether or not to return the city alias when the alias is in the input address.. [optional] if omitted the server will use the default value of "N" # noqa: E501 output_short_city_name (str): Specifies how to format city names that have short city name or non-mailing city name alternatives.. [optional] if omitted the server will use the default value of "N" # noqa: E501 """ _check_type = kwargs.pop('_check_type', True) _spec_property_naming = kwargs.pop('_spec_property_naming', False) _path_to_item = kwargs.pop('_path_to_item', ()) _configuration = kwargs.pop('_configuration', None) _visited_composed_classes = kwargs.pop('_visited_composed_classes', ()) self = super(OpenApiModel, cls).__new__(cls) if args: raise ApiTypeError( "Invalid positional arguments=%s passed to %s. Remove those invalid positional arguments." % ( args, self.__class__.__name__, ), path_to_item=_path_to_item, valid_classes=(self.__class__,), ) self._data_store = {} self._check_type = _check_type self._spec_property_naming = _spec_property_naming self._path_to_item = _path_to_item self._configuration = _configuration self._visited_composed_classes = _visited_composed_classes + (self.__class__,) for var_name, var_value in kwargs.items(): if var_name not in self.attribute_map and \ self._configuration is not None and \ self._configuration.discard_unknown_keys and \ self.additional_properties_type is None: # discard variable. continue setattr(self, var_name, var_value) return self required_properties = set([ '_data_store', '_check_type', '_spec_property_naming', '_path_to_item', '_configuration', '_visited_composed_classes', ]) @convert_js_args_to_python_args def __init__(self, *args, **kwargs): # noqa: E501 """ValidateMailingAddressUSCANAPIOptions - a model defined in OpenAPI Keyword Args: _check_type (bool): if True, values for parameters in openapi_types will be type checked and a TypeError will be raised if the wrong type is input. Defaults to True _path_to_item (tuple/list): This is a list of keys or values to drill down to the model in received_data when deserializing a response _spec_property_naming (bool): True if the variable names in the input data are serialized names, as specified in the OpenAPI document. False if the variable names in the input data are pythonic names, e.g. snake case (default) _configuration (Configuration): the instance to use when deserializing a file_type parameter. If passed, type conversion is attempted If omitted no type conversion is done. _visited_composed_classes (tuple): This stores a tuple of classes that we have traveled through so that if we see that class again we will not use its discriminator again. When traveling through a discriminator, the composed schema that is is traveled through is added to this set. For example if Animal has a discriminator petType and we pass in "Dog", and the class Dog allOf includes Animal, we move through Animal once using the discriminator, and pick Dog. Then in Dog, we will make an instance of the Animal class but this time we won't travel through its discriminator because we passed in _visited_composed_classes = (Animal,) output_address_blocks (str): Specifies whether to return a formatted version of the address.. [optional] if omitted the server will use the default value of "Y" # noqa: E501 perform_us_processing (str): Specifies whether or not to process U.S. addresses.. [optional] if omitted the server will use the default value of "Y" # noqa: E501 perform_dpv (str): Delivery Point Validation (DPV®) validates that a specific address exists. [optional] if omitted the server will use the default value of "N" # noqa: E501 output_formatted_on_fail (str): Specifies whether to return a formatted address when an address cannot be validated.. [optional] if omitted the server will use the default value of "N" # noqa: E501 output_postal_code_separator (str): Specifies whether to use separators (spaces or hyphens) in ZIP™ Codes or Canadian postal codes.. [optional] if omitted the server will use the default value of "Y" # noqa: E501 output_country_format (str): Specifies the format to use for the country name returned in the Country output field.. [optional] if omitted the server will use the default value of "E" # noqa: E501 keep_multimatch (str): Indicates whether to return multiple address for input addresses that have more than one possible matches.. [optional] if omitted the server will use the default value of "N" # noqa: E501 output_casing (str): Specifies the casing of the output address. M for mixed case and U for upper case.. [optional] if omitted the server will use the default value of "M" # noqa: E501 maximum_results (str): Specifies a number between 1 and 10 that indicates the maximum number of addresses to be returned.. [optional] if omitted the server will use the default value of "10" # noqa: E501 output_record_type (str): Specifies the type of the output record.. [optional] if omitted the server will use the default value of "A" # noqa: E501 output_field_level_return_codes (str): Identifies which output addresses are candidate addresses as value if Y for OutputFieldLevelReturnCodes.. [optional] if omitted the server will use the default value of "N" # noqa: E501 dpv_determine_no_stat (str): Determines the no stat status of an address which means it exists but cannot receive mails.. [optional] if omitted the server will use the default value of "N" # noqa: E501 street_matching_strictness (str): Specifies the algorithm to determe if an input address matches in the postal database.. [optional] if omitted the server will use the default value of "M" # noqa: E501 can_french_apartment_label (str): Specifies the default apartment label for the output if there is no apartment label in the input address. This is specific to French address. . [optional] if omitted the server will use the default value of "Appartement" # noqa: E501 output_abbreviated_alias (str): Specifies whether to use a street's abbreviated alias in the output if the output address line is longer than 31 characters.. [optional] if omitted the server will use the default value of "N" # noqa: E501 dpv_successful_status_condition (str): Selecting the match condition where a DPV result does NOT cause a record to fail.. [optional] if omitted the server will use the default value of "A" # noqa: E501 standard_address_pmb_line (str): Specifies where Private Mailbox (PMB) information is placed.. [optional] if omitted the server will use the default value of "N" # noqa: E501 firm_matching_strictness (str): Specifies the algorithm to determining if an input address matches in the postal database.. [optional] if omitted the server will use the default value of "M" # noqa: E501 can_rural_route_format (str): Specifies where to place rural route delivery information.. [optional] if omitted the server will use the default value of "A" # noqa: E501 can_prefer_house_num (str): Specifies whether to select a house number of postal code in case of conflict.. [optional] if omitted the server will use the default value of "N" # noqa: E501 output_preferred_alias (str): Specifies whether to use a street's preferred alias in the output.. [optional] if omitted the server will use the default value of "N" # noqa: E501 directional_matching_strictness (str): Specifies the algorithm to determine if an input address matches in the postal database.. [optional] if omitted the server will use the default value of "M" # noqa: E501 extract_firm (str): Specifies whether to extract the firm name from AddressLine1 through AddressLine4 and place it in the FirmName output field.. [optional] if omitted the server will use the default value of "N" # noqa: E501 fail_on_cmra_match (str): Specifies whether to consider Treat Commercial Mail Receiving Agency (CMRA) matches as failures?. [optional] if omitted the server will use the default value of "N" # noqa: E501 can_non_civic_format (str): Specifies whether or not non-civic keywords are abbreviated in the output. . [optional] if omitted the server will use the default value of "A" # noqa: E501 can_sslvr_flg (str): Changes the civic and/or suite information to match the LVR or single-single record.. [optional] if omitted the server will use the default value of "N" # noqa: E501 output_street_name_alias (str): Specifies how to handle street name aliases used in the input. This is specific to US.. [optional] if omitted the server will use the default value of "Y" # noqa: E501 perform_ews (str): Specifies the Early Warning System (EWS) that uses the USPS EWS File to validate addresses that are not in the ZIP + 4 database.. [optional] if omitted the server will use the default value of "N" # noqa: E501 can_output_city_format (str): Specifies whether to use the long, medium, or short version of the city if the city has a long name.. [optional] if omitted the server will use the default value of "D" # noqa: E501 dual_address_logic (str): Specifies how to return a match if multiple non-blank address lines are present or multiple address types are on the same address line. (U.S. addresses only.). [optional] if omitted the server will use the default value of "N" # noqa: E501 perform_suite_link (str): Specifies whether to perform SuiteLink processing.. [optional] if omitted the server will use the default value of "N" # noqa: E501 can_standard_address_format (str): Specifies where to place secondary address information in the output address.. [optional] if omitted the server will use the default value of "D" # noqa: E501 output_preferred_city (str): Specifies whether the preferred last line city name should be stored.. [optional] if omitted the server will use the default value of "Z" # noqa: E501 output_multinational_characters (str): Specifies whether to return multinational characters, including diacritical marks such as umlauts or accents.. [optional] if omitted the server will use the default value of "N" # noqa: E501 can_delivery_office_format (str): Specifies where to place station information.. [optional] if omitted the server will use the default value of "I" # noqa: E501 perform_lacs_link (str): Facilitates the conversion of rural route address converting into street-style address using the LACS.. [optional] if omitted the server will use the default value of "Y" # noqa: E501 can_dual_address_logic (str): Specifies whether ValidateMailingAddressUSCAN should return a street match or a PO Box/non-civic match when the address contains both civic and non-civic information.. [optional] if omitted the server will use the default value of "D" # noqa: E501 extract_urb (str): Specifies whether to extract the urbanization name from AddressLine1 through AddressLine4 and place it in the USUrbanName output field. . [optional] if omitted the server will use the default value of "N" # noqa: E501 standard_address_format (str): Specifies where to place secondary address information for U.S. addresses.. [optional] if omitted the server will use the default value of "C" # noqa: E501 can_french_format (str): Specifies how to determine the language (English or French) to use to format the address and directional.. [optional] if omitted the server will use the default value of "C" # noqa: E501 dpv_determine_vacancy (str): Determines if the location has been unoccupied for at least 90 days.. [optional] if omitted the server will use the default value of "N" # noqa: E501 can_english_apartment_label (str): Specifies the default apartment label to use in the output if there is no apartment label in the input address. rhis is specific to English addresses.. [optional] if omitted the server will use the default value of "Apt" # noqa: E501 suppress_zplus_phantom_carrier_r777 (str): Specifies whether to supress addresses with Carrier Route R777.. [optional] if omitted the server will use the default value of "N" # noqa: E501 can_output_city_alias (str): Specifies whether or not to return the city alias when the alias is in the input address.. [optional] if omitted the server will use the default value of "N" # noqa: E501 output_short_city_name (str): Specifies how to format city names that have short city name or non-mailing city name alternatives.. [optional] if omitted the server will use the default value of "N" # noqa: E501 """ _check_type = kwargs.pop('_check_type', True) _spec_property_naming = kwargs.pop('_spec_property_naming', False) _path_to_item = kwargs.pop('_path_to_item', ()) _configuration = kwargs.pop('_configuration', None) _visited_composed_classes = kwargs.pop('_visited_composed_classes', ()) if args: raise ApiTypeError( "Invalid positional arguments=%s passed to %s. Remove those invalid positional arguments." % ( args, self.__class__.__name__, ), path_to_item=_path_to_item, valid_classes=(self.__class__,), ) self._data_store = {} self._check_type = _check_type self._spec_property_naming = _spec_property_naming self._path_to_item = _path_to_item self._configuration = _configuration self._visited_composed_classes = _visited_composed_classes + (self.__class__,) for var_name, var_value in kwargs.items(): if var_name not in self.attribute_map and \ self._configuration is not None and \ self._configuration.discard_unknown_keys and \ self.additional_properties_type is None: # discard variable. continue setattr(self, var_name, var_value) if var_name in self.read_only_vars: raise ApiAttributeError(f"`{var_name}` is a read-only attribute. Use `from_openapi_data` to instantiate " f"class with read only attributes.")
83.914352
290
0.670354
4,755
36,251
4.961304
0.103891
0.062397
0.064855
0.0763
0.883727
0.857658
0.812259
0.782587
0.779195
0.779195
0
0.023009
0.263882
36,251
431
291
84.109049
0.860821
0.703815
0
0.283582
0
0
0.363429
0.216645
0
0
0
0
0
1
0.024876
false
0.00995
0.019901
0.004975
0.104478
0
0
0
0
null
0
0
0
1
1
1
1
1
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
null
0
0
0
0
0
0
0
0
0
0
0
0
0
6
39daa2204b3c5436de83103da0b269b9aadad179
1,540
py
Python
tests/test_movies.py
dipakgupta12/taste_dive
37df3f67e6efdf961cca230a4b2c8cfe23a38984
[ "MIT" ]
null
null
null
tests/test_movies.py
dipakgupta12/taste_dive
37df3f67e6efdf961cca230a4b2c8cfe23a38984
[ "MIT" ]
null
null
null
tests/test_movies.py
dipakgupta12/taste_dive
37df3f67e6efdf961cca230a4b2c8cfe23a38984
[ "MIT" ]
null
null
null
import mock def test_index_template(app, client, db, captured_templates): res = client.get('/') assert res.status_code == 200 template, context = captured_templates[0] assert template.name == "index.html" @mock.patch("taste_dive.main.routes.get_movies", mock.MagicMock(return_value=[{"Title": "Fast & Furious 6"}])) def test_search_template(app, client, db, captured_templates): res = client.get('/search', data={"name": "Fast & Furious 6"}) assert res.status_code == 200 template, context = captured_templates[0] assert template.name == "search.html" @mock.patch("taste_dive.main.routes.get_movies", mock.MagicMock(return_value=[{"Title": "Fast & Furious 6"}])) def test_search(app, client, db, captured_templates): res = client.get('/search', data={"name": "Fast & Furious 6"}) assert res.status_code == 200 @mock.patch("taste_dive.main.routes.get_movie_detail", mock.MagicMock(return_value={"Title": "Fast & Furious 6"})) def test_detail_template(app, client, db, movie, captured_templates): res = client.get('/detail/{{movie.imdbID}}', data={"name": "Fast & Furious 6"}) assert res.status_code == 200 template, context = captured_templates[0] assert template.name == "detail.html" @mock.patch("taste_dive.main.routes.get_movie_detail", mock.MagicMock(return_value={"Title": "Fast & Furious 6"})) def test_detail(app, client, movie, captured_templates): res = client.get('/detail/{{movie.imdbID}}', data={"name": "Fast & Furious 6"}) assert res.status_code == 200
42.777778
114
0.701948
210
1,540
4.980952
0.185714
0.130019
0.091778
0.124283
0.935946
0.935946
0.935946
0.935946
0.932122
0.878585
0
0.019461
0.132468
1,540
35
115
44
0.763473
0
0
0.615385
0
0
0.261688
0.124675
0
0
0
0
0.307692
1
0.192308
false
0
0.038462
0
0.230769
0
0
0
0
null
0
0
0
1
1
1
1
1
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
null
0
0
0
0
0
0
0
0
0
0
0
0
0
6
f2d339d173f754cc9a0dd3025640fbb292c58b5b
36
py
Python
CADRE/power_dymos/__init__.py
johnjasa/CADRE
a4ffd61582b8474953fc309aa540838a14f29dcf
[ "Apache-2.0" ]
null
null
null
CADRE/power_dymos/__init__.py
johnjasa/CADRE
a4ffd61582b8474953fc309aa540838a14f29dcf
[ "Apache-2.0" ]
null
null
null
CADRE/power_dymos/__init__.py
johnjasa/CADRE
a4ffd61582b8474953fc309aa540838a14f29dcf
[ "Apache-2.0" ]
null
null
null
from .power_group import PowerGroup
18
35
0.861111
5
36
6
1
0
0
0
0
0
0
0
0
0
0
0
0.111111
36
1
36
36
0.9375
0
0
0
0
0
0
0
0
0
0
0
0
1
0
true
0
1
0
1
0
1
1
0
null
0
0
0
0
0
0
0
0
0
0
0
0
0
1
0
0
0
0
0
0
0
0
0
0
null
0
0
0
0
0
0
1
0
1
0
1
0
0
6
081ea6e893da219c4f8a085a91c4473a4ef03166
191
py
Python
tasking/utils/models.py
cmanallen/tasking
0a613357148afdb4b55078c58429ec45bb60a436
[ "MIT" ]
null
null
null
tasking/utils/models.py
cmanallen/tasking
0a613357148afdb4b55078c58429ec45bb60a436
[ "MIT" ]
null
null
null
tasking/utils/models.py
cmanallen/tasking
0a613357148afdb4b55078c58429ec45bb60a436
[ "MIT" ]
null
null
null
from django.db import models class TimeStamp(models.Model): created = models.DateTimeField(auto_now_add=True) updated = models.DateTimeField(auto_now=True) class Meta: abstract = True
21.222222
50
0.78534
26
191
5.653846
0.653846
0.258503
0.312925
0.353742
0
0
0
0
0
0
0
0
0.125654
191
9
51
21.222222
0.88024
0
0
0
0
0
0
0
0
0
0
0
0
1
0
false
0
0.166667
0
0.833333
0
1
0
0
null
1
1
1
0
0
0
0
0
0
0
0
0
0
1
0
0
0
0
0
0
0
0
0
0
null
0
0
0
0
0
0
0
0
0
0
1
0
0
6
f25714dd2e5fb95e7b87e1b330afecfe7458cf18
49
py
Python
libs/pytvmaze/__init__.py
Sparklingx/nzbhydra
e2433e1155255ba37341cc79750b104e7dd8889a
[ "Apache-2.0" ]
674
2015-11-06T04:22:47.000Z
2022-02-26T17:31:43.000Z
libs/pytvmaze/__init__.py
Sparklingx/nzbhydra
e2433e1155255ba37341cc79750b104e7dd8889a
[ "Apache-2.0" ]
713
2015-11-06T10:48:58.000Z
2018-11-27T16:32:18.000Z
libs/pytvmaze/__init__.py
Sparklingx/nzbhydra
e2433e1155255ba37341cc79750b104e7dd8889a
[ "Apache-2.0" ]
106
2015-12-07T11:21:06.000Z
2022-03-11T10:58:41.000Z
#!/usr/bin/python from pytvmaze.tvmaze import *
12.25
29
0.734694
7
49
5.142857
1
0
0
0
0
0
0
0
0
0
0
0
0.122449
49
3
30
16.333333
0.837209
0.326531
0
0
0
0
0
0
0
0
0
0
0
1
0
true
0
1
0
1
0
1
1
0
null
0
0
0
0
0
0
0
0
0
0
0
0
0
1
0
0
0
0
0
0
0
0
0
0
null
0
0
0
0
0
0
1
0
1
0
1
0
0
6
f26f70f686db6ff49ef92baf12b70818b5613277
209
py
Python
ddtrace/contrib/sqlite3/connection.py
sharov/dd-trace-py
d0995b49cf7147ab463d0a67a38779fad3f539b4
[ "BSD-3-Clause" ]
1
2019-11-24T23:09:29.000Z
2019-11-24T23:09:29.000Z
ddtrace/contrib/sqlite3/connection.py
sharov/dd-trace-py
d0995b49cf7147ab463d0a67a38779fad3f539b4
[ "BSD-3-Clause" ]
null
null
null
ddtrace/contrib/sqlite3/connection.py
sharov/dd-trace-py
d0995b49cf7147ab463d0a67a38779fad3f539b4
[ "BSD-3-Clause" ]
2
2017-05-27T05:58:36.000Z
2019-02-07T13:38:53.000Z
from sqlite3 import Connection from ddtrace.util import deprecated @deprecated(message='Use patching instead (see the docs).', version='0.6.0') def connection_factory(*args, **kwargs): return Connection
26.125
76
0.76555
28
209
5.678571
0.785714
0
0
0
0
0
0
0
0
0
0
0.021858
0.124402
209
7
77
29.857143
0.846995
0
0
0
0
0
0.196172
0
0
0
0
0
0
1
0.2
true
0
0.4
0.2
0.8
0
1
0
0
null
0
0
0
0
0
0
0
0
0
0
0
0
0
1
0
0
0
0
0
0
0
0
0
0
null
0
0
0
0
0
0
1
0
1
1
1
0
0
6
f2a2b6ab09a985aa72dfef0d5e15e51b49c536f0
607,382
py
Python
submission/custom_reinforcement_learning_geesenet.py
peterbonnesoeur/HandyRL
bb180677cb2d8268317b95c35c98d4536dd906f1
[ "MIT" ]
null
null
null
submission/custom_reinforcement_learning_geesenet.py
peterbonnesoeur/HandyRL
bb180677cb2d8268317b95c35c98d4536dd906f1
[ "MIT" ]
null
null
null
submission/custom_reinforcement_learning_geesenet.py
peterbonnesoeur/HandyRL
bb180677cb2d8268317b95c35c98d4536dd906f1
[ "MIT" ]
null
null
null
# This is a lightweight ML agent trained by self-play. # After sharing this notebook, # we will add Hungry Geese environment in our HandyRL library. # https://github.com/DeNA/HandyRL # We hope you enjoy reinforcement learning! import pickle import bz2 import base64 import numpy as np import torch import torch.nn as nn import torch.nn.functional as F # Neural Network for Hungry Geese class TorusConv2d(nn.Module): def __init__(self, input_dim, output_dim, kernel_size, bn): super().__init__() self.edge_size = (kernel_size[0] // 2, kernel_size[1] // 2) self.conv = nn.Conv2d(input_dim, output_dim, kernel_size=kernel_size) self.bn = nn.BatchNorm2d(output_dim) if bn else None def forward(self, x): h = torch.cat([x[:,:,:,-self.edge_size[1]:], x, x[:,:,:,:self.edge_size[1]]], dim=3) h = torch.cat([h[:,:,-self.edge_size[0]:], h, h[:,:,:self.edge_size[0]]], dim=2) h = self.conv(h) h = self.bn(h) if self.bn is not None else h return h class GeeseNet(nn.Module): def __init__(self): super().__init__() layers, filters = 12, 32 self.conv0 = TorusConv2d(17, filters, (3, 3), True) self.blocks = nn.ModuleList([TorusConv2d(filters, filters, (3, 3), True) for _ in range(layers)]) self.head_p = nn.Linear(filters, 4, bias=False) self.head_v = nn.Linear(filters * 2, 1, bias=False) def forward(self, x): h = F.relu_(self.conv0(x)) for block in self.blocks: h = F.relu_(h + block(h)) h_head = (h * x[:,:1]).view(h.size(0), h.size(1), -1).sum(-1) h_avg = h.view(h.size(0), h.size(1), -1).mean(-1) p = self.head_p(h_head) v = torch.tanh(self.head_v(torch.cat([h_head, h_avg], 1))) return {'policy': p, 'value': v} # Input for Neural Network def make_input(obses): b = np.zeros((17, 7 * 11), dtype=np.float32) obs = obses[-1] for p, pos_list in enumerate(obs['geese']): # head position for pos in pos_list[:1]: b[0 + (p - obs['index']) % 4, pos] = 1 # tip position for pos in pos_list[-1:]: b[4 + (p - obs['index']) % 4, pos] = 1 # whole position for pos in pos_list: b[8 + (p - obs['index']) % 4, pos] = 1 # previous head position if len(obses) > 1: obs_prev = obses[-2] for p, pos_list in enumerate(obs_prev['geese']): for pos in pos_list[:1]: b[12 + (p - obs['index']) % 4, pos] = 1 # food for pos in obs['food']: b[16, pos] = 1 return b.reshape(-1, 7, 11) # Load PyTorch Model PARAM = b'QlpoOTFBWSZTWedCouYB+8H/////////////////////////////////////////////5KM/ADsu3A+LPRd1SuOq4cS5w4Oqt3md4pJ7r63vUi5x9u9VC872e8PRu71XgeS73pu8Ie8vbe9IOBGpY9XOpTui3FVe8r28PK7nk7wk469wePffD74fRcc3UtZ93j7vvhJ919c9Evvej74+k572uHiu6eu8SGPrdL6Lg+54g94+8eKe8vnnkj30+8PBx9ODi9zy54K7qveeUreHuHpPeU9w8NxXuei+1zx70gz6e7ykuPTuKjBhlR3Duqo9w7okw8w6ru+zc8Fd6e3PKne99ffSi76+OeCrdGdQu59cPUXuPvelS717bnqRj13Kks5c4R3Xs94Ku56uPJ93h3iVe4Y6q+6mcKdx9weqzkw4nd7b7z6qPvhuBXfeXnpLh3veKp49bhS8694HleHuD69d3nekGfTgdXznvPRTdTdKh3PePQfHmOF7vr7z4D76vvekV33nnkS91N0SvnPeHo94rDg3vfX30g98Pd5Bu+reHir76u6qk3r33nyV933z74lOPjjlVwWEu95e9Ace970Q71dyVHvPPB5N17vSDvePB6p4+YciDj77zxFvHu8qN0+96KDvDdCO5649QffeXeoVz64cQ+493otHG4dA76e4PT3r7e8SGd7h6R55nUke963Hg3D7x5UXPr3ePs1997PD1I7177757DXz63KdmPeG+9hfWt4d1XsMb3i71U+iOY6bb33vndx3avePauuy9e12Le9u83t109HKjttZBoGtGq5zdtve7p6Yaxp2JZ21sdasdcWu7N0dOzLk6tru7o0bsKaaNN2V1dW2rbZ22450ndjqgOh10tdddaZtLW3Z1buC62dYa11qSzOldaxpqFJrOqVWVObdCh1us6O6wy6adqbu7XHQNXMWwSbtdWm12d3Nu6V27VO7cu21bXTulaGIKLc067dasdtztldOuTdjuu4YQ7uq7ZjptVkQUbtdbt3ZumFONmtGG7bdy6x1ct1btcpjrFu5TssDpXdu7uburguzWNtdHdrGpdmgFdbu7pq3du2KKZkxqFN07lHburay7N3bmncs1bViqstFXYzrZq02xbWrLc7du7CuV1l1k21Trq3chVN2u1jVRdd2zFttN2WdcjTFslkrW3dy7btrrDtjmmyHbndzc3VU5dKxVdtLtldaG7u2w1K7dq2rrluXeAUDePbnoAqpCip7z3PClKHbPrfeLq06iq+96vH19Wxe9H3gC1C3ok703CGde95Jb3j731d9uz7xwer7vr74+Kbr7w9VeEYuu9fd8RXd7d4lV93r3hdn3j748J9573gq+8+7wD3nvPCXHXcIc73vKhxBqNzcKrhtUp7pnAXvV94eF7z7zxDcZyK9z3npRz73PKLzq7hD3juhKt6cdF9717wi+893oK77zd6qXuGdSrvPbh6q7rOqG694PU3G4g7n3vRD7z7eD1blupB49w4cNpFbnueKb3nPV0Tve8kc8970k+++33vqgJvJw6jnW6iN8udRPu+uB4sRj03fV3FK317npe24Rr2bnW5UPnPvDwzvu9SN77ePKPuruJTc+zvUqvObiC56wDu5Z0U73t3gPu+vvvhBve++Hwu9MA4O77775VN47ohX3fXPINy4Dn3H3j0XvvXgeV7594PVbp3EFudylZ8YOPu8fe+UTj24inHc6S+eYOox9joXfTuqSzu6qDvLjhN7zgePffO8IN5e71Sbz73iFe7156qm69wPVffV7vKTvrzgeVuO6VL7juCWGMAF77zvElxg191754fJNznKVvX3eATOe8eJcfcDqt89weLvnvPFR3FxyHPMOkbnveqL3nu8Qu69wPTvVnBXPWdE3TclJzve8UvfezjxHx53Sq7luIrdY5DHucqc73j0XvTnKRvTcSfffXj1R863KHu9XeoXvOcqLHvt9331IPHqd0Prz3zb56oOOvPPKX3nld5VG4+negWA+w6j3Xi8elXeg9z0K9999NvPn21vH1PPUjuH154pYFg7HeutuPCve+w95KG9RnVU+9Q3Kis9fTwD7eT3z4Sbh695RO4M4hg87iluPX33wL7vvj3wCd71O8VU9z6b3lVfePbcPB3eme9KjnervElnpXHB998+t8D6vvA3CGffbe9Kjzw93qJ717fb3yUeDu6JWfU9d4+xvvvtW70hg7hxWO9ffPkHffN998AJe8vs71Snu9V3oJ7qHHfWXx5nVFb6DOKs9XvDxXn0vePC99H3PULnr7730h4Hu6kcPrOFZ0+89RPevs96Kr3BxwNz77vvlKb5PvB4ueX3B499ffb76qo9yY4VuRhwx6fd6od6feHvrXvIcHKzr53qqrnr3eAveDnVFnr3vKK7333X30vR332t89C572d4Sd69T3pR3HuPJO55ueBb0MOp7j13iK3o3EJg7uFL7zzw8H3vX3efJPOn3vVB3p7niU517gPXeT7w8PveneEne99PvqF3fR3qEb77PvfFTvo+96hXBmkW7y889tMG1C+7754+Kt6vb3pVe95ueSjzvnh5OemcIu+8+++iO9NxC+evcepMO9x6qc97XeIffX2++HxX3nnnold0cOK7r33fA+Md9975FO+Lh1ODZSmBsKvuT73iF7qve8QcfMAd5476Gg2Oca+jV0u+8rfPd7vNvu1lbPNm+971GUjze2ene22J24dt27lGtjcY6V3Z3bWinZW1zu21twyp0rOzsddu67ttaaBkCkiSIV27qt2u7rZnbdOsqqq7NTYGlZVpW7GRyVNtrd1t3bcN3HG4wN3G7q7Na7rOpUmybroam63MtprAGtKaW1O2u1HWqOmVNzDqrc1ytu7JTSnO2mm2U1q2dHdYkVVaHTnbcu4tixjrltq7Y12zVN3LjrVVImbK7d2FWu422u2ms6N2G67tdl2dbQtVrJS2kVQ1iVi1pszW22wKHdccbbVrbWHEIiqN26U6Fdc1jrBdmXVtNMRdmugNk2uu7d13FOdyt1Toyq7VmlCgrUpzNzaqkibXa4wrrO2Z3JuNzW1W3adm7d3ORHV1w5pJusLpmmklOtI2yuru1ToWyjt12Oxo60VsWzLG7uSBdd2RrQFIoquptdNt0cutj0RFRdTncVIqiQHtM1I7nte7zXtqlFT7U8733j5Htvfe+PH0VvT255SrxzdSnfRuVKzr3npVveOHvTguIrfV3SpXHrdVLu+neFRjznVLfeeDw8+txCvvvvvfIT757e8qV93x3lJ3ffbfAfX3vr74+kc83JU33vr3xDu+fePke9HOkO+9vvnwu+X3vCHvetw9Ke77d4vouM5Kd3zvKQ3vvvfEWH3cSb3i4ePvet56E+8956Q4e7lB73rj0WdXOgcdupUc9955K+8+3nop33znkLeLuorvvOekPOtyF73vrwPlb328eSZ651K8713lFe97bg8W8ve8ivvfHeVD7i7pVPee4ei93nvVVMNqKsdzgrOu6oLnXdSoxhit6s5St6cdCvdXdEPvPueSq76dyku7zz1UuJkp3GOFb193hRuMOox93T208fccpvq4OWPc5KffXu8KmPucJ7vtveVHx3APbrz0HDDDH24qrne96n218IMO+9999VK3fd5SHvPePFd9fd5EuEySx7nUrvLcKnufd4k3333j5Kx7uKq4jIM+3Fo+9X33lK3333w+l9z3eSq526qNz3enWe4zoHdXdRGIaowjB3N1Qd3vPV0XW4VWOzpJcYMrFhR7vXvC+zjhqr5651Q3veD308e85Ke99we9vvu+vvqE773h4PnfePCnntyK+968G8T2Aedeck57OKPPvvPInvfc9RvHvehO+uOkbn3vSjvPcPUPe+95EKn4aAAAAAAAAAAAAAAAAAAAAAAAEyYAAJgAAU8AAAAAAAAAaACohVP9iNAAAAAAAAAAAAAAAAAAAAAAAMgAAGgAAMgAABMAAAAp4UYCnhUOqp/4CAAAAAAAAAAAAAAABoAAAAAAAp7QAAp4AAAp40AAAAATTKPKeBTxDRqniodVP8ATQAAADCZMjEyaaBoABkGRMAAAAATAJiYTJphGBME00ZMmEBpoyYhiGmQ0wEBpoZNDRoNGk1Cqn4EaAgAgAAAABMBNGgaDQ0A0AAAAAAAAAAAAA0AACYGgAAAAAAAACEU8gIIBAAJpo0AAAAAAAAAAAAAAAAAAAAAAAAAAACYAAAAAAAEEGCYBiQghghBgJIAIYBgQAACgCAMYAWAAFsAAMMPABh4DDDAMA2DAMMMBAYBhhgHTAMMMBCMAwwwDxgGGGAfMAwwwD9gGGGAZYYBgGADdrBgGAIABgGGGAdsMZEQEQARABGoCBCwIsCIAIgACIAEELDBCIgAiAB7t8lgBWQMMV4WKgIBRRBAsMAAT6c5w2dEGAY3gsBhBYClCwDFLa3u/3+AL+QVR3kPCNaf1wlB5DsH6reJBWbx2NejEtq05NAKPhQN3bLnKNikxLjbm6cniLl9SQP/eanH/r0gTscPoXnxeQtsWBt+UPuobxid3zcGy3w96o4qru0jOr8EpxBAsWx+Za+Vk9rmJoQAwzJ5sAMTgJ26eO8VNja7FXxX/brDsAxn2AYYYBZMAxosRlLKpMFnqV/pf+01RX5fYqsR9RAGHz2+MtvCIRo15jbG2nFCQvOKzsdacwvQYYBhWcxVGOAAwwwgE7/Z7e4UxN1sGyr/57/E94/yK5VAo8DRfEogD4segKfcA+Lh5zBgviXlMrFLVb2FlxlIjwT93znKYW3T2v80Ie4EFSzyTM5KaeDl+wT5mbRYcXwHIOPTDol/XLxMMG4Uo2kXbnBjeL0GnlYdG66veZ/xaLikRODWm84jyIRTmaJLMkniRM7O7JNLYf+I7+dJ1vE/nJHfLbLbWHmc1T6kWyhz7EmH08dNdQFPqhdsgwUkG6bJhwrO0x9873xqvZG22Zsve49ZUkwUrG91ChTJyy1+fzlBtzjaRyAxhXexF/NSTswE4qtx5SbS+0S2aYIPViFaiZhr6+sncA1DPvyhukl3fZHy8DP44o+9YXAnhzIltbPpvTk6VWz7GdNcjySlPTcKTkJXPRslD3IdrlHs5V3J16hnFM+w7h5Ib4HBGCZcwTcNBiM7Vi6//TH6UL3vS78i8DKUvqPITapraSu+gBgGAEGAAATQBp1poVj6bVLnVGubT4Z09p1urEWmUCIrVz9kSEZFgGGGAeqZ0G1h6o0DLVIMYETZtsDjL83Xdne2v2qsmCQYBhhgIJgGGGAJt6QEkfoPzkdIntyYlqCWm25neZlm/fMAwwwEN9m18GBLFAwDDDAEh3UFG6D3jCY62AYYYAbOJj8OD951AwDDDAQiVdfAIYBhhgHmJgpu3pmXbZaF2YDEhqC9SUJKuZSaznlozb6XdBoIMAAGA3e06R38l9XwwE690xo62QqAhAupEIxGcxp1Rfu2+dhf8miwFlPJ4vztqxMY9jDKLf8qBsSLCDn2/sQqDJjoyPC+oTEro9tYGfPKgP49tloOehB1863y1IwQz7Lonc/z5u/K1Od6UAtXta6q8vTwqBA0dBb/3Jskdges4p6MGryeRXJo46bo+xKVBi9Tj5jseq+LwzTaBksA677WiRqu+bjVraa3H4yRCzn/HcaCfN55EuadNL/tAQnJjq2YizzBVL98lNmXYPTNCYaj+jVnYECAe6ZYamtbf1juDAQf1jmxsa38dgSzHvsYXRA7UsmMvXIEaqeXqMYOaL115sFdbL+2QNH8MD9MlccujyxUygvi7Si2YB0tpnZt8J4dRLHonn6vb4nwjPzErKa7hDZiL9+PpjFD3F8mm/Qc0eNduqrYtXahxVzwUyIzFZcYSXQlMl+cWqJT+Wnzf4pR3U2aKk67W+z29JyYts9kSEpMxBFA7p/Q2JCjD1JTXwJkjhjCE/w0cJzw0Y75mONUiadIlxefaO6UgVMl210dJUkuWwZJZjZugkAiIYqnPSaZnSkFB+3wCf6mueF+ZC2OpW/oRkBzeXzQiZt/SqtcfH9UaKhHyaUT0Cyvk7qQoUcD8rZh/E5ZN1HE9u6thOLEdTxqtQi8EatxkkKX8THRuFYWFgHvijbbFNNPyXvjbBWzbu9q1cDigd1HBEIAmNQVD54bhZtv22NkbXgIAcGgKoRIIrLplkANPpmc4pNLIWrsPKdgusPi8vRV1NFlyK+xH7qjdUWYZ0ILTW30pOCkPBkHC/Y1H29Sbs1gvv0Xjsm6M8xGLrx9pE2ZS0AJBHcAONpFgjNWyPl2vqnUUw7jsr4YLnGy1jubS5aW+tblHO23v8S8lqDbX9E8SHX/bFoAls0xymAKuEHgrJv06AzaboDGPBhhgLSLDDFHAIybbqYYSLcicA/fheBRrtByHaJXyCBXq9RbzRbxL+QFkNNCnIGs8hePdzU35ieLm7Jye14s9mZQwEsMzG2D2uL4tUMjbhJeK/M+bkEAbnr41h/pDVeha1B6KW/weILD2yMHaNwwQnyZy7tt3l3q7I4xParbmpC7cN2EydKNUOb7PtHu5TP+wv1OL58EBrrfiCfiu99vfrutDIIu8rd71vmZvfSJ0i+oZUCQnG/zLGdlmKcthVQPeiEOoNjjtMVU1CIoaSvCpXip5v5HccaSuWtFbI6ZWn6TfDuuHDJ99mHHouiD/BTjdnTmaL1/kZCQwBhXuMbnBj7dXUAE6GzD9fxPHX54euRB7pFCjK+GXducP6D6xerzn5llTm0zprPTluzx4hvRWQj6yeaxWU7IGvSuUMw7T2TmXD99tsAe90zw6g29wEoOtBGdq8UBskdThDivgXau94X4x1wZvtqU5KEZRk9HvKB7XEzTaFYY19RD4xIndrhOP9mrVvPOL3Nqz7Rpic7+Zs8HUXKEAONooeVqEmVZKAMjZFDyUqTRz/aeHwsNeFSXqw7f69GAyikXxtpZ7jZwxw0Hz9CcBMq9NFP5d7Flnqvf76RsIO/fBytlWZ7lIZpbKD0S8v6or7006o2aw8ZPxpgzW8/seB5gK9Dv4y0OnFmtLW4YDw8u6Ln4aa/xaMSkfVp+S3boET2wKOFVp/DRqxiXNQtdNH3uHDc0srJn1Xj5Y+xvIzKwKo6v0QKNoWmNlg8LSzHaeTk6MNsfDgpI0pRDnYs/EpMW6Or2jwRnfdYD2ADG1qDNedVFlwMymLNHc7tsAwwwDbAMLCT/ierpM56ajyXLVXGHvYyTnlFSQoSluZQx5LCMAwwwE6tq2a6rez9pLgfdZ3vCZ1C5Yb46Bt9WxYBhhgNdbrBlK6p5tHAB6cOe/wT25QdYUDMp7RjMBqHd+ubr3qBQzuKMZYzbBaSagwwwcWAYmOidTcy21RQVA41O87l9Q8rMAH7fPWDxSGMzT7EViVNu8s1r1pjwtcgUGDDptCLaUlLjXaXhHQAAABadi87rQqN0AaG/j8pVIPxjis5SVnuu1VnG28vXP6FpHMfevzmTDdnLV9oW7Z1Fk5IT3xtnSZ9UGv02cYMCgi9JdVmbL3pNnQDpuHnA/DzXrtXj6S8HBTsgs3V6sCdwnQ4a5gcgG9FQY3CGxJ5ZaT8+Qx38achL5fHGgsVLhFBz+sScrr0+PhgWTVcf+ILZ+eD8T3eEeA38toY2kwi8DH2hrbeDLmVINqM5+BApKX/QcyV0zFpmft8V4S+o7bgMO9YBP3NpeeIwrqeVItqCe9yLQd/JdXJVY1uznjwj6v3syHZ6ObklBikTpHUn+kRu4qt44lM4drz3lrV/PnHhFjLctgOHiXqfhG/G+v8tRsGy+/hm0/CaCpJCDtWtfQ9lPghejp3b1q4RyPMnpJcbSB2nAKf2la1jBycefmWoCl9iowwdfgJyIc2U4kAUfeLCn9LyTw3gjFFTE52qXgnvfgvTHL+CH/xunJFoQPfzELVZb6teIFCFgEwm56nwpSPoVj5QbWTHGrfM0HPuhdAOqOViOk3vbxP2iUP3J2A12XfiSrQXhahWmdOLU+25oDLBrz7l2pZgy1IXu5W1pqa0QuCYM9rghSvftIm715gfk+Npu6iYUwy6C6hcbHwkIBGfbfI1YQbnLOBXDCGF4HsSI6QGrAUCX/wPoVYiP/d4QwLPbMwrJjkVC6h4Ny225OZyXB2Sl7zZ7mKi4tOAvNSChAjGkRB0RqAmPnffB72Mnrau+Pd55bq0Wu/5HKPlN0IuZ0/Um4OEFKZXviDa12i9f+sgmUFnmsOiFNao/B65n+UW47xkHVxUBhk5RQu3R0MFZSQBhCYmlfi48CVq4ke1gmiGRSUPaCMNPOT9RkEeHMBBiRRpeNqk9j7NmTFxBhmRTPyTBY3HCW3pP9OLUJlIMwnUJo3ElqfWWIk2kWD90m6CN/3m+Opje4nFNtI5LAMb5fvPQTJ59RhzUCs5QzK+F6OW4upk5btVetrfr155h8E6eyEEF8YXciFd+29/lI0QBTrpJrWH0Y6+fwrDUz0bli0ii9SQ82eKfKlcRCh0uimzLQIdX312QTfuIuKF5D2XnamN3CY8VvxIPT26mbY79HT4Rr4oqKoVvrqpL+8Wn3VkjpIuBpxauF8BwM5SeLMqIJf8EYDyOKIYJCFYhLXH7ha8KNapDAMMMAzD1IGGGGAzCz16pPWjz+gGxa0SsT/w4Zo05v+kSvFm4zTO1uNfb+1ZUjIBNcQs7gK9wWxjht47PZCwHAwmc/mITrPYtY43WOWfP5kwj++OmYmgyXToSUVFpJdsVWtApN87SNsTyM4xCxRVjRDRJQ1P6sNG53jfG4iCwjZYcS74I/J3nypQ+qXYua43dDy4mOcxMutrUWXtXjefs5JstIfvv/oaCBdzsZxX1TYaqouNX9JKNyAKEiTsQJtDy76KPB5cnTPY3fdllAwWcmd69J6LzBT/PdaOKOtjVoQfgE39PsJCGB5AZyd2InNqgrdWX2dmnwnptHxJLjx4N4m10JQftv07Eq608sSI4tn09kyPaNxjNGBdMs5IQT0mCw35996g5hQm2deu3pZpVBgA8IiW9KV1sGJX+6q4D2ySDgevmP8j+0+h2K1BNgWbwdRx2486epcDE6+4HAq4Ke/jYoTlb1YpvYehZfzq7q0EnLBOpqrCZkYpdOd6MmdRdXkWY2XvJMVoTxSxVB9Fqk9oHJR5+m7lO601PUoznRQzlr3nQ7s4fM9MWujNm9OPLYBhhgJrBg6iqoZXPt5BWN/XTdDdeCI+08f8MVvs/ujhzBicjR4OiMAwwwH0YBhhgPjzlHrviu9Y7dR6bx1DDhhmGDtUoYBhhgK/4OZ1o+rUa3R+sfBCXK+7A4fL91KGikeB9W868qfNVFtUkQZiS9IpTuCM1KP8X+P5fSnaZhCq590/MQGYiqpFmxmPFSpR0A6bzFVi9OqzcIN+lpBlaiv+mxW6tVCp2+edOdxzYj2UMAwwwD0pphqWbvd5ILgS/XaJC8KWImuAquDm4L30Mb6eM3Uh/jEs8pJQMtYobhprTAMMMBq9CjnyVgGGGA/vjk0XJxBU6TBOjv0l/BizZFAFs0F/1OwRMbchGSPS34m8JGtk/1ua43ROdUOs8RCVSIMQFRkyzmGiDHdEXnX5sZefhfsQgLkHH4cWd4XWdpw5gz0DDWM73nUUWrbb09WF2FyryUFglBgs/htlwL2MUqfP0PB3mr7kJbkF3tFQnMe5WzVju+Tn0GQvauHYSfOFOoU8uHW9okj+4kjSWTHMFIqxMP6HT2eM3jNDT/ZYpu4xiQiikerSLHsUXS1ebsZb35u7Tj6XvN3zSvavcoa/xx+vgNI7+7OXH1HjYe3trxpK+8foPZPWMaMPRbw6CYsMSe3naKZVRfmzVSXHJ4biRBw80BCoC6ijWETFvitQoxHnLdnLm9a9E2SLD9R6SPKfMl1zIkqhdaiFacx45b0tsq+aSYzn7SZCMMVlzdQfmIzifNz3P1EsgViv0P2W+i+OLHlyi0F8NsiOzAmlLRffRXZ5kvebIe6E7km6UkCj226b6xRBb8DeblkitZoHolsC77ppaa3fPxN7wkzZ+cnmjmPNZA+e+YVhqsvYEU7zX4zKF3ePrSeqH98M0zFYpjwvlizX95KVEctY8+JGQAXPZxtI4SKmDYh0qH5BaeacUmUZrN/rZxMVnxcbNOb+Njz5DVabSlEFONrtWqU/ejjdCOQViBQUVry+P5kVWRHA7CS9l6KtV7ZmbPvTADTMmPaBA+RC2HCAjjrDulKXrLXFVVLeO2epFkHpxpweqNvQ4xyfnJhwX7L6HKGQyPZ19yO+RJTY4euei7UoJ0VKHoQU6kyZilfgjlIyOG04NdOw8qsHIl8DJUiN+Q7r6auZ7msjgnO7oLwxzxlvYHU7D+UCK0LVIkpdR+G23uIn0Th1q3gnEIIDgRjaASsCNfDnU/QQzLM/bYJx64mKuIMAwwwESDAMAQZi0p08NqHz6843KTPHi9Tzbnjr1GAh7gYYDYNHNoyUe7aGDei5ll3xlMCKVCGIug0d2v9t2pFqqeLD/6n/7C/PnYTpSlPzVM3DcDo6MQMfSEWZqD09QU4I8AW/4tO176rmWKEFPjc4OD/O5GiwF7s5MDAsaLW0x1Yr6F4eb4K3G3WorM64bvVxw/h6rmoMhbSq1Hvus4agCAdOP2BgFnzZonA2xBubWwDDDAN1ZpBoWRYpiaf8kIHysmXMkbo89MwgXCATzM2IkSA/b+VAmhCkMDl5OGcnER23IqdUUIe89EtoF30HSTdfjNCCHFxL6tZfJzXNl8smbIYk6Eyo3bCkt3p4SsikiWcHBSIQxx7/HIy/lbap8d0UIl4ZPNu3RobTFJGgO4aGAS2T6QrsDdP9crAW8VWiGH9BUbK6yjEK4R7N+pR+BRhE1Ah8FqMFrWVNAv6t7Dn8jgzF1x0Tv5cpgU6HodgAht/nI/U+lmbkumrq3AaKCX9Sn2iG0iG1kTyOrpGpdFm3i0+o0RafndrmdcolECaJQxCxZeiWgGELhr1fpV0jp3bnQDv2Kimv14zmq2giO8SeFqEUXoku6RBqNTw/lSWKuD95UuTJR5boQ0meA/M2+NCVwrxl5CZMXWSEWwaSIv+uZ09jhXA6MMfe2xBefjeSGwLxde8JixyqBHAwlZII/6GKP2R02R8liMZBNqKF8XAVioYQewDAKor+Vu8nfwLo1QNyDDlQw14lh2ZyO4ll0aNUCyozXrbBsIvtJMLHjlzAMY4GAYFgAAAMJwoWYrmSI4pPWkd0A6FsXVtBdAZyunyJvtD2Jc8k4uTvNMkMTloRRgmAwmgj5EUGsrAMMMAX9/mUZ5KgWNPO8NDegzf3+nfnSjLSy2KoAXDgJZi6T4SHzzlMn1KyCMHKyTBrrLOwxSU6mmEBwNihvu3MQMDWsPJESOLTd0cth3c7YBhXp1u/0/r8lBs9RZC7D/3LgpdAfG3E3PFV8mmBEOQpG8PRGAYYYD3igYnlyL5JpoNnoWbaMWAb2Gpr7dMAjgshj3Eli3vv0BEm1WHIUq94B1u7a1ogpM870LVBezbQjIeuzUB4Drah4gMuRMk4qN4Iw1pEMboYgevtIst2WSiEP1UOFtYK85grUH9sTQeRKtYBeA1ByTcKGa17qZU6AfHu/9ctgkaRmrYRIEa0+jhHyXV5JQ9eAzOEtflVy67G3U0rZ3Eu3QbewVy+6nmOdPmbxMCm1xMwscPksQ3hXMD47LQ3anZJfVAt2Y+wbkcecvgWl2MjDNOO1f17zTJASNGGlkFJMT74ueamNhtkgOxYsI/gSFOMbMWoIzB573dN9F9DxsIgb4okvNeMpX9tbXon0z2OxaS0XHRkjBEWbNrOqbUlMlDIWGAd1YHvafp2IE/MMa4q890/vX2Yi+zg6P/lv/yocpYk+SKwBwiTell68/f9R6A/jT/RF/b44TbMxvRfJWr1bXFGUTin6QiyzWBOZOsJzcvwjiUkGLPMoym6WyW2UVARi7auXh8mx2X/7HTN278tNgNGoIWKHukgS/oUDvqF7Fwovw0ykXrj/wW+T84oI1PEYXQ0koKVQHYblWqdLJBfW22G9gFU61TAxslbuMWiuMf01gcR3E4CTxeQjOQHQutdo9svBfGtRoASBBWfKdFh3b9+5TMxt5eu7zRn7/5boQml+HrpJmKg2pRcJw1m6LtH5WyyfjiPTPyeK+DXkbCs4mlucDspsFp1QQUdozQzFp4TDEEmG9JSAs26yKL+XL2/Iz5IYbKSozpjdlpn5Wl8k7u5DXlPBMdewXqcTK4mXMk1HEanjgoyJrPPgmlUfSfxDpLq5WBHraRByK7SgKVViPXCWC7ogHZ62Yy/p1GTPCpbcMv2ONw/RZ3fuJC6xes+dhFt0Dh5UWifBMVwSszzJubAR/7XmbTnHTkVi/BN7Vi91fsBDNA3QJbx7AmKglQw1fo0zaJpfWeftTLmDiDTCmtsfxrjwhX5gGGGA+f2YhYBU01dWlGdOAqNiwR4J1HD3vFRGwYTNlyt0NRg4U/1yhQEvL9o6E45audzAApDO7EVbIuKfi6NWqPtouhCCFfelFNR9Qg36rj3XP9O5kpdqtXzvHqf27yQ8JkINzD3B4FdFQYtxRgOQVcmzT2eJ/EsRQTqeBeuAnCg4gzsMBfUHl3icYz3IKV3iomqLt2Dk22JncFeM8wDDDAYNCB6dV0B8vui4T95/mtrb1A1obEbsdBqd484pQ1w/4ei6IjEKe09V9RKHFxTkcYfCwKIMxXUPKhDYpAnk0uUjNZl3flXHFEdg45J4TjZPoC+KMn77Z8XuIhYH+Ceeu5YQrmz6czdDc3VmU4yCd0g9mobOecz38UKtoMKNwkzbkK8EgmskkhGv4XbkRYXnIL3zUSUyDYaPlUqH4hAv4pJxMXVLxsq08I7k1LDWOkFuCdT666bAe9ZjHO2pDXy4P8rzN+HcYr8Fjl0dp7ZMbR46SRV5x8XZgMCqSHJe49xFRLoguIMdn9oDg4pWlMI6ObweWX/nZgljMy2nZT5wyrRTHxXdlANgLehExGKEMqinGV1NgKneshNlmVuyTp4c0teClu6veVOgQpI/4uvIM23AMfzDN86/wjYSAyRF2WHmMtZBBYHyEa6tGRHM4ynxRenI89Uq/ED9QMLGmsGH6AuaE6w7hJQAVIY8+qZ8VrTi19Y9TRNbRk26jg4bIjlfNlbFwtdslBnIzlcf58/kpVXH5Zd3TzndSuLNv2qobNCC9kgxvVdj3lgGGGA6clTqMTq75fnJK/BWoq2AVaPSy6imAYYYBlw152SZ+2UildwhUSf881XInqp4soUrLeqyiZ95vbxswTc7OmEw8lNSRmuzgG0fzIECxeO5BQtvfK/B+JHQbczea+Sx0jmna/OvDuwOj+mKUimalHc9IGXHKKzDVBBL/AlK4iZsAwwwBvKqV0qW3CWqSNFeyGAKXwmdda9VoRZ5bzXWF1RBHnLCTqBq4/deVQB9oTr1BlHF4RXukYeFUGRSFvlVVok0EKumcb8r8UMbKTYqttCBTBa2drbT4ofDQXdzUioZQTJ+uPM/gywfY8iTCvZGG6z2uDP848Q9vjbqozaGlq3IVZNiezme9P3PVSeooGg/tN8UZbGEAqFtme/pymedTm7h36ahpv41ZVVgNX71gjNLopPJdYlNR8miy7IW1ri+Y4NQhAjl083ulhaH4PvB2C0HIKZ+3HTrKQHVoXJB1lFRCa1ZCmZew/TBp6r5oz6Jl5527Tgykam2CJXuT9rUJwcGw+NrnAoouAtGPpJ4iXUaj0R5/ePlgYfT+0LzIc+WgvmwS4IsdwuH3Pt2171B9U3Wpfvnu2lLvUP0dUcthx9AbQXvFI5Lfp3BtlK4l70FjfFbiLkGrNy+yByJ+wxSCXEv/yZidr0hfhRCG4oevouz3mbHem2tzpA7iXJNIcGXXmD4qfhHnawmuGcd2UqC/Ncseh65ou4GppSuRfab6JfA+1lDYl7AX5A1C++Ifr2fBgK0orw+Jz+18b/Q6t8I1xE1eSMD1SLL0of/Q6Uo7Y5W3U973eQPYEQY936wYTrkbqkHHcD963znSj77jEuvbyFXBnbI/oBakCR0oKGrCkh6no02PyBQUz1Dx4ZxSUiLWCDg+jy5XKXWijwcZeAADndtNzdr9e9p65FwhRXoOMzuCfVEfSA2ZTM9IibG8a4wMdB738VQPu760ysHM2i08bx9SS2DS+MISBXU43ztXZ5hOtuvqYA2ebBnQwHo9WKKvS9tdRHpoYnHErFehPYTlR6J5jVmsF2i7FX/DIU/yq8bkihtTdDP3osTOZyUwRGd+Blh/2TMaQEPzHaLXH74uCOdZ3nxPhIhAQOLCNOFEmSE5Ih4FBS5bkJ7SESJ0QZ0TpBkc/uU4086JKD00gtRl80k7x1+Hcin88RZho0ERmSA1QMcDh8yAgoszUfYzyWmfXhuTHb5cnMDIng3Dfo5mbkRkEd6vOzlgGGGAyRlyZ7eOv8p2nkfAuXR4nyfODg3i7bCHQI13hprOwKNvkfYNzZ9WyJYNrkLxu1XCeG0rZMhgDsTCX6Hvoj4/6/sYHt6V0ZPxfrTh2Wkp6SPTCKi52m7U1HmmR3eoicpj7Im1s6Fv7zdXB4Rq4J9RY9Qivd7UsWNkxTQUGArL8+xCRqBggWDUPj3JDg9ozYPi6Z4sxlEKvoEyrFrk4NGIm0B2no+X7xWVoLuv9mKfbCr6WI4wkg0SwRPPVfpdDXT1epUHas79J+sZdr7ekoXAiZDsDbbRh+rVYulBbH82JoQpKyqjY2PVQtbbMq8A4ch87cMgvnwyytj9gVjXACewiDDaj+Y+36M6Zp+iOgOodfa+H/SuyjFygS4QmG9Hr1wZaxSsMeGNi8+awGjdZqIMMyuJb6vJ0sez7Zbfcb85Jf6AMBrQblowLWC7JfmQM9Dxnxrh3h98P/zhXMKT99pKuxPJtjJ2PMdG4mj29fqwJ/kAxJVvM8h7szs2gjH3Jtrm2QGquIrUtfHA+S6DZ0ZoXJnhdyFmx7sOGwZ42XaO3/g1Zq6SVfu9n3qSo4KzPKoXnMpL8vOcYjkZGjs+aLYOVkZMDx6Q9IDUzmUcdZLr4RMXzQnImR6xip5G7yMfepK9cgXed8FfBCL6bbDNlBB5We/BHY+dGd+R5cqQ/nnfD7vo8J2aMz6k+3n9mcFiBIYKM/NvWilmXQ8v7XM8fN4axVx8vag4MOBLsTU/IQNduleEeZKmoyGPN0b1kI2tsAwwwCA4I4/jlY6F5H0OKIkcvEoE0rKJnVvQzMFycx0xR4cNXbjn/W6mA8qQXiesFpne55VnjeMtbtY5MuCsBv3Q+xQPH2ht7xe1A9B4bJEExpxMWD3fYzNrnMUfWt0YX8WWBa0izhYhiqSdIaWO2hkhhErOTGH6sQgNKNRFdQX7mwsyenaSDXPP5/Gqym+J+EswGRh+rLH7QnZwZwdHeXu++y60NI4Ivwsajw2Ho5sQM9e7DRVp89lvPqw+1n5N9Z6VW9BelxMsv38vw605p1UslRgJWrPHQqmGT94WchActsIOS47NzUZ0OQTdEflWGOOJypqm5PaZ9dRnndRwSqOZuzDHY3W/XNZ22jAHyS14QfiNBwr9KI+L7teVMsd+gqaPFct09F4opBHv9TDwFkQrKT7F1QtatkaNBkGveFiBqB6aCmFa9z0i+GT+/we1+OucIDshTd3IAoduFiBxcqyQ8l9D1LzVYwLIUHauN2H1FJrLAYj0EszeJOlqYrm8BCuUvR3el29zUe8J0tzGDBhj6W2WL/Zl8OWo2kGX64HBbdgQhYF1MwxqJEAb62eP1H4RgDy/K0saLsE1VL+pFFpSksqFzK6StWf8k+wvo/CYdB2NzcElF/0eiybAQxJ346ZIjPDILGWbglvr990ajGR1+i4LKMS6Ty/VguT+wWVuHC/CkMGDkZsefNBnJfMyVTxXMcRX/uB7I5wWGPQ+TIxHnN7rNw+ih7MOE0OHzFYTUpNN0FrgObj0xMUR9jyHzqkWr5tOVGojBlcQjOabfDuQSnf1jGzILx3ie62oEGbh9WPaWpzqlwU97dNlMWGpxjza9T/08s8Q8oy4CEUNrblKpjBJeVAIuyxhmut4flyvQjY000GQbTL8itoVZG4qJdY0vZqCx9ur03ea9dErYaAMGufzLcaEQn8myNWTaQm4BUQlI3ue36cTSuTpTgbhBok83H85bgo8jepXSNEVfWeAZOP5rbFsjOjrK9sb7JiT78JyB21L+xMqmkDwLgd0m8T31EayjtkdP4PgMttwHHIk7zCBEu0bY8vv4pDpTvYGjbWjNeh8Tv2rgk0d+Xux99d67thhB48BUwFREGRwPqe4MpgNcOZy5CBwwujYyRJkT3I0KKnSPMKolNlM0a2M4NpJrxc7774evexbEoHCJCBwAs0GY7AQQLdF+4jJqOM+aOcW3VUz1I7ofMNxhfzDVzqVz3trh17kpau1QxMKMs13vX9BjkkbL1OMpnlTA3rU66SHqaQk+fHKpp1GWYH6dXxatJVBeFgruzk2ai1BWVFeufYr2+R3771qOd30vEvt7z3a1a9YOcxp57TG4T7+XBzeUspB+HVZ4Uy7sQXwi1dJFcBQdo88MM4C01yMgSQYx59r2c77SpsUsLJFhQqUlO5AsEaOuhD1EbcRiAtNE5L9LXFnUYiBbiiQRkF8aBMKWf799nMtBLcpf19BYUH320jCX1dYAma4Trzkf0j0T/kfWQOjXxJCUVVL1pdxk5mLO82JYJ/GXjAdRvpURnuY657cOkePaGg5aenySKHq14yqTZ9Q+bt7mMaOHOcXAIUIO/wnalmDreP3Kw07xtmX4LU+bfrZ8nCpzldfAqsDZIlp5XpjfmkW+mxBJZu4sh4XLnlB6VFQypCUV83jnJ49vaufHTO2/5NeBi3vE/VgUOyW7yyLEWiq0EDTsExff3VQ2NYJXkP4/7ipn5mDEaVFjfk7YYmSNnCtR2FEykpuJ8lAwfW6p4XZQ8gQn8DtAFiNHgk3YW3YhslNgV9mSp+3Kz1Zuiy/0c/27CVPRQP4XQoQo3XcM5ZqtY6a1RPnvCzODvKy7xh0ds6vAIIuEwpGTYBhhgDovf8xTSicCxCqy6tW/0eSOpHoJcccHk+sBgSnzxMsx3Rg9mzldt73jm0JiTG8z0TcvSC/4sStfCCk0ddSJbtdLDPwF87mP+2O61/ZQzXQYgUk6ztNtpj4KoCfMlPd9MMEVdrep6CM7MHzmhjVHEObIPN+304BPh7AmenxDr7pl07J4L8tEycB58TpmlbCNYNYRRH7VaHT1SBRF2q/jZhgb/rjaOwxx8hKNIKx8JV524sdkneW3GWUnmImlqnNq+ldDZPX76f2vUaODn1OXHZTdGFxqLxyYL15QRT3ayU+pQpsWi5ODcnrG/jFwnL5vgn0H2nSp1r3xN9uxkxela43qWQtfXVnPhijxN0tD+TnHx83SdatlyAUAhZAsXb1P9L59GhPH4kN1uzI07hvMPD1VgTir42RYAz9aqJ97frAgQOmTBAfvIXb3NWc+iDwZp8v/AXOcDyPdiSGX6jZre3/ieyBvyQMLwfJlN7kUsj3BgXHRgQXAvIsDcE5vWlJfbCFC4QD0Fh363ZvnpUcKqX0SRi2xh4FTZGRrHNQNyXpo/DYNLhnTi6Ycl6ULB0nO2pcm4ycuUwatT32wklX+V8mCH2UO1Qv+9619UKmxdnp+BJkt/ksg87PZtQOIlK9fS3nHrS95y69I3PzTCQeA5WxD44z1Jyx+dL7RQSdB4dF/dnRBga26i/Gq9GfR/468pOFCFhV5wxH0c7UrAHC6L1Vx8ZL/lpsRC4Vjo6GBfuwkNSoU57MhKFgW5X95N0P9eMaI+7dX4UyDdmW0ReYwW1rrvQWMkISSF6bI8Un1QDhncxH45KXEMDpXnIpqD+v7oAzz/1vM+BfnBV3pGOTl6PfYikbvkMAGosSgAIowhLm3RDw0xHr+6Qf5cql1tn4sJCEmvHYc/jM2/9XR3Oq4tgN9o9vLfSXnbbOjyVrtggjZCZDFNJ5iT4ZgEVa3OPQaqany3ZkE/gehsOjvIdGvGlqnlXtM8ivdFwcW2L2QgGmNZ+Z1czIKtUdmJ5pF4kcEv487RGxWHltK5zSRgFDlfDgeiUqgaFQJgq4WxE/V7JA2cHQyafnnyZQZP3o2TPj9stawc2/hMvN3iXAd9nNxv20yvCrh3PPlII0AV2uayKq8hGXA+KJFcQ+y5cq2N7W502wwjkROXQDo6OgLGxTRTyp36IYckjKn4HqMKmZw2HWQjULQQdqQxnfOFR+JRXedw273yZmnMTCds4jjzpzBD38lQZB5k+IrmYZAMBwxXt/xCbOSd8WSYPuBVtghj+QOARUagN3TVUNZiiqEVkazY/lFL013dUpX7dk/WtmC5y/lR1eKQnaT+4qi1ULtZPpolGG+WaHh0oZo3MAGGGAwygRgdZHM87yo4FkRi0qWplB7z60D2f+GB+mGD2Ki3RtJvidOEudtIQLocFXIQiGjHrwnqRlGHmz/hFGoDyMxI5mU4IrHigOa1ATdOmjTxSAtshW4XdPxf2Fhp6BUriSefW6BpN3GZkYaxtj6KPWn1fyL5vLYKlZW7h1oxE1YfeZnVfLMWGdoNL2vKzLGNHzPKohP4N9L0/mdvQyhwbQe1BxKTg8jNIkJ2NsIJYl+rbyDUJJvZQQXNrpSiFhlM8yuRO9iOe1Xn1Wm8cAgbauY1MJ3GFoWQV10gMdb8kJ2mYp2tI2JjxsJWe2imfictypgAyhdsLj8sDimQ+3VJVuBuC2kcWlDvestdFiVLQjJOS65ayTyLypGRNsMiW+KwTA2to5J+PZQxqrIHyZ1a8WBYG0HCtkwoEvidA3IxnTdI2jO2zJ3z70ht17bBBZ1TY8aRDf9g7XfCTgwxswIeUv5+f0mdkyIgK6/JPNGwbfu9uEcRYurr2m/loALEuZDCAcoD2NvkDJTOJ5rJy+wev+HyBlnOYBhhgPBPzLCIklBWJxxKCTjew5X+F1HLI5x9r+Gf46slfJ1/IK3u/VJFPMTCDNjKHIcjDr/OGvEjyUeC4+jwu3djioW/naERGTlTCRCnodPP2V2G3q8WF5eE43hSyDuu1w82xFTfLzEQEmFtnxEV63CTU1nBNHpogdLhWWZbU3+zqXlv+tazHEQkPCRf9KSHguoqwI7FttMbDbttqdjhK+TYYjUGZGsQNV3JghqHTvX9yHFUMC3ZxPcrMzAZ2qucGSdVT88/FrtgNY1TwL7TYASboYIFePaUxvTIZruLObjCrU86Opqgl0mGEqw4QMHmad4v1b1m+Y8m8YV9XTBuEf4GuN0SrZFxZ7gbF2Yg166vj6FcG1B/XVZhbd7kuCuu4tXWQCFzHXXlq4Xn3WC8NTtyamsdtgSsoALjVyGWYth444NHS13XFqz5MUNEDqEiItZkiz/0+9NQOA1elLZ2yuK4MfGoMD5ALAWBdBFAIUHs+G3AXk54YP8fr1bQW8lw//NOmDb8CmKcHW/G/sMS3LPVBvknKzeHf/MG+TsALhk2IXwWr6DDp2g6RtElNtSGmFntccfcuBdbKtRrzTWJ9gN8o9m2pAGgso5y2e9UGhDznskpRJrEPegsMXaBvUhHzOkusCfj+j2cumjoZithwUab723WWN9eGOtNaa372ng4zLlXFyctzu4C9dJ/X+URNqTLHMHrSiecGUqaSAk9XZBTqmDK6KtIfnIdMyeb2cbS19YXoE9S/FYchP9Dez9bHjW6VvQ8LY6P6hEiiTgKiHPFwtbwJMjgnGtTNm4yJnhn9qHwd8IM3hzB4bGzQtn4WM5WObL4lAtfsxze5CgkyxtEbj2Ga7AzLEZuueLv2mHL9IKC646t3KaR8MB7/oVV68iQhWwMQ6eLE332Ykt5EPix0o0E8O97YNLDPgk6xELKw+diBc6sR2aOUApmKnco+cOR2uwOmmIDtVCDzwn0ZsCHkjL0YbSYTuPEpgco14LCq12v7cpT966IRuOG4Ln19SoRsmTc7BEZH2TNjE3Seko9PUmHP8W93VGYSWfxK+in+HD6oppr0Zj6qIPvySNx+yt5LxLVUDenxrTXHurJjpyPxjK/16jxlR4s0ttne0n6qeb5khb19nbOIsZOrqeIRVdZ+dK7mD9Wwh6wDDDAMBjsQ8d16Ua6Wobd5noOGrDcRxPHe4mrOVdYNGBLuLOX+8tf0B2WcmtoSJaa2JnKd06jVgoWuf1UCIKhc9QmoXpMLFca+t/b5V9gPfMbyqwCDsEr/HavdNWX+IWwXsIdDr90RdpvIIl9L0dy01mTkO2e/ezy+R62CZLwv4PftquqV386UKYjjHqp6yPhB8qjmQuaWg11vPAkJkgJTO3UNbidvCDfXnLPkNhy6kYwUh2avnlGrqf9TNVPTd6JiqHh8nqVQtT8i+e5AEVPykh3BuacumcB9vNmJ9oeZh+LUD+CbH9IswxNc4xf/Tqe2TX1FiqWi/p7OicpL4kcJNpa+2mduVzAhWmSRJRbv1b/zcI9G2RLUYzi56r1zcNVb2aIeyB5P1K6C5sHP9Lbj+mb0TiHHVjnPAnpI57/FvRsjue62DM2JEat4hb39qWlB7UWinae7ZKASE+6Emtvv921EzdtXB8UL7RVZHPwvu5IzFrMPvwci5HQ90OTZr2XQ3pH+SYvF1LRcUcoFxSYjjyVK8tcNYBR9jEFAtNa5gQDIkl7JRnpqLEBwMdgpOk0gJm86Ls0AilZtCoeWIXl6PON2Nhc74hunEQcPpFq+qmFlY3KtjmjKIgaBGxnJHvlMQuB9Lr2d6bQMDJScXxsiBqt/8BHq2wUBUAErYAJAPUAJYIHAx7oUR3GcVl4/my3lswBGeP3tO9jlanBTPwE396O6D3Q2ZtpxrbLIPhEMWYRNzChpGHdYpSQ389EndB4acdu5ljDsP7401BjkzbSdMMAgwUJlDJLK7J6UfSEAoN1Lu80ex6KrcQ/otZQONO2rhmyBME+I3G1aHvtwza2JISTCHeaMByDr0I+sU7Mn7FnBDsjZbAsw8/96g0RNLJtIdn7/2+swGvPYsBs9bwI/uxLTwQr39p+XoVaWD9d3a61+3uv6uJ3kt92zyv+cjfHv357XADauZb1UuYLDGjYn8lM28tUfLEL2nt/69EVthDbi7YbZvFzRY9E6bAs32BEqr7oiWwoOx2bfsFfytjUj+A02L2Z+z63acaoJq7ZzNEaXnufzK5zXJ+Kajq//x4R3R9TCBs9pGBsFSNOP/faZIC/bPQLwSGbS+KsyPg5sfzP7F9YiDb5WJGH94wZ/sI+RJSemNgEHtY43IQ40aVDUcQQOFZmoY/a4KeUKFGUQnxHkdbk03aL9r3Rokd5nVhb5hlr7tKRefXPQ2H5v3dpApFAQn55YM5yZaVxXV38046qkMB7MeiFLDP+vuAOqyyYHReUWOzoXaSODW8ubiloLTaJzsLYSkeynoxT880BLb/7hvvXQ2b175vSVkFwwheJ368r5zi4S5dg9rkKyhPq6NNGvK7g94HWpZHAKXUdLQQ6V9XYEArfgNF8kjxX9Q9U5i6dd6zsEcMtx+KoqZ28dz6ZEqsaP4Wr0hGaOF9B0bFWjmvhc7IFHRXkAGT2HnRtAYWokqxJrUHBpAO6iiMr0gE2IedsmO2KLBzI4VSgpeAn3acI+cUte2N+zDd/MMvup4By5Z8X6A7Oa0iVcGDM/L5jovkSxh6tq8uWxzUi3yqJepidMhGQvBv/dLjcsJCAl/rYxj8g9CB6qzPXT9KkZceDiX/pX9iduC0+vgzJ2QwCi4RdhBq7ySMiW3W5WhpKahUDQUvQmndfe0b1k9flc2ffGz5AHlHSzhumjCuH8L9ghCMFiIFHW9vq8Uoc3VY29+xMxk2K/dDew2Rjj+r+wnK7kCJlcs+5WxemSeNOEEdAsjHInJ4IRZHb+3ysr82eV0Rf4xV5XWUu4EZnjS+ExLZ+0Vohjg6l4uhBM5wCYhxRfYuIgtA1ohtziPjSl744XoMWzAPTtNTqlmSphDmXyVskmqDO14AHRqCBxoSneFd967Nw2kmzVdLnvaGfX/dpF9Ucwl55yP1C0QcksK0BVUlZ6yuUO+pFhbPgcGcmU39B/EbTm/yQ75rs/IO6QQ2zUGXTPBqkIVpSTJ87RtTVqdg4NlqjDjTeKMkngSh4JM8A87PoUgRxCBPa3de/sKL18J5vU2FGg909O9HKdCoGtdQk6/5a91hoZAcrpExhyvRomnfKCnO0KAAwiRv9HQG9XggqdSHHfQoAw0xxBmaCwQuwQn43UPNZfYTyWwq2x6FJoetpdA4hKVV/OL2zZo+0lS+Vnu/rOul7Lwu3lAQpAnTUYo79uU1Eqfm27q32dO/3lWT6t8C8eR9Ll1rIqZw3X4GMdcSlcmBxpNeWMl3JCSj3VI2II1xy4C9KLFGjjvmX9nhLmkLgvzJhop0TS8B+rPeW0yjOb/se7l7DEqiS6QHtca4ZYt7xzviQNa/apGlAoGcHYZNT5Cg5nFYcWJcWSgpHP58X++kFIPrZpB2ilZPL/HFLQkQJn4bc+v5KemBQRtwpFKe77SV/Lir8zSZpZRj6ZvfyrTE05+lPKj7ZnMFKBeje98LwxLOj6yncAO2lUanNQvVqKL0B6qmivH20orVbKX/M+eyy4BzvMRc9FQ9zGXW/WFzrKpdac5j7I/hU1uoWW+i5t4/zOhdVDPNgPiDGzr4XtZ5EkU3XOqYKemRFoIddxzS+ydQLYBhZWSJnOWzm4UpjW2W8H7N5vuIPmmMYPq/RssTju+tIQAW0r4tLTob7IYpisDXqD/JDEmH/QZ0lPMARxL/hGkIsFURZzXAerRau9x1LIOqoGgHo6Xcug4FdTHelnbHKmSBoYdtqHM+KcuzY2cpsm+Pl+/gKREt9Jekp74O+olYyoYrcnRhxCFXk77QESRD3wHDRFEniKNp+cXNH1VRY1t+waqH49A4de5upPz0DguF4mdRSuLI1rcCnEu9AU45GAMiPq6KkxNs59EnWQwD5Q6uQJI+uN/L5SI2tmkuQZX/FQ2XJX49S8UvM6DY677AHgGEGAA4oJ/qcC176VuizpVASSdgFx4TY6y6b7gaPZxusn2NC6s2eMxEDIlTh6vAe/zzaiAeBuVbd+/pQsZtmX3vkPzjYn5vanEe9sLVQv1o4byjT6dgto9blCuhLjo1w56JVE3ZQFU1GGG0Rv8tBp3VC8rWqtCjI1X01n2630t7PeZ4mzOaOKq2vle9PJLVKcQEPyzzQQc4dpkmSlBQgigdDT1D3KDjtHfkBlELdGo8O8GSEsbA4bvNM9wk30gVFgRIe9oUl4XbDMRtGwgSdp2kUSnX27+Z+1I4S0pjtAZpymMMf8STKTIuO0i7fGFD8b4LZgcBwFPRo5aoNcHcn0f32d5dgliULFcTMk4YOr+hYK9TaHJmxUeq/+uiHfRyZpn1BVdWbZVJZNsfqhB0MrcHWHdrGI1lRtgSJleVLDWhXHwKsoJl81i9fMS63qxXDHJaPsIVetBt4sCeqj29d5vb/vETtrcaJHHuXbMEkVJ/HIrpUZlOj30JZW9tD8Wv8X/vVCab+n2Cg1qWyz26cAw65ot0Xb2NoTN0RfNE9j+RT95PsTL3poLRogfV/yD1Bb58gwhP6U5P9O43sqV80+sZTtJn3aKbLSGVSm3sjmPTj6Vs3nvVPLcW9YQsn+QpGCqsKrQ01aLTl1D8J5JEJIFlO2Ic1WdpQuaMt9tCIBqZrU2y7m4BsHVMoV0pAuu15yPAv5mEnjT7MLl9rezky85b5wnrd5BWameQgJCqbgzgx+BL6KAmyLNmiXp9oKYXEq+2mRW+RRk5KPbUBxxZp8cv8qswi/IMMe2+fJYPZS91yxvdWfOhYg4swG7dlXK70hJwgD0xlyCAToAQzJGn1jTkqrTOx0KE6jHbqWvjOXhGmkvURfq4wDDDAUZmFh63d6U6pWWi4I4bp5ktRbN2dNUwmP3yIIUiDhZri3q81LnLqq7vhib25ciG10/umDuzr4HBtuGRFLDBtjNG88NAe0DmGvPztxWkAIVV3nhlDC7PK4GL9Tez09pWm6scsK6vohgS1g4Ws9TT5OGRQdNLfNjJEqPxEgvm896yWzAzkphvNaJxVdIbRc/mbiHw92aWd/s5Nw6xF9MnZt2kwmfS/YQDJFcNcpx3k8Cp+ty1evX2l2EO/DvuHMMf9bJHp6CmVn2FdMbg643iW1eyY3I6N5i+dhvp6HKF4IE4c0qbTwKvecLBcXQ0VqfB7vaJWm4TtaxkkesZ6eRyh+d5A6jg1VGYUs6xzIwNS33eKY+3TT5YfGOdS1cHlWm3Ge3nZXkDBMp+j1HCJW4CdEAbXDd4mQ2/CX14N1YRwj8b4ZjcUUgFMSMlPZ2us8WGuiiHQkZ0xZTMpaOOKWOE3BXrb52uHXV2xrV1W6vEQILzBUmpV/S4ioZpDbxJa1OQ21EwE6ntB2AYxQVdDdWnmZAnlD080mEVIRpf6aJfxRuTkFB3gzU7v+6qmHjWeIemLG9TJw9G8O07zWpd6tRzU1L3X/bhhX1Gak7o61xZ4K7q5cbHuPTQ315Vepw6CfYRc6koxjGqbwvjJ1z+TB0FVuGmlp5aAykRL2AAACS4p4YGGBPjOJ0EMAwyFjHvblllIAAMBSvaeDBC+iY7zOmhpvU0uMAwgNg2cQbeiYDXjYqRj0xNdGm98gKEL/d4HYkAn6cmMdEvAhAPGz5qlRGVF6SuFxPd14OKWLKiU8utGmA1cMlV5eZCs5/et3ZppwgfiAU7rsAwwwGj1Xia6m7987dZ526XLhRQ2AYYYDxpy4q/cLMfbOUAnbuFOHQEHAhSVHVf4GOIgOfJoGRtmQPBbpNxzkXYM/CpZIZK84gm5H8reJZ6t4264QGm/f5br5W0qG0W82YOEzSWMlBBpJ5NzStUsalyPfbI3O3zXClPnqOTmJBUyQuB1qUtdM37da2l6JBOv6Qe4vhXR7+y77IelavwjgavqVzFfXKbN+ip+CDw75Zf6kniXoasOxwowIbutqINPDsP4ipNI96tFjIstmPu+7+8ja3SdAPDqkdW067E3gz3SNXM8JFJ0ebUZ2/XNa3k/1F1ZKs4PXnJ7p6IqORAuhkH//iTqp/5G+aeKIqgJcl+Vc5oGmfPuiqbddoGD/VKyeNzS5c0QppE6z8uhOI0SJLZJBxkbpvcJkIfVPCKr5WhPwuKB80BzINlbZ+KgA4a9qaC9w922l1OTFj8m5IajNKvHeTfGYSDk6DP+a4xFOATPsyqGmZ4NDu/Q6OSxcvp1xyloSZbUkh2XqigmzBDx5wV/+ddsv+bwxSEDvBTk5b+H3jl0JSIsBbBXlJO1lyjBJPYCLFzF9GL0iscTKvyGd4NQXIFTKpXAYWt6MGr0g87P9FPW3saN1SpucPItnkmP3/rtdFP35v5EW9mq3xZe8QIe7qmv6LQxJUhOMkzIWl1fKZShDbH4w/PHyI+tFSzLTVX8cBPDVDbRYT7XO9yYe/6tQqkZG1kZdNaOT6vG+XWt8Ij9ThvXBStOYAHDWQe7lz4B6bxa/9wp/XVwMaDAQAUCHc2LVv2rKfFaQ/rbG1XI1TD0l2CmKjjKg5kYuzS+CXXL/V4EvQxRjkEIXlcyVoLLfD5D82H7Fbd1tOvxdXIJkA8hqZzls+34AwdrY31Pa8BLRdv8jNFYCAHMV67Nkcq43d5kKNvwUQC4ItZREAOZ/gx7m9W1qV/2tiGAiIo6zCHlrUanNSgNXOoqc85qnF1cS4kJPOY8/zKROL9AKYxIu+EtByeoOwYtfL+Ce4oLLq/x3xWWBEu/bapMrO8QbVr0L8OtNak7ZuIwnr9cC2VpkN3V0aG/F75co+Q7JuEEuug6T+QxwwQQYO/oC59IgtggzlNSsJCfgiZOUM47Fu9J5zeDdCznhsDffu0m5HijvY3m5vlrTuVAYDArgyapSfzbZTPT6dHwVM7TSmORE5t/LZF3Be9BxgS40rGuOgrOlnDjU8SbTCb9FY899Xp1sg7KWEeqEdGdmRjybgGS/EGanK66f6U97oVvdJhlXm8sflyaNo/T92lmKrTG4gUbkxfwiM3r+HJVkdkv/zckkIhGnz0V/nv/aGwge5bAdSs3YRZUQ6BmGG8bYVbik9n9irtplcsWYZSENrckyBuapwl2XnsVqkyGsPcrRBR8fA7gPBqxCSqqlZmHTjwMrMZ2xdN/jrzn8+yJSGU/wURgQZdm6BjJbe/WIRPvftkx96Lni/3mUjys4yTTcAu5Pu8Gr2mIAGyf900XwDW67/dVrF6034IlYkwQR3Whxa83WMnOCo03k5rS9ymt5xzTHcVaM86gNgy5Nh2aJuJz9BksXAf0N0EsnBXnTJoLVr3Cr6ILO3rlFrmJFnrfxlj1JaimKs58QtfP5L5uPhmiYoI7VpEs+unlI/MGJGwT137x2itXrKX29hgsH+rJq4Mzu8PvsVuPgp3ZlUGkTdH4QBNfy+HpLZJhJjIIPsvrqzZEXvQKu+YpbO7MbavnZu2ITAWNRT+OYKXqbdevYt5B9mwwr1ZJVqH8ui0ryve3qrrEQdo991spwbEIMGAIXVfP0EBvbC3QjzDV/iEPAbdTmDPuvwoFW3B0FlARiaIP6/RIdj5hNPun6THfBURMH4LM2lMQfAujisZbZP3UUsjtcxb2fzXUzy9Tk2D8K8jwSYjhcT1nGOJ/aFkktB47jr+zrlP4yjG5K3aRg/DaOxPDdrPw+fHU91UXv8EtVieOEJj7n1N2RQONOCUxN0KB37z3eyWmw+h4qLdavYgl7SiAvDXCZYQ4mMFTKgVZbd64i6PC+tJwzXSripyStOa2LV1HcPmWR2UpZa9iUW6oOTwksZTND7lozBZGe8VwE+vREqXxiQ9mPTl0F9Yu52LsNKecStPG8XyeF7ztaQstQPT9IcqGimhg4d4cGasrYJAmnxd+JXodA9c8pkigh/nwqrZq5Pnu9iF5l1a8QXnCL7b8cHRguuQarBCd2aGLgRIj+dGOJmtQlziykobLepjndB+DlN+RukV2x3wJ6NjuzGGAM0iiyxtuyhONBA9CieZbT9eT5PoRnj8Kfe2Y+tO6FHL5QmQOlfp8FBq+9zZ/1Mz4PZNIniHz6sdcx0hgc9ylFEz7DdqDBFYnnM/RzQRzRBiYOB6xiE0XmctAW+ORXK6JJODoCs014Jd3RCIWhR4i555FPagZ9qFXHyYiSkWlXqJd6bOyrmeKvAWAnarRNRnMCtetShc8N4IIBULN9BmFC1dDkEhFm+2xpSEZ798G+t1MQNtTafwxC6n68KniUaJrvGIndLb36RA+GctnGLt5YIrrFaxsP1lWwzrHqHvjPP9Z+ES4UFDjAKVs2v/GvT8VxY7ii7gYWZNvD9qsDf/xWaH06DxXbJ9o+UwtBu19MKvggsns7GHwbU1lJu5l/pwiUFoRANazjsgUJkmKGwWdLG7PvjcE3PNdR/QvIO8qrP1ifjFI+V4b4Az7xfCIeszeYFIoDGWhTbsVD99jxo1GShMIDVcaAkyJnhrZwNnXcgiTivIMkcm5BIImc2thkqICWSgHMWkkUNKbntGSdLA1RUysK/iD6sZDjR5l9g+JvPMc6ggGKF8E8c060MsYyGJG6eSeIMPDDUfQRtcr6JopbAmO+PV28xTdaMRaEEXi9oTnb7i+EyX+lB5Rkp9rSIZRaEQmEMS8jcdqHQuNKxSHZKpMLFHnoJ/ISm+o9nfGmWUB1s/sTf84wQjzctNeo1mVR/DJnbl7+N/rfkbbs5csIWLiHtvfJ0MBeJWp9Kk43YLjt72HVlOxCG90DhjzLvBxlQy1IanQoDMY80sMW+dAkZfkYBrZrl5kF6v+1kFyGM56pzc+kZQDJ6Gi3HtCWzBSukY+Zo8LrNjT+Mr7xE5d7IWgEbF/jJOEFgzbEce9VVcsrdev9Yu/ta/C+bXbn3vA+v0rkF1tLeYn127EezsbT5bVPDFZfbO9htDoMphuhPOREYYEJEw8cwleAA5HvCfQFweLMRx/hEu7r5dZovjZty2LwzJhmTcoQwRd4+2D6sNX5Z0ydcKOPm7YBebW5VFe1azXf8/spvhlGYadmquJtF/spc/vfpxHCTrNPNnsz+ceUkBGbZxqn/jQsmPuxApTB+mPGMqlXDKnW4H7CXSEmYE/2hLkNel/f/H7nrpLQbUQdn6ep+DaPoP1rsME1S2W1WbJX9dIuhu8KhXYh1zs42aLgfZVKVD8Yvx274msHMb+BfhU1xFfdTZ/iQvi8lYv4i8YYLrkpUzFLewlWgSIttae9xidJHvFYfFNfJzNfKdW2gcjH1SKs15Y6u2ltvP6tbeJgeojzBZnwkoN0OE/hGEJR4lBF+l9W1IAF6Gf5QCxveEDM9o0QjeXboYkPJfb3NHWSXt9mGyyymcgigL7MtilXsQj2NVkMQgygR3GstaNym5iw9HPNRVjcC6hi8s4DNW60vqLvi+5bz9kH4MWq7Br07Rg4I1XzKghFYHNFsq0lk6O2c3jt5jeUQLpCSwcMb6Rx0Y5BA2/P8XlBJSZkD+oZCEqkpa96SpGRoRXe13Mafr+LbLJKBc5AQH/32GV7TsdBBZ248CFaZnDxINBOkwFC/ybxMrkehRxEi0NAsLMBLv8VuSEROrOJwCU05pXyT0DMaZ70jqsKwj8u/v+uDDG9g1IrqF8wScb4oN6ZnxmfhCsRh2Wylp9yVN6FBxu/dSNkMN7dgUn8MtoiX/u8jWEgcJzf6QFRu110C2A1OFf7AVp8psdBaBVzq3llX8KsN6U3cQSsqVHRw1q/4EgjCFlDp1Qw06iOtEBNAp98KTPPWyJMhyvGQVQX9z2iADUfBhXxdrtOCLAIYdKfeQwi3HXS8+4hojJsBi/20GCsZevDWh1COhqEDYEBcE/wugO6EXZEZ5ynEMOHW+SOHeStjtslAAFd+DI0uzTk5FV1XRnM9tMmF6R4G09FYB5JuTnJLklcK3gr4et+JI/Jb+Zxq5oEs6YYqB2Z3pz41exybu5L6d8rTlRQHqIHULnjZJNCV7BIQ6SAgFRcHEvuIIdMHLNxn8/5/u8Uilp6ETlp/awl1dcvOjZuwM+JSCVqMItqmnkW3w1r+GyHHos/np4eqeqg1jX8x7/yiOR+LOtnEv/SV+Tj0dO5AE4LBJxduutudwhNhJZj8xN0Bo2mdnLuHpl5brWg/Q5kfJh3okBMchvi2+L1plP5LUtLTMmsMXGuQuVTXab54/eKzXUSeGF3nT7Udiz0UJ5AUawEfS5gSChOnsuR+MWl/lJ2ltTXs/bEHZm6+lmzeevh5tR/qGE8ek4ROfP7nCI9Pc5t/OWfgqMl2vV8GhXxNzTuHNuSGszqMt8EMdf1FsKBApgtwQdwViFvYlLvVIrVVqGGv9PI3Z0Ttf3cpdSFUaOFCBkDTSn99yNMNv3TkrHRZJ08+l2725bZ1a7hi++l6GE48kW8bKKUBBtTgaCqMIaGFQUHbrOx5tZFH8OCS1MLM5w97OfMu9et1o7bO24lbHcFQGEgmmCPVJz1abCLBkN6Id0wMys9BUHKT9J4/y42RuimBuC2hBNJs5nWdrwdwwDDDAT2pNLx7t5yIw2iQFRvmYG0mI0VjcQ1S3qmeZOgqs6zsSu59MmNFjdRD1IhZVMeSCJuWvMG45jYoRJ0HbYWsu43qCcfUxrEfhKsyYMK5MQj5wwDF7GgjD+0maS2qypbh/3YztXLYg1lfwUdPQoIZr5HZMdVZYTzQhiL/N8ETvl4Uixt0kIqAQw8KknhnFWatWLgSR0wh2vbE2wF7rR0QT8CjmCNtly5iylNxxX84m1ctbuUvL6D2wjvROvCJ/IiJxwzamFKyDS0HlPlXnoX03bP5bNODp+C2uRguJ1ElA+zTwc5r3NCbPO1ksjSbaJIxZwKtbLcXQdJlpmZTaZ//OYshIitKRfndRKSkpXiK7MQ8+E1IZ0PUuu1pTo100/3VuYKpOWVKwEhVN7Tx+C2KhuEVwNAntRzgLhUm4NFLx7ALS0vghis+rpKy4r/udoDyc9wteo+lBUSoag6ot4mKvlU8E3XQq/oq3YC1oEfMko3eGNe0VI4aW8MsCsKm6IAVJQVqYuyKP0cRtOYldw5LkLkmZY26NjBW7UPZOJeqWadi+hbzTHy6lCrYrWL+vEO084tUMrQGVnWb4eDyNEkg96LYfNR/vfgf+fUlXzvmg7NMkL6PPnNmyqpRusyOCBP24EMdS/dtFg2e8kyRZ5Lmkp7oDVPMeSrFy2iUDpcXmOipI8IWNVp+si6epNPcQYNh4yP2d98DatGFntshXNsIJMW2HCbdHMcex6vAnMm3/XlVRG5N1e8L57ZW8p/ZtDC6H8ZNTpqk44x5Z7AYDHwS8fwpBO+42BaXg6y6Ce0BEIJxhXAtJ1JT/CSrUpqtjetYEkPq8SnZrDwNAHGRW6BP2ZlLk4HK1R3Yu285I3vvJiY8NUWICY/mtMUBbtRdGyUkHDHw3GfE7tU1tii6jpn0RuxhRVyfkdrdBffCIwyyJiY/EYaIbsAVMKHLEt+qvWzSHmXZATEKP4W8Vqec/aNgYrcL5uw1htpDaNF1OzkX+zYHEUZXZeFx75U3UAOUSXDx8AkZVOEmZIgkw56gIIeg9N9zLXCGqVjVCRcJ6rvArgUDjpL1tOMxBwaeKB9KT/edGPOfRv998zHs3XPawtpDHhfEVe7Gb0vKQ4AFUT2lvQ4Sy3c1Hj6rc4BQ2JxQsaE91uyH+LNT+B3xuc83x99FFfphH7rb8b96QPjBdYMPjh7WWhb38DH/q8Y/cL5v3kHq5r0lhVDbxQ4rGSatFb6SnDnDdKYuQ+GNLN52pOhDcBLiaJ7CiahYFgQB/BNE1ZQ939+cXNhJUm3+F+AbojCEQptrySvry3rbKFYZc0+dKYZR7jD21V2/Nx60Q24f08TW69gxtoXWGc1LOkv+IQrqPSo8l+keAnQnqqN7zG15KU2OofM2n7xPmxcoOtjSkFFvvR+S7TCH38nvlRjM2D0ezklznFeOi9lrf8plZU3Ya5Bxei3RcwKk3UuyDaWmWjzkj16fWVh83UDEV+ImWK/4gB/raVPV9aZxZ/s382IXd+bjF2UWu7Q3rC7+rWFUHM0yZaJxszrdNylkeYjuX3hfw/85xhhrtILQutw9b18C77caFqMU1VFWG8vmA4Kmky0oLikbsldOsVWgL2xyH8ucWGhdf18JLlBlmgbz0UiJ1upFQQ8eTM9KxP2t2ckwmMI9ubzyuHlTm5UQZZ+3Cy+beGEz0E+/TTf23SNugqAGtT0JS8sRh7OfkC0QTBqSH4C6MyeswsTl7XEdc9gbHBESEmaShcf5bWqZLARn40rUtf6TJ0veSWUIgHZRnCkTGCaMEDprG68IhjHvxIdBynKZlc1o8SFjbZ6vMX/fSjvx6ApcvRENxUtP/QGKTdTEMT1/vDA07IUiCSK89rP8n2qVlFvD9zTOcVduWBzDnWehujt6WYLPbhaN1PUY8KyVdp6F4SEjf9ukBhvoyTI1lYtUC9C4E2Rx2L4vs+hY3Hffq+xQ2mDxUXt7kpTD2puC1Buqqn9IAT3YLrx5My6D3tnhR9mV7wSJbzkyti3Vdhxwi7le1pFFbI8C5pwKgL3UQL1XmZMnewmvtKZQWr355i39KDPOehrlFH6cyxcpmpC2KltnJFtegL79KF5Nwwj9Q61A/63XldWC9ajALQ+1X2C2qlCrPNHqoQ4zThZFLyEmfOohBn5u+dnLpT+8+FGBd+YeD9Pi7oD+668Rlkwmi+PGMkHopC7e344iwJruWUh6M+z3KcE9bzx4HzW5JrruMpa5Q4D1n3Zto51YT5BdgsnBLKnqMHofqStttbs8GQXX1jmDr+Xo5XCcaBZ81FUHt+ZfviHCTx+R8P/O5Z1jcbp7PbhgErmx3CFobKul937UQwHEv17X0ps1FiosqMMWAdf5sBMrLRez30Cnf8OBW09FskuH4dU4GrOPF1SPiMPuYauQFsEaFdiaF/NR/UKrdJ97AuvuI9ptmRXGLRclt8trM/xf4TmGt0/rWrAg1w1MxL/gzjbnMij/PKtKR915f61pvWQyeFMkeiWIjtzIGwD0lg+3xggOT1Mvk0wx20Xx+NUHke2nkxdEM+4aTKzVnPphnKVxHD+9MQrUqfGC2O5M1IbsFeFf7FoTjMxdJPO8UiMXQhAEnDkGjmvJq5YgLIsC1m9bNYrSk3QRhc/x9aekCoYEfk9Yhi0CnpiXkxNiiDvxCTF5hMkQVfxkHF+WpDIH51af5ElbdRaETuMTyYffBw+HnOvso94Yxy4NpXcJULwi0v/FP+CsOyhd8VV+Ug2qEUocE1EDBeaZQpRl+/4aFyl9f593vmMHZd8kmH1Nd6OlFBUK1WmJIOmLjv234GAjPVfO1S3CeN1/weG7ByASH92AiY6MtyCJRecIsJuj1SNm2cib1JE0wT2z9KzD1V60T54QX+CDixtn6ZGMhJW30Jt8P+Dnem9nIR43orBRe+5oWZ/QglAFDUyfreassD6tPSv+vKtv5ffhGLA4hfHJ1iBJR4/lxJDgNP6YjpDQ2V0d2Mj7QSvyFTFU1Zec/8ddC2TBDIT+pm6U6yJbHEaN9KXFuxPQ6TSnJTjz4uNjrgpG1ln2xynt9KH6TR3ESIy1sPrjjkj0eGlk251J+q8iatZswWu2PkI7gmPdYb5OX57PZXrmstuLiKrZDDLZe6tVod3Pv4kMBs/fLDvhhEHuodijrqvreofe5NfphzN+p4ZUJmL0d3j5OaxaHIfCrt/jRHBE/JumHAPmZhmW34oT0vk1qS2LRnOXhl3b4wX+ayuiV03i2MA8dw+JZ9OfiPWQk77yOM6n3qpGQU3e5ljg4+iZeA20B4Wt0HKXgkK7udjbAxwjeywrQ/J/QP9NITFz+9lWvzcwPH8B1ZCV81OFfJk2RuUv89w+vfUWCrQ/1LQbWSXGakcAVWgAlgifZ8f+2jNDHbTFq9WmX3Dqw7Ks1gMpCoAgmWWKWHYiGdSLbKM7yCPRRK3K8wncPb/QbjJ4NkmMXGfbYyvKvnrrWusqghDHU2IU7BBYw0jMNE0pRN0ixGZ0fZMv48H7YDTupkyyykxNiIsHTaZKUP+0pOQEPmzVAwKEbv5zM9/wPecPsbQTV4J9BKRUsqU5lMl0rTP6URp4Zyl7LMqVwcb6L+evQQfXBsggd684J1dwjpfWRPuwtQwvYZ4V/ss1ODrd2909v6PKKvUgmKnUfi5b0Pv8v5ey486VMshV0WfZ50+MD41qdLjrruKnZEMtb2Pzr1hgEGlnQheOIjQILZlX5u8K2DMwWX3sfRK87SigWNIFu3aiaQ2n3mHTQbhYJkcWhUlMKgbCaohGOfEy4/XkNSY3FWSpTNoBgg+7tcmdjb1kFE3nPxKqyLMeyVZD7222IweIsxTH9kuyRBfNAf7k5wfRyyio5UCub5OgQreb8kHf8seDaO8pSvpN7siVwqbzf2aFUpGTwMg46XAN9nUgITSDQIN4jgTO5CwMA7IlrP/nP6Q55b/LjVgCCO8GzrNncpLVwSzlzr7WqtfPjSbT6LrXDB79rA9FJFHT78iXIUZIpZqgVl9PhZmAwu9fmMiF54ohvF+6nl7ImpYKFM2ZQKGn3i5sLoFYMEdKs1reT8iu+Q14pIn0OxRYN5mydHpDzTpylnFZw99D7+rj5A1Kub/dOI43jMg4Ma+UVmY4AwnIrGMa+c/VKFRiVOtcmQDK5mPJ+eoNqNWDTk/CjyDTDmVqU113QlNFT4kznSxexXVxbTGYd1iUhbymNM0YhyiH+jlHdolM6oiZCkhmyfH4Cy6uHk7AfOH9CsBGQtffsPOwF6+DeE5317MWJoGgnTRWpbixMCP+MKPxVmmnajxDM62nc4ZA6PB5/zV7YUJTewejdpd6iCFU9vZyWu0no3YOgQP7ca1x0cscexNRR2qN6ORGc5MrlbaJk+TgIh3jkbfKnNHdsgcDq1zcaI66MNCWfHa7TmOMC3jEXb4ag6lCFVm+EMhax+pV6JbIpDehqIMRlBqTvVopBR4lUP2P+8FOJCREUD3T/DoIaPVKH0lSMoTMpJ0ZPBr6aelcjd6LMasyUVqXfc99iCPQUG1Z23gKlpt9ODf/n4GBC4LwIW5cVnh9xH9FyyVAj1hB3ZHXN9f4O6d5z0dkfJA+9Vg3zIeLOcYbGWd/jA3P2V16Wi18AxUK6VkMXly9Qj9/ZyB0JaXg1SpYby2F/LNmvtE97RaRtnH+YjF41OVsulEaUwKLX+wFplGtgg71VYtfMFYD0C+wfSeuc5Rlz3QKALjEPSEy791BLO37sjJBOiETLth8cjkbMslBd59PxdJC9M0NDn1xNPQdcxLimgso0UDqXOjKZu1PODTtPHr0F60kP1CBAcfDFr9WNdHarFce4LNA4RjduKIZGER01TFj67fI9PDvMkXHO36jQlD1wqJB/7xdQx5zsB8pHrHOJ6NhhQm/1PKY8H5e79wOuu8TnQs6rOu8bH8hQA1CyWvMb5/IBNPg6RTaMt6+j/hu4XzJFz/YIP+mdTgutHrcRZLbKieMejs4attDy+CnFEk7E+/q6RXvWlKcmb16ZVB75gcoiYb8r/JXBlwbOijkEqL5zSlrzz9eeofEphtFyPxaagQjV8SecLKcUrqeNjrr5vgCW8z/b4rxAk3SjsbRQgEBveYyhEGQYjdkBmJkteqv4jqZpM4VE8pY0NPSsU8Ce2I3xtXdaNPHvmGZlHOUiuOaiYiFBzXfgjdzkLBRdaNaCwMfc/GKHsHv5EhomJq2HX7A/yvlzo9rv2/LtjHdPjsONkSBMdCGhYadmwv4VR06kGYQvu+z+dNMtEq+5hF023eS5ok4MXQCcUFs/Va/H11BdBo+HtPcbDtJb/FORosK+UHTgJ25PeFnqjod02f5u23WtEHMfy9skGnmN57J2cJdbPN9OpSijXBV8havuXOry2rv6TlQH2Co29FRa1iTuCd46PN2hFdgLIDcj5QWNmZcS76fh8TOG3FSsdS3LC8hYMLKzH0+bgiTQZr5Cl9YeJfZntK44+IHkt2RJhhmllbCMIIqAZtRGsmY7fbyEAHSApfuWAX606tO2i2AYYYDbvl4oQhVY95GmpswUXZJNavQx8i04rM6E1XfZHyNx6cwIGKaALfBZv6C3U88pc6ubhkRTu3G0ZfW96yI97UCsxpLXBYVMV/w/ShXlwzVdtbv676ZcwHkIENRdP757lXqKBRpXUxDRUsn0LTCjbTFilh91jdS6coPD7L04eDm6EwUwdhDWK2UJ23dsGS4LPbCbOrBjtbGtIEBAWRHdtmUmblaLLlrbRnCkUvnB5HfjGTAwcQWsK0zsZXTkXZB1FJzrOp3LmyRuAcDtV8USBRXaCAGJC2hTubRs87xRhB1x8ditwWjqxp/0hmlD7YVYqI1GT5JCQkMzq/vBkiWoiQXepaxC1eDQNfuF6t53S8vOVNXi0A6GCfUu6mQDq7MKly2zAaHVu9r9WH53/0FC/TrVEboq9XXHAcGlMuz0rSknZKlS9PsvHU0Kcnpi/u8gC1uFQdG/rcRxKdpRwpIh/5IgYMnfuKg0c64jr0L2zm5g8ooaq607xst3geAvvH9QfQcr+sCtyI0l8x5+i3kwrftd9KmKw5vF1BKk6WzdYOHX6e1y9tqEpcR3G9OpnfX5EjhUM50HuxnpqneWSaNoKRbMZGwMUHqxFx8+ZJKfP5n9by8zG+nqDpXxDwHLbUTaL4FMhTLbbupWr52h5Hca6RvsQG7sgujEpuE8Wz5GmyE0vZ8164wBNWK9zeSsZgQmGdkZ/Lc0YNF/sbwf+vf0ZPi6QfQK7QivtI0Q44thBfQhDZwTSNRHiNIgDqatUYRWW2cXdWPxzyLXFR7FxE1S0NiNoys4+UysGbVJpDY5oIx1h3ppYJsYtRGIet4mcltKZu+JAdAcFVPhtTWP409P1wyQ/MspwBZR9jUDSxuUFemt7rgKmkwquMH3ggTp+DYQW286CZWGbIR6L5JCq0l89S6O1kh38W5V4Eo9uVWmKlZCYHSuIZ5YdzXlzzVf9H/jcNvAVeqsd9rSKsXfy7Tbem5yWI9Ov2TIAINZ0/T0xAVK0SGOecAk8S3cTsk9ALcxE6Ybb9jO2UQHfnZClfz15BBQDLS2OoNIP+oIwtZpv/EyqvjmAXC2euHVB7kZTk6+y12ERQDAvzKaL/CITvqfk9C1kx4GZ7lGmVW4eFdv+XvlOBnIIkgPqKd7RpjR42WrOLL1nNTHUeuF9tx065n5idZJ48EcLu+5IoX0+V5TUrQOv2MF9S+im7WR8boDQOTvqCeiK611aJpMcBgHSC+6mlBgzMp/zmZ7OQh6VU8n8LSDnrSR7FLBViPEDHaPOvi0t186k6ODa2wKgmAO7n/TUZVIdwK1b+g3nEhKuEI/+MlfuWDkmdhiGijJLpVSkoBINFXWcu0E76Jc0+CLp0GRyWfczO+pFk1LY/jrdqJVBlEAwGtHbR4KMNvVgBxUTeW4dPV8C/qoTxC9y6kMcXY7QWG74NXf9emF8Zvy9d56RN63ieL54t2D7f92qruZ5nWAhU3inLg5ccB2UT1Oc4MG8Dd7Id7gVihNiZkDbW4yts5vyeoycErJI6OmzFnrmEW+qqC6fVOPNvUvcHFCENPR95GzFT763+8kWcuXkY4ra+ghh9R+lfSazos/i9gBu5kTgCQQFW1QZ2Dy//x9xTKbAizOYrpa2F4r19Z6U2M2PGECs8fCEN5OD9tTS8uJku7fR+XU4NYndgyz0N7PBBCR1gilni8z83RCLwLNO5PA8xwnL9VLHhQibscJjh1oeDjJiz3EJuNVbqlibVVS79wJpEjJTNIQIcIx9k3hPwr/hSwKupdy2H5TGnwZgxIs07kJkBDYQSQUf1N/5BxGfDZ53xTehpswD1dkcw3vEepR3SZbmSOdBt3xsAjj2JXQZmVx8zjNwFgk0Hr37W/VM0UsXfSMjCn7/fOg6gN+z4LpSgwJTSlyH1IJJp7lpj3qFTfOErqKe/GPkmVq65LOGldxFR5DuJ7h9tUHd/ELFJ2SPfrcdYwurjMkN3dcuNzHbuj514YPIWjC1WstsVLarR3j2Hwm+xBVz7+O8qXtorOJNHtQCNpMMnKFxQwZ6bFo612uSOxPvXkBCRd2IwLYJVoUL7ZvbYyHDrI/lKezm2PXPEwah6qgwhbckS8okKc2PAPx0TZQkSMnLD/tELOl2ZiZZlVn5R+jckjHht+8QfkVwfAWCJiwlZnItyCwk7KUAFSomp25EcVyj25tuJGAewOAXCNWdpQJnsmmn/zz6zvVJId/R1tVU+9jbRcZO+psQ3nKgdpjQ1mIMylicEkxn0dBccSHjGF26wpmzGG/3uKOTuagO3e5vbJOoeqPS1oBo9+vNFHbBSvvwTEgZzEVZP91U2lrj/Kljy+FAC6f3BLxZb3QNhZZC77c5S9cxzaBtu4xBY1Of1LLROH+K35+3ATja22gFBiMXtQtGbHEG7+/NWC29dOtRdPhKb9WYkjZj4kfpt6PLA2oujgpWohDvr0BETXlVCcNkWU6nn6DaM4U6RmoF93zQcjtpQ1rpFD02rATy0q/QmxABpWbDzfpy5jpI0LoM8OJDOubm3dukiaZ12EiYpXO+VJhKB7vb9+3DB1GCR+ny6qRnMeHMvh+LIy8A+A2U0iQvkDCgT7bgJUO0r2rABRhPa5cbJ11JGzD1akancs42ZEwZ7ZCbgta168zWhMzV21EIG9k1TohU0JIaKw1O6JwIn8bmiTvxvCNHe6hmnXHCA356vts1BT/bNi5vvFMelhV9tsckgy7eecMPvlTKZzLcQHAgCkm0pz3fi3MtPxW82l8NWWQSgXQwWGP9EoRjip5o7d9FQU4eTOVXlq7ST3I4CP54/o+SDybO9WFxy72uoZTgswdupnAMAeaI4BsAv+pUHO3pAiul3XfLdXLRFZkKQHqcrQ4Bqg/7bejbFaxTIZay4s0cSBraaMwkoP9/4n513LOpF/poRI+a0E8fMZQTDyh8LvVh/jecW8sfqFPH9lnV2anA4lUQ3qILfyopZKDDJf0lqlrOrSrT0Iuimj9jOUbKmM8aMD07vRuBSOD6ooO0ykBfYji0bwRtYU/2Nm+a3Ae/UOwoWkGFWrXQ6wXEaktj/q7HBAFAQEzmhFQQeEhUfHoIX80mZdHyO3qaK+B7MIdQogOJ/r77NiursN5G1opVlBMdFB1uM0+WQRzG/yfs/JQVXW7irSOI+qDRa72MTjq2HmgyieCmBVu8LgMV6/0XjbeuTf5oLTkKbWdGxeZkpVDmlu6qYAY+2PR7r9QDX6r1xK/aglmCJ8VodfyUf8Okg/WgYchmX5KIz1FYyQAUkBnH7EoSHtu3Vd3gNAvWYXy+NSrA7WRF+6zd74oUIsUhSVGZK0Ba6RoSOSlSypXXDtCeOGyDKlcSz9ulGTW/ZjVK91bNm/QOcv8wF64c2jwVjDlwpvzpibUgD2d31j4dEGF98NUpFr4aCaQDOcBL7zEQq+/9k5KYkTHbxewrEiVqj9fBoGJlzS6Cwye8LvlSIi1cXkgLT/LCSb670rcSnTXV8LuW+lagfZiRyI18gyYg28y1yMAYADIRifYi+dLc+XlxSOJIP2kfwBxTRb7swS0GVjzgWoPj54ra4FHH0DQvdu7JlL8mT4rYhfT6VRSSSYE11RsLCdH5zxMbz9lJGVTvErj9+lYHUD58KWT/qFQIjg2qJvuKINWPnpksucAjVHbjH3IMWVIrbhN3+Z2Vnud2ZIgYqk52p1OjHEcoU6qZ1/3lP/bjOubGKlLjH6g/c63U5JYq8howb6iDjiyEVDOLp9sJicRpQmPbBw+8EG8At3WvYPnO0xKB3YhyWy8PiMBvN/sZ6UQaQcG9tOfWyIIcp+FLuSsd8Xgyy/SwSYM7/Sr5777HN464rqb9W8RWM+9hnzHCaq4X+YYzVr6Q6gbQeSHKUom3cbZji+USCaJmyIuMNMcD5yBgi8xhlcLbPTXcDSnii01UvDOxM6fiyYjcNXdNUfrwYykmWkaPX1zLPx/D1uTXMKiZ2DxwsOe6gXCEGdsZuHLu60mWfaZ4rjY9/cW+pNu5HtVFqALoNiRtovMIHr6hvhb8Ckhv9+JXDhOAZhfAnwzf3Qgs01mO4e6ZRY5AcoQHXvZmlqJ4YV1T2KUc7OKOi/NmwXugDY1ZYiZK853R9ovNOQ2fVtQmtu4op8lvdL+AxYCP4b5TKP/vG2gAzGwmB9e4IkvCDo45+CsvDW6K0uV3bfls2Um8xBtkiPJ6bUgI0wZV8TuqM1+NY53HpZQeej60vV83A9yO+4kDawngmQTpXHc6zjXgxdoIIobqbkmP+m78h7aGaU0Uj6zt+fEUqZWE8MLhSK0rp6R935Y9tWWwCS14Ut3dVhSvs/c8Hze3I62kV7QavptaWPcikBluDefwHyZyC8Fyrj5gddE92wouJR08a0Xmrr/fDKL9KfxNsnnJZEfLvjnQNLe7kDeU8EIloy1Ol0u5Jxz+XTQjmW6jmidQhPnrGoPO/lzNH/p2FQBDrvbSmG/1CLb+tBP6fMQ+bKegvTwAFK/4F5yeED0QQBGqQskLA4Mj3Zh39gm40gx2oJ7ZxZvd7CdMmiDnByK+t0tJNH6P38o0gcgTXjNEZ4dcguziFh+pKg2QL5c89EPtokhcQaeUXdb+xvGgBgKhl5dkPXYN880L0g1o9TN85B7uUJ7JTLDcjD1hm5IZA2Z+V/uE1QrNLMFlPkFXgyQ9as1DS2n0eHQRh0u1+jfXxlHkJ47BtTxD6dyPhwklQgb65Eb5lui4reSMg34PsIs23Q22QqqAtV6T6XRZpNtiydIuFheMya0f1d3nFO/joKG7DGMAw4z/ahP5A+bWaEPf2UBmXXc2hw3adfI7muOKlbZrXO4g54WP2puoiZmejnnUVEkgFaQDGDyS2R8On83QvZ+W7qwOKVymaKwP6JCAIWlG5dz++HeEXsIghQf0h4YghloL3ZDQJTY8X9+ySFqqXzx3g4IktF5hLddSMVrsh5qEnxczyiRfs599eemJkTJqdAtfTVR3tJRom0PdjLjbpD0aWJw8DRMDQLxsDOCGaq1mnN4RF2QqJItRHFXMJXnDghjcC8bV4vaf97oRGOL9R6nfavTTMRkgwogWyugegzqPCZsg9v/WL/G4zI4yOZeuEbFWZIVq5Tze1OgurW5w9EDEmvOBilqrza8PXHVqunsnOjlSV0avOpZa3zs3dqD3AxsJgew8h7S5gQIu+3fB845i/5OudyoqbvY1sIIvyStmIYcEVToLEUL6HOgBxFqIHqg26j1yTGRQLSR2/GXvv3q6Zwwwj2n7AqUPBDO+LvPMYTvpBdNfkxA7HBhbbKByMP2AZVyXCT5rLN1CHZzk38BdrVZHtB9NFMXWdg7oTOId6eg5r5rHUTLkZEbG2sWL4L4Lovtp5purlYdq00poMFwXnf1GXXwmHrFSBHKgV0MjR5fMeqTHY/W654oLCciJ78HMewxaBhjABU1qbNlT5CuyrHpU/b1+w4tb36q3+BvtlkGIaYV/rNPy8wZBC/HEkK3B99SzP4yl+Tt/VJjzNFXyDr9d6FtGh8ig6us82jQ37zhUT6uec8ojoY0Jh4Ql+VRp+PsSnvzc2Bzbi1WdNvenqGIhF6ZrxzybocaYKBDWy19CjWFU7tNWas07dqYihevfmbRSqChPy0lceTBhBH/U/nSmc+NYbLlzg0Q7dGA2KxjxAgIQZJEQzhzCHOEEMUFoMIUeL0CCAdqsdH99y6fLnNMLjErT29DdEGK0B3Z6vf5saf38t+ygLLCVOx2pkWLifLkv6mmpn+xpL4Kx5jx7MTy6cU9z7yBgiwHEyqDzou7E81FwncZENelbK3fD1RBAGf+jAA47637jO9gZznwWhzfxsqW4rgM1aA4JKrhcShkMRWtj3m5lLIoxIC5eG431nwEthh0kqj2X/lTOS3WGttbtnyYfHQ/P4EYu3J2ZKtpSm6woEIMY6149nxIjofUX3gqslXZxT1opgD1pceNy5WgdCVTxBp2ztsTDfhxauuv9Gv2VgQ6j8FZIgsxPj1/eHak/bP+6p4csXcQBOqNrUyr5fGW0Fo+3ZRhZHel8kwmepVlxGa38cBUBfjdxL124qSlh3n+x372gwOWFXA8ns050xQtXQgt14mQAwGcgVBtSFlourhtkmZfAcB0c1EcdTOaLHPWmXV+wf0Zs2YOPWsJbVDEgBPUMYozyvoqzkdfOm8h3a7vLFfaaAyNbL2V/y1Mtna5LtZ0udCBDFDuB73CUa+30qvg1phwJn2QtzHLE0hRg5UW1AC68xTiNGu7PG8/VHSY3ivg2K5i9iNRwFncRAiUUs9bwzFdAMPiodwhyFqozNIVjcFo4Jgnc+P5da+9fcROCZyVl1JMXOxF/2n4gzyI3jv9L6Cid3LPH2+IRa+dCMmVAo1TXDZHNNcBtsYSb0ZKJ/cFK7nMfn7ltLsC2DeLGcL9qKihQ4UUmsthJ2iFNrLJ8ck0rpxl7vDSBu2DgH4Q0S4fCkModx3V+r3ZCl0v9ZzJYLhaP4VdoGQqVqNggB3A/SPVGKhUwPH7ofOKB4N/IgWgYc7KDk81+BSdAI89A/06a2ldLT9ayKEByasquqV1Cw6Xr9HQ0lpf0dLzFgXDzzJgXp+pWJcYJoBuiDJi5Jm1WlUCGqPalQedT50X+RI1hfboltzMeypfepPyqKl7x4l+Fo3I0dA24DiMr87/mLH94VSCXKfbZRgO+8tb0CUeL3KA8Oj0tI3KeYY4mKRdYlnTTlfEPlmemaem6NGmfGyXYM2VZ5vFav6eahq6KTJqHvLqdDj5RDV7Le/ZR2VrlwhsC56uQ273rEOlN+ylJXXt42Y13SaFW6GGHmR8PvZPWcspC/Vl+i9+N02ql/rlt9KInCX17k5lSbVJ4Toh2oqCXfSbVl64Ad3DzO3U/OpeCEHiXoaGqV8xn/Ai2kQfPv/DpHNequL4169PLN0xVPpSZZ/+tNRgHsn1W+QgJud8Zsbgn15tT4/5VXLbWfTRqytTV1lG+kZkGrTS4ip2s313fYBAq44k1LMwpVuJ2X+vwT+IBuBTQ0dVxqguMV6CTRLphsL3ll/4ZttWUwq7OLhsWppZl61kOvl8s6shqodeOdmf0NK9c3c5Q7aFk8AwPZyHusD+N6iMSXpRFbVZc4rpfV7U8zwZWDmGaQL+jcKS/OtPCzlyykxSoh+SN+p3IAlMTf9zGitAW7wcA+ns7CytfuDcnU71YxRM9TCf85dRKzZnV6CJMpnldqYg4EyWgO9n9ekbNO6zxvPZFJVZ9mvwBmP1xoGAFhhnh/AmMP850MmCdEjtEs4575RvjnwUWrNzUdv7oAjsSFClSgHTZns+nuy6X9nr83/fnHpwuMzvmy3l+aVxmQdBLzxmcS3tj5Weq6ygOcprmADV5jrUd5ICfs/bZiu9JhdXuH37WnNCyMIXmqBVTKumOLiaRwW3nB+d33jpuPXlR4E276uD5rhFtgwf9a8K9vL22NWAX7erirEKp8FyE8otUALHXl2KEsUjK7dPdLl6XnRAqQCfEnvhSdEbL1gYKwUyjVSHSyZ091lwTA/ji0p8AYk0jsWqhouO7tLNLnJQYPaIXNri/+c4GMAhf92g6JOz4MzMObwvKRrhT7Tu5xghp4svNW50r02XQX6tYhbof4i9lvjobdlepmQhWrTnf2tVyVxu6ihxasIdq3Mo405g5MskmucRwT+ZKYggUXapBnSgjcPUdHDnNwTjaY/L3ZBjAVekPv0jOMLvqHPZqfv2hy/4oOHcIbQaaAzc81M1b9olk4unVN34s+/ptS5KG+NbvtB4ILHTI95O6epPhRUblCJ80OyWEEwRPZofqiJlMOKwbfepNcOI2SWL79smw6GYOlzjselTh36TnEahWc5xt5YPjfNfFD8gUA3gc8l6/NUafUJ2/DPAkOloTZgZ83vm035W3a01K4dUf2F2YykSNkiETEFLxk0/N36Bu4sYsGrdh8L7673qAse5h7cmHeS/XrufTCxeBV7kiLBuZiVsakw0Zd0w/OEkiz1mWylllLaRTcQ/zt9rhHn/Cnr3JJ4st0163VV9/RQ/KkxRbNE3kXJapc+pOqV5xwkk4nTOinGMe82ZU/nuwR+/NPxDvXRhCV/0ih2PUgDtoyaxkWkBX2VD+xvuddGHeCW72SbqEFYEmwqEUJKpkz4S3ESehKlYc7arddXvAxrIsGxqZgWaiQ/s5ExM1toWpZftO8DKRG4uvznLTS8JwkSzxrxf8JncR4LAzxOWbCgcruY13wBjTvS4U0wQyIn1a0cRXPXnUSAgE99NIfL19ZZLGuuViGUpC1hWggxOjnv7PN+DMf3E2v8oNXlSE5dbHxggN3MHj+q0hsgVJ6wYwYHgFce9Z0tMP3/13cwl6vrva7k5LiXygvGga7VEWq3jfQYCXwbYGuZzNZXQm4S7jFN3lLsQkp5OPvxqUNKxKqNMZ/YdDca410I12FGdkMThpZyWYyXwDCGZZI0N4GevOHJIpjvUx82P63FIM8RHEzvipFzTVjhPBJhvnfLV6eUhWoRfWtbvF4XwUKDTbPPVHovJ5mLKGjQvanLibNiecs5qyt22YiwckOmBcMvL+yUZ/yNp/bhSbP26gx0dWEUR6J+wkvkrItO4/g+ExLwL5rHOVWH+MItFwqYXJ8GENyhuNZi/xEV+vOBRO4VyiiCL9bbuPt6e+chYkVkb2V0jBNfR2qtsEpz3rrJpU/T2pM9SIVJE4Ui7kSUamT1Y3xFONnZg5+qaSfWmMNJKxj0grWAwxQECIRdB25HhmLZ+M5zqrr2Jzbe+FIty9gPNrkNWXKNtMgjNeBe9osLa4KoGYVOlMXDDQBIFPBF7L6b6Vp+qPH66AdNgJg7QCpcsDWZfjzl2pdgkxmWDULeu73vV2cyVIKD0fHKQAxG5umas+N9FFo429uIXOcBHt8ounth069O8FM6Ze7XN8bz+1zfarIE7W8bL0U2NEGBCGf4kNfEoGmr8e4R6ewRpVikGgfraVPb3M2c0CQnHm4jRDHMbqfCP9OLBwvx9lpnC2TN+pqNV+iQZ+AdXtfUH6vPzBH2C3yDOzDUO6jISDAZbWB5UkU7wEBZ3F0NG6YWUhRtq7TjMtkbX7UJ5JECseoYjwCRanX0GDz5v9lZIaEMy6XLrAC8FIAJX4oAFbQNh6ooQfX6X/GmeoVxXrId+yL7HUprwLL32TXclg6sWIM776TCJhCnkV2O1UBKwpA2HPbVLwRyVOthiqxstf9M6z4IW4GB/LxKjcN79JrfdS3kvVZbjArW7eg6z9N9p9JvHcdCM8ojDjyOZ4RYAbfOiw2AJYu/HIE0CP4Kf+nhPlB+K+R3gsdMa65RuIewi7DEEU1VKjHGFO69PFxavf7UgzT0Mwh7BHKJ5oxFDqHuua6eCpHU5zARBzqyQbrpdjG1bpeFBv3aQblh/y1iDkSXmQ2T0SWTBemqH/bc+a0eMy2PRTuJGOj4LtU6AcIARC86zj7rTEqWwBBRhyy0aWiqPaNWYgSW32RhU2W8QyLA1WpXYu6GRrDD7ntEW4VwW+zGlx71f3AN0v5g58Ek04wGfmosN0I5rEip3YMe/aRwBdrIOXFYE/SzJAkHT4182HbgI0/NyutrDVBz16lOiwqFYw+ed7NyupZnpqR3EHclUhNhbWoYfVS+9QpGgzDPSjNFfip1LTj/DhgBTwN4YR07VST2NylUAYz4qxejpFfOC7lhgFK1Cf7l7pbtxgOZDaA5FC+uj1a7DsLe81V7fwGoxjmAFdbc2hOqHvdvsxe3FQBXLgZ+iWXIPZua/3KcY7yMpr9Uzm3hIOEvowexMjw/Q8e9Hxo+bcqffboY+VQ33BTT4btedfzwf84J4KvvWvWlsnh1FtponQt8WtNfpQhheOdJ4ry/D5VI09u6HH/AU0msF8PNDLTpgNKrZFJrRGzxqlw/gDAMvn9/Kltrjrlbzt03/jtM/A/jKYaBkX9/GaMc/3QCXovcwTiMnKGwtHa0b7hARNsoSpoesAYFmsTF3GaVIP9zoq8CyHByZkIg4/VqDbC+WQeId1VmrVOc2Z3NJBk2fFzVFl7TCtW4QSzXPGzEJJtPiOFmMgRl8uNBpyzIIHgfN41bdtO5MdFtG8+s4PZkJTTDg/A4Ph/pkVAQeoJ8oT9vAu3nQLIhS80UVtcCrhfIFfFyB+6Gr087wwKGlu2ffi7oOB1fPV9ZT/4QFoPbOAD6nbHBv0MdrDXZLOkFPRe9I9yW1DsiIsNaHRcMn7CDkaGkQPyLR6nEk5TmfUO7eHbOqqwceglBK9rsELh+2d58xh1bMj8GRyafrC8f3hzOqVNztYNH3cAztkBWeFug8ilabCJylcaYQHathU0+X5Oqjf0IRCX40NfYDOJIK2wZbB31N2tA3u13y+b4/wYfYPY0+H9DPzmYB7lOxUi4b7DdJ4i6pj+/Cyj8gYFwTnDWL0u3ko26XaBCu12GmVlU01XVqug2tDa18RetRssvYW8M67WLcDiYd5cOXIPNSRAbh+cbOMFADj3+QOTuBQqWG+vS+qyCDtXrG/qmL0w0HuQes3bpPj/badkoDXiYrE49JTOSemlYzFbgrF0cf5/Sgenrdj3vMOWU6DjS2Vxw+K7owpD1Q9d+NF+WBazAf9NkNRrf9uyfH8Kn4jJT7FEqbIF+hNkkycb9Xrw885V1stPSOs7PESSrCykUfNbwqG/gUxYv44cXQVgV/9Qcm7OQtu8ooN/1JadRRfiJnr5cDoCEEcJa98IixRazfPsIicC3HRDPokgrqcRnfeyAm54L/8GPQscU3NNU1bDYVnZ6GnR/uLJykXzPeR1aQ/DUTnIOU4p7L0YnGrctV4NbdnVTCyXY03YDlHVK1pgYeC5yyA0bMfqYsWEpwnJS3SlgRGEepP2wE/5iTtdw26jbbqw2iXRRxvuiXQlTC+m3TkWnifeU51gEPpUE3JBcwDB++/BhuCGNi5Ith0a3TDBophv4SBCAMqM4Ch5dw0rD4Szyg0VRHVirAlma1odT4zD9hRLIbMeRtouGrRDUaXQqfN2QgdCX9qW+sfVfr8VfwLM6i+L77ovCHTr/m+37TB444As/455SJSoifwzNIQhoWMg2cy1EFPOpOIQcxeMxdXJKOPiQBTOymy/fUGvyxX8Q3Kj/qBQjv5UV77xfB0T/jrdnIiIsPX7hw/ZcZggmfyD56lrKKv/LA9/cfwiSFL5r0MFAEv97Pb0TC60q4zEkne1KSTdwTMqWUsHler89rynxeNAIsOl2kzRwQZr/HOcr7aT3T3lm6fU+9PmwT3utz7tQuP0n985KafZKPgCJ83fekNTDSDxqImz3A2zCyCBIHJ6g7fdrW/oTS7DJs6TFbWckl/w+qr09OWQLbMDMDAS1vo/18ojNqGDf0OM+iIWp12V6tjtlYZUm/xuby69zpbAYGUs6YMFheD10NAcZf7ClTkVtF5vNSR7MCCm6yjaHiNRSX+hu4JItIuec77X4KRPDmfqT5Z2T2dzw8+t1dgQhmBcdXJgFMJfcO8tEXYETBnZ8dRNpBPVgsUrmU5dNdoXjyJT0iiyZ+vuUmvUh2LaqXOJEF5l6+boZLLdD7RH3FW4aYVdaPyjAuw4t6iJU2ntyOx00q73KStxm+g8xYnfhl3zCjnOkI4xWly2xbLJX1GkWmocxUmqNzxYvaoV8wrB3EzDxtg3ILomVxm/fRst9Wv/x1Q8CBUwjA5/BD/CNbycaAj6xoZwpIrnWROW6gdwOhAuABertUakzSU/NSOb7jq+6Rv8NPEhB+HzcCAmBkTGfkBcpqtmD+RNINq5fdUNN6hWbiZOkyyOK7I2BrIbMKA7PaF/YCM77JN7T6J6ZBG30sLrtztQkT29kI33gc1UNzM6+UwXievRac8h6Sp+HA+pvyfoMninCD8JBHgd5A7PC9931r9pTgTXH2I1Lp5c9nttNQQNl3DkvYCQs63op9acgNDXI0ihvJo15eZBMnJsDDstCc5w1s8lWY7yPfZODXh76ni/VBEvujRZAC/UD8JxNBgv9AtaArKK+hx/SnsJ7iC8Nj/XwpfGzSge5uXRm3OHSvXWbjmsZQtR5rWhIJqBGtPCjzBHCe+23uSfs1hFp+TMjK6DEvsRsymnrZ2PMWGhvt3z3pzmTVlHbmEx3NVfu5JdPrmgaGYleJpyMQ+QCo6lVfkW1OCVI4OZdao7Dx7jL7Vymj96ZjcDaUQwRhaq7e+ieeSfNlcRPRA3XHQ51N8DNdSXPg3iEGHrCRwbX3+4sj8q7mCJoi7zlssE350/Ii2QwgKlK4Sab/DnGR6gT8ynwXjIANmI/MN7DIpJ6NsI6szI+2uJFkPw8DDDv+5D4fyByFO+rh7/mguiaYFneONGHTldk1gjXpyMsyyic2tNI9alUXNnnEBd7igAIH2GHtIdw2VA77MsRcSNyEjGFukQ6NnNQFQlts796Pt64MYTFG9/sULqm3HFTsBuqAk3HW2Xb40grMC4sA6M1HiOskMlIj8eWow5AgfNkmeny3zJ5ZV9KoIQ0dn4SU/KxgWnC61yklk2zryGQaqRVkLTMNe5k653SdOf8Vafgkz+qSCPW1yy8j5s6yOPilQNrfMci3G3Z5UpAdlSGl1NwfOJEWExwORghceIdUzROu2FHpJLUACZtJ9+zSm+7JPDItXC10+W0BWfP4q29JRiPXDkg4jScVjHql7Wk7iZ5h0WPpQ76byboMdNqTChhBWjfcSCN3JgkjnhAvSdlGDhBP8P9ix8jM9tTJ0iQ0NXut5QTHmZzlGe0vYsGjmxvmA/gmOxCzHn6Zmx6zvcGXVKFLrTUzfeAuj/18iTA/rBJmmy8JwCmPiSw+HJ+Yx6HnoVYH13Iw177aU/B3I0PHTDFa1IbZxrwObKkXqkpCgbPhWJ92YtUNRMjAzEq6Cvh6bANCOtyqFMD5XpHNcSVHksTROFveOZSEdNDTuJPdn6u+Kov0To+6fX0VYH9pB1gSSnVmdjhUQBmDKAGo0dZk5rJfL65fgN+rB1zYN9mSK7uRe7g8iM5wUVPnES4aL7NrIrRPo3IGA9bbVHI+Gm1ksgltVoQXLZojApxGzUiInjh+6MkW6jRfCl4cPgshCS+++G61SSlyMh9MQqAKb3iJW8FPhw7eBOOYDhg/2FgxzIdxya6NpxOOPBkoF0ghZgr1+2LKxHQLJUZdd19ULV2l0vAb+gHBSurvTtaokVrVmXRFGCckmQoVnO767UWFIn7yD4RZ5pnZaF+H4hwDo9Um8ayMS7L+03t1uf+9rvgGNH64PPk4zPeU3A8L3nPKfLrU0tomtfRAJC3ZtXmgNaxg4QLqcjLUQPYoYZt+3q/6//uTgLe9tRv6qUUoTGWj1j5NE6JoRmgY2Mx4V2cO+h55gZk20igP6T5wpIl9RhJFhK6GM+zBoj8kMfGMzKoLFrdDzLzq4QPtkKScTNLyELrVmQ44mCz8+Puvw8fCAiZyABHLPofpO4hh7DC4sK76t0Uw/tt9Mu1B2vM0ukTQIA5xuOgvVL44U+Mhauw/E+rzPEDRDHVmWcIaOp1vsGu1F3E2DxM9gM5ImzNDLNkCaDXtLBYvxq4q4P5AV+fvAHQcGZxpTd5vvPHrLQ3mLD4KdqgdI8joDGs6ds5SoxpUaVGI/K3Z0np6epvfHrm4Ihr18sEFiyWWMdGmjl6CK2nOuzytTDi4KWJCQgg1EbrSiD6zq4wcrjf63ODY6COJgd2yGvnBdzd8NRwF1bH4WVLb0+LxDvNTb4xQN03J4MGAMC8XmrIuIxsMtaKAU/2t88R0jBd7ZmP8ISt3aJa5Vf3Z0n2wYAhANQi+lPSqTSvva70m6JW7co13ed3uMYo0snPF4o1qTFdRHqGPxWbKQdu7rW/idSP0YwaPdOjdzkFdoJoLFVlthTpx1FNaZVjvX3rtyc7SiatBs7SLAkPu8K3SP0yFwZ3m9ZZdDFY00ZGpTx6iSaog2v3BAh8KBGGPXpp++SpSt0S2Dz66FVDl1NKYypZcTTzlVHpQcwfNrH9Gmd3LMPE3WSZ87SsD0O9Kvxyt8vNWk6W9aXoM+gt00R7YgjsUoQnI+EZ3w8irCfVpU0iK38+HzWpZ0tW2EkbZfTscplpXbbJ77GybOA9SJvhKczbGxFL1MgjX/jpH5e141bJHxG2QUf0KRAACjBY7tRBBcKVA0msZr8MYRLzHfcwN100qtWOGoyr5lAY04y+y1fCHOQ+NZrJRWAcJ/XFq0p6Rj5H5a4wBCVFRnwJJvwKO7/eI8cU1N2VOXDd0G/TGjtz8osfg7cXf50CL9NWc3Nm7FUs7jlN8/rROWhU74zCXMN8WptkmnsPXyo75Pabmkqasymlw1VMUpAj4YuqurX11zoM5touYyfRcFb8NwPL3RvsDX0pSqUVSSpFD88IKCE6Vhe2fXAWP8ZoFxlGEiFZvhvG80GquXKMYcPPJUsP/STZQ1NO1mvNx1YtsK0vjA//PoFYowlLCPF1KQbKCzMshA5IN1SqUKOktrc7NbZy+8Wm76ec/iYpMFeeLjsZteLiMsEHfzY0r1Zx+oP5MKoCBoYIBy4MMVzHfxWKdxHMulGu2CoHDDz2QX6iXveElE7/2ezUCGcgDPDVwtqLtat+X5lNfRXSuRdwRfDzR1IPph55+bMwtslVl8LUzcWX9y6AL/5VfyHD2eASRyXjQewtVdV/K+zrmZRtXtUGlLfVUcyxM9fHFm9JXS/Zv9nNbA/4LXmMGGlUFgkmJHo8IMtI4RoO5HOcR4ZiAzRGtRS2Y72o92NWpqpEGT5FXNCXTuLPuHGw5J9O8Oo7Z26LVHdbIgMFODIp/y0pyBgFlE7zeeurWv8Yes3o9jGKvFZR3+uRNlPrB7w83ZVhMz0Hes3s8MtoZj6ScpmfS7wrRlQpGs5UxZHEdtQevnUNDXXRG7ZFuuYVJ3d51FMWEviScGajEcWTVp2CByViwVbpWOwEYu0DuOPc4FW6TaoRD4hYNB8ZGG9Sld+3J8l9R/nFjI1yefGzJduTht6bMSYgVfN92IVnUbSADNg9/TYfI+XlDqByyxh1/1cGkOVqrpRskohwgXhCBvKfKljq1YUDwqi6QnZfnceiqAGwGZvPAVDBGavRa0/5c8y+DkjtstnRi3lH9+MVvmV+yRW5auMC+2cwiyOO3oimrtRp816WOX79c8W2ps6TgRbv4OEPf2/iUQdRRS36YaDQmWPVKutvj1LTOAIPdUqUUzm19FcP6yPCnl9Uh2OIEjRlDa8EiDF79H46lnzy5AyqJtMt5s/2uni6dU8No8l23Evt0Lexukmh1K3GNEp6QRXdiyYDtxGIYaLt3eqil1qNtaTmI02R/SZNzaMpwl5KH5Gm50x+cWorvUhnoqfIw5k5KHNv/1krqQfiZyxTCrSgZEmWEat3IUhsH1bUhYiW3qUGcSGFBnizoNpwy2GMLjJfm/FW5O4SjzdzwnYzNfwCoaDSxXMYXWF9M1uzlwvVWFc4UhKIbQNpJZczjeibdB096Fl9vi4VguacXgSirwXOoCASCJjheZEsDGmqzKhY2vtuneMM5t4TjgDCQVFwKjwmYRIK1Ftg0s0hKjjCCbJj9TFlcCrN5GPSFlXJMNn7HxW1hCPCgeMkIJ7hyA6eV0D+AXmI+L/2o7LTZhH5U3Yc9EiVlaAfOXrJO7K0ujtirEAQ84yYcXEQdYwyPnzN1U6eB4NQfFwYHJ0213YrpegxVeQyN11dudQkBj31vFXd3HAO1xpB/WuRxFolrfUNhs5sPU/8FMVObSVTj7AuI4qTVGVfsWhufRVsxdJtWLVPjYrpCxMHAWNEAgCD6veT83mGsTKKq7SqBq/o+9abvtpE1GBNoKVDhrkQeObWb+J7jlo9KvI8UMO4iEpDYtgXTDs8Xhc8xBU8ZjBxlcPsck1Ce3rcM2xcJPa8Wv7eZ0h+Ut2JiIZaP51pSn7QXKsaAsV0xUsrds+15e4bzd3XYDNrNOoPUqDbXkHXiE5i83Ekozk6b4lZ75F+wj5cHHJf2zFum4/sBU2riWvvDvPu6KHO6DRlh21pweZayHqSFxrO5f5m2Jfiv7csDfI6/3GoxdQok6jcOU7QBh2jfvSudlaPqrcg7qYixf6+CAbbuKzLCL95GAZhOVyfJ4GwKBBuddtVF5D82NMsIMEmYvdSIMMEET/rhosvr7zEc3GEKrIwc9N0dmp2gbD0+ar1nMjZ5fMd22YC1aeJZ/F3j9w+2gc2JLhMls/cVaCNUetEA3dGzfktj60QrYtRPXgXaPZurgUjpp2dUdCjhDP5TLcRWPzLQGUuTobT11geigWm9k4dI5q9fUMm1P39tGpz3IgYRslXYN0pR7JcI4HRjkjCaPkvFkdmWvk9BJ3Ou97VODWL61PNJb0XwYjWvqp6DootVIMccpHIYwz3C8mrxnI1s9XU7L+8l/s6/eRmmuPvQhkYIJzkdl+dBNaA0sB6FtqvIlydpIqxsVSB5GNybvLIApTqipFO0Ve98zjVVmswOUKtgkb+EhAXQIkqj1Mvh/dp0JF+fnzMWK1Z9FfGc1kk/cWaQU5w/cmUMaTFh75NxXcLM74srnsY4E5ZgvWcw/eW0BuOWkxIvRA+6wgml30ywOMy10EPIpTQ/cE72ICQ4sYvgLtnrNoRwFZgx5PJpLdLsdW8FsWDEwa1X3rFbeaVIj6OOh+Se4x8xwoofln0QTxAe72vvCtPWRB37BBVGnfbca5z26KrDBD7+Y3zdjRKMGsHG/tOBo1oXgaSzpV9yNUYLsdFUPbqSrl9kg3E1mJqrnc2/nHn0echLH24G/H+ZSr1daLJhfjP4p/V6xSLPEtnEsfZcGzSEpehqefvbrPkBWxaZufjkUUqXVbosAwwwB2LA+uVAZzGhR/y5tgLyZl+GFbvCA/BKeOfz14eLotIbzght9N4MCEc1GXsL6RzhVj/qy0QBE0WXskk/n5IKyVOYZ/OQu/zTbkuFplfnHYhEqY/U0iMETEBfC6hEr8om8cY+UQIRO8JirV3IHocUvhl0nM7TiaDG38AKxvD4d4GZ4tSW/48GsrLTMx/qvOWsR7PzjRXv8DiLCH/YroyI35PNmOr5fbfBf0kBm0aSKA6esJ3Uny6xpOdyDoiGrLRZHAkaRdAsnXy0KccPKk4osYqGXb2vwrwLuzXMj8q+OLmPAfORLbzvJmQQ9tLned0G8xdn2m8bZU89Jll0TSRCq2JqWiQlT+8nopn/1geKfj14mS2qxkXFSzQGFOC0V2hNd1V3zwNxrnnyehs9hd8JF56X7BzfDui6r1ftM/l2IYAGETgQ4mlsYuRR8aQM7q0sGGa5brQ6Utt1ajWbNeDpDIHzrp9aLnOTOxAEBuTF5rQjQeGEMm9LIHv+p+YliV65ZpmUpRU8F/2/st6eq9tUp6bpTlKZdgVCggNAwBZZePgzhlDnv52wHelrjnem4iAKqEfD171EWx90LD+SiQE50PO5OAH7gzTd0X4mSkrvAOy35ujhWNhX853gY2EYI5zCA2J/uDu+ParAuR1kPdGfAlhd3fvazZ0g8qeD3kJQnfpGZOcjSZUecpa+Eh5VO2S4n1B0aj1A6ppiYTbWqmkwPsZNHbNTKAaovetcK5ymnTTKJL1V7cDNxkBBH7VB3Tt/s1+e4TLfaM7mGXaPu3yysLdRA3uTanlP5lMqjpNd4f8dqxirxP65WaAFBaVwOS1WTsYfH13o1N/HVne+TaOrAOhdh2ff/m5tQl6ZfPeqFE/vWRsc40W4rDN/55OO3QWDtCQIHuvDKnCMJpyBraqp0QTNr5N6ZCe7OYrtiqQB78MQcWJEY3XDw89YNRIP/F5/Ee4LyU/psLOwZeEk0pi+1jLdWNkyJtLvuaphGUBEvB6I4TC5v5mKYYXpZivq20ZvXYLj7gxZ+iXyb3b3TI411S+g00IVZb6NYTJI9vG+G1HsYNCzM+S0nvKkosnwcaz678yGOqIOXv1izVSsi0ZZpW8kGC/5ZMTD7/IdvfphvRFcKVKtqzBO/jWlISfkIHEsopjhB30nNgOgSI09HP3bHtluuw3Ne+J8ORuVN+fB0k4yvJZzO33qs63Uz1FLFKJy/pAdjtFKZwK3RQ816O8wE9WeFqaibPSYol8HOuFZg1KFv3xCpMbUkadjRuObI/vBj1zFee1jWe/MoVIoC+uqku2+VwSRNU1wbQHs02cQCQA+vEDb/I8Alz+7/Y19xNIwC3lck07ZRl4eP0J5WnuTAj/aLLS756ul7RIMoC2xxW0/99Z4dc5zck4uVUm0c3uTY4U+tyddxQYRNnKAtEOT7NKRMptDcVKF3kawy+EA4L/h5NG2DoBqh2pxAcw084tqyB7h4P2P5tEVZoPjCx87QZwaxrwg1f1mZbZ6uyFyCbBTYgPVI9j+AUGMIO4E5mJfECNY7r2tsXoSpp8h/CuMIKuKlDxAxsGA6cZa/P2MF1SbaXZUruXtW4KikQtmO3i1idx2Rvxx1zXDdBqG0v3HsFF5e4aBDyIqA7wlQ6BO5Y7c+79JaNCyZ3l4kzW//eOcb3FZSjbPuSY/pUJelgYxiqr+yVrvF3JyWLCkfXUYv2L3DzB5jqzSiqSxc84Z4fQ/fWnvuom3D18PFYGjcJrzpevRCjxRoSjKMt8S7e7WZIGJHuysCZSjXddQfwYHXdA4H4ypJHbVgqoIHpUu/UxhHOYoy/tHXA5xiUmpw0CxJ1H3l91iFg08EHu/O0d3fTr8sTyXAXWUqNEE8UhkinwMlZksOPh0UUixJQp7hvg03hXIOTf7/wnHDY7TshQ9hQzsSOgJe/2CuWa/H5xG9Ti7EWtquIINP4qSzOYt74HuGN/slYX2+5t/u/xwh0xvQbcuQGXloxUnnvHYPt8sS4Hyh7PKeth3mGShea+rqexPDK1UB7xxe9UDcSW1bCN7JJwe75ofOC2eMJfWuyNfrwJ+qT227lWAQWSZhLMMKGYjjU0oR/7YyGqn6AiWaew/fKDhiIhGbsl6VSrnHH1+TPYkX/KCQ1rDAT9HjngE6Zv3CUL0zv4eWirfsUdA1NSgFW9V5TDOyDrglaep0BCaKetb8uUxTZqw+WRyhbAwaf73LR0HmVohjJO4xkT1TzJFiQ5gxoVZn7DSmoqCzM9kroXjalhkQbQtTw5BpMBV2LV6nm3pjqdPMwhQTeGaXggkYXCZofxMqENj3/7NEFTpKPIn5TxZipDhmaq/U4cosmVXwQlSQlaTzhw3gZJThAqtW9AI9ugxa1wXoenPrNPZjBRUZ0fdm+bi4uWpZEIHlN+bPCmGkQDGWu9VI1Z7FNjpFDXNG6Y/DOwPBa2lMhjEOJFW2Ev4oJYYlIEmKOsxh7CSsimDGRGj+9MczFWFQiAxGsJEZmu/z/N9/hsGYS2Owe+ZDvF++UnCWv4Y2ZWYIQvM84mL7XEW/12iaj511E2B8Cf+5D09pveB3y9a+Ua8CQOpJ7e4CAR8tnqlgdH1akuGWQ9xpphScLsTezrsStrGVX1Kg3RoA3m4La47UyIEOmIseWaCmGV3gh/5fX37n+ThBX0tRSc/FR8IqKS82s/eGSrqdQ2fQn8CcR4b+h4gq8IIGMvEcR8jOlTSboJw8mnQksyZyv6wKW8mF5dZynStm9pPnlrONrO/qfTWBVa1pccxrNwtAknuJ0jGw/cjfs8lty5iY8ymWTN9i5jM1RJ8vQMPfBPElHBgocE5ELWYnhbXzX4HbPtjjz+jpAx+ozfhoaOaXEPlP6WnEceAXAIPLToLLli5JwYwEZlik4GidYQRKDRZtrJcDasH+LKLJfBPyOOocopWthgHT0YSLc8lZwCLPhK/vfVYebNsOD9gz0CUeYJ5DHITtBKNkPN9XNtZFwypz8BHq3k4cEiiIaPBvXy64mzS2NQ2dCxiFfEfPnk0KduidmFJJS08AgIHMfKvXG6S8lP+TJMqB2s/oaeY+ocmYHFYxQQP7VysUJot8ksxfhGNqBKx7l3GJ+5Gb+btgxfYT8y128xZHOc4UM48sXRwXYZvdhuVNiPK4NsRaXeYtRgS0aIpbFRKlr8pVFh6WwtuWh080i9TugZbTTi0jlU6dsWEBkSlV7xlJTPIy5RYB3Yze+XAnNFIjL+pACMqdGAECZ2LjeEU6QbVon6AWxRloO8aaSglmu54h0gWvsoDntUwQ95XVAAiBFrhFhS1KMQYPCYaeOJTxucTOQ2ekHXjmK9/jnbQr/vZMatlXm7vVLeZB7DlzBftS7uLQIDLRpIsRSgvScJmtUsXaAUyAh38BS0Jkygt5n+B+G3is3bu5uLMTLulOwKAIs+SQQFN5clUHJQBYcY4zoDD8tRzngKcWYLkfiK+EzcLvd/NDydR6bSfwIksCITKKEBlxvqWL+uGMOm+cx07GgAYXguSocT1J7mpsk8Vlo3bKgXue84BwV3+THRR1SXbR4jC8MydHqM728Kob9EFHGFAUi+pBA8UNXuYWw9fQfiPdTT9xQgElVLCVwPf7R+Fef3CQdaI79aiPkTyzRRz11aIua0+OFDf4+yP7+5VNHSj2bqxBlV3QUTR6qqJb/4WFa7UmpHgeGsnFQARASIJNwYyyUUEdNDNELbBd4yKmaUs6zuyydZbjMZZm1CaX/wlAcu422OiVXPnvSNw/dHRESkSiaLiFGzivoXhnl8NAKacZ1ezDmfaz/bN1VtHiIwWxpkr9KtJx/Io3kzfI+0xuG2fBIla7FcCsKQFi76M2Mmzf99g+Cu75nCDwf8FMwzhygS55ctDO+qB7qCS1KVKoSCMO+N2PFQEXF+v0u1hO+ZWGW5ogRvD/Yg/B56GTEnL59dj0wQOpgxLxgxkgabWWORfwffw6GqCSLL/JpVf6bbDcFt/wyji/wWu8fs/H19sxlLtBWxSZ1TXqhpTL1BshJ/gkdycfQtUyVAyF8pGJAcDo5FmaSF01HGuzXOFx4BelsswUrEyBknwtdtuipssIjXbRTeHSt+Ql57PwrMeDapO8asA3Hq5Bc7qeHcW45IydmXKhCXuDEeNMkcQ0jKngac9rF5EtdSjUFxXmkjpoWQsNRgB6BOgad3M0ftCjbyWwHZCYEE4GzjfaQ0o5B1BLj0osk84/Kou9gZC/gQHvImXrnobzGhr00gKoICYQ32oLZqzmzkKJ/N7NPHYFXD636otw6E223V6/mSKx5E1os+QtbCuNYI+Lg6aTEiqLr0kQMLxQcUnu40lXOgusb9A+jUQbGXTZGQtzL6G9KyyWErl1nLhxp+5hX9PddjuOm39wp2n5yPh7frYzpVS9z4h75YxIUQKlzO89KyRk6DYb96VBnKdlM7rxpgT2PRpe0cqGwcNJ2DuqeNXtNfOCds9PKayVtNDUcU6sXx06VKOhQrYtC9K7jnjnU7AErd+C1TmWJkiCINIDb1A7GBJsECmjdiWPJtmsuGnlKfIcZWcA8nqhv7fdJnUzx13RtgJDFvp+4/NWpg0AA9qEVr/JgwAOUfSTHowB+VasZmkyhZQ1rSH4W6RGi2S6N9ZegoWIMnEbujOOTfZlF7KoHRL6HdexCehCVxL5PmyX9eOH4lHlj18nWPnDfGQFW/QHkdTEAQQ6R7xEZ6fMh3p6AC/aiMS6SIWFW1bfleKj8QaSx3exLihnSH1KgGUCdz7hVRfarwZ7ETlPUY/aSUqtSrTb3H+rAcLikh02fnRcXmsnOAznj02xI8n/rbgMnfE2kngKZ1Ab2tUMGQyDjl3pU1nb9WsZJHucEDbE2b2WA5SkeD606TtoDDfe38rDt3+AXVFql/A2YPQMU8zaUAAkbg2Kg8CU1/WsxoZ4gc4Q+KjlAR+8ZLd6dNzGCE2/8Lw05SkKCcxpfqL1QjsgrBwdJo6WxUUisEb9/a6WhmhiGfMFPpbrNDHIoezZkb6Uyt5SxqgwpNFehSixRiFLxw5Avi0Itp01vQiCoUgtBtBEcPLFRKd7bcoOZ37HLEe4t7UeoK6O/9u7TfPXcma+uPbCqVbZ27jvg0kgQNXQdzQTg4P2kDGAd/3yYB1fMh187PGPu4kTq5zFthWXNrKSeV2PIVIC6/t3YTkBmtT8YlLu4VVLDeb5ZGkNHuyLzOfb77/uqbM4AOfAQ3cUcJeLuf583mvPYW0hCz5LzS3OboUfqK0TjX9Esn2vUMjm3Tw1Kdp+E9dtL0DECCiQRHKh1XRV543bEO/i2adTVIYGZDFVuanUNyuhNjAKTXw+wVBgCZsvQNKDnAOTw4fkLMEf5WWZ+UW2ltlGU0wO4Kvg+viCTNHNHjIyfoSQcqk2JB8qTAbqhysiu7ed5vojGTBjpscuVgeszPV264cnqBbFxOudnuGRI8Ev7IBce/cbpDp3DYixwLMjJx9sXFX/n2PJpybP+Bo9WGYUAWQcCHXa0MAJoeye06yTLM7qmCwjveKBkloO6NpjU+KQkwr+v5XZ8fmEq6ejN1rQcgDHUL0ubDpxhpOvPmCp93MiqSqAnMh603DchYZ9IIzMELRjE2ohKFRPsjv2ExQzQQdx3oL8p8rk7RzmAWPud0pMxttlNxSL9evbel6v1/oKnjorQey/Z18Y1tlFWwMcB54VHvi05GG2uPlTJns5Xc5cc9FvUKICxiGEmHnEfSOiFnJsiZD5v/F8j2smCYuTDyffiQnmZMdwnDTyeuIaz3iuS74BGXpugZm8/UZg48zjll+lcupAwKXg3YvjJ3ajhYSNf15X8ICgHrw6SXobOQf5uN0KQmSpdT+zHejzLU65usrkzQgLE1HlurnZoetrdwpELZENweGPa/mSa+uuVlHjwGPMupiC6MRUKXa/coPKH8UdtnJEwYBdanA73VWX4rl1gd152efO5FcMZeN5snae4nbV+1tAkayXaqbwHya1lL/tMxTpThAaCIaB2FJ5F43ZZq0oHCDG1p7485WvJ0yzk6smHXZy96oiDKn7fxXb33xEGgCtcuxGX6tL815PbHEox5zCiZ5Wjdu+JiVdnG9a7k5C7dWyOQj5l1+endM+UgJ1HI6pHM3MZTYj8jDt2I2RxCcF/OeakM6oi0GELK93xrOIwZT/aEcYUkAYab1TQtEmZpdvlwYGs0bADYsFKz2YCL3fxVIn9nKVP91ZYEBJrTbMzknjMEik3qxSv3mSbEjCgwVHgmcW3XldpHa/taBykKfQ7yetOmpqdOqJrDXJJjt66/tYaG4YOmssfht4SptgAYA4Rihe2rOZRK1Lz7XWYcBDs63r5Heqg1h/tUSWGxyjclr6O6MB+FJAvwdfzt/LF2dZc7szDBvBlnndDZhOg3IopJEp9sKJ4alnXuZnmqU0F5hxFP4IvpIngBLtaQ3MBB4caTyNss8UhumG1GdwlddMC5TemG+TocQ0jbN6AMStTz5aP4FqLAOeK/t/k5yHzBKbQOK3hm0PNLyx1ebzG42p72/yu9R+rr/B9GauUj/q7ovBYbsrr0K3S4EjciDwjncQg2vhDGlDhjbqII1832B+2oRV6AsNzYEmdX3C31/4dkSldmx+x1HPsh+5i1eWySQCngnLuzhLSgeAJsAXiZ95i1aSmFlb1mqXtuIUJWfPh3OLfVA84P/dY0Nx0s7wi0WgtBlZxPwamKEgE9iiCsUmaTRv5zVpfm7dwUwje5mQM/zCek5pIDsFCmUkTJBqq6cMmiamebwliiaEWsOBOHMDThree2GS5OcHX3WQqyl64xBm3KCAJZbR2DJVVtsRkv19uqdgfuhUPIko3+itt/4w6iYBhgUV7tIRMNT9fdGls4DVQyGi8x39ttk9s74ECnq7+OOgZk+VaOEU0g4IVMynX61AROfnDmIdfpRbdVViVkwQL7yj6VGICHjQ9mlF0zGxtbX71oWq07maVJLGd26+My/nsWKv57OzF6Rbwzv3KnsVHxXk9dO00IxaHhC2XZ+r6k9jbrUKxzuCuCHw4XUqvEUnsKhYIqVwTo7rRcadjaDDCYlgWWQuFc4ksEyOJJMuFj4+8YHBWWXWmCnJsIBbzGDTsGTyYs0x08v/iHXDHwTic5JZ5mW8DSgA7e1KI6j1ALlRW4GdenMc2R+d3h/3B4/fBNbsdAqQjjnkJde/FTE3VljGmoT+Gx8wpYR8pB2yX/werLQ4Zeh/Y9Qlt3XncPMn1oXlTn9hFZlZ/k72N0lbfcDLGhwU+jBZXqjWGahQnbyr/WDh9/P/POe/4nvlS1ms1ygQph0wx+lkZsQMk/830JR5V9ITKXN0AzNoZdD1pOUxGthFYd1j9rtNUND2JuUvzaKxj9q8pWa6h20AZxtlS+IBIsqTjXpj+3gFxRAnZbk1qip3Aopr01mhnNii8vXFJ+3gyBKQnZzQDYUQH7ZO81HX8r9NvAyBxxBKst59CeshMnPAbI6DZ3y6Gy4i82nZ+lzg3/20SP2FhVA5xUITBlRLil24aG76bu9vG8wrWL3zTYtYSmK+HyxuOeMhWGsfOGmOyfGPH+nOYU0tsgyJHzvTUdN7IqtJCsqXSYhvCDuVqnpeJZ4u49bfZRCdJ5x2ZopwJnezmXwP+Iw9asyqifpMPQMtEnisbha2zRrZZlhcX7BC3QhhDZWnyV1IVBO9rZ56ufnl9i5s0GMP+YDwN0MV6eSzT4zrbHdcG/f6rrd3lJRUCJLdXdvANmS6zxw7koh2dfciZHXuNY0qUbNosp/M2izcA2RDvDqStFN+cjj9ORZm79oz6FagscUM8xxx+b1UtvPczhoOOi+KtWQjcnBGiyCvM5uLpTEugH8+ITC3qSzyDWHkrmd/DbI5qCHle5rZUD2ZG6z2ODYOVW67V/t77j4GFGauK/cssHltCNjT/R3nIJat7yKxRs9akvWeOaA5XRLjFsMAnf19HR3EpaVb/DkTYwXk9buv5vJvi5ct8XK0cQCvELuKLsIQjLCEBDgw+PSqomx+LCWAckL9eosi2PDPwVTWCKztqTIX9N60EOFTCZI5R9HPvkxDn/FEXZpQ7dPnUYuH4wiDeFpYHp/b9D/uH+PMhrbpvJvvTsnHoN65iXTwrt/NjtIH32Vk4YUmSzc7P4LkohrhwmsfWsnrISfZCbOvTM1Z+M5D343GK9BPHXbWzqDrUp/GsQwQqX+dQIgInwxIzttFaLTiY9mw8sNE/Qaq0oo+CKh6vLxc4lvVcl8r1oIhHGqXAeubMlYs3zRbca3udfOIk/GLmFtdOxbwyd42Yrb65PlJsNqa6ckR13+TEZyVwwfz8RxKRMzx32hd3AD8IoKJhErHv3zbjo9jhYhymvNdvda1ogDh3DAXRObLzVuJ5BWkOfb2vjuiCepuwOnAg1YL3VHC5xykYihGZ969rQOD3rpUIKQyQg3HbkSz8aYyCAiLcjYD+MYB/bhz2OWVt25z/tg1yGFiZGjZp9dYDPAp+DwOzW4rCDeD3KDPudsSLCg0zGtG0jXzbCs+WxHoHh9mGzEGFy7WzESzFCLD+irMm+eW8cZZ7ib8KaUOjm9ozUiQGABk+1iCPV0vFWRKlHvjXVsc/Lufl02FGjqqa2azs9l8xBdJuUMsTdMGYkFipJvBMMh1652UkqHXCpa0g+EQgHgo51/OgCGfm8Aa+H+H2X3gKp/GSyLcQlWXgoaD8J8BjDTpL+4g4B4xb8vuxLewqPiawUNm1OZsfrU58svK+bCEBcRgYnzk7yEyd9Lbq7bN04dbftcCqzTFoQ+PlNvPYi6bd5babMqo39a3ey9jBBKimWEnEqlwYhVW2w1gs2rM0rF7++uYK7bLDGCfqaY079fHjjl8tQ0KOWKDHhlCvB+JtMCzyf6n8vWfOZuELILRqyvpi64mrHqvJ1MNUiqo5CoCwni0dIRHk9H2kk+fX5WGkxghXSmcPdZ/sfz+y2d9kG06yrK6YdcAnGT350ZJzQYawEgKxc6iXAARhWn6YTRdZMlahAwY4ZAHhL9IVQALV+WBNNlxz/I4GtxRGpJlMLt5EhzjXv9cz1h5r2aMzrpo7cjuvOrW5WYvt2ZrX19DCvFcolq0Rdf3KRWEWDhYGPni/FNSeCRbm1GTSN8RMiN8I3ATAOFEpdQ+RfPX0HjXUaMKdzvM5kEC81XDS/mNxnhNk1qh2PEbL3m4XX8f2GF7MBtd3TEDEfst7hGrz2Z8hD5MJo+OztUy1beULhcVPUy85ogF5bQEsii8pV7sb8Nf5Cc+3DWXDI2y+i4kPequ1sjaB3NUq717u9zx8wu9iBejjUI0JK1CZAi2aX7LVf492swCp0O4vW6Wmr5nevUGH3NF5jqCia23OlBg3yjSU1PKDbOiNILycROZkcFbf4lyCwYz/JXN83HSxozA/gt18CpOctJnb2DEyzEbDFbd8h6NOQoxCPfxvrjzr166haoSFUqIvCDr1EKWtPdjXcxf0gKCZMH4yvgTtlYPk7bqtAgGwEukMGJrY2YD9mHSfvpN4B36GugmRlKAEwddfnmKdm/DNtTs2PvFj/uYqtHfUe7wA2sHBwAeGIqJycdDXi++eSMzoXBcIC9XZqqj+2D2ZgWaEH8riZUCdKLuHXo8K5zlABBjrrIn8Dqtqjh65ec1PMEO/PZX5C4nT6zuH2qvf5DjtykT1Vd3gLLLVLCqM1Z8xAPZNxlJFHju4svPgZA0qlh8HUqUFk37R3Kjg2zEQfjgalWUvvMX2ErYQe7DzYzpbrNUNUtsCwVnu1Ojhf3F8VZR4FLxCmCnPM4MA2e34pcT5Bso1GwZK3FID09CacxBaM92NJr/zsP+bn/orwIVJgUfipfz7eHwSAX/gHfJ6a5j4ymjEtbLwjVlX7KoG/GTLYI+qnrCq0gZetOyUU2+hvJ9ff68FtCYbI10vY0ef8qa9keXLGgefy1iiTU/EnJ1M2nIjadLItpvbocjQMS1WCx+Be30Ue0OIeyV6yN87Z2VThPDuuVuacbWuv5ZCxBO6HpDk/TDqFPQ0X8iwV4pnafDUUOLarv/E7yIZ2C0phfVVxYI4J/78dKMc1ZEjrKJS/t0Y8skVy6L6416qw4nrPjiq5h8fR+qv9r52jJLplcr3BKzuqQVZ3eGn9rM4O6U/AMJBR5ltIPL53ij3GCb1a/tWTFjcPOuIGtecMS3bVY7uyqSYM18u4VPae2gJyDihL6ucxR3/w2fWYHCmQBVaP5ZdUoPNehg3PAubXw9ATqkQjYiew9TRKROjTGj6I95Eevr63v+BxtnNF3DlbSINlvaQdY092menCoXWof7Vq1B6TXvkO1mODmGEbFesaawm6wteFEIDBvhc4iD+lMnauX36r9zHr7AGAGCIHbniyr7u/p0lQLtKcXFfrN3K+1lmn6mSSXvW+aJbDkt/tED6lzX6k7mdivpnYSrwl2XyI3aleLKhuNecY+IFxku/Sffo3iqRclhEcRutTa1QFaysqw3aLpUx4Zt7YLFOdJ6vrklUaltyoYOuD+rv6fZSVajQRZidgzJ+MZyQ+bOJ3KGwUDqBgwdFseveqnWC5npLVvdQvHblkiSiRE3/7DtSArp8pw6MdrvAnPDOwHCc23AAoA5nIQYfITnAQ+T0WUfG5HlKQ5T92QmksybGDIM7dIQHmLtfm40HqjDHeuf9k/omgSmBZLdGebK0/IITxIfC2HmSPPG17L9KFYHBda40uqLakAycoyv+Xb8dKj4rNXPv6mOz91ddCx3lZkU2+82MifWDXhSkQeOxuGPXCfQi2ZupR8HUnN+XICqUwOrxX3xGn8YiLcMkE6izdqnvI1djTf1g29pYpdBrsQQ9GB5TgwWZaelhJijoMEPPhnOLhaGhZaUAgzUr9lSp6dx2pc/qnTYDpG4+TlR6EBTo90ySfx8ZrVXS2oSlnEjfNKaUIwOng/boxMIe9x9saIExbHmnAUQSVFc9LJqShCltel7Mlfymr9Kn/974C3Thz4qTgdKBAEh8PHOMGFkRRrQzI7slAMOj9ce1ICvbqqrc2fiNW3VrHTAIYRGJx9pzHvfelnYdQ4Q2jiF0PIamjFrkW/kb/szUP8C7/0KOz0WeWPEHty7TeoFeotvDDRGbQOqMxWKdywOgLuVGsBFo75nHzBU/TISLtweq+NuHE6MgzsY+xX4hqUzeVz1XkNWAOCzjEAK+jZjdF2wpQSS3hOLbfFE7G9fPfkO/JeY83qHXMQJbpGdpisBYBmWq6zkleosk4KENXWxf6Nh8MrWQkJAuygj+7WJ81en0fWDttZqOVRU2N6Vk6lH2R1uZ8xKgPhaPiRAt1YUwJHDmNYpoIGhcYixpdOl2IHr4fntGa8jO2BZA6OIpgwXOq7Lns34DwlZ79EF5QxXpJGG+omGkc0shzYQDUJJOLk4tz8p1zyagYU12OTQidRzg3AQaO0O0CyKiCQrXeHlqhgRuO300yAh3cetsnfMUrX60n0GBWQ4fIeckomH9FdWxeHnBZb70XZR5Swr99t6l72zKKofvskwaNS212u9V+n1HOTtiFc0fH4DxigSejWXhZvCTXPg0yDqgBA8cqqaf5q+MkstEoJQ38DlwSWdRcgq5AQVlwcJgi6PlzInrR9DIS5hss7kxSKlXN7QeJ5SaPdnPvlE8RarYI7G+o/3RD1CyzskvdTcSNMoB9F9h4m7v7jAwW6qkYdnojfQd61TNDmvjrqRD43zKvFJepdoB3DjiUVj/buRzi+TXplkBPdkKjzBjUcp20hctncXoFhZhuY8hKRcfnzDX2YR0lQQOSwtDGCEpx1M9FeTA1kH/lNZG/kt5TFZuHzzBfuC6jEGDa9+g2BXSaKItpPRBkRQgiTpqv5MBXSfyB6FH/Z+o12oEHQybjhdOl1Cvy8NYqbpXmjjRah52Y7Vb4YEUCl1BuUngyghwAUtYSojxfSYuPQX6okGqHY1J8Ljj2tSANBiUlKr4l1vPUzq1FhcfQ+b4fU8exXHH02T4JxovKLvqH3EXmCYUMsKV8b9OAtKeM8x+OxNHdX0ViM0lkMBAZ0bvPzPdfSFL7KTfyN3vaydHxCpfrO3Ag45MXzSnVgnsBczHFSE63FsVghUAw/nM/3cYSXEPlkSB+pkhaxOvksAAAHS9/3AGEAm/UArJaYtL0UCI5J13T3u/9WJgqBpae4tRi6yjsM/uF7gga9aLlGSSQexO17nuyi9Qp/0iayEqiAatmnzkcLN6mIywodO0uNQCCGgBavJgWUgRQXdxdCPVfXcmT0F2aQOHrE12ILPGnGbSNii0KGCHHjJ8N1Xv1tvqjm7z9yopisGJJ7sHsIOMLvs1Z9SFA08t88aGQ+zy6f6xy5vRztpGBZ7WiyQKlWHENBUuQsu/TNlVO/UNDU6njj/5V3R7LEDYL3fj0FBpoe08AXJXIal+gCy4QQNR1W/p3PsU0ksL5yWCYeumQnBsTIjW4/8RkuMby/6aJu8POdSguSYQyF7gqoIkGKUxmwnBI92xy54Xty/9dneUPuXvb7JS0qs3bkFLbvqVue8FksNbGpNL9wGGg3vrPvZsnnlWgQCwgYIcn/k6T8Dxd5UhIcqxsH0lbcKEMmfvcf2JbfpE2B9JNIPeWTCNgwTnPwPXljRif0N8JBu+JxGZb0cCe60IJHei6HYDuGANhTRbKxU5+0kj9QqTdM0a6NoXvHAUY/ffw0IDzOwX0P2giY4eRb5U5n+msmVxzcaiqjMP9UsQS2Q/Tj+8Y5pDT27ddnltnljw6Q2+itd6o0ru8sWFCm4v6jV86c+OIpPIWFo6Cug/sxb2laCG6wMAwgrDdljX3JMlbAAABVz7Y/Q4jWQPaek85mX/tJV6PTq+gy+volGFHvi2RHiEuJD+SCln+gqPbzAXOoxjTK0Eqb5ryPETh3t2wRM7UF/Wq9bJ3pDq2DWDzDWq/v6M9Q5AwhIanbAMMMASpQdBhxvrOFxED0lCTYZkNpXyB5b+DJV8jiKD3neaA4Mu+PVDhxBPpYFvbO2QELwqpLkaOQQbwOGN062eXVmLT+74kLTvcHkuB5btSH2xord4PP+7Gosm+2sHWmAAAARmBQ0vvVCa+03B+tkkOEdQw1xzshJ2XsMmCoNgywz+xxLw5Gfxhs+6r0XdvJIu8rHpW7LNquQGLRYu1Ro5M+s5yM1+K0n21nrHCmaEXYqah37bsUAVegMS2QDZJExhVc/AvOskkGdYPRFbTFyTLhpI5qirNbqbd+bKUT4HXWiyZgTasszFEpUxhnGXsXfvhU9DoUd6jy1AfUNnzMf9sVcppmrvAtN52he4i1J6nxdPVnhc+KKWyH/UeRwUlrz4nKy1/hiX9g04iQcCLhNEl/eBuVPuCgV4JKusZluy1JRxhE1h8HMrVXaJgZ4CZsMcYWTtGVZBuBuKi7/KakD8ejdmq4mcK57Oy5IZ78MqRCK2SNYfniU7te1urcby0q4vE/R/I0Y+NQc79y8ZElVlRZRk6TF/oWMeOP/DAoaxQ602hjz33/51NZI4aHiqL21XBn2svySU8YQ/NxLaWukP1FRm5CtEG0cHKMZBihrK3qLRjxmaHHLwnQEHJwP8D/oTZBeJJdCJHBw/VjX8i+sb+IHEVo7JO5w26zGyyVzGRLZ2mL8+dSLYrr/D5SaInD31Mlc5IgkBZQdoelfXH4dX1mEsr/hzKexvyk9QVS7soj0JHEsB0HDvXY/xO8tmtNhRdK+NRJwQQBBvfxlFp1ogQi7/yzswXLMF3myJK54o89/Hc6+43k7mlHJ3S3QITwP6fyc3fVXF2h0do5DdBMLQ87mkqadVkxxr7JrecCHZEtXa9muVsuulbYlT2pBcAUCrvc9k/vpkUs6B5b5qPFKGBTuYuT9I4dFKjByI0gC3XDAKkMZ7s+tvkCQqlBWbvlJsem/GUvFqqRoi3asyPMV/+Cr55dm9o9FmrR3HY10Pq46/HVsS9MRLCspxphkIjBgICAs1WW7b6HDxNmWz9lCDAE3T7f+ufdkeIWhgD4iCAe65HeOyUGWMXnPEiyXU/VzXQZyqoskI7AYqcFtfKVRU80VOdyM52rKxA8aYFwq/6ZVbJ8aNskcrvOo99d+AyjmVsvPY7F4VMFw5lPhxtt0upCdeMabZO0dNYYInYvjaeIdN9IQMlIy0vOMJouvQ1eWs/Yy5pNb3pXoXWiPn7SLhdjzw/Sv1Oe2NK/nVJez26Yj+0wnTtezgQDKtqLIeZKzeUV5XxSAqYVxVdNLdXdnmtYxC07Y+GkLTdX82WpYkkzkmQjqzbOnETOyjXOlOgv2fsBpCGESS0zxDIp9xTi/R7mz4jNJPbekLzrYlyY1Jwiux/XA+U+6f143OGFMrh1rB6suRA1ngcwpfUN+aPU7ZK29OKI56R4wkpHNDFvE1T8KkMs/UWngBsDFPM9snjMpfwCL1fm7fwQz4+M1VkB9kpzYCdawM7YrMniEv7ZxPJptHr7tlN6xtgqfuzWYQmiRW6sVn2FDerE5VuQKfdMrYIjvFYk543IGR8dqnTh0FvetJf2aQPGF8CpOrN4QvwOQv9H8w/AkDhxAOFoHpTglDlxfSKDUkqUW3ZxODJAqWCYwpemSc3JOk6ASfUXKEUcVAqTCcxRJt0c4GAgwBjCovJtTHppEh0bnH+OIddk4afBSHM5jp+IqAhAQ4JuefdT6bZAlu6YaQPalG2WJ/fWrHRmEqnEprQJRAC8bwYN8Stu5mlNyxkQqLXblaU350TXB5NhIZCtYvtNc9n8w1tQmNPinZ4SLyQxH2NdFBB1kBMokHcOLcIhhVUEabpN14+lyjLQImWYqeKGaMCtyAyD1UVEVNa2GMCRx+zljKFhdsL0bSbXVrXfKq1vxsWMlqu4OM6W6XB8Qw5BVALiVFVXPSYGp9zxDAh/fXNF1sxKwdOR61Xs+DJbviLOMGsG/DKEgRF9hR3KANeaiLkuuP4kkVJ8EIOphcjZGduXBd5bIsD6LeZspT32XET9JzXuxiaVnVyUrSNWDml76zyxX8PHl1Nv9CRP4YjxraOBfkYGvqnoGjI81t3sjgmRHRzT3riLwPh4kWFpEqoh/oaUi3l9wFOOoEE54lzkHJ4dVyIP9HVZN10w6+QSyrPG/MGBk4SOcY9m1JGWgC+45dVmZrawS2UK2iKksGa/gcoqh1ynILzmlU5OvzsXVsPC5WTSBsUYuUtFoaywUb7PGmdwjVUYMbtJwIZTHpZTqhzJkfodQB0EFqT/6QB/dNtrtVy86vHBs7XbnfGbW27N59nvzPNfxjkWXhu/3DDmAFZqRafsJ7b37XaFpjy4iTSmjHRTCe8Y5vpZy6S+xKb6LdH0+MethQVTyIK6fFtQwBwweBSOUgrHrWsscqnu1WBHq0CqRKEO/UzgsZZjI/Aqj7gUMckjnBNgdeXZlOC4eHRFFIm2dZzR3lq5b3JatmMb/7CK9599qlbQTu9vBUz4MqVoBcGZl620qlCDPyX8cEbk2YkiH5fGot6Jrb91e+zYP9Nnismk7LZ2Xg605DCVw0n/MusRw0tdZYMEwluo7FtSD4M29D9NbKapoSl7CPz1B3OJ9ysA375r9jfmhFByUprXsBozhwtaqLexQmqpdvToMFWoZBf7/KUhs5mZPMRCGCuVqbHQiDirgbDCCdGkIB7FLccYPYKYjxO3gfNVIECQvBicpHqfS3yQ4icxd4UWiRChmvOS0+aQaA9WQHgN0Lqm5Q0jtnmde/SP1aGA1BCIPCKW/SerlVL5JozLs7Zv9uz87+9FqkChYYeCnP+Q33FGMJHS7MV7CQtMHI9/bQ8miBqFXJpgnA1RL07yEwWPuF4hWj/4s3vWci9tO/55ODuuofr44RepVpWXXwFepQ4sON3OF/Oo5g/UnedoCAaVRccXSJmfmwp8Ib5T7yJK8BafgvlpWdspWuiOhwjStZatEov6W1UAa9cG7hCQvta/CkOux71T7A+653/Ma6/8Cg/BUxROO3GwxTj4nxYfCpZ+xCp6F/fqdmRrYGyu66C1uPZwXr+FtJ38cAI6emKm78ibFic+1UNesfkHh4t6TIbaENLZCXh6J+RVpSXyOmz3ZQieag78SPK23Vj4coXw7uEcbdPsWDixe3O9o3NRF+02T5Xq8Lxeyhg+jWVsiROHRVPob9WoM5dC10QbqEEOwoRy7WdJJAJDVJUK9uRP0/4+p9qc7hwwy8xpVqm37y9bWDXdaazNElR1evUE7FaCNH7OCNUZc7Mz1GmrGinGwHGbNyU7sxR4nMEqvZHGui632/Nj7HwjQWDio/bQEz/cYy4PfDN9tY8bPcJwCsa1Pj2kQEqxA5w+xWjkCUO0vcbYC1FDw0tgXxegyzp0vrvY2PxmVbWModAXpFzuWYzS6gL8/clTJq4IdQzofl8Ucz2IbcQVPeGHIN2eg2xPIQXD2Vzn56qnsGegIVt/RIM4KPTqZJrC1kaOvuaZDbdV8RwxXORGnatBePut8Lm5Ku75dZkFvYThbhQPw80h0ZNwm41Vu+nNRsrrrJE4OvT95thoDyqU00JdC6WfoW1/63PhiF2LSvpmCDsSHcdawanPsiP6sWFB3WHj0ez1yTZrjHtu+oseOqkG9PjCyDKN0fU8Xqe1NZuxeWYPp9wMo+kfozHiAHgFBeLf0pH9HDcb94SMl/QVpa7XX0VY49jpHg/y1Zrkq7StaVor5PkIRhi4n8OCjlGmNyFx8znk0fx1wGP7SlY8+ItkTCcZ8AkvL5gn3dsvTzvVrHhNhssLQpy27GoPDyjfa5TnaoL+BUPyf0OEifWo2CtFfhqWpyr79A4murTsL1o7GQc1WYE6ZLOLlsZQrc1YJ18F0xj8lpNkN8rmZshUb+SmWoOUPYT+yA+UEQMMMiGaeXhQ+s2DnFQrYOe6f3GQ3RVRXnf7342FFmEl+bHUbjTSc0OMQSPjiLEV6vmylhvIXSby3/tWfmL+WtedOP2t3474/qUbJ8Vp6pc5kXS6zXAy48kiCIuLuryeDc7a+uHax6RFPAyq+lWQL74W6CiDKzJV9mXkS0lNboN1zpeANAALfHBz1UslEznY7xTWxOZs5av5lr1610pACIxZXkTZz5TScLFKTFsvMfdcYRdPf/NsFIg3hmz3TAq/558R0ANNj6W2n5y/suh+Typk++WB5tYjcjC0YrYhwMWSf7hlMSr2X8p5q4pqy8R1YasirDePpYMDc89CKCmD3FwkrO/tXTZhlAX5g1hD63m83Vog2qb8ZUYEBee1Ae+GYp55yFffU/PvRCieuwMnFkupdGmjo+N7K2J/njG+euJIhD30bll/EYjIQAsXVo9da5XJuuf6xujfCQoQSyjCOES+E/kEAfE0yMQi85pTA3QaAsHXzaP2dGEaxTNgoPmxaWwi/TQDHDtjBjLqP+6MTwsEP+SAqZ7ISIicsqRAKQZ3hjm5r5R9KSYpbO8pKua+JoTuHJJpYwZutUFjYEM50qPhK7NTR1vvJOmJ2WgoEWtbQkWxYyucCNZIg0MMfnBKV4GnygkCWmaI5cg/mrSxW/OV+2R6s65hzKBSBKjEzFcS6YvVDxbKX8sy4UkN3xKBV7V+yvHS5PAPDkcteH+PtxWF0+ft7nWLnR4ia+1uj2k3exS8vb+D0CifvawRo91s36DT6FL68rGd4znwT/ttDgMZ/u+CDXh+vfPcetIrhBvml2mDM2w0L8qEAQ37JyHkw1U6zlglwjPYZDoQvDuh/f1rjsVg/5GFsusgCt3xxhzyzYdFLcqHrjZIsCP+VJ3VkPnaNOP1dQI79A7Acwf8mEDdQHZViLpU0n57WXHv4l0wJIPwT3qxvirENRi98Pibk4vxT611P6dMFE4wGSceA5MH6QKwOpj2Jw7cz01vQCbHgl2w2NB6eGlSL+RAKQB3uRVf8vhmH15h6cWk1GxkyeMIVTy+LKDf5rbajOb5tFq+DRhHKxLgGtcrZMcJNc2bMLp/GeA9xmbjbnoEtNQzNyylGjpPmOtSPglz1VbGvhOIbdKz2iEI++HJng5YR74W7rmqaC3PXqu+Zpv0r6U4vjJx9t4M0LQRHHvUH/yFNUyM14tnvypRorg0CbUYCMMSHpBYoorXOpAzMpsImv7ZZen74W949WHZQ0H5E4Ymvki2JZP+cuh7aHXd6UOcLd0CxtO2smVMF6OuQwU/4fbOvhdDb4pF/w5UKruo2elXx8PitTnm3NL/C7Fypl48HmY30LYJPZhZKYZ0YybZIWfiY3RoS5luM2f1ZzePfBXb1PqrpmlDoGSNnck7NUFJbFFpSWRk07OGyRbDEC+AVrn09QGGtlGNlpHljy7F6uKt7Ls9K6sDqBNpWYwRFg+HYSmNxhAqCvJG1KuRQlGdQMAvSShDBvD9y1nmL16NUmxyDababELpZkQLUUFB3pswnqBqd5DmCOrnLw/ea8TyuiYHkU2Fk6i6PDPXYfzg0NwSzsOHQ8JJd3PBckroHttY1gB/m0Hb2sEjKLeAdDdRXXmlBgELhN9z94OezGV1Zi7qS4vsVVrr8Pe9B6AWtYdGTDNl/IrUbEGhiz/2qG5lIGIWLovZnZWuOTBXlrtjSmqqQHV2YSaXMyOedwT077zG9ElcBP4dq3ZCjsQGWdT8ozuVdZSfKEz2ctXRDqeTFffGvJnFpEkF59765QUdcWYU+p9UOrZHxRLcxKsWSZKs/jNP/tOZxQgGDWy8auXEj5u+7dkSuGohGPUlxSnxdyVDEHt2/5xz1/s/ALFfPcMXiRou6oboPWwESJgaAH2ku69Iav5B7ixU1sMrydsaH39nNxBW95kKfpy6x2nnDQ2tj5mbLjZnLPna034QcHeDTMZ98K97iS21GjzHsD2hHI9Ua3Vr/yH+lEmO0JDMGjGwLkoMSMaPUmKJN0bvx/y0n7C1FyR2nBqTVuMg01kzZ+FZ/H/EB0GmgkjMSZIdGMI+UxRknHGibU5bf8gqhhMBNSEoCdgebVBf7dYMJZ/y4ilu9tCbxgvArjDmSNBt9MogAwN4IzAnrAB0T2C22ZG+qHDbpxtCsX6LJP8JWZPMR14QT0yNmvHLyW2C0+LF6UUpB18nRLySiu9Zw2wbrbPJfBVlAXkird6iQycAqbIiFw/Ittr+WXlSsb3hR8uTw5yb3TwI7+/63d/69NE5c9+2Nj2XuQM3ieYNIrLBkr4b8i8XA6f60aakhe7FBk5Gh5BnBD2NPTCISgZzti1HTJ1933gNZbmkYmQMBVuAQKE4eTKFna39TJIy0bB1seP3otYjtfjwA2WX1b4ngV8D7KC+dZF8iaNQA7wjIITBIJ77Hb+ZO3WWF0IJmirRY32HMWbiHhaltaHO6V5qPtqhlMmUW22Jik6VtSeWQUqi+YWDoDCWmuc9yE2ppqptWiVFO1ewAV8l82CimXMbdMxb9Qe7P2ziSG6qKpf59jrXWpKtr08GIaDQcu543N1yGQAasBmKYpaCNThhYFN+jSFaRcbOWR5qhQgUMGTzlcgvdX4z1b3YLpI6x9cEC/eCf2POTU6w9o26lkv3fERRONtNMvgd2QlCT91LBtFP/S26WzoMeoBdtLSX50CoIEBEPHqBWkSDTihRqDEM4K0GQqkmLZ576ncqXzUHXaCfTDNfY9+r1SAGDOhkZeZz90vyw3rZUaM95js80v78iNWU18TiA4W451qO5s8W0LFKEMVQoyCa3vYyunIcII6pCB4GpR1q02jsPkbF7E7dLcD2f05mGr7m6dFFIKotZuBA3LfKjuyVWKRLaqwRZOmSaBAd1yNkSZGp9A0XBQKtwu2zRLRiv4UPXHrvYcwGLDfw3hylXVimyuZ4PRRqgQeN1SfMj+/q+ODUm0vb3DlWxYr52X7K90VP3jwk8Sq7LTepDixGtgYr8xSyKdQg3Ft+zevHzcVwqSRKkAIAhoxA6UzkOtgs9jmtA8X7YKWZ2+Hhmr7zgtf6HuuNCeR6KyvLmsum2CWuh58TqUgIBQ1uyyIyAi6IT1wOvLYIovqxGtWYAfnIKohtv0yY/ijJbOytmmfRsEfxfnj+pR8pFrqxAvi0xyBXO+IjqnqPYiPHtI+4IVeGKSTerfsKwba7hZvO9ixbNH4hcaSKZphZVIccGPe/VV8urYPRu7nufvs1FlDDsLdozqEUPCU2c8hA7mNiryiz0mRgAyDzWEtmVqP9PU/9Nydlp+0UrKGF+fbuDQ5e5LowijkwgGOXHXTwX8Lskw0oOI+frD5sidxlC0v4Rg+Sw7MNOOJ2WAtFwowlwWMcM4htgt3lT1Sdb5nhOlhgzYLZbNdHPr+BWUtWWCildY841WKWt72ajLw2on/Q2k0vYi60pbcnjXmlcirK4GNyad9397ektdOPr8QwUUTETVSuL2v9zzQAm23eQntDohgVd9by4ilPBDPN7918yXaHog2hQmj5tfdiBE0yfJuTjer1ZBRibcRFrzrDUBYW8D9lpXAU4NzKl9LlOfxlywtD99Uj6vLDV38wHgUQ5NidOHHGrk5pO0XFX2PEVsT6HVfHGp4GIKgpmtQ1SrH8f/ZeTYJLajAKTDJp9q+42GTs9gnxozztz15GkyvJej6fLoNZkOWkPiuC2Pfx3jsOFgpTEO5XvXSThLreQH3Y/YQMPV6BLCDhq9t8ckGamq5ngfir2+Bpfz1bk+0I4Z29AWvF6TveIMKYhGnEaEFrhftGw4OCrB6EzDDldhBa79t2aH+CK+3qn3sgJvKMR7RNxg/CC9LeOWSk/Xl035YwQdLVDzEXuXY7wwCTybDg6vJXDiLWdlw/cInGXGCoEmfRtxW42bR7cBX8t+ysqy7LpgKq8tSAK9f7jDAcop0UqPrdtUtKwIml61hw4zQVKO+TG3IoxannICpx2R5Z+bc/yiBv/Kl2mP1w0hnoAW4WwGCzbbR9pn1fpBIFFmrkvl/J0vLwH6chxcphGMFlHonez3FRrYskiDhh6we/AzKiOaeMr0S7zsprUOPHrTqZMO3TkZzy/iK5ti7FqobzrlMx99H9ZK2IJIGs+lTs+bp7l1B1XwF6YFAkCmTw9BewVoRhzxMw8SoaaaDeddKlO/9u25Sq8SsrXKnTh4iPoJcguzDjEZx0X8X3EelX994OOeKaU294trb9di6ylXjEpLpJPJnkrJ8EBn2aozVjakchoCghAH6whoQ3Whn6TzMOqEpFCdFlnoXbgp4azjJQQZ/O16J0qNbZ+l3q69bhS4MvdvaFggZPhAZH3FVrwgqunUwj8zl2Si+3742kSbY+TOSv3ejxN2wt4n4JEvfCl4+LvXZ1Ws/FI5Qbfd6SrfX1OTLtWysXt5efpAtNZu8a0Hyl9KvIHGtkQdvVU0YNAcY19t5wZDg442IWsyRzvkofEQCp4t9viCiN6Xvxvs1CKC0rU1FGA3uHTP5vosbXxm4IB19q2WDTjq/ppOV2vKnU73mR7cPLjvf+Xs1OUVQvitzGi7tVrCDlmdyisL5cFsHbqsgCNDAm0XJ/bcHt1jAeWs2kUqaizYSPukqwYpQRIjq3QpzlSGSTNxRtBvSAWg82f1/wIk688uT2Y4SJ3KvU4hKK08dLHaISF79Bcb+Id1X+tNrIQIUy93BnQHagzac692IHMUu9+J0cL5UrCvxJucPttqbAMlw3spS4jajLPeNfR6JrV7O7jBa2rmlPLZXPcH7K49DMcItn+C5sMUpH86R7Okz/ttnsIfrRA7V2q5tarWmD4BGzBlNQTVTDBq2LOHGyj8SOq9jNW5P/krxmx/z8rf2+2fbeH1XNxuPq26Er+pBs8mpbgVVIIYJoOhDeOnvAMXjvH8SPX5qF0Jhh6KBzKDY1ODL/VdbY2kWq/1TaziJ/N/zFoqkkytu9XF+zcIO3XwBOcC9FAiDToYMGJAe/BVjfU/Egji4xSj14OQY3xPKTvNbpKvLZqfkwVAD1Qf0xQ4CsLMtdJ47vnAL+qSNBU16+pC5phFIO6yBp3TBa0VFK7cpr8Rg5y6GXA15JyE7kWcAFmv1wvbpJOguMWkdZF8/iC8LaNwIbd5CBNR5ytPxfI8uWGDfOrifqLe7gxZDbAIiiHXjda3QsIuGnNlvMSTPV7+Ix+5g4X64aIrxd33IUn/1tjjs7sC0ABnbSj2kLNP3jFF9YsK9qN4DtnKA1+hPDRs15l+9n90kYsz/a6sHKtDOFD6T5svPz+pOkojYo8o37Yjb1uFZ9/Rd2Snli9Ir6QvzG03B3M0oMswckbr9J6y0prIkI6gg+s9OnVkGl0fMzML8rMCQ9dGl7SHjwwKxpbob0xvPvN3ROx3OQzXSUAajEvwFhlzXzr73gJFuil9qyzLTFLLwqqlUyoYyvQLMhAdVf4kLPEJQ+IxRHKc6vboHAaqmvLPOnnQO2cdZv76hD4X1WKTHC4G3ghXsRI/HerDC51+aSaqN5H0dwWjH/OpU2nOETVgXg6rDsqfM6hZw3twTQXSDJrromg9xWCYK1Rwo47FsAIB/whSN5B3I7ubvJrPWUtsj1bcWUuTnqRetQIEcW5XomRt7tYbU7m2juZPexGvIRr1TvN3WzeB5aJ4DkfbI2/tLIsHe4CTgO9YHN+4j52VJdbq6xXnh7hUBrz18+dw4KMCd/hiejUCtTsLAozcyJrdo+YqR5BTFt/f8Po5sT24WCzw2wh5JlHuguRNuP6BotPSqutO6pBA7k2XdYxaU0MxPCpA9ubFITWjnt87LrI5fN/cZOBK7TWTrX2oIh995khzuQExDr97261EF/75RuM6P5UzZ9NXYf1tdo5uxU4xPUrD54V9VwY/ejZRsGqkrffZxoB6EIz/WxMe2h2bfM8kmuU003dshCXkPoRvR1DEVwsryWo436yv5kDinBB5PN6cpJNuu/yOUY11ScIzMC6MJmDFXsVfj7XbQdMA10FNr83lX6EObqoxg0T1hdlfvOHUXdvHH0EsCymZkm4LciGa8QppfBIQcudWbBIgJqM3vExxwcAPPEcF7ckOsKxFJ+5UjjsOl44t0sjgKC5y831QG1Xuhno4EGdSjorpCJKayR3q9Ba7nTf7sg9ENldhe+SBfHdSGST4IdLwSPla0v/54/+WRhyGQAkjibbIzlcDnFMlS5wG717h30kVLae3teIVkiaKa9sudwXszTnTkUqj4ygpje85qfgW7S4H1smU+j9EGpmXyskyVBGCVCFWZtySv3clqgZTjlABAcoo3Hx+QmSuCJKkuYa9Yg7Vh7Kd6gEamlIAz4pNJlTLvVddD8Xk/B4zNuve575x+l7kVBqiIP7OroYJVfN6rmuwjPkeEED8P2Rs/+nbaW8rJFsrZC53heGYqCjZuTaRiq6GJ4QiXTGzKqNxt7rb7/nxzFZrx4r5cse20e82bFtOq049pDPx7sjhh8C1bv1y+orCID4NlyaUSNxSbio+e6NIqbUtTFThmHE4xRU2vkqZ4NUZ4fGVJwUH/aIsHIjScojgOXQEELHeuXjNo5To81C1FwLO4+rkwlaUV/ePAgsbn9UY0LwpO8XBQhTj2k9xIvuEcHceJCFFLvpOwZN9+slQWsv+pj55e2Xrg0Zskn7wgABdhQV6mkgcKnnWSECIl9nYj8UANN3oG21zy+S8qCKH78+iULXrYN5brnJMlXmUijai5kBXV/iS6EAIZzGt5pqFaU9EiTH2ZYFJfjbOp9a5DYnb62njrQ8UgNa1MSZgniz2qs6TBUvjUI3azPWN7TM4mENUTrz4IS2UYgRWk90dPLgYTIXq5smkn6X6nF/YnbHzJnmR+2pqPqJJfW7k+NcyBNDy4ZPy7vaap43JHfbWPIrcnFGsHZN3o8OxVMrQtOi4hWXtKooa38lQUfYMuZYYwnd32aMhu6x7ikwpPPf+9LuavtEt5tHRG3MXUhFJClWcUDwAshhM6gcH6xPdk+ATcpVpDPhlqH6h9EO3PL3U0TZMztRW7xn0HjpyJera59BoSDGQYTQa6iDse1gesZe0es9+slCpbXfUO6F/bkn0aCpt097VfeuTu740+D0JDsuYccUcKgZoV86zFyuzjpUfZj93KJRzhy/HAeWqXsgDyrWmStrAO4JC5WyhRCUa0gMlxBibuyEsHkEkau/rFUw6+9V2QOIf3upb7iQ2k/eG+Qpm5Bb+Hn7648WoMCNrMgMV6DB3hy0kXpcraEtBKL93LQyCOn2CNTYKUjIH75iU4qxSM4gnpfER0Kgk3C46JQFj/G4KaANekyZj2offIr6pauXRBWWxyM8Rbj4OXgNgbE8hEboGEn5N8KtcW9TjywHEEH4PahHMMwEAbtURjA/imwjD3dhLEPmKuMDe4peFN0pk4aLR+UaJVtDJDs1xfEGPkG3IC6vd07sWqDGdxfBSFt4PFWmkrF4lcCbDUFNw9njHUCiwmX2fFDNdzjxkDOs7OMGy6uEVJH9+ITWLAilujO3uC6td9zisb9UFzcrZF6L03sSVya7QLpXypTH1cEmWnxOVRVAn19liqdTXQBAUVvQ4j/A8KqqXe5BrHhXMm+I5WeIgSWUfUaZ8a+uQ8MaakZcBohmBxmnUPxSeftBXucg1QFVE/FWY1FRR2vVp9T2I7iIf2yjKHmTfgqF2fHYmKClPvcKq70Q8TwY7is8o3EJ6TBCG8v960xwNlG3PaBN9v1NFiJ1kAVtY4FVhlTWWjPek2jT+Qlslm0eg8jDi2K+bUm/Ro0SRwVJYl1OKT3PP0jJRoycV+xkOzOHyJKFBlucE83hQqT3+rROkdyjc/uAy/qnu2lGgVY9k/1uGX5GVxNUCxcSV7diLpqcZNgWl3oKlljMVx5hz2QDfRubV5cbq0aGxPNpQH/a/Zm717IRrBVCm5J1G116t7y84qa1ot6LHpQVmorNhOTpxtdp0xRNYI+klxUzYmuCytu8DtV1Y9DwBeyCsK6taV5Rq4EaIeYIYN8em4VPyQHcrzZJUcN7LtQaTh3oKsm34Z2n2pdQge6LbDSCTKxUejcmgnUm4qz0v8dZedVrst7RpyjHI1yVZpeWSGkuvjmeYj7OqYd2sXd6WbyFkTBl1ZuY/KYNv9mWti9A0dTeiw8YL5WOlw5PaQS6XSo6489vMWaSusnioyA4kUxpOF+RswhiQ6zNVx8NAL5oeIIcdmQutK5b9R/WPTf/laqxmM6wuNvSGxB9YOt+LiMsX4u0klfJN4w/4YG7O3V0OUUWTg8u8FyU2JZYSPQbPlDp4s4FCi7J9t1tt3UEDTsaKpBATFbdpQBLa21Oeo806VCW9JcKtzqd3O8vSrCf4qubBfGd27LTwNZ5Imf2mUcdExubfBAya20yHR3XrfEwUGEGmB3l8Torh63vSe6cSTCsALsN8WA7VZC+IwAxeHp12P2ZVPbrbb5StRBuDgIPgMwIVIyS1qFFUZvCjxRWydIuS6NB5cp/9FPnQ3Whh/L5/l4OAm2lf7myvD0LLPaOZsi2dD1ADiMRjsbLRfJ94hLmXT6yk1StRgP9H8N9K8ZEZ10442CUFvwiSEyA+DMMSzFavHe03pw0h63Dp4d3dbj+NZpTTVAzSKEZrYGdevqYDZh0wzzzXFx9jgMvTeb0ScWBZ2Ew7xOl67Pw386Uw62Qy5tbNfoeRXcNoSUfHqmsu+dDhoWwD1xn7vZmJWzLHLAkdkxRPGAy8k0EmMcYavQwVHSgSW/99+U+UNEvjgW+SOdDnR9c7eQCiW5OA8nrWWYdWrBpT+7EShTz0zJRkM7toqougXHtgEj0YoBQNNmkLJUBj7+RYH7gnR2G0jsANQL3zcmuWbN7uyVtSSZ4ALQlUpVnu7cBZcWm9aXL8fiVPdIbnNlChe13gd17qfdYNTYcYU3LOkHWaeERxt8Tu56lalCJU5fQncXgWWVgV/g2zeWDLKDtu4UXJ3JOWgxu1ePVXtyR/jrAq7JljCclB4QchCEfqLshoy+MyqLRymjGC2W44RfX8g6AOHCpTksfHZ5pqFTnIcO6OMviKb3foXsNyS9ND9YUwKuQEXFiIJN5bCI6awIKFAHV2mgSN6u91sMacVTt3hdidfZGTqzTv2A9ol80060pV8GtrfB3Jl+/L1oYhbDtse7kDxxEhMFLarCmfzRrbGfgyaBYILoMAQPcq1hKad+Yaepp+7qID0kcNr4F9pl41ozYcbA4p8qxkPkGs3vLDut1tnvhlGyjd1fE3lDC9RHO/8hezpqZDYQqoFwGF7dEPlF9kKtj/ckiTUvkvORmWVuGUFIWZ4U1KzQmhHM5ScaXRL0i6N1DvY3h4K80KObIJcOPAAf/w7Gx6DmmZ3dpCgYw1HCWUOtKRDCK/ZqeusqZntOeyZm1174gxRj+QKceSt5kghBDbE7Zu6+ZTtFN9eTX0nwevW9TUDWKb0ImJOtnyKfuqBWoFf1rIDRqDAdnBGXHPsLjgVbQUn6bfvi6zXnVbh4doSfTJXZ1mQr+VB8K8C3mT8q3dra9MtE8yjDr+t1TzU2wha8Xp8dLNRdbRuy5kWQHHFa0PvmKErWqA1apy0NpwqernI/GHXWf4vlZvJKSbFXdpjS0Ind8hSOWgmmfv5mMsUTE7VtOw0TS5TDWdxDATFrp6xfbZ6Cidgvi6/itrzf8SbDpZQgkIyn6ZBfrh/nXBwIvZAQcuGFBWYHjZVn+PpVEPkOO1quRJB8heAoiJ9FMAxjjH2MFfMDhmkADFZ7/anvobzsGDPwjbLcH8Mz7oKlIO114encZ4g6g4pr6gjsXPDsAwwwGAYBhhgI5gGGGAPCu5P5jtSa+OfAYu2eaFPxmv1wN89xakhNqztDhRyVoJzjWYTSMzTQwZv7ZV2R0F8rmNAGGGAwvy/y8ist69IKrgyhHxHypSLNMhj2xetTbkEArshLUPDKEpa/A6KVp78VaR+aiWnA/exe3GoxnRuO0JIJOHUjQfKK6bIYkDbW55T0bnq29JY/p/iFZvU55kNBXrYOpdT7c52LoO2t7HZq7oWzLDeNaUD8F2oeBz9tcHS/fJG/sEm0RuRAMXn0xX0ucZ5vol1pt1mw8dcUrbRAY1zjp93sFMTO+xOi5+A/vPyVUQTY6a9rEuOZQoiMkzNH+Rs72W1XzrG0zIS25OltYHKYAqwf49ZyRdoEZU7INkf8O+rqDravMiSBUgC7jUflDa19vxEizHx0+L+nfp+COd8+QstVNY30i8zqKOLsjxX1Y3HEprw+m+F1KyKhgGjTE3qicpGMhahDaiqHLmDRT37da7zbHmerqV61ZHlOfz77/geGy3HWT6sKYqghtx5LlhfzsdY8qfBt1Oq+IhiFVMS+/wlv9ZNxEQKNnL9+gazcC+UAImD1Bj7HQq4hgwOVAOb6yBzdlyMbk4VHxGngfrinD/Kb72hLLSyRuUskRpGzlYXJzF68fKomlh6NVlmF1RAkY8/zJ2hxExttRvEXKH7xsFQmk42cdQqO33yiB4c6A6/TnS5ibtzCDi1XzxdZ+V/m9fvFjYE6CLA/IT+CHQVElpDqYCy+DeTTDxEZFTDdjqaaKgdVkfZNEyKmi66DxWw9M2mOnWNzV3vq/cnxW2t1Oa+uqf8PH/DPbrU4TNAbZF36/hthtO8wYhgwI0gN7ZelAoOekCN6RMIxgnMRUfU76xJBAJyYzt+9MFktBH/Ekr1BbvHSoozubrNqFBLm+syK2Pl8+KMUAI/ggwjPl20kfBdRqhJNBEk4ecO4JV/jsb0dcwkbtcXaRE7AlNlbbdvrcp7kBDStc/jpRghgcqZLrQscQXzO6MGyg442z1Sw+skgOrdZX+mgp1qidj38ksUDsGxViEOQBgg661oLAmMqRohZzC9md0Eo/5TfYbaBwisvgdHs2177UXR5xSZHYNc6aW19tXP3/loAfAjqWzbn/tiifKZJKqzV7JJXHUtWKfeQHs321jAQ+s8NVYmk+Ftj6a8VtHfn9SBB1h3IOpenMla7S76GmHmxdXXqlC4bUA6SI1Gd253vLaKixNUUVeHKVN7vmGCvIg0Of+VOSK+A8xAa7Ndio6cyN19OmwDEEEJjZffXbXsiKcyyhI/AaKh4YhQAgkZJCdSqpBUKRSub/CJ1aUsCFfz9QfX7gU/pzHicLBuUd6cFw8+9mdmVqg8fNIr+WLnR2f7tf4yDEiyi/emZ9OGs4OoTQHTDgTELp3sRgyLGRdPH8Y5mR7kjvNc/kvy8WEakIEkY7MtXHR8rY8UbcMTV6TvbqFEZcRp5qIqguCQPR0Zhqhh/LV/T+KRj0Rc3noApc4ch8smuYBmoOZkIKGNsyLWRoPo+fThESN+mYCGYBWoROp/mzUqQ4PT+2rDCAd9nswDqwk/UImiMzRjevtojm50pq3eZVLYiMjLMUIdrF12GSENM5wB2QLw1JTP2RCJvsKe3u57RQkte3/75olhZeRw3/6OuSyxcvHVKRCcPzHwEWFD9lerH8RD4ILFrAQBHogRU9KoVogBiBYoX2azIs1EQ2bMMZ9Hmkd1itYdVLe66BfKShKR1/0FgGGGA07U3jW5guk+YlZmXugXzU6I8WIZXATxdOeSdXtbrBnvP43OMnNw5cU63LkSBD5DOZ3SYx+RJSXLMHcMAxf/XPkOxUPPgGNLjID1IOLb9fuQZL+MHYoOROEAaPv49w0gPcSsXMTTZi5fIF4jg864pz3o+ttmUHRinBa8Y3fd9PXathCcLR8i8rK3Sm18dKTo2llzhQdhLx9wgz3r3FBd/zpa+cO/ewDE8ob53vCLoRJDIcSsJXTFWWUyEQcM1uNPmJJqsZFLkBEi+F5N+uDQvnEeBrf0nKugvAgbDrwHORGgOfGq9h0EA/l79DLy0jUMtYDJZbz4vNtPuo6cAOuDfHXvjhpGgwX6pWXaLnBBxrq0D8i+j78vfPv8MvUxoPD1iLIJ2L9avw1QPWeFTNjMhReyZ5vxrK/Pd2VWqcGqbK01+O7mTSLQ4KjB+orrXtjvIDiMUeJk3II7oh2oe85q6tspG2dtyhyagECbiQJMkehuk8uqvRx+Ct7x0b6F09N/ImOjhYdbyFcjLJYvI6isIfMBPnWuga4lz3wBx8qu3lMbUzCZS47qefV7AnM1aeVRNXQunJDAwYeuTvJQ15WPLA01aeNsGJyHKIOsZsn8BcD1h0V4uXwL7q1OmrL2tcID8e+j6wsG4hV8FEXZ18ckhiMMRqj1CiWczn6dtpxHm5XxFKUVaS5VwJq55Hcx+NLhOjPIcMZwy+uQSa9XM8R5ZErwxcjxP0hOeg+crX+75s/1cpLAhDfmXVksr2jBnU6e2hfjc/djYp8BkJDbK23iID3yKP5J2dM84iVt9d2U5AfYW/wtruby8gryFcbChSlP0vEXnRDL9e9JzZZiG2mMcbX7IyoH3aXMEVEsL9m5cqbX5xiajq/Q4HgPo5Qd9kfLsDzK96FoD5TxkwZvUt6I5xjYuE+HMXKm8fwJ5+tNeao8kJTW+04gYMQnoykbFdCh948i6/IOUv1moMc3h1IMVYIDCYQ3leMse598rdd/Rne36juWVnXDBOrUofafE2uEDP9PXT/bKgomIYw3kQPo/EHTvrcY4samgOl9ceSKVsvwJTWG10UJitmqxxYNfH59fiO7S241sBxGMjWhlGNNKcFdR2EM7MlC/23jviUy9EWao6o+tVNHVv5j5AKucK/NyxBYvFRGP/4wHuVyUw0KCLWZEgPJhsewJ3ifZh+nZ5VaofDHYfjcBPGL2Y1hGBSPDrnayvOioaY30Lblpv6wnFdqxMB3TRiTIC1+xh6v6PYwHh5If8Zx+jp3nZ89kuMAQI22mKmJU0EO3TisCb81S1jSq2SxPq7YsfY4pss0NBUiBWXO8glan/TsxejjhIgTtQ+RvY7fu173Sb/oyxswx6lIaEHgJPvRMYONc+NK66CzPidBqQH4rFCSHdkodXG79A5se5mrIoegZjXtD7tV6Pn91by00CN9wv+7rTnPDWf5YBIdsqslD7UuLGKzWpR8QDsWcQuORmPKXbt0ISzQAR6tMoVrla+BSp9EUZ7oXL2BLCUDOx6kDMFFlqyDE9k/MmS40430dKZ2pHTGcLUpUQ/hIMRKZ26rN2sZrc9lmdLNBwd4lMWGyxWqk58i5FFLZFN41NxlG+xX63LFZgdQQOVciCQY/BGGwklONeIaOCRbtxVK64TLPpTQeEi58UEM9jrv4a9XVyHOcaeDq2mxeJ5MAfAoMDPggiOcPUAEvSbLG0gjIyuzVJz/zxlQmZDgNh8D/syjc7xROQqiL8Kgkfu0YMMX+m1g37amJSouN4fLKak/tEkX5fnWfHhBdw+GuP+agsyowZ0Sk/JJr75qbf9IL2v2LHZvXzrHOUfMt+TiX+GdCPTo6oboU7pmA4aeuMxSBEhbHWmOJh2K4/N2xRxTralVEvZXfGl1ypepOCIR9/teZzpWVjFoApg1OjGoED9aNekAsqfN6vmlad7coSeCsHPrkv9+5WlOroKm1WY1ifFNu9/4yhboIv/WeWvPUTXrCeliPc4vy2PgUX0gB8UX6naQukV6ukW7HGayhLz1sl8yXFORP5t2or9NvLkHES0bm/IBPdNueQc3Ruxnf0PEJgTDl/7Gm69kFPoNq7SVVRDOXH9Dfkmhs7y2iCHPqnwoaqoRDXvd22gDwSigub378c/DhTqxvgqi8wMJ+t/3zqeOZtxDtroaJFsfx6SFef6ZjfiVfH9XI6gW9ivMapv/Va7TH3cyHA6y3ozuS9/utTrxMRluKn0sih8HnQwbVEGbzQvKQX9JlhfQQgJY5vBDFuyWLpJkA20QqR3sWjwIfmWY8LggAQ6apjHFK5h9h6xiapBJDqItdE2TZOlvi1WMGfBlqU5jIM13GySuftl8+xCbmK0RHgxo6vq48aIYVzVa9rCxyAgmtj/byT3mMuptyLYDlTM5TyLzfu4xQX+CaL/cAJP4mQpk272Tq3QFpIKGD80HUGUN+klNp0hJ5UpqTogCOnAitlXXS7q5QhJnHhOv6U1yRWhL8y807ZIUWQdQzUdcB2O5ecuZIX0ptaSpSinDab26HHfaHszLswyfWzMmwh7Mn+hUXF63nu87jkhP5f4Ayg7ewuu2LuMB+wd0BdPrlux+LBSpm8Zys7HEZR5bizmlT7lXqg8KCqE21JDjs1GYysOEHS1QrjTkudnGzGmlC6ctTuKdXqq8r5EyvUfvm2VL8VKINnfvMjMIUZWnMfvCQIQIajVdmXKUkcL92ZRF+7lW5HAu7Wd1d3dqslKizQMXi21wdyrRjLCWmD5WqmR/b46XN7DuBkjoMQzN3Xsaf4KIcgRJwRZ31FNBS5WcYY/5wuy4NLQkHbX6G5D6xzbRcwWdBr8KY+3j3Z76QArVPdocO2LQS/h8w+jb5xk5Io3sOjUDHPzO8fpBE/e0mj6Ms9Q8xSvW5WP+TL+l7WUbTeD8zdVlz4oQCNmQl3ffiNPNtd3cqMugDeeIfp9abLU2LC34pOxdewKkbBDd4uqKOm2DOQ8cf+4kRpXsLLAyAmgQac5LWNpha7y6Xp/ZWNDvm27qJc14auPaQ9oy04XOK/BwKsJ89w4Gm7qgpEvWCcMgfoD1AmlakVnq6wZbgG43qlbvzddJFjHDtb3KLKa4p5frIqjQvt2oqiQ8uomc8623OHM8o+7MgTbupouVDDVklZpbS98+d4k4N5hC6dLzei/ODKBAvUTJjoetuS/wfB8yCzQspjQ1YG65k80U6S4bm0CF5ynR7udWQ42EtY/KObWhsFT2W4TvCHuHGYKugpSrbguGpWM3gK6kuKf3MTaVgF57sZt8wv4yrlZNzJSOWM26monwhotBiyjM4jnQFwWZKPPy10Fij0PTBg4y4melU3j40aE7mAvPZFI87siJ6pKQFNxmQDfrLi6o7WHX+/jMDRFEZ+W6tmoKVLDxQQmE9T100xjhBcrULCYt23SJdDTEhv05oPUkW/YVp69v+q32vdKs9teOU1h4N6EUTzlZfcKUEHo6PH1NsI3xWjnT1DVQsy6SiALyoTnGnDTRapN+0AsF10l7VICQp6YCZUPJ+/DXAcGyFnhnCvaDXnjvFETf0a6X4U+2mIw67Q2ogRSqD/W/i8fosGjTw7IKpQy967RS0x1m/q1lEGFscDBJrjgH2HXIVibbhGTR4zHWW6rIXkIBTwlXTk7N6t9Xx2wfHaf/jWkmbzDEYLNqHeeLK6TU1fTO7ZFRQNL612pGJwG5u48sE/FunQNfzmAFfURDvVjJgNCNLnbGdfxGMXqKkWHvPpZZ8KxIsPQBuRy8NC8x0Qzqeo5anndlMyEiLxO08mQmzAinapKZnOGvyTcN97Q43hMzdCHNZsZZquQGGmj4V1a7aYKDuvF2eVCyYcqEhe9hkHh9xVjPnTAKEFxpjYev1LZQiU/PPr3qRXTHH+7qlyVKbBCfRvJtIEoUgw/B98JUPGiCrn7VQq2ci805oLWT9BKhTagr/aSUjAVF+TLIpdu7Z6G5v7JZfFBlYES86K+2s6On+X44pM7sJpVJLQ89paH7T+lq8kEsAWdNYt5ChwUZwx6R+KpxHkcuhIGuDwM5xAqLIa5YV4cqZRqpschEocXT1qq4Uic6Ng4weITDHFOeZUK6KB99bCriUo9v7PoYm+3lLpCWm7hV02OieOGv+fs5cnA91X8LMfcqVBvQlW4E/te13bHBnZHKcKVWBngkl1AbPEzXPBUVx7c4pDkDiCNNJjyrNFp1HDFTcGrQs9i0KL7k9Bv/FFViwEXihSoocMqhJ5YFnxH7iXD8wp820NgYlFR0q7RqkupTYvra4SsanMJ73fTiMui41buWs8sQSw2n6I2cHwmDnW1dOmKrHRb3RKnFqA1VuFsn5rMiBp/t7B7b8cFFtrJTFEjJJ4TlnUDPNu6sYRDwBBzc8hkCIjIlIz7fmQhh7YmQ6P9v9SkFsaG0wNp7K24qCe26rfMyU0slQhzb/WmUnDeCIRB2Jr0HKSlxxsLmMdXT0nZWgFhrNdBUA4cXMNNf4SENaKRFwTh6CK4czxndIWYXokJi25g3F+JFZm9n4TW7pdJZdDjxIQ8r2ybmipe0xtXq1QnUwEACYVNdcwb2KkqBwYLq6t+0pQYVNIaw4DsFLMwUW1ByrdZ6JslXfzFxbl13zTtvig2mucLcbb51DWFRDyvUUgA6Mu6+hPk890YOqE9p9AxsrCiwL6LlqKGCvzOw6fYwMYXnpMlgRdptp4rKIdTWchVOguCD88ckM0RCN8vbGTOTQ34gN+kA9m/3MxnLaanTcyI9vY36oEfNt8/3230bCR8mWTitffuM7HYAtYjR85OSmzj5ANTTfSrCSb2hXZdIm+XyiRWkqQeeVfm+OdIIbgg+QbICtAvBg1tN3PSA2s0rxmlIPDgYFeRUFl6u59VgUtLCDuJ4NS7WCkiaueysmudyeRL8lyxoCHcKh+mIafEvE4edz3wR2JXXO7SuK3CWUy6az37B7waGhkP+8U58ek1heMjHDeHkiDcJvXlU0UN1zF+C47zZGpbPgMLIqRWg/7MeKbYDTypf+FdgVbsL4IZOWFE/mzRizRU43fVHz9WOaYHj0Xz7E5M5UjcvSba/zepc6bbi915M7rmEiN9DI9lsC71y25EHAwQkOHqVqnuIR1dgWeEOy+JOVy47WGzMtbVeEf2htdMPpvZ3xz2nfPTuOTvcXvT32SEBi7WAezitSVAtLbOh+OL0jFsze6am00L0ESCODXdmCCiMfo8mL4NPZ7eVj9lCpg/TBbQdHhQzdpDXP7KIFrTqzIosSCmdeRtP60FAXPDMxiEHcEJpHH4fSZpKugkJnJ30Z2uk0dTGwEJIPz2kG72Oknm751hSGYH4zx2+F5gUgcxBncNbpR58gkITRflpuI9iuPEzJSd73f8PCJJh3gQVkJ0nNn+pAVjRTu4es/q8PQcLDMmLrn8C44AX9yg9T/UHCwH0Bb+fOGmYhZM9yKclsNh61neWohIwVkaUYsRkPBlMohLWtuG8iDhntIJBgcAxfRpTO5laqipx/vyiPO7EveK9Ux6v5taysB84nBUzuw6e2/bzFufW8+P+W9ln27DW55tykcWw0/JS7sAcFWJ+R6u8WS2MgH8ZwDzb+wJrL9tnhePCDu5wSlkCaf5CtFyCjsAZizurNNWBci8hBdbzeHllOEEvs4sbK9f1nrtj6Mr86l6kPDeOiY4ub2s0N9UX2wJdK6wndf+HzZKOawL2MO+ZFSefYSa1xez9Z57+VMB0flGPvP3yzOc+v6S6uuVGoFp1RJXlgaFlz+WyAbO6H4gTYJqT4ElOt0X8L9cXwqvPNVZ8+76ZVlq0bzh9pdPScveI8s5neFisXCzPFdDLwKEli/QVxQ408yWqzTh8UFhsfVp1fM7X1p2lsh82yQa7sr0QaRM1NDMO6hZQZJDxeyDkcxu0r4SwJDpsG/Hph72+22W4MBicJZ8vpdFqQXJdcMwGvonwZN1Jy/+t2yRIqbr2ywti6JN2plPZV/460oqrAyVP7HwapNb6FMmZQTWq+R9HTm7fcwdM0klW7mu9fBLfWTUb3DautE5l/F4ffm0QX8WHQdgQ0Wx7mqxyK8IKTji0RP0A7yGe+GKO8wWUW56RKKyJTVkhv5S3xrRnyQL/04C4KRLKSo0pjWjUQS+A5y1L9CUOWPU6w6qGk0+WAVjlnQcC6dLI5y57RhN2SDjnUbwd9TLCBRvC2Yw4M6tdvMuyK7Jj0uaT2xa2KcfD1WjjgIpwHZ1VgaGNuthBmBXC8MoFcnWgVdb/2a4+DtNxcnuW/b7o6D7lzfPnrFGodB3OPxn8fe/GhqS23IxyniQpNsQGxv/ZNtxKbhBibN78c05FEnha6lVsOVAimA0vAphdiGZ9qvwSKnl9eTd6OM7iKPHiGtM2909iKn1JU51haXiO4LHk0TVbJJ/xSi5eEdblfv4yu+8JrIOjXgYK3eU0A8mlXxbPLuEs24jcopOa2inVPami0H7xaBSuBhnZ7M0TvQmXMTt1Py3FLEevZdBdXrnqmqhRgGjnu7/T4ZFXGXI9473WdvkPOnoNPQoS1Zp1YWdXHax5vh+8CnQo9Vj3AIPUy4+zDrgCbLKaX16CeI/hHN/9X1Gxw6L8AEYyYhKGWrZNoTUptQGr5XmsY1/XbNwVdS3/NcWfRXdN7JIMbhU9xku4ZFeKwAR5ewpFCSp67v5hbHiOyChVH8Oyu0IbF/Sj06r6MP5mGp7mqKGrrslNaY2PrwvLIVinWC4nrsOzWJgRl+zANDKNkjKjyaBNEeirbNqvy2FCgjuwqWh/EuTxSAtsm2/v+gDuogN84M9zFWxY4/5rGHhqdfSGp16+M4xaZdB7u00dCXBFs3p3h22M3uMOoPo0DTzFmQ1mbY7yO2qUkjPnviygKCuNdShAhN4FqSnEy+iSzR62Pws0Sh0gtKTSFz3X1L7gEDsxps4xj1P/VtTuJtApMdhsDGpQnATYQisBy+IsbLxndjiCoY/Sxl+nJUMRdS2gz9yGsBHnJcKLPl7JE7+GdJZuhEO+IsRHS7qH29LUbB2N0fE6dLNVMMBnrs3O0EI2E+Dkho4N8FaSisOiuPf1CffD2nf4N2Og68n7mF4zijf88bV3v7mP6EX3Yuw9P3N0Yna0FriXrFLdJ1Y8S33zrU2D7zKcryT41B5WGyD995yxzCEMld8r3KWipNIDZC7XG3UXUEAVnI1XckZ13Y/TqkfGEKNl7Z56d0KCRXPomovt8v419XAUQc4en8kpbNVh+SbZc6b7gzbLYxczUjLBQC+ezbwg3za3BPMnVNu+2qWOtwr2xAItYlfKNNje/Id1t+ftCHKvKCYWHe+fLJhT6RrE2eFoDeyHz3MyCPW96+pntlWOEclyw7PkX7zJCReJn18eT42ey47OLbvKxkohewk+TqNZW4z08eDXDWr0ejEcLxiQeeJM9aczpTwmiS30hMkUU7fYGVNkkYrpSS4dmaRf/n163S7LgXeL3HrrR42JkfHoFv5l5cjDcKeel+cM367/Xwu1xalP8vYLGluBZ1hX5o4Q7An+1aXcDwJigY+Mp4hlWHb1r0rxSf7DkLAkEb58+btQ9Og/yamuygHl3HSnWPQSt+Os3YSnrhC7ofa89eRotXpiRlLULHs1F5KFv9o+zv6cXm65ITc91D4Vii1t65lUni3W9rcD3enisIA3MzAWU1MjAH/2+J6ae7SvHBx3wzUk9xMEiatD7T6dksTtSkkSUvHJRdhgpc2TuU8ogy0dW9DRlu8X0zWuRJhEgTx1MRrRiDOqQkpNzSp6i+E0r24OyI0NW4doYRF/Iwdy2VHvWSqs39vXtA79hB36UUxAZrXoQzW3x+ayh0afKFXID53N91XW22VDtDBmTlPJUagjj+4yYtcsx2OTRjnyEA18I89OBpW3ZThNnI1U98Zm0UcUygAY+aeQ+kUMAxatzRGaZG9J048rNb52r17eBHdNYhqd/W9IyAhjYflN+z4d2WyYoLquLublRUrz0xHIiB+tsNwxDy5qikkM4pEb4qridRInyaRwRmyEwYYZZxHi3hnxrRrdesDUd+Ywyh9zfedI7fK1rrUeo6Z1PwYAAAcUNln8GaFXr1jGDm8qxNIVxnqHeRKqDosDoi+7ElmmslqkDxaDRbZS9M/7pGZWThKKqBBttxgIlEJzY013YALcRAwwxTxzH9JgA29YJ49WZgAtwgwGtEGATORhTLUQMAIsAEl55jaxsxmADaKJb2XbY7ABLIerq+iLNYT+N46eDJiAIv6vuXZIYC/vKDt/eMeBJAw2CEMp7j5G0sj9CrJmXRsilzXqf8G8PeqO98dfdw8uXUWn836vHiBTCTZu48z6Hz0XdXpD7OvHSIAEN1MK9M0qYxR2XgFscoyqzLxSuUHydA0FwuiRumkjRWfKrRzek9zl2xGyy3N7uojIb7f55s3d2CFw6O57iDPuL5WfJGwQU8cPrq1IlMnAG+AtftecyqdOTeVytOBd13CF665N410gIH4/KW7plX2OXBHVM1K43mJrxIdIZNVVjdrLK6310tX59lADGDvI4HEhWFewbKc6XOViG4qHcO+B7tloPXf1mppZOdErQK5M0qHGjgHHRqKjT85Go7isrcZnyzq/Y++ov0YvVYxVV4Je1FG3p75JOCYPG62Zrj0qvNU3G6ec0olxNRZTlzGGBGaFvOSTbzrn8HErBbUTyT7jvIDHbjsynJo3rMqEwiHJpKuAhADCKQYD+bga5B64JShSxtHH7R8LUiZ/Y4ro2bjgICIgIiAgwICIBod7GBP8CU3kcwece9alsrZOyyyyR1MkBmWRnOU5znEc5znOcggnMQaCAkDogOQAghMMqBjonPCMUzFRTRROmmM4TnOQhziGc5yOhDEIgY6Jznbxup1DQBA8LI6Pcl2AYII+PL03Gn45X8GlPKmJgtLZgOMkYBi8yql3a/Ppy42OrGutgwDEoeuMpyE/k1SvexglYd0wDEvtwsAw/vsBSxPsTdOolEeog2KyEMKTEMYoXfkBrTj2AYYYDaMAwwwFzYBhhgPkwDDDAUbzSSCrrpvu8vu7O4yxLNfokvuXxbmD7V6HWBE71MUAtJdTnUXb/T7a7Kdipa+w200c3/wc7WPUNJ2c66rUe9pWS3eWrmznHK/e3shIMzYjAS47R0LQ/IhQydR19DV7QjYj3Rau9T9fAzp3T68YgUmc8KYKsaOxnxKAntaJv1lfstBalLSpnDkJ4VTfr4igGk51fqzKJzYkabT3q2E9Tysj/MOP3tRBtuD9zFliUInPd3ZUur+mkT4FJtlANtTnZOtkb/ebrY8ZeeOojwH96RvV3lRgaIHe8juPbUlQSS8jo/7m7zzWKENQZYftzpaug68X4VfI23PUtG6f6O6nCUvN/wrjiwuh251adgD7E5V4+8t3AZ0OTQo5QpqDpraVsmo6GLKqLD6HuqmOotG7T/XNkJ4r3p+J/dlhQJm2mjBQYs0j7qHiAqYG8E492iuz2IsJrj9ma4kl9c4PKqx48Of951pikIz/hNsH3DfC1UlmpfIrgnc7XPx3lCt8Q4/Lj7bzquAE6yN/CHCYHpzaerR55sQ2wa89HJzWfZeL5AAtCpgPvL1NZgCYjXxYM0ImQmVekR+/OzaURBA+zRKD5WugXT1Xuc3UKGnHt+GuuT5SPjaqYYdUIB9X+kLEl2i6k/6hLxhlD753DN9aFhfFpr7nOPuShNBPANTd/2Bu/RUDfzGs5BvJXCHtWy0XlqXfhGrGRD3hCvaw8AQqyaEffeKDU1ZtmVmNmJGKsJejq/xze9px8A6WUWpT+JtygqrOLEOWT5HP69+U25KJmYIn4JSJ6+JUTwvyxV3TPR2WhjSaq/7WGHBC5v9tF9YM1PI+iml+kNAOHXWq5ADtK6BL4JD4np2iIVIMm3JSELNKPQ8VA/qwGbVCrJ6eua/yoq91kMHK7FHour6mlqklHXWiUnryJqwLTByGFvHPRj75U/4VQH+z9v6HnXcKsqrPb/OFBFyiO2Ja9qyUDyS7jyME4hU0Uim8z8GOFcJTNj/chYEgkcZNSa9voMbjW4y2B4mLq7V24yrBhPIaDme4/eY0OW70phNRsqZCyOyTihAzj12dQC+8eL9iLQgF/5b7aKCRu6GFcRFsP8MpwEHyr3EZJvapYVMfCaHSgRGVeiFTcfYmUHXZ7mQGEFiQcof1HdvCGAhE6Lo/rqMDahHlB3a+3o0C5l2mhgJe5z9P8ibIB0rnqd2Ptl+2X/c6veazc12o4rdS2oycXtRlCq5whuVDKNPNCqNblBdRHFaW27UOIB/CZeGbgZxw4179Lf20axLX5CoMpDpQ0drLAqASF/GpESrxASMM+5GVnqm6psaQLxSOKCo66z3p5C7TQXYj8cqut+R+qOiDMhlG8v7TKCFbDF0Lt/A+IpF1NfhPix0ftGDCH4wwk0d6B3SSEtjOvtZO63R47ctVTbgQJb4f1kULHw2M81yzhLzk9rlonNfEZ3Bk8rzjozlknDWTbaEbaZ25dGTWETVGs6NJmruWTmzjmXtQA0IuptSlPO15+v8nKkRgLbvmOrvHQz2AQgP7BpxjCoX/2DtNBUUqd+7mkJBzIBdni7FtarIYbETeKDfiJhHTNOhorGhfccjOwZfsyLlexydssAtNn3RuDBJ6WieJYo+A3VZXFzC5GgxZadMCA+uoGkWkMTLrWja0dtkH4r5Ag90hLqz426xDYXTownDmLIQcRuXH7VrUbHK5p3eYsTQR90yHMwCIMfv2UG84y2PXmCKhG0/ERIEaB4Vdy6OWK+gunrfUtpnmBCJHggi3ZDfQJKKY8wwTxZ3Knn4wkZBzzBs+Mar3ZxNqpt4q2VCuNXkYkYAPrYYIxAeQeAZW1hVa22oNN9QPTH1/FShetAtFARFepUHbux8tuivT3h2odAbPuAUbjWVsRs+YfbdhQfsu3i5smfGtoJJq/psAbWmwZnd3MA6vi8JPU466SD0Gp8WyXLkFQqKmFj2/2Zo+pCvk3447SQRc4c0oDji8uz7KN+a+LldOl2qeRWXWxH7J/SCimekRgplwoKmC1DtXcitx9WztEMdGStp6dZ5xPSFsB4YAjNPTqATdhaXrCCwvMg2tlCe43I7lwfi857QzByV9b02tG5FhreJYyX9rMsCEH37Tlb2LDuC0wxD/fgolQl+qTZun99ZwimirE5MD2waXOYzAWljHazJ/84lYqFCi3FTN3f8WMtqKabSpDjneJEtNHI/Zvbo1N0yrxhLFjX/CZMysPpOJyeB2vyPPaOVNtG1odHoNUtj88dGT5AHM/cvH4nON6UKAh50HmstrKHCa8FMFIP7VHuXUe5EdxA9NIOIVD7LtOI3auZ5yyWxQQkRlqy5gFq7rvCSxJY5nno5a71apclXs5paSh0M7J10NFfTVFAc7rU43T1l2NSvJcbHLkMwWr4T0DaobA4sUX+1J8L1KNyrAhvdqEfhCEwO97XDj2p0BsRahg/kUHHOHhHHX9MQ8ZEf9OKZ/N/5VOFsm2dX7N9Wfw3kGCx5ORnz46b3CazirRHQ4EQmNrL0f7RCZwKsiN/wt/nXqkOlErlERxcY+fwapp1irbLHeVZTIhAPX6GR+5Okq3Yv2jgpYiAoAbkcx4lGHrVimFGUmTkPZ4m03KLPzeyzGIr9DKVWLqwq6LYLDfKFjYCsZGMRuqobjfE9VDggbqlKFrmhVl6AZgh08A0z9ugEEnsNXCC+2ja5Ek4HC7hi07CqN3yVMfEO7K+ZNb/klcB7LsNvOr3EZlBDRe0UBxsXdUw8lxq5KtQzA+XasHoSgehwYKM4ybzKib35E97d/O/x2pyb5GPqNA+Rw6TqyZl0jJ/L/nT2FpoiQEQCQkRCQCQkQESgXKPTjAD5AE3CgZgDHIiK/RbNwBIE82gLvQDFeJl6+AGFAoBD8285yIjg4DwJohAjV2oAMAsBBhAGbfAcGwYAx79MTgDCQEBAQEAY83egjgDIAwwIA9SIiBgMDD0AtWuG48DubzzK9rnhCSQuc55GB8APYIZ9HCShC+2ijSYY9Z2hhBimpQ1awf+bZS/gsSp/KnNg6QOlikxkkANWIqyKYQhzycaIJq1PG4YPPNPhvo5ec/OyjMCcOGGYgi2dQJM2S3HK8xuv+UYDnK0RGRZow0LjCSXXS4gslIQpXPpgYLKj0NITWS/Gq6CNx0Uxr9tRkUfUh5zeU0JYuXZFJCuohP9R5T5RwAOBc2gcMnEXLIxTBlpdYkVTiKVHWOw/++Yry2PX1/sx5yyHcOHTz733jjGkgs/U6RqTSWLsrQnG9nVVo9etH6sm1CB2jepnY+wAFCgkEBaauz2ulOmZ5KPubPoDPW6IyHAVfX0q9rULj0GBVYPvT8H5JBR4czgmPcz8M50EBK9I5/1F5Vr6Y60mIL8WiV1hTAWeygvFfmigx8N+z6uJwG9ldWtTQgG7Waw41ywqDbSc5oao089lhQTGn0+IRrT7zLrcHGiiDOWa3dhuynOMoxvyRmajrsFZyEz8jCRCQnIDCYRA5gMRGoi5RCsuV+9JkrsMOa5ThbDI7uh530nQ0zZRALxDXpJ0qcw5s15yeKC+snNpdmdtCDULSH9wnRhZ5cevPEhkvIuN/dUNICFNsl9U1MNNEQDstX2G8cSqR1hLZ1JEAjXcu0cLwoBsZ64EJtsmOwxgsENMaQoLIfvna1C41tqNhtU5bj6/W4Df1PFcbu9rTqReAFkG+2FR9xs3QBtB3kj469RB9QF7uQN3sGq+8PJGyfelOpTtO0QzXQw4wMy+nz6zmQGHzx8Xvu4Ngq9jAtlREmuc/eus5zx9LVviW8vUp2mJQQVUu+VzPZtDmVhE6cpmqXknkFivBhlypEvebKp01C0bbvxUtJdgM8mLFJS+0uule4Y2WUtaLXZOsvWHWBFGU2CUq4PTh15Y7ZRD+pwaIamTR5z9Hg2yP2jlhTqkmHx1l/srAVOBs/rpF+KGvStB0b2k/XXlFHTBrxyVnrq7K4dh8YlXR1c2Ud6PVPDqJxK7qgGpuI8xRp9+0jrOc6FFay15bF33X9siyNPSZik0tIAu9leYClItLr1+W/fIdtXcBd0rJw1LT9Fj8DOMMVq4LVqmmPRJ7JTY8sHdHkSF3uAaQLHc7/kZyEfQR9o/F4gEX0PhoMR/ZfQk23CLNYa139PDqfOrlvMRfkGn4aD+9UlKhYq3T28ALK9l6WxEZVpkpQWpCl6PlSokK1F5Ngn7RflvZWQkkJnKrWaPhlAdA+zH+u5rtpiOgpCo7Ef36CuKh78Zr90sf9j/9wknginTiBq8sUS+FyeBpnwy7NOJkhqAYeQeTQWAM1lvYks+4wtw8x00wmDNcIrcNvVGPp1MgwBmbeNsPQdp8mtNyN8qsirm0eBBIqlX8/TlrtsBWMaUquNouCnQwuLjjN5wpGd3AzCz68DG/frAW3xF6FwwlU4mjbqgeb+kPsa75DBeLALK+xo6/TkrxKx3QNgnRy5n9O6783zEoULIKEeibBx55Z+MD5dWjFfAgcbMN499BeqmK65juGjIowv6dBtv+Vm3Cu1j7ywnb7+0cnkmd4y/ulJ5/8cB7JUAZyajNj19HDHscFTs96gHioj+Xv2IdswZTc1S/hSxRTQgv3jgwEBAQEBARERr7N4cQwAeQAYk4T0MaB9/iCYAJiARBPFBuwSDEUF+BoEPhEgjFMIEddziB83EGBYVp+yIyhX4+qgdgoJTnXQUD48uAB3KJzDYW2uBaoNiIAXwNt2xJXxqNLppTy/heB/aFCHcEsZMPMqMboZO//EPIQkg3hNUiU5PLQD12QJ6xzMgmiN50H0TdKqavwANCgcQrhd3St9oC+2CzXbSQ2aT5BVfUsMOiUb3TJrFg1auNZRD39pzmxeynGGVDvreXB8qi+PrcyYI5wB1XmRkD44cI6znvU1V0u1jIQW5UtHpJwk1E79xrlZaYyrUmgx7fjjnMWclzFOOVNp184V5Uf5gmR2ngi/IkzHsOiaChaEMypQLJInyqx1cMuMTadHV0efpfq04cpmgMu7pkEYq6xPgyoy2ropEaGBBAfieFH3pKXosGbSKmBt5h1hAkrHdHAtva5uF9hAW9ls0I9xmIbOfz6B8uS/BLzUomou6pFMuOmgHBEC2RaUQGXDcdoshd5dor+1KCJ+tCZZMGGZEnh2FPaY1E9q6EL2G3+pm6wXJZY4Kgc+Ig1sylHof1lIKyRfDZlL5CuqO2V96Th8Fm4RSF88gKYD/DIt1+NJtoo0cJAq1ddylQw1yGMl/2xEwXByaTJN7DVe1+q+9QJF6ltJ6buddidjL3Cgn6x3dz2El0sYpIN5W11hBX16n2wP66PTiT2zusQeDKczyqa3a/Ud1D3+U8QhMmqxAPwW8dmo38zTEYHPo7IP0QmPx5hI6HixdZtJ0L65oCQNYM03r4bptBBiq5TB+fzG4cBtdlm7BX0mJwsn7xEG2SQAiT2Zwm1l9/WseitZPqxU6bFDC6BeJgutGp/025jSYrcPngdwfb7mtke5tQRmJIJkkvpnPqNDrrezU58oLNZeFIHe+p9mxi8SmKHYB0BnTAgqc7bTFpBbQYl779EIDP49TBJWPs0PTvusib9Ex7P/p5LYftq4fcve39luqPldxD75sKcGSgNWjRWLqvCOwBAnDkuw7W53zlQWkwbCNHpXq9lg2eZW+vK/pFT8QiBsDu9yijbvcNhDL5dzmNlx1dIMYyRW4S/8hrEZRkvRUjJKzU+4YnbJts+gZgS28QGKk6ZGJ0RWwUKi6X8hxxY0Aymq13eupEcC2a5JN4iJBbNfWBUD5L+M0zy7OqOWRgQ+C6rR3lNmBTItPVGqTE82/8ncQGxh+f/I4v9Wjf6qyXhrvFKDPa7z3aFGah90/KLOEuBpy64vZX2rwlSWEfM6TgJRYz0fXCHRy0ZjrWh0IPBOvq883SxSgdaRnUCaDc7V4WjbT56f+S4vi4T51UcdtER6t2a9xstycAEKcIwwx82YgIQhtVjUH9qDBYcs18ThYR1wqZKBaXlJQ1oFP9OczQHvpgyiyuNT39BacjFxOv2WbtvpS/eMi3sm8riD4pbMrsF987gI6mPMwaoCQN8A24GNPj5GSLOO1fEYt3fiGkCuBBYQ5myHHBxCJ40SFdJimAj38IquccN77HcHdGV3jC08Jr+5G/+BIHho8onx0peZbXrpCcoxqpJnFCKn1I0f23P/GJbJ8YDhB+qx0nshfGEWLFYR24N4IqGr0vDG7xXL/Yyk0PTuCsjWdN70Z60sdXqOCu2RatADob7Usew0m9MnyfOraoLQJA+7ekYkQWRvpk0D78OaNIGsDvhB5jnaeNdSrsWuWbxASpH17KOAkJtpKGttGILTMABub2zpxnrnIBlgD+QtXxnxMYSMTrN+AotIIB00DfRAaxxXQKBhgHzIN2VbIAJWggQCwCVqXfTggEgIeF7dc0DnDEUgoM5RrFCO4AADsQFoIQHACSuGCIBIkAkZJwdAHLt7/xQg6eY4+C/r2GCSUnbRrhAk+dOu1q8Rm3knU9DfbYHkpJpnebefFG8pV+OO7dEOmXgYvJjukdvX6g2zs5UKPm7CrsT2IxVwk36fN+lJYjWrdiMIyTvKdGYK/ryljlHre+lcdhBGDMod7hZRs6gSU2IFOY4H1OifPngosVECOjpsWZMlrvrTFzPRq44r3V3OiJ2THg48pvGha7VFNvyaFN4sx6toH37oH0nCGpX2O/Egw1pnC5MDgNb/5dtPBG5O5mtRWikcTYCSqk2P7WxDU8Pjjc7MAiKsfesG6pLKXc2eavtKhlFIl/h+BfC+SnW0QJRyRwL2kPkAaUCEnxSOfL9ed1wT2kTZbwy8D8y1lmZ+9SIXi7FxKE9wqgaeQgsR28RSsAiKzdyHysmixCq7ShEAxUBiIdHcaDYJWgtVTB61RL9zg8QvqN7qZx1NsmycdlPAFFH/UxvcTQCA1XKIey3oqOoCBBgrkoyxrIOEsLf3G0tb6JJ2yPyqZjW/d7yMLDiF6ORzCAHAxxOYxiFg5zGETCJxE4HI5yIsY6XxvRFy51JfVe4ipzecQsU7a6Ytoj+EnlJIEIgGGjF9UkyJF0Vh/h98qS2qJ0zXagvnbSqQdZlGNp4KH9+gcONjr7/VCO4QJ2rv4TsNs69YRZLDJ52UXLgn53Au1wCl+kvCO+VQiJRO1Ocjp4HnV/ZUE1o6dENsu0kIaqLONl2LQUYA9eAOK443aqxES1f4E9ahtGiCrPE/82hTuk/RVqs9WC9qCgERMQgDjMCzvehgDe3MwfgTw97i/B9+xUEOUGdx+jdilYvb3DBicUbPkBSpFN8IYiYk84HgE1OvRBZqf5ljv8xultyFPRrXhYoUruW7uC6V5pu8jUQJMRCztBetjDebkPO2mGSv/b6Bcm2mEyfpxPOCVP623Xa+6FBanEYJLeI46vGIdPq1/bRVuBTuFHRnf+XuYCKvnr9I1zz0Fzqc/WVmZgJ72usKeMQy4djzI6g9To9qZ7qy6f6xe5Tdld3sbUKKquLoWwCQ/B0jenJjDnVWYBzZeEGW9QMHATtSpRR0Cnnk36eEczDB8dt7xH8rdC/TLkD3Mru1S+FH/olBa9b8TJzSPbuoL4jT8u1sxCPxpZ6Bub1f/rNjqHbswYyHiQ1Ez8LkNlaGQrkJIUckJCB4kCCSQB25+XV8iDwAf8FpHTLLCZjyZUztec2dw6Lo31VkxyzpItgQ4M1PmOyMuD6jNBdtoy9Zv+0Qii4fVt9LB/vWTtD8I0nIi+9MyEF6oZ8el586QEdQ4QGzhUfi1RLW4HBV5YPaOSsRNVnix7Nd3D8GfFClU15dM/NIKA+hPphA/AehM1YKw5WGlyO8ZuwETjeSMuTE2IKEcz3Mkd01tSDYNniAlHQOtQ4x8Z2NoSAMyWc1kl4uRHcL5qvvb4CzFYEkwYj2pUgAL8w7REnJyZXP8xplYu1oS9l36qBzJhzz4+dQl5o6HTER/CivC93sGtNK+q7X+b8tV18kobQ9SaqQRradBgV0Q5yL1mPSs+ngfU1jc9hkCCpv9im+iQbxSaFZbQBhSQr00jT/6hoQmfIvkzdBalRrzjtVaMh51n0UfIuqFTmAB1PD94KcDAMdUGAEBDBdeJpKoTihcq2I6KEbyaSElxO1B4BwEGBAEJESAAk+GhzAwoHQAD0BBQNpMCAaAgMoMMDYBnEA0wIDZSBYAAhOeH+Zc6BANBCvHj90CQEGACIA/aHM1SLZ4866X1lct4uHjrbkILT/J/39xQMM+yUfZOngcvFX+d/QSBGiXb+cbnuDFKkZR9O/Cjq8Xc8lGj05N0eXB2EChyaXbOo7e0bAHst5miq+E8lVnhjmpwboS+EyyUq2L/4DkOYAVpdyqwDm2/MRd2TU8LB8GpCb771aJs3aeQLzyXk/q0JuNW4ktuWXR9rt01dxBSaNdJM2RzV16P2G/zgtjOkXpQULiACIKo98LctE1czgjSJz40hX+G6Sat+Pfv0+HwXdLaSPhTOnmmct5D1ocFvdgHTz83XjYE6Py02Wviif5eVOjd7OiLMy+65NXyyTU7SqoSLRkm9TR7R/5LVV2C/7vvjCrqlt/77gQShE0hFXpkkMhRyrfCgqXUaU7MLz1Xk7CvQhOPOQypMZbjqfTmw+58iZx3+j+m27EHo/0rPZD/NzbGTJsVOehKkg6wd36lXHNu5Pzi9It/1t8F6xyMEh7VVSuyNgbXpAv1xa2l+hI4LAIeWz9yoyn2l3uYcoKUyojwZHqGZ5b1EAeZXSfV3cqZ7afEOzvcoqsCdD+6Ws2vGAMXsspDnQGVqhwutBwqnACofzT4JlITb6yXzztuVy1fRaRBFpZHGcWJnr2E4Wrss1rvi1zzVv6LkPd8oZD0iH/TsxptnjNCEeOD8hV+3lrfBL23Lrl0LMQVXFi/gQEHDwnNQKDdSOnhNFJoTyWpeE21Lb1eDAKglxXVF0+O+sjB+ShoKdsptLvLzr34TdP16h78am+Ru8AQPR4Ikh2YL3hzmRuJe28QHTyknMyyJDuEGvft8SjiKvtezhbEWy++ebwStlHr1Yyt30TQoVWLhn6I+jd6anpjT6f1LaDAIWoDAzNvBgDQYljD0ByEpCCphByqM/LCPvB2+dt4BMmK3/oj5Df+6OEmzJTBfWIhlEdJBHdG+ArYyQFfSGYjg+ieSdimi0EQKwIGM3sScgenvcGYFTCQtKoKZG10wLX48lIDcaxzupjV9iC12ke1dSdJK+1bb7VHXtAZrJjxTO9Bssgz5MLdrBkG5P6t+Hx1WfOObdMekgpRTKoc7ciS/thHVJTWjfolCD+d60RcSOMYvn+bl2s3uYX6L0fxdvfhjVjWfNMlmNJqTclFnBRiq73P6Tn4KcbdpU7mohVs8F46Wz9sA734sFXQLHAj6IN81a+viF/iRxopIFbMDveu9u5oT1zOyclxeSwys/HPqGjCCv/qJh+EyaauE6XjT9rF2DejlbkN/xY78Jxw8fxdL7dWw0hu7O4yazeOS7/7rR60D2EtHKSCWOTDiZJay0EpE7/bVS8Vh9C7ezye/if4+UnB4ipjX4GN1qmdt9qBleFQZwth6NBdGif060pwKzEE7ZOZRlmOVRED35AEa2TLR3VKRDTkqCbsY1lChGxDPBREFgsdDuSG/OhT9/d42JICirSydSKCO5z0PRBpz/L0upUqyXRFYGW70P0DPBgfh+vli+i8dDRGwFtGVHcFgV7uQ1jQsOlpQwKZRDVJiJfM9hdtXHilKWhZO3Z6JRz7A3+rWbSgflUwqpPUEuxUmuugSpTZ1Hq9e6C1LxwzuTMmSVAwhBtIbyS+EkzXr5DjQ4XrsABbfe6vj7SKuQbEIkAABCJzzE9FgUkBwBIBNA/0E+okAEgkBCI/sFrUBvAxYCoBEKuzAAwA6fEE1qcHBBBhHwbIc2oujN/xgRfhvLl+fDFICF8j4iLg4qcZ1691GrPnUcQZ7Gd5nyWLlcjCwy+lqN21xIN/jcPbiyZ5O1JNczlJSKA+RrDrn4wY8GW+EmqjUAkXPysSdTuEbB629b4LBlYXeoQwwBzd9EY9SnJ/dAB1KSLBpZ3gxXltWvlksQdfXa3PK5XbgW2dGaKVp0VTn7wa3xOGvNxBspiLC6G/UUPBcGFO5YAGipaEncXwLBHSumd3wq/2rYEVupJGEWSrC+UqRPAWeF3s1ar42shf0sEcTE1PhPeOXvtCBT7qaVHw3Yzh4bM/hom9gGKmql4lK9BSLDsn7HmGN9MGLrBCqEgMunPxueHcUuoLo35ZMEEu9hn0IyonmBzOF+70dI9bENqPWE9zPkcUgqDNYo7oqY+QrBzcEVZZ/np0q1a7w517raDXl17CFZOC49CGFH9LQd+omBDzU6FoEV+SEn0VAjX29lSXCCtNSQ4BJPrdTKRJjb2UoAzAZdkjcsQ6s22+7OmCMbPTDTUAcltpgdgwgImEjHCftwd/4zgcj1x+z7TL/MU9mbbc3p3rAxMmkIAdEMpAPZ9dlIs3nWwW206fIQrA5eowqhO7zBM1r5LalxEOt3zdMM7oDor5TNsfaKfGysPp7IfhqKt9mAfwMkhIXqx2XJHSKovAGMPK42/68TestsJNt5fzHvSEHcl5ZjGj6/QThFjyOaWsrKGQaEYf9j7uLlZl/kZzou+jRirhvpUIMdYx+hHX2lR3ajc27HxWCMiacYoRaQstr73gSY7mqohUKJ74onJS3sgqjKjqufnx3lUWf6MQqoYwsuMUMQFV/lOOaENPsP8aDqPJQiUrJZha6VpS7ZpVE7ly0p2wIv5HaQEIG7ShajE+4mUDimKnc/XCde6wmcX8mu617awTOT23gleL8qLHl1W4HeoVBmO+GziJyLGAPZaAq7xuEivRcY2J5KBZfCYZamC9jUQ2QA3N3fgzD2WBcSmiLYD1vV/pG2WTNJfavjnb7jTNlfTOn7atZlX5Hs2S0rUHshKh7GaRRHxODootbXb9sc0vyTRypbHl+3PWyFvtOAglAUCK+w4Pbavw9lpD271xIQ/MG4J0jrziFnnyAkzzm+qG4pE5x0GORO9C48VZvcj/yLPpEEmLE6pyQD20Z3qoT62BqqaQCcQeClRJvkJiwVfD7Y9/NYe2ZG9PljExpjHk3fhWnGK8zIJ4bT0+PZPtWnpxokCriYc0gwSgWOqfdLd0OuHCP1RdYKbs6yINzuqU83fjV9CEbJet7z7v9fibprdl1IBVQILs7xPem3wyIQrIsRGFc+xMjJr1iMBpnq3nfPrhY6vajGRfVUZefkcW0ma29EKEsPIbP1e3QeKQHWzKA1Zx7BxeVOmuaGRimfMw3LW8qRxgv4wDvs1FEx/umjyd1SHNVfqwxW535TGP8JvENpqKvFOjjfUx7epNTjM1GiNAnT4Zh6vb2HD9tdq6FnN03XQCEO/ORcIxD9MYUdHcGlb/FQignLoF3k+kofd+Es+12/0hCKS0c7rkvJX8eYucNKYNAcG2pFcGgsDhFKDPZrWaLhHic+5GokLLTlXYFbGAJoAQqvEi8f3hQK0hRB99yfskUG3khIVV1zm5Ky6fogYekcub1pInR7q9/JoBFhWwj6i1+4pXD62xhyiRahO6wAO5WaKQuarzb9nnBcw1ofWThiAx4CAAkKq/WnDgQkL30OMhxXqFHB2AgEugVyRUtwMWQdDBCLgTW2N8pUI8G2AQkIxl/hQbBAECgZe6rNkoAhAbBRwr8mQCQOiE9EB7nXaMTrpzQbnRdrYGwHrBEfGmnDq0WqsaOQMkKEyeH4q8/3PCpQ/Uh0uPjvHUSVb0DREC6kcJC83aHxZ7Um3CEWXOqyzhZXaBknUhjPD7TbxmYqiZSdcI4Q7TFOfzT+ell+16c5Vosmi6/WUZWn9E1hLET4eNZ6L+ec+I98D05Kg5jeATjM1xqZ0ekQZYO5DFEeKW9PawKTiuKIBXf8a6rx4ZRJIqlODik4q8wImPdNf/KdJruWZ4xmiDJSpuzRnznL8P+W2atqIbb6MlcYFrkOSQtg7/iW8t+m1+W6YNOYck4qQpB5dyDmhwqnjRoMAx7cbAAAgH4BDEnLwvc4hnUCEy1QE/10FOuwcZmzX1loRm2V1LNupZQzhBngb0qzJb5L4l9Tqn0Fx9Pn2i8+1tdd14EShRvjAMetDQ0lDSgwGSFiIP6a17WgI4SOwaMHazvhJyfCKq08ghOHjrB3p5g5zt3wcqkwX4S7CLEOFSs6eSIWLYh9B2eiOCqgRQor1vTZPw5v/aZVo2Is6x3euwSrYuB/xCKnGEITB7w+yEZBAExaktgavO7C6/im1KGYrYqLe60ykAvzZFq3tuMq2klH3iKPGLr2F4zFf6vmlkPH4lQVAJsDVHqTeGcLtr+kl3f9UbM/RiFb++mHDhAbM/gd6un/Z+tP0SkjI2tsRjWpnVo8KLeqhf9hFVKhOs6fYWm18Qzy9V1owITUziVMxy/hBkRNqqCnFKo/u3wsWc4yJUX9yRoQH5uDJ0+Bl45Ng3T1pFIsO+wQs8GpKir6w8OGW5sffidc7P8j95dsbAqV0az7uPmQBAheWvu3dalalB82hkAMxciWawVYA5g+nlCZ1Bgfln2CFQlfZwimg3/PdwFL348c/w/LhGgirCFFDdDYZkhm7/oFz/DmikVviY7tPtNn2BRmWrBdYreRCZQoEDBzevBf9do8q8i56wuZVF/pPH2ldDRVeG9hO7geG0xEgXpVVSNrVpMquQyHqXZUfgeTkO0+PyxYutJWqIc/5KX0FPzypRy9hGu+4uZn169MXD8r3pQZ9DKRSbhvAWUKBglzEZS5ie4FgGmY68LfX2ypmmVZkLZUWEpIuLpw4hx2/hYL4zvAuipYYXyZ7wAl6uQX8tBcgZFvy+oRrd/+1/h+K3M9Y/p2Vj6ptmeVeZHQA+MrMrcrkdvUODiBEpDQK6FAooaW1/0Jkjt8hiP/APWGrFusoolSwi+CQGnurnGklef8CtRFNUuASBYAbHNzBtkS7S5zkXOuLsWkZmD15PYunXKlp20lfmbiJbaTQjsP8oIFLOtXG72aRbJt9Wr6OUf0GNlDvVKYfjzN6QY5b1iRg2vMCkeJuENe1MHM+HsLCpdM4KH+l93K3v7upycFl7LBPLJN02aCIHKCF0jhadoUN+v0Hdbx2tfxslJ8GWbMGi+dzxOvydYgRv4rlDE2tal6gcoQVONHuXt/g2up2NrriiUt5xp/AT2VPSb5+NdLU/Kgt5QKwVENsrwuxf+H6Jo3k3dAnyQvdCMxkvg9g+USMbQC8kBTF2oHqcP7Fk70xQYCGfsrpQSR9a7bCtZKyyDrH1xL37pbUfv8nBXC+f2sDXoqF2962ik9Ag0Dq/HD3EgIKjtWNes+y+/FzXdJlGrqHu4GhMABk83Wg0HDAQCPsADJ+4HqQHIADBxmwMcBaAQAgYWGPMHtAFhTYyCBAHBp0FVODwHRwEwUWsapYPQQH1coW9lSAggEBB6D7DtgcDggCAQDwulOoMJoEQQGMYWlgyCAOEAEOx9T6Og1QSpp8Ys9z9FUkuQbd0J/AHfQsH77q+T/A3p6vdEcJEa1pjV9F4fRp3nq/e7rcw6LqSaec2f21YrSJnWQklPle3v398ivRQ70nU9E/M8qcFK2r2FX3sNRYXIykPu+omTnhhXil7NsjYKDAKzlCqSGuDbnJ8e/FILKXS/B7oHC4HYyZYCay8Vu4ovKSSQ+y1JxhnQugrs+W9h37xUiGduzBZjeKRr0FAvGH9k2dfmCa77sBbi3oSEq+Lv0ytKdsKb76UPsU09xsz1dyVCuUAKBcNyoR/uv63lvopiYbBktKtXP/ZodWxzr4SdABLBC5Cvczq+AYxT/wwuokRaVH4eacYeSViGGxW/sQWgjgJr0I+CgOpIKE1xhJ/+8kToOYL/PmwDlFY4LpFgAcISl7FRbo3fT9dXsAJerO39PBiWdyB8onYI2IhHylV+Z6iywIZqATHAl1J7Bmez7xk+nNEqUStLOQwkpe6xXKWBUkYoeKWh98CwLr6yYxNWJ36kUP1oslT9xnozcZEQiJtg014UpJ4QjzfUigbcBEQzuW1RAcSOYjiYTiRhIxCBwOcgOOvwEkb2N74Ok1fTltsjqhWmzWwoemEAX02b3ZwMoA5i5YVBKqLrwYvtPcGLgEaqGefRu5S0ghwBiYewr5V+YYXAS2v9AsXtHI5RCuwpzK0JwM4HskyBDh0ENCNeL2iJ/U8OSzp1bkrnpBHDUl/LbUI/g9bYYBPg1jlRaQLo/Hvh2UHX/6dzOenoYML1WuU+Uy/1uKn2a+i6OBxq1HzEEY7ycqam8PfXsHwuorH7/w+z6Hg4Eq9kO1goPLinxzrc6WOyk/lL8cVZKa5RnZQa/scKv+bCZU3Fd2I/BZJ5smteKbkh4viauW/xwYnK07wkaBdNxqvIzs+5oXNZqiSBIRQUJYdjy++3viXgvIUzJ+y2JnXNTxnZzw9BUQq+DjVoeIU3k6HSkN9h174SOSXpKGd38f8bEjH6p2segaayF+kXz8SUvDLpOV7cn2IYURpBldyFMsHzMUmj+p+Vw071ZsN3/ltQLpvGTyLBmseBSeEmurUHUmEO/SZcnwHwdfrf0cRSrtJr9yBGeeHRMkM2QIESgcd0205Bf/yVQhzKidTdLeBNFvwaouKBWUTlkPQ9XKHndUCJImGSVvwJDEcORwhzjKQLX8q3w3VoRz11TDlHbqrvptvHhF9i22tv+VzP1llBzVijL3MNNSqh8+asWp1nNKrn8NMaD7c4+naxXGBlGuUCKqDkxbC84bEWa99bBu8/5Nfoo+jpmwVEnr4epJSPMSihDRjbZKrKmtJmeAqbNWO1Zh+z9L8yrauUbgIhjy1v1V90qFKJMt+PDzx7Ie0G3LRBys+4o7ZEO1pxHi6Ao/keoNR2oxUiZ8PBH1Cwvydmo0Jqs68oms6hUI3ux3PzkPlPUBh3uY5hzDBj++UBqtey9Oz9JoSPkzegs6feJ4ai5zF3KK8WRksdTyjjEFcpd6M9pmxQseoj6r4+8fnuej7SfiFFpg09BkC+h/3Da2QxeTPCbpgq+oJBUeQGaoTn6f1tEktZcqQ9O3EfU2WhJL3T0H4Sz5HciqkFDgVqdxd9779tQ68i1nZK3CEPayiBBw+vU0kq30sKjpZGNdV21JeXcTryDJ8WpWPUT7BBq/BA895McYp8CRmWvSRKgpH2HyjcLTWIYXKhhjK74K9oUNpIr5V7IJ0HZ2PRpcQqukfaVh0ABl9yUO6sh7yCbBmg5ILrFA16gzmLAZEDAIXzt9ijAcEAIJERdA7rACDwCAhIBIEgFRhHwGDWAIMTB/FLZEUB7TvAWBwIEgDwoCBEQI3/TFQPQEFBDUR6cIACFGQd3gnYQiwEQbCD7ilzPZ6H80BPU9c28Ky99IjE+ppCNHiLh6kBugjinkepLsqN645uPecPtOpe7URe+tPTmLnTEY3z8YNdnUgps7rIQLO1r21SFu5FRmUCseSS+oydP5GheG/ifXmfQL8Cp9lffyij2/68Sd46NhfRa7biRf2gtk1ilNgGOvkIu6BTNQAt00wy7pTUKnqKSqzybOXbCbShg3rvXQGEWI6uhCyNZv7e8ohhlXjcxmlN6UHUDIcRNHKDAVCn47W9/7oPQetoqcqIchV6+RuvXnI/GiQpqsPE3epiyUBhP6EjfWfYcA/1Y86mpuM3VG9PQ3vUZUT592w/ku24FA/IlrgWPB7ixRQRXewpLzBnh0kXNZdmNd3jqSoU5uN4EL2b/ms+Sbm4x1AzwzXXExjNdsn/LI12aGCMDeVs/WfAjB1bg8TmwH93xJmo4Y7SGfxmGa8tY0jTe0SERHaCFyiAvRsTYf835fLMtotqZQy6tMfN5DqBcIvAbRB6+kDKKmXlnN9ZSX/vwTiBEceTJus6L1Wzp+QqWlghgCtUyf/yEI0oAW5qtpBnvOgvSD0lOiUjwx2mARISRq34iFuGxberyxk0loggq51a9ssm7ra9c7gXH0DwsD4IbwZbdBKEAZMXvnO6tVtWI1OPltGn82qFStMNETmMNzuTsl8atuNjeC07TzI72GvLCyTndq4/YIZ8m6PAjFtfuIe0f96kC/v3yiNv4EgbHA25JiquOq5skn5e05yKJ43wHqNendoPqak/lu9XV42dwQ3a3fL7ZjOxsq/d9ih11PUbjuzttSeTC2bmq1A9FhCdxmwBlSQ6MruRbrNMrqiJL3woyED/cqQW9slZ1RgDqiV6syZshHC8JoamEGs7dnk9LtvH8zrTNUexrQFWRFB6IiLPrsl1eanc0n9LDKJztrQ5JPmjk2WK4YqNok9h6W3ZRv3nsj5EWFu3K7ng9iDp7HZb7glyZQNYGL6DOTipfbUFk1ct+ySUwry4W3GhUg35R5xteVuaMhXieivLyKx8iG3rFJMnUfvm7f/tuMAWVY0+1CIocsmoo8E9typExiRoBZqMOmU1h6MoLifGqnuvVN49IrvuX98im6mvVNJYlNjVR+C0ds0qVW3GnKoas390uABqV7WXLeC+CkMoE+yi76GGnx0m9Qn9Lwdy0wy7oEHloPrS8WRjvS48UjX4oTsE7TLMyweLXyexqGxzlG+Cqa4uiC46/kNcVqmxlQU9dO3G06+5yuBqLs41jUP2xHCLOOu/tBAE3xdWMRL59cENaoQSNvW746Qi9IOgHlcHlxB0eKCsvghJM8jGdadqEA7BJeiaXc/5yHd3qVRHXN5zPuVA6VX+UMza3AgoNvX90yDoT9TsWSI4eBobpIMtEGRnfKNEiqbvS3zIX6nnpWRKmTQoNTyz7w3zeskbL0k6m18DxCjXb/4KY7v/vkpk7Glpw8KBSWRAKT7g7LFFH7pvvO8dvVKAhNPR0NWh0Bv6h+lHGDpaqObTJlHXTpKU1f4oI1vDDl5fTm5cZoJZSoLjQN0kgr03kZu93Kacbz9jYuJcGBU9AbnCi9+GVuvxIbqAtACLz1QQ4PVQ6904ASEFOPkKwv/9UYat3BiKv8BYaHJdAAoWwfHsSb/v7bM4zuBofEcKcyd3jz8O5QZHHAZwVwiBI47bv077zA17CrnW8Og+7QoCnBXs+5JAGhdyatVxLd/uaHcVu7GVAoFmErwIyvyCEH8e+3o0ysnVgTkCSH5usyyC6qSGtOQYEJ/FlIERONfvR1eq6Gbwscz/OvtPIegsACyisoFBAQYocm6hgCrPYCgOFrDnhQbFEcBIMhfebcX7QAwwGGD43qdAYNHM7qAvAfpATg1KGwZAIIBBgASoBIK55Mh2zg2p0IkyDQBQojOzCr7eJBYCIDYdt8sJxHQPtwAA//AKyAKe3zb+xxig340O9KzMcM6SBwBnFhZS7Eqf5P+SRrhvuOjGKl/6toLAXuQH3Qxo/UBFgJwvkUQvJuCtd176q+Cs+TlsPjpf3nKLr6CvdLeSP21PHMsGQeA+gUYEVoHnwzbteEnZ2kSE9dhjKmiAhuZwbnCf7mv17gawMrtpsUTbXPaV9rlVexupA2HiXIM/Lk08AuIfSncHjo7tBjxcnQQKbgfQWlD1FTe8YREL5evdV0uigN8FfgbolYe25Y5Gg1FWvO/zqBgCMPWn6H+F3jfM7ifC3o7xeZjI1TNKeDIe8oUlJFygg7RX4lggEjDQeZ/QgyBTzYciKZrgzT49Zy8hJ6Q4sHlwqp9RhkNfpAariZt64gsFWecrXobUoTGcBgWrty9YFPXhND9mB3kGTMyOf0p9Govd87kPQymLoJROidMU+MhkL/gNvUNCBc4IgA7WrWQejK9hfrjWjxtOHpyGQihJuH40TqUUO5Ux2ogrzZeEOoldnNIOPZ99HOwyTSUQhYM57lPTffRJYp7PSSxwrp3JlftwkMBQX28sOknYb0TCYwicDnATsEcQMRzHOcwEYDiBES5TfpjfYKxcOlVLyWJPzuGa5LyXphBtgx4USaWbGK/39WuduTbmIMK02orig9rXsKxRUpFoZM1Lzn6RbmcJ7PH55u0r4WK8oPvXs5v5LewnLCftUZHlFwNAWbu77YV/CJ2tgal9PvsrfNJC3VyzWLA8yrKpaJx+YnMfTI+uZZJNrS0tBXZy38Pf/eCtm8unZvMoR+VWJ08nX48GI6vS9nCT38yN+5DYJM8YKiRHDWyQnGCtoorjl4MdCCldPRb4S3OsTmSSMPmVC+cqQbI2WVwDgC5jmt+oVG54+FTBjaewqfHUsnZx5jsWdt3Fwwm2RUBXwv0zlhqyWBegcomDg0OEQCohVxXpeHWeydDPDjD67Wp0eIdzTRts34vAmnNX38U2l9/VNUobnw2nNdlsioLxrqwNBG2SRB7ZHyjqLqY+OZw3g86cRaMzAatMGJ3b/yZjIsvqFHzcHCyfI3kL0vFHlwlEtpVDHQqoUNlTKlBl7BC1wOX0b+00FzN/MtTw9tzQ3PExt818egNqWTP35hlhQOjXh46CB7aqPl4/44jeGV4pS48QE/p3OQ/jBTOq3GNxfFHTn7sWg1oIR55IAxGhfneXhqIQvL/hBzywePQPcnBe2lFTTg45F22X490cGyODZdAe/X+WVzaxAQcdvyEHnK/h7O/OTfnrKZHYN/x1BamMwAnCf0kkNSiwohnNZnXLyFFySj9SlkDPnXNS231mL2nDUw/+w8TqahuSIxRP3CCq7lHX0zVO9a17etfTe+34J7S127ydWQ2l5+dvk2LoULaijTofiQ2SfGH7er3tPd0VIFYKjXjIQFo8FZM8oJBwjeP5/StoctwruG1hLr6sUnb3VkKSJ3rPWevAJsBCbcZB/OYxlLM8kwtPF2YL/YC12nv+Fh/ErYrxIR8vTanpH+mavPBwUVVKItk8dG1eupDWpU/oG9Se26GUb93CqzYucof+EzZXXhmyaARpf52DyOQqQ8iwb7tNmEzgwK8T5mM9u+bRIDStcukKlRMkhejgaO1DoOynInxg9MkRc8SJxOQn6sYbD/9YTLsnx3Rptf5FTp2WA7uoRTc90nF2HXdjI2Jr78heGompZCVkiCSO5HlPqzGEgQXBAhMM/A6jqffZwOfsh7eK4ri6yHJINad7jvVkVIMmiOeiAyDv8MqUZQzHAhHDJ76C6UBbMpwmF3iGLxKfppI5K1+YjmDdr5yL4YC1MDjJyqt2T7Zb7/nm6O00rO8A09Yqxq+Kj29pksySpPX7Gu7iFYNFUmT2GIrEXfkD7FDIdivyg169jajWSTrzZ7Mr0dA3Aj9A0mIv7f7U+OU1ucFJvGNdmH0YFQCKj1Bp988/sk75tMFrQq2r0sI9HX73I0GESkOhg7tfdw7g4DwKz/W7vVsW2roAGBtGtQ0l5qo36611qsxtoakAYYD6hlQkEe1KQYNW4M/6EWQSDDDFBBlAczpKABIwNI5RE7bSCgD3g2DABvPazS9IgAAFBpZodPUv1zcCAD14DEGAh+7DJ4e3KfgCgABAQWDIRAdaLB10QICjvBDAg4CxxKHbbbg3gNhJ3rDQECLABAEue6U8JxwCM6LBM543BIN4rpzV/kZNKZ8OKUpOlb9r7MV1NlDlbFcLw1x4nwBly4kqi+wTleukAAzkis22OI4qKmO5z19nBeYy7Lffg2XWe4HAunkIyV5yNBEbv1nLr6e/tXVf64W2DKd0PR8KHLlKGS8PP4bu9Mrfs0g+gmqbQi3JvbP0BJVzPGRrFYysg4NmqlYQLP0eVqjosA2FCPBu7m6Z1SidY3EdGK/jx2pkBOQuAJOOLL1bZYsrVnjbl8yoXXIP4Vkow7ufFbUKu/JdXSKq1WWeekcDJxjc2m86In26hs8KAVBUkYqdbNS42cXMiSmthKDtMGzNlzZbCGFrTYlaYso+LM2/rIUm6NotpyEnj+eAGSwdpsCany3l3qi8STmQXg31Zed3nvc+IRr6lXc+TVCZqBiKLU+yzxM6o2/WQYuCrtGgaXc/b4RbrlzbL2+ORxEV5mC2Woao8On1LLcXF2tGz0+tNyKLNbQQDHq/i3jyhTyAge3gJOoSZnNI+brULpVFj5G9SuTYR66EbU03NOCkw0WiQbILy5dA342s5p521CF0Hz5E6N8XxhZ205UvdDabuLtc/n3x3QjYBFoy1PK8OS3Up57xyZ/ieVW80glwbH9jZX0om+7d8X2emm55JbJ8yJsneiCQebsQ5KuGM7HAj7mf+5tlaegqjK109hJXlrfgp+jSszFRzsuj6yMfAIH9aC1tRVnUbI5E6WQOXP8g5hpPMPpRnmzcwe5bfOyTaMI/JMfO3dsVVpNgSYDlxvFDimruWMF+RxQwJNH2eGDx5ea8qPxdWeA/uXNnEKtY7G0BCgSkWhwcU1tU3KnQsHA5K11SAQrl0qsM3ItaXqjsBgfMRE5kA9ybjCHyXQW4BaaRFxehtuus27nAbEDw4yBX01REaf9xk7kXNqQP19jdTHBfpVWg+Kasz1t8lbL7+CJlkbRNGieQ1yeZ/Gh31OmXXhuGLthRe0MZtBN4vKokJKiBn4ve/Hkl+DXEjwli4OdbaQ2c+rtpE0DC4/YGSM84xdHtDdTfDgiZ7ZexylQxmLTqlUm6jMFBRXQzzhUWV+PP9mCoajq/JaSw4n7scqVZZvjK9Ber+erG8v8Q+AJK7TkggAgAj9UNiQil+zCIkguaQjSelPdoGsjWL34uwG/kBnwLoVqqObsLom9L6P02PlQWpHFRIZ1aadpbzrEQjROms5Ge3vJOw0OidUNYOp1rNTOafUAfWmfcDPSg06C0VWE1gKP/uCj5FkUx/sv/ihRSN3SNTMkRo1K1IWCq83xFhtOntLwHFAmPV2JcYGRjInW5tJP03+VI+k69TpMLBp6ckeir48qUnyky4GTUIwBZR7tS/P3rzAMwH1mcGTQRnhLAlxtn1B7bSRWQ8LYt/8YYHkGrmTcTjqXo/HBwFIcb9OZUZI8Unyb3c5JrfPuiSBJiHVXMVqbObFXdP9ccwO8h5Lih0PyKYCoh1pbUl3mLu1pktHk+LS3lsY2xn7KX9czqH9Gwb82HPmcDOjAtEli9s7Q77UrVJp8B9uQ+fm7kN0tBrX7iRrrguD9YqzJcjaasdS7SdcaTMIN6KC/f65/vVSFwb6if70V7JRN3mWhqRRFovKIU0zMG7I5tB/2qn7U3sSwWeviF9PcDT0sq9rNP5ysSJ2dLyXP+n5QBO1lbO+nL1zFXEx/5T+7KNP8YT1in7UZP+sDIh3fERYQxpCq0a7gtSUr4wczwCvYXkyY1gh1v5E0ml35CLHv/S1zUOvqLvSfWmK5lB3fcBUYgtccXegbxQS3RtITd7klHoaHZ0XAq/pXGmoPLpn1YyyPO5EO0l1NDRbw9xGVJ7UFU65sqEiu6EAMFY9BqJnvAYBgJ75rtut3LbLc9HJJKaSbb+W/0/vONSE+szmTs7M/nfujq/yIAeLiZelEsf99UJ+H9vRI70DAGrf+p9Yxh+8IlNQ6ZiY2n+DfyXtabGTbY7NaDU2piv7IOQKukZ7pcGFUK1wXUkCK8hQdhEDc4DDIDZL+QqeZmSJM9wIqosAe5UKB0A7C8v0NtUskFixCtB/Oh49Sqi8vDCDvw5ok6THq3TxfQkjkDwOy2DlnHa/Kwpslc9kJpmpNDt+b6rKxekRx4oADPBEplYJyIKU5uWVATi77u71i2at4JQpR8fRl0rVbSxzNyACDP/mzwA6/qdGpxlRyiY9JaM28Nrfb1imoz24sTivA/sed9hPivZndcBlTh8LwCJiGA86RUZRhgg1a/zfF0fpBrssQ7paCmbQ+tq0J4cT5qy2wahZgM/WDH0ACmCxpvZnvojheMpqmfvCeEDqis2pecKwe7C5scqb0hTcIFcNTNyYwR5CsveAFJKxBFWhNIH/GIIQxz0CCO0QDb5BxyXXgoxlmQI5ru0wVo5ybWxP8qdJtLJSq4i2tMq07fe+5NJUs9rGMo0uZE+raAFGoj0ScdceOjrnC+cZEcC+Rj2VQRzxS+xqhREJO+WL0iPkYKGX4Cnvi3DWJwzyaWoJMkUM0wHmQAgi6CAqO6/tJt6FxgQIu+OR9vxrSIQDePCCAewo2J73lOTV29kl/eLLzFSfPqL5Kfg/Skl9LeHr7MgH7y0itZdXKd0tJE3zQmkiMgBGiC+JpGGRyHWJcMBjHc1163l11Bt/vu6nFnMVIrdRwxbgiyNxfV0Ml3F1WltKeV1vIgYN0syM3SmzkyEY0XDNt4e8Quy6Tkn7RY06GgqNdaMjmRyROiktkivPOZ39IGUrKWEf3Tbpu7h0H0cruBO2ZYl6O/DRnbvBMM/x64Z5tdyGhrJ9jMscvJRh7IYlsz2ctvNRNZbv0hFvrEmr/2Hc1eBML37XAKWWXQpSQi105mTbZpfpNcaZfI4L9RczPpKcyfKuRoSOaOEQOfCv+d4/zgRB3cIJcFCn96JaCDjFZ+3ojkpaTy6J/zHxAx6yFMSViSiVWwEmAw9uqasJy33yN+/1EWBwiD5Yb8s30n1ogH0hBS3UvVnOFCI7S2pY9/+BeFwfly0XM0pXE2pgwdf9ckDn01r4EvDcU18DV27JEfsQF8PnT6hodKooCdW2vYbOO78tRRmlb5TiLTkvHA3AE/wNH/aPaFowgiB+FLuvPMK9UYJ8XHBAIv6q2MJQkS3EHuOFe+lcAtcTX781AK50NhYaA3/FFWQd28P9hQwPz3LC814JBv4WjnIGbb6e9Tl+FT2RShqUVDWxVFzD4AJSFkrULIbFDMQPChKFr1K0C+joCromoifxphi2lzH78akq0O6fts/2SQRnO8/DQHP1GkgNtZzv7O6zCu48m0CgzBP7053yRvFGzfLKfchQKnHElmQi3Dxi+F9sWQVR+vMzlggypBoM55sNjfoxcKTH78lkSq1Is7RH8/EwxjofqXtMIkEDuUqckGmRsaMmz+eDjY839KLStY2uQ4YSoPw/j+xfRN93vJAf1x+9HwWNNfhEyGMgYQj3+6KppT4QJQU5reW9UyH9WtqcLhn1Znwmzlv4lovAqckhvu8pjDRyVqyUHoxvgJzd92jzgLQDSjEDAp7Y7lMc2MZQCPoRgNpSuCI3NZvrN3qvJ7r3BA/coKX01Kr16txvdbBPDnm/PlfCnEX7bv0heVSI+KY6atVOlv7E+dNvkjRWyBezCITCQzIbznxIEwVWsVbUvdSe6fsTT6gR+VP6BoIlg7xRMDELyw5sThhpRN+9+FzjVVPW5X1EV+5okqn4o+Zi67tCbc4YEzhVpfLxlZpZKOG9wHacN/kRuTE4cnU/mLZQRUsxRzGE+J9wAlqOOpRm6H1scC/5iL5xOU4cGmQR1fVpFi4AGpnVkQIwRuuhlSG2HggCU0c+ogOSlczzCdl7hUMIB88frNTijCg5j6v28UC48InxrrZ87fMlcTjn7km68yYA/CzRJGo1IkFQrx56Qasw1OPshlZrtTDBNVxihkNgIt5I+Kz2E23DhZSFxnG6bIae+tcKT93hkkZbNz6VxDAe5uNLmslvIh+lirANLth5dM/JABzsc6j9IOcx1HsBPxvtoOcXeDU+/sUcmML1AHWf6XMRYWcp9vL8W2QsHXTsaRezjkjAngF0rKflLxvUhslDwvOzK5nlFBSMZOeprHLhROUHRg3mnngrSCFnvUsZl5ZaGw3yUt8ta7oXC8QFAJxh8tAs/i4cW9jMH/U2GEnziD06WWvvqxCXnH41H+8XPCOQQdwp1aB/Sw9aZA59GbQ8ZZMAPks/UGYeQ3zY/yxS0aXSuipYbd+OQaSwzuN/D61I4kUsWxPJUX0s07PgMFcXaRKEfAk/TDg+aQuM2gBAhHTfNeBW9stN7QXh5+IhC6w2lzeZo9hiXlF62K7lZvT4+l4qWktc0spvypQlvHw0LRneTPzg9DGNVoPcIu0mXsEALXDAOXaNPeA+C1kg2F0NP/0nyxUM890zUW8CPiVwYhq1FYDh57KkVk2yC1ptIu3iBP5H+NXAoT2kWWEsmsLWQ9iSVKG55xGVOPKouTQX9IUmP8NwDYIDsdXdbPDAFm08zrX2BaDuQJi/MoqAIAdv7x8GwrOFVHkoQNPCl2xMdIGBNsifwvc66ZOOhoYffOol8Gb7SvzOS5XPioGvMwIS0jZ5HV905wYXjPoY8CAL0tEh4xadtqroaXWrHisbwHZUHp1HKXI/Pcnm8gjmiTgvBccr81PMjHZ/HFIEOQ9mddDbewEbaZOKPrazSQ0O/bJkaJB/9GtOumAMI6d2l+l5/5b0nG+J99Sy2UiUsL22qOcCUkZpAxdZLvlU/tJbtcBDxDEf6VA4Q2BOKgdkGI5BwHp2giX6d57rJ0ODAZ04waboKfTDSQu+m5IMqSMdM7DAnB+yBKq7P5X3I3gFsHYmTwNtqM5AtwrgSAWTZwBD9JYBKcGC0LZirRos3Q5vD2XxMEQjbws0LAxno+oHP+gTFgvg3pIL53SnCvxvH2t9XlI44huP9FMQYBXpUUacsr/mwQ237w/cQlZ2Lv0V2qF86DAA7iYN9r3OqyLNKmGtcpkEILs1f4H1fkWpUhcdMvMzH1Mo+oGWNZD1Gkq3HZ792Xdih0VDvz8adXaJcmXEpSZGSyNhVUYMAWwGJlLwzoflhszhYnprqm7mO9PmtEVBNeSlgoVoX0Si3Qkcnh1kYXYLbfoCBu9ALZTSAah0kGgwJrSlaXTbaGxgvvhsYOTLpo3MdEurCQ+UROpNWzsD09vM/X/fAbt3fnWMLwF8HRFqd2mL+GQeX6hxYhlfz1+wiBglhJ7552TWStoFUCXecAmPcASvGyk0MVHmPMbeg/hGrszNBHWfQdvXgmJJWOZtnWTloPCtXRltGMVnTTAyn3DJUGYsWHckLm0UwuGK9e7Hf3HK6cTDwDMDKTE2q+AAyeW0Wc3U+pM0az/Mb+nMXFhFMP/SWdO3tAY7j2LTpjKGBEE3TMXW78IHUj5EZZdRP8i+AXS/03vlolKJzqcCpA4Fm1kq4zqPOSD/saKjUvy56rSfQs2ZN4sgAZ4oFUAKtZ2qszZsI4Ki0Zo/6HJ9Thf4TNF2X0bpYkdn/3YtKDaSiCENNpTyBQRev/YPFVKVNy2jvXuDXogzUdI+6f/ZoJnhsAWmf8SYgpwMmrPWr5WHouwF+ifMpx0Wpsi7cAPaqwMGsz4T+1GVddalVQiP92mhky8/k/nygLejqf5HFTK00BX9oAAw6l/FHxQZy2twyL6s986Ti0pj4i6Eoek2oHjntSnTku+fZ7pbeN/0JlsLCohncgrt4my+hKuwh7iprH9JF46xDSEuS7MD5JHfcFbjzTe/ZwA2XnLVQNyutjS3KX7CrxB7DnfhRDI0Xw8YUI+I+Qor60X820/LCkNSvmFmNaJeR0Z5Xw/kz3YwtJVpmS+dljsM8GstJMQkhHX081oid5YgmywStt1XpAuzB25AFBE50TTIrbleXz6mzUB3Rm1nU941DzM6ouUL4ZAkLvhqYa6EonGWEgkx0LuFsWiY4pA+gloQNcHnJsVB+xMEFiCkHRSjw0lrXodBobqhboJUOMCZiBCXf27F0j8+4P+bYR6vFl/1PCpjv6YtFeyIITcbu0oxSZWpYzGxNTJFZtjZtLp2z4lL68Vj/3Pjuh+nVhhZBz7LgL05ZBwGtNRWrRJVcH7ACgo2Ge27MgF+2bQgPN9EAD9EJB13oiMwGZxy6cvEPDLnx8erovgkNGt2dRVcAnVY++VTd4YJrz5/kERaDsDSzjQCNH1plm2XbixUotI05GIUHYpY6NOY1rnLxqIacS65+EfUZ7kSDC16P4OjCOW3O6AK4ytGohmVGLwnexOxUUFvKqQqNAVDO8IpvAOLwSjGv+7uK3dvVwqlW1N+jMRs9a3tY72BjN9XFzyoTPhDGMPuM30PLlz2Qui4k49NMNKetoBZ768s+UQy+blyOuUNohXKZBxP5CEnGqDGz9KCI0/gxvkOVDpMychLGWoBce6FZpzTGSdiR96zqUHMm+IjgngBKjdT+V45yyb8d+uu9V59ntmPcg3Y4fR2wZYNxwDcmO21KCPrSN2O/l3Zi9Uo964yE+ktiWS132y/o+fYR/2oQluDZc/Ux6DZjIz16DMu2fosg+JyAtgBksdEoJmXaJg89UvCQtE4TmzNXb8S8w8Hts6uYzt29dtoSuuiYjcpGoSEkvpr+ednIKjYJEBsbGNFjV6hrA7ow9+TIjcNnJCf4OOkf3P43ZxpWbaY47ivBFjOnb9R1fZBr9hlE+2em8OSjvHaueNu5o8RvNyDdQVViAAqOSwlEVB7z/c0g4lOK9ABTlCG1fErJJYxGR8j82qI+p8ojyON6CguJ43O+wOeqiqiCloJiPfyNxasMUxzj6c3SDkgGJSwxTw0WcwkDXj6soji6UwDf5iF6k7wqKogE8eSSsFG8RpoigmkLvJEe06D2k2xnRpK97OcNsG9XdueoRzFVJz0qFR4qQFXLrfiKSGrUTgzw8AzF59t4WMB+kQcnucPtyjRBuMXkbqkocSnSjtuDBaB96lfaqGMROVHhZvPVOqvN8/iLl4YNVYSzDiY0o8vLF+jFjSD8/NP/hgsXSov2fE1OTFeN0UiTEL3Ez6oJ0zlD3JPgBMh7+/iUayGpuTQulqLTvz558vg0d5H119gcMWmeSESa5svktf4zont255PdpSWWP1Fz1gDx1qvmPfnO1d0sHpA/09wlan53O0acO43yDRZW6VUbYItknUNiIuuzAPcmNx003eVIBPi+OGKUIszGOP/FsW+lLl+UXZQlQm8BjNsJywNFybhOGQNaae6HOafezHWRrGBNk9HK8SHEH9tZko5qhgy/wtLCygob5BcLkbdEuhwps2HaxYh2ApnUwhCVw9x0akE1D1KdXCK+cCUnMUPQX5uB0W+g2M94udcqu4xkNya6GsmM9nle7eMxKAJHYWaQomNrwm2Blbqx045Qfpix7D3Z6cztzRlvogDywwN4BHbmiCbUSNamyOhrsa5oc+hi+qWIzv1+sCWRVW14JvXP4qLuaDwsjiWjE2H1OuPZa38gDfmbiS7MBKuaHUdbU0mT8oaNzgUBB6GPcxPBexNQck+1u7JulOiFqycnmm0WLsQSaC0AAV2xYuymXKeYwPoP96gry5TR0+/Ur4c96jPyhQQtSGgozsDeAXH161MCOrWlACFg8WAi+ITslK6ucmzHDOlpJDfOa5tupufvdGJ4YsPxVmAb3yX3+zx0pCgGS0KMBaZGJaZBwfDdlFzqwXDOXsWeZWhzGino2nHnHDdVnIzpH4flTrejUVltgbwBGtfwoLVjMPufHolpitW/nYHNcVe7NHp/qDadbViTsQvD7hwcMfO5X08YU2caerp2evcj7z398RvRy6wR98wU5SjEHL6dWQsyqRtNaGnTtSJvdi7HGswmRu68/WHVN4XHoRxDd86UaE83Iio3irKldvj9ZcSTSYMYfO2s8fVBPnWrDsQINqqcOlF7xTH9XkBRTMlFOlbfShYb7/EHHMMhTaFQ+TvUOucAMi0ZBQp2rLZQ6CzzLRhtUlBukIyVH1bs4VMlQ4kP1mV6eziUwPwoxugRduiUyoricdxnVfsAA4/TKCsHsV1Wd8ZMINlblXUxH102LhxpTqzLiqUSGpZKHRSghYjMFXspe9cc2sp8q2oPdQLPuo+ffcD1zisVmXeJQJsaJkDyKCYU5g95DtAVp6uRZ56ZveUBOJwWHdLYryDWDf+8odAsSr0L19norSfrYY3nm5t1GtBu54izHYmYoeFj8ofaVF9Xah17g2X2+rB9YLDHqBLAG/Vn9PaUeS1CoBlToTPzweea+6o95KiFTNHNxMLZxU+0/tVoOD9lXM+jvqWTYpbaG+Sdfbyr0agv+qTXwqVWNnlJv7dgRpaNBVpYMV5uMomceGBlQn06uka3ADg8Al7KqOlsVDMmPBuC1yPv3GCwv3j5MzSGik6X7BKh2Fp5QUC90kSpXTua3nBIVgJjZXfasn+czLGjApH+8vG74WC28GUpzjDmMdrqaaO/QPud8JyiVfRVcehBNvy4x8KnVXCAs0tYfCQLoJ+CU38BE8ve3u8RNeREKOHyDfOlLSSmyHsbQ9O3JLLVWpX5GDtvxlMXbGVeBxu5cGu3qXZaFZLBMlhbRZLQ6B9QrIMZzjdkidu3oCwQkcyynA4dKvNEBm1CK37f8n3aIGA3MNI30fv1c3rKT3p9L3GIAkKQg0Phf0ipGP6+QvDp16ri2FQ7aDfaXln1iNDEAkXmGiSWBbk28dWcNYfBDepirU+dbWSjnedXXp2B3KEbYL+o/A1omieUyLGvYuGb+bPXkKR4xaA5A+X7EiKegOoXToQ5TPdwvM3j0wvf7fJq2u6WnQsqeQ2P2d19o1Amji5+yYO+zPd1FjpFfpFu03GEqQ9M6aT8eLAt7MhXyGWoN5jmrQM/CfN6ZLHHe48ki5DRz8RNuw+I9qwYl4EHu12HvaOQmG5x5pQtdpEf9TieNFT9AOXTOE32wuN9lXoFLpCxEM5CB/twEBh4NV/eDUrMRqROyedx+kFPc3YgyW9xp2Jx6GvupxQlnVAupxV3Hiv59AQbiKwOeWM1VGpIy2PsgXL93SYVBgDw3xkt6U5y0znsopA6w/dTgPprHVAQwNKO4GLaglJQYb2BLlDuIG8bZNHwQ4oM0kPWglxuVE/hXcXO3PGEznhN8KETcPiZPZv2SYaIrikh1PFcfyZWLMXk34VSY0I4wCnFU82ORs/d+wfx2Ena2KE5UljQNA8dcWVF/QvrDCAHaRF8ZAnE47RU5LJw71SKeIkGzQyuZq6MUj/pnwNzWfmYi08psHrWt06dKk1+knhyNa5EoCKYYsITc7kx8HMBNzPPmcTGJ3Ip/Aq5WSwRKHKigAEEuHH5IiVel/S/UkekyUVrQx6iZrwxcVr1WO4wkypXRizw8yrVMQz1dbvXUhY8q9fRWdWbnFekizBRjA6TiZu0dqP14uXlYRqdIk6j19b1VEX5o4l8sk/RcesqxR6H2nbM4PrGujML7S/V3fXyow7vR7J+bmFPheW23PhAL+PV3BkGpPvLe9OcCU5YeAGb2VChXyo6XfyfnL2AErBWKgIcb0fOg2V36/ye+V2ZK0MmD2yADodc7QmpiaRy3LZZBmb0PK7SMgIq8QptNq9XHvu93EUxb9BOWufRI4omi+WhXWsq5A2aHWVVPExXih0yCkqHM+Pad4qD8uDKGY43lajnhanPX4YRPCayrF8PsfitPi/koz8I+PAuk2AclxHSZbkmAv3z9PHRxLNW8Vy6tti2un7QQYaUjIrsbc6qb1GFKmIK8VfYLLizM6jIfAAo15ooW+UaWtNdmpKCJXQLqE1DX95NIfkgkLnEJ0ZzNA5hd4ZiCi1WQJYPM4/Ol8a+PAUZAqkp6rSPpjecUVXclGsIYUQZmzd6C8BWCCHwUt+joZymZI6ghMXJw7q/JmFhiYqLC978/ECPeRK4xw6rIHhmWrU/d41sc5OljlioizhV3+9Ajp+jd9eAcWzkRqpHWJQCAaM3VrMVH5s9DtuIuKpZ4uQRDGltdtCSqrIssUXSI8jm4ytOX12pZB6seqQ4hEOD/n7xzI0YJjYl8OdTKmB2lUp1XQftzZwDcGlrG8Rq8tWSAS+GEjYXiQfQgjWWPOIaW1AkYcJey2dFQ8a677pdMz1ZKjG2Vakr+JO109iPYo5LpYS2RLf02Iol0A5j8du6dUfRzsX2BumOnbYYST1C/cMrZqaJeWzePK4WMV24w4ifjaLGFbwouJqS/fnK3Uc2ZDdl16eaEqUuAwYWFo5hZeuyvDE8eEDLdgs0DinMNBvxwhaepj/Nv1StLvhR6nBGdIA6EnNSdhwEAE3DuG7DBS78yDpod5RzkUTjcqIKTKo9gTlvGH+Lc6txl4Un0aV8QJtyEOoj+WMmBHFp3qiz5JaWdt3o63oaxqTmVrmnuQDapt/W7Cbn+bUs5Klp3379xjiIvSlROoeqJ3rPR870M2BQC/kpRumFP2C3t0/o6Xt5RDyIearMDxpJ+g0ht0TRWxNL5R6rfeNGW8ZgmnKtT04NgvlSZmVldvt9RfPedBNcxnCXC1QlOqdNmOcwObnPn0vyXS4ncBHAlFDLbgNtOWKb3o6+V6huVmNvESXPlM/dM/HfWbKboRtV/1ehQCy4CFng2BMxXHuiCSRr/lLu+B7IqboweKIkmJOISbG/8RxzZ/8t2x5xqxAlwbflIRKAkc6/L5tvErERdFNFJ+ZgZo+QcocCG+nUN5XKrGsrSpdo6LqkmMlAVU7L/e+M5QXDXypw9BCB1MkR+yxNWbCDIuopelIj/X2ysP9KmdnI7Rw4s1Jq2qO4YYP8qLs/oOUu6CVu+ksnlB5rSz0GWa9gWWeiA4ie60Z20iDg2Ob6Sq/eZelv4KYjjQ7KviN2I66vDYP4J0wFu7KsDAyWDZxClePLsNCfxrtwn7TRTIHYypLjrDn+BfQNbvxZhdOVqX/h79UhRiis9Mk12FYPcvNJOGs3k6ec6+Z0gmjxUY8UjL365cu6k2xAvcx7JRfFnrPwI6WLJwL4Ad4fcx9WDjXwlqTbjX1vblhviOzL7l0hcjVodYcLD2WDTHzmUBsrww1gM5UJ/0IKrEBjO6XLojS6dDYn+t4wYAWOLZ7edmpE/jvowdkGjUGKq4l1t+ZZxdHIO6VhTtJ3SwULwuVBwVZ3YAIjXEX06vrWP424sFK6nB14o97Zs4n+259sQ5QPiJGLyP6LqzQ+lWXrH3Xzf587tIQZwizoBS8Y3cTRZQ3p5nw0ZLhHhASIZQ/X2Rxl8SgItOX1oP0Nw6CIw4svyVqU78o/SGezCCr0TrFYkyGY2V32cQeruCZ1HZiaSV8opZx3bvDuqXkOHkPjCHPtzNeo9U1JYyLlwOtKgthloHisXcvon4CnaVN6Eb8QXxROob8iNlfwJ6odnokPpPSCXHt9UydX5taEs55wwvd+bjj8XAlxmylGPuvURgVoeimr0d89GXEcstAUa71OGMqTuOYPvPakE9WJMUEgd+0HA979MYRy7Y9bajN/MX+juoYZuSkNOtQxt7pdnU+UDtQJeIlOqug7mdtTCyxFEFYaYHeHk2wl3Q+dd5xlenB1M8pRupPK7erkTGPsriMCNH6mL+ha08BZr+RW5W32G240g0lkqTHCDH9xTGCXIFGYrB5mtrZDDD3B3B6ZjxkzWdeyQXw6sH4bAv3DZnc6t91TRb7DxPTcWOjZB4z3NH/CJZd3ZuChm4ZlWiRkDGPoMSuadEb1c0WbXHv+6W/lLH5J+SGWhKllMaSSE4a4mMSNxGxEc9wsVMetXaF1FvyBmyD+2bCtV8tywTCtJSXceStsidIWyjtRyVseQgGfjMZ6llPtG+igWo0hWXyX774j0Yzjt+/uCCeDNFyzEAwREwusJXcZPoNetAwFkWs3GdiQ4ycUO5WLY4vpFhrRINSpTzMJFfZ+BziRcaXROLcukffbgJ4xXbr656G36G8t2F82OwMZgepK/3BCqWLK5BWG6qajtYQtlFvzkR5inS89sl0W5eBduiVqj+LRKkX8QsALQh1DNsn0umqUCN55+guWYKdeBeAiWnbi6BXlhY0f9aK3pMETEl51vTFpAClp3VzGDNNXjheFJgAeTEC+0q4BQ0M0dK98Y080/cKS4n9MZ67kJUw8QE7touoYa9uxOjhO4cMOqnu58gkqJhg5YTv49RVhPHrG6UiQN67oHK2/kN8luSHdRFpAuziLWnxz7JQW/kCHR91FKaZcJuuWVJpAV+1CwzElo/Khz/KyY9n9YzohdMWJFxXQzciVpOLLBS94oAyy0xICfyMrZT+KlBdJ0ln4k+ZA6+Eaj0L68RpKnSxVN+XQPwFISM9TEs256WTjjCqY2xg8VfvVCB4dgLu1gxIwakuh5DvTsAokUZpS+cN46QzV1DeB0+pbVXpVFNgqC75sLc1Th1ukepSikuUnrhpmS6s/r0HExCVCMGtieoegmYW0FH+rwHjUikP+fX1GO8X969TnveYVvyDqMa5v6qvd/4ufkH50fY1Fr5WwRiYHlL0ckVUm1+hS2OxRdYmnSNv4T/TpMaiWeXmWzowIGpRzZdnVOtlir+L4D+Z4g42CucnkKcAaX50/FcNcvJTqp2ZlyRrQlw8KfpbNKRteeAq2unNBidvE5kUGrKbskwq4UfvW7QS9BbGDEJvVkvU4jL0thTETmVt0KAS8m/WC4eBgdYVxdul+DqiuGgIkf+n2MWuDL62aZmXV26lqNvxTLuKogTIo5art0VqK6UPL3hl0YN/noB6GNL2hx3HUj7gfeAbfCnwOdk6QmSGuk/+T5cyUB+riZP0LpQHTydvZE0dKWPRe6G/CFWp+kcka8wdPT4xBRPOKhhsUXV/G8tYbF34vJThjn0WfLEswwh+jybrvOl1+MJObP8NDqKhxGCGLDLTywWa7az1fHF1hOM0/0yad0x+3CIRVcof9L3AGufHTIbPQK11lwsC9hVWqhP3lJ+jCeFwJ38IPWKbHWBbcXJhRk8SjUqQ1TnFJEOQwWL3+a9fRH4o6EpFpVGxoE4yhySfhQDk88z/wPvYT7eq+OicTyXhQKFYnW1rtKlDHYzFjSJgy1j+ReyLGoBczrDs2F1O2RftyOCeunzFDQgOS1aLpIxG1DxwPDQCNVqLUCT6xOyfqaDzL6eq4tK5aFG2YgtBLTnWW5/ffG43SpPsbqUM1XBsdjhWUqnjMJ+dLnFRG082qwcAK36bpTB2We9x3ulutzOU7YngssunF/E9QG4GlQnm8rayerfhw50TGpgQcaDSmz/6W27MSnLAawCbN+DZIZaTdQrLbFg2n3lRcWUwwVo2xBZfRW1bH69s/DnFZJjbMI6z6O7EwU8YqQI7+r4OUqjpXbx6YKXUPQbJQCKbIZiHDkvl714NuqrXPPVtNENdwF9is3g7RAsa+UShiiwWj/NS05V3x8RyYJCZbziz8eGzj+S1qJotHLNaQ39dxXJKSUp/JvSHT/bVPkosht7D8UprKwD3Gy9chG8USfPnDZMWBr+kfU9dcHDGTN6qDkXSmuPtcYzpjMtWreHuXXDAs54+MzTdicZiGYkxU3wZ1BAl3RsahOulFGLzmk3LbBCbMcV8qlVcvgd3F+kPhXLHyr12hnIXGIVCnlK1KQ1Pl/rIeDtflg22WLO/beCOWthDpa56iIBPq1ol0ISS5NYojOnseFYdQlGUEWfKy1kNyw55NlSZjDod0xzcqPISuVRT8JjY866Yj80HjvsDRDSF1P2q0afexYSQKNQe/fP+0obHMRmZhoSLnUoQ17+jNbDpZ+G8DiVB0NS0QqMrbwG/RHDuiegvyZNJiEtXYHTjsUASBGEoiCdmUWbMpTlm8xyLq0mdomq6FLUF2DW/so1DCJaeYixiTfzaVhxJCC6yK1VZ7Qp7rJKqSHarKRxu1+1SZgwZA702lJ2t4jgW5erpIdVu/kH01akpE5zMujawnM64gpZkexRQzp5OnAyf4gt2uJvcihT5D1L0fuSmcvV1Ts/plL6jMk4gnpclb44rQrc/PmTAhMdq1ljSStH7YNMCIZyJ+95+R5xsZByNEnp0R0AJoRnrDMf6spc6/eUR1ldg4VttTRLAsqYi02ieknrC1JP/7FOclSPivD9a5xrUvrxq1tByWAgIPPyDkJ8gymNo1Hyx/XPBJKG3p496e9Wxvvz2OzEp+oGUNivMV21LIeRDSDA+jTGj7PtHtBIrVZ2iDbIYpA0osKdd6K3s+hUZ4bOwpYxuT908l6FVMQEP+Rpb6xdCnScev423KJvwB5FLvZEW94AWJ039yF9VFiEbGEZoyc2oMCSUNyrEZryXaVdtVAz/ljij+gqLLlhJtNj/g4rmCgxPV0P1sx9PjgC70lgZJb7rZ3kd6RuoTc/0NnhuSEb3RUxprbJY02OEPeyIcPQWxcMm5dMYhDOyQXN15cPjIxZBG3+lS4IcAqHLT+1tB92169gpipW+6y/InKbTHzWJI7KS76ogfCMzTfaTyhrxozdinViPID+sWVs5LWh3BtPhvSHKtjTemu5omy3H9DHxycrOa4rJw0S4NkuuWuIseRkkDFgbLozmB1iNBo1GHTsBH3cJhMqQ1kWPVUPmLGsnjZfbEpxjcVkDfG/0WNT8GOHj9AqZi+xTkQppsn4IFDGTYZeG8cUh6cs5wTDNiGchn4PDMVGi6TD2qkxDH17p5O1kesLWhFBO9cTYsX5sT+kDAX8BJQQyw6isWQvh4RR1oJ90KoXCGPffjuwPOI8O2imAQyLh+MkTrUsXCn7DFo5e5VwHo7ED8yvdgTZvcSWyVtjkfnzaYkmqjbR19RSuKLDaZByFtJIJ0qb2kwiGtEWSPHmwaodd56jHrZrYbJtvXAJuDRbD9dVWzFlmVlH4KR6HSjQ7h4W60yP4PkHcMNHVJ26BlfRA1QLA6N5rsnPRdC3BakBYAo6eBJyIdntuLqPguGuo3LZTMRMdnTnw6Zy5n8bl3oXyiKneiRldYpPROhWIr9XllfzuJz/aTJGzdpdZriMSPflDMl4M6XNJmWUsLwiXkgt4NY9V3Zh/1oGc/IpIFOQe6HjM8fbVCoq7LExzVvA5kJfipIh1FvjFOHYAM1dRYT9VmS1bFNKaxXJ/hPS3dEJR0Fl2RYciUEN98PgeRL5CEQYrze4pfM2CTzex+PStxOUW6MuSZilFRRXRuxikp03u0khuCSzYq6+tEE9adP/lNb8zw+Wm5R4mlWaNrwtsGYnErxLhtIDsHZMFCyb1w2BAfv3MdmHTYtZvujd4dKw++cKjxt07nA7vXlKoV34jRiZkdPi9WPJGfpHknV3MZ7sByaRkN79xRsmCOpQGa/1tA7cHvELpooMBW/5Ag/6CEcJ07pssiDRn2Mktubt24r1vONMbyw5D6lv5QbTaepR4ObPmC0K/6yTaLw8BlwjIt3X6apUcGQy811OQgBvQCLeuYt4h9tp6l+FhyCVziOZD9KIw0YJWFFibob2czCbeaudVtjeHx3VCVVeTSJPNYPjHl7SE+O3T0mfboej8fPWZNf5CyXn8tQbNGyHE4TcjTB8OlLeueRteEULj8aj5ZBfunhvNl8XLtScGz3WjqIWDjFOjHuAq9OCkf5iVLjsHbUfXYjngx+6X3I3O/FQ28GJi4zgCpkzsvXyHdJ7hobJLE8QjeomlKsnvYaOPcZObSPvDhSAG36IuxDj3qlx9lKJK3hU7Y8Rx2NcR4fck/j3DDRIeltfsw9BdCSvnFki1EAzzS2V0sTi5HVaEVa3kArWqZyO4W/JU1XSHEiwuduZdiPq7kppiJUAcPB9Hr/6qr1z9Z796uxCNMDDiAIpLCtrTT31PAgUzBxhKfxtTxF4ZC4ITVyxL8XDQNG6Ml6xvp9CEI7RuY9q7kKUA512pxHv474v8QY7ONOWDAjfd1itkk5ChCpfLF953dZ9um5KQuIbx8CMEtcGVAkrufn71tEKER2k4OV4W7cw2kpQiQJtihxrsgzYVAaubSx1muNEqWJdQXG5K1OXzUVpQTd3IVXOnQll+aW3Haxzk/e7lKU9kP1W83Dzl5RoqitrNLRWSyyvqRQldGVVoflAFgcVMsIveqj7/uIGkumC43Oaqlvr6hVF1XJMWkO03qwwyXUcdLGfb/qvODhOSV7/xQn3Mp3v6YpHYAzpPVLqJThQF3t6aIEJKrtBKnbLde7kPGg4Krqcrg97PLDmogoHzPzr6UkxdCkGIq6s6BOZfyL2Of+elmCcL5GY//roR7Ojoevl53D86UEjTttW9j09/IVPwvSlhvQKEFZ6DoEn1aT9ROM2lPsWgd0wtTtkKcPyRHeg3Rbbf/m8uoIkX1cCr9HKQKIvlVm2N7z7PyqpRkx+FmYCMtZUtsRSGF+xW4ymuHQJ3XglY1jGp4n0ZsQYEuGsuTv+AdkrQsy+XrLrxefWDZS9USFZjy2x9QXoeouiR3weyp012GVnq9n7aAWjaNMYCb/FdxHGmE1miM0fWlKZC9KYGTR6NeyE5B8HiwMGtGJDL2fUt8sUwCvvmu1J6a+ipEYILTJTTtfDzz/0+szkjpPulXU4jmGD8SHypd5KgXdFUKb1WmxUvNE7icw0lvQvC/4l+qb/gAdai2d4uoRoptqKBmf43tYpfWGWYdys/hirxA1HVaaugSJ7KNA2zpkoBoXxYgOVHciJyZ/Qif3R2PB587VRidO5CGrAajnPI7JAZ98dsIrX6mT73TXV4WlFvs/IThnCReLuoj1pH+0/RKbjmF7EDWkTd8ghw0xt7TqfJ8GfVzbMLHROGRJ7EXMDoEsf02ZpuItL6dXeZANP0ltZI5WKWr/X95dBvcZRETwWT1cCLy5NW66CumYkoTu6jT5VEFgSIJENgEt//HoTgPZ2kHD4Vfo77V8PhangwxzQx+Vej6UCWuzhSYy+59ufF3c/FvqM0Zq+ExHtrHsBB5AskkhDcfZ6VOWhgbo4F7/xPQowNS+q9lBHZbLbaDZF7ZeD6ZKFS0lftKETPLqoZyC36a4pJiMi6gQduzN+PIkuyHcOlToYSmf0YqJQl6JTUim00VTpHM/fHqQscp5mxBYXpvRCGKPbQJNCGZhmBgmSX46CR3Gh6jVdXvSoaWrFAUxFd22lyaEFKq7RfEli/Fma2cWfsKC75AVXANd44bvJcJURBwhM+kdi56NvQHBmTvfLwMRYmLXM6/tISqWl0Jlt3ahBIt4eI/qIVhk3QHsyDCGKRG3pHkqtPHJdRbQzOUn+Px8k0EPuHDxSHZp6TtXysGEpniciSt0fyIuFGs5CW1c0dCoRKyFWcUig4Wvkoc56mUWc/G96mS/eZrI3rGxXwQT+j7pITCnA7UJPxC/H3FSKSCNfqx74bxYfqzwMAaIQczerKCyeiLsg8cTXGbP9fyDfTyPrrvkh9JSgwPLarWnXeYctkWId6W6zhpd+Cg9Mc2/jNaTp4NmOs3haeE4mmxJWYwLzkxntCTQ1+PYixv8zaL6mVakBhhch7E2FjYV4kJVoV4ltOmiewdhxVu/FyKs4KmNSf2HQCCcNcdKJS2B6MQSFmisCWz4gi5PaY5ApAQ0az3YQM27ZH9rrT2qwhN+vPkmCUc4B5196Q87d/ttoKdvXmGxBNpknsZXO/1IycOFW/FoE40ZnSlKslriwx3aqIsP7U4xu4xdgh0mbfcURb0X4D5HihH56PPffItZthHSk604HEWO6Owwu9qho3m/40EohDYwrTj0eQqLMOM2iW9UuDF8ulG3YgYBB7MYepuNMStVMqDLzlAhedDxTQaF89QcRf6+6q9QVfAbJM1/p6SjXKZ3cwtnH7TKs1KDAowS0XzvKvp2hecervD08evBYs7CPnWe+gpcldE7gwQnj2j6jZPczb8CJ+4gDmWMSBHdiD899BKr9mFgx2lxJBx9Tx/GX420KXo0Kwl7mTTppiCGveqCPeohV++2a6hcFqkFSAlcTH6XLZpnzyCtfQyjFNvzfXdmQwzM6MdHOxsik0iPzfjcU+xwAXZaD07NA9vn7tobcO+GUBCV5YreIuPEYlUYVoIX9Vm9MxNmrOP42WNFQS/vFbAYxqSdWkGgZFSLcVhSblD3nU5NSC7hCfWqODBix3SoYczZ5WZIAo9xankkE9QakmAVAzZgVAL6fxQxrbjRfJWvcpu7ZXE5h7CAvt17KCgtWoj6Z00VxxHEFtgyyckyFZIHRwzbZDsjQXp3fWH94JfTmA5r5ynzaaofKuve8wPmQjQOtUTT3Ebhkl4r/Gs3W3SBm/kXl+ccyy1Tg9EvkLh+B+T5l9To/xJRMinpb0lDbTrWdwcCT4jlgjJjYW9uPmzwxIzwppswSpPhxkC1/S2HfnsBvRSvKaGMlEyamHVBwqaLKszAnheInnjPdbuUd8e7Jel4uOfbl7rX4kNF4m3K/J9SiuyWE9owZ6knLJCNQbm7clh6xyr+fahBzsCCG894S9pPtGF6HxygCTJ0c5cnDlGjHLXUsFRJizbNRh326vi8Hnn5t1vLt06YLidLOomPX59gYmC3tSZrkc8x0zF9z6WWE5X4iNhGnV9T20NSDhg3KXelY9ZFZzF7BZRkDowFTkYkLxlDk81tAcFpSPMxei08PEi69ELKWgd4+A0px/rQ7Afj/TdSChS2xkSRyVxF5pn+XOmKRB65irgYBgvx2zTxm2IVOGLtHeDo0wIwb1q7QU9MVPu8dhBxC1GwLupYEfrIl7pDz2xopEpI2+Rxtwk1dufc7xW9gXZZb4pBMUSEGOYXz2IrxtMtqixKEd82NvNz0PBldFRj3or4wIqlNnCkiQiYPV5wsHRILRNoCEB5pCSUpHTdcplt8DK8kapQK6saZZziFvNYr67+UQ0xO2OS8tGYcvovVn6bn8kHD5bTdtAXD1aJXagqh2WFZNkDGKGNAmTOkjXcngENrrbGAR3AnQsbzWzErv5RLWF6W8IZSfnWeClCi8q7CBJmScdmY9qTzhjB4mMuPCh51YjYu/Lxx6TV49/+zIctjlImPPq+WMvx5qE8lG0BCFedS2DZEQW+Yt6cQTQzKof8FoaA5CFHNBD+JxyTfSwkdrgWj9xv4q2thx8YDqxtVAYc5AxcDAiCcMAwCtHm+uTXU/MJEFtaTRFKkM2wnc6evFrcp6jTlkvYmtNMulttFuT9kDVgAiVil+CVw3Eok4/N7e7TFo21wRXddzin1tYwqvIryYOuDlXxMuApZrpNTD/v7yp0K2qhwAnOfvUK9mbM6G8K7JcLfzpP9cdeNfGEUg4gVfAFJjqHbX9ScT1nhYqcCDkGbRIj8NWKni+Pk53hGBhDx08gws793sOKH4AfXNXoMb4+yCo9MlS45gpLlpXqxI74l8JaiSxiohIbICK5JscOHD7s58OdVQ1gRs06FqK5fyxai3mVPRqJFzxz8Ir0yzMu5IIp3ql+sJ/zECHQEDzmuip2Pcb304ODMQ81pt94CnbGCNn3EkDsod6MJU+nLDIc2pufuqlMfEm2aHHizfAi3FYsJPNZS0xVAygOUJstqKcfY16u6hGkehTlPij6Mq9fCXQN2uwfj4munYYp/BZxwCusd7acVM2AJEWBFXQe3YB7fHbkd8Ayccmy1YElqzlN8ceQ6X10E/A4Tt6YaqcmMMbZGawSby/x4r6y8CF6EjFPac18CYiouISFpNeVuJN+0scYDzBiczBeljoz/+4NatKzEqCE7cnibv3vuQU7ODlxkXkJMsYAAgMpZvfri1DrOMgZ11Oq8R69zOB0xYCWbBKI/5yvWYiat3EW5g+7KZlpNsl47maBhHOBEx1F2sBKyZgDw3RPJMwArEbzLUkm8wGJLXNyByKlhqMO5u/IOovQNR79ZHYSGXUUh9vVsX5G2Pa85maZT7eSgyA26eb7wsfHJnleszF3ncHTQ+BMKiNhruDZB2gQgOS7Lx3qW6/Tf6Jvb3ULRrAo6rPOIC33+ie8a4hVSDeoFkVUCYF9Kz/kKu56hNvTEBOd1xLMAUJ9l1j2OoWSoGgkLpIZoQnlvr9bJqJYaFuvRU5VPva784XKU/qr+byY4oFpc90sPsi54vrv96V9h6PMQeegkMOp5JEGBamCrNvby8wMLjW3OuJdqo5MTqw8yCsLhJHuPmTsJAYioILZ+IhTujPKrDhkx1fqe6JltAHMtOY4fdycwyFT6nggOp2vEKQmKK3TlWZ537XRTYT+CFQDmkEN55GdeaeWwO9ES4mDjXXEvGqsNfOsAkt6ySe0qwpaBuy2/p+LAajxhizy/2HnNN9XL2AE5/QY6c8tJYLil4fG+tQaNaUAYTi7YcGir/8MYpKD506Y7lesEw8SXPum2CQISmE+bW78uP2cOsYRC+qwv8kwgLC89K9Ljs3XyfSBYzWanWcXAjS7uDszDGbAAiiJjzSXvcKpvs07Z0/PymU4VBD1y2CeipZm55vEhe2KcfjIAHTjH9Kaen1nsuk/u2VpXnQ0VSV0ryTFlmsY2HpDuNaHhrZHE9GIBN1exUxI54GB0IGkvPA2ZOsFft/N9BG+cjexViyPoC3uqeyA+6f9cGGzV9XDH1zX+FdPMHw4eilBPMtbOoz1o9e9OCa48CuR31RpfmR61mGO4+DSqWH63wnpShd0TYY9MKSiJJMndKP3W1f1KjRMtpIllw7K7O3oYOg8LpMw1C9r21+IW9aOVKGLlwNEf4PBL4CECcR3xFAUGnpivxVHgEszmI2g3cjFla8YZdlZE953DVlHx6k7fDINiOWfQi8a4HXkr6WRXjnNIyiFN30lAGbEAy00wc4ElN5XzKaKVLTC3OtNZfMa1gRrGRU0k+qOpN1kI2pIEWz/2AosA4YzURvCY67cJFD3ZcN8JR7jwMFxKBjWPXeFDSyYX8fm0Dmi/KKJQy3jvUs2swxHkzNNOWKBxamCp9tvUJ02PYUjHc0ReoUhgR40UmmX5+YFFjnB/ZJldtjt+aoPOlqzg+IxDBJxV3KOREBKCqRuz0oZp5DhjC/kN9kegTvV30DOQ5hLBgwUX1o4Z25XIzEKmE504v0kihZOxPuUrbO57Rb2AwM87PcNSBAVsalC7sVt0dCnV0HVGgxGE2bZMQ8x961q/aNSo2RS8RN6J0w03xWGXJ5VWle+XZwDjwX0EV2+j7Dt2R/glyEier2V0aDt1HPhLwJnEyM0uRrsUctkK1R3FukqrNwOIn3oW1EKeKavCilUmnU/Ygf/aHx9GWh2NyOESziA718ozsMLUWbf5xQXmJGYpLmwjClYypG5cy6DBeujOggX+QsiBk+tHHyr0KHISPegdE6jJlDHJ2jpota++jExTFz7uiqVjtXsMYwF6nLN3L+gvc7SUXO+2JCsxCC9ckIjyVEL9MdFUqW5wF8Z6kgE7UTYs26NVkf5G5YzJUIcIrk9f6RncjocrpFRvk/ONSBxW8Tc9nMPoOBBWN5Bb3vEaAlc7tjR+J2WqbQnW8uINqwgPDbdbmCZnk1VypC+B1IO1SB/Z0tL7uk09SXDqtDRcVR8UxJ3YIbwWPHh2A2OZPMHtEI3Dk0JQ9aHU/P8S1nq7LW5wbBf0XxrnZQ7l/YWm5+rY48zySXg8aQVupOD7mtouy6X1+C/0op9OgOLocnTOZLSaskWsaA0wWDxJDBOC8EUeLn4SzgKXkarfzNyx6tL9vv0+828J4V6VRuoDU0lf5qzpf5HJw17Qmy12EzuC5Hx1hcSLKVkXspJoGC/GRp9p+i6rQpNxKWeIha7t+zpTLFVFsnvBTlMry4q/MEaoTofpxEvJ/tAkFrcthJOqpphrBtNuBudnaVN3II84eCdR4MrJE1a6Cup4SaTrynHdEpC5QvwMLfMK64OkN3nLDOasvAaYTssN/5k1HZtgQ/gxWU/6E+GMbMPAvL2FQkFM9Xx8sdAcwPpuL6dI1wtE6Hs+0Uj5VkDIutS+NRdjKWlELXaMgHb9Cqdvr00IsXNBH2tQ7Ebd2bhwspH2IIbMyDcaNWFYxC9tgSqJ0zOFVjrRlKcYfsGn63rydM4es358MMhfonjBlQb6aymiN4dkmT1QQgf005tD9Ph2HwO7TqN5TrFfs6DVcVBKsZGHLPhoSo45KF4t6XSEyCVVPcp/gsSu9IaT2pfoXugfhtkumHpOsUNEa5h7XkS3CRdpL9WB9mgW0m+EOV6HFbJkHy6pdmxi5OOswO9E6UIdaHa+HRnuTxfmwEny/mQ3ip9j4CcNs08tqGVo1CFGpO7gBe26z46LVZsSGgHQiMhqoZkMHvOo213qhen1y2IFfJ2RPY626vDrXTRieUuVirtOeNus66E2gUCIvHV17vKk4d6+z4TTni/mJTSEiW5LGfo8FQJSTaJjYhZOn5EXD3w15qDnyBvR7zfsvHyEc831Kb9D3dtfySpEY6V/LzeZm/an8DX/q+65ttUcE4HpTfWqHW0qYVdElOTkqXgW3Xr7Na5IogXGPiDKB8aYEp24cAdj9Uz9RtBtpYlkWNdJhxhD2+PgqEHZo0fwIoieHpQbyuw9ecMBOwQqOpy/3oZj6FR5Eei9KqiVhknl1SIua11+DMgqhOqPhQylJ9xtuxoVwWT+xLrYiXGBBFdH+foa/beeqzHwmMqztOLc/1lbZFQ8vSspSgrqKU4xfnGQsvmK+GiRBp6sAkrst7+Jqh5LiT+i9xEn0u7fbMYVa/XxPtImRIjtstsZEmgqvOuZrktwLRViPs7Z5XVz1rRnZC85TcMvL7TN5QBj8LIBGltG3N/i4rV9vWX+lq0kMZCVc5oI3+t2u9KfYaJ8m1E4tv7giiNnyD+0QmiUs/D6RxpVPlwIn1ZIGPhLNIJqhKyRH0IBF63C4a5LuCtJv5BjxibLlKEO6lZ88MrCNK00AMVft56hKQ4nzfnWLJEz8YYCLydP1lzkFNxp3JN+q8uDCDj22a/FrsskId5oGRFv3YMR2HUC8uVtsb2st2/R1HRyOfF0Ep1LF0IXLJJ6lCo5bI8FdtudCyGHS5W4y+0wjKT6l9qOAMasnZIpBd4finyuBWK6ut7d5mi3+CyJamaFJDqglBgGpU8r+peY5nB5ZJ/pXDhJrDLfLRzbsMyTRANyqpAX3U/Tk9rHqGtsRkwLLvPPD6TiWkrrSx3FUES0FPityKJKgygSO/8NVcdmiJ9gg+QB030Zsqwd9w8NbkpPO8mMOz4GYrczZe02fIhcu+PzE6rBSAkCOnNdVZcNpIe5IDGEau7C/E6f1248blWW1l+jEpH6g8thlc80J+B5LVXFiYwUJsNVDRWOkzKQApW9qY7RhbTCnVHzQFM+d1+pLGcMYrQYr++Ysh4VUnAuTKBGMUaX6g/L3yLJcSDt/79F7o0vZxa0f9MwCl+UVh7lGwIh0tF9VnnpCMHOql4IYKWahEpQZTY/AqJUvUU0dWm4XgHyUfxuYkqdC9MmiV/AOh3YSRrAv+7rg8ovshFKPqFyk3CswmVMk6UjhkkYryq0KV6cdJPR/xl8RWu0nozpag12nhND6xVV2DvRWbd5AIJ0A4eOl0x65EkNoa5BcD7nvOWNC4kVoTZPiMAc7imygGPys8YBuwGzppUTerr3YyeEGvD9gVIWa3PPQJFp0+Y4F8LUHn9dG5Q+ENNrzPInYp3IIHQ34AfUzIonmnNrIn/UVO8av3yKjY7Zf6eWeP3Z0TVdOqrCprMPiSkLliwkOTJXBhlNFpOY0YSRUfLeA0BH7mYeUNo5ntNNqyHiTFx28MUwivXMWzP4uN5H5+o9XVyGveJUtiQK5YvO+1przwTDt6aSki2cYwjNkPc++yz7V3YqYK1s8f17xYmzW26eh/AxEwOImyVJ+yhT80zm+SG1GsZlIqSLJOFGi5mXjpwsqtjJh7+fWt540YQmnFAk63/Z8rzAySJXzMG8KYGXKqQ5hz1ZiWBIIwE0MXiQl8DKWojfY88KLMRfyuSjOSfcGz3Jhs/tuItrVYeGtKIvpKa2Pi9P6J6QJOkAxTp4n6UffSK9FXmNpVpUdY635D4It/mq4oYC0q3dGZn9OTHNCSJC87ncgvfLHyUtJ/l8vm1N6MO7OjVEbRr2KfY+MTjDUx20EQ9i7ds8zTSmRojOKhGQNQZPMyvgp82tNRKgwHg2c/ocu+iv659SV1zytmKrUTl6sQfW4XWEF4Hm48c+QiFci3dIoFkUptGMk5b9M/EhmeyIbGNkY8nZ/o30y+mJBageRtVKpnJB8/6r/K2JASyOjIip9Bunn9yiqpyl3CfbbA6ZtAE3MFZRTRmUWpr4Q7F+9OvTWWq1ykqX0aaWkHtQoWZFu0AKFAgVr+NSeC/aybtQmFQUfqnTn66Z3VmkTpDNDHuot9XMu+2qj0oeubGDyQk/zVJMkZhWyLPgBfBaK+ZdvX6mbFfv1tRWnTQo/ayaSbmUbfyUh73qCqms/AbKkAkhLGNDCawqt4S94JYtMzGyj0krY6wcCfXrW6vljKjNhNo/SsE5roWAEBwM0RRztjlOj9W0mrTyX+bDo5pJKuFUGAr+7GGs6B6TBbo7EPLtCPnlf/EA5lwu8f2YdZDY1vJIDOf+c5VARRKwzaOnFcaSE0/Ii4vpWKoNCQvK7xK0duUItR1ZHW+L7VV8cWvCs6l4ISsA81nj5SaVBaZ4TK+gieBb2eKm7IA3/RWLtE2WnZQsPpMInoa2wtx/2KIV57+vCp7zKGg7yqmLTEPwIH+0Qzfr3X426i7SdiAKRVXadI2fKuGdHV/P9i7PrkiTP2qGLAK+OsPaxRTrNOKNCxFyG2To56s3tDQzNxLhfZcYfNlvc1CgXF7EazHfQVBUtLRzIpfFhzBsItYkCIzqLD8qnoB3ZsCYcS4NbkHQqrzstIZF03Kyu33QyHslfkLihe63UrRroL1R5LU4J4qBp2TuV8hKpx20TL1gRmgrZ3h2FHZxEX0GM/5kIcCLCRnXG5y3JiVmFqiw+la6rxHXwE+5LHfoFVe9/G9oXJ7WmYdSd8qeIPWR1OuIkfGxjY1ngly4nH60ZfR/z4RVa+MxRiukLe/J9IY3SNMQR4c/erQuOZY+j08Aj/rTEwCIkTYIqMJtVcgKMENmHx8AwJLbgd4I6lWCSfusrJGF8wtZKboLyIetiravutQMLvJ814RY4NWNIh2V5GZzdxWR1QTQLHDd0yPM+ckSBzsky2uc32aPHH7mWdbThf9yl7oXJmwmVT6VKxIrIdLJgrzSDWdsSGarYAnPMHiYBd6D5xOI533KFgQZw7RkYC6tG8WnTHGCTnjoGXRUdhBu3HG+kPSl890uE7quTMuhjfD/goI5+7G1PC0BQVRkX2p5t9ExtkD3xcEUfDdh4E+WWtS2ut/HTzuXdvicm3LB6k4KI/NL/WfheeavRuQ1XKRK13yl5uJ+R40sAq2OnxR0Agdg/vt2otjd4UscjHmpOD1vU0Hd4SWL8CyjSOydoLoHlqacRmTJiQihND9wPlFDgz6N7lUzCVWWGRHaUHzl/lusNxIEePBSUqODZmZKu/PRoWBuDud9r1uqLVYAQUxqp2IV2xWFFhvAxWFksfM8ihhOUhCsfYaLw18nV+wrCENBlr2CqWQhsD/hzglVPpSlje+6TqliTsEb9uMEtgpX8MU/Nj7Ye6b8uw5SOY6df/q+UipoZa/kD7PLw+wZ8WHTzRTFshacJske5Q3b29fCBRswoSvPmXGHezjBMoz1eYj3cbgSkvk7xMSg27Vx4hD7gCuFp8dLVZ77DSSvKALFlAWpNjmYLf0neGJzyNaQkYJQE5Lt09/NKTrmvMf6Hk1JWLKPL1AZmODVN6BTejWZXypPa2UHIYYmkvNQti5Ips4qReFZrJhNOgGaZ+d0ORgxLS1e19KDzRYzLQ7SA5y/GXHiTM2heB1SPgRRgjwHkoOYpxsRHppMHhh17Mas6Fi81r2amkyZjbZYKUKX0XXK3oeSDMIA/a+bm74KhkR9wLOsiNwd4j6bfstkdk+cGnELE9c2z10jM0Y8NTVkDwptEUwTW4TasOCk7WFhSpKNEL+K3v9pnf1k3KIuj/N7ykkqOIbnk+MS4M0STMIT6byjDv1bJ8lApd1Knauv0DtKDcJeQEWkaiUzqjC0tONhYxhinDcL/S9ebSjmzQORbCJ1JwVdGWEZ2ZeW6j/NiSoN+sBqUEjY/8p/liy3cr+q4O1IsLOYXuFfLqUjm8lu64sfCKVw8H4rBbQBeBKtXGjQsmmsyGqQNuX9ecreipau14XAt8W2U4ypU20tU5XD2ChbJetLLbsbKJs6L858pXhY0PRh3O5k+ZKhoT9eusSMxCeMZztnedmJLTVnQOPgiaL8M1DEh00fciYnAdZkTVT/0VmUDyXRkK5MMylYZ4TN1f2vyL9dTylbpeENoAq1RTth/ekJygwZEsiUmX3XA5kfyOh8iNT5Vc/bl8fE9kSNgcXtebI9QtEUPjo4gVgZWTDW66v4kTMWrmsi/sKnm90VyQawn8uRazH/NL61UrSu7Da9/QDgNPAUlAHyyFb5Umig5wc7WHPhoVN22mCAMZWunOcWtK5xYBaCMvX71L37bbeidLvJ3rCTn0Ntg8/2sMs0ZKFEQTppYLpQEWomvmMLe0nrMBpE/MjcfkBqbHAcul1gvD+Umuh9YpxcFmoWcuz5AEQkvYa3LMGGt2RVcpmXtLRPqLEm2pU/p1gM0Y9k/2qy1HIUrbgvSGuztx32ZzuTSusnQNOMCRT/4q+loP1FhTpPletbX06TVArwf2RfB8t0EGUNeF3lZX93uh3A4dDNNSNwUyj52CuOaSOzYCJ+JGLYFOgqaBy890/Ynv38LyBJv16vqCpLYiqn4prjDhB8E4q8KdBkZj9NnxbCkN4Sl9TDido/wq5qwFU3WnFZL71hAU9T/q9z0ibkzdK0XtbCUc+xgyUj0ZWxDAZ+uHJdPa/W7JYmcEl7pdJwSzampgMc+sMbnBfLGQbsCKbax9eEG+g/8Ahdhw0o6162jTSQKoTA/PGFAjKeL7n8Z5ztmHLxx5JrjiM/FpyKfhajMGTO6y6jX/GnKkzO0p1IbneGQtBmOER/HgHnZuEhOljdJ3cGT0NnTksMcMoVXbFn4h3v0w9MJatAlIQqXQHqkJdUYK2e7+HYfcS8paWw362oYnQxoGfgljbNb4a9uSs1OFayvO5IfP7s6bLdDfLjk6gDLkoH24tfQ2jAsmZQyQLVxO9rYHOzZK/ImcycQwUQisIevFeheSSp/o5xNK4Ub8ige/4nNGdsUlyuJDeUhmMj/xUvdvhFCTf4SSkkwWOQtaX2XjqpKYsXAKrJwLx0tivOxodHHsphFTq3t2p6fLwsk1Lz7q2TgeBcKkPsste0+SqQRUJSnlrCOoIn87ILV/Uu3WUGo1GmfL2Sm55VEVC3QHMiR7KhdWnyPCxHvbruidsxIOE5NYC4/vi/0DblKYhv/hHNM7KzrrOgV3bVPv6qfaY65inm1WmmELKWqGAkOuC5kEfudg3kxak7MA+SoyxQF4DQ7eN1muWuJSjRcLg9Rjh9XMHBo0VUd2YrPBDo30AphDU4Odl2H/EjohhnGZzOb2IWX4jKZWdrci+YJvzj/PlqqQeB8QqiFK7QizBH6wvEvaBg4KfWyCeqviRtNOaTf6wQkviXU5xoC3d1eglkMX4lC0Af8S9xtmn83JW6jycxnohtaOxryPorX+wZL3LxuYSMr9aH0+3UZlgdW8W6bP7AP3NuJUYlJ25DYDw7vn7PSyZyxZpQ4QZXhbS9Tcyw0es03csVqNDwXCd7o1N5Edyl2RJ5SRYQUbwUc6ao1UzyQT6+TRJbhbDlmzDvAvB0qFC91+kM2tJUVadcG3Sy8r1pq0KYe8zXzW3zb0weWKxaEAUM4pXfkbwo9FxxD3L1UVbx/TyevAIXBAiOFCOj5O+9Ml1ITYlz68dsDq9F8+Mz0u/g9qHPG2g/qsJ1Nmo9x0SSS5MU28yfwAwMFCOY1MB9vxFvndR2iV3QQ7AIdqbJUmmzbqdkwHnr60QQIlMU46V4rk3PFQQReDybtlhPda9OWF41mMPDmfoIoXW87iYAxSXZNULUco3XpRP38jVGPROgAM3qnr+PXFniTpljSoMLCO2Y6YYhqGe2Le0IS9trm63sourxW65M/Td5Ms+of6jEN2jeKJs0WycGxCX6eO8AIrdR3ERPq/2eDG0AaKYMa6cOOv4RmYYntDOWh/fm4CyFXgbMXj/or++y8xMcFMsKbN/vRsXnXLAdCM/0OwYW9zp4PRsNpDxgJnT2/LpZ4Icz5lt8yIHxscRyVm+tczdhosetWABHNEKzAGLZrc5ZGoP/TvUIRQWLcUwE+zRVSJ8Gs6eC85XLga+ynYinbFnDdAxrRURxG2covFcMRL3WHJeVJ/NIMul5c9iHTuXeerqlB2oXY36sLr8VC5vP/ATrjza/7JNn1XDtI8A0lm7/KtM18NC3SDxBuS6FR1gXSBs5dZdPvk8QF8JdeXN5wrodKDInmPzapzGTh7bufw20XbMORAwMWd6/i8GsmkTeFw3yJeIV5BNuLnW5CLW3JSI01dqZ6StdCq+siK+F+NX5i7upheMwe6FkCcKnqM/PbmSKJUn0Wx5jv+0LH81nKBiI3jtFThrqgEtbtThl0m1TbkqQ+TGP/0CeYRb7G48mKjvV3pvyfbQtlzgh2KX7ZRpxA1PH8F/U+9wCYKtCtIerRajmpxUTP2+w87LP8A0vIdMLERZz3qRZm3px4W9MyrMKfwv6RTJbj5MnXmE7nAdHiRTjFI0Ga37esyg9FA/WWM1NWnZMLl4Co4BWT8Ysl3zVIYxG3eM3Fw/WBzZbpiw3q1GWZJsrg62efzZlFn9zHdPz5agLvI8yargM9Jee9MhKXTUHN0ru9KZySBoibB9lm3Tct/xlnFtWvxDBTyCwX7nqsFgduQd7b7Wpgic70CNioWCBQvCMWTDWsVpoR7caC4Vkf0UGoxlb0qGe7475Kp7NeQmk4EVIxYqTWUzXpZbpQWZlknC6mjdWDCIOjRC66Pn4+xaHr7gkZi0n13tvN2JLloSvw14+0agzTCtAEHjhUxA3IPHc8tCd1CPOqEYlZLneg4ZZc9kz/25/KT84pN3y8Rn6M+2X+GALPCVTi3gwXRW33Cmy7noBCsvxcvWyfmJwsh56huR37VyBFeWwgWWTbP6cU8o3LGEYgslwQPkFTVyv5NWWFbn5UqhW2xnqEnRXDDJccuERSguBzIEGZ+cufAWXlX0RkGQWOFkYuX9wGYj2gsmRtoohNKRF4OFquLhOp0YYcAN+KGTRri97ma/HJ++KT+vPKIriL4ItnYEeA9oLZCEkaDI4rL6KjQr9zz2ZMr1nRuQbRdPQ2LmXVqjxYeSMWRodLN76Aqucizg4++JZlpe079jyMP4HpR0ZkfUu8EgYocvptdQxChN+o7voP26sqQFEJRxeHa8Cc3G7m3R0V/q3XIX8WvRx4pjaoprnek6GYLjN+sJwmBY3tDsaQSoPxLrdxkrIO9CaMeqRktKNOM9khdj7WILWWvnwG+xllIhpR4oX3aEywisuf0FLOPLAsj5l16yrRcy2Lxb9QLQFjZDT746XYhsDYGmVPiE/FDsnAzFwe7DT0rWFzYzbjnpEnWTL/HSWMbe5XUZplA3pKi54YpQk6pWXiacMBF+k7T7y3tX5fm/Hz5WBmdlBxmzEa3OhJd6A9f7sBG3ssbJUK76D29nQbZBkq9wE07vlJ3jFEZ5bM/TE2IJWSqOFyfqh8MNQu1OXUjOWKdRxwDWsacbbPV+PpBeozRZvHMcWTFhHN038ywdddp9lNctSr4u7q2BgbLSS+BUroDcC6Rp/YItLbp8HnHBYdGNOKcX9y5/ZgSIua2lrabjpwZxRW9KyBGfhzIj6Jv4PJV+8sMFdW4h4bFSzId0kWs3u5AsikCAzZXreSF2MQj9XndNrPiHYmprf4Ca6x+i1OPBvCCbYW7XhAdFsmAyzmyP8QoqIuYLCzyiFG31u9pNDBRuU4Mo20Qkqqc8x5QrZJ0rL3rbTFqiPk9Rylz9RlfpoEsIDYWPRY3/V7sA3j9NxTJJ1YqybFrW8kRE0E0lYHFGtrU/EpST/LTIwbiMV0xWtx8RD+bU/ynDQ6dzh1WXnaaq9N5BZVnwb1GWg4oB7hmEzBFY+lIkNILd4xP0N6+TBfigZgYKPgxrYZlRma8Vuj7QkYqzYU1UU6m54qMhnEirAwldgWd+4gKc20VDEhobCwhEPfnxSxMtaugka1rzV+Qi6o8lGB404dr5WC3mFhtdm+ShMpNeIWSymRFSJjRJIvru/PhfjunbxxPlfkxye6NHWoOV30QoVgIfl6Y/w6YHZxtcsxKU+1BTPX8PbKa1e+29fOWkoxB8lGAVj9RyPBSo98SpgloVsxNuFqV+KuGxcJbMDoEsijWTgjT1F3TeQXbPuhc86L5TL0REF/VIgxdlbj++jcTKYdhbnns41cviH0lB4KL5RMwXyc/vGUFi4BStDVduCtUqZdI3cG+p7K5h/CbdJB13eli/f6EC2E8E0auFE3HXnS0GUocL7Z/YdkY7obTL/ocZW+nwaSO2Iml6iI0+2mHfA5osiyFQyi5TLgYv8hrGLzAqvEN0EP1yMliinkYW+WGceeZTK6+mlUT1bNZkKV+UYltEmL8Rx3irBXsogxTl+/HQE9O8SLg29yGWisZjFDTy0VgXA/B+PlSNYHDPh0tlSZicChlTCQbL75HeJOPLBhdO8Qw7vdy4Kn0672lFxz+Zys7IaZUx/lYS3PGM5hduF7MfGIOPrMlcKmKyCbtQH+V+O8ANjAZNjjEAIpBq2x35BnG8kYbO9B5Ccoem9V275MooySqS1RHTrl68K22Nhhi2E8R3IV2LfH6/QlvoqnS+zYbvtbygJZDAu2GcOlwNDEroDj0o8ZEulRjAzAfl2QWzMHyIOFHhrLW/96yp6kBBk1FNdmS5uwXYFrN1UBGDlkg/8XXvFrLCfj06KJPKubwSxdr2eaTHVFSc7wqhz7U8f0dko5P/1eMN9qHMHqL6GON7pbtU+CvgLSmWdlSUrshfDuiuCYt0YoJM/2R7nLAUexTXH0la4oN8Uml/78sYL3fGgi11BnWE9CtuIIHsV49M7pjCfSfUnDL+bbp1PeRARnuX5tqlbbKKQYXXKx/VQOGldGD6+Ujh1lx++OGOpvo8wR9JU2c/GzTzMyp1XgxDnxE0Ap+Xn+YB3lYM7a8tnBCcQ6GYmjVc2PlorZjsEojR8gO/x6kFgcO1i3XPhTAlvP5vPKkn73jRGoqWK6Y0WavkBtThAPVUneosNM4QnWlVMXNHCptvonxg3fNZ8+QeI+KxAKRc1xx5z3l+QhG2LQWSgpiFaSsQiRkCz3wqW2l8AroqGU0n282Ul+4fBek9R2IqnM776qdzlv87mvPul2nGDdj0Zg/8O3w0iD4D5MyJinyGXebmcDpxtA8dvsDnktsoPYYJrNyWRrbhPT/y4tdtA69/4xJmXCRWZ8W6Pn9mlBdBOcqKHvLP5zE1rSJclw7Kyfae1JI1+bEAqQFd9+hwCKBzQ24m/rWeBLfLGLYRb2sYUv4seHhvEOenajG8FVoF/3LRC+1+3m6INHqI3cketxIAfccVPLjT5E4HfqmVZ3MnVTczrnJm7MPh3gXoszxmAGrekvN9a3OQrFL1X0nQHkTlS48AOCvCzJkESMclfETe/aLFDJbS3QPrF70pTpEoU0HY96qFj87FGjqa3K+aUYIg3pMO/2XCJY7wI7l9YLm127KJl4Ck5RcOON7tCOUk0XKz0GTKavkQplVCCukj1lUGB1tkjqU3vuGKD/7fcCgYVXMDPYGVOPrdwkGfqSnc0xHTADQcQGYkeNGQo8dfhwORozOgkd5Q8bRFKQgYSs6L0LWT3JQKXUMTDF6wCZLrI96DxcBXx/liU53NK7ULNIoHpIWHl5TCrTQ9Tap2Yn+LYdqUDPkVjDv/6j4Xw9Rl0cZQDrVRWMvnp8XCI1GRaxgmMyBlqYvTKqxTF3uU/CmPQyUYgntsRChN9dg64CsbaiiAuBIHeM90wH/vllKA5bDU+WuQUtLlUpz2ZaE5vENk7vbHenizAHzDT0pr4pNngthxRPQ7HRwn9ugv1bzPycFvW0eex8Zh6bhezXQ1QAMkZDU7pKbH+r6s1rRIJzgay425DUJll6+Fqbnyx/wnvRqXZ7HlfsQPwDL8p35oALtNE6NPidITlwJFxPGcfnA+ee4LefWTBYCbSkj3ytKCf/AxqK7eqg6f/Bmk5awb5brPxsq4kzg5zSHNMh3ZYCfUVppNh3turXeVVDM1sQ/pXMv2SWRBAlVDqQJql65yH1nXQ9HjgO5ZJf9+za7dRo+VPMH9mnnnonLBPFpcB6+IJn8LPZ9CiLkrJsRW1x08gupwA1rlCuoS4ivUf1lE7ZHqpVWxZngO3dVuJt6i2jfjFgZI/USm2D7DMAcPByJo4zWIVNIOnV9voX7O7OsZIC0A4pgyMqfXWlFW/doPlzOIBEP2mMxFciT+kOs2yFqcSJR+RSndMGX+YMc9QtI/8v9AmZDeJO8zR027aaE472EQNzRwmczeZ1kJvqEez7QkI/eZrnCbWQKVbm7Ik6GF13uIn20WWuBX8x2H1kUEsD5elQkzDwujcmxDW1aT9278K2ZrRYGDxQe8nmM47VQcAgK9HE5/lOfEgbr1wMnxfZv4CSIwE0QXdwi9UJ+TyJjFRHMAjmqW4utFHOqQFNEDKBLtMLzt5Ray+QBnIN/Tu2iEgvkOSrvoxlZSWwuupToK9AyLZto2OsKheomxyEU2kdYkhBXlasRnEMialiS10BfOgZn4f2DLvEpON2w6XCd2Sh/bAH7KTAU8eVvc1Tqnw4pLpqj4J7ijxaKfDZ8WJimFcxibz7YZI5ejY/0V/orqZwgLllrMm6FO1ejpH2Pt0+HaSgaTcq1h9e0NM+Jus4rZ1zmLpleSiDaEl1TACnCMvU48AHP/xyk3R42iIFuwX0ZZKtJasOm0fxov3av3ItbOqhAsukq1ycZWeWzjHErlKhNBEdFalUA0tRlFwogBDM3lqOEO09MGRMFa3qRrJ+v0MDyH9iVSoTWW1FSlty4imBufGTr8m58WMC7lA+DdWmDrcx3vZuAnYx0Fao5MZpzY7WQ4tTARr2qo3OzYvfh27Cziqi2k/z8A1YrfcMnu9JiDGpq/uRnOzjSMJSbVjDh6gKS1e8hry9c4PTso36iVEZ2ZtvEE3EEexBRsj/lgweHVqwjACeiKSINRhhvtOWcoX8ooxKy4Lz/PtkCKKGwOezYKd+DCPMMdKC5IKxOL3hxgalErO9Sks1G5aZA3b3B92oh2JTyTdhXposSO3S3Sa6q+OskJ8V3+MJ9bbddTX2JkFmEYCxpOecga+1R9aoeHTJLItHHUx+smDX4PYgNLqYqhINFKXoB8Fwn8PH0c4pmJmmPNm4fk6+Bh9RN0VNsUlUlqzBYijmzXfWXs27SwF0Mi5/3PgPIQW8cFQVyJOlaV0gNrKRAlWxVO6AkYXcvzMbPMFcZOEUQHQxxaz+On4t4rszsIEAXb0n/N0gJczRfvXJt2Q3opkNVgsmTb+AOCa5or4pBxqTfkS81bflbGpNuOLbgknBmhKjbhyawjk8DngxktcZNi7qMvr6ZeUmUEVmYtUwg/zOKv05A9iM5HnN/TG/rmEvAjPN1H1FAJwLp/8BnRbrUpxGdsoqck4+vBE8D/VjkO2oUc85O4GZ5HK5z3f+gtGWQvq9yIvIZMqw4LsqcfrngVoIzJ0BypirjY/gDQFfwTUGxGGRO/NSj6Ta53xZnzBofTnpPR9GIHkpxecbhUXCiCrw+nf9pVqRXl5Xo0hcrdP2M/3A3d45otRhsvSzd+wOo4GAOiOZJjLrwi3dfRMeYVikt5hQKGz073BEl+6yuJ8FMXkWluyu/+IuazVn3s3dlby9j4cS9LTFH4G0H/K7PD+9Kk2nmYpvzH55P40VLo7uByTJDFoJYpoagkV5U16KPHk/cuXyAsmHixwP3q5K3ohy0wzZvbxWp4tm+DjK5zVoYOyUaO57BBg4JHo1p+U6g4tYadZ0fbuVgl63HpHUsw2tVcv9OAwtZHcj7p3okDfP22EGxUvfH/OcBS+8YSr5eW3KTRQdfxMFVFm681i7vl1oMq2vuITnV/WV7pxWCa/MjvhOyyn+8mFIJBUs9tBDEy6cd3FcK1T8Vpl0eOu4bupPSULrqsWW1Ce9Q093w04hTcSobXfvJwkPblOGt8mvR0hftskdrNdWV7HWEJ/WAvus9Tk53YRRvgBlx8uFP3ijjp3+/bvvEuttmlXrJ2+oWSC/JVhakAT3H+hPDzpX/v7bloBA77yEpfDca0t61B1u8Z/LjHGKmdpd1mN5hrwKy3NN6W0TbRMPcJRxRfFOqp4BWn/lAm0D4EdA6PhmABFwXukaKzoFTAbZUua1z85Du0gOzxNNezzSjP83UiS6PcoNYcBMVVPFTEZV2VKSZq4oITFd5p8D6xKljTeUlRo4S9jceERy12FubWNxrudWp+f9OZDomAlsZnt5eFM1f9XDsykhEToBLzA13gygmZIRcheUoTc+eakH7cMR53TCpkxMnEkMeVqOQWM5oel6LQnhxvXp7UVSqskRfDeUG3dFQB390dmXm1J1Vy189JoK1btMXLfpnQUUC5ItKtJiriNtO7UnXhyBlGNgT1ykf7GMBuka56sZ4lWzkx9qc4XarYi17kp9qtcyOekZD0cRCGBTHSxRLM+RbzW64hbZrdvrBHDq8dWJm52YVQNBdJkgNreDcAwudPhnfxQ5JlxfgiFFuEJoNY+5wj8Bk3u+u6fIT6sR+y4p7i17z3csxKbJhWciHTQMWYtgQKICy87Fbj2gbQuZbPDGX0w7NlT8E7Cflb52DPBmToZ6nthjwloEHw2ma667vW5oRUIGZU+MKQrP/r0Ocsqpqh3RBrlPvlOVF20p8TGNOsF4N5lNjR1izP/DiOXXh83c9ieE6ZkD5OaOJ/hyebeD2ya3MpV+bxjPgSV26T7nabIxR6vIKQv7Ngjpnp5K5b9t5FYhi1k7YljvlQvqO0a5ilbxS3pcjkpyx8DUw5lIq3kG6CZDmCMFbMfZDx6bir9LVIhCdnGKlw2HBP1G4M/PtziqFW3eYOGknaClratcoEfIDJPelDngy8ub2kOryz9H5LyRF4ntz/OExsUiGKV9GJWg8LZSVhEU7SlPYkyQKuSlL5VTLorzzOx7ZHPTfXgbbRQtBIv/YAkX+ZSsAlbknVp0yYbiJjEL8vyk58Y8gqDh3CoTuZnDN1dmnSAqbutgo8gf0JPn6d6s3T5wdqGcve0JlcIS6B1qP1rNpc4xOmISUq+2cSdOw9M0jSV8aTkL5iuA+u0GvVwfS0xqBUndsBrHc92Mb8m43S4Oz3rghBc7HwrAwbo8PPe8q+LbLLmIg7S/oxQmMfORzYPwwwaUFGz+z/fJX6mJlry3w7LcM/5CqrhyxogZjBU0eBBF5HD4u++FBMNNFFfhPYm4fqXJWq0eFJ9YBKpkG/gvZGWNdSm4kzBbtMJKZMb44LY7zyJ+ynblKZbyG/9+/yKu6cmeZdGGfPhiacJNhjxM1VuY0hLI3mG0w9oJ2ZZFBed4C8asTRKzPlCeTXx9TOeZTr98S8j07QiBDu/oW2eJDrLjGsitBgyS5lrEk18Se0Wld7s5czPZSehR5cxyz2mqCYQXyG+eFlxLMfM7SaQWjunHzxImxfgcj/omADi7ce9V5WJyi4yMTrZKYDNcRsZS0SN08xJatgbjeUBiXWeuv36eivh55BCNUhhyFhFOutAAzx1TOLzOlr3aYgzRz+KJn50E/mhyNmgyB0s0UXZilqbSkHJepGshMd7zc+W6LxPiHQhLljpgzgsKTXZ4/iN0vzIUAfp1yHLp1fY5cdEo5fQcBTcawHpuPqZ5UuAPudSujxkJ8HYNUYzpEMCq36V3T+YiZCjc2PP0SA7LF4ijw8lLCVyviieW6PvPqnWkIj++36UEMzbeK2m3ClVh0GT7+JiFnpzZWz2lE54p6K4JAltk1M+Mc+gsGDOBaAg9VWqDnc4He5jJNlKrUpm19TOcdxfaNf4aHIG8xgw2GCdze0iFFldxhUrHDyvcDpeKmIKqCvMDNAjoIAW1MKmIvhs+Kg3tW607H2JOCyig3x82Hl2sIBAsKrWe5d1oyrs88xm/mmlNB5hVZce8X+XNhm6di44BrWJRE53Pz0bH/pLr5IfcIe+iARGxcncfBObPzHdLvHNP0sX7GKPlH+CoKlSfue05S3sTgrnVImmbYKhSTKIpS1Ew6jwFTG8ctrL1l7f5/1V7WUxLgG3JAcomw1W2DsMSLc8WXmJ/mQDIbQgZS5D4re7wgPRoNyLp+6V+Jydkz+KX/y05ccyzYh31yshZFptKHZYlDjNEBjVqwBvlFaiz1HdLyvYuQqOSi9j036Fu2MRtaWZKNEo879tOBfI+evcJEIRbAoEnDVTxW6opG6eu65wsSP83LptBOgBB6rtA9Totf/LxK4j0iZJNs+oywMXeCJJG+5IppMzTHa1JFYKDZMHZ6Ckh4sXnHaJkiYcSMmAHJgTARQ7O1U1obNM+bLIqWr5jKq/Tj7n1SQ+sslTvJtPm5k8y/MOK2wqup4RpwqBn8VsvRTgDupForFNaROIF45VVcEyL1Zo1kINYbd7HsgjvVwN0F4SJZdphrvfm6FGsNoS8m6qqQCngUJvHp1B3Onm7BoBtPIPqAqQ5N/n5P7gpEMUWpM5GzrOQXBpo/OLLo3CUtKSSp8oHCDrXf7r7Ga2IphYoxxiMXFxfUWtMaWPAC3jLiPKrs1FwPWdss8V2S3fcDlPb+Ww483qlUNuxM57hSEQOlEWlvEWUMbSVL9UzP59Mn0W3s9mznZZoZRRWP9TGZ2hCI1y5vpb9nLRbboDID4jsuRz0l4cIMYjqL713mD+iiHpNkuYXE+nlfCIS+QvuR4bWZ8iDKV/f1ts+nX0aezE0Rx90T9XCgrBSMLvV4HSdjewIatcciyQzyPIpC1P6iKyBYi+BzcSOGbO3xGKSdO3OYL+PeEwJaALZpSPF/GZsW3M26RGBxkjD1iRxMfKjSH91NJq3rF2MiH+OwGh7evmf7zIev7HnMtkqEuYLAucoRiqgI0lChy6gphrnfBrEbLIrYVvTZgzaDJJliPtS0Fp/7mqph8WBw2Cb4cv2S+zOY/VjYMKEDFM54O3KZ1WKgUMhq81/kjVbEZtLRcI3TC/3FIItCqEuNFb3sVLKP6TyBJmW0pRNHY8NxzcbW8jVJy9KGZ3C0OMfXq03iCotModg/MeLTsKnAkAtjty5Gp0bPWE6gh/LxQljUh+VSKfGfxZgySJvhpwJRyg8qCArwnubVkvR4byBTHYtdOYUzgtTaJ9JxEJSYFkG5EzsD0MoFUYh/1uT9pQgDGptNxVicn+La3DRSmS1fh/ZAXDbflTIa6EBSQf7ZSr6qbAem8bzc6Lk0ElCOEbXJ40Tm047W7Y+I7PKecF8OTHPEZtqBdBzz4Mfdd2aZZBQNeqfflEsXhuJJ2mH7T4mrXi6ig8YM5CIMKliJyq3/W9N+lEhQWtc0+8G8XwO8d9HTdhJBCWhaJVo5UbuI1AsIOLi4oaLKDw3dmlGbibaOKD08ubOgl0xWOtGpwkAN+A7jrb2GiKE+F478+VKSPTGQeP9E0MwcJ03QkZvXdEOK+JewiaTjYX3ZR03aeG/4oIhgh32IzcO3r2ORQUqU0w29OzqWIsR7ftmS/9u3zWaIaw3zFpBIRuUoGW73LAwGA7tHH1gUoPcb6DOqAVC01YpmzUC0gIG/AJsY1euqc50rycfp/jA4EgkqrlcMEcdrGvT/Fp7UVALqE4G6kH5VnJhlvMaNh+2c3LZrPJVo3QIfH0IKP4C2APXHZeuOic0rln3NXKY2CgdLutgUNLwpf7aV3fSgDx2Nz2Dq33/3OsT52HFoynwUpXqd2u9EvS1ANI6JxfqvhOz1Z4K8/y0DpQztLr7J5zKHAEdAEq3zoWn/3vBqDHD2wGFbhptZCYbjeYhd/76i1tk+Tq15wFdDEf8XiaZS02CYP8WPSNG/unNHCkOYJkRtp+GvnKn8hyIRmhAaBTC02Ui40EdcsWAxFOGo3sVcFoW3zR7sN3OKEZKX8HZPKgMY0waQQybhozncedAGK4UDxsBTyVHD/38VdmDHdrAL85zBHZXQI4ndf+nPEly2MNBeiGzdeYS2jxfd1KD8ntBYMC5Kz1lGplQYtFj/CdLQ/Y7vgtaZVUHZMaTZpWEld5ZyporAvig4XIZQWfoqLBGXRN0DL4MWC3JcySpIuw6RhZ1e9G+1bgsA8h2c9V2arhjT+BbxG0hGD7NG9z/j40yXKVNVBCuGfGJRC1R5UwPypAxBc5hykOl7zf+XcR5HdADMAaj+pLhr9QDZJ3sbQBa17CLlMyxIFh6frLoKoAfCv80e4dQ5p/zKCfcaJ9SvQ3+bQrwJbg7gzRsfUoZ6SzYZdm5KPdDo3HngkHltNWnnw9uWEyMZUJyRZqhTvE/oGI3fmT8diBZh8fj3xVjWL4EKb7zUrMhWFRFItis7PQtunKgaJrsh4P10d//HprIIXzewBtXNFKsEf11M9P/HrWklxnRqspq2H2R1DCILsksijW3D90CHVz2Ybg/OnHAtFOGJqED5kXNBylGvweHhKLYNbwDRf/qm9bVx89WCZli7T6B/ERcf6w42+zPPjFFxqlfhwi0LvAfrwJQ4vwseMCw7YE6CZuMqqrLH+e2upyKMdKQdnhmWYAxM5lr5KnQLnlBghWbVTC0kuLI+T7KBxtAf3bicA2o7zkpdoAy2VyUkvjjgHi0raHG2VFn8h84W3QOJu7WOZspIojqcTNnBPt8L0bwKU5cZW8hq50QZu1ny5ZuJDSWuXUMF1Beymo9l+Vy5Ta/TkSUOMFk0w68ahssPo0BEOMfyP51b2RZ4S8hTFNCysD2QHPCjdGHJM3Q6HVSryaaYNnjPGC607T0oeF56/OTjUKV9f7x13TpclG+hfaOt27V2XuAqcIWAbqvPzaHdXtbQS2QURX1lkF4/ErY4AIySduf1JECptniQkWGWQ9A6wADtOeXG9cn9qqRoxE0vE1b68m9RF7Si4tjgkHxejp5ULmBASujQUigaTa9dwgCQ1HLsAX78tsDMQ/eFDnu+htE8S54dhNc0jemq//T4lRRLONM39ZckFJWO6AoofFPc16LdKJevVArSoGbrEdP6yuY6GblSZbgAOybNcYl4+4dXdQJjZPFq+H/LTkt5g+otb4/Q/HfN6bEQPBeMc7N2u3mbbWVxaYRh/zAfcsG9aQ9SEp666QxKiufyM7N+y3B5fsh1+7MF0eujTZkUbkOc9jL1jzHzVgShBPoMYGL2NfpcYDA5WcTJMFmB2uRvrOXAoNj96TyUUE0RM8QhIapTlvULqWXWhxCNP0LNY8x2Rb40p5mKsQCTX0ixOWnb5mMzEU8TBOYRJowFRTanu8X4kOuvB0xsRQ93NbCcjlHa3wWO3JKEYKHs84HUp+lc4DQZa51Ono4EpoN7q2znRb9QpT7tvTd706a9Qh2j5s0I6e5FZeD40mpfw25bLwDwLpP8Y5CZG47yNWPSA2SujZ5Oz+V3SmlFfXC46OYpKiya/B64uc/y3CabqOsWMI085onrqYpsCGW1ZCQRHiQbNc+7n42TpbmrRL7nw9T6oY/qYRujByxVfRCRIioe9GELDXRmSmaCdJV7ZNI8UAo+b2Iv2HEhye35Ohs7XYOGDn8m1bj5+Gy7X7LDJeaOWJG0cVJh9RVC2tH2y3DDVWsdrarB54TyDqMPhWRsDxfF0YIC2Kn6JEMhdjkURlNVWb93RlfnAND4iT4+IV67eOzuzdfG9yavdhZvEzRkL5hd1ZIB3y3u4XqCVO0e9q+R2BEvGBrmFo7hhyMTAfjBVXUV1k6aZ0Qyx4ATpKghl5rsWwmIs+wwSZnNR3EOrlFdIE6RcpHPodFWySKMIuCMuzywfE4/yNHe/Du72PdXR7bAwtWp4xqCGYuEMTx2RF3CSrrvpjvtcuRXJwElD+qNiVTl+4L/2mappnC5fosvO6O17EYofD+LLci+f6K5y14uYhTL/ThwsgTQ1cT/d1Edw0JxZsw5jd23RVpyEXd1p4WZWUFzAryitEpz64+D/WgTNYTyNj274ViG3G1OltMyP8XcP2HqsgLlxcQU42aw2peCwSK4r6gTRLu/5e95ssUOgVu8G8kbTPMfpa/YmGcdP7cAWKdplq0W+1iKVLyshCKp7Nb6Mk9tQQ1tMj7pKyslZxlM11RrYyb8IXpLNsEJuNFAUnQuagESgQH+QlhjDLTpRlXjkl4Dj4oEx2aJpyhA6pPPm0/QYXut1zz/bOYhruiJ02i9ScSQK7nVx96tsg4jGLe/vBbyWbeB8i3yBC9EhJtnIlSlg1ZyBkTkpJ+9nU58RriZqGx9isjML/Oth09Mkyzplj7G8od/5ysR8RzFYydjtAX7EeheltdHKfzhjVVy0Lcf9e1NPrZN5GiKbEWUEf0V0JI7HWDUVmLyLmuk7v4fNUFlU9g++/o9bYzJvS8Qrvbtguevw05VbkSkTFRERBomEyB11FHIYMDQwMxJJdwLjozM16iDrrTqmZ4J5ubVOw2AbQ1URKasQS1uylzkhl3BZWFiSZRJXCN8yyo3UuWiohYeVq8Zv3FEJ6Nk/phZdWGUyGMkkytMuZdTzCP4mhyQgH6GkuZarIDzNzzJCS21pdgut0mKgGhhE7H4QYRBl41j9fwo+guKl/mxs9t5bH32Cnh5+n/nuctGQjccUqpTa1EYF7XHrC3dlLmlDuw/pKWgrW/KTQjsbuhy0ELbzxH7SWhahK0N4dO2zgNos5hIobnDX9KzAdUaWAqY0ifznMldFIlEwBhVJBg5Ou0oXdg6mHehxoZng+2j/w29jrPCpbFlhlx0KbiHiGHIfnhbEnECj7f25TWXCFgsLRIISq6k0CxYVWqL3UjiFcpD95UsnSte4ip2Iz8DmuRgOsYyhjIBJnxBAJKS+sh9CKUCXuOJNSFscBKQUN8whWzzQPFc72O2fLGuGPWBuGuAIrJKw3uw0g0XfBDeoNDroQf9vm64jgGdBJc1RrMBWpbhOO59vzbMskjHjWfOcEdzZsMHT4wNza0/X+RaDgRKdmh4KcoIK9G6E9pU0O1EDqO2w9gk6IXv7KMe5vt4SqK1bQmAznXoeXvfryWOgi+tnjTYyxrqdaxIRnbaCPYl9HPt8ryxP4oYhf3Uljo/DN2hG1g9yqDaUcc2yjfOdaBpMGXl/61gh+FTKCYFJKgTnPr35GoQ9EiU0Iv6ti9CF3BjpDvsRpGJXyoUhvdEp7X/EReEr80zZy3F5IxaONHJmjMFmSzA531snzjFcs4osY97hZdk7+IOPMLp/fYh21bozAGpUGw9bMkSLrog5ILAiumkXgkutJ8QGnmFMAUg37EhITlur3Ythoaeq4SRWgKz4bzvmq6p7ZkEKFTz3D2fwhaBEGSK7Dklwrmy44wtzGeyjLEDB8Q+PivNolaQpmNboaZQLxk1FLNijRwdnNfZiNiaU5+mpbe+sL6t57Bm9Mj2I84F4szrnpNV/rPvGVxyfhSYTYkZu7lyIFa8i024tbbavDLdh6aGbUw6TZI+CXlOgk8cLS2mkmzjkTeWcLVk6GKKCjD73hDPZM6v1k7Vhwk+swSOxA5wZCYiknQGmYOXqwh5H3qpd+Z5NEHffv4VFLSdZ4UMCnE/klPGVg8JbJwvOISa4lWMt2Dh+V5iG4k4mGYHOIawfnG302z1zMQf4TkuZNVxHah0TRH/8eOTsZQdhgQRvck8SI7A5ERb+h97iIii03UsJWWso2qU42YCzrqo3G5yp6GuIEm0pOIfVevJyeEaU4W0mtGzOQ91Zj2xNBrmSY0LUiUWG5KwcXMT3BariHNKkCfqPZ56TK3+CseoxVeV0hp5Y8UowXWSeogF2Bm3rqYiuXG25ffcEvLJiA2gimfaITn5fmZUsshG/M5f0sWb3y8DQFzN9ciYAHUpe/URWtNoyINdixZoobYcxuIgiKqVLRFEed7onVWr6st/CESaHTaFb7K2PEbSeXx29ls5emz9k5v59i+7PNsrsoNttKJswmaxuP1uWZIsZPv11aJnaFXFR9QYc+XA5khF9NZARG0r61wocqwrPTy1ioiDqWCjSWuyFGrBmhzzwSjzmHMrhdw2qEgEmjONwh9A7Z8ZDAubK3D9k0Jq34L0l3VHeX48UfLjnMqbCXP+YHUfA4IzVcc2JwATrLj1m7dQhctL46AYoVFRqlGEnx+nbNjDG0dn9LNAus/RGGpWbwhAAbxYWNhEtWYfd8/bzUVwsYcBuMNSd6P/etJmWjAY8rXgPSiqK5elwMZM3ym+2VG77QhYlrgURsm45YtiRDC/SJqHViIZbnIpohdtl8osVCwXEFRtoNG3jnREmvibSVNvZrXhQSkLwpbMq+T99p2U0lQ3Dhb/IDlPpS0uF0pq35seQm0Y67uI1dj4YNLzLnwb/eXYDOxv/fChVFmCYh8iiixCVXUJ27ORnoGVLaYOz++31mdMq64rvQ4pE56DBCYETXBqw/Fd/Rxi7O8uD+xMXu1NnpO/500HI0rh2PWCLPkBArrTOWGQXuGkiEjYQvvQmAmTFrZv1ZDw9GcIiM4VL0ust+08bswIK339yZHemHsim6iTssgZGwqP6M82htL5CSmGh+1qGeVL0TvSDL0C2RhQIZgSfIqhBVN2lWEYbPZHMBzsTFQ5qIoDDrlJXrdPPUI5KzVs9y/WV/yAb0t8QviJfqklsXZ6VEZ/29zJ2306BYy1G0rBRhRBdRBexDiSvFHzRxzc4JPV+rO5h+HOPMdAjfOHYnTkQ07TaCtrQ7PnZ1lKnsE+nVJxiU7CK66L0cqZV59GQDTfewOBWTJ33rGw3p+FjbZMHOmOVoiifolM8/I4S117ERgzqjlWtq5jv14OyRyGa+JJLBH4eBe2NRkf6xUrUKHanDQT1Qoy791hLtwWly2lxOyH+SjKly8kIG6T1zDVhuPHoZTjHha860HaFBNvYiTjzq5cdRSN++UJ55dMg4yn86d6JGrh91VFwG2QQc8opjRN9lOQVIFkT4WjvzF9HQkHEJGTeNb4KKkwuBuxTYp/fG96srKCcpwxX7GFFc8IYZIUPF7gW3lZ+c7uL+V6U9AVj1cwLuSsbpPdfFOnPQaSFoqy+N9XsKcJNlxRflPT2+6CBaoeSD5A4cC/P0OA2urZpuda2eXlR+1Q0+AFiFZA1CKFXp18nzXHSA1rzHWIxqe1JzgxoBUBcvEIjEqyP03FZ/gStncFtClo4QutxI96BtkwzK1i/tbeGqetDdYIhiQ5HpoROMnOa3pTqwMF+VAGg2eCFmao9vIx3WgEnmOFlAplSiXS+50heuFlYrD5DufulEzxo7JcLXNDcZZUNiAeIAEb3n+gEN6omlJ6FGQzKmyBRzWXyxJlf06E/RF4jJVurTK/CKlb7mcz6uVuoLSUqHWDOlguAoYbjeMWJrE5NkJK3rpY8qqQZgbhU76WrNy6JsQBUQpnb/hT2G/Po0WXlm0mhLnC63jzEcX7hOmTAF6n0+CsgsfVEHZMUEmkRkIndL1e1tYF05BPZakdqeWlQkVyXdadhBySfJoT3lmlC255jYizFD9juDQaiQIfS3iTa+lOXocYmOQygRuZuVkBu87If+5QdMpuMxF2Y+3z7klZUMucMH2JR94m2PyV33ac6N7yMCykNzv5K2OjaLWuxhjETsHTxnC7eMCSIKv+L60JRaMe8UDfLv+FcNhDh1qv9TkzNMCv9B7NH4GxiT999X6quc2W1E87Tad5JrdNKMLEU20ltUGCcpB7gnHzFjPuLtUkS8hsOEnJ27SpgKWfXDeKFC2xW2bqDSUUISgdSqjQJ2GBvjHRlzkT2cLNNw4LYF5x2M9vXj5JyOGD9G7C+mB5J26CUG4d3K3Wfa0r/wB69iIe4qwV92JptCMUKWomKjOsnqKdxmuumpEJwHK1XRxNWpeLNubRKrLc8SSWphmaDqihI6AU2RualmCk3GmMhmq/mwZxw1Zi3nfDQfu1jMcJDDro3yOYbEef8vzWgQ/Zt0A1WGCTTKjpXpC3hrUNRvMihphRTkO1ITWF43uaiY0vbcjeAOWL+WBC658+h5MetO/KLv9IY5+63FU0/e8wodBfnVeosmVc3iwiBzq0b0WRJj3a0UxANLwJd1ziU1kHbwfc2b4Z3/ENw9Yj8saKUaVBoDS4/GZgJ6eMUrzcMJEG6dR2ZtvaSxrPIVLQ55g4RekL5GyeG2CKVCkoR9EpZ9eEOLnPoeUWJGjS11ZvD9CvcApCqnX4OvqVm1aYmgyJ3Ey7hhsko1bSNQm3kGq1NYENCxvK6TF8eCj7+lWPMabQupWTA0DjkQDagt9lAMhEbySaVJhKQ6paX+vmLYIpoi9Tg14/OKMXOPFrXYlmbM2YHDgqH18pqcI7bRAQ/GK8LQGX7LRfGys0daXtKjjo0SVHRysbb4RwU4IqXslKU3J4Shgq3IQD7GMgciesB8NqJwb1NGgftmw32IfjNyXEauWS+aglosM5OXE7lhqbRmzrsYQXaAb4dvyLnscXZRpthR3uInWm8k4jUU3JxxSRkXoI5ftrBkGU/CskRpTbChE37J2W2neZxpQk3cQ1EnqfhfjOWEeMXfL5zAHGF5NfGJfnPDhKQJj6BXfc0r2JDyz0LO6LphNFtc5UIYKgUMcFzoFhe21z8DySdgtbVxWhHLdk1oZSi/tVfQ09P5SwE502GwV3c4MGzrSCqUkLzVGXiKm/VmvpWdpfFnMDADcWImi9S3khvdiExUZnFoZcnFxY55jZ15hZBWd25MOGU5YspR62SEATOSrDRCvRUlJhas8vzUu+kPlYv79qOj2Y+n4cXAIbJ2/+faR7R6EmX4GPy9t3Xa9hobrnK0duA1WOwz/MmTbVMZDZZkpAm131V/PO8WfE3N+9ajdk+QtJ6olchaTWVvEK2aSZFpivjtDdS70QoAjaKcos3PbWgar2k+NrF5PMicZREPqBxlT0sgNCqzktK3Cq8dfwSHHk/wt3lxNC3JKQG0z/mHMT1ePmm21uq9DnE5CPNnMITY41W9sNVOBXtLQtpzLEZIqp6wZ2KdlXzVWIij/iy8z2ThM135qRMlrOXVRn1VDpEEuBI+VZVJIVpl3wCcNHGcwqf5H95AEJr0tlro66/Gv+6jaYT1uur7DodTgK4IYiU4WB7cMalKAp2ckbsACkn3dav/zLYLqQ2fyZon0taXdAV7FHbHkT/s0oGnIHNAR4ja6xRdYvAdn5P9KMDQWy5/FLnY/atbUAejctUD9hjPhunlHFN0IwfmjNoJfzbrXpE3islDFDalYaVZq8J/x3sB9eiSrR9ugtLlhepIh17rCgCb/DImrsMrhRCKsussNH3MEbSEMynL6nC93dQXhFK6vkZcDyMSHNtXBElTX0SB4yXa9Pnpft3Z8C9Emd0ob4JvEnQtMcy+1cDX6WRWymaaamwVxdgQ6KvuERkCVk7NfzD7M8dgPhA81R2JaQyVCp0W2mYrDlZ2DDQw0GuGMp0COUXZOG50KxYDV9Bgn1p0haJFkBaXnTGiGbKrbDG6I9O7U2bSLA4K2TnhcHctXDPVKRGgNYMnx86XSMqSy0gMfaKadV8ZyNo1hGirhH7wB3LMjQEiiLpQSeXob2UjNWOsoegUa2dVipvq+fA8sDCzWDIso7XwdL8DQGT2mkMDh/4V92R6S4NhehzHVYnRnrk2IX8aJ+6mfHUynbdtJCafzLB3rHDUOSh1/AKkHb7OHpmhCl6YtaxOX8c82Dm3LFJmWkCHr30BDja7FXyh0tvhNLKowGrD0lBarOmtTNEf7226aWBwJ1sRp91ILkcdGqKdfQDolxE1GJQNDIG4ATg0fTd3ydmYXPkQrVy+n0qxev3yD8QtCNFQT6wjgKs2sbAtlB4JfHiYNtYWxOom8y/GMMPZDYZWQdYvAnyqDn2Qmf+x01J7x2wcWxoKxqyQFP19TmVIhrAieyhwWoodgi4El+OtjBL6un8b9ddmSrJyYpFK5Ut8Kx6GxCj4IcYcB7nlqTcaI7T4D4CABbE0c0shG5GeSFlVbskk8D+yFaKhSDokCFpddxdO1lVueXtaboNGiC/6ogGt1yRJ0MiGvrDZl4fjsln1GXqg9KtqtK+h2bzEoRFGmbLIq/fxxQWjcrHAPvtFMooJkWw4bAZKpGIz/T2/urrREnpFk50c+K+VpdR3piloK40jlG+uD0vuE1AxctAFo8L0MdmXL60A58LaBr9/W4u01AI13L0YFg/nbDQ9EnIrzK5/+Pb2SvzMdlcn1tYTXIHUs41MoWeygJzBfE7Z5cdaUJExhK97NRibR1njzRzoIkl0HFEAwJFFNmtLz0zgzKHJFobGmIhiuZcqkuzas32WnwM4mCWihyuuU2vKnnJ1ZjwtKMTyPUfIxN4jo3+zBr1HzZ+VjKiDcy3hGa/GlDER+I4GJK9DR0b9MXUsf8f8qOdakCHtiuSJevuq+RN8O/qMNUfV0qYkgClXOwiXo2TvuAxDjDDhBAn/pemVVdNWo/xhlMkOqE43q+4aktf1UkfAmNK8NPUCy/Mv3bGnqJsRzRcaBTQyzpeJ0huTVPgZ1Ane7dPcW1mPmythnsiBzWiKkyuvUt+ljB5Yk6wpPDN0kCPbSA/jZmfCWWQhlyjDVxsSScowQvH1sDvDvcJiPEIhnJmZv8yvBHCDbdPyHaeXwTgKKMaI2jyfrJ0NqwVaiwK4vuTvfTr2QFzy4q0pN1tbcCuFQY91plOBbgzNXSVe55Z+Mu1BPsSLtrlykFyuxGAAQvtbACXKJDOmOxxK0RiTl/rdIAHz97VPkNxCo59LGEqobFZltNO0zmE/n4Ze8dLRQ20EnnhBp6qcxGUW8DsCk4G+NEcIY6pebEImDTUy52eVFRAFnrGLEwlxPiTdAsCnIincScGhAzeRy8WTEZ8K8JD+yMEZUt/YlPxmQiTWkPfrQU8qgcjWCTiZuMaFaR4LQKdpmP611+8nK1b/XdU1w12Hnn2pZYcOtQIW9bQjtC7ShVrtFIKJ5ck2wbplbvQssVSA8gXZ+Eg9cFYPon7lWRU7EQlxUCZNu4EIkkGyKyz9mmo477lV6MjNWjAVsCaFC8dy6PQ6mK/iiAToodtt55EBkAKVgR+beqtNHeHiKDbH2Ga21A6oH6DJU8pgOQt+bOOsEwzB48gIjoG8SBxbXn7ss8cr3v99xXWoT+mp6fMBzHhXKjj7X8T2Slefhjf8AfTAmKENGw42k4C/hugme3xktpGygbM/H5JSiJOfHOgz+n0/+5DlTtD20YC3KNo0MiHKWvtkFWCRh+8borQ5L7QctMOOt+lTAfO/p3pTAeIkMZxpkyE4hNgZqhNYsNNAI1zpZYweWhBUvm0csPNjwzeVRYlwWbPTih3KpjiuGVN2tE/FiHaKir93nneN/7bDp754fNmrYQGa2eTpxvaF2IlFYM1RQNvUu6SFrQSawws3hrVA1j6SgyZY9IQmsALS7/BZDsNhp5G+R2WApwA4QNdrsS6qRXm1F0rqNSrZkw6k91iNsSmbUnN5aEe06vMDGbdS/tOlOb6a8NBf8YoMszTvwfsPXsijUCI6Q6jySgc+EC2N7tBRdU2NX0aYPsf8kfDC8ZdtjCoQUdmoegGS0Fgb78+53xrTGF8RBVaw/1SyPiEkgh0AesVSVvg5zVQv+rHvzwfkqBzI/WuS79ZptZl2wDEtSfI0bCPjw6OktjZtiw9W43MADR+nUP2Qo0DMp++X0RjuyOxTvqG/0XZu2VuPh9XYTKpYO8FJinrlQsBd4wDSdjSeS6jrHXGjvbj6b6Ty4KbFBTZH/YMdhh6YTNGKKBJmIQgYunL6m3yoji2dR5WEihOI8R/Os3yHvGvaOZQSppvm3aNlkVytBtrmiijjpcuhLm0hKUcbsHmmnZNg9bkx4XgGUw9Vgm5Uvxtxe/Z7u+ACi8zB6s4nAqPqebbHO3cEZbcIB4uxOtmzK6/4au7I5rrgJ2i2A+lue5z2mjZhL/Aqc3IlW6f3hKuSKyDbW/ClLx8JeEIH+up24QyD3XBPPw3+UV6FpDA8H7uNh5CTecY5EldkHdhP0NcA9eISt3fkY6uD++K2ATrOAWQ1C/P3xOVEnu2P+221Hvx/Z795B9pCuUjQTI3o2mPxAaQ/Y40rSE46+AXi3/XwpuF1K1Jx6TWiCrc1Tllkj5t+XIbaJ5j8RrOPEOQu9M9CVCwK6Wm7vZbB7Vy2kIZXN7AShqrgGVPZnGRyKRVnfuKSBy6Nx6U/qe6PEHqoMNAULyWVLuoQd4sjo0OV42Tcd2ob4tJvUw9y2r7Boj/to8EZLCmEpO+No0RKx7lQBbg1Fvx9fKbC5Q6vlb2Q4nZJxbw1ulsdkYYkGnk9WJs4f/CL4aHJKvvYsG3CYqq3emamHk9BBp2i2tZr7lnACgKv8wSXy14OLI913Wr1QDq+M+3denuNZN1bWZ8u183cxITqfemJGBcc3CjxsdHoZ8UYiiK/lAlE+M5TRO8uMZE3ZX7bFYCeirc2nvxtCnOUhGNCG548znhDVnCxVwPxIhXhevQwwouHD3J+J8F2JbLxs57TsCOuryh+p9uBrxlcuPr1Q7XSCyUEWtbv2YoYqHZFqFNa9fWnqu0OiCyGXLoYF4f2LHkpia3ull+hvmoSe7fOJ1wWbmH3wE6YCOjs/4KMj/C0mYB7z5P5uB4hlwr307xf8zfys0GYbCyytBjSu6vq1FQGh/CMW3nEZSGsYHU1lOFR9vYA7evhubJNAOS8wYjAJBCOj/zDZFfOKr/aqKWKZTEz+wYwKY57/SoVDpvaDAad/g5QQiyT7pAOEuypJrX0AiBsNjl5dn0Y0NYvpKm+AJmE+R0wE4ZMg4gTYV/qUOymA7zCYN0Ul4k2dBjkftzmc9f1AD+EGoJiRfaO/wIBD/7gPJYw2zd/BWcRSz35bfy5ESNSIa+K5jLdnj/QoVs0/Sebe2XTPCR2PC6kls7IxblGqTYbit+0cCz5BNmDtQWIrzqiQ0ZPvMcfepMTPp874F1wDyCt68OJt3CQalESiNWdFz6a1LcTd+zJHdkITN2I3Ozk1iJD5sRMzLLDKsqmyipDYmaSRgWUTMSPkZqFV84+a40KSGDB3bcmyuGZhRRMuaip7s7SshPtIIp/Mm0p5hhZaO+Q0G5yHz0KkLZL0B/bFmvsrXekBNGhc5+GtYexx3B+Ls2Jq2rAgSvcGiK3ol3Gbnj/QrsxkGphcG0uyUu+O1RuNtG0aodkrzJO6rKyiYFQ/6N2YIFGMivpduGQ2eLFlzF1mwbZdto7xxph4NEnoiWsmJZRPDoNTabCFheHCNn11FqOq0d0SMaqDPD41vVMiFZLPuv+P/JNKqKOPGXrHih+cvZtADlnfs6PZcAnbgSpsFCgpAKvGeVQBQ0juVxb8Z2DW4qr5EwJIhEcSlgwsNGs/cRVOWStvIl7ECIKmGbnU1RXy8VJn7Lsn31Xs58DLxm3iVf1Wh96ORsbjfcpPEC30NOIiR7dWSXX0d7FdulOUDUIiaokzG3BM4bfdo6ZdDE3DHF46l7UONtsdtM+19ic+vrmLK4KInAv8hy/uU8zlste6N7y8/5SRt869a8b4y+GtwhKknl8IplWTUDhnJQPQxtdoR0PGg/Zp0lWv1It2V/sKI3tiRzBpaqsQmhXTDcR2EYvX0B5C41gE5+jg1947VWXaPIkPUudVhHnlSLHDB5lMmSWCYs8n/aKcRTSSEUZhoXI7NWeGWefAEFtd40YVZafSlXw+cf9l8RKGirAOKn5+D7fC5jSEkh7VgkU9uZoMnGE5b/71CsphlS+A9A2r8NJ29jfBn2gak6pFx7PQuy0P5V/qFUfRs0cbqI28uVUubdX3cmevAeMmCqchLTvJ+Wv6/LOI8PoGEdoRmwJQ68CJV9Hi3G0uWIMhxSX0RPrmaL5YU/mhENE3K0aFDQLSxYZJ3BULytvbfcpGQVYdRkSoXPhSaI4LwMdK3478ldRYT0oA7BN/bFtGmxE1NHgWb4HHhIUHkxy6APcBW8vHaZN6GIZZU8Xs8VX81jmJduKf4e2encLlbduyp1P++epDdMBg2RElk2DK/mg97f8sWwM/nFCjkjTIGo1xZBJJ/OiMoy6whoKXwO0cc/beRrU8UYYYXNMtItbIzhgQTLh/uUk3HCSHJpu+6eJTij4DgVVNj1hYDaETAupVrn+/xStQOl14x65ZXEIuKNw72NKLSz2wivzAwqPzN0mtPmmwSUtYxmE23+dKZ7VmxFRXrIMpXDUSe4u4sQuUbinmnvDgiWmCozW9O7RaE3Je2OBpenDS2uqD+PA6VE4mjl+U4MV6yAdxV/hDExJlMLJRRhrMtCMSFvMAMSo1AEVYak3Yxvu0hrTfuFSy6ll08WfWFEnuu3Ew4EstrRvOSSNbaloz2UutSEBoyyReY82R78N7Kl2/qqupWTKiSacnmREKx16GXRmc5KupMvzUpzAqKZNcidcjTath3B0XpChRTuVlnDk3P4dPuppGAUwgAZm2HNNnduR4vOFzepPRN3RA3dyoXAQPMHssp7LcKqIY1Stle2Ifa9qidV9zYqzN8S+8stiEAWfJbT8UfigBPn/FGCE5qaMTDKRmfxShyUezb+euYTmtBB4dawoOKPbJiPC4wxpfIwvqAhXMPVqLZ2yoAK0AkqHXbwC77MKj4qvbg/SGMHWL8MSChUPgLIyu/yxPC5ByMzCjOeQFRUUyYbu6bVJXM1zF5hBSVZ5ZpIOdYKhBguNMkfAGvpGL2JrVBig1Buy1Rrqne7Cxzg/MiFjjxnqVjGpr9Fp+URROcA5QK5DlqMB7BTcubPJgob/dp5u0AL19lw7nUQaSNTb07+apbwts1zJe5+IatRONg2vytBfsHHc/G4omUyjkZznT17YlP2YQCO7BlwKv8g9VmiNaQ7Xz4yqp0Ycg8Wx5B1jU4edewefIyXQQylobaUnFGX7YRzj88Qu+vDhv+KvDEpZcwIvXeMZ3TSzrgP9Lu6pSXeKvlCrThvUYrQCbVhv2lFiKiF8+GxeCrEpC0ZuGjoE5gseFop2KqYJFpC/gLcikRfieYPyllwpMAHHZ9cMJ/grna663aKTWf2jLA5pId9VrF87UUASIZZLXHZ9xzCliEFD6FWvfHCASlOhmGqzjObPdLWIqL8qlAKp31bAB8EnnBmrnplC6SaQCWxr5HCIChI3gXn1tcjqjSxUY2Xx7DcUbVopGv9FS7Vpwn0Ye/SXYX/ZpfK334GTa3QFvpF0QhuPlqH8KauTzG1jRVdQO55LZApeRsDbIyQazSvs93epmOCHhu9qu/DFhYQZGxEPYBw8ro6cEJYRc7a9EF1slSHQLbDoxLXvP/NYY6svnUz4Vv/g6ZanWYkPRKB14jK733Y7Fy5iXS1qb/DHq9MxSoMyWisXRfTaoWMdiiJm1YbGlRkDrevmKLFYPUNdTJ3KAZ93BkpVSg2AiuyMK8U2na61aVty7PFNoBLCsQfccCiCUt21Q8kmLr8E8pKOtWVtLrdfYc0xMikwMCjrRxk6+iumBlM8MbarMroUf1c5FkQmPsTahiUMd1zY1pTimcaZASPqXiZcvZPrkMkDcjbUKauSTrRHBGjEcuyB6Dpr5msR54Om61PxRnuZjpqqq9KFo931k1eH4IITJEX9XVS6q6G2Kaquzk8CLHp1qKA9pcQMVOYdyFBsQDD1AiuIge4x47Ss/muOR6rSgUsWrKl9Pb90MDEOnVcS1H463fcK/MgqRLipoWAAk+L8zNzjZKt0NFIeZCktkcc4upyTDJNXuq1Ows2MqaYXh33JMF61gdBaYoDtbi+8vGN9IHmqxwAzZeEJERzQDT2lO7dHCkZkwZHSNvgYrqUUUrgfu+e5rAFpIo26rCML1CHwHuM+pjQvrFMRPlZ+L8cL1mKbjifywamW8go13uR23u8v/GW+QoxNuzDA7J+cXk1GDDjT1bA3DoT+KNlVuWNgPrBPrZT7oY9rN6j1ZLfhGqanGwza4vrJ581kqUayuIbgQQ3JKMHt0n2+mfPYhWhnSBixxUdeHdbJqZMkXxXhOgQOs499C5GH5ErZ5BFQRNLm7IQPu31kl5sxuSK6sOwOhFFo7zsAr0vY0X7JfyarazXGeroE7KUETxdnaiK8AlBfcxB9ERm7FT1KlkpO+rQBn7T6iw02iUjTTl5nWA4Qrf1SJoLomyHUXmo7mNljeaQvjqrMlwR8oNrXZJ23qnklPUX2gbPlpsD18xkza0nSw7LKoLTKOMJrOgj3laIA26kWl62iJLj0AQc0LCmnbdNPIteMLe7lMVvdmUR9qxZaYUJdwe0FnaG7jtI0qvf6r4J6p/Qqt9HBDXr2FwfUEUv+2NoNlJPvHYh+JdxW7iyYTF0ySdn0V+KhKWiIJ7DAVNCASBvcPeB4HZ3XuaXhQDCDUf2PSWkKxhnPVNr/6zF0vYkWzUdZBdg7KN4QJal0+8NnrmecLc4TOnIBqit/h/LS2XgNLjZXMELuvZphJq9xJBm/KUMdZS6UYZZ8r1baiDjSUGCVJ9yfbOnQ3eCEkyJMydX7/8bzLJMlzDggKHYwJ3Y1b5Gkd1fWgUpbEfSi5728+DOr4N+A14vjDsUZ5hPft78qnmLI0TWTb/CpIyffp9Wsz7z0N1V9jslaeJkoaYTPgqf3Sis9LbjBSkOqERJShm0J9w21bDEqLlp17eRilU4j97RbmXPcvutrZy7DgDVJzBebmCIwBkxHmOeEfyydT6iUKbdHlDZ6L4vRLwRXwB6MuxGfm52q1fU5/ZuTUj+MYayA+WcOzNW7FnURsxpNlcQJy6W+tOE4Q+5LCvS4jjtS4kPDQzqT/HxSPHJQBQplbme8BgK72aybO2WY2v3hsiXe+zGwZs2Ovm+qu5XCR/9X7p8rt+k1lhaNxB0K3SbNF64CH1H5g8joLpyXyqrlgYiFFTTncjyfPD61ZcOGs8S+a7qnwArOkWoFaP4iL/BD/XEpiyMatqp4Oh6zEF+oC96KG0kRpgi8JNmt+sfFyBps4MaU5rxfvt3dX0nts3WlSznpynDU1OXXAgrfbAvEnG2s3c6rae8p4fSkvOFs6nrNz5ckBV9bKWbBbOvb2r8nYik5mWjFtxhl1jdqrtQLg4o1QbbF+ThQFTRp9htKB7BM5h16O6wkDaDmAUOIkypnWSJu+hHKu6q2XTsIX1W2mnjEd+QkirCgQrZSKOMk8kD04x9NMv0F0xHQ3tmfY4HIIEYieFskXAXOIysLH5e6L71kMg28bK0S0QABty7Fx9kcUepLJHBiFpP1A6Fh5zGbdnb04C9XSAQ2aaa8eW0wF4kCCpc4AWdnTP4OchAMkuoZLunGPgWKoneMv8mZqof2EZC2WmPfvfEh+Q+3L+49fIgPnAVvf7bggDgY/RiwL+EnBUzR/xAmveo15p/0XcN5unotRqxUEHCzE5vDQXnh7ywWvL43iYoVUXx/53pEDF1rfS4ilgwO85NSjt4y316Kl6MjGxknIpUG5qk9pa5PWFL6NXdw9RO+wdVherz0n69BF4FKLGCqHcqXs7JoXRzO04/jcLveRjvL0KwfgPVOORfz8EVuCOBkVq/XwBqfgmhdDGQ7tQSyNoJ8oFkou3wJcIwH5hM4Aqxr/VopBoL6u0l+XDoUJrtTLkPVuT+HGsKEoljWIXG0X02BmTxFQYxy9qsJohzuJJkCfidb+L8lcaHqxt5nmNgzswm1xXXJfZ25OJubiXXK7MD1sH/Iu3qwTSIB8BOubpFNtBYX/pK1gVcYBDO0GmUMLjph0oZh3wjaCluHa/4WJGAdjk8Uo3qgq8c7xhhnT6ByxXo7WRlNMq7Q34H/j240sS3PJ4ZRxuzJFZ1mK6z8nT0PeY8AYGCyMRO8bavimGupdBlLxPoppWsqp19fWWBmH7xfdwxqnddGhntr7J98i6E2JN0pnhoDSDua70ZX6ykraT+sGuVRd95eDj5BDKFF8wrwsH4uPPlHNapz6tbSDYSq5qbg33Ek4YxDK/MnWqwtm/l+vKVR81l9Jv0N+WmMbvtZKcHp/RZn4VHtapXzrCxyqgnnmWoDto+ZWr9h9K+QpKuIrdELdsevyNY7tvxXpRWsvTcpgcxhVntyB0nrrjix1LD5/szZkuIUL2Za3goIxQYSFI0k158WILSrS1uILfJSpfRcujc1lMHmQhzXqWh3yYTK9l7uZyzqEUYwyf6eyEk6Zg9HwmAI8ucDpZJPpbuyzie+6JWibVZ8R9izT9NVi0RHtLuYaP25+pbO8dXbQA07zDy6CHnese4iJeqjnjqF2nfbHBOFgttfEQC4fv28gX+TfFAiUuyW6len9OLIrfC4UfuUw8gcF6zXbcFp0DoQpb2Qygz2nyY3xRlAXEKNbiBPwdoihTCECZgzsa19RS/4zdhSnmS6PpdYnZWAL5Btoimnera6jPFccFqqz7ZcTti+Q31nR6NyBVJYKCakuLybtPlIYspEQ8XhcSOHO97LL2eAe+VCpESLz5eXynQp1j5bB0PIz+CJooeuHcZb9KLb/pN+cIih1RQ+MQUFYtmM90hzzi+ufILqEJu19vJGa63eEk6KacZT7obTCNVOmDQIizkOQXdZiJJiNnuOfEq1fMRW5bhlNnIIGh2dJrhs37rZaV/BfRgzUDHrJQ4KHlJMSFDHzSJL190PLS+tqVmkua4bUww3UGn33t7N0lFR5JLwZ+xM2KsQtxObgtNyqRrxA5eKh4Jlp4TY2BsWMD/24Imax8sHlIpOBEIhSSc4iLRsZp+B0dx7KzjMofJiRUC3urOoa6SVZu1XiM7gRKas1VTOT3LG/dldGKsSUcvNQBGICd1RM7tVboVaKr6dIy8tqQdvRTDFuLMBoFm76TKOLapm0X90A9MPbaYhVEJE11Bp21B2gMwoCx7oIPqJFNdYpQfRz2BehJaaKTH4NaAysqKxOJAL5CH+f8ziZtZbbwGwex9gkrYgOBUoEIN7709oLdRKvfwLItPWMvPVhC9VybxpBXn3XZxywybHkoH1K1hkRZUq1DJAvhRySv45EoPAnXSeL3TFYfekChRUVn/FsFKPR0Ha9XkunwTWWesV11URvFlLAtuJl10iGL18AodXwiyj89I5oubcwIeRttrtjX2H7PAuzSDZijM544ojOMxMVfk8JqMo2zgU9JUJVbcsV2zerQqqRIThxkAyYSwhHBF5DJq4WbRTD11O/62DbLnOn6lmiaH2/0eOLDBsGWgsUnvjzdAcZXoorSwU0jRvo4xZonGhlOsLYECYhBapwCTs1OTH5BCYJiopd1XTrAePs+kGNEwMn+UxHYIRQJ6zZVxkTNRHicUn01Ngj28O5sL1NkUNAmExOjLC91WpVU1BB9+Q8DhW3BRHQ0E3lMEcOXfzQp27rr2ZZoo2h61vvQL39HxteenJoCNuj8rek8X7Vxc9ZmQX/CBy57M7+ikvXcEvWmWRa2PYliZnLz4P3xyt3L7fP/MS+A+arUf5ZP0OSrZbUDqM8k+d4fNrttXNszhg5V/N5tZkkURJM8LutmFeHnYmYRDZFBYBrx8JWK4RO22/XuKlDe+vK2M5wWOPVH3jf4FgVmYxZel7rCNM3pinCjuqGSZOYFFTDb1nzBRJFRoh1+xVJE7SqLk6iq/kwdIZ7adah3W4PKmJDGYkvgKYb1Z5BP0D/Tmq49EumfkmKM4K1NGbtxdlOsQyclSmUfuG5uidL1HyRUFuKD798fE1/KssI47c0eiKPRhkYyN+AhdFTdDFQFRU1Y2iWeeQSH3kb9bZ1rB9e9pRXwGnUERAH2ymE2ObLjToc8H3NXpJcQBAGS/NP8Sg7+SFghO5lxG5gLX3FJAsjT7ngdeH3TgTBTRsdTPj18ClbcqZZt/T+qExoxAeeGp2FcWcjnXrgqCBwpHEMkOhOeD1n4W0Ll4RL6iRqo25QlAYL5xSHpRuQ7ZPsm2koOiRkc8cWlqbJCQvalH7oU1Sz6z6oRya5VcfCeU3/MfybahlzZDoFf99KrY++CwCpbCO9vH5pto2XyAJa96584Y89R4p29cB2eiw/Dd/u6/ZXZLhIwHzuDobq5Erkl/eLpNsQZoIGy8fbETKP7IodHa4yRwbkBYBumMj685JVBsy7AcKXcs/HtcPn6Pj2TQyX7dA4l2n6y8z2/SMUB3aJQ85oXG0EMGzANsNQDdtAcbHEcSPNL6j+6QZpxW/j+Lsmlfm6boc2EWFCp8Ytg24md0WBIHbhRyGXjhKS3IiIm6QgFJ1WO69LrmLCSYZeLebEwPAI7gGdmjCDQA2qh7VTTskLNzVVmc3cSZJmixiuy0E4Z0k1ux9bcjeI4Qf92xLZMYFCw56vTKSDi9HyUdSH71btnA/RyV6Xn+xHT0do6Z4ktvdo9XCZjda5oFZMrA6RfxGmwwoshe0xFCL1rsFlDRiSLw4japTG2oD3H4z+6F6+OlQ83OTZky7GKcNyzdhlSRWCpviCWAxo2ViRDtNwyJlw6L6LuJgMRSxgvPI2SJyYXW26+vrg/fzZzJbV+xPexV+UFQuUZ6CXE9iVIZaB5A7j+culAXt/YUvP002NN1sdzRm3GGSlSksApuEXZa/7sYqkLjoMNWt8eWRQzwTjnm3Y+s6dH4nosUL/9m6+p6dgrueEBYYr4wjf6gFmCljFpbn10ttdME0R3lu13F5xj11zvRnegXyf/Yww5FTOafqr+KPOSXhDal5MiwgP+u2zyKf1DzGzGblAjG7wECU018Oq0e/mIMRHS22bnNKXNq829YEQhHCsjIFeFYS1LP0v3+tzuxDfZr62k7Bfhtp6p2C5XD1ZKqyj1di2DV87yUg8C7Nu2KW9CsCZQjSBXozfHNNYxoVRXJYrLiP1AeCYxEFXxWxl9xFvCUqtE7GIuFh1hkJZUTMg9zyW8G8bC0/pvkVgaInY3CXRZ8uLT/KtNwnowxWx0wZ7U+SljM5eYYZntKON3fgoLmdswLFueZKLpeMZsHTDmUcmZXSOc7SK+9cYUE382jKfxDDdvnR/3L1JiR5UmhSExFikUwaQ+REO4npHFbNy3U+XkSGj5h3ZsFqeQl/EHQ5FhQcpticnEXEp+FUPrT/fucnxlZOeCUpmiinzJaTfVKZnwU1peDWvoTfHjon9X7gSbZioUqLpE8LPWppLsrChflawGvdRUdRZt5/k1wEzhqsM6o3FYneKeV+USwET8zvnRRQ/ye2LbCZOk4vEIb2jsqRM2Nu7DCDArAkJ3u2B/Ul+FhUwTZ7NTBT5qyf7A+JIipCkQMcM6LzXxWKpXRAjuA90EBuoX2R4DiN+lIuy36bkEuHZhB8m+LodvyDd6PP/Q31erZNaaHXiMvuBg/Jcslwpgb1bSXWpl7d0XPn3migC5ZbTno4Citsw0GyFGjt6z2GsDbbE3rtjO3Q7s5mFbXEGSy6coLiBIf1yeUO2QZssZDOMKzE0ByW+eAW0mFzXMHKYdou2o9yJVeKUy24+cZIiAT2jSwm8CFSMkku0ff+u1EElj2tbDMb2yFQzN1dbVr/udzMEmegV+vHb+DlefXcw401XWR1YmH/HKy3UwuB3a5g5yqJPqVaiITgyWEASAO6Uu8xDN/ZH7bY1wLg5Qq5/hxVTHtRawIjcsl8cc8NbwFcFknmOt8qskTSSnS5NNqZJqRbWp904FWJpJUtj8p2VJ8gkGyHo5StnGnx1Zu7Gg5oJ9Q3itIrlpDWMRtcmRXK6iLE0jeoFI+QRoV622d8reyf7Y8nbyth23ecWa+SghNcI+4Be8aiQ47+Q+hFs/Mxl/nI119MUs2znKjowFNaYSFK3nUOX081Rwnec9mTc1StTqe+MtyLti38pPB2rZI9MFsHBPVcctjCGmhFM1jKhivbn81Q3sh4xchIdpDCQn2HEbLHbR6PSoohEUSLgG4eb9l6PiRH50qY1SfhyO8dLJayiswyBAg5yLVJP8Ljncjo/AyPGa0i47kuXTvsEx3Cn+VcAX73LWQQn6FiwT4QN1XmfN+PFWeUJFJ8N62yPEm+7jikpUnYhuATXujejpEgr2CHxk/v7CXOHd5kBEQB6oGHph6PU04f0hdt/bfr5CZRfP142wb0RHleOHS+L4f45xdBokzfNSYRkxtD6FzUoLwsu/kFiPHyym1jiPR91YELl6hKu05mXJJLQ/4LCUOvE/YNEXn6pil2IPctHQnvohH/2hMvOT5GS0aN1kRjhrA5l/eMjTMIxAKwQsugJmQx7O0ommwNDd6f+LSCk70d4ioCntebFVC6u6csjMyP9DyMF55mWWt6OTsnrqDYFbOnjqcc083UtmvMlz/4LI8SkYkQvEii/48+YDRYTDGcIbqTEyhb0dwwYWm2hLwe1BSZI+0Q1u8sL8JZRq08+M13KZW4gBBDyK1dYUgIGPme0IFCT/OCQS4FEocemMtRki5Do4NLWtSCedzy3EEdNJnbxvRYRIIXDSY7XOpBUg0A94EWh0YAHFyHmhK9NgFK4f1NP9zPvw3h436hC5c+dNFUQZxN40MuRQnGQTs0OOHP1G41MJe0hwXHS4Y9a1ORwymd1UVS1k/XZKypHdNqBSgFH3pFlCzUrJ39d8K+ASiimDK3JJQ8N6oNyy9wBcBCCtgCUzaiuqdpjXmixxlmtoVpAJjxCHl56qLPuTspv1c7lqSvndn9RT0hMgyqZLip+tH6IqCLt4zEd76vkyDlHT+iWj69wdkX1lWlGfK0cszxD4QuKJgaGYIb0v29FfqggXnewEEm0+fbLUDUUxmkf4Xk+PbHhV2rVyc8MRgqnPXCSF5aGgoWctocqhQ2hYbL3T8O9J+FFI1/WkytlJOiQWHIbpheU6QkK0eEOTyiotCeKxqSpfYAX6K8Ron+6eRMDKGo6loRpFDMYSyY9D6cTJWDfoiobJbpAergkSSgWDideGDkdyLEhUdfGhC7yAOjZTRhcsFfcHWjnat44qKMwMppCbtg8+wHwnRHoxzrUWphqLo3eveNRX3sEdCXI0+pv1C6XUM1rVeahFLR+d7XKxaAMrxXFbLlqYj6WTqU25FTj8VT3VIUyRsvoOauN9pK5vlpg2KyAVvvgXziVeh7Nr4muFW+cZ7TqGA5isRu5qLQPouSVwdFa1vZDTMAEgbHMfM4NEjn1wcwmc1Sx+IBweeZ0pxJUkbrN7ucSKG6riYWKlUav7cgoRll02I/P5/y2rxOFAt+B7dxFgzeSJn5Q+6yehzZCtE2cJ/sbEVJMXZ734UAJ/H+PqPiKMAaVrLIIVED+I+WgwoBAMlVdzDEZlvhT3ts24f+tbDp3TxAlgZCZiz6NCX3uhVXIQsn7W4UcBZ/jL6s0t0lMA2eJL6ct2eMpDSuCo0trSSEe0Vq6X4c+6KO7/fQBzb3dOPVoApoJHL9sEEqHGq+ZcwfsdsnI3cVFxfnVsTLW6q3sP7jPSimYy6pWg3j1apLF34F8xbmi3F+x+5qqllEhdgIGBa7RgKnG4vS5e57ZXch4l2t36km4FxyXmwFNMGvQKWD3m3hWgqM8PjwnYkcGZhnSSSCX4s59JY7gFfHE1tgrIxMWsfaNZZrL01kCBDNRrB0oKDO2pfqtdELBz1nGoS/IGlyTjz7STwJx/XVzym16gYU44Eo3G0hvFZzG/Qrwet5jgiVrUnT02hWYS7Mg6DwXP/V00whnqvmP8mhosTHfBHPXSL43VnDwH3Vc9XudmvxZV4kQjNxz9JJQSIhkDazf+LcZHyZen8O9nm9YipVWFgWtaPxukKcdhdyQZu2SgFRJOfqnzNHgOe9viephwp2HJJSi1fKmdirRaDG7I4TFmL71Lvp8RURa8junGPXh+hH/Fqh7vEo0Eba4LkyKbGYdIrD6HIK+bMTdHdRAWPWA+RsfSHo5FCXEcuy1agJpeQsdBEsPy7DFXjcwZXNxAOgpArYA2zaSXZYsZUw/K5iGg+kfepJkE6A9irJIGNBQgewM4+/W/NPMWVH8UNc2a27eGubmphz1VFxteqokmmSUVSZo+9s+jWPTFIVypkbgSVs08O1tKCxZMyBz0LNs2c75I0hLJSI5LcQpMDeb0XDZK6Unx0ca8pAdDnA2rgeInu3s2pFEd9JKOm200rSVJogclLWe8BhaAvruQ4eTLZWD8rGe6PkT1vovJ9NqSNzYkSB5IZlg0pFYEhvgVWbUgS+4xs6Y7a5gKhv5vnYMkeHx15MbcOxXyi24cHTWkVMPkz1UrHO4zRI/vz59TQbtoXDH5vRH6jLwiwzA98QfCR6GdNQYFl0tN61Nepaq7KdPMqIThe/L97OUtYI+z3vPJ49gVqwgU1cwC6r8zCYnyAhssj9WWTRHPEneQ91theJMvNXALRg3gH3rRpVc9E2JeZfOCE2bfOde9iKgFj7NnePFW3MD1BYVC+S4ggWeRErUWkdZY9SXq5B9F5gLO9e+rfTLl3aOjPbWd0QGrL8nWkWCeS966kJiyRVbs16bPI0D3aS0BWJV2Vg97BIgxgirjnBmQbQA2igYUHnMI5Jf0polc1vZiq9KcvFtZlipkix+TtqGVDbuINHh8t3Y7QhlkUx75BC1WbMnVkrR2/bVmdqO/HNm0JssbMxzWpRuFGAyly/FKI7cRHO28ug4/EOlZTmpis0J0bi23pmbzBVEH/qRXu8YzDqgwHT/q/ID6UqeMuXd05T/jvYj0F3h5wXvQtehcPLQbCq3KojM7ag7gyxrdzFr9gSKHoCV1sid+DY1aVgVXntPCYMaNlhy8jG2ZcVV8FX7gGqtkQjAKOrZylUQHQVtvaklSiI7UBvkzXo2nzCUfGQKuSY0SbNqZPY0Il9NVBcoNvD3CrvqKAlqxOcSYfFGD/lVbaQqVXyvfkxqjlycleSnVDzIoyXw2Kyp1tVuIUkC0f7v+5v5rRMmK0f07RW8Vh5OtxgTTecd3Dl2jqnPJda2gBrH2t5PgyNiiXMkDf8syu5EWEprC27jjoNwMdFJHLBjYXYLGzfCBd/1kpPjHs+uTKubs1bwhZpgE2CiLlSwcilFq50pDaZNf3BVDkSv2aOLaZDDpReOIbbNdgYRJOte1dp7x1oP0hrnQa4XW3NyeEd+JrBVgrZSU7ZlAaqoey/Q7JrWWNyzJxDsRed9bc+uDgHTIXi9XC9W7ZPF0aEj8Thib/PBlYs/Le9w9yzD0hrWqtlU0gW6hZX8ebo6Itnq9mOp9YZBqb6aFwd7JwFxQQzoQ5t07f6TyXvY5XgfuV6Yr3X6jdcetp4e66RyAJO2wDrMO3rm4sO2HP7E74H5qTl3wmbQ7Q7ZlHLdmzlTvjYRor0Rgv+jkFYC0gR+HIQO+XIeXNaO2U3BWmMNChQr0pZg9zclRYqVv7Sn1+foYuOwI723AWB7sGgtLRSqmbCBx8NMC9anFTa8E9WCbr2sJs40qWzpV0Bjp21l9NppNNaGB4d8rLZQSSp5rbUL2+93iIIzg/rGC8iQpCIO1JNoG38NqGyydXU9eh7OIunG373piokdOtuwyaRHnq1GAmPiWyCEDtPakiXfjG2Ro8LUDkejIbQY9h0bD9ZDy4nrkNUc8JEWo++5MvDOFygiUjDveeaI0LCTWYnd+YENet+TqJQLJVmeGMMryM8PpcH7v7ecH0sGoSbZXWYIAgvtWuN/QlID67F7UD/Unw1cmNEwknmKkv50/bsb07f7BikDIVZiQ62Bv47ohbtk/WIJ9JRgdivrShTHdNXy8xjsHNASQ1ybG2W7O1V0iLQkiJ5MJyTnJ2zcIwkeUHtFC/oCknbclzdzTOY7do6nCTIZMViUdScBe9HxqtRMlXrmxWnaBvhzrRdhwO2iNZ3wK2WufTxJBMMYTH7bolvyppE9nrYbV1q6WemWQxB/Tp5bWnbgBCDWDzWWOuEla2bpJeEz3xmAwJe1FaGWNA/RtytfbvjYeT2aUw5j+Dy5sRDRequT1p6Xu18DQBpH/HFHpMxUrHEkJF177GYbCUVOxCmCEPR0JtPnt6rAc0mtDBA+YSU6xIwInK/wMSyMZcctqrr8VnuJBxpA0LxJ8Snz2b3utmFM4A5D1n72NuC2mS5iNRXJ+fPEiIT+P71k541AgJMe+1B5O5f1kN/JvAfZs5FYxBxWTYWeDzZbf0p6xA9skNahFc/+0KDLwBDca7/cKEt+me6JC3UAuTtQe4KlaVaq+1Jtea06lZcA11w/UA+A59HMX0nba2TwMzlyHVD/rIEtcU1Bp0r4B1pLJTRU+7G667FOZ4xJLh5Kx3qtB3jbOcQhjFOy84i6w2X8cFjqxerpJcQRV6CIHvQBA65lo0j5FXa7OrhGH84PUMrurP2y1K2Smp+EV6kkIMgJpz/tcrhSJ5ytCfRDib0i/Fib07Yug7MCRgWgvnvrKWa3ESJy03EdUayrWUu5obumcCmWkdloSwSWnmKO/3ubB8yi0tZRcMmQPvl5kVU5mH/2RdF7IMpeMM8Tum/JMP9Uj6QpIZvbDLP1VeJ65asWncFqvpaWeJBGaB4ZTe/wZ4losxgsoYLylTW3KgKqTtuWeGdUhpWWnisWCvx4hx0XxUITGWUOI5pva2+DQGSaD9W4XCP6sp5Cn1bJl9/9/hSc8YZISIXK0fCOpdjdocI3IKWAF33k3qPzY7BOhK+hwmDX+r5j0spxwCwfn97C+Ydg/vawDqGFM711gvGZrd8tpBsTkc/Hy0rxpYTD0BjKHYDCTme7lp4lE6j4bxWS2xAHiDuW8Sg2fVMZCx881Ip5F7/B60O79Uw2I8lqpdo/rRgJ/GYZJcJxUP0LtlGuw9aRFIVI1cX2GSWL9ZFxDRAn/urljytux55blctsUWbV3/snV7MwITfIZ49XEzc2mjk1FevqQTFgakcK9Z7jhrkGjANBbXEnDjGkD7GIUZj3cVn3MzZEqUMBbpTjXg+cii4EVhtEVb3dv6jc07RYDSqdHns0nH2aqmELiLCQwarnjTD93WaSstti2NVGvjZnMWQhI85Idj6MPYGOE8Tjx0kEKZP01Xdu/rSJ1FxVCCdh4rM8zTuYmnd4EQgFHRTIy5FvkOHus7RdtgSFCQhkuwNUUUwErj0VXEyHmva/+Otlw1SymXC4WqA38BkBIT+7ARhHVBeqkPbPf6ciDS8h2tJMxDOgJmWMMd3xBqfoKE492ktC3rI2yZDk2YB5W33nhVfiHWof1SDKUUfUjugX/LOdYeY4Sd+fdlYCInpbLt3CH26BJ7Ny7eeiwwfqj9vjQoUTyUxVrG/yOgtPllXGgwIfJ91tCEqu4z3J6/D6slYEdWXHQlxJ/HFiR3f6ypupTVFUleDS8wkvhbrHLNOPruQcIbsZjIoqUP4ZU6AFfQ0uS66kVMjBrc7SMw5NOqFo0W9JpdgihSOVpfU69HMpYi+yk4lFFz2Es4S/TlDa4jzgcnB+8vwlybJ01k5HugShBgp+ZtmjmCxRX1Y+1lYAOtTv0Cdb7wNP63hREA/GyxO8q6rRmtlG9OOtS+IAGruiLZyvsbV8eHKwXacXUZ0J+T9ptOeIa4+BP9zM9diuNlbgLtmcIfJ/ckeccvT+gIbFwvOgQrCQrW8cHTVF6YjIwgPaZbbmTob2BD234v6zU4/Msy6u0fcOuqNXZISds78WJpVkO7dRXTBvCvQ4Sx9NQ9laItANSoSLvECaFW3NPJZCfJ/76puWPjhwztATdEl+zqSts6prCsaPEO1AtmXfIByb5RThFIjmV8LZfHUoKm3y2gO/MRXImBEOWcrZYMXnh4OVJ/XIsNW3hclv93lgzRrbNlpsv39jk98/qzA82sIxIme4uPpQ3p032Oq+Ci92nC3aSVTwGFx68ZqtLZhJOAQJBaU/a5lGKboDZItJyIrfxV7bcND405Zj6A5d7jJJLBNUFRNHTtNqYjxxlzC0aCGEd5tZ/nI9yXbpLSNuNG5sSTnWroKdW5WC5QX3GtdhMuSFVpw44ssOsLzyKyjR94Kt6R6UIJq/Y9TEi4zjQsPvaiBhIzLs/ziXI9fJ058Fb9No403Woq5J9iEbb/5miERTFdxymRqMjHaEENE7Ubbp09a/zvnsi/O/U+ZpDD6LqTmCj6W1B3TJ7zts5PtwhwE/ErZcNUxQk3G4rVC010LnnOt+cYjc4z2j9CqkTuiKw3GGsAUXymP7cxB4FUdvw03ryZvMMjAGEwD/BjjuDon9SyEts5hOWNMdC33Ht+kilGsoeOhJsdo5Iu+ZNMKWEbLvx7wKxwqGXt2WT1G+TiG0/AN6sR1UZyjFxqeO2TXEq2BU2Wruw+72FWhZ/odk+yuSmircmJtkLA8Cp/pnWFZYQ0AdNVk+paInGkdyDCcrZZyGOh9jkdNeSBQQMh0mjma1CG/NeCMZXboZNzAvevHZRyNzYeG0ws8CAL8rx9onJmW5s/n0fooFHrj4BlrGANk7K/E1nVVgmIbAfz3gGNWbRjWN2gZI1EQW98xI0ZEN2bc3DF14eq7cv8wmM41fW5h1u+J0Mdg6Rf0ZVqi3lSy3Iq3HQvXVtaOxAc/MdKlwuDcbtA2ZWBk2sommLPodlhGiyxNPrd4uhTGMSmQ6uDRP8Ej5Mi7+BNML9bapQ6NGtA5GDp2yUmheqyfRQ+NXj1IeHF1YOYtzIV7pBTvDEdHGtw75qa68Icwx+x2nOkxuK3q99F7IH5klK80VLloC3D1bxRjgyoPUxOdfwB82WNa4iBA4J6i+JzE4W9qnMmdbPASMnhT2nmK2dmzMOl8uZDUMskDSe9zW8AF8RcR85l7H56pJ8P0hHMgrbxlNr05yyFb7ShmGHk6u5R4f8V2JcvGTTDdCDFcE4NQnICKlFq5q8lxc+hKpsaN4qmsZcqsg7w48Hzbi20A7DwOI/of/V042U44syT30hd7meld5mxX6ZEIl7HMSMofrPXWm5AOYyLU5j8PCm0jFfSGXigl+UPXkeQiuCnRFv15mILOVqlrr/vEmC4MNUZt76WNh8S46ofPgtCgPRIVvdR9yIb6cDgy+Nr1pOWUwt8fyjGf2UopUQJUzPQcmyEiBV+8j0zT0xCs2HW2E7QdnoVicelUcpCNOPM8NnnUA5aoQ9EwLBeSN2paXmMs5CYs0+w0HhAOXJjvqyP9/JVV3F7RhDuONvfjyzu5q/IqoYxkaYIOcsVKWHrgF9XuBbvtHnmSnGGCaalWmxqgE8SqOUjyQqky4SYSB/Ux8F0TDjELwwDKxc9iXD4GW57HHG1B8wXR5P5P/fPaqw0vkiNAM4zLBe5VXC4UfZTQaA47d4Uoxcat1t1UFTurL/qpdIQnrJq7vGqvTcApNI+TD7rmNdS9sG2tHQWm0g3ld2Pt94jsHc438MZpf/nFfwFItILzwHrvco7/Jplw7N3wq1EdksOMsEqOXxavgWCV0UDA0jB5HnqPTOSRv0Olw18Oj1RENj2u6ZWji2w0DxXNm81PDwOoK6qcv0phFR9Lv+xzd5Qwja0wsttkOgbGjCPY1jy2U7pxOR8XRy7QvAIOLBH1Y0KLy2nD1LoATIHmocqAh2ck5Tbkc98CORpXblO1/swYLalBQTgg+irn0jblFVmFtmcsocoHvVSALbQa8do0QsT7My1RiigZFXpJnw6SFr2VryZwqntvHve7OuWpfO4fx4mX9VhZ7uhtdbcPJjcoZfKcgjdB42ejV5ZfPVlAif8EFw4BObRwwlx/3zo0BMbkbwuyTupmM8npnfhblAfk+hTQs/rR2oWI/A3YV1aAcQvC4pBA5hXZTiVYdJYnH3UzeKUSOAyO9yCTXjOGAy1WY2SPKsbaPahAyyQ+TMjenmEqaKQg7IYgPK+jMKqEkWlGe/8v6JeF8o5XvtmzI91GnWzf8STc72ykDvWAhCPf1wGlECGKZhcqHoYdzWxpc2xTSsZ4p7r+jT5ohViXm+RcuMfcUwx8sbmaVhNRiCJlMXMZg3LdyEL96vxatM8qE8BjG0xyJFqk3SpWF868eJZLOjXvTWwh4v/O5kcSQRKioV4Y1ks5KddyznTCP0IwVcilGYNm4F5pN6f+AcSzulFCcvDyt59JYHH5jRyRFsU7dCTHFrgH++k4paGFH4WgVFojuylVMWuoThiZGmr0Y/4KHFPnq+/ZiYM5Mad1VwHbzuktHivwefryfKADzl/54plRk75DBXgFI/Tc3FnErlP4tkjKvso147F9ZIa75t+1nUUnOczlGByRHFb/JDm9E/x+a+25CYwccEO7dHPMiArPPNW3YYkw6uXUSRNWgFGOG3Sq/Bzz1rxrSjxKQ1GX77/L6HyLxGgGqUKozRyT3rZHVIuFmMHneTPe3Qyll2EQV+qBfhivDsE0OmXwqlYpB7WEgkWnhwR9kXwh6fFEDbEgq4fu0jmua1c0+57N4zvypSpTYZUZyo/EJidO7DcfRE1sU3jY9NYaBxh23pyRhx/hZlH2k1l+lr+vHM/9LDgI1+2ZRgFhc251L2M6rnppN9UGLzfBB/PbcXQYwG8X5u+iYJNtVI/m5OoViuRAKfE3U2py0Ip0Vy2++2hKMcDh3qPu6/1FrORrpEA6eBwG5P9scFeybrlRrQYTC30chSGY/xhQWcnf9WxwXyJ9EJuaXOaaTQWTXos8nmIzWSC2FHIf3bEFZS47wDpKbcximnlfkRm+MahzS+9JMraY76OFpdWSWb6BQzm1lK2EZVxTcRLAGNfMvveBki3yBDrnMYEXbhVYvLrgA7GJjdV8jMsthp1yubjt+Ru2BGALviMDh3Bsxf5aBHFeAyUN6yJH8OZK8TEyFQ3YOvHKrtxd3Uo0APcXvhHGOyL8+CyfAXcSL5F62QW2yaOBIjKT3CRLMqNzuh6NarvJdVuB0+3RlElqoKw8uV8jUaL5rJKkQJ5CjaZQWty1AA3UFZBFreznjM9Ki8vbmrOl/iYa0MkXyF0Xw2P+JLpqHELbmw+MdNJ7Fz34Q08qEAs1ZKRDMoIJDZEr91u/YKPvUjLhAYZUqsdVYvtkw5j4umSzIBhA7sNPkiBK7KlZ+R+/j6t8b/z7CbbxY7leOd5soAV88Q2WMrLM37c8leNKNGnnoU3fDvS2ZkYQBXVZRyikNcdb5gvDnqfLXJ9STj3Xd4vm6T8wgsyZkzQ83xYtBneujCqJ7ffgeMtk0/8KoSdnhWJf2HDHhNB42Wk4h+K1yY9CvkGy5N3APhm31WTVvjQeF/Wpe9HL7bT8Ugz74azzXiF41ATYAtS0VO8Jeqjke+mvblyOJvueuWPAzTLy9UiKDzcLYira8VPDcaedBHXhzcNXbpAalKLZTbJi4olu8KSR+VPzI2H3BItr+zIKI1e6eI9vsI0QbEPysak29HfFHNk+C2UV1n66JKY2snft1BE8Ub5bvuPeUi5VBFJUusokg2s4kPUOMwPPAJad9/Is8LCqce3DMlirBjbdaK5HsejmuuWJn1bLrD9eiNOU+csIIJSMIdnRe/yAKzb5KzXeyPb2RuMJpXj9gFlreK9A/yn6ATbdy4+VDNx7tN6COkW3KhMdm57ea1RaCZT/cH+Epso59hMr2bAdBXuXk1DuNVlwEM5nwLySmLS8m8QNqgibW4whrxtWGM0fmHE5Neu1xHCIu2hGm3X7hnoulyXUUYHbPdxPE6F1wlBkxM5ds/Wo5a346aB84lBrXk+0H8F/B3R9pb8FK0a0woJ7WuM7nApCvt2/r3XrFrfT7OFKBOWAdaXxoz1iq+BQ0xDeENbIH3JFU2jz+zCoTmPfx4c/OmypRsP+jhH3J5i0TFgfbx4WDoUNszsXefeQ2acEScJ4oqZ9gNgvQlUKu7LtmgXoXHpQVsWJUUatkWgJuf2WUx+eeto4w8Z/MY/DAEfMkr1xYhDi3JNZqGzE7jYboiaa6HlE645o7rJK56vXerrq5+NYBROc0t4vwelRe/DUpU2y7mWUxGF4RjvB/RyNvcMS1kkUf5ywK+RCrETYCMZHmqhDrTYA0Zres80SOLkQ6KdOSd8ObHzZnk+QOR8cIhb6zQK+K+Qfw7+45aW09O1g18XAvyf43xE8AZsZlyLhLSoC5WJDkchxK4PNOqCGzFBZIwthgo3c0SHdl2Zt3c72uk8i7cfNgqXd/FPxpHXgZEkxjcrEEV5WV5BWlNubfKB/JMgCx0c7jELMhWCK97cxIK6EpPBY5z4kf2/MuHRduGlOPoj3Q4Kr5Jg0TvzKiC17Qb/MkR7/2c7IsxdTNSewCBZrRxuapVf2UKETUV57Dajqewsd/KMufSIskYWIEu4KdmdZC0pRdUfkb+zcSdsZxPO1SIJR7BjgKs7B9wg6rNf39Y7N51eSob7Qv3FtfoaX+X+k8bcGYEKEER/g/zk5KrfcB8NerxWhFSQMm4sV2r4zh/mrHwAr5kI+kw7l2yOry2Z/dCHGyHJLejk52SRELKFyOMDAcx1vVJefHr2pBNFsREIdci7NZa2cRZIFOZbRZd3krILgumuGlLHeeQ+bGVsQ1l2StDnPWkq1jjqQJkZxSKTpq+mamKQniUKCAUV2uqEXPHtsWvC2m54xdpJ2VnzYxsca6KwiP0b/TEz2aaq9zWVyCs9LpSgzu5iz6ubNUrePhARDFqNx21sZ/wlgjzjnYqT9V6WjU7I815eWMZlVhU12r00261NJbxX+2caD3xpEBk2V6B+w/iZNChR3ErQ8/UBDeLPytU6E+2VXqxKtPOuyYFF96zaO8pmJ13YiTN0TUl5cBRccyWi3l4iAUCMVGLJHdTMWr1p0lwee4GtaMMpB6/ScGr4xYBVMbFVAeioUPcwzrLWJhIfbyXijuq3oZRme91EfoNWltEdAWZn/WpZCy3o25m318QE/OVdpTwNCYcZrUJrTDwm+1luKbzDFI90FKoMvO6DQ8Eibmu/BGwbhO7/o+PS9RWM6JmuMnG/mq6mRRJzZxERPAY2i5lRYM1DlhoXGP24RdyGswUXN4Njls7rh8jpJt1HSApNuKzHanjK+BHn9bsR9pgi5GX/cwSNduoUSrwnzJvJCSjHii3ooWwfjNqHMmio8kSeyG69H7jrHaBnrbN5CGxAzYcwNFVD1j2sqb4pDYB2PpiSpG06NET3bFMzDXaImj1rqVf3KbD53eIdq7Rphk/DPnGq1ZB4G6AzZtlLU678+rahSVGcBMmxR95mZOB/IywcuhYR8s8ObPRL54i/DescMPbtPweuPURAQCCXcx8y8PZuVlscH8G095py45ootB5FcLyWW17ETYkD7HH+1Q3UaSosOQaeI/Zk1ci6kqIFRKkjW/NtIXyN9VtizFrUVeHMHuXH6V/j3KfMOT904mw/sNkqvT+nP9ZyP5M+za3OThnDO7P1qay6RZC4vi29y+T2ZTAZbfvBsuIpqxoGiEfPVFkhBfRuZOIxUKzqe2WQSzY4JcVWXx1v3XKq2meroYpERNmRHOrQthVymTCldWsCCQoW226l8Rd2RerrSCLTfMNKi4s9bQ4mqoHWhzLQI4bxJWWac+4SqMqzZmSiapNw6oly0bjL4ccEtYKFi+Dt1sOau9UAj3bHoBvqWIfyBHml+gubN7ZV4L6aPeP0Vtq1JqsL3qMZ2LXh9gMcqqWs8j2d52W+U05FGwmx6cTt3fXXM6VnBFQ/hVqH7nnozzskIIjkvC8cvwSJsqCZjkFNSFR+qN5TJDWdgWmcrtKtViURF8auBaELLt+be2IMTfLkqzZf7gXfa3R6/8RP4HNEJ4XmzO93ef/A11RgpUDVlpqZ92V5PjEygOlHQNrvWvXgPFkDR/Lo1v0ZO/gB58PfyDaH1DBchTMWbGNFXEJOUYyvmWYB2Wqz223MTiZ/+YYkPxTg3p9Ok3CvOcsfg50ZhS32TQPppQsKr5NcUvEB6zAuMsHC2zNnVRyiWNaTQsHfftShlye5t/ePo/XQa6sxHU20xfNUbcmpFm613z8fCrrbbc3favD52IiBaRBPVT9B8pcM8aJRtb/LCUZyoGmBDH56vf4aWMnOTWi6bwn5MKLRjL6oqjVrbxRgGdIUvD6pRlk5USA/9oZ7+SDxDoJhAbLTJ+OPxdF2MWlT+ZovEQFkkCKWIqppYLb1Ruseod0mHnEDLQxKx25L7yeIh8d2Cpu1L9ffOjUCQD4cg7Vx9xX3mIZKuq/mUYZO3YgAlTk9E9wqNX6teyPRoX8ZKzgt31s5QbJ6bkEpwHDs4UzLkw/gG2ttVU2L+Yz03LZusKt2OI0nQprbtO5BpEqVkBLTaJwnz1GWB5A7lrzVzjarR/SSMENwGunKyUxnsg9V6+0YnMRPMOTNG+KChcRuMbnFNOCA2o1p+ftNcXhksFZpKG/cboVnwFLm+0wKno9wy5BQ4jXSDhWdKaWzKMFabrqXKKQzrVZ4KVBAP3c44q2X24KswaMXtvhPjDov7kY96iY2COWnh2bx8LsUqMnjLftWMbUu1GHLYEfZTeKW9knZRA8+iR7o1Clvsdp7/6USMHAei9B4DHd26swsd6037jfVUYKm0Z9gqQyVB166zd1wlkvJX6a9xYMs86FZ8LbeN8BldnIUKo7SfR+dIoMcpGAUFyyimYoQb3kWoHd4JgRJ25AW3O4U9lXwKfQiplzDTsIuEmRfV40QCZAdkpRdYaU5EXf1hqdMxDFaWFflNLhi2yrM1+DkMT9jLLC01Flk/Edg/rKtcqck1qlIo+jEKeMUNqDoWDXoEmECFLP7uV2krapwOsTrs6tbwbjrAC43djEnVspjeaudQe1ezGmxTi5n6O1CglUIPs9SpqvO/xrvTIYeyJ82R2BWiJLoU59U3EkUyGnVqKsJ27zebk+d6itrfq9EDzqJxdCyC/Ds14EkpEpIeo4EYutaT6FSBldbW4R9i9OE8SDRmfxnu2hvuOIvj1GyIIxyyQj151IsqR8p9OOXj/oGsiiNXWqwmCzcyxeL5/hdJVaaLYf7ChnZwps9R2lXSw9MBfg3MwZ0+FlfNyV3CI30n9kCpr1GQkePjqXo0HRU1IOpWNnTD/z4bzCpPQFwqHBcaxJa+YF5L70jxnsfNu3G5OsR6n1uxxpuk/Rwm3jUxqXNIb1nStP/C/bM5XEhGe29UUkvJhXOvZz9x70WmeTbgd+ejtCTgreIq9keDV1jn3CKhuKLQx776JpMGYau1S7rra731DmuePViQ1hR41L/nu7rdb9zG+xP+wLLquzc7SRsK0kJg0FxpHfjzFx44oCvObhWMVDPjRowlJcZLJFNo/z05ALzB4K1Nh/PfyGpnd3zxZZefRaofTcS6OE0LNyHlJjl+taoxEkG1ypVk/fLR0Y7FO6nMSSOrwjMPH+4BwzclaBIWPOvgkvgxmQQmsUkEWkJ2tmOsDISuQIC9zT9kQwdQ+H76P/L9haBCJtTfqDmv3WlPSDa0sU8NCJeMhGhNZJFv5E7SYPAzjGiWqvNETInX647tLZ0XXy+5jPxToIxhSN4TgIgzxoVWWKB2FI+q14vIk3FOe23HNfwxrpnINfYGp+odpto1PenIG1LYaR/SgEEqb/2yR80HB/mWEXUHtbUA0eflrtTQrYjZwyf35ca0g/w6yrovswxG2JHJdJTwJIt9BDyxPGMfYRQlo8ZMOU0XDPwD6Hn9DkUVw2Y4vAgoV3RtWF5eDcneVJgw7xvS0Pwrw0eD4E8yjjrWCEIzMljMSov2Sl2aFnMDqRr2LmJlKHlMGjJ1TOGHI3v300DfPibREW704jycBjZbR8T5nLFlnTY9F8cmrNq2pN9CxeIE6+dSuI7NUh68MODynWk/EX2isK82oCPdLLBRH5pJGJl5DleBzqsXmlxcoGJ9NibP6a8tSr6aRthFufbO8HE2jvDmwVoswj+Ut5kHwdslprPe8nw9htNbnzNa8fp96S7pTocyyk7XWU6277E93omQQ+HQ63Oxd5FioknpGWAE0Ks1k7phQEFN0F/kL0goMmd1Ega5vmpOt4FfBIlTZogB9gp4lMMQK3lrOAUhupZxbrKrkkTbrbpb5+WCPL5BB3HULfIZiNUgNBQW9rmObfOhjLGvUqO/chV6Qugy0UpHH3I0HNkdT5ipGFaNoC+QnIfi6Wttg67RCwbtJp84R6PEVTguR5XxI3s2XR3at9YNEALy7xvAfUPfVv9KWLR1ib6f+EEMOIcrZdRuD2IyJfS+UXsbW5Y/trKy68cwiW6WehveKyYbZWWJIYhx3s5aFU3W10Sg623rhyX7A0yYVNcwpRPiGtKOfc0WWLegMld7pw44LDsR7x2kS010B7LjBYofXpzww/q6z0pxTnRGmBGJibZrIatOEOwrdvrm20fMnWJtwKXG9BfTsuK4QjIMRbZhYXPmHtEbWYR/3zjYyIxfaXFGt2lL8I4Ib1HrWQjpbRNjlOJTrlp/J1KgK/xX1CPXgUtFsjMlP1JF0sG0uLLQDfsZaNKbTKxJyyi9xX4fOSlr7v+u2E1R0SB0EeA/Q+bfAcVtUdPHz3ktGgHrm8LvJ/iikq9ND29jHe+jYUOPkjNa2lBAmxtIqpTZBq4zgGf+vABbb8WSw28dUbLWXWw2UfSRRRl0hUq1gNbEKiLYUdLhbVNya6W27SSwK1N6VVHp0mqeHAQQvnM/s947rjyLyiD90G6gRpZDSHS+3XzPJIGITa4tF3k9EJl/KL08ke7l1+OOUrMbr45lUTEeETd53avSGpwQtNMya0F/oNpqdzYTva7H0+yGW97SbLX1aYz4RKkUXpUPNUSEIc5mO9jfZwPE0QSBX0ojf3Ph/IrHhYC6+r1YIyPLposswOztH8pQCQcfaM0f6kAEKJxzfnTWtEHRTnUh2tt1y408vn2yH/yT8EdhOzfoV1wxFtXAOxoVb3YCAFZDiOUJqgGv1jrFOc7iSVpfNREOx1gOBtu4iuXRo5DSNArguh9PjlUCvbCQg6TWHKSgbhn1v/0E854fHi44s/yRk7JBROt2AxpRfuKeBa9wJR/9JGxwixlr8MkP9pyiRY4WpM3CF43jECqC6hhr/HUyQk+x5lRMfxmfc81rDC1fOXVFDOaUufF0f25BcQqnGa7eMpbhSP6UoF53THt5jOrJSRdwfD9RWjNr4dWwqJ8R/0DE9ymBZuRH4rMkHAxNiUEgV9ERUWHsGzqEn0iyELdINFGVP225kTWFeuqhWkf8rwCX9osKQtp5CuHNl6IWURMfgDP/xdFsaYmNn9is+ZmCpZBjEtRK99Gi40TYp8YW7z6916E4X3zGBeuocJ7FZMw37yMRVWZYJPqlLlu0xRuDB0D2ZlOWw1Qp3k4+ijQKT15PEynQxKEQVWjjuhLZijnjUz7vqILrpvc94siQHOr7XuQx1wrRmqYoBGCZn+bjom5bWPCbIYbsQxcvE5xkd4N4rgl9sKPDXt1muBpMmAKadLU/Pg4FzPSCf9EYVYL7+zfe8inKb0tQxv/aTOZO58QeUf2edQHbJdak6k3D6MhTytnkBmEwC/kiLU6891AMu2G9xa0y/tTnMn0CvMY+xMRGS6yjlKupcYZU8tpBEU5O72nqI3fJX5MXipad2QmLFQB3vp6JEr33oBiXoxctGE1t3gSOV771XUw99NCkXVsIkiG0yXj8KoG/pP4DJKasWX+zwq0/9kvOYrztjvqzdApfSrQHATal+dhdZdJHKX4bJH17NJfWWZfRNykfvMglNCqTUI2ik2K/qiufEQ7r/nGNuTLmxqg1PMkwxHnOps3/uzYIxLZSvSK/++Zl0Tl+9BqXTKvUrQ27iYuLEy9NsuYrt4h5E4TF6Xn4Hxtk2h5oCFn7CcHmdXw8Yb/TWphibnVsahbJvA6dQo69BVFtb8vIApP0eTtYyDpdqIYzKR20MKqiS1CWK5xewfWvj2cRgXbmdrf6L80MvAT9sFIoFgT78SQWYFxHV/nvxkU4IJNNSwwAvQ9cPsnKplRmxBIc4nQzKr7a2FOboz64s79LWJzbMFWyW7YNHjh2em3orueW5YCG21O8LnQPO6HlBSRY09uWdNb9qF45Cz0xN4kO9K+NpIM32e+s7ku/0y639UbhVXCV9DNKaIMtiDL2jnMAUdwDb1Ca9lBYfXL8iWIvIaO5ai947msUquVhp2oD4eNE6waWprlehDD17iunwicxFK1dhqbsgMVjqnU2yDZLrwFUHZ8pu7uF5UxO0oKEJpNBkLpc+MMOuH7AyCgb79bB0+3MqrD6LQKUwj6Sep7ysL6bN67QLsHlTJrQeZ6ICd6blR6e+kqslsTt987G13rXTX4/Z0mpmiVoThft5VtBngRKfIgBanYqSNc70nCw5/gbbB8cP26hv/ID/2MtQNYmKHEkDStrprHqBgYY3YQ0/hU5tOgpR34nDg2njhoTERbKDC9D7SSt0BoAyGYHPgmP8D0yR0yMWcuZ+uzstcHtYXfNmWvUIxOavffqWXYfbVnyXhJjKcKWIdNsgP8Kq6h7lpIc4f7ukASxOBz8n+XyeD0+QWZaZjtMKyd6vgW1gDTHniZobX7ViA4iaORpnFNNCrNttyNLE2NDQV33lLUITrEr4qfJwnp7PbacDtEXo+7VCDJ6n1F1a/g5M5Oni3w1jCLKMFSy1WXwwBpCGKK6zYjeWb5EOJtVmjdc8I0Vcpf+0jzxoq/yDAvEjhEr8kWsQq5aTDV1KMsfM9fZ3ukidu4BwUV4/lZzlHvVVYfVaeHnDG3cIEcKO48B0ZDZv9CS9/RN5I8mpWxLsc3RtpYRp2ve/FPvLQOLl/TtE+vNSNK9SezZK2jcbTlf50AvvPhFAOG1Nxrray8Ff91RgQIPBy5nU34Ah0vdlNbX0jZhZKdaSyCcq12AosecC2sqUPyOGJNDF4BHBHstY/TjJKgLzPbpCelHgkIKtMJoQ9jnaK7dy2owHZsD7nGlolVlamBwsAd1RfmznZSyuB9TsozuRnSEaAn+0GLLydaFqFGFRJ96sIIbnB903graND8nsyD4iF+ko0mhiqHrGom3UZExsi29oAHafdiC5Qf8ZIuZf29mD8DxaO48nrJwRCEyMbwUoVIeVsIDXiiMzSlAmrGVVEq57ZjSRgTPm0CvVdDO+ESPGVOeeCx/EKYe3AhOsk1mF7fQJTtl6uZjwPaBy0rHlrXtXrTNgMZnFxea5JspTRtwZ1tkLi8vCEwxP1WW48qtVu91Aprb98IkyVTmIJSYVPkNvuaSjvYyHZU2pS5uldA80f3WNENWQ6U8vkjGblLHmbniGSRmRnzy5GI9S8XKLRz4z+9eTMJrVuqZXMdVRvTHWs003h9+ZnBTqOFi/dMes4xeLCjYSfhkl+1QNFq/TfjXlQyYOUt5p5hwD6E1uX7Ku8Rh6dpGglpyq34yXeC3cShEO7TcJyCqYdCKw/ECO93g2d6vCUKrvL1tt2EM7IkoxtWnDW2XHpEad6MaPy/vNK4dnlMqvwjonP6XpYKreMvYuL7MZ4H2P3XGBrRNOYDdfizZKzBal7OBTyzyC0qXqRPPFFE0VdUK2Fx8qu2NVRJmc8ZX+hjgC3GsQHfYHYekxHBQwEpFxLWM+jQ0298so3GPpUP9GKWcfEk7NKcsMnAi2M40bQLPgv69zI3fYArfBe128JY4mf0ERfJhtcqf1sGozaHTBk1cZJTDsLGsh1i9kBKNymHRTKY9iu7wjSPStwMjb63zoVyBWSw5btuE1Ph3r/yj0tiVxd6WamLGF5gDpoavEIOqm9Q2eiRf/QXEZECQd40R1X+GNfhnTZu8LuVKivm5hEmZ8yEiLV4EzhQEJnHpP23UVjkf4cNBpTVE0NBZNFia0GZTdIXFk4JCcTS9Lx9IjrRuiex+J0Q0HScvYWpRF3Yi3ymlzxRxuGqHY6cft7pwSXtW+XKIeTEaDgdxXZa6bCGrkFIH8CxCMx/UInPTqNc48lsgTSFY0jHNYA2ObRECYewx0kHnlytEuBnZMpFn8a+JbwS66vLnbSmQ927hGLjJoLpJRIuTQYwUID2oFe8/LaGLv35ECejLKfapLJaKHW9vJ2QUOyh7VGCSzPyT7QwJ+wkeYLwh9WJL4Py6ViKOLp+iOIaCy+R7ithBeYmRs6inbkyXbHvaERjSZXSjVC6xyZCDPAuBnFyE112svY38ndiVBwiDs2a9C2Rd7L24c2mcmCfVNzvz9mltj45xosnOo1mvUjNaifryQu3Z7nhuoWPbX9PgpjHnJ60xE4wneI17i9SxIUyzuS8Of/rel68NIIxBkC/yp73tPybByfNsY2dLbSDNGg+st9tdeyimu0c7GW3MLyKjkKywONDVvv6puvFeww5pP46N700dCJrSe5VJIhChxhb3OuVDby0knJ1dTTQKbIY3jduzmd0UNi8E5RBzK53WThUw6ZjDqDVL187xPIHlP3HzeDmWND1bbueXmPEkFTd+KyTdh2CLDaMtaaaZXOIu0penHwHvOr/zxWJ/b2/OkxXYCpMQJAuHpo0U5S1x48pwHPrGSLw6/Kgl9aFrqHY6g3vkBUGugFvV8QfjAxD40wd1deW24YCkOZu2h3L6flj4tiB8vJ/IS6/oYhtgbt5KXP3js5umlixx3bOoeahgRJHlHfdb5CbMZzTjIH0sQ5ppm3FpIpSkk4947/AKhVvwiwoR7hITKxRrJ37mad0mqbLTzN1qezEoE/x1aPR87ub9syfry5dyoYA4pRDYcCaAxnjbZksYD5FxHWf5TcMv1k213G4/+6SwtUWKS93g7Nmd292unByhoidGAAvo/ETDTCHCV3KWpqoHmUolWjoeOc+vyGJ2H6QhBc5ufvncKdsQ76gFBzQYHpELTNFg4zzIu/TAwmwuAkfoPwUZBytM8FOcxKgv0IBoJdN6Zw/maeANBCrUdLxnaLwIMR2lkOHwHnJDDVIxEQmhEyEmi+O3Rf3HhDp7Z9z3zyXrZkUfNxbb27nsSDOxQtScz4SW9HxnlyhWbO+RBIXEJofARyrMevoVWcEqNC8GjXQD4mRWBeIEuv/8znFwVyvb4PhXEfhQhZfoTrLZTs6RQCD6yB8REW1j7sefw+fhBa73l9XykyKtMnyGMI0Cdlfs5S6XkWHTuwyYAHoH+ah3eAkIoDst4YNlgsROkauRwV8zdCzIDx7g6nH5IxsU+TQEoxdNVb+9L6S4adt3mM0dRS2oJJQoaiTbrZt1WUqEU4RbJgWounajxN7FWMq0yQF2IN/iEi31hKdt4LNULe9OcnwwL1LoKglj7GzHZS40Xj8V6Ni7BFQIn4w6MtGb3jVGej7lHgOAvkCiCtZcTQHSUNOqrDLjGQtlCxR5lsix5zz9gXxI8yDty5LZO28+p/J4CiyVTxCTUNFOhgaMOQjuGL0NsRV88UHZhwzZlc0WbVZ9WQBs6ohxpVNTt1rPGNHRrpnDzSYZedcL/TK1tE0lmh8O8qmqPQn5d8o2wrjLtLvN/uYAJQOqcdn2OMmw50ecKY28M5ILhv7s4T4l7ya9EAOirpsgZLF1BEfSzN75e0K8k/CBa4ZW7wyvtnvbmdlE9ESzzOZ9wd1abOso4ooL6DZwcSHYEmlhfSPCP6sWvzrHLam8+vfyT6II+V3I3dyF9UbXqD7kw5ySxTFrNqaijBmHgkHVJ4I6tvhrtoR8xcDzUoc+Tnq/ICNCdzk/t7Y0hFahhos1Tw53R2YUBEb1NyAyGYK7v4dHOzEjXX6ZJ6f5i04cFufAjrF004HhH+FSybo1Y2+c/CNsSP8rxsYuYUTa/T5/psVJxeZWO5Y9E62FoCvvde9/vXd/W9EWzqZ/M4vwPFsOdcr6mJsleSNsyzHIrQT6jCgj76rv5w2ElU2zTeM1TldQNWKSoab6a1IuxjCVLVEOb5AhiHytMdDVd+D1ZbHHghA4fpmfyNoVMU9NE0TSKvK33DUrs5YRS6Y4R+MgjBU/zwYAKes3t7MZakEfUTiQ6DC5pqQNd8u+HriLPYy70MMeFKAbVMUuNjlErv2YkiLgHUCEM4O82ZE+9BL9cJz33lP04B18cVGKdbbrvwUiHfqh12K9tw+mRXfpqdJ5PanYEKXcPNWBSmRKG1qjT1N0cA8ZPJsFSWe6WDhlN45eWc2dOmpR3KCGO1eWdMy2Kr1qcRIy3eiQjY89fmsi/Ca3HBr2TjdKNAz+JIMjtVd7ImdXjq1ayoJMmAkFnCV/G+F4FBkscitL8FW+IxcWpvmL4PEnQ2H1PBxyI1RiGBl6U2gBx49m02/h1UsUoM+Gfh2MqcPC46elh3HJvYAr86JG1o3tr/UVYYCA1+wBwQtMkaAHrUAUjk9fHSVXgoxp8njEKlaBk/02KGItPgbSMbIUdCtmvUoFHndzcdcRtwdpM/th11yx6wtVlewByVzFUb/IdzJRUUQoV04muS593URfFlGy+pYKQKUBiLXtHeGaxs8b98JSM56gx3b/nwdohyIAyfdWaxD3TyvbM/L27kTzNp7gY2a2xjuw+sfEAzT1uCXVZCN+zW8QehBZjpbPkTMC5Bq96/JuGcDBztpWPlNf1LJBfjNS3QVzj51laWSikSxWhBd+knZ7rNFGh69NJdTGyGosq3OfGl9OmphjI2b89HTZcP+85UX46j4FQ0TRAmBmKJKEcL1loMVjQVyIn6aMOrDO5UQRFhIhcwvgG/60bCWC4oJalXVK4KKhK79d/OF3ERuMQHVoraAFYMkZfWg/ntiM5BbDt2koyaq/BUqHrzoSPW9uc/1PQofx3xlVUytZuH0gBnbknXAbUAdgfzFAw3Oj81HUhDgeftW7pnZooNETnY6MOjkrq+caig7UgZK60+6G4vN6WJUhYJepwy4aZkaekvwK+nu9emY82LvO6mSH6N4EnvorJef5q6248+8SbVyVyJN5zQGdyUt8NrheXunYkdVB6PXOojwUnHSl0t2188N7z6Lw+E+LEZoESLqkeS8apxuPei6b7PLTRI3uro9GIXBEs/Vvo6eZXTyo3MThkvdTKMMGiFFO5azoUr7W1xF/W7PQU5ffGurDI03a7i6Soz+1xFEy9H4O0wYsNvzVZaEq9D9h+9GhqjEDBlkYkMCG/KQD02fButi+YTaRA4vHHsvtd1lzC/NtUZFcRAAnMlid7GJGqLZyGYBgxgFygYRhdJ5B2EqYzJea+n+WELpnezH2ojWCwEMYthG+HUAzK5Ue8GnwtZw7HV8MHhV7Gs3Cna/WamWYN0JfZ5BX2ulgWWrwu1ICD2XThIlvF3w5/s3m3aCov+R1OTTXpO+82Humw6pbDBOwCdVaImJ/mBMyR0jCgfHQvrecVKFHA1kqQWLCde/6xLj/T8lP3+apmSWO7O5MfNOmY62kReAdQEPHtyqpeFoo/SLS6LCoTkJNSrzABYiMYB5d7tfz1ShzdJQ148dfnWyxpfSzMkR1w/QFuOUToQNjLEuklvf46FpgJeHU69gr9cIQT6wUXZZ0pvPKwx0S0jfRVz4OZkbGStQIwGdNpUVzBFjbsGoHDS5RBai37UeBNGSTZP8Z04WFVQj0uWVTe1UGMS4n6YKnjpAyqiBLsBcPD4FNnXQw7wxhT53c96xjgA4sLka4MbQTrO83b4yiJdfcIcz/r6LCMEqjq0WCf1Bzvj0vovg70fB80AbkBcdxIftTpXgpUnK182jtQmeq1BpkmWdo5QkVws6+mQWxFH9giN5qil0d7WYuLqOiZqBg+tbsx9+oXXs4Yw3SWG27R+XZGGp3ZKX7fz+0jSpZL5KFJnCXUsq6owBLItYBiliK7N/JmTRJ5LDsN66SHo8VpckCwpvQXFto+JXAMesrX6dAQpgNka3YV5c/CJAQaMRfCXOGTrDVnDoITGWxlfnplegKnXVaTwZhZeUSQy8XEJN6Ejdd4GbplY0UyNlULUfLI2XQHPVxmgXkNETAL6s4ZSs9WarfyrAZQ00y4LjV3aGvFwq+yvrUtUP/iMtrmdVYGsQyd6IDTeBLX8F7hPI7CMsSWZJMQd6UCp6RTaGmaZLk94G5kMIUFpD/BQin2cl8JKjajfmc4qNVHONx8xXNhP73WqmKoG1NluvjzlkTfUbtLfnhifKsFd0N5XoeG5DEzc4twzD4ZwIo/QXg3O2c3lhoa5MWaVoLVXBtqOs0wEl/p4ft3vtaTf6bOfxfTuV6exHQVVg22wHgKYfLAuObZipuCL9B6TTXp+LabEeYSKT23sgU03bU1KNqoxEVHx4sXBokVuLsgffTEvvJGI8OkNSPwlPjSZIjlY8Hi8CnzPF74GUgZHZnlTqYAiilE0hfF42j1Y5Q43L/RBEN0OeC2HEo+m/y4TLjZjSp/eSerHj8zpmUPDciA5u1fgLGbF3pIF19DgixvzLWDkDE1t15kFfJ7183EZl7qeOi32RLWpc2C+piiiMbwC3+S2ES/Myjhpdon3WykOs47e0RFDXjFLVHK6VAQJdld3PFTGbKadaa3yYdzMKsIHn7lAzHG+PTeKT3ZJRngT/5G8noxMbR2tSFHNxlXQ121hxHx0FVUBVdP+R8WUlHBf7yB53dm9byBJj+IP8HK/kthOhoKU1LuCi4ecun8xGqK4ZOQW25dTVIZwgRsrqU4aQylo0DKqME4d0p3+S4cwraTtXI+Ca994dKugpgZ4Tos24kw6g098EQO/AKNYWeACK8xKvm8SIByRTunTnqlRFqjeJ1ezvHUkUu6Pw+/03pN778U78bTtw0gszIKemfm+3dEL/HTTy5g897MC2w9DKqmq1cKjRceMBCbXxbzIpQqK3yHJnpKfhaavp7ALsyITpJLqSCtZLghhNf7nxnmeYHlWMmPXvaajGt7dwWMoUDvtaFJLSz+sDQ/jebdGrmQ8ndIZVK/qLtfNGn8M618xA4eJPqsk/hvLVT3tpxpV9ZU/+Mx0jV+vuc2F4IgvCWzB8EfQfJfBQfxoCPd5D6jJSUMAQU9DS5NRMLTyYB7dOOR5bOyGdMI0LJd20Ezlxq42dMds1ItKpR8vTiFTULCek5dE8Jv98h7DSPynl192zR/2+w5HB47PTJaYDBxVDUPnZItmi/vc/38vro0um/fqKtvdkHqULqfsPVJNjfVTxeUVz8DBiiOOn2ixk0+h1GqtFFp0X4R5pW11yM8kmNF7FADzOzES/t9RZXl1E/ZRU1FvnZuRd7PTUorWGsqBCg7ueKud6ZWjreZOBIX0tm0sRU1bHcTJDbawit+eJJSOd2d4qBJkG5wn5aZ4O2iFVb0L2DJzCQsIzrrrKyr8EH03ysG68SZTOJF9pIbliIPgOxbOp5EfG0ULjuj35TyK5Ms9kjOQPhxvvnhUhPJ1mS9+AjtnC4goeQ8qHh3PK3prEUYub2kP0ud64nXz64Czm5+DmJbRX20rSYURYeDisViULi9cZh0veHOEhiv1IarD+WKrsDAbCzPCmBuKyCvL+v/0AFfpBwnsei/+y3zrkIk9aJF4tqKtQ/uQvzp+uUanKASWrLY6CLWJqZpTozmmbnyJU02CXVAKF/L+d8SalnSZBrupbU5/8F5jVM08r/p9FXEjADtzRSSAIYum5dMHYIisMgpSGlFbjsUMwykKI9um9/JN4sCxZ/xeAn83VM6Wu2hM2c/GmMcLC9N8uGUsYD1xFS9pKhJkrJZi+2JUoAM2OgBOMucvT/LeSlK3baEqUe0lC3SHYbvuM3nyGoozDVmJqklRcy/jeLLIGWsGBfdKqbndO90siR+62Gp/FW19dIv9KhvDVcEvHiHVb8eICb+6lUNPT24t9hezDAjak4MryHQ3+AahSdEcRjFBujMLYFCAyC7UGt5XryXodXFWfe0yeFBd4mpuFVLC2S+bbW8xPuPeYe1UjSavWZW1oiYCVLOqhgtBPH+3a3b0S745DN67nmkZNzzP9Oas2s3rv3tFEx7KK5DjYv/ePqYGabQThzGBHvw7mJwT614GfZYm20p3e5hjz6VDa1eotKVqBKtg4uC9O5at5V82Wdpk1sUYrq+C+Cg65BzlS6dPeZElYp1WfoaRlatTHyirdYWlmmmoS0qMag/eG7yqySgNUjFhGGBqwrI91P4zs7DYWod5/pjN4gGYZV860L8pI0JTrZZ6VqjvMngOKm0LJO7Ve/KCBRQ4qxyUWLrUWMWsZ2Sxj0/NYuGsPSW4DBDLwKSEDrIgtDBWhy32Jo9q/XF3B0erEcFaoQ9fRiZ7zq1pNFjBQEFrrXfaU/rzSTu/vcgg38BRf8zUt5dUrEPEjyzXzAvDWvtR2EkmiQNZe2s/rxZN8TdrVX1XVDM/fxP0PIXu5QMgwa0V6fc6E0BA9R7pVKjggfn4SXQlNu9b+9Xjs1tyaGSUJGGfPvIaJWhVGICuphLt1J+ThoU6ZffvKKRpM11cFHjVDURjuNzXYxpJOAIx2xb05iDalgY1e8P34fkLQ4fWeApt5lbFROBylTDkk35cMfPSJ4l3C5uaF3SdeO84gFdfqhCM7W4Z3gw2LBlQtWPWvjCmM5R1SnqlYoAjU0mGcxDCsTHnWmIWCp7zCyhGNqVLSoJ8UhoG6TnVWQDEJwqj9Wqmzp3Jw7qR7bP0f6tHCQ1+cs42HWct1I/DzY2jrVmwJp+oXJgvWCwy0ZWHw0vENRxEYo65KwGeCwdAF3ryjdGbel30f7gKgxqsT0mVHiFJEKQYPesnZnMNRRwqpCuR4uceISTYGbXRlFuEJduu+JVFkvLSEH6WjA8s7AHvVEZGA68dgXbMdifrtOa+1Cp/yvPdihYWCn9loS0bbNEOSIITj56U5ckiL8HcknvilW92wgQKsUjubeqzwiviOOfJWvETtFNBDqgJwmbozcxvlqGerQt42H4zvCbL1YDo6Rhh7rMrr7CJx6kq+HEGc2Qnev/2ZYEX0Hw1c4JRJ7HZ7vZMKlvFC8c1kKg61nGfl8OYalORnVM1CtojyELDlPb14qb1I2hVLnVnPzbcphNUoBkrs17mqxGn3q+YYOKHeYleX9wnYMfBkVCYlHXZob+sESN4RlkZfYOHdh649niDrQVMPGZ+Airh0QG4np73d1vgXDn9VXf47dfewtg2K3yNGuKQ521nj03uqzPp1UTwqy3Bixl0uFeDJ7wOcKMZKEtbO1gp+RHEzbhckbrpmESYYKMvdscPalAKguPZlw3hMV+Gw7yVp+e15j2CdpQGuFjYFxPtdqoeWYRO/llBxa7eKNwv+pi27LK4Jzzcpurwx8nMVkphpNurKl0uldFXwPTd4XdwLd2zsJE/FHr+DuIe3ZZtItGeZpceguKDYXFuKvz8hE4WVxiS2kUpU+QwKOqx6wQblGBT/KDBfVdxWhfQxyWTT+Irg01LYhbgTSzU4NYk5ZEBylsQgmtaZXmLZQg3Dzh6Fm5P2JOEGxSsbzNN5dwBmjAVGFeoF9y61LeZWOZvC9UUBZSwNxlhxWzzn7qmrhGDGJ9kEzk2SR8wR71Tj0zlfdQPlKscMwhHqEpRRo2ju1uBI8TunjLWvSrCwgnbH9b18k1joIty0i1KpX3eN8biL+0QPX3+7Rt/axaAHx+2xHlqzH1ISfRf6FQ5EDVeeC606M6bA0HEWj5XWX2JdvwafASCEtEXpoap5Z5e3hyOMdnkMd2iZVF+Sxl2aw5vo66gvEqEKsB1StSDrgcj9I20OuBdn2+zUDY3wF0NWhTG4lFYIMtZHI3AGQ50yJilvOBn2LvC2PcwketEVSb+T3UqYyaP3Syw7c3hoF6iQSpmES7Np6D3Lh1ZtKtciUOn0Y27vA3hGBeWTywdoFR2VuE8ckLkWyJWRbK76WsXKgmgZNLOT5Wij+E0LTuSpBuTQ76OBdlHZBXe1qHeAO0BOAjNlWTTocozzc1XFVlGHdbuLErOkbPkS7931mB1g3K1I08Ny3T12MY3kIN1VrVkUnKdHnk3rDsJJ8SYv8YP58mDlmGMDPFmidpT9D9rPqaa65RPQwKoN9TGmB+WuGxJ92SxZWWfGHamVNWVAcvK/KqUpJt4QSUEzb0p2sEXYmL6zp1WlKZ67lPSrKBrjWCfbTCt2LJOWnoxvQvE5QJJwsKXYlB9AMW97uWJPo1AVKe4rGlNbHQSlH48MeVckkMJWz+TWHRBhWPhwREkTW2Q+R21KTbDkxER+TxosfTTL5mKe3uXRqkNdEAVmP4bsrHru0EGLp+x4p6raCy8hLyeNSizm0MLQVGaG38zLhnH6mgkU8O1FUOVJokWgwYprdj9dXFhYRlIqJQl1DcXUmaVnRcPj4pmECp6apXSZVl8bqqJ1GZ14grKF2rHpBCP+FHpSWnBEfWnkRmKPQgeDNAirfVqqgzY81v4sNX5ND1wFOnlLGqjQ1qXM0eo5rBIoNnEo3fwzSvFDdHhAtnHLRlff2jCluXqloz2IloRB6KnS5SgZRtneKKlu6tr+cvNow9YtsmV4TU3E4Z8fRPUS7vjioYCsVJtIMntJVbFipyxhpRx6qg+JRznG0zDxbay+do60z7xnum5KWyL7XbjbmzyEp14ppXZl9qp2AWQZCt/6uwLGKQkYudKhA0+nXU0K607SGh5qVlH1vXIx9fG8dEhTYdbEPSyybzSojFqJ2OElsCI4yTDBKqSfjCkS+0KfII6iYpL9BXSwAkUQY0oKANr/WL7qm9OM/rxzCLq+E3cBFSUdPKvEe39cO/SFyZApilSefI4l4Aw/e7R1EV5srZ12u5fNM1TreDbkcWmBzlOdWErUoFu0hlKc6wL69TL8+HJ0Q4V9JgG7RjXaryHp9GzdYSwiYTKivWgGrunsHArHVLrZ33N0TfVUqIplSujxXpIkc/OsCwMSYbVV3rPNok5MSFWU9BWElzUxuqBEXXlUUld2SY/j2SutCFCYTRkETkpVjSFRvRAbYtDAFoogIOdJUxxh7vUR3qYdQottMSBUWj5iGzrzLMolnFPd/qNiWYv72lx3LP34+Ef4tuN5mU/J/LknwIFzXk8EnFHBX+0HL3qiuP4dLjEMiYCO6cqFAJUaQPNSiwhWk+U4iI5DiTFHBRg+rl5aDIFwzKYRQW7huvQrGyrfXHQeImB0pRbjEIv7aA8DkMkyn6raQGGcVGJfDsUWRz0QAsGVNsiWMlN2TEgTjZNUM5rejFsJBnI4eE3s+gORgN9bSJA0QCtxoGOl7E4KFMEgmwHmY1yfRvHAlmRKLoFgp0bo9n1noXsJeR4auCqxz4YtpgHYFhb7QRcEfcIGBWtTZrrX0ulxz+pUPMLf7bmY+cljX7WHN3wO74b8R/khwnCYnMAW1R1kTw4kNoE9VoZm86XlMsz3ZkS6taoptN37kXD6nKnezOL2VyDWvTcEw3byX9CwoJl4d0J2M05tT9jWSk7rzjCuCEnFiyZ0qhxRE1Ss0MzcFv4v7g9GSMsapSxMUkR+uN1XmxpjK3zg7xUMfM8QPE87Um+UNWcOKrdy8PzqLc6MfEUVjIgA2W2A10YmhEBx8yBPIiUNjXi5gArkPtQtSw+obuyW6eWUJcxONdoWCj2f8bt14L6wPU1ktVrOrv0dZNPCHWaNsY7Aor2wZtqCoOzf4wuLRIz2jTZPGXZZyHSDohSrTLf88LNLDv/m2h5X3q61TpvyYehRzLq1Ubs3nhT048PA5fOldpWHyd1Tl5rhbbfOtad3LiWynHauKjmBpuzdrNxmig+4/Noetpq6+lKIu9NYuY65iLPwdQlsXMVciDFNJaXf3+XGwnW+FYwNinE1WsGzjZ3hlg5SatNouJhwrSMKAyq2SzIw4AiLqaETWiEDm0VJYnISftH7Y6MMmIgh24RNMRC62dKDRhVGIhYqoMRO0CuuFu8VhlOAJx4mrsWkAurvJVehU7MS8QVvbYThQjdC+O9EWbeUGNJRG775Toki9N0DVxAK1mgubHoRrZKSyT/NNYyOI7TNanqq7RmEgOPFR0OJGDPqCNWOYgBuT4qoKrFP8tSDCugesFMSsffoCMxkwl8E1eRxTK8jvcnaYZLQyAhiGNCKtbc7JrFRbdnlm9WW9mUqvFiqWON6sKxXz9RyMCmzNCQMlJ3J1d322Wlk2bbhjHFef7QNAYpjfD0qBZjtzQjzOQs/WaWukyucPIyd6kXhGAfE6CsXV6XbHZQmumMa9uYWdRRDDn94GxCVdULiFE+mEGLRM/WYkI0piOIKtak63zArtlWK9QloQ2kkN5i6IynDzRouRp65CSUFAVOlR8spJhqxErtn+xEWNesKxt/qK5p/dSsypg41BuSeuX4HOxcJDqvpivTxS9JMM1O3Fi/EZN093gWMpnP1MNZ1vHEogowCjilXXEIO9ofYB9RdUhQNPmC1NENdbsV7Oegq8BK15GasmqeoRjmqJVvcbsZmcboWNdvHXwxrOaevw3iYEv6wJ3tilLVicUUnYy6tSa3NbYdkdYeIaWx9eyLQ7mv13z/lc+Fqi3p2PU+k1tD687ZRvgAAMBCFLnPQ+kFDjQT9BBrSFKVFfQIpyKEiVS/R+joEBuWnB1lnBu/GozDpvLAUNW8NM5s4tQbQWoR+qE7KsKGAuVAfKe3O8ISSvKApWvdPpxQXLx2BfrYbPBYmE5NEVf0KotbIg3jBWfM2C1G/e6U5JzWCr92btlrqKPyfYfkLeKpyMgDWIsE+J7ql9q7s9bHLH36z16HzYvMG3tWexaR6zdloj3RlAoCr9KyvZp/E1JQHyYuU3rc4645CqpOnXrn1l3G3M+523jKnTOBDu72MKxDXUmzFx8GQSUeasqeR+VPEBjejt4eXMh+b343XW2KU20O7hyFtPU6t3kaCnnbYsNpu2VGW32e/W+3eTa/ziOP3Umiy0H6ZQbH/VzSEsORT0bM/d7PQuzOJhdvxVkuIJoDyGU8A6yJfHU+QqJ+oKtcPlBZcCAl3UQUPgr+ykhkWCd05oyvIItlM0KeLOg9SZxdHkIMD234NtfdbitLT6Eq27FqqHSrAWQqpxlDa7i5dQL+k9EywJUpG+q5CW2uKZPpvBle+QLL4knD/TMpAHJ0kXbfywJ/fzjK/vmePDQtVOfiOSHDchsCNp0m5jygHCSe0VupAvdn+0Z4mSsuPuc/8gPxtQaV3TACyCu1PEORNXHOK4VatO579zh605eyt0Pb85fI0NdBbi1chdz+izdWdgkxqI8r3z7eGGx+U4E3CSTKn0fX1KgnywfiLwdUu9qPjQWrzyMVAQojM2F56/THxidVkFupLwHjqhQbKThKfqAXOv5hX+xJji2Cymg9J81cAeHrdk8yUDmBagOXxEsqBz7WI7z/vLGxeMVeXxhTNLXH9CVqE5ZXYNKFsLyenQrOcIP4+Y0SEVx6aHCGI8/s5ejK21Ww1L1Mz6e28hVAXVU4qLlrfomAwGYurqyJNQ5FlAqBCH8KFd5zOXxDESM/94MuZ23CSdaC0Wh2s7MHJpczOwuew70zpvXEJhb1HpCd6h0z4m1U7p1OhuVABBgv7hAp4CAIKDGK5p6GZhxyACAPSAChjf0LP0+C7FGPDkfuphdqK6KAp34JSSt1w2fk5RK5YFKy9btYbP1+el8W7cRPQW2AY81AGFmnUtqj4n9olqgbhU4Uew1kI0xEjeRgmlS5TWVdBSVv1XTcxSjq07g9PUE/3KlV1OZy6EFQJCkdn0NjMLD41eksL9I7qMiIi5dzgN4XMCrgSPjXD805InYaCLVLJiLWEFQGFTDn3gfAhPhfro4lSOb9wxpLte4Rz6McKV6KMl9KDQXtO3wtab0yJ2zC6TuegKtK126SLHBUkypyEI2lgpGP4XMeJ9HSUCAwWRqoWS+R3ufHG3L4aExf91PkkdmMrcan32GPG2OuNOLu9+lAo0vaSA4x8kslQ6dB21jt8KSSL3RoMGQUwf4T0b5ytPOytwoXG9EdJJSSkDdJi1KO0xA5tSHxyqg28o0SVmoujRhUBuWq0BS2bSrN2if1OfJAhau+4s+F0lb+21HzQm5vKxconx3F7g+BCa+uRaPESBAfV6plTKxxlhyDUmVk6CTPeEK1tT0oJs7GA7Tt5MLMPCmYc4+sg19tQcYvqSB/XpIIBHHQ5EIfAf6xAxClqcSbpUQO0MgipmvN3s0x0+36OXre41GQb391nHbd4dVdoFxeRfeewWChlOqgKUiGdVfFpF50LKQU2AZrBAgEAfQM4PCod7+bpbJRhNrNLr2Z23mbZdNGIqaQuzlfxpPpBoFp6QM89GP6+o4bbgSgzaaKWRBYKdFLuBm5nvCf2SDKHLBL8a6Cfa7ojth0c24q5VJ3jME2nSVPHYuOwzX/ryzdrdEZQSRorH2ZsqMJaZ9NdTD5i1UAi46rmWk2iyx+I1ozAZ7Hftz0eaOc2XQDrQ7jA56FUQbikU/8zq636IRqgSihDkjjqbCK0TQXmZ8t+/9Mm6yp3lT16zp5mqef1XMsnvMy3g4Vyto/C65hOLRkpGuDX3w3jAUDxtjLmMdkF82MCo4mI5+3dwaFXU5SL/fTaK5Pn8g6jokp6Zuj8gDi5vhfQl1XvP/U6O2WByqbSsYEOBpZTmwvhKCsZ0OIoeNrWuuHgprI7UWsx+x8iVVrKG2DrFNpFE+q3QkpxmZh89uSEx4pC6I7T38Vs5Nh0Ov2ULZFq5vgojhJ6HZOpokLa14TTgXK2pf1bvVZcQGFvyjPzPcRkHXEuOeHp8K/M0dljrPu2rNYCK7sErYmwdW9NhUkLJMJ5wttnt7B5llheAkcDKmuyF2gnFdqv8SkEer67JQzsHLVZRfplfSp+SlALiBfEXDpdljlKV29VZUWLZ+PuaZ4FnbyvPiLTS/u/oc21n7ThXjoyJ7FVi0u0QRm3UhfUQHzam7VUo6CvImvAa8HmCqw/vs7iModeEB6xx7zrbEKZbfeqwApjH4Imtxgw4z4v6SCpaR5hUxkTwYPWXDADrvAtAzwVYQINi1iPq36IgonCPwrXzLvotsxB38AygaxEwThG2W63tOXmLo7GxqanH8jkaGkgfxTM2zBG9xVxuSrwn4ptV1pSgFcV0tVRNIMg+P6BOK8aAVPuSJyaH4QkoyGrc/FtrsgzlkCicFOij4LnMLM8ZeFz7EwzRxqBVnYO8vD7lO4HrwVWz/88UmrGpin1LcCsyWNygnDeEVeEtmKtpZQrx96zs0Vc5iOfqaUbX2OLqChfmEWP3DH6hzFokKh9b2ZsnP/IS19/rx0LKDuJoYFT35bp93EIMlUgHv5dMUl1D234hsc2HO4/+xdrTzSIqlC0AyOtUVJxvqPuasstzUvSRt4BZ03rtJJGJzsIkX4C5DLTlYvn7Zo06NrGZtqhkxBVCKXiTBQioQ3f5mone9i5Gk8/onqL6gG62q3OR791WquwYZWvxCfM9LoK7qfb1Mlk8YyPCYWjeDzoDgUA/QpaBMqcae4RAYjom2mkuXdMIqcJ8ILC9IqptusHJci0ZhhwiFdnjIFnP+tqXlhKuyp1LMhsspvcBQ1fFOh1+zSi9XBWa3HNRK8pvOy7bmUySUYZNumOwl6C/HyPTfqMgks1t1U5/deD/nBbI7VjA084rAt/ixgia+WZ5ttBhl1w69VhS1vg4iccJ7OnDMufNnTOErHLOAmEwm354SnYCZJS8YVorKHjfHxoUpB2F8ELVvAlRZHJhzauGi41iGiysVfLC8jDxL8a+T+9VKL+oBhap1UeSeXcR2GTqinz0J7hfURm2tmHp7/yP5EX2iv9wRuIppQF7VdgTPE/G+KvAhyhIDjuoEClIRWAgJJdXExKomVEN3AmffHj7x2wIq+XCDa+ytjI3cfe+bxig9alKq5+bTBQzCdb6ilauz70ktFVbO8OUsCLsYQnDCRqmrD/eq7VTW5pPYsxA+/W1e1is6a8Bk4L/m/ZC3Tk0Whfrr+Y7nXCbSNpLpDUjcZ70d6lzH8jRfKa4lLJvRnfKjpyMCiCpJCAy+1plfvvsftEUb/bhWj+/1htJYTJKLwowUx21/Z+8weLrnL7LRQO1Duw0EGP6f81xav5zyXCYp+duWF9VSHwo99YcMt6GKtxfZ/W3NypDsnrIQWisu0icBcMLUPJNe7XH8EyL1i8cRO/sUtPeUfY3PAJQO0YRkJVVIWulwqjGs3K99MqE0JW/iwHGxY2ocX1FTlTpXkR2hbcOH0gvlIJfQmhCdW8D3HOE9XfmUpF7MDArDjqVwGCGV96QwMrJP9h6hOJ685o8dyakPwaXX7P/ad3Z8Ho0M3h3JrhzbNY062b0VXODaUy6P5H4MqGxeztjZgcvI+fckxnpEaqXV8384W9OtUTSUxKYtm78e3oXdDx/C2eqcL789K4NMGz6rLNBB4udQ/DnXF4z7HwU3sHcX786iA/kRDB4DoO4ZQGAc0mlg20LRAPmEt0zrWen1mjQZ6yej2TmmDQJfrELEzkbe1FgO45rQ8DwvOghcMJZI5JrABZ8/ei5Gn2+el6oQqk8bVB0fUWj8Ct8qaCiBTJfN1Sanya555UdSwPnUjqPaqDMH2442GEc9kKw6NBgiYY3/zhQHI0yN09rcvo+M8welJxmDGCBxntv0WWFuMdYjPOwVLoMp6P/jWUpfo8ZUomZkZU7uy948h53lRD54ZPMeK/t0/Fg5pERuUFgyM/l9884yKloiUkIweBdhOu8vcrDiJJiBzQCOityuvdnoZciMDtOLwhvILh0ivVZzeGk0ftYaH1vL7sNWiEppZNrXKbzC58af9qmSN1pjZeMOJ5JJcS3KE/JuCchg7QzRClxsLxy0w4and5Zxz2Ek2f2gqgbwrRd2HnnQFtJ6OceUBIDbfQAiwIw5QcUB5OAoNgIAKRFyjHj/2nKf1mj5cvcUb4ar5hi2Hsc0SwlFpfEYOr8ysANFTV3jysGC7zE3LuZEB+Cjv4a9Xpjs3jiy2M6+TWRVweau43PIo+RStzcXV/1h8cviGPi44gQJzehkPfZKx/Bm06b8STA/uQ+73lHeYNzY5SK7+XoK+I4BM9WOKbF6MRyZ6znFtRwgWZkqZOcuDpcreSFDHBxXhsVfXQOhY8DUTbxwu5Rl4x9XJ1pVpDO2EN7q5xW+rWRYeRkkg1VFVJSctnDY+BPyqe2uW3+MCw0iJq16o558mx5el1P8mdt9I6au4sqYaxt7XsC6fHtowjPqu1Y1Fx0eCys6z23NSVBkXcZiAqMLiL0bBIIUt5Ea/0VuzhWLt+VSluDo6IPlGjUNcEgxtqbwQ9cYKDLkaXhGaHUldDAQVUsCPXuN+41T7VwhfZ49x31uWOFyD89syEccZJvG4u9HSIs0LnYbWV2V7XsfppjADe3H/n/2LMmBuDUnPWHAWM00dXkeUYO7zuw844LDGpD4NoGlDIG5xOPh4+rfrYdV9tOeVXBTtINa7sWvoozaBDnIuD1lDsoWHd7oeYNGDbguSo9hfq3ist395wM1r2zxBfv/nhratNj+XgO9Y1xW43OKdP7RqnrNz+fKb8/oXPFBwBiOT6pidwGLvjRtaciJxfVsEdpnyUBJqJ+jsHPAi5+3lSD3dJu/yhB5nmTmNB0UTBxi5D09TpdoxJwmwUvBsk41x2K/L+mUj3mi3tpCyb9zErZ8270CsX9hJmDhqWqnLi/rqfweLlgsKD/KkFBkcgjOk8MtIceeMsXt2WiabFaj4UQsgUNHgpx+8qj1MX/ryjGqGtyCdie1vy3kxrP93jge8Hhe7MgOMcaqa8cCcjc4gX4KL/rk1hehvkpmKK42Zg6S+UFV86I+vtXNuLe/fSgO7V1lJD9hcqlktCQbpc7QNnPVO3+A66CKoekGf6+UwFBI0r22bNzx0pyoTwzdbskJBHwWYs3IljpsLQuiiYu8gDZv5UA2Lag8DsS3DQIUN0e9jy5b3VOmtMg0BDMhhLqsyXsSY3zj4yV0OxaJ5iopTZze58e1odnA9P6PMQhoY2QsxrSG8ytpdUMXkYTFNc1A7rHbhYK2+rggPwINszHTgiuxNGnHEaxJ3ygVpDpxPaMGAi7c6bbCNwzc47O5ocd4tXlqVLz6bisNhdZQYBgDXDAmOYIv77E/VMH9vx7lr3lpCHfNW+snWNZ1mk0Mc47BncYvGwFefoZjUkaXWaWd5/f6jdMXT0zLL7lYzDpSOp7uZQQWxPeGDz3iBrJMOukN1DHbDMjA4baa+y5XTjJKKEKykR9dt1K5/mJIl9rkRa2DUMQsAY59myTBSt5ESh0Mx03mi5GJNz2GIcMykuvH6lxk9IigjuLgR0q4QZPkGb/14V5xH44hID7wMZXbbwHOMGWTsH4O4xdYUpTtyCNWFBI8vvUZdHL+KisGHu6ISKd0CBgTg98y/FtQuPU2zN7VnHcbSmpV4pGNRY6431k08TYWNNDCbs9d6tSyR3b6oKQQQhuPUnG+KwdfcMJtz0NUAZxLEqo2ItHqgkXg/TdqfIMlaoBoBzBgqlkHit+aPrFDZN53NWE/kjcJG7exbF/3Wdi46vBVzX7LIDLiaGp9eSw3G0pg8LmoPINhE7kQGvVz9Emp0RsxXAoV3h9B5FWF00OX/c5qVOmoNfURnstWMNB7CivDWaYQ8Rt714u98ubzwC5ChAFHNjoMABLar+xem4e9sOBdG8pnUa+VPKWP+Wkw58ePueI/D1iGwZUICbA276aStoSw3fmdBvLAkHxvtX58a3d68xYJLU+vDfSYsaX5RqZp8oIizGLs+mluAo5YTP6ZNGHls3ouE8sKqpXndmDJ2TXuL++nT0cMwqZLKrpMa8A2SMx1kPUtumR68bDmAL4+zhjIGzfO5G8MxczS0BfiPMSRAq1G73bSuM9cVpUAfVkX4uj4OXhkxg6gfqLKo7bn11IJ/aIJfgq5AGzcmVtrDe18MfBn6ExcCDEmSQPf6P02L0KWpQZs+ZOcAqekQODyKR4p73x/TWq++sF0BOqzfZ/YbIK5w9o4LlntHHI3ZwLA8b2UCrD3IYkjGsi4I8vn2nAPkPOJizsdQmrevcMJ3WIOLIq73+OrRD74ISpJE4MwW3IcsvXaalk279edhQ2SefLH2KgtQsBXvJm5kUhlHR/4ON3KsilAwg4j6ySqJBYqDvBoDrekOtC0NqswOldej0FwqeBBfwFySD8P4Z8HGScwR9ULDvZKash8fe2bnO1cGthUv+H2mTndin5e7btGNlgAiMfhywp34c9ud9bcn7B/9AU/b/Uc/NMYMCvgnymmchQomhBtU0EgVX3s0zeUrDhQghRQLu3CYa3OMt+KkaykLI2GCm56cOhdgjxKocqu/9252vmjWeCiP7Il4l/JIVk3sPdPE9wQ+IItW6UyVzcU3mPFCeT7DlPe8TxxJQNuZyJanECeERsTxr47YGBwbiq+A4ubfyekZcwXDnWftNN+QVhlZlLEgpntw0/QC6ffA9cq8iJfGyohMzPKsvBeYI+NYFyrJoD/Ur61YjzhqoBtkhPzJwXlEOwDXhOLLQAUBuZNBpo5LtxkQEZhZcb2PyG+DgDGq9eXqGvyrxXS1oVP3XwlnsaPoKfl9TW21A4MFtHs6O4Pe2Az6Xr6aj0PO1Cd9YiFzRqBtsUbZro8sgLPGi46SAL9GYNRbp1vArt7FOdP8MWnojrdpQj3WYlCqYX4Kh3Pxbl5//i/rJNRnBObioCTsAwwxrj0fwnAFJ1ehnof+pGvi/5IAQfPThO/Gx5gHozCDIvLL2hvZfP0IkckkCmcIR8rJ35OXnQ7nIw3+C7AEgi6Q2gnwbaTnjZDur7/QBv0CkEFPmJgehf9W4L9LFqQ/PLwbXwWxwUcMG2qcTfLmi8G4/gQNyPQnec23ebyQkcXGgpkfIyYAEDoUrdJ87tqItYp7UOcgHzHA8dDbzvEsiIkMuGhuJHGoKCN5jtdHGbHSV+EMTF9ll435iBfLCE6Wtn3qMpXSU/Ld2uJJeq5fNQjQv+Lpey0ph9v8W6uadUOn3a0q0T2DPZ3R9gf/UA+kF3bVhwPXeG4eyZeKnCfYaCMIWBtg/qH3hoIOgfTmQ2JfTiRfdjvVig13wtyVjPDkQ5BHYhemaVg8XfobwZZ+t/JV6zt5GJmCqEV1Zw32ylLfN+xTKS+CokVoafAtEpOLVXHUUWjOvbiaF7hUzkEZ6/NNz72vsNxLOpE4cwk6YzdFmpO0bZmfgzR1mDtXQ2RZJ4GicstBNFo7JmjM6TucS/NyEufIvOFffGC0K3uH3JvcGy4kB236PJFd167Q59KcilqGPajFM3oX6v/6W7TGBOjheFepo81gFOLvCWewEaSfnV3kT4cBPOPXtGCFVgJpymex1/Wu4tVAuSgfAq2WnSVT0XMFRLQPUaVlB/olktfLeGU30lQVvleBCphRvi161ZScXd7nougkpa/MfM6XnSBWLd4vITZScznf0tFIrpSbuuO5SgScthY8TXYUy2fGjcCoDWC5GyTZNAOgjd4brjlxbxOZaNMX4JE0YbqdLDPc3VLUpnl1W6SY70R9OtNlxZlUgFdPgtylvsEiGHHXgvOiFqWwRXq2SYMvRJCOHAipj+LKl+NAsfuM/GFcj8gcyA2lDC9nAgBiiISHhsy1HYCrC46KpozqO6ibmIEYQ1BlrwKtxELFeRzHpj5tWdrXltNFwNhJQe2xOd70rluvQ4PK6T156s0SgEVUKgvYygWfqLPKe31EisrbH6nbd9QYBDEyg/ZMYFi4+5xafE9pk7F6R7L1pH7fpqzO9hzxEncnrGAtGa7EwPWlTmabkUMtEmkFUqx8eytADl9oTQf15d5IcHaexKGzZPjY8jQvQ4dbjlGCPWXfORe4L7QSPtnNzV/F+oXesuw1xo2d/hXZhr9ReuKkX5PyfmVTMROfzmzoXDnhCTBKQaBqvd3flX4gcUw9wEAh5RKag9qmcltEyFpR9NDSM2W+dWaEulEIVZ/A4k9pvXyA88EgG2Q5YORQvSj1mRU51lLYkb9bH+IPGEfcypmgtbaiEXSdG2sK6dcZguF2/y2wL7ypgNPccxt6FwnjganNLcMVrn7tDRR+xMUbLhLch7CadSc5CQL/hhMeFVDIjEtjp6UafmcVr8QMp1Byvg0u/RQSOnxbNLgwcQsJ7ACZU1DYfG6HcoWWmrz/bk7p5k3ZMg8eeJJvP8JnSN/dZqm3TwkcabavMaFoSnr4B6bqEJCHTZPjVrHx8WXxrNYQKZNZ59U2ei22YdQUYux8hVyXyKdrZP9lc2Fd8s/p2EKkHW+fl1LO2ZTQaLimOjhltVEPivRjC7JepuiGhxY9kaMv9yujdry+nGvWnts1HTNen+Cx62DechaUaXICBnDoqokFWTrTcsUMb2lcLJTTNfd5WGr63NNDy56dK+JfNr0EBELQ6pHmyCedF035F8yFszVHYMKg2BolsvtX9rQd6Mp7qCHS7nv+JPpZDMQbINGbiI1goP3mDZKu4xTtQWQGhZ+/RN4j81iLPW4nC5uEbg2lsEDBsgb9PqWnNg2Bgea9+VbAK3Ewt69LT+EKe5ieQ3IPFeD6RAQLgG0H9tsik6rkWR/mHY6JCioKHwVFFxESDOT+sGZQqLSSYkH0EtUbTk5S2VxU3zyocQDqXrsvQaxUfKfboaRK1VHSCy29ys2ye3ejZZqCyHB8JUHrIyeRLKJIezj2NjY54XLcpgDmIMWAul9fDouOxaSdJzhEFGpgzMWV0r5GmB/xUQwr3WbZ6y9lMWLYW9zvOR5t/Bof1a/7dCx9mQ3H8oNZ6bDCu2T3Aon0toC7Rhheo13TvLZsSpl+DkwBzgqmbHeYpRFFd+rlC4GbrrbgIZthjhS9LJX5k1kYneMkjP3CSyJnnDkkfsoP4LkipNzJTAi8frQc6k8WjxG5K3aH+MX/IyDeJdtiX5Nna018vhXd8HYzpxrajM6cn0vHZi+aEd1CZeI+BbWV0RIx7Z5KI2xjhB5s/KjPYv3YsMXiid1xSrjCzt3xkuoWY1zAzHxYXI5Ncrak4/xuZVnPLb07hQD28EgSPnAzJqdJlM2Ovgepl7/1rK8Y1DuzXFyfH7yQQLJ5eoheUI2q3qUnYVXOjyv8mOF0OjGsWCVGbyxcnXs23YqsdwWboFZxx8n1hvGMgvxi7qEkKpd/DMhJFpUAnkgYquHpiMhmLdnm4wzpVMz22OeU9tkFPkdLCaKooYCw6RkJbk2qw28dUaHZtHWdgdrU6fHmpI5uq7E0kz8u3teYYBEpfvHoH+ohSEKBG270PyNK3E3aoZlJYDISD8uemIALW2Mrpig9p8pteCOdmfsxPDa24VHf3VBNoGQY8i+wJlNKudoZLvtP/cYl4IC9+MRHxkB2Cqc8NzYWQ3+HeB4qnZTM2MidXB1FPkm5JfrNtj5Xyd9utUlk+7RFB6OcLK1m4px0ORjX0VbKH/fj6sqs7qhy4SKX1L85N8nzX37cBZxCpXW9ndeOeZd1luLp7H9ex423KaT6o+WcWiTUCA0zidmSQ5yAIbrqYC+TmlBuQg5EFE3VXcLHCihG6j973P4SE2k4tc1N6MFVSKWEcm/WQxOk5jbf67+JvCTn5Ue3/KBg+qGAaa3YwkwbRFztbzks12zfocWLgeS0WQ4onHGAh+mSUh8wjfeOcrGOHPfFyznQe3aoMTcJyWK5jLdBmV34x/sm3OfawsR0CQ1vv6DcdPSJxaJa3D4iZXkF04/GmYBomPQtVQTAYk1808ghS65B9cIYZvbDfn2dNxwUHwNDkM721nTXjTRI0ocFBOKBq92zD00Tch/y082Hj2ArOow3wIAP6fth3VYf/lHJArLR4VG5H9nVzOS0JJ2igJg2pKRVixJPJHJWK6+/NPWbtUrcqaBJ+kiZp8Em6aXDD4dnKDAikv4bDTt/uGjR+SeaDkL/YWz/L/RACWbD2R/uvYcZX35wFPf4ZACUwJ4LcfqprqQX3k7WNqE6cKP3jIMP9rMGUos2YhOuEFkHFBkwkX7VxHicoqhtZjK5FQoTbXlvz7K2pBdtbdM4EvRlU19DBwExZbAiQWxGNsXvRt7Ukw0f0UU87pcHZerGJaCAJhuZ1gY/h63jXUvHUlnvGIc9HG8frst+SH0bDxOV3f1y7wzK/b3in0SQYPRars4z6qtzjTQn09Ph+d0VKEF+mAY0NOJcr79lHrwyFsjiZ5frnM21T//WpqY1x7dj+/2vl/Jj9DCvwMmxiUNlZRfEvYDCSb3+sK+rIcmrfLKk2N96SJOxUxPbKerSrZALAIc3HfYOXfw9XLIRJfkwYYejA/yE2/L7wdKm++H6wMppHXpQcfixCGP5q6HA7O6DGd7uO1aC/axb0HHy0gXjsaI135nZavzAwKivXL1tCzvkf/a/Yy+61FTvYa5+/hWbXayEvLlngOn+IbZ4b2TTdwiK2EdTTBWUjVQKSPK8IgneRQly+vjylIiL3fOgGu8cOwml704aN47cJCBJoE65pIxvCpr+vPpXYuiL4VK/re4B3Ay9tZT5x+L8pKdSrPUaRhfn3+v4/PRdwOzXTzRS6yzqwDKt3fDDFPDC8cZBQ6ibUDr33wU0FNshnzW3VXoYEvYcl380wDhi6QG+hQH3/2Q3xGynm/JruSz6Hug8ONtrcWhbp//XsqgzN3ClSSGS7zdnwTwBSaOhNToVBFKd1AoEMKPRBmt1rNahig6a0Ox1sitwY05suW56DrlB+ppFlzch0wV6qK6NvqtDnoMT7FRaKG5M07LYaeS7czVxoxo109mZBzEZhnBiCkwY6wxTaRZVbOGQcCPWnMYMkny2dLToCXJwh2nsloRMttbqkFrn+W8jOCaegsR58veNI2Cgwq0m6CYCHPaf34AsAnwC2NPcS8bRBU5NCkUwX+cmrjeNFVc1CFUKt8REC4Nnd0K0oZhXHkZ9eHc7Yn6fRAlU6DHu8mvFmZHD2f1hHZlZsF0iHLYu6DVoKoUUzGH0PV/o/dvVwYAibu8uF4f8UKXEaS6gGzyn/Ud30OXXJxBj1e8cbaAE97cU1BGdEhsJJoMeC9ypXS9nqBA1BUc9ASw9rP4HT2MFeqWfRmviuzthX38K6II4hMDMGiThNJvgqSkKqmjfEtfnSxPoXNJK9cwK+tBY5mqoDPml25+qstUVwDDfQ8bt2KoRlnpuNf2aj/eGlGy4bFHA+r/a5kXFXWnf6qemhtXga3xrYqd7Wi+7gPf2mzCkPE4XankWsSfbcR+od3kXIlwourt9g0+d1vWAqCz4aVMuoMXF3rL1g/VsfZOfhuoU051NUEu/3z8T0IhL8KCKuCzMuPihJQs+H/0GxGfoZW39jf4vtMEMVzpHCYLvmyxtYZ0+T43Mzr8v6/9Vby+KGjfdOFOCjXYdH/pAAUtvvpNIUEYXCJO4yffuUHzCRvS+RhBEo8cZQ77kDBSxYIZoEqkRvPctsL3gYZ+2NzD2BZ4XkEgFvHap+l/+h+8ZhIYLGIUwM4Qi1u10jVW5lw+RUQabmlBxb8PQ+LrsZhNpUEyfqgMnxrlWNKW3mqckw76gVaDV63+sqnwNwYCn564MQ3CkkIIQzXrVjDkG7ImIlThjiaMy/FRzEuvsT35nMAzJ06My5rVMGPqNUcyqBmFM+f/LnlQQCQalJAQ0tUsGHY0+l/MpR7rnEtuCCGttpUIFCTJMcpNT0AccmKM8fCfSZ8U6lD7KLJW8i4a27UE8TJKQofiTXb0RPmIExA22pWsDFsPx5J11ll9aKswH9XO4FlC+T1NhxgdRo2gONltL3ZqTwfVY7Kr3/p6mRSJ06ue+A6Xltv5cmA3gMN4y7cJYpx538tG4urdTJAe+9/h9QeJKWa5LBK5iPr6Tp8N1/qjDDBjRLE29DHkn6TJIPkaXJrgwVrbbCjK3TFhoDZkVmZdH2Z5K88m0Q33257xbzvoSY7SsfOG1yXrYPTdOlz4xnZB9qGQfKz5GbwW6/2703aiNBj80/iHpO6UY1BENDZ3y5XwCALfT+NDuN37I+bpRKb7hbad/ZKZnplapcV792gIbkB17tVig1+w82VUijeGZwdLblXvnO/n6vqfW6J+mj11E+H0Y7algEcn3s1N/tObTvzk+THoxoIHX+6cVtx+9qYK0Kv4EJXQbsHagEgunFZaOVvIh03ACT0vShWruOmfQPxJ6U2Rr6jknEHT2hoQrWVJlFpyPD8shGA4PsTcibk2uNLo2XMEY1xBDz2mcLWjUldcbq+yU+0iZTNpTNSTOYbcMclOnVPqNRXWetTorIdVpqjgrs8uhp08WYD5C3IfVHnRPjt+MHRlxinYaLs4Iro59KFvv1Zz0XRm4IAo72pKv9yvYbIT7pcEs/LPYmmc+5ZZdwIl/Wh/E3CwWO/3z/VVtvWZvuxKzYKNMwrHQOh/LMZE3Hqb8ky2qLy3K3JgHGmL/xTBdLjkuwO4wc+1SthqrRUVTn0bl/dJzH4vWfAchbeIyHC/fo/CB/w3rxAKB0r3ixmy8BqtCQDnafNxZfJjNiq0M7DTDBdcQ6UcYBgCFaAYDllDPdG7L/ENEfmo3QwpxsbEyW8N2WAtbaESBXrJrQHcWIWYaHGixq2V+njWf5iXr+eU5YQcW4H5uIN4UMYz5QRgadkaRLjDRq0u1MCDdhhGOFaA3GJwwEif3tHS11M8rNS5ZA3OvIYzzfVN0c17nc15LKlDL9GcMYPMzAa+1FLQ3Cwd+IhUvm6PscxwSIhM94u+w/I83CwtQwWpEg6UrcALCud37KeYcxB/CSfTTLBOynr+Dr68EtZqh8RuAYDhQ9mJEBAYNyKNitpR0AWmdtrbTJAxaDDaTzCvICZU0Y+myp4SEb3tUdOox8bSSaVKqguOlirxIp/tWRPYDmBaA5wogEJpSZgGG6CoGUAUsFDw+SDJzjzHcnzxwf423iqUCYNhiEDco38J4eaWYgtT98iH/W39uKeYhTCIYXr5gQOHAV+Dxy6QNEpIX26V+nZm35JIv2nF2GhCzjf8g0NINBeveXr77HylVEhrpXDJ5t27KPwoynxVvpEyRpGvEeSFP3JzhJo7nkiHvyVYhOr0SLxFzoBkB4knxhk60cq7hu2sVGI4fKLedeOIA5O5/NzXTASix9FYvdCWARwMk5roF+5KTflFJ+O7hJtr2ZuXo7LkGt/jq/lIXod3Xt5NPeTTn69ThEDiyjZphxECkKQNKtxXZCb4MGD9uYnBE0+H6/DS09Tzzq0w5Wp7Al9HNR9mSnB0piDxFFW4/xEFId8LAQ87qaYmZZuHO4NFwZV6xPEnx4gXOtxpnV/67u73I1PAen1Vp1ruRG6/XyEHoRhIQhYOooYTsS/6U44SmGWYddc2tzpJy63vlaurgFMWn+uAABgD+oWrBCJ01eR1reg1Ey0ppCSwVQ016Gy/6TxuWLL4ZIDHiXXcT3EjPNGVlLUu0QAf3tmfZkqtKdegVjftg72XM0vpQF3tFcrdYZgYyduzn0xTWgY7K1X9TFoCjnv0/KpMjIUO+HWYOufbEjKHrC64RZDgQdz71UxSR9NdBNMTr2w8f0sBPlBuKe2CmfdGXHexiCMs09xead1YixxpwKJ3nKQChAY3dSR1dqmO4Iv7bPlnGwqzZblBYR4eEnrnLpmjwzw2Q7sMEDkN4bHNYCH1dcpPE6s8S1WuBGn9GvSEYMpRPviWlh3v+WGynBT9lMMtDQgPaEH25PW77buqzdzZR/SHaQa+xAGMFB2KtnSjn0wVXOQmucHxJ0sUPciNBPPpSNxseYNa0VoKbSxF6g/+JsS7vlgcZWKD4PpTT/r2IqBTVdYmSW0pC3YUKoetSInX8FbyzWfI4KYWYB69Bte/YpnJIGp23VT43UKQ5MVhT08n8k7zM8PTaOkgLwryzxycFPvasT3yld0e/F7Xti0wA3PgwOOHm/ERqfIQHBpF7RuxsQ4Yw/t6a/imzwtVUOgJmYaLoF0PuiJJbRxIzH+mJv/FeKVw3MzM/iXCNFStGxK5Vd8dVAyzWdg9n/d+2RChdfyXvNlOck+GD7XnqkG/ynW/kHjzP1NZee1LSQNWPwd6CbJ67UjQkTA62RKGL3GZqxS3l5r5EiiQTo2GpE+kilYNT8TS9B7zJaAYJjTl1paNbvXNdGwDRiqA3da45k0x2ZUgB9jZZGiLA53/zLKWiapnooBwr/W9Tn95IXefSfyUz/TiavJ1WLHAazHjigvnAaVDSWVYcxwXJ6FO4OeSZxS60VbrVWcegh2sGz+bmuIVqVmUBBCywmhycxYBhhgGmvDbU39EjUzmd7ZrTQSOL7Fa0cz3L+q1YCeY+EZCYzWLNcZtJld+Gr5rnlX2GbVhuTAwJ1dXtTt1NG/XJFxBwhYq2PmqesFCOxpE6dqRXfEVSPSxiz7cE5cSrOzJ8QOG3ygioo7aetU9/yPcRerWSJImOlYYc2/M0Kmofllzsi0uZWFYaq7lmu0tszPX4VTSHnru9Uze4ixmh8f3Oz4XTWtXBByDhu75JkJRnK6QeGzYx3CR7/p2WKURDoQ4mpem4N/9ZmCM5yh75DHQdTGWIbjGy+8oraSAeg3w4YA8/O3GcUMLo76C9sGCBngXvN2Yy0GJyaIsoYa5kSGB/2TeVUqBpa4MNT+rzg4ncRdSi5I0e8FjCjc48OQ9G5AJ+zol++5UUoJuOJQ0rZi52MkPFRrwoE6zH1CYerEOwxZQ6znR4r2SfXxvbVMgCq6vlAL0qzXwoDs6A1f+Rnq4Z+Yu1gMEiev88CkJWK1hxNVURISvbNB2uke/JLI6cnifiL0vtk2MR0m3nc6kT6rrO7zybXrSdw+UvWxZzXvomVdI52/Zysbp4rGbKy6C63XI5Z+q4Rzl3V+P0LO6SO2qWPx3KVICEDB9rKDzQXS7QYiYA44hWgpyMNHSRk6rBDGbmvcMdN06p5sK7qN/l3sQxZajZ57FvOlt8JZ4GhEHGMp52X/c6KTUct4k5tYJg+baD+MiuWenpr5t0uh8iCxPblJnl5tzhqM+The3W+vjfh/n01cBpsDmph8Q+K44WENVeHyaW4D6tb7R0l/d6H+HZwag9UcDHDSSbp9pN8UShDDjTjNi49Kc7MmWEv5oJV1vhvdezLPikNfgmnX5mSTnlJnhmjBiPL/jr76aOsgHzE+NjMrE0M6OEQeJchWZVTTydUnGV3iC1fbteqmUocgOiKZxVlO8AUUwp4cgO8Kb56cmBnkR8hgUWyft1t2GhSccQ9n0ZX0+gVda/0nkOvi5+OfgoXCKD1vdHGPm5lulmGBDm9hymhe0Te8tNqPwYLvYNtOmXaa8IGmBHtOz84UH06SodVnDiDXW33IeWCcaKPXHj6iU3BpTz5UjQDbN6rs1ddGg8qBGtX4Ct8IGAPYcB4DciicEgzB+lfJiTwaS0OL9jTr4nXXJ1qWaWn+uMoxn3Iwrd5RtONcTVYaBD0qbPjFBdonz55JPIMXTI/+d8jA0DIpElJ0pqD400jroot5MBzW9mCS/seB1F5C9ii6DYsUmiSFnu14udn1Tfg2emufRmn8ShGXl7O0HG4RSDWVZ5LK/QyeuBdr1s5UJuvLDE8oMwcanA69pcFtDeHXv3VuL3VxvIdX0ugLz/jFkpZJ33DHWmjpLU8JirislhXgriuGTCteqsd9LStWI0zfBDAhcJej1ZgVzdHpR6uYDDQYhqYt0w+nZZHvGH1Fj73JL663InDhUdlHIlNG7YQ2cBL7UqcIgILXQiHrTQ5IHqGQAbL+aTyaTBRlFc5TZV2IdQxw240Om/JIQ4oGq4x4bUor2akqA5sS9gaRAMyTMoMw6QFfLDDjuSq7KciLY2HqQ0MqkyIii+JTQzDEKDAnei4NuKHwfH6SkWhqKaOxMJ4QPeKys5KBAnsVnJOU8d0MBxVDbr5GxWsTEiE2rLQZncM+37k3lmsANc5rYbLq/TP/WpOplGs5i4eQyRDkvbXVixqALndHpbQ8rl6ptgKwB61a/twIcJIhrF7jdzjDNuybyo9jN5wlHb2z0jmS2qyfkuwqGxw2RT+6eNPVSZlnkEdhEIlC9+gVqiSg8rf2Q15qi2M659p5bOONdZDQ55NoAuQmDgLO9xUdd91nag400VtGl/lDBm9Ka4/hkEgkfWRrpRcZizz5v61MpbDc6ous1ZbcsEIgAsD9Ik7QfUbl91g050dFKFDzIeJueZiFqXn2QHvXnIhkLUGc9Sbm436F5PcshmcojnIY8XuzL208gwK4pn8bhaq7RUd6i6R6CQ40oS8z9cr5kbG7LwxI3yg9dhSDa4tuFcFFuEptYIdDSvGhmlVYnF6QMSZDi/x7DRwA251nRQeEbwnf/RYtSs+UtWpAh+MCeGjIBmqIfuWEbmN1ctWghcA3vy+u2hsR7PS2XSlcinvLX6QwV+Ishf6RBvPKq5o+qhJ9iwucRLpSzoHkU3WdefUzjMBOM4G1aJfnl5RBNzhlng5VR6jWhcHWE6Ps/yQeif+BkEV/K7+yumemkt0+Dp0VonKNbH5LlR01LfMWzGtRy9V1mdGk6YK/jZaJMM6P6F29wikdqgGApa+wtBsWJIIM1xpzTk7sQg4pYS3Un93/chah49EtU4mSQmDspHZNUzZoeiztZZ+D5P9lonZLZ6kvwVsOCdQIbQZJWrBB0VYulHMc5rKIIEB5440WG0qHRHUNusdaVgUkE1JUbtzUCIPEcUzxahmBcc3w57tBx/ulMzlItxX8+U4W/7ZRmOofe+UhcLPcr1RqE5goBVQSmv9KI0sYHNa1GHz7cluVzb51ypeLR0Owd7z7sxCye7k3VPFuGWOI7Y7DjcwPWMRMQgHXICs7S7WsyKIea+vmdvOuw+yXdEksrgkST7jCMHbSVHV0vq+Fgws9O+acX/yG4Z0H8xdd22vXSkAVQsRsOXVbnLyNojdHnG7PBtxh+kAJqmBpFXswMnKMrx8/ip+R8FqxLlsjc6wq0Yfk4JVLmMfT8Ilg+UXSTSCrhqoOczXRHxULB8KcMqYrjQ5JnhDQiH3zeYd1DRccMH7fRfvfiA7g5/FynbMVuPZYJVeiNHfZ3xyKt2iPCIyiLUjcpRRa6q92CdE7zTPpJLNGEMeXTaygBuhnpSTi308EOWGm744faocSMfe0HYAR9nIePlvObo1DrvYymdsqY1VJrJRxmH3uNvKpWNUm3U4Ii4etwiNFiwHB5FufI83m2907fUsje0bIKS+nNPaV0Kn4KBuzikdRQG2KwGO1AGRrVUrrUvjEY8JECBEJqFJdYxZ2er3Dg9Pqwh7lMHPR3H9PZwVR7DbvF+2lyZwUFosRpOrd8TfL99eFrOZgk2qTzZusPiA1gFXLzN5PBCxHZZWFHXpbtqXpu5QT72wah9z9BZtv7WnNZi43jGxD1hc4Jn+vTulRQcWB29z6YusnbFVUTQfzYnIyXQhScORldkaWVlBunSW+QawrS1iAD3qtMYUhVRC2ARAwra1aGtxeQaH7AUsGkg/jxJwr6gssTSjYYUg0fDNmRRyijbVENlCOOb069gN+TnHjFVE0lSSWu9w4vPiM07LsMgDRYMDmVthsF97wtuaZSVqm8uiQGBWDsOyZB6mkQFjV7HIt5lQRWj3xoJksos12PNxksroaa6hgr7jv+uHx7qoYF+2bR33788vOCiWd753G5/wvMd70M80bp4kvhNl94YSupMNiLot5JHDWWXk9oUyCJWA1AQXGorBuZzktnS13rpdl4ZncMkubtTffSikx60pXVjX9GAMHxMWJZ2uBQwhqMx/T1KUBdBCY+8oXxNgWeWiKwO/Ocbuv8a1GIxulzmJaymIhTFB/fEPrNtJZ7OfvcYAR29a9BZQwhgUeb6vp6CItdRGzHUZ9Sa38v5KFsanw4t325Hw55UGxlcVYzJWG500J7CfTi4hcXTvBJ+LOzulu7LlzhbqgOYvB6/FnEYcmHCUVirmWZe13oVVx3Ojin6nnKjvJOGp+1G97HwqN05YErzcuLfG16h83GtyhQGBUyHumDNldWpVPoZ5rSgxtsfmygKpU86NKeZuLY60tI2XCh8jLqRfXV/prVT3vGq3JrOFjNxiciLQflRlH2ETj0sUnMLVQzZBISnN7n47F4DYKEBArP7DnP6SMaib4/XPh9Bl/1wftC/GFZlfk91qUinQMOMsZqPgg1plwCBXY5jIsEbJH6LT8C0O91EZLc191SLv7mfCIy/pEawF2+4Utgo74i5imny/Jg/mZF8Fk068xSQ+y6h9pjWTWJRzaTspMDRWI1C+errjahWowCY1kOcQiSIRD1XoyYLr+FzITrC3Nbksyj4wbbtGwx6KZ9BCxGVZTt5gcEk+zCKZ/UwwuVJ1Usj7M+Ot01Du1zD8Jxc+97sxcZkzeyWSxsizE+DQ6M8JMPas6ce8MDvnFOrecwLEIGs75v6ghz6jXk8zPaK7eWUoiymPd9lUvGJztiY2vXcxTEBoabQb52Sj+DeOiljSmh1dw/Vz9PMcfE3fvWmxUz0HRYA7P2HMbs3x2MXQuum+mlrGnmopcDTvv1s+bdZMOl1IhvePHdLki5XozA8mUjpVGrGFa0vr6lDa1UV6J8kgPtzEzrjCk/NcUtWLHebn+p7jPz6n6+TslqvlPHzeOTAenX5uRrVV0nfIIoTnNWqUtg9dRAvYCaJWL87zB/yv1ZEN5lyYNfCPH4Ln+BzaFJ/8EfscIa8+mEfOKaHPOjJy3OEjck5TfcwGnNyHRKTPvtEQpdLN3ral1+OkqvcW5GICW9owPhIpmN5Fa1ryL6XessTBIK7Vwbped71RoK3+RnBBNAEEMQPLy0TUFw6/JfASjE79kplStP/bMcNBmaXSuAb2/tvur+b4f1Wq8Jqjfqjthq4rKHhNgb+fFB019MdgG0Od3X8yxXhswCB4THM9R5r+Urp7RxpUlNRtFmEZ5nGM2G7+6cLceedbvJIRfFAkJaKAsp8bzOoa0yUqetwc5EIcyUy4sA4Gymv7XQzDt0t3Hi7+BJQP8uO5nJ6BelY1ljBTOs/bH3J932gdNCJe3qp86AQKbT1jdTuEtO1hmTd9IF4zyCypUdp1HEEAXLECtNXppzhPnX4UhHNkdaefoLsyf3vTpoqqle0POZzNwZTRXhU7OX6t9u3qNouk0PihPIWEeQ5Ft6f5zp0AMtr66RxszIBAEYJgY2mDqFobVDKatgCXcu5t3+9eyqa8crdwXDmdGpF7h6dv9WyDdyT9R1v1zr5+gJI0kesctlgfZqbOlPsh/0PXs1+Jg8wbUY2zOqyUmhT4YpgtAj37ZbnRHgQvGG4wlFodHuhRcCt9lQKKy9FOrtvSDWoHyLOxs6BejBOqtFvF5OmYyknHFXT6UieenTXy2VHpVTHzDzb+taab8G39z34RYmyKUl7XQIlKw7JKRQa1zDgcfbWqKPnZmsgoO8ckyzCrZ/JMwaigPUjJIRKZ2N/kQT3TQ5igLiHcumfZKYEHZaO+DlCK88oOW0M2HrEsTpc6vGaTd6OoQCSz4idtQPcdxR3Y7Gg0if1TnaWSrKcvomsExDEsAWZdReJMvS7tOZPoZKs3Zs3AZct/4EU/n3ThRoaKgKG+q2QTwXRkWCnowXZbAjHo01W12DTNu7abLNjj4snjvPJ1IiEoDE/sS1iaFZ+euntQ5wZ8LW0eFMBMB0wqglGQgN62jPknh3pg60fwKhsu0gxuEWb3zqOGtaG8npaZmJfgn6p/Ek/k0HMP8cEvM+IHWe/iUuJBpE3hQjJH5ijt9ZE2HBFOE2F3BxhFN1k1BfJ7p6bJpcDrizgQV7O2XmLZszPy8dyb34EV0DIH7tPphzpsQsEOV6Ejx6B/kwBll+a45yELF8sp0ET1+QeC5sgaJIgEJtqKjMGbv2Opgz7du/SZDrbOXrQ9d5NZSbDp7imqUlInY+6xHhioEiS1vy1nK6uITPtT/6kesYYoLFSubUi41o7redLJq2HucY9VsWtusR/vyypKww3hLB0vyz5aH+qCOLikBmDmR1+cR5Z9EVDjWilOaGuF6vwvkHL0bDSZDad7ELBUOUvhIdjIFKJXMTIOqSub6UMJk3x79rUUVM+Bw3MsekQgA+sL+iLM+WN4hC/5bTxNQ/KHjimznTw2VaomesZrIQzOyVAQ+2lCB4xaT/fMffN2rve6wxaExOjI59VQnbhDXRfVVBmOk2eqkKt1KldqeGmx44jiGV+5hdmiBNguCe2/Ivb6I8akGHePaNTB/pY6kpcG6Jjhcf+6w3jI3QfvrYKSa6+A6mnGSMrfZx5nWuZK/6DrFRgwqVnRl4iPlbYZSLGlwSIqPRuj7X8KmeMJv3I80CFRmxxxt98OiWcHHT13tYrC1kLIPy99b18ctkCQA6Yn7h9pD2p0lCwvGz/X79yGnev+cY4PcQJYX3JU1GEdFZExzuh1/6/flSgVRn0MZ+rmJx7AEfcAjraVr7zNHJi5XMrOlh4c3eeJBRWc0VulT/WTYsrk7fsCeli5Ti7TvRiAO22v/1Z3apbJjy7FgB5rzC+qQruJYbCm3WfccQ37vcadIlVidiVYwqNLp4sxdiUGT8EWOqhUtiisSmbQhFuOKP0uPjTKbwDOEQJH1XnXutxjGTDxrIVQyOP3lgXVX0MIaHtNwHJPdPKsIVWXX7etTdUmQ+SjccrG4f9Hqp6zUdMhTpJSWkI+qKpB7OdxeckgOrL5QzwiIiIiM2FgGN/oCYYAAB6HdZoMlzqe3UciwDAmEAYYJgGCYAAALn+G/NKGAYYYBTAMWqqduSB8PjH0ZgGK06AGJI+YBiEkr4am92bAMMMBKWAYYYCfvVXm7k00PQdUzSUhqANGyUqscqAGHd/cIKfjIRvp4YpKNrZJhm4/aeyeIoXZVIRbTF5IPruMe8+PtW0DIg6qTZgGtpMH7JI2C5q613XRJLVPp9ZFPukG3c/iQBjpsAxOGAAACbsAAAFc6v+lNDh7Sps3udu6T0oAQWG7R9A1Elb7cpVO41GqkE+aW3nZLmrsLwVztMoCI6w9+j/QvzGzgDyc4gihlfvznwIAF8EEmCwIAktX84XWCkKbkF37piOQb221wxqUMt5xgc9pSaqBjxcCpT7cQlb5lxm0/2rxWa3JWrQTcYBXCxAvVeYGQc5plMaTPRSa6A/X8dQcRiyfraZ87NGWvArwutEGicUrlUH+ElXesLteaVlOXbQq+ptEyaL0DvE88ln0AXiKO8InMNr/raVTldIDBcT4fhQ0IwFXTd1/Spkvz9yYJn+/8AWyKxjF8Awa7UDrUuTOOpW2oC35+GSPH5bdg31Xl3fQmSgSqTOBiaRVB5WTDmp9qZ2CnW/YvfwAG2/Z7UacE0uANCegxJAHdbtaI3M2MadEQE0TX5O4FbuiO4OasDOyZqDXnNLjM785LoHQ7ldWFdVf+41/cYVDHYbBoP7j3VFdUqn82hus87hQEcsybbCQ1Uuwl9ldGrcKrqi1P6yef9c02lonT0Gm3eBI5jkYZWR5vRyQcnswVxGaGm8IZRpM/HncGTUDAtoHYbBTZ4gv+McBT6Y42cHLNky/ZmZrGbdbBVa2iMAITFDIQpjuhCc/39nC3IomvJuTD4hBpvoqDJ0GQn4R1k3Jqjg7T/Mz6j2vqqJO2E2/8RvWRQumYeuxEYx6w/Xd94476oKW2erlpdMmnfKJx/bJG1p4Fy2M37WI1Qphmu5xCENSf8ODIfcCJ+MxO0ogA7FEb/cROhYqsnQTriEp5VS/S61w/syEymyfNPbl3d1366oMixUstiECH9Or90L8zMIA0otIrC7zHUD3iebyHfc0CdWdiPSaRqbaBp8M++zn4yaagfnzxSKi7CwWAhJ2nDUCBVG8HbI2GI66jrFkglLgfXrTeeU7KU32OZrKRXgyPL1k/udaa8XzheXEVxv2XPgXRoNhGxJhZ+zcgTutB9PIHfbZIwIPtwaiDfXZnuIXm/Udx2hN4i/ZnR/3ZslyJi0NkVUW4WZg2KyULeXByhf08Q9joC2FnLYyCDwN+ZWP4S52xNWgtK8U440HSNV3VcpwW5XOh+fd+lsl2IV4Qkwx511xQdaw6/yOi3NdTq+iWT2JyxBQ3Ou5RYySeowFDCi9NHzxRV5sF2yKEUPhaqjaleIz9ztmzCrS8yHHc8iNfH0c4fL1qB2Dy7YQhZYUZZ6BE7n+iJyyfW/bLi8WLnm/imJanrQLvwG2n2+WfdH/vrdNAGv/dG6B7RcG1JzwggCq4kg7HRjmQr+ZHP0XtnIr3KrJhYC2+VgSmxFh0bisKpo1QQL0lyQ1XSffCa7xnA7HcZ2IoNydz7l/uSG86q3rmpNCFmsm4Gr0L4PY4tIn1RNiHqRq9JDLZVBCw+X7LFOFZtQUeRy1Csbb5VN2L6re9Tddeco8O2Eg1+JoRx0fGm5gboTeBWwc2hMF4/hZfDY5uwIITNUo9eR/nQEfSDETTgprAygYfNXJ+/fJd1THmuvFL8/kjhdBtsmk37O4vDEjq82f62rD4RBS1704+h7+rCbjTu/vdleydMHOtU0ftoHGwhhphrZxcHJFoKRIc1bGM6Uvz/GNHp98Ma9OCLVH7mK1tPiNqxqe/nlRh6KlSHw5/QblMsAjbwkopnCrUq4CdYbE14Y0yWDNrMFwGriveHCl3/iVWgUFFSS8Dinfv8ysa5O6pCp2G9+ivOy2O0cxYU+3yoF9XqN2mPnaqihDup7X+SrgzdkFlAQ+ZogiSOHhgbl1LnL7AR3TiJ5888N7O++Yg+RBW2Zm832/lUeNUBNqdjEPDamrZXWdDBccRLSf35eeRazZAmEdc1y130MjzOpkgor1e8nvqhi4t10h11q6vOquA8IGNe9ZHlog2J4Cq8LPmcHxXn8UQTS6YzKHHak23M7BzI8wr5C2CtYzZ5htunLJ3X/KaExCp3b3LMPJ05pF5oXq306If5V/ErqZOa4EBh5aZW6+H0jrU2htUhP1adFmfKaXSctnM1bLs2KtG+MYzjbi2P2It+L63ixFX3PF4JGpzc0XHKIlDYhjtt7HTogWnnxW2mqV2l4xXQsxZPuJgOTUG9ld5qBuLv07nyp4aFr4x5bLv31QjsOk4dyn2gRAvN8ySwG9rZixadhhtOhvyySIudf6yoRY3OFftDLqgk+Jp/bUgYgvC4fez4k8288089vDszgC8t7rjMAwY4m6u3Ob48+baTBIw01d59oISTkoEfDBz1/JEGMVjpE66MoYTxt33H1J9YK67IIzhdIFr4oyFYSxrqhZAgwNNLFaC96pBMz19HHrI6UqP2n6PJSN+riyTpoocWFJ42EmWV5nw3JLt6pJOTRaApI4RcDoHoamzD3ESAUp3IuGm9v7x25wR+ZfnnYBWzbcQ/pO4srax6W5U09t9iAMj+P54qu0e+dacG256ljCPDtpzdxJWo7y9W1bUxUpZyo/pvUrjGt57WzNFhBr9MxKXeY0c7NPelyJO5NOLX9g/+/ne6aqiPza4x3qXYg2BezvTPZE8bQV8h1xIgJE/6u2qQIpDHd8BmIsyoHmoZLasqFT/4PzjAO4vX0CBXDZWbZaQTBupisxbSTbQpjFJU1Xl1p2mljxXysD4hNQ9/3UOCl3rum91le5Ghsk4r2x3RnQTuAgvWBLbRmneNUsZD+aJSPTCfVO2/XOrlenLLfa6UuTExEP/F8GR+SVTwRI+hm6oIlP8dcuQq77eWHWOSjca79Jeo5Rym442Ooc/ES8xdCpYPU8B+DyC3m/wbhw5WCdNJud6+x0V5Esvkk8enzhfx/b3aneZkWXJnIrHZU36IxxMmuyuf0NMj1f8t8lvl5KszUZ5CZ4nmK8FNydaCgCHp/ZTgXM6PMsB5bYuangSw6fDIEG2ffM2vaeiERXnrh6yld+fSZUrc3RoySOA07osId30E8XhcvLXNeozi4s+3fkxPUWVcjQXOGAZQa3cEGLRjQtdOF7wx+Y9jBM4Aiww1IvhQ5qltVRzRZOC36zrV7zSPYj5VItxg33UbciMHOMAhAeNYOz/vU3PaZbHZmqL236khoAhC4GqwAMcPeNokIKDzrnd7J/Y5EgDFJckRZUIpF/P9bnehkrW1uxbbxNb8sVc1Iirrrj+Xttc5+aS27bLyNgtuu8jNpC7d8JC894a1sWTxDcGwJE+LXlAo8C6EcSCJhxpIHG/dsojkyPChbw3D8kmebjCd2IgoU5K6r3RoL2jMTakQq8+vWowdmRY3T+GLsVMuV7dEm+cioADFNXALywZ/LYb+qg8ssRgK7CBzW9T4pXqZCFFeh8DuHbyPU1Wgmzmen2Ababd5Q5HLGTAwG7Y+TwYA2byfdfbPOp+EB7STqeI41tPxkR3RXxhLZV14BgigamqHQYBCmmG/yy5xQMAl6f5Tnlcc6MJCukAcf+b1oA6W4mDe0HAl4zbZL5xeYbLXbgvkK1eQ47CXSdFnsiDzahZGL4MB69QeyEV+dEyRPPku1l/q/ztDf3Me8OPA6EOdTh3N3vRxVWXMHaj8f7wlOV9S8F0L9q3BvW5eGM3ZMDblkaKeb74lgzy+AmiKITrndsE1r/AuJnUhnWRXi/YiV0xzn6pFO7uipI812T7S5mtFrAqiGHZ7/kt98xGy47yrcPDgaoO+xkJdIv7xts0FnXOuHFOg58CBBHAgXCc88DOoSJ8lb6vfYOlria1Pm71pNQo8JzMLxmn8L4vr67shsXN2JGzfoPVssT52JZ0xZ3OU/zUltNFaJfLaAC6EYwWyL5kSmDiMImMjFsePaFBp2qNE+/HmIaK8dga2r0+zkJ/oQzd1/7TtJ4lGvfXe0oCC1v/LHcyix64xrN7KqIPP09O2zydANpojgbTzygRfe67EudYgkh5MNsH75xJETwWY80PGza0ZSqLz/tnTnjGQ8U1fnHAlm5NwbU81DLK9/d3XsbnA2ZGDzDLz7Y/MTdzrifBa/vXsqur8PV8c1r04cJ+bctNMcrJvTU9WltPb6f5UJMAe5FXNMjxxXwgWwHwQ0r9q2+IRNm43K1vVTiU7l+ck0XaLb7r9rhc+4JOOZo/Heno1Nvcmdm49WIG93/dIJ4eAzs7pfdjUO4U84R7Gz9LHOzub/X/fVJnH271W57yqJVfNfG+5w+3B42d+Lqu+liVYnZQpk2cSEbBH+w8t/RBYfX+vNQ2dM4Cwr3kDigKAFAV1+Ti/I4YL0ZSHrYgJ7W4jUXEPnnxmJp5dpJWRzjf7xFpBMtRw/tSitY6TDv315xRONU0NAHVi3XTc1nIXiqFOb1z993JLiZA0Cme9ECrZSPQcweBMTFHU/ZaF6zpqQ5iJuWWiTFmxhicqV6k/XebtWAJjvCD/LuOYeF/78fuNYOVSftK0cBU6qrEtAUKsJoW5saYIoSwv3g6QlSbecF1Xa7ZuuXrw6DgRxc8QfjJR1voV5EFnllcB7vGr2Ygcfu5bEsJ48Z3Tclx6tWvHNxJP5In9E3QKCsqqP09iGNFb9xKHxwa8hN6rQ/+aZ41uscEHEqDHQf+c3QxXfvqurDlkrpdv7E43rurjg+1je/CusSqgPTQz/t2vHQ/QMNhSXB8bIOi8Z0vF79jZEf8raM6YYN+9Lbq53mo3f4VR2qnGO5pY/z35IdaVIl55kMDrQnUMdTstbKSNtIspSPtZZk6wKa35+s+wWx7FhumAYYYDFMAwwwCTIFRjDJDqh03rtFyreQO2y+DXQzGPzSrWzVFteFIRMEcZmaeH8/NZMGQcmBw+YzpwlR+pD0oOgOvac7o4KZWnf6nsZxx73yd8QgnvZfmHuXOP+p2f9A7nbungnhYgK2Nskh8/8sZBcQIkmfILThwGhs/CSzN7hfAqDWrqWapCYACTBiuo5xYjoaKLbMlxV71Ub7tkbzzRRz03Gv+u2Oll0Fc4xYRuAQMO9R43bQzWCiYsqSAKY0J/lPMhqeWbH41wDjVCfY/ATu9qo7Pq8ScambsbE4ruKUR1+W922TxyCrcOrwuu1rdZxSscferWUYL8FkcpdUkAdEg69SG9Zgf2p89gTavHufsKWDX18mTga3v6tJDe45jryUkx1EdDoWqQpsjPjsjwWIaG2fDBtreq5/aZKDDOexwW3809y5PoNJyrk/reKr4BsvONuUsoZS1Y1Mbw5+tRUdztCfuIH0uleNhPDRCTTp7lfvLsIcJItwqsiRmEvYts0yyfXcKgG8Y3amMmDCD4U3X+N8SaItuHTCPDgYlN4H1Vop+++9Ip/vgylNvhNKi5YzbbuDMviPNvVSm/0h6T8T3Xem0FUN12XsDe/82s3GH/tvAEiLBuwo8DvywXXNfVFXMz/EzanSR/r56kMFYigQNcbYfXf3mqKzER+P81cK4lQaMpVQT+AQ3DKhncOhn1wvmv+FfksnXgZqYUdKgqh4KnBy/RlDAWSlx28MeNQuKTjN+iAoTX/6KLVUt/pS2ROIEI/3V6Zo4XrTReG885cl2dZdjZKfn3Z5pL2liRzdc7dQJ71EmaL+oZCza9F26pcGm1rsSxqfC51nu+P2mGOnbyARABEAES/4gMLBiJgiIAIiAAICIGCEBoktMDBjkIgBETAEIiCYXDE43hoI8Yqjc2zbzKrfq0QsnBrKkXDJ35Se2dOiFLWM8U+uyGrhwJnqpCgxVQmUvn3naq58vsfutSNYS+9XPvDw/0y/wHSrCEcHqneOQ/DKC7CoPLki8nEGpfiL7dYKjVgxvo7SNJKJtzTuIgwEqhcPbYzLebMWdErQ2MDVeWJpipRGOe/LTSAdQKCzRT5GqvvzbaniGVi1mCA0sxiHUPFJOOiWkxSX+Tw1mig+5uSbb9/PSZL22fbvZ7H1ruenYY/r5VzHPAvm2ttO5NSnW4Ec+35lYTr19RXB0A5TiUPq7yxl7D+FiYq6pCu6pL3T7H4GBSNjfSnFP6alBJntb9i4tVz9Fsz+Z1Gk/nex2WplTX18U9NbvewhcRrs5BiDiSgbemjUoa3rO7ozatzKpSSQiYuyJEPptXNLYxXKTTntQ/lc7ibwTX3eVXPNdXFfu2QxljxAcFqzxqQGX50pwYfKeFnCbkCWRa7tgP7uUn2XdCSNR4OVIw6yPQWFI42nAzVJrgpnjqCgis+0MYn1Rm/zYvLVkvnvqb7hzJJypILRc8U7w5BmUnXASAFCDBLw/l0GlUoxkETyip9H2LkAvpQe+2Bww/e5FFoyet68WUnaPshbJ+T8WWJiNCEoyGDK13W2esY/Az1zK26SlXU19S8I7ME/8kXGC1PRZYezHg+2p3iPCFMtJiOM5zJQtnlq1sVM16xPTyrpNzXBq/JF4uFteoTZbS/q7xXCBen3S602ty7Fp5WiSBUxEdLaXufu9MSIwoaMKfgVWiM4m4Rko9kPeHkQkh2wjA1nCpiFTKKk9L0M+p+KAwu1vNEcmjGR8mv58D4qJVlnRL+GaIyxKu82ly86Aodggo3iIBI9AvPmyxQvDHltBsr9s49wlZWNPUk9hjL1zEotO7fJIDUFvSHFVBEeDCh8aH4G5vCYOnUASICq+u/B6JShWDaGAojlCGH43mUi2P8Ycuzpf91LNR/j1sGnOwC/PKKAE5QW9WWlTVmOlPbRFPt5kWk0zyMxA/5mLnYp/I0R29Q4jgyX77ogeMOShDA3tcWG7CeLET1XKEegI142FCJpqmtDjN6ZXV7DdsF9D9Rf0MDySFEZuau98qv2Mu1qQQ8W10qDVAoFqe49ERFR4FwoHQYUAH0W4z90y/C92WYkHVjUu8X5BXo69ytw/kXKA8/wRSB/ShKMfW9LuRGkt7w+ZvwdXD2B0jKZatty0bC1OW4LZNS16nELInONb+GQSq/XqRV2iR7ktEWCFuuifETGRUic8L9IX3HcdRS3Ba73sHap98QXprlnFWRfLEwdi4IYfxJ/q6onUSYTQsxYroGryIL5P8XA51pmgSBsW+7Uu5uQ+/1HmJ7PGe0PVLdnd5QEjgstUvNbHjZ7VRkbte0w82hZtrxN5bM8Ab75iQzgt2Cd0x2FnhqImHaBDzAT05joP6coR7PfkCuw3JxRis2bsl28iQw3EXCUWz+91/w4H1ljuXMrba3XM6ZU2AV6jSZOBecpNSfEiybHGGm+sZ7do4VGOAOhCwSj1Gszk+0/CkYVuSVky6cioncDheIlDIeVubo1/frpmNBvSfWllw8B+W6HU1cvbK/xCtNt7vEGN9NenJ2zKS47yeCw0YHhq+bJT4nbwg3qyy7TTEDvxKjyW6l3LQ3ZJwiidcqRXYI28F/jfcUf6Ua8RcAUvsyJ38lT+TNn1/nolL7nlGoef9Ww03ww7B4OAZMvPiBSZcho0wJXWFH/P+RSAAgHz2qZVn64kWfPjlo9QE+FZbpy8gp1UVN7msAOWUzwakkuYgs1NC8f8k4gnBb3xu6qmCvfbHXCJzePGjfO3mI1E1hsuedibMHy0YSK+qaqb8dA6uKXG1Ygss8gab/UKv33oMvHn+iiph/BuscZvTEp6GVph+s7mqtEOoTPLmnwBnw8fAMQIABf9RCH9xTLPzlI79KHzIxM2/rzZqdsemJnjLMuQqzL0I9Be3KYBeHzzf1bFraXYEup4GlnhrAh4VXQ53+6ySjTEH0bFAysptsZCYL9A57mVSeT4kQ7WUOy9rjwSD58JgkA+Rju23QQIENW6SAsj+9rfU3qYaE0egOU3VMNLnh6kspZdWuz0B1fmfiOej3ZrbpaxSgS3+p3GWACtk+Neahz8pMki/1+t2Qy969Su343w5ihCS+DsC8i9qMvZszq0HE0rKz6+5qeVPHZPH7Yd/2Heq2YXu+j0WzKECP9hacz5IScPgnrI0BgkgjweGHoeLfuDu9cwSpsWyudg6lyQKv/hCh3HDGaK4g8aQGdCPxNhTTsL9NvSw4yAOCz5aQfupUs67Pa7FJ92m+ehu37uFhHaHd0gc/koqCVQsUQYu8KNlG/BdcJrO8oPFmS972u6X8SaanyvPfQNo5qBA2BoBrrzVyoTylZn4PJcYEHCO3FsZZr1K0q2oAqUAHawsMhDB6jyFCKv19ot/FtvNQyHIlHmm0G/CwNVOo1PLH02b2b+/6J+6DWURrV7iPMIpFjAk3sSBAW3gTwx14rTlFSl8b8WsmaBzeSdhTkzI1zXeozfpkJlKWaIYmY50avkB46HtjAMMMB0FMuljj6uamd/hf36FwFT+CoKdTY22owNdw6LkLQwIvWDsRjAwFYLcss+muamN4ok/MLiByDiLbJ3XTqfSfRyjBLefdZbUjueLUuI8DpnG5oKi3Vl0syt22h2NY0itBvY7i73JGZogVcBbD0FAQPE0/sI7sB8XvU3wWwHdtv4XWYAHGsPEWmLyvbbRx46/5qw1RyNbiN7dmYkL8D3XgmyxK8ZhSrp9GSV2x3xh/v/7jwS2/aGvee2kurt/S3Qd/7exuxogaM1Ilx0vQozg2x9/qsLVrostfFaeyFNC6f9GKPJY4fQdXGiAIKRNX+trwM76VrzL7UFHlSweJkNT9yKg8lqzgyMDa8Oja5McQi/7bsiiFrUOSUmNScr38x7po/HEozJA94rm7bcyuROw8kOabqwYYqjPBGzQD1sjq6h+J4Bsgs9FCQ4M+0pBfVWV0R94PmFpR5I0Q+kJpOPQ0sDK0m7bzChj4h8qX4GIVoPd3Y2CnD5PWWAa1IdrTEfWvd0dkWBidfCS2NQ1LsJuLIQAZH8DV5DD7EI8E94/XKmnbBrbNWf013+8USD/hABifOxBTCUfqgDkwipRfGnRqhdIrBStum2BZhBX39Wc3MTof9o6+3EzKoGB35xLWxEfTXcqVfEgsQDomtgIQ2poLZLmMbfW8ZWojRTYSL4a1w5YnulB29OVRKumvIQF5T9HEx03KT5FfU+kNebzZk4WBA2ETWD+baPr60gzPjIwacTjQEm6QxqDmyEiZnCEV05yA+n/B/kJkaly8QSP8jmlknTkq2vqdXy+rYQVR/DVv7WGKooaw7e4K1BFsMAgcH0D1/cKCk0n1wyQLfTEka2GBotlw4DpvFySB53XhNK2s/VOHPaLJju3UoilVpSWNXqPgGhqpJF6ZkOOYFZ7zb3uIZ6w6B02ZrmcRZoLFGsZyzwFBUmy5P/lBkn6nakIUhIRJuABpnrVBzEK+gyIH/cADv6wM4ZLJ9u/vrnmeU6yo1WccJirkNF8/4POvE0a0RSAsCjjlUfnwF8TYSoMOvUxy2Yx1MsJjAb/Nl+rJxLDDY+znqAw7JnqbV+F7X7WRvvNqH4uzy/dRkIRIt2GlsJsV6f3wGnS9H0QJXOUKhXpU4OonzZZcMPfDnp4nrfnuhrtq5FDG88STOT9O0TCFneZwU4WJY6CpPEdsyWjDBglAWANSL8m04N/QPgkp0DX5Bf4rLuvCW+8DlS3EfRsXhhZMLRVzoMxIrTejCIu3G3+uoPjkK8OjMf6n1k4R8zE1Yw1D4AYfWZo39ruW0I7zvwZqNrL3NrLfn2mQTFwzhMX3ubFNQW7vA5RlMUVFuXmNT+3RWoTU5pxZnAJIh9LzK1Hroy0XnRjnG/J6e4sI1LnfMS4bmn2TxGn2eEZoc7BOfrrTL8zS6UgOC2n3wl1DnGgG9y5x467lG8325pqhDu7EPmtjg5TDCfzko9o6eGZbPxKSTZ6k+PMD+9IU2FvzjP3sKtO5lBckmsZUj2/rUqQhisWxeLT1pKLq/8eETnbkI+HvV16x+hg7QzIf4ps4twKKRfg6RISQlkufP5Oqs4tZCvrcEibt9Srf2qyRJAsVVLzTOIxq7Ct3wg/v7xPIVdDcR5J8vjRyjbpsTsoLI0mVdMeLakxq9iuE687SDdCSYNeLGqxmn8WbVWKlwjBEQtuNK3UzMlJBcY0jKEwr8yUmK0GlAS4KLIdiefmZLQgfnvlTTxOA+dgs3LMlJ1P9VJV5N8KYfbGE1E/MW+JZqNGvrukJS1H9m6T9gGGGAbVKIx36KXqEuJ7psUfKsluxLjpozvRngw32Bx0CAWAtkB72S5TGPep+CIdlY0Gg0U3nEupJ0m+i6/t594gdGzB1qzhFTWdoiVuUClrt8ksqfD8qe8Fe6A67e9oRIMLVkNi4zl6BEiRorxzyxw+jlHMUWX9PkmT4orOZVSL7oV+kOmX+HMXFEhxrtvF6NWvKoea+PyxbZaFslMKlkt/4SO9yRn9IJBIoQOqP4rOPZvyShM1teIpm+sxuKp3dvdmCRFc1MSQKx9Q/rOzcR8jULCi31J6Igv277ft6fmmUgIZN/7vlR+9qf2YFOhzdCJ5+wlHl1IUGZPX8DdTZVbV3PaKPAAIG6AvYIGH/mqNI37Zzvx68qLTobrBcSxvPz2qB7WQl8KX/ebLvASmLEFe9G5jiA4COMjFBxexdOwddS3NMP8KlW3cdlU/DJadISwe0Kafv9r10XX0qr5uE9zn5lUQuNIJZnVm8Lumdy6Orr+VqmDhskfXml5quKX9QFIHv29Lx8VHhhMUbYi1VSvYmF7KKKZkaI7CIHnfhnbCpab/C0RPP6SnoL/bX2lFPU4rGwZOQGucoo1O+MQfcTQYmKtMGTe6YQ3kMLcc1KO3Q6yyKl62YySqw2LbAO/lx9fRBAheXlKlKLNFG8fP2y8PguMpepxhgMSiwh3Ry0N+bQii0tn/VJo2YItBksb+UB6IpU91nhHz/lvMj7eZbm+6rqCjqxaodwJF8a/IeP68VGyfe4Oqmmk9xypii82hRaNGY2/O1Fbqq1cOpkE64P9M4HDEslFFiS43SkFJdgkd3JDm4MhNTeistfY7GvZqsOcFtcLWRiAuq514TASro3xnzHpDRNKvFbGqqoA2GL+W+hg13Pte/u97tbTf68+VPV4d4s+XWgvcdumEW6FDYaq3V+KcPj7Ozdx8dwgToxw06Gg9bqldBhXFypdws9QRcH5GqdOQf66th9cojis+wYPAnIPsc+OI2amaDccyTV09D+ovPwVW1ztIGErO/TcwO+t/7YmT0axGO0mMeH9rUhM0/2oq8PFE0MXb2pm/oRStTbL6ieN3yNsyh7pB+xVSYeHetuF0Sac/M53E+vHbV+t/Hyc9cf+g57GaXI11rZ0sbf7xNgZVYhqImwerwjjvMadSS+PBKTWBPf2IgcIkokL114zou3kJ7EV0xwfELHcBzUMbC1V6q5MvVN34fsoafXd/vvNmgDW91XeG11TKOnGSp0PSmUR5FrlGOfBnKZjxS0EvOjhxd82Z6pw4FBe9tIHWFblSG9o7op3eQYBw4umfLApGr6vV1qTR4Y1njFsVfw+FWnQpIMPDXjEYoAilGE1Ch6sYFAII8H3N8Gdm4VeeteG61HYYlypC90Wgdu7Nt/y8+mEJsIlf10Xb5u80u4tySdu1LMbbYe9DV+ziIfuZgH3SF52VybCn00y+oFXBgeuwJ+D2jFHE5fO9MvqeEP+25sNtnH6s7vYmIO+FdXTbuCHPTCHuki8MgHwNSE/Kub0aG2NIMvHqw5ZZILb9+b5czJnQ+dwEuHNc3RoE8bhO+tTEMKg6JB9euiwSNOOLbRsCRkVNO+O7zEGWrQSpWsf9nSla3bEjkizLPiFWx1HeiI5Oqu7111o5rG1W52uVD7RlSY+PsvPpTIXLpK09zssv6pHUUbS0H/btOen+PrzTixh7Qp6UKiww5B5Khr5G1s/g82wi0eALBCZRHYPJRHxUPWVjm7MSyGRQEAnNQeFRN2tqcTVzWsIGp9wcudEVJJjOXauOXz9upGzeKuRnNFJQyTiSQkPpEHL7XXjyRfgpYJMb9Ad23GR1I/nOp6ugJuvG7RCRnG5TKmJFxiST+b3N8CnHmOlBpNXXRz7Xmp0G/wPms9bK9zMeT3k2hKECYl6AgFrFvJrCuNq0CVtS6AVRHVsnAfV+UdrQoMl5XfEa6nYQEUdRz5ATGgxn0CXa86rwvKHZMVTIqRxTO6uglXlAa/Pas2aWvHifpH93ZL5UJVCFYIqcQby7GISuM5AnzNxcUx2/eULQOi8aRpTEEYTozH7rzq1HSMkFoRmLMDFzNKYz/ONgIInT/KGWMPNlmo/na+w3rwY5VLZCD7R8D3dnWbDAl4KmHscqZ3+oeBnDbiLn9MaqlUkDcl+Q00avAI/26Rp3Lv2umZWOprdXqN8yNyp7zERfWunMNIc5Q3/1j28TyHjzzO6U23REDnZB2YWiAvBKnf2eK5GYVvMWf2tWLBANaDxnhbrg3mjdGGAYBZmAYYYAmGAAGJpRep53rKxYGocyfdmsTz9wLbwnEDJK+71mqRJp8qcAX4VPMfjGIcinsR4ALt7VAbRuTWXYXp0oj2/wD9j7hFQIUq9YZ3LgOtJwnRWQQ2ygnYvjsoshitwP+oiwD4rLE0mT6bABrWaHTKGUu9xc6k3l5CnGI7f6vrvQmDKIYCB7jHlTcsbt8kmm4QkJ4jeIav7PglYgRQvaktCYJujgx/qbXjDo3sgWX79NOyL9mXFr/waI2ClfXnm048aYYYvDCAyckDmjXPm/rxMrdArVWM5qzuLhVMgfv+qNuujH+apPMvcPIVP1/kbxfaUHKR6sF5aHRiLBE3pNjgNtbxKapfZ7hpGZEIqmdvf623P+UJS86I3f2Diofj8K35MHxp9ebuXd+5/Hq/4kS3RVZdPNHg4aPebG98jo8KG3Q3SZWxjS99x1ptGomI8BYUIOb32SRiyHW4loZdPa9e9HSBaQ+BVuEt6KKV161cR+UgiUPRwqXFFJxcOGYJZiHYPPPi/bIyeYzN+3pfqT3DzMwfqec3ZZpEHnoUjB1oMvCf4dhUFlLN5oKFZbHUEBmb4YhG7pLlHCgmPnMlVDJ7qbgLnhq/NOrLTPWmOAN6WDu4ggdwnF3YvRlVG1o2wXB6aSTpSbw/WyHTjkxv3prvUi6qxG1P6YkjYrf5Xd/56RfOfzE8NJq+oKUVHDSRTFmm2H/3P0Jwa3M7LmHyyrRdMrx6f7v4ksjYGKT5kR1XJogtD2WVOUYg2GUFw+bjeu592kQBSBpc8tHwgTsBczYxObvVeVTueuzWFKal2Rkw71QsKp9+07RPpDUpDGBwM95JnNXRK7aM721fRg7XktZcKHvyt0Lpw/Txp2Y7tW4QYFa2VDdBA+G92G3mPhYA2UO6xBLxSuCa1KiqwY0LpAHx4ZaqLDAG4etFmQVEaoc8VW2VztlsP8PX8cvfJP732afdL/Ir0LXSlrffK9fivUl2S7trvSPBPjSBqmjfttIN7nxE9Drq3Qr0xA0JqBsmxYNXkbMUJgdDDCSyuKo944OFDW8OGpher/xbnXtNS0/l6eWGKb07XJx3x81c/8fT68s6w10n+QTJA1PMW0u59f3PXoUk4KUnfGvp6fkq1czoKHLWZpa3ge9ddSfXOWkuZ8EaMFapXFGs/A3+Pkb/ZJp7zq2h9JGsf7cOziZKtNmfwVrQU/HzW0GAx/3+xnngEaVcVH628esIluBQ6+UBADqGMBwP/Ew24X0szmp9j82neZ/ntUWY8R2cPDwbAaZOrYMFkdC6N8V77ozRBCtBDQCYbCklvcvA+h1jcIXqw4ld0FZCZKx73gQ3j7Ht6kEqIAqZMQBc6rjL+Z7gjIqHgUCH6yeOOy1K2ob0kwSSlfNO7yiK9MrQjPQXgU4HmJN7PwzujFaeIUC3I/5hhIsMMCLDAiACLACLAAICwwIgIgACLDAiDAiIghayH0Ek0kM4Y4CJqLaNslIJ74/yeMpg76n84GZW3xugS1KGzj5OqYHqKWJ/h3mtU//sqXJzEKmAkJr2bFgGwblEHA3aSGxLjfCvTDUix+PTswNxd1QM54VrzuXmm/aNxaLefmx3OFXoN1xw84WnZPAEFw9JyODvWGwBHzDftI4U/k/WqfIabkpb/iFS9K+5pd9a8/SJZVPg+TODW6lDnGBKWiMaCYxth3+7P1h0JThi0sNBcvBEucb8JxLuba7bPu6KNmuSc8yu7g5WcaoQBje/aNze6VeC1zHp6S2KDABDBMoEdG3fDHRZymIcX3uNS7RGatSI+QGpQUjaKZfdKe4GXvU7xVJcj60rNefXSZjDrosnJ6+xaUoj/PNvawKaBC1OnrnDW8LODMyPqbpXD/NUrq9nBtWGO1rTWf19OCg3QERljWasRr0ZF21sdszX/vxcg0Q/Xew0rZW1e+5lvhdYSyBbPfPeJiSW3TYu6rjM23V9Kw51yEj1ffki4bI2frMAPRtWS8+S0Dip2n3A2Rc7/Li05rCUNcIhxV4eAtFlXQlI5O9ZpfmGvKvAwWrhl8bLaFK2AY2X0SAs8rt4BnPww7LhO0sj4Xmq4yUSyi4uNrg69wQM5qm6ZY2Jl+3zmXq0TMWYpoyfLmDMhTh0qfGZYTE6gdixwcJu3kEq+9X4ZR2w3sBVZyxodWT/LiMwBxFHbyMM6dKbObpKs43sXtJZo58xv220urJHHOK4uKKrH/5pQcoW1RpiAcAsKJvOOjY8Qu2qYduWQSeMKfw1uMOi0jBQCEeRedsegRFOenW8K6JON6P55fLU0Vkli9WQxJtciUIyvhxu3WjmjJuy60WI8Rs4/XaBxlWLPxcT2at6K7V38SEbY7x0qbAsSq/dIwId0/JfTWX9lK+Pq1pDSO2tSKV+FN6Ipdj6xmR2mJxNTYpVQ7wMH+s5MDxmHOhYCWqnSaqhTwzq+eh423sq+9Za2oqHb14wGQBV77dV8BwRB2Qy7gm6bzt2aSYmwRsizvHNnqIEzfAhoJFrScM21MgMEt9BW5j1/I8AaLpotGtVHXsbCjYpfQSXv5V492WOZ1sR7PWgr9MiwDwX5LwCBwICFzwcOgRsRwxQZg+gLtiKwGYY9EziNVqE96TKxKvN56QJk/YQ9Mw9l+/+I6KhhlprLuWSuIs5rqO/JkJyyPP8U9a6l3w1qjrr5gEzC6zL0ng54TxRjGE/KfeC4sEQPeVHXVrWQLFfGgoJAP2gud9+IuEUewHaIfyqJXFSOjkwsVGPoW4XQSuSiz8CfEbLW7G2+OEvnkVBpn+gwJFBlKuvEH9KFG9r3Zd+WEOM0/bwer/ukH2wfRo3vVocXYdDNZz8fNZ86H9rJNttG94CCcZlb06zcj4zx9aGq7rvafVBudqawHIvpXn39RYoDbU091kkypJMoK9O9Uz99IUb82c2J2t3CZy+U5AXSx5X44boRTrgneZRsv3EKlL2+oETHJkdJ4PBJcR/dXvj08t1eZHro6i/DVssmmQCm81okkS8KzDIUoxnMXLNycFCPHFBqbFnCqYxDkeL4zufdOWGpigpYqDGEBOrXZzHrb4jNDOjFRjsENDfIO2YQ1Bjha5yk2P2mQbOGtb7/zptNoesqXE/jgd3GwboMk7mYkx97jp6zc5BGxvsPZLOrU3Mnxd4oZqG9XGhjXJUIlfpcPgF/COhcTlU/fwdzxEJjXxnvshRc+w0xi8/0R8KIGc5Ok3ZGdVp1q69WpiEDf7dx/xv2ZqguCXCMLcPhMJ21GFgoE1RtQmYdyzwF2NUtKuxsaaf2rjWOrVp5yaeMC/dkUhzN4PMB30pCM/t92wBgw3r8TIES3hrFh6LbmyKug+rV+gmE0zvrIQJpEQ2sr3fh6ysMJdl0nRZSZRxeSSeLGfSBBEcPWKI1NigPnF9khrezYcobzxP66CrkGvaYPutfLiNR/ftJpDrFyF7c/U9ygHxGP1ru9LDGQ2zQg2yGo/oYXyhnZZSWtAPibiXqayk6yuFqBclPuWxznjwDl9KNCyAOiOWxFcVnrN+mmRALyPAz/DEY9fvG+gg3iKVEWFGlLo/VFnH7M6NUHbJ9shIfQXCO6RHo9EzPzHLi3xAnlirZIr7z++jp1srZnnQa3rBNmhENhe+4RgaCUIkZK+ZRY1vLi+Kz8IyWsvYCxwl43U0/O8X2l1p/H1GDnjN5qhSKwB4jsJKFQsBZ0ICLAgvN4smXk5qU4lRfGdNvZoh3JpoRhhBYDKDLT1//HCEeiBZ4S6/Y6Zjvi/0/2hz5ezkrUQxJ2CGHJ0gIM8r+XrU5CxAu8oTYNB05pqKDlELqqzTZoNlz7DDWAQ7K1Mt+/WVmJQEvmnUMEc3/ZvvegeRbyRoD8NoM++zsIM5SwQ3YkKxZ7HDxLtCGayRqvei0XuRuqx43l+RPeG0YcruqqYIYIuBUZzrXeIndhdtw7MWTRvI6y808JyekOucVsoNoWwBkcrejQcO7eTL+dJ/xVf7eAbVKQXdMKEdVfk8BB5DeQ7Xp51pL94WFjdDc9xMSbZU4rBuR5Tx6oZjfimVJJJ16aPdL3XUPdqQzOgHNmwbEimuGDiQFATxIG6kgLmVQTM1MCOkCPXVaPXQ+gjUfELVHktBFK/tAtF4WVNQEU1jGJQnIMQ+7snYPzfchY67iTXC5ChYd3u29o9tUUf5xnix/Venv9yUGtivzQuMdpQ5jodzv7V3x3v6Lf9e7ERrUc0B/bMNuXm5BkrV0Dx0gDPm+qBqcT2iJvC/4oj2eL0bipOTKq3hkTa7+tUdeJ2JRhoxsd8j5Gt1bKHWfHF7CRaU4eQmfNrnxkPlgRyv5us6tlOrdzHYPK32NsMON6ZXLWgjgZAyGnwVihdhrtoJRpkcKBsg+4JkQEYUF7jCd/jDcbYIrvW53daaHj1tUA83U50cv/TPBP+CX96B03mLQcuK8Uf61vEZwN1+ZBg8XIJ7BXcJgOOBKdj3KMh5VOeYPgPInpAnLkQnqBrwLrIjR9A/1OmRMXGa1f/PuiUkXz/1BrLoAe+6K7b0zIF6ZXgJ7/2OnvS9A1hH1U2NzY4ym0sYCh2kqkehxKbSjavTuH7DOaxx0i9HzvyxvPTGNT3M1gyx+nE9OHODSREcyUcYJuZy3K8D9SdVIHY0/8RDCplJpdCFiN1JlnEBkeBE0mFQDjsinrJSc7u5daDPoQ4BJryhAG8pj04gQ9WwL1zkzMQzL+oVQBZCxlxRV1IzBbhuD7Ib+srjXBbt2PkSPXw+B8sDhUzhCNIIH62Psag0DZDwM2RLKtQQcBx19/1DdvoaKO68buNu3YtQM0Nb5YRkUG31CjCLUL/mmlkBWmHZsyLLp/7P1qGQRNeuH86pEqpldf6GduqXXRl9xM9CP4aoWkJNzLP5DP+oX7U4bhOK8KI+b3eFOHXMVs4VfMt5Oc9EVLf3cnt5r82czBq8kXcc98dblcD1ByH1JOQnO81I6htfgbAViFEIg94xwy7ydkUjg32oQT6MD2gVcu/sjnHMzBsmL582LYdAsZbZlyWw+rFnc/SSSiShbdUyW0uDPJiZGaroWo9PDKL/dnFHLzbrQLRaCdyBjzglMWrTjCe0XHyimcMaXKjXngYTLLFvAM75vP+mD9+Rj/wVrqgIR9sT9ju0JUs+J3a+krPiiVQBdtl6LrgbvWeRr3UzcVmGvz/wXpNIsOwKizY3HWb4U4wzrEyBFDxq2CYEDHN5xQ+xEpLFQ7fF9V+ErQyDdfDIH8IRHzx7y9BKH+dDLbGwyN7cpHv7IdDKiPhxaYILUhK0Dc1+zSKwG4TjEMe1i7Mfm5Tg2Dt06srK+u3DAuH0/0QNdsigatbttUBu+k4hK0o+FIK9WdUkq7j8510c+heYP1Olm/4gkBTD4ntxjmOICzKyHoRzx4ii9wlHJ3i5ai1ddBgdCBKDRVp6dEQHtUxZ5V7anfUBKN90XWsd7lVthnwTk96jloqSE0QloGuf10gt9jVHAZ3cCmWU0cGoJPkCVXNXJYRuv5+cN6/wZ+HVo5L9ID/uC3JCe9a8ttWEvwaz+18pjWCYFvYFv/rejw0HGVmY0jYPJ0nMSAwWQ5RMNdSPPIwCqHkECaLbMEWnC09GnSjwnlvG2EzUpjGwW48OQ+qZReYhp2QZ3fHkwsLQJMZkSHGWzpQgHBBCIhJeKc12K7+g5nGC8A3CxeP4Hlai1N6e+Byfe7lv2Vb0gA+Njd0B7uG0eP0Oro3ZLsjE1ot2A9BJCHrTBvH2oBgo3QDNh8SPWSjBaXHcTlpHjFa8PConAazfmZJY1TPfIlw0UZZcMxvouMlg8J+UutGsDM/2x8zh3gtfeKjNac5bPVUHzWBQPrTMkbjRigZ2bPTGar5HMuhocHLoCCUvW1z/1SxKY0+pdfdUhzNPP+4I8fS2BXIp9sWP8kHxx+DYVtka911qeZkaQ0ryMzJI2RbpMwetlYF6gFCIfB5gw1mE3DdDR69TqmzvG1HSxHHgTMJqXXxppReZzdz/DztZk4Y9J7uVEMi+gXwq585PvIkDiCnt2zZzuVdR+zx2VBlFhT1kfUs4T37CZ8Y2mjmqo41YZ16TPFaop5ha0bEp5FJPirmvTqLza5gnjggF1URcYgg38LkZQ5Bx3G3twdNhk9uHapCssONUi0C0H6zhXYtSJ1gTyZQki+yhaeIlQ3BFuG3TaV2p1XcYQKdFYt6BOgVb8tR0Mg2X9w4+t5zDq/2vlSJ0qtRb4lB22o4H+Pq9fCDUmEDnPP1+HXcfvWcNgi0l12SwlTMc8eWONKVn0ADQ3If92bduAYEfsbXusszApudzmU6BG+qQgiKy4xEFQmeL0hFIMWzGILDvouyH2dOKNUEjB9xBHp4epqPTd/yVKR5KXr/Ks3D6G3XgtL21XWymud2RKYLlbVnGbPrmX6aF4pbVV65XKKktZ1ES1bTIekvICgyvO1UvDMN0RgthRZld3WAhu82KKCYorRmREvZnvRPReXxOBzhOC8Gxe5by9aAl6fj3GS817QfIGf6K1QwVH1VUDVsswZGKgen/no4JFn7Rz2m/mqF1Cw+NX2vb6OmRYI1KrIPGENPDOeg8xokVUb8VJWOHsRjtCAcLVCLlh553SniSI4wmbqyantyqA+BMm9fBp6SmnLZROU3jytDbsGw9OerX06m4s7Yb4gyF4ZP0a+394ZmWkYW5+jm8j+G6i+zJVYNAuLOEC/zqFF/FNULwdYMN8+27QytnscP3QgGwzbJflY5njCHpm8g088/ki3TwdntVAlAj/FdYTwxyALJH4ZlCVIQmbfkZzkr40PfZNGzTimcPiiSfOMlG8EgTkRQReQQvZ5em+DV+CqEuWPnJ2fT/LT45LrKAxjL9YfeNPTAC6lgRBWifqnSa0JraQbVEEWN5tb2YxcAhsXJYYL3jXXY8/fU9VViLyBnlJHsiZ1Q374nW2XkfqjRo/tgqbeO2U5rEpnsNjC7aCzJUis6uDxB5SMAfcyZ30EZ0QsLokiGaGSm5qDheSsyCxKALsOvel4OQEPAsrTjafa59sVBDvKUNjtqHkljZ/KJB/Etze4HnW4yDs8g8IDL6BGHadux+s5aOwyVb97bpobiW3Pv4zqRsngK24TQ9jh2xEs3iJ1NpkMMk3WdpNpeDRckIJPWPMUsWFyLXjN3WlJujGy+rY31Vz/RXLcHHW1ew7k+As92qaySq9rrbs7YNdAF/VzOxqxv0s6PWgHHwWflc96zuwcXiuQR8DWgujbzRQr60Bd5kiDrqejnmzZCqJ+oT/7jbxtQv7YYQ9JEBgo2pHZAk8VrtmUU3GXT9m46XL0bPxIbi7/fO7POMl+6+LO12zml9CK1eWdNWZicAzlsxszSwGiwm8LI7zg+HmHH+wIfCVcMxVg0WnBviy5U1l+OJjD1zZztkEIHJjMJeghUPWnKkHcyOwMlf1LxcoovOKiuyHfMbnv6+tKy/lHyYYOhpfL0yTCmK/T/MyuTUBSSTSqAhf3vWpozm5iA0QD28inYChDdIODNxP/gfjPh2oibxnNmxhE/iLvhb7Wj/00eM33/ViUIsPIbDCMIzM92rtPtC+kE0/LAiklGrAEkEIHNdgz49hxB1EBoKSQ8wqB+Q0Ezwi3t1w63Lvi8M3GiDSr4NNFhmFUVAbQz6xBAmiSk2C9pSAWuVT1iWiQgNGcocaK8DAZMiAb3OfPoo8XdfCQ0ednrGuf6L/PCFZwM7p4pe36CnJgNr4xwnevmHgtC8Z15Yyz8eRCTEam0SmNVB40/Wj0qAQj1GzpqzbsFba2zCtzb0n0+8hngR9p+pn0wZMO+EPx1C8cM4YPBEs46SoC3LB2F+XZBr4+wjqcGZWU6ChA7LqO8kj3KMQFW4ZkOYJ2M6IxQZd83BbT255pdrWld+4buOfABS4pn2vLKPkeUWEpYv3rIeteOp/vjqsGde+Z/4sUyFuqnoAbPhecWu/EAnRt35qRC2F8vrP/Pqyr8sJIKd59y0pTi6d5/IcJ6ITRyhZGVaH3ooOI5M+fCLnWKi6c5o3HmMMgUTy/K28CPltgaCLRkJk3rEl2+PQ3qIx53XEZB4qp9DO2nbCHF05atvg0GvNRaME9WOmg5FBZqCmzd4PMcj4b9ZEI57kjQZ5UR9tjJ5/QTHE/5i4+JtIvyChixoZ5TsYACf/5NLK7d5sFAfnZYFPsFjTNqm9rmZ0ldEvU3pe9p00vKiqj739WtuIGz2bicZ4LAEFjTDM02cFFU7kvrm1+zrEH4viYR5QRUlfe7ZZrbrgrR7lC44bz5bhCXrHz0UN1V5Ng4Pe5YRt3P9WEMkwrpwqeb02zcz6G77aqypMvIvQW6BpFAlhaNz3Pj/prcIwlfVSkVRc2WcMf5a9I1HnvCR8ZOnL9YdHb8pfhLjjLqPrSCCAKLbGAYCKMwS2s9lspbdmphTvHFybFpZJqeem4XHJwt+j3ivbuqC/Q7GnqITkA9CINbEAYPTzBbqQWsh3iR9NtWR5EUksGrlMGui5heredmVDj09Af05bWboDsEbsOU6Qtb0rSZ2FEZJg0HnyOFSEEVDORyfwm0qzPVbqfl0f0hhKmM5h3S1ZU3rS9jlR9s6B35CuHdJg+bTOMLoc3z8f8gomJj+gtEwaddWqt413jNsPlU2t2buNerP8e6Ts9aW07+EMZMx3MryHfZaXrhNQOKDAMMMBNU75gGGGAlvmksnovJVrmAYYYDhO7/s+un4U/5SEvhOXGO2AYYYCWW+OkH1x1kskwiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIuBtBxhziIiIiIjBA9RMcFBaeJYBhhgKN8mYRnvYi7xMb0mAYYYBNFhrXsHHK4qDPHMAwwwFKZuMrRo+oy3KULt8xtrSAiZiVKb3PciC5ij7SG3qeG09z9Tf9PmTrmk6iruEAQsggsMO/lrJjAVwsEWlzxOqadOifz3NZ1pJ9FBJ54m+alNhlv3Nap2+yFp6te9WAVAoFBs9Y6wkOG7+jeOUi6KRuWtVXh9LcGPpm2o5ytZyPpkOCHQ62DRTxPd4dxKsKQWBgM0sygEHDJMKSD1eqWTdm77Fc45afAolI1WR+hXhe+zDRTRjeRSfSB3pHAEPY1ZOvkn5xvxa3IwwnU5a1N+V//K5v6taCNCaVfRqYGa0Y1tKH8HRuGaPZ6Tw8LbgspzEl6nYZya//Rh9xRgQgEBqUA8fj7zi1+YE9VRaMj2sc3lTUQ2s6mfIUzq4O48cfa4FtyXRjV5MwVTGfo9j/x3sYtpPXOOUbW12T9wchcP45kHemFDuB/Pa7fZGgUSb3rytckT4fQvtRw1RbuDseEImSDt4qyPBAkpJDoJKC2OY9NmxN8sKk/GoSXrUa4KD6EBSzASo56iWYyMo5V4UhGuNcFh0UHDGUGWVbdVuuyhDLObzZXeKIEinHlAM+z+aUZKJAgxkRf5R9+P6W0DMG4904YRvhFZi9CHdLIDgkfvksQ6s+qlq+vmGug4ywJpeRCYfBQSDne+7mSoZ/MSvR8V3lGCVSEDecdpIKReeZ+EIRLumY4iC/703U/dJwzsgctA6kTDr+bzVwMHWFQ1xcvYcWMQWytxu4uH4211V10qhB0/NGVO7LsTgM88AWG1XNrBNBupiZxvdYggNbEEh9naB1uaqEXINsG3HV3+MUnHPLCZmA5KxpKJ7cSUNiFwNPRw65AfS6P+NIP8YRMmOv1pHx1zDC8sPuHs4A3z9KM3qhOIEU/L3NJtXcpEkv/g6XPlFb7S421Qha10heKtwoB7mYZVmtluMAAW2t1h3BGPSFOWsNHcCbKGYjciFkBcDk+0rm19i4dnsQ5sZ3jqt23ZfnkuISEij2qpcarUzK/b0XLF2lSn2BdmrfoLRgxrVaZQWm3cY96wMD8BPQ2i3hnDpTSRdyuqPNU8WJVARBLMJiKQhcA0o6JbRKjeTshq0EjDRMw5aW4YP6yGgIbqz+BE8wBHPnmUvcVhsBNGj4txe4tDLgll5c07oBNryY4eXS7jQoamT786yWfWsNaMjaElcyLukbKjrzHsyg/13SKvnUd6l8iAoOZcUYFA/gQsWdf0C9vmpoY40W1qmlom6wMM+EVYH9YsJr+sL6hKsnys/6QfepXZwytjjUDG1HfJvWtXWvWX2o2XamGbbYwdXZiNzdoQBtx8DIXjOZUbpfeezo70dUGFWPNRGnpOoUDg96kN42aSqmPkPxjpqj8jFOXC/enexUUywyK3gkPWpVTm/hy/FxSpK5ubBF0kK33MDJjBbNW0aGKnjxDgIeIck3Hge6VUJEyxQ44IFQEFhowYHxW+a/qI2VrTU4o15EXI79mvGevuUY3CPnFNoHrDPZJJ+cmUNEoSst5NFDlqopgz7fMuGhUFQTmM/SSwEGzliJIn7rQDOsLJXAn7plZdv0GNVnhjA/ps4MjnOd1cUbZybIUPl+ewqwXjW2ceINYhMZH+RTG2rvAzZwxMQG0M6EOXOrKfrlF+GwxgyCorF+BYj/slA0++swcEkUfdtxWJAQOTDUW2W7KfYoz57JPze+5BogCX/onTrfPPTpIrPigABiNbVB1r6r91GmAnCPuAaP08oB+50POebwJrwEeJJeRCKjNtaBAu1CtI1hImmQEHF5zcWx8RZ0Fae6LcRWKsVd6ORrDT2dD2crNZLs8LPWA9hkNOk1s/R6ObyViqHYtKeRkl5KcobvLVHFmyIbk0KTTINJSs2b7lmQ3WHbVZpGoTIrSWVnK4KQjf9Cld8I0iQIX1mfrR4MQuH5aDqDHv0fTRbEo9RjqlkIagokdiW9szJOJXmcDjzbkQdfPMCXwo3eveDidC6si3uz7tcIV1W7+Foav5kN4nnBAx9B0XbVTwg8K3X/zTnzjp9s/UPiLRKJWq9qzdq0aTsnzHz0mcCmCYxEfBMSVH6312atHBJ8IKGGfW8zgQ73nW1ZPcmf84Ni3TYWS2vVntbYaYykgXuQxeDULnnzkcV092FWceWMW7I+j41MNVOeoygG4mMDJyIoLMZCawlQZUplTJ40puotuQIDkaFEz4mpi1lCqLc/8Ovao23WKCaaDUzanprCO1TR3ZL4EEpSYDOx2Fq5gb+msdHql2Hr2h1Wp8oDR/26cghAYEmRBctIhiNV4np8iSrueo49rrO3RkgzcDfgTjHxxkHAI9wijuRC/Ye3fJ8YE8R3fZ8Of60PNalo7aCyEbfBrnhP29dIkvjoTypYUyd3JQtyc6nZwaKDov5O6MnUMKEqPHMDa1FP4yWRlJXDY/BYLFK835tcWQGMiHDiIe9z1iegnhledRKgfPE8rAm+oNUHcRG6BfPJs7XGmTO9BGcQbTubRtN4ZAFZUrrru8jw7v/VT1ftMbIY40dOiDJbwpHZWR9Fwqbvka/O0W6DVdtC1uobkQex9vaadfCW0Nr4/5KhiMvKzn50bPQpT/EinJiGa6P5bqF4TVrzaI2BYIzD6T/ck1n9aB2ks/AQRg0HwbrkmeF1kQYgOPZx/slYKjoMQrkHjxLzQc5E4U9zj17hLDF7jKeLjIKZN/6rftrBZ0rhGXGLEioKR4dT54MGHWvLbjDmxrwAz9QTr47HPoYZPCgUZWqU7AibuUWg91lQgxRrL3C/1aaimGc7xSlTzGRpd20pWsGfGGEzxrZlqFgQJ5w+fcHaggHT3iGsJpBY+/5BD2hnl15habhsT3XjbYm4nO6FlQlzeMv6h+NSK+rtaxsYhm6VEFwy6AZCzwq2y5GEpYYau9iyZpniTa6NB6ca5jtrVyCL1GPosUz9lBlukXFTvzBcnzJrbTM4tISI0evzTZH7lmWYed77EcMu9glEBxscbVoU9jjEGUI3EizRA1oLdRD8bzpYlNpIGr5oyyLPke3SXnv5wJ0ISXgVJ2lBU0guJiQRO7bEHnc5nSgUMztCj8Uo1JDm3qQuhIRoRLUa5VakEJ1A68wNGndHZ5Inww5POFckdevHYbHoCgDC5zXZgRE8kwep2hmFR46HijXnb2PGwtvbfBDu52chb1f2zKJULNK2/8ZsyQubh7hZdvXotdRUQCsZJQCOIbqTJlUdeoONWmdznhuUqs5ahRBT65KqOxconWrSYav7nsqWXMC7BGnqfNmC/q42LpE3D1T5cUAWleyofdkBB+rTxOti6MMLrLeOMTYIi+9MpUM1q+dxP4TpNPW5DaKmW5LJlcGmZ5jNMWbhTOLCxEOusFcv1hMAeno/Kc9hlAJA8ATkVuz9reH3zc4NmiuCpotS9UFe7FJz0a3+IMzQsbzGPqrqooK6Ktmk3swO+ytg9CWZl+djSUY302WR+O1/OikNzn6b46p7+LFVp9GIEcWMBTJXrbUyhgH80nu2lG9uM+eZQM7xU/5iQeNt9ARkzA8nm6qx6YBiXNWKo9ulRhaRUdOK95/Rnn6SALT4ZwPVwaFSKll2sh8BYil0GBiAVuljjqoXb7P+vvwbHX3llFUUPo7SKfutLHRWu/8f3ltr6wB5a/V5y9k2FBt89T94up5Fj3xMxYVmzcdAdwBSprAhVvHldvf/CqoCX4d06AZQSBE2KRkRQ/RGVA65fCkCTlvuLQ5jsph5Hnuf4B06Nw3ZgPrfL0WkJT+P0bPIIUBBmAttZiRtB41BVrZ8QXwQq+FamD8Fyb/beTPA8rhLlQmbyZjD0eb+Uor7KvaQHE2+I1e6dZ4iIK7TlZ6OLzlPS18ZSXz3ThIC6InkX85EeW/MgK5XYCLxRNgp1eINoA6OBEp/npp+scZnl/RFZaIw94a41IGiRFUKs/0kK763R1VV1LezuSFuYFhP3Pq3/JrVe0n4kVZ1Pni2F2Ru28IhjhJUTAeQCd0i/E/8HD27xftGoRHyku7FR8VsPH4WylnTF6e7C6h1LYuf4RymIrv2npogfF7jbBDEdjDp1vViuqhgLxup9VDTQEtqKQ64RQxo2xJDGifVk/6Zvv8nRmFXBqNV5O2tTDcq2dxprQzED1kdmmbOhNsOeWyvRhxKHIGn9oPhaImquWgyRNTNrgW9wZJd7L/NjdUkdooh+CZOFr8ZU9oiCGgpAbuGPYfWTuUJgWX206UG3EDyKKzHlpmNLIeW/JQ9H28N0gD8C8ci9Hgs4qa571sq3IykbT/NrNHVrfzpV8xFEhJpExP8q9rV70Eeq9jp0uJed074X+Aw6C26Uyqoc4nApvvDP68JzouQoQ1ySy4LtSJZkuRTydqwk4Hey94+dhGJfbB0O1blmgEjxSoU5mF/5fm/XOB2/iAhe9o+EzZUVFy4vTx/G57PV9pEvDCb5iguzCLPgrosV6j0fyywub9AZ8Pl122juCnqxmLRwSuLKlOpUVxvH/QmSl5hv5dMhGPkEj3UwcaISt0Utsecaau6lJOVoRPaPgf1bry7233Qo2atLl7BFsVygYPthE3AGnl+I8SYnRq+FpZfCYUJ0+XPLyma+P76697Zo5pbAbNjPZKqzCD596/cui7eMOCEuKSX44Ozk4oiGX8ktZLiQm3r5FYslbSuSMlxtSQPabMzf13TGaZb0zK92agqpnC8e0dTCrPLSeF4bb0B520uxjj30EYIS7EakiQYoi2zrZD8USX6KuBzgJp4EcYjDlIPzopydSyC/Md2Mpx5tAdrF8UzsLlFZZBaZDv4zD1NfpxHk7u9Ys9gvobNdR1XScyU/eWqn0BvLFTk4Bk8DsnE16pSoO+v/KTiu+OH37RcaV+Lmuqdir311S3bedfFoMF7hOD4t0/PdEFx21fOI4BkouGFZ5/tUH7+qm5JO7Z9NK8dN/o0m1vQMilCodeKnmJtpn7vCXW1YTvunGRG6++sWE5nTKIC1Im/V6SBM7cMSPGJdjlkm8TUNa5wL9ddmxrEaVLf+VbqzeuaUzYbJAFv6jD5DJRetKL9HCUSHiVkhfLmEbcu9J+6sKRqfJTJI63uVgghORhtTjB4me7LlYnLfQ1gUGzWuiH1ZmjALIAe4A5ArpllSbDs/KQ2YLci0BeHLur6hyaN4+V0e605tMP9O7/dcQlhBHmXxs4IfH8TCFL/lB3RklpH0Dl3BYQF65oKw1IxQRQ+Lo5xSxOWu/GSxhn/qznfka4U4Wn/qxqrPvUYo8TMOVZ97rdfkTGalrGWUtwcmPz830D6FmbKMeh0/BIjr+C1u5Vn+b/ikZnf4X4CTED22LHZQk4V3eYI+S1Fc/WzUgUsajoXh1KxEHPoVjhaNnkMAAHHXuTIoWMSYBCz3PB+OPSFHuVkNi7ySIJ+PHEnc/JPEl8cmc9+mG3T9qv4VAXZqoOwWt7hF6hMJeNXXUZWSx+3dNbYXeTf0zCY1IJ2owGgG8jBJsV+SYrjF37V+EwOlWEfOG+uTLk4/ey39rKLc6PiaKuC1QV595OjkPBDucEcCHAXr3ZOeOfCnCCCBFiUQGjHmpbSYW50lEjUsRbKI4q1PzaDvmZ7rgd101XKogDLhvRqDO/9/X8fLae25R2S5t+NNzxSid/qZ6taUiI4TTGv5yZEJ0RMFq7Hz9Emh5z8lJvHGUIYEvakiZHX9ZCODlL6giG8ccy3FLgsPwT4OQwv0l+UlS20EOju06doQBbvBYVVsIM+PFY6nT/D9l7qqWEGvuE72rgnDnDlxMqFSzMewyOidb35TxlakcWPWupT7zbpkNbU4px8iyGIoswfhxNVPQYy1Wn2GQuSOsejTvlGF1K6RIr2nrR8y+6DCqAr5nlkR28m7vKDAwggymY3w6aaW6udri+ovzxPxvidWXSuj34ZDV/NSLersbTimlLFgZLp1U8SYD1BXpGzwklmN2MyvHGMJ3ucJJaJPytivXhO1tPobG3+FyORX0vNq1uBFRnqmshl/iCF0U2XiQksIbkqya2Sa2jVEYT5SF/RTv4S9Pms64Pt/QWoOcjQRiH358BIb7rQ0Q7IVWUXz9kzf6T+H7IlkkZBzWmq5N8Tw5gg+H02m/7NE6XmaihrfGaemir23Le03SeRTEHvTeNdiaV5ttNIU+/V+zP49CPzF2T4oMOosFywwENteIvvFJ5GdTsTCD4K/Uw0gpvtra6rkNckguJwEAhd9dMgNgghVGUyODrv8VebHG7qml7z1VyKc0NW5bNuRIAQ1ppiTAcFEa4fohFruMZgXfWP2Utl7kmvAPY3+vTvbLU5IVzZOHUIsAaEpxbbiuB2de3ThAuGvpTVK7hZhdxjHW8SQhkTG1fK8kh0kEmQ4rxsZrW+6ZnjCyJvbGkaZExmvBRDLq95WD/VCiBbfVmZ3NPVHJ0gc/c8+/scxFoPdqZ/s5ae5uxmSvFjnun1WnIkf+Vi1wZKsMHh+ovsu63ZpuI2yUWFavITIJ0i3+XhiwpM4pJNkfn5FxeWduAMnzIDTSMSDPZGBuRCjTtxXqjQl3ibXsn76ZQnz7NIftKEC+4y/0YszEht8k80NqS3vuxu92sOsmDFdb1FdUlLCSpnYMf1CUN2Fq0kpNy1VwwOGEWL8dugyWFT2lJWNLxEepwEGfkYeyfKEtVxyd0vi13VRjKHiVmyMQmYZ7dtN3YZBguKiStCphzw8tlSWza3Py1JHGbqEV9VbGbE57Tup3X0QzHCYV+u71KcAyZwW8RidFNZrbicKV3x84OgbfU0qoGhHbrMuAE1dqvvkRCR+jVvGihi57UTlnTlwolJh3uyTwMlBcaaFmIp+071qlzoNltct/a1bFtUveOXXkvBhd4nbRspxo54ff8BYDmEb/dmC5dRtpBBrst86D/DpQzcUx59JPTSz2bf6vHQR4OgeWSfmc9+a8BGeq2Dku+Sc+T4v8dLXgb3qY/AGBBnr0JNoN88LmMJQKCb/7mnPd0yhlnMzZbBPaAc+PB+O0XDbaZEaAr3xByLkvfhxKfdJ39faF5Gd8HUVHO5i+RzOSx/18fX23u4fru5nARTCcAw6rfac1gbrsWdYcnqJ+X15aoOXbGzrfiDdNLNsuxyUsxPePkEk84c7gn+Imk5/l4ftOVDnOw6p7pYlgjNXOK0R4zdtWh4SCEOntT/COvsXqynD7UoMOqYlr1E2APk9V+ltZrU8BqPRn09CHFBahCG2YRqyhqcYgAoCRWf4Hl9ClqjxeYZMwNQ9pz09F49HLsaa+PFnrrUpRbfRK5E4Z4QqEfGQoPF0E1w8udC1iLabIiCmh5Xpo9cnUZDcqr6W1sHeZw+xRqe97Ltht6ZrgPqN2ZvQ70xsmrdQTP2e759nvrQkQdCwa3WsQZ3hxWR2iUD/A/4Lv5k1+16ZsiSIg+HzqdW7Gm4MWw6aa5v1A2upkLnUvLd6tZDIYAXXrHg6tDuFdwV4xOD5kH/pKiYI7tQbPme16ANsWthnPzUTe0tVGI96KMavCY7kpA5GmIX/smoczk9t1UXxQHdfnXvFUMpAAOnVAn7WmviphQCaB7+X3PQUfzr51Q4m6lPynoqLvwBdZWBofTyJ9BeuHZttwBLOVEmwHhI0EUs2fssiZD3mn1hb9hphJDPuvVv5xzmhK/WmBYHvwqduarvrc8xb8TxrJtwnLK1gOw8YLpEDkiVeKYVLCl1wAhzaYdDrBKfLNOMz4lhgCf0ThnCh1BiVcUuiZu9KOqjR6d58k/21emzsD+N7dbBAhfJKaH/EcxH0VufTn4U4arLGEvv/BRM/wo80AWREqJV6NV7pLVA7z2HkggClXAjgBcNgRW88cQDIty9FRajaalJ1FErw0pjaZWHyTTberZlouoiflOK5rYtAF0awvS1e/fOgf73vYfAtRA0GAQb2TwIS9N2xwJwIVK2SWvxWHkOVnSZlHn+OvhOMIVufuoKEbMl+c5oowGGG2JA8u266KlfnmyRxQvBBuYzZ5pN2hxS6q2d68RWkKDYojt8pMMo7hNhrCZyi6KpCODqWTcYUJ6JsKY8ZmCfTS56fCNJ05O9YeTi6yGro51AsuxIEt68qeN/DLUy0nUNgxbH/IYuTJ4iMvwjUKw1kPelJbL08n5LA+eI5257OmfZsLSUq2gICp6+3721QJkg1oOK6TUcTs+nXl+XPoKTIUsG/WYfQ5tmtVkp6KXoP9grcLx1twc17qsBW+9b0MojlG+SYQFWEDeH8gd04JZMRy1iyFnyV1njGrFdWsRWVs3ZfXyDb+m/ExHIFvUSBfwY/9Eq31pfFUUmbdpbusmgBD+PfQwJNGvdWmaL+3FLn1tAbreog0GjUmQ5ugQXKLdAqP6fLPo5wMWJvwD0i8GNhR3FfIocdv1DrioqGQ+YP7qj7gZc5Un5DdKjyXI4Krsy61xBVBIAWVsFiuZj+k2G1h1eFfypdR50ELQVpoPZkBbbZdhbCUv2kV9rDCoRQnmYMNXpp2alY8BlRNv61jokgxgKf/gRo9ST4uoexh8uc+OOo2y4Y+49/fk3bzvm2JbEi/nb2Wy2275/MG3zHQ87EBa0VZY+gMk4fD7gxrA4HbgsdbgS/PFnZYcOqecFBOni+TOuMLolfhcYnMXKtfq/YjV+bCDz/lmicO2Q+X1B7rFZLo6HRb5bYnkZZikAguULAhG6YoIOLfYuCtSkvxbEIG0LWY5nIsrnmCdcVDQCAiOA1vOfIBHC4BuPOdIk6dqg/kYger7K6wpcfseSqsAu0jyE+D2w/6eqOPfQHbw95+arhmyP9bpZLRAnWCGtdos0KBQF6Kwf3kGi7A9fMjqmAYYYB8ZQD8RQM5p8ezKdozb6OTNiEmM4JOAUibh0E+TxVjqB3oL7VxPYR9s17XtpyAZfDRLhoaho8TTX7QTXmk3OK4/ZJsV6bC7kOfB97CKsEd8HtySv9yjwe6ffdzRUwbvL0dr+kwZmqxB/LZrleO54f1Tr8qoqF1yXXNvrsYHE9DTxdHtqL3/5e3/T5XdNbbklU7/iOiUiAJYfi7mCGVwgpVH/qGe79aOZ4iUKas1ef3uyYR2OsHdCZG581vUfH4m+7RB8E2Y9lSThIh6B7oIivhgUHgXzL+6GiTjAsRgkdaGRR5U8yuAp6/gHvWSU5FOE2Fqv/U4nmUqLRJ8ywTtlJ5SwWq8uM+DE9XfdW2PWLQCvX7iyVOkFvQUaEtzbCznpxRTF3iV5GZWr4oru3Ll8kGs/CjZNjS6MNmaPBgHfwyOhBL7YHyBpg9QT/HN2Jet4VL2JXgBS3rgCfYKlXo2wC7cFhX1kKYFiosVsNDDeHYqVigPIe/wkqzgNmICm4NwPBmtd1ZvoRbo7eD3YSZkl1D/D53EsLWZkZHGc/1/pZW3Ta+637BFidtcwMabyXJ0zcph6EVLFI8Hn1Xd7Z5kFF1CqFNPAOQcM0L49YhNGyS9Qea6tTdOLSGLpqMBpLKp8hFCFII3NAggzVQV5byZtI/lWYOGWorv1Z9m4xW4N5ny26BarwfP/O3WtuCl3wjnSL68cMAhLhEvnfuOncwwHoy6SpQBREyESd2lmjoopmmUSJKqiGpeEWzfH/wVb4YDHAFIrYX13JqWEDVCVOjJ+rSO4EJ2mpgPmM5Teze1pbfqMfam9A5xVm4f04JBDyhD2M5rEcKV5fqwem4PgfHk1Ql3zhg/auL35GE+ygJLg3AZdlXqrp35cysI0wPO+8QF/EZdwJkG/7Yv16CncXA9h0iW80VR/nTg0es0P6uZbxxkbZvTV5HbOts/AgUu0qPoWJeoPphdIJ7rn6Jsw8aGlhgBQ+16HivXXdyVpSL7D+SBU+ZqGvoxdtG7v1M3z2mAptfXLUVfjTCBAaXAORg8ZdoMG7zbj6kvdz58jA4n0UvhLpZ2yPYRrAJVjUuCSSSjBPbdm1giUsajqe0PvX3LzN2irOxekRDOWwnPUOtlYrOG2Aon7XqSsNNKtAROdej+dG3F7vDUKa+IT1inuhkZebsGkOdHrRVxmpv3mvFq9ziwQ//muRlslcetvecKiwUJyNMhQbc5vgCfEEQA0bDh7qk9VQi3NNcZIOWd0akvMhy6ziMGy3XSGHzk1OSMBG4j8tk0wDTvzWGalu2pBc0Jll9xnYWT67VFNgYiRyPpPBp16neIuUbxp6gwHDI4g0wlWmNzb9l+wfVxkl5p2Po5fJZw59wh71JyuFaJDTYj3Btw1d15NdpFh31fsYiewIJuqGklUPBrrZ1SUO+ZeDGLqZ9G0uWmtCJqVkEjs+YTYFRxvf5xz39jUNd3H9NLSqg653XFXkq2+sLHyV/PePR31Z4ZnOEmzuNdyUgZrWemm1KqEX1D1xgL+/9W2BPn4ndEG7L4x6OJcMaPOwZyJn3Mk1rwcKV1thBgW5ty4nS0BjADTJrNMRy3E7mEKDOU5Ih3LkZObZdFK0Y+2i1FnDYtd+uMut/WW5UVv6e3MEh+1dNcRnfS2vtYstpGaeS9PT1OxvHIVsueecduBk6LgPsdmoVy5lv6VJrzfnr9sd0M3PELrF+7U306f+7qV5OYGtlBgawIl4sB+Ro6ZY1Aes8GjkK8KHQj/TTBsN+q6a3a7lS6Xb+kfiVzt9x11XqJrY4egx/xZ93baCdjbqUQWJ3kZ/B3C/KMNJ2+pfQQRlBrcylrekT64/TPAS20PpM5VeNscChQy0i7/F/1lour+k0fykdCktw4/4g7zfRNMiIBTdYwOvLKB584VpEBZdaKH0qeS/UjuA+koLBKy+DI+nRQDVK0kfSVCJP6eOC5dEtxr18Xpo0z8o0qLlvo/1i7ml2HOc4MMX3G5bBYlTVvEoVhyrF2gpy5446H6sf56/NDAX2d1rBPXJmlIsWs4piSjMdUwU7vkQsZZ1NwngiCCbGKEwxBDFIjWIUrVBE56dYjpn8YQmGHKZQirlMDfSMCVPQr2LXYyXdcBM823qDF70e7SLd+jrfUCrJP0p8XTxhjOkjoucpkpqCjUZU4Dl15di2+5Y0vVMyxTFpzgHuhbxjyWCt9Xa+WBBtQuwfqTNu2MmdEAzpNFhPFhNbPsqS7YqVFhVUuBTlytr/kn1POmbepaL0xtjngEJCJwMK//bgNIsIMDJUJUkxv19DjzOfrTLc6snLaXonduGue3Yu/spIewnXPpxS461EchMAlqZAYyClGJCba6jAbBx9fndZPm0b3bmRKYJcHw4sIww1lfUlODwhqZJ1baZgbwbt5mmitMaXZtBBCtcsxQWgad7okhrlXc2jEwKh5iuDOcQ3E7orJxDJYQYByFpxrlUJRSk89HXIYwegUs7jitUJG6anqpOiRkP2R0PdMh7aTqGtDrrhnuVtEDXni3giHIro2bhoOpYDmKWCkrap5VfA9O0QkHEAZ9MOrTU26xe2QoYSel2+BV8hHqSL6Zuapwkpn1BpmqOpIdrklB/jO4NSAXGD23+qnB36q7BndOyX23tq0Pgvf+BqqX+6kA9bpsuQWO2LOg7+XGhe8Jdaymbo7SDuREg3+n8bWOyZNAIJeLIjSHhtEL1ASCBpesOembeQmeFv/8dLB38m2nRYJRborxozhRcaq8tB0dsfOY3KaaMAp9UZxP8qAVC464vgle6R/6PRoeH5NLZ8tU/bF1GJafjo+ZmzJ9wb9+sAxuRHlQIyRDdnK7VD/hItuYCiFcv4SjeVl7YHvOj7v8nvrZ2bJNWj9AeWGlXAMmq/QJcDRI9kk4HZISCoqOcf6z4S09T4XKRSdOZSDeajFqz+aJDl1/iGKq093CZW5VJ4woSRmd6GnAR9Y4GS0NF774zXDRmpK+SNls19j/zmaKhvIxws0qX9IJUdB76pXDKP27pDnC8+BWoVuYF/nmdCge//eB9tIEQN8YH2cc2HHyPtJggLn+sgBBPtSbNUQ/vrEdJC3QbYHAYab63yfNX+QqNXAuM1HXtZFIwqYK/pbJzgENVmBWVjD3zFjKmL0GIakIcrkZM3ISWNEt8ISep47Uw6O57H0RFufa3gwwg5+hPi+sXyqewDDDAFre6y9+dzJhpmtp8aNZoda/Pi8oQN1BpiKUEkllTYBjvYCITxnKMIQzgyUtxTVvoxgGGGAw2Cpkk/TkWwDC7nxPZeXyrlfPr/p9FsAxz2AYYYBWWh291dqdjNoZxetnlkShfJJ2AjTi/1DrYEmclvk03FS3/mqqhtdfRDmFb0HMX8oB+5u3ysvZFPLm95985AXtCefaWOZZ+LMtYzQi4HF3LkmGCoG1aiy89dkZB9kPRgsi3NjPXJZJmC5FEvB/dTIJ501j+2LjeLb1T2jMsfnna3I+B4uKaXC3bTt5lgN24tj4cF6LDV165rrShGVxsbyYTOYNEieqqWynDTbm++JqP11x4eY/zpgwxYHnQLblcMze/zc0y6NMvOcY5FwJPSfphdq98YL5QtuUUbTawBUVVsF+r026rY9RId4HO3Wm7UnW4156bpGbsZqMchAev+od/dtqqljScrdHtOZB9WiCZchrXH00PgWn/e0fs513k6rN7zKEb3ZTHzh0GjTQQDjiMkAS4RWAIRPUoUuAZQXPJMlTUbRH8kmnCtBxXa3FoDTDp/aMH/GD4VZ9DYfaOgcIZo73oap5ETHilVfsfJxCKrEhGpYFwgtJFQ9EHqHRqt4YM05CDLcuD+OXwuX7v3RGG8FfHeQCmUCyEAdUCGIYTLr1ikvCkxK2j7N1d0xniVnkWdDe0N7gyQCLRp2e3aiX3GOfVorr9U3El32SWaSSk3gGil6ZQt2QGCQrJ43GqLOSYV576uLGeJz8tl83ifFvcFyho2KVpC4MC9Tw8+4SDC1mvR8NyjpjAEMqZXaPearTZpfEPRxUT/IExxj38n9L7UZvQOoippCenZNRxLfEW+iprqjrEaE5zusR0ciwyw3csT75XFm1CCvkNo5UOax9wr6t5it8it7F4rkxsioMzPMaqKpNHUBxEBHhESDUxunpBJilFSrXpafy7dra7SZd3HQIH2IN4hu7MOgPyuVN39TIKEUkYQEwhic5NWTsWnekqHK0CZLQfbEuvK5xI9lrED3B8rJYDCeq+nXL7lVa+hh13gleDhToII68FM6Py5nB+nHqCCsjn7dz8bDdG0iAnGWd2hmjxTNpYt4gPRwubvcJfO/xNoy2OPNxXWk3kgCunyP547wjEtcugHiRwqAf/Q76UNpA/Ok/uo8GmkX1YeDCY6IgB7L3X4O0y/RqWDwhz1bnrP0FDpQFRX6klwt6kzgoEQ8XTvkMwLjXRj9mNGDeP1YoqTVWNACUn62ldK5vsuNEIGX3wi2+/fd3hwddvLwp1gz6IeiCHILXg2nS9XINGw3udcULniAUJ7K8VPNH9VtiETGa0gyZyL7wklTsvJ/7Flm0R6jcrtCWwk5koO0TRkcHEU7IUVqd7n6Lp2RgpfdWSvCtJdoDH/Y5GyW0pEqfOyW0lsj/9OlgJpyqxwdEUP4tqBwzqYad7+B0sQer8de582P5CMIKyOVw6S3fb1NDNXoBUuMaPQfynX6DNumDfj0vG6DOMWnRdHp7RIg/+osoNDK4vNI/xA3iB0t0ZjQnADBFNeHgs8Q3IQZEByXz7co3qXwUxsp6Ixa2QJDzIlAYvXXgZGgtkndWpn4OHsmhsNE+KWAOZsvuGrYO1NEdgwac1uRMwPNSUI54ph+ZMQdkJcvm55AGYPRn2GHT9otZxFX0qhzDE4Mu6qDZUg40Y7EQ1xVSAotJBOTHwR2quNMTNKsfCtFhgrgUAKJ63qw7UwGTyL1ES48lad07rL2M6eDwJvfpS8mGK4UDS/omzMeZElt8sM19+bKmB0CdvuPMKkXEkI917NmxRV3E2O8Evwxc3oqL7FQ31yr7aE2stZtJnf+7uEifMlJ/u3xcRXOA5RtFeckLqXbEwzwbfqxMiiAy36HTfulj6bu3mJW1KYMNAY87FKCzxEgPdoZs8BCIBBRxXfB8WLPoR8UQTQDEOWYQshBTn14xHMgZKpVxLBz56HXCAm8peySrm2XBm9CJ4RAn05DWq/TrZFB6DkuDZh+/G45Nh+FW+BZ4N2UfRN+c2KPP6kXI/RU1eSxGDjCpDCWbGs7uLDaNB/720vcYA7hkXWdgqyPjVQB0xCCsQMH3Us6n4iLcTqEhISSP5amKrmigMLnzFiCr5B7OxyruvMG6Gt8QApfKVnX6CDpsQ9QR7yjaggGxrrdUCfrNMXIDFRiYZM/HwUzAv/Pu1gH793TFDbp2v6FB7GDkA9thS30aR3223vJhVZ3RX631Mu38icahspFr76lhDpO9prKQKJlnoL3Kg80rdW0m7nuITEPYlopzYcbxRxeu9tFM6Zvc2xBQ6NHSFefNiXgww0c3LMhdremm5D16XzmS+gJ9r46jrF0khgUdAHx6tjt+p9XcRY6iWpEVa63QHQlytJs2aHc9WWz+yT2VOtZBfg97qtIr8HU2quspU3ptlDI8ZI8g8tAcnPnMPb6mDh+29V+S7MW0CMXdGpbv8M6vWg5bcLrSB6IXUQjKUTQvvT6Ewb/QK7Ki8HybyPm42O1U7msHWhm7oINws+is5U8UkPis6ghTICdfggwCgV/BWtjqfToemwafHNvhCY/HtPnWJpF5rn0QmOEmOjX/V8Mxgk8+ydyC6NpP1/F4sRc10dyto+5mNnglSmtx2XvyIoQk2/SZg0R4JedWa1hnpxxVC2S4yDUuMxotS3Q0+qLr+YoJp84TQPDMd9/7UVy1bVa2PDF9lbnmH6GklpV82lBRBzawddfBGY3jWvrhzUFbkTEO899mUsD8qCZi9tzg1tYYBhgOSIO7XiUYTB6tLubf2rf9vM0lvsFWxkvpj3UafAhgHMWAkL6gqAbuv4/bdQoXy3Z3wqWwnh08LfxyO6KDrZHOtFBWP8kpyB6pNpGb7ZI3dVt5YdMbT3SbsQbjDFX+5GKWPyIO2+dh7JLOe6dDonbu37ffz6qAIejDLOEAB0Dayf5JNNfCUO1CGEuJQQ/p3OrqQMDihD+Aq+R4qOAEKMJ/loFIkwNXFVDtX7lnTlCfVBk9EWlKrn7lbS0q2c9aS0/DxwnBVtmfD3EdRJU3ZmijK76NAFm3aZCmEqAXONOemRnQUz+dO+JHul7VZpuFhoXP8oWUbOx5o2PBHfPUc/+MbpeqAz86t9a2z1k/Ny2JC9qICgSr7g6jfMwNxZ06zLt6IlW/aO/vG5U45fMnbbihw8+gfF2m05zbbBDRhW534HOhBxvx0uHJITelzZk9aPYSlGZsKAPmORy/rFwqVkuDlCUsQXeUbYahIGHoRkF5aJz+d6nAa6EmKLddPcsAwoyB/kq8wBvFXFKhqhVTLdifpWwwDDDAXCwmwvjfNifAmk1CKtiEYMbZdxJ60wDDDAKh2AY9jqVOiwd6pr8+pe7ZmPYBh1ARuXoMAxO8XJgAAYDGXZgGIGRZdGe/XJG2AnDvKCM3cqQmjK3UbQUM+4kUBlGJWLmRKt9/uLYbctyBpLtBzFP8q4IvQJT4adG8u4WC8Wd7zJwbqRI8+y7e1B4dA9J+eB2lNK2ezrGSKtX/6Mdglbpq/rt0k/NdgDofoKA1i4OnrEta4VU7VUJVeUtYYH3DvTRY4Kt5jO4Wlwro+9fBSwbsbNDdPn4lwJ9N/4zKZdchi93oehM15iBYC9wyYrTvTL93YMhpAR8mjIOZOJsLldnCd1OoN8KpT3/I+rrWFdrFviCRFusF2r0zmjcJ1fRxNVUYXQqo+kcVPzAqu88Di+Tw4zgP0akwBxlx7jsUIHzTe5C3Me5+PyNAt1PwAn1zQM6Kw7Zyi9dy7jOgtj7n87MnddN+SGReJB5OrM9v5jxaVFZt33MxdAiCy3fsLyt3a9fXxr0ZtPT1iYq7JVbNEkvAqZwcgkyjcUZ14v61yDygswshr8aL3eFY18W98LalrvcWK723VT7k0xtZX8G0/X8z8gXugOIq8UnWCZs2vQ9Tc2Qd7DT0OgvT6LyPyTmtgtnJ46SuZmxgrTsT3tm5ynIAWRaF8WviEA/yoP494k+JzcwpFjzsQA+AHmY4g0/2dV+fcWnL0y6nzXdn9OFus8TM3tl5Q3nT/0InSjJU0Ue7l8klaAEvmJn8gjdjLI1QQF0MzJlGQVSpKTdlKhDBDMZTc206wk240ZiHEd9fPzR5E7yrP5mer7peT2HXea1Ae5kPOYhEZoWXMQqKKl0Tsjpx9w2FteJ9v6XRWy8AzTa2llvZX7DtIvpE1RoUwCByt+uZQFqRZ4po3t/M5sVjaSrFZog4SCgvbv1/R9eoY6Qq575qTyaG61d5Ge9V0eTh2r8QNRhRgacASYa6Kbz90LM8sSmtCIEngszYyaoJgasWQkdANuHA/no07aVO87b99aT47LePK8CGaymGQ5+MbDouofAQZQjuutc/XZFgqBEGpkRZ7wuFt1MGwCnnwBEAr/fmD9fI6GZ6/8X0QXdhsYizDwS2gZ+aZNI42I/ENROejJclcFRw4rBIyvZsOyq68YFHm+h1UQC2ttqw3WvKKAaboI/SQc/qq2OkezemTheG4yxSL0Eg3ppkY0/us0jpJ9CUGZGxyN9uqeZjIm5ZzxVh6vzzbi4PY9GGxutS6OJh0Z8eqHfoJ0mMIQq5GZIs0kLdOB3eLuQi8cmsgd2TQCEXiqSo62cxAUcZgDjx0VTYy0J0FG1Eyv/NnKrmF9eNdWEe+G7RpE/lUWDVWUyyUDcepmpqL/c/IqekxgcUDRyowpiuujm2tx63CWROwUlg2uSr/FNI9PIirBB4J60T0ihFeNbqee2fu7bjVeCoCLnm3ISD3/h+UTUfh72iEFtLfyCj7OfW68IgTv7F9/niQvNkftciIMzifZ2sFgrx1Bc+fpQZ/vd7n9nhGpHL0RuHwCuDMquc/+bINTCWIwZpBZdbocPnURqNOkFxEKoN+8OZolCqZr9uYPt8DLaQ05bHXZZPw0/R6d+VnMoJmKkRyDGVDpO2ntiChQVUxd9YBjrXNnu20YwGRGsO5b7Pvvbtmn6hxLXbrwMAxCBRbjKZ+7XC7DiR2andns+zHi270LWtalitds/2aXJegOCr85Wta1LFa1vXr1b149F69Wta1qWK1rWta1LFa1rWtalita1rWtSxWta1rWpYrWta1rUsVrWta1qWK1r9MHNedXo/VyBMBHgwwwAR4EHA70ebji5RC4qWsy1v8FM8qdlQjJd13zzpJBiVVDEdHIKCZOoNeutt1iFu0jfx7ZqeJoVM7Gg7soOWKe3uP3fQs9y5L3p9SLceetLuH1OaVflqvHhzbLq5w4NXq6xXJZytKjfZptI2yzrHsoaTW8DzmLWqgKlkB5Sf0eE4SD4GudM12DtNNfhoF2oxzDq9vJcFgDV/Z/oyVCzFeK0XtqlHeJB48jJCs7XMVRK6N1XAQQXP99Uqxqaunt3P/d1fnRFi+7LmRSiZs0Nh/ch49qimD3dhrp6w+GDUCeyTzQan/sWd8afljlw5zsentuyKQAy3Czc7qKN2P9kkk9r8t//yNI0OxeRFTpK50Bl534QqHb1kKhWjNMbvP+ZFWRB4ZIdhDG6K+w9LK++Ljv6u2DovjVe/Y+Oprqn+P73bZ7VnwLLfNsKn/Vgh8sngBmQTrckjjsENPkHvJi9bf4I9bxT6eu5Ak7RH6sDMTGzg4O6+es2Pn38aC9yRPEsd58BVfefZ3dTodWAu834tUEAJ4foOZdIkeGXYzdkZTB3eZq+xrW3tlNz80HQhGkQNbUCJOoMY2bH4AZULUVPfIixrDxDmPopMVthu3LHQtrvinogFlgVSYjN/02vmsJNYMA63jKFLLStK8dDjEQ6g/StZNZr2MYZixawVYEPgBNlMgwH3XI0PW/sHEq5G+1y8rQVqfEV+zKrShASUo70ZdW+QShD+zLF2XfWhQUnpWaL3tArCncRrxMai7VZt085Xt9aENAlM45gkEE3Wc920jstdqrgkBn7PgODho1NPWa7daPnFY0p4PuKpB1jW696QTBEBfXM+X6IfaK/VwM8A2TZ1dvGWVCxRqQsQHiY948SpWyWLMRwHzzp8g9KLfjzHyjALMsWDYgk/Uyywz3VLgbqdLk7ZY2qqx8LNPTjjukZfWg8KEV1/jeo931cdHpuddz/2PRdKWxb4pI70auVi651fwtdkv78Uuq+io7cvdfCoOB7/Hdu02H1Tp5oBduYpq5wRJuWg/K6IfKwIWG3oldmsZx64ZbpnYbD7myEYh/UdElCvhMelbzgy9MgkORaL48o31d+yfQcmuPklGfMLksWQeaZiAHkzsxMchQFPpaY+YmCHb8yOoOsYrxk74QjQAvaF1eohzXaVZJJNOr0qRnzLVTtC1mhOSfOYVxtYdMUsSMWk0oTBXJbnm6DvJDaOP3YCoG7wR1/gH6VCO8Q2FNWJIzjRv8wOz83bBtze/iyvRMOTOzCvhCK2VF95SHBlCVx24PkaU8+wxoqp3ptVFmdGJzpoyKKD0LwBy6WX4AKB5gyhTi4JSSqcKkXYSunxxMl4sdfsKziYj3DpO4T0QZyP+zyvqpRJJJhRan8aIdMWu4QNPJ+BOnYFgZb24KVHm5VTRp1G1+jnQFLDrGDL71CdmblunwM/4qEokFIRyWSfFtIBtynnZpX636pOL9wjTF2YDLnpGGHPl893zPdCstNysHCIxfZJDJr4mVAIhVRzvxJvPfnh4M+YCfQ4Sps62yvMX0CgStjTyahi00jHUBzCRw7Dq+w3XUnJ/Hnn64vFkWQX98MbIKhVVIS3RHEwllMq32GGGGGA+uWePGAYsbbWs+RGdHmxwx7AMeZgAYYYdzTyUycrW1LirXB2yHGAYYYD6UHFAwDGI3Eu2m8+w+LceRlgGH0noPmg2AYYYD+wD1jNeLEx33Um+RqN64wDDDAbBBhNrIDMUY7EIHBwJBxVJI0SBjh+qY0c8EQNd1lK4w1Gcg+kcDCQ083352dgWLLlPAuBZ5+1NrI1eHP4TG6NfIWYDbvl2tkiUO62L0NDFPaFQcc4xak2DWi4NM0Hlafg9H8bow6HNZ5mSEDr6dYGTp3uitc12fqTA3o6jdhkfLDhuRYYQyqAaS8SVT528jZtEHv+rJQj0LdE5jQ1+qfbpvuotiliu5eR2eoipArRz0MHAt7wb77fwy9dgaimhuI8FKKfZs9NlJCcXhe31CYB1FBfMyD0y46M6MKM0nWBR8hm9eUAGfD16XoBsAv+ztg6zdM8P7/M964PFjHqYOhD5jVDIZUbny178k3pYpEnfzkvf449hos2Dtqo6Fxq+YBnr3rHN4noiNNykja6GbCKHyYAbJvKind8z7sP82HZrnZgfbG9frtfTpHaOCh1tx37rj9n8i2aiNt+bVOzcVfUrpF+lhdp8YjhRnuRakV0fe6KUejQDCE/lGKi/WXDHNXfT2hjDA/kcxYsUlwsJVc8xR+Zkt9XRC5NjIut2aWYxeGuDuLh2o1eEdGK03jSZQssAT9JNVh8E2DAeS7dk3f7v7FITJo+sdnC9Ewyk08ZnB574JcWNG0lRNyPdemMtVxDgLVUF8Zvsr79b7+n4GSrL1ZaqkJafoz9+NfaaB9lUgA9qJU7MXXfG3Rc3V+F3eyRP7BEFl8FwDa20wGD+EsX2CzJxa4KHgiBWAM2gD9PHwWgJVQ6yHLkmPs1n+y/cmtxVvcgh0EY7YsjP0SB5to7XyThpBW+obJ6hSfnEIo7IUy2sofWJMa7AtSog0pawTM3vf1ZzO1Jc9F16m92b2oIPuQa2RVNvzRl4+0GdP+4Iivr25xzO2YK29aeNpWu25UjIvftdwbB79g+24a76GdbWgbtyImBwQENJo41P7K8Vw9ZP8nqDAC467RRH8kC88OzCqlj9llWpgNQ2MNvrR/8TL1NO9mbGzsKMYJiEGbAxN7J6x+LwfAr0+uU9o0YOiG4vqsr+rVLfdWtJ6KRZLMZyqitSKTltuJooMk4j4ckP2dBe/LBMQNadb7j01AENiUhRPyMUrj363GrWjhMMV84NgnsM9f/0XtyQtva7E3AD5KxPXvNnS/c2LPpCPwfQSpqN46k4lS/OJVZ8bOqgu89ZkP8jw06EAAuS3QbYsZC9hgyeSuaC8b6qTZG2TTkVc9nsjvMmz/QobsbaSwWCksCHI3Hf8FY0eqJX99dHwVO5/wv3svLMwVWjQiEcYd7qAqx/US5HIh+fwxDIfrRmHf5AFvv1CAx3LzSs3Qh6SvsQGbXcP0g8U89E7pR6pEfetD2nWCt3yH4u7V9DyPrAArsP0k7b9IcPv3YdBjRacWMWGWLz6+/H/66eVKbGjRnTUmrmu8iNz9xG2jgnsqds0x0x74G6vMY2InHc2RpORiP5HnNlrcT4DkAwU2NxtLejTAbZaHpokfbbL+7Pfocgg8vuUg9gkhkmsjYasld7fmsI3dDeQTsT8AUKsNVIwPbvQTqlQ7gcjaiWlmU1fD0hjniCwmLyMZpn2U/9aHsW3l9/B2GmIzO1aNKoafHGjF8BOKQktTi38BgGGGAUj653lfvJOJ9boDQzRkH4j33ZBFYxcpv/TurjDmQVcmtwjDyVaBf9V0qonQGudSFv4FCca7GQLQX1JnAdCsRJuGy6zuqQu21mumcyuXMxhrUSPURdS+capQdx5r2+wtxmlOdxXKrjhxq5A/wQhDV+aTE6JHiR+pRrbb6ex3EVq2sAwUB/GFv47f8hSr275ZmZlGGVKLJjk8fN7BqGa885xLqmjqErMShLZHovIvdGPILEy8nPpzGRMsiEEiIY9PsOUqC8oe2nvZzcewY8kNazD53l4vIZyQ50cO3V3NxL8MYs3YPowGILYQQ2u7gKiND25hmjrlJZHBZ5JDJ7rRburF9lMrbByVP4PnR+wUOeLA64fRpiXwr9DAOSfk6a6r+hzEF0N9c88q2b6V6Z37Tfl6FEMeJaN6qNXs5xqfBOpNjB2tRlIHXacr/GyHjwbd0xt/Tm1GKGVOUPTrmejHJevfvKyD4q/TjpJ3sB0L+XeIIpZolbbzd+Eud6fG4butsFODV5L3x8w3nBxWNC266qdogf98kshxx/37LdfpMmqtLvZvt70O+L080TCoK6HySg3t24OS6MxGYZ1plvyR2eYI3Xkw+lNVeuA60YimBuniVb4X6ll3/l0F0PlKPhUqOxBzJp/VhQtjZALBKh62UYBZYHs3AQlJl4pFAgpP1DIGyBqr55aiXv0uC0deruBk3gpZejgz79QTubwrs9zof53MocSssVIRHN0pKBI/tDv1igKlCqBmDTG2pxQqpYtNrSY+tPPTHy2eIwjb5PTD8XYJ2TaHp+CczyxSdJh64kIysvTLJJXm7QmgDr2lGKnPv2fDtHwpyMQyX3swcJnVOnIdIhEzuRFCAvMES4UPkI/W9IYH/gp1YhRvQnbwu5aNewmYtGkUnbg9xdAgjllWHesFvI+KSbvD+/1aumOtWwDDDAD3uJB/eZOpJJyRSOZlqieNhIYHnhLb90j2z0+0zXn6VVXafHL1L3+HV+8rke66XyK3tsbG5SsPVz3O5kx/jLaByNamEAcIM4HWcBB5+/ndUeMV9oOLl+UYGYSzyxnV4hP1X+xfu0G8BcGsJdpcMU4CKFbvJtdpUlIgqvR1iTxfuRhGILb4t5Nf9mTAb9MKo9vOjIzdxGrupESsFAG7KnfVSwFnSvlTwhPHFoB7iJ96ufGz31N00+LmQwTYW69TT+buZoFOUiXpY33qG6o/YL145AIh/fzdL2dJaFNkdK0jMlbW5z3/zdKLvoMEEJs7aPUYuTbBqbTY3zcnlnxmXjU6iQz8uMSeoSgFDOAjl9ntCgvozCiKt5y+DBdUBQbTJ3qSkTMVk1MkYWVyyWN9Rb4t9Hi4Bs61ZfZIVbwObx626H6PRUZ5e49KLGAwBbaIM5HxiRZFwE+gH2mxAo34joQDYjGU2y5+lFPopvGOkEFYggJXeNzRn9vhFHUb7RpdhKbTs9wyCIVZGV+q46naJSkobFRhvgOdyjpbGLFAAd5lhjD38Q8/DYBhhgKgwDDDASVzU/Fp16UbzlAHKYBhMWg/xp8c+bF7LTan1dFfoYBj4/WhwrNbyT+COH4N3sKAMMa+CSCq78bsfBWC8GcZpOWYBhhgNHMvZYyCVq5nt08C4MAwwwES8eVbhAwwwwGvVK2AY+7AMMMAl+cJcbYZfJa11AklHnjPjSma/k0vksFVu2h8y3SjkBhjiMOp4CPBhPgosqU3HXtFfbvvLr801XR2Z9C6ByBgMZKI5zMy6SYTGNQXZRVBsuZq5b0m4XmZDO5VylbyzE1DgffR1/Q8fIMqZQViztGeJsa42IZQ2T6FAWc3Bh873vQILFfFbXUwQNtI6Uf6m13Sm/K2jkwoAzTEYUyXmQISuGTQbvjSxROG8oMuX0d/ND8HSO09CtphUev6/lFwR8RaPCF5TSapyWLVXxpN4JtnKj7BzZFpglaCO3bc3B2X/DQCrztkPt8sx79MUKGyjKXjNs0H4va8TKT72utbpWHa/REDC6JgsNPuXMEdN9Sv1wLUMel7kecgFwjCsV2H1VyNSMnMWgnQyKBngkWQFs6AK9no8K4dlnOO9UEY8Tt9Sgto/zpQuQ7Y+ET0zIjAH8LudOS1LbgntM2nKFflV+Id/aYGWxZbAkG3VNViTIzHK7IhxinTTcE/3fS33P8zY5292FinR9nzbp7UMH2OACc3JvZH6iXyV/h/rV8ZrB1gh+bWHjGy4UH1rkha2vTEkzHoAHInT6pK6AEJSqv8pw6YS6KRPgX4TEosTGE0koOceFh6MYeDdUgN9z0d9eSzzLyvURDdjsqF6gv7oZaiKHeDg218mGQY/9klTOHJFInyyuUOTS0qKNaD+s3Own49CtNNtLatG7274nlhGZCbGIq2fP1mS1MH5K1njetspGK0fP/kqty1y/0+N9vqYk0OAxiCNvEGjyn1q4hnZhSaDLw8sglKUczEu8/elyp4yd67MnFmKHh8P7HqwVU6U95h4e8EcVY6uEH+eoCtwhAuh+BL1CO0do+d9NG0nr5y7ddmeroCZSVwKQM9rFMlJ+P917ieIhguwY++oA7Qeo4gdDiIf5IVXZRqxATdz5VD7y5nUC/4Jww71YIG4ErHcyOoOX0Z8zkqHC+3uGkUyPOWbA1ugG79+egZsboVc52ncSjiPOJa+ThksYkywobwP1kvhVToAXD35wZygCIrvt61hSVVwDIeTpzCoFdvWafmGKu986JyST1SImKnllnRVDG/X5MAVLJzDxuIjBLlCUL1os0d9skp77ybCAUBmPNipNwEWdv7Kgo0BwjcORgrt2ntY9KMvFzanHGWsTmChXuu+nwoNKGz2Te7qJk/fk5y4Uf6roqlTkwmQaLeA6h+G33M/wsO5X0j3fOYso5g0QB69CNFKZcUlfQKeAAeLTJ3LCHDI4lqDe80zYl5hdv8V2Ln1pEluSxpAXrTsEutvtpOs1qG9JgeAnhS4Y1qOUXKffcyX0usZGXyzZ3BpZpqpzTiDBmj6J0GirELteZZoV16OwwpA3I9ydbJqVmjaDPD6EXkTMBzIvmko2J3jL35KGSgL1HBebe59zXHVCV+8M8Xr16RHHAWa6e3eMkyHVhdOkalzZDJwQqsSyDZaFXRay5hXXWQ1WkOapK+gnD06nF+7QViVaLhOpW5zv34bu/q6/O+48Y3BptkeaQXbjesaSIBZGg+EnwWDt6kyfgv+6eW3LcaGvoaWNnt+VQe55qZnPr/BBmyo0iOLSLsvmpT+YKpY8iZRTT8akyUsHVvSAMuUvpO3z2MvO6u+5dwWyrMCc5BG+yoianrNCcP/XOypJF6LsjgcCszKUFXDSsxsBl1Gabjxz2KYl3YYLZxqM79zMRfXs+gh1u/ce31Kh9nnfuyoxU3MVt+irbwEKiGUriY293pldIApQC5wvNuhWPmyg0GUvv6CD8nPN49AxzOgVdMo8/9XGPfCBIkxfeUW2bnyssxWkx0fExHxTi9K9wx6AO5zjyfQ0TR5RM6/9RD4j3nkFN1wEAVoogQ1nGgRb9yhHT6h4EtsTnicFIqfkNC5EjRq15OWrgkAtQmu5BaiE62ztpbhO905MfCCVtZcv2LqWU2TtpyVhqFR2H1DPcTPoWIx/vtMY+umk3r9MPatl2LBOeHKFCztoU4VMvVxD72nfntnC+uD29290UybHO58lki8SC4rEY0UP5eHFwkOYxxERpCF+4Xs0JMgksKcZCfVDR3aSLh0F4wK05XhdMeTeJAnP/q9YzB/vxg34hjGOTM96Q+xEXclSNr6vAXNa/D13qcgwpwm0cPTntMOXbbZxs8R9nDH+V4rrOBt0WCIlTst0fCI95bDyOmQhRkFqMUEuFWbKBXi5c96CznUtP6y9+9xS7VA7rP1lOCsGC/BbzaJFrz/aXuQWPH8aqMYNSKhzJL8sAQjem2LYHBYm0eextsban+jf3V7zpaQ45mFEdL207U6DeWgmzq4iOgjLT6CuJi2EP5Ev8lolg+C08R6zWvznNa9dNEHkFxj3nLHnY0krXLVI6Cw7C0Whau8OYmhZqOeuLLmupzyg2gSmWUVITNC+em3b2ZKGbb/W1axmmkd5nbLEmK1AJvdhWCHbDJmpHSyd7kpbyPY8z+LyUB7Re9EnXADSCodhhjI3fqSZoexRTt5kSgC1wrNGXJv1RC1/0QImzCH/TtYJQP2PIabQITHj8dq5UHFDKNuWzg0SxsEXZe2PLWUTp7uxv07G6ip/Et4+rBiZMqSUXFSdpAhg6h+E2IDT9NOWO/eTk2+l2bceWDD9X2UPnQVyCUB44ZCO9y9UtctGDo5HAZaGh0BsxSZf/1RQ/sPvfA6Gnbf3CqIG7wWHFwbFz4rWj4CWBWSC3maOAZ7Fpg/GZuYzuEKzH9LMF3lreEJwm0mtiIL5UePFV12Yi+5kxwhnFfee9X1w20cA/jiXkqWqVCInNi/WkBnkbFW1BfljvqyJONr18gkfK2aYoycABRWBtxD+pG70wbLrHOqAvi/jd8qD9qVct9epgeJY8ydEYJRawAe/TfJsISi+59NsHVvrzjnT7py7RB5GeqLIKpShhGUvWvY+CaGfuVR6/YxfVEaiGKNSRXyqsOqpdgWzzzEN6piXN8Pq1wEVfs86i4dy3lvfazpK3Yefmw/kG9uQttSyoGn0QWlusGAMfcKDHT3WvgloCjXNMtiX5fmQbVV4t1XGdUqs/fVVu9uKRp8Ir7pSOHz64YUItsx/qIiLpRitLNFYBit3JILcwhKufcohkxE6d6tGyM4GoOEL8EOzlwFOVqCBgGC6SkN5svf3rM6xKwTjdBwcxQmAYYYCjCDDDDAbep9qFyzfgAGGBz9Pv1mfdNITAZ5cIUIzdSBvic0MT4Z06zlhPZfrIsAwwwEM+2hXA28bPMJrucurWCrM7Pgwp20iIQ5XkTeSXFutsuGPo56Y/jacNHGIIQUs1ZRwJ7HPKuZukgnKXjN3r6Kmr1WYpAp/bNDPfNxsMzSyMjThpccVvDWuOxaPFqqmDiLXe9Kj+6jaXzDe014oGI2/62OZ5tsdcOF8x9vwKtxxi40Y8I9WEQQ39R1QxuYbQ9DyDQ9P6OpfFzaz6iZBIEQvRi+7C4NBaRFR5m+ad/bLIdVoEQOISoYhpt7c7uUDGSK+VS5ME+spu9PiWdAAApFf1tC8gdOiEf88cB8ETYu3Uh/xUQ/tWAUX5libTqnqfwWgTP7S8DgkXoLXRF7IcEbBw4IsAE4LXcCrNmdZ4XBn18UIaauru8SMdfiuGn+EmKwjEtDjFAIKs/HL/yS6wlre8i5UNmO+2sv3uWkXEqXpqH0J+lB6OLYjbwc89jMnZi+2htWm3JuCEJSQ8PJPZufpgExrVkYX50cFPXf1sVWZBn35SUtCrVHshgljp6MQWU+rONmeBn8D9yUOEfuU2+0mJr8nNClck0c53xzGcp/atC3SpFrR4fkBnNpZvP/TQ/q0Dqp8BgNT6U82+61C/2LhpTujkEvHRdgspBj0N6hVWHCwy/CaQo3SAB6t/alAz/nH2vgVDHS5gPT1sYP9uaDKWBKtcHpYZer5ueT+ONdXR5KJlqcFur7Yc3174udyHxKa3zFHpJR1/egmDneWxZvtAM+eE+F4W1IKw2gN9kiUP1w5JHyGQz7zGSmoJNCX3fHUwrDSBwMhacGPX5pKBQDoPkT1nu+lS56KMMeFNszVPLxhsKLIu8cWr3W1NDVwywbIEUYmO3WilDIGM5wh1r3eLg/IxjCfIfAjLqTNeFU7ln0YfTL8ePR2NIwDDDARRvXweO9zU99ypX5kweJJFKmb0AYYYDXP+h3qm+xfKknqlmLAGGGAhWAYYYC+8uAqi8jl9Azcu3alv6TzfxkIbm6SUMtR1xzx9M8QrHomEcQNXCvLA2zRbHxXYUpK0xp3HfCgKBEo/MUrTR2IX7/m4aG9jpfNpkFh6Elmj1MY7X5WOLTK6flR/GAEbuLrg8etQoHd4DEbEZUMM6+wpYHaOZc4Qqheuze99wGVcV1YfGHiJiY4tbuE5ErClRKiPrEx2KLCIfy6+/pEtvRy2Y8WRpWzV1Vg/e4s9Av0QoOR69imTEptL0IvuaRIMptmn3KBVhivXxNJ4EKpatdGt6OTZiSqhfv0jxUCvt9Us/MVHuTxsh/mLGfqDJIpXYOO+b87eAQIsXYLh/wkgJJEw8jNiP4UQeLBDXy07sIROLni+j7PVVxRiRN8xbH18P9PYy4ReUCvrS+VQ01wcoj9NrYwKWfQ/XobJI+tcIB9YHF6oIV5Q631IZg568S+7HH9xnhCg3UJYrhxxApk2PYXvxG5k+sL+iZfphyTrfqPmwVBlQmPJ7OoIDYqrv96UaxO0GMEMwBkB9ZMigN9NGoduKl6eQg0ihTB28UrDXRBn+diyDV/HipPbBuyAIWN8RWqO7T0viVcxdfRYmgsauQ5Yn0IpOHK8WX4WzrNhnlMtMmoIpd5e6Hw1iEShmAYx3G1B/VzNY9PoxeBgsTnUhHRZY5YHzFfasLAMMMAP8/7+V778KouDMGTBtgBhgXom3/MpOWTxo3/l2CZt3n9S6xKutfqI1u6kJDPi2JAGH1W0DaOPqYo7FIGyCBO5o9uEr0SwiN92VgPAleOHqxtfDfOSzxqEOjVUnC0rrEd3MttHXbpf6dV65pU+7m2D1oMWv0mv2qrwoCeKINSv9v70Tr3VG4Vf8f9Qqt0AfWjHPv2BimyM0Jrv3ewp/yzaHMbtm6J1mLXuPRE3rvyx6WJ7twX6pdG+M/4F/EQ+NuFK+XgVn8Vv/e5v4RXUhfsdPFfBCTImD59NNZLuI1g4Bex7DDhaWnGTuiQEA+XydAxJWpVsYPHj1Lpe855eBNG1KTq1YAYfRqaOWSrTD72zeo/nde8amd3GlIBldFXlg05oYUfZ2a2Hxu2vDt+5nKfWrUG3+ijb9YhLxW/iYN4cbSh6vCPy338Onl4WIxE+RhOmr9uY6fPG1Fv0yfuOLPyJOuwTxDCgc3ZYAxCYPobivesvOHukebSqKByQSh9xzq4FlBpJnU4WMyMPjfYQ1DER+ExTG1LxZOmy4/3b9Y+yWRuX1kG1byn8c08TS/swrgoirn1QOL03v7xfQNnGrjQ57g/EdRjY1cqshGv2zfY/AWVvAJIlZwkl4L/UI2M4D/vOI9fCKwDFxxMb3h0GG1QQHE55kc/ROf4Ei2+zuziyVNiTRs8UJlHQEjac291Gb9qF9meNPRw+HTtHdgy9eQvMVLVcvRatMIOa0T8ya/+DKDNOwNBcoV/FxCQ7BXtLXSlzRt9uqccGY6IM6Df5IkiElprhocQlX4U+OQyA4g3zHXBiSmhZgjmVIOyUp3+fwmoBB16SVi6JW+zKBAgqTPZoZKhphxcEc2CEJCyKwjLYuJ6E/ll7UlmfFtDAd7yWj8lUcp8bmiab765Hqv1kl1WmrTt5p8l78JVUA79ZoAHm8dS87+mUyeqQNWMAZAcVPrK001wkXZ99r1qnJ6Ld1tBbaqPJHqdQz3PvWvRVGGNvD5xyxpkExAc7U3HciL9b0je/zmBqVFr2oXnl1QVsB16JiQsOr9czzUKaEDELt+sdoCEU4wfd9hc5cAsmymJFhb4lahS9iYNf58huEWnsEHvml0lbseP9TTE8Rteg4GLdAqQm3u/R4dJa28+13mksFcRqt2qsswcn8VHvFuqCqQb/j/gEDaNIq80j58MMbN4t8AII2U34ctNg3vxaR5NXvb/oyUf1FmbH/K5VTEUBMnX/OpJ4IHzep6Wrv1wZPQrWwEk9fq1LYmzdSwUKryF01DH65bB7QoXRiuAq0unXfPtblXGRGO/ydvhMhn6K6zpohz6IBeiT3DT+sYHSaP3+G2uRBntW09FXRAklAaoif8P0I3Q+FhgR1epqoOsVishOlWCnAP1gTyKUYJprGOBCCRBrI8p5pIEHMjMAIAtCbojRPAoCw8XF02BWfUkCQxcKUx45Np6d/xK02DUkpP752StDns+dkNNWmPBTrx+jhjOdl/3tPLBQfxGV7638iX2Fd/z+Xy7cCvc6hnZmr5VjHfJjdYRL32j4xgp9nhV4tmmsAwwwHdBgGIytpRM31T6MmdqB4IXGWl3qto7mAMMTlESLtoJ4++MjZYw8euXmhwYBiysAwwwFmYBhhgGRdSp3zhaODI5s5qqgs+JVdqhMAwwwB1IwGyzGVg0JzXue6oQRhRxqojLOzScVv2AYYYAbEzLEH2ldvsOVuYdqO6cyMa4T5nMeUFgbw+lWu1Dwka2UWWgJbbVxPG8KxSPrgKor6A7pymG/8OBVJQuUCoNHwPdcvGl17H5jQKNh9REv+sOnv+S/EExJ4CtJLaPxH6cdBXZtoZwPEpR6V0BfLeb68T5UltCsOzccoBquJslzmrM/6WxRWdvjIlWFLBYBts9tmcQUQdtm2jn7hj8ioN35ln3lRrNOlWt6Dup5pzGcXbP8ysCRgegMlvK1btZLelhbkwKgTrQ6F6gcNr0KrnTKZW/7rOI3WYqq0ZfPdo2wL0kC8dFi4zk9YbwVKsQvguec5F5lS4tmxl9R9yhhhJLeAFDIDHCbPaNlujkf8ld+7HmUUSQYxHYkZlBJ3PxldhQCvWXvtPs93ahb1y+fKOcBg1XLahmGSgrBLG7+XK4CKfAMYXtOGd3NOET0TJrQFf959v6rftfYQ+h/QUDzOePw6dnCCEJsylnRJ1vqmkMdbhNjU6Dpg51oul0ClYbnKzKztIQnEsCs9SvaF+NzIp2yxXiYYv1wjG7zpH84DBNFN4xKDPdTviyQDsZ2mWYDH9UkliWjUKEaww7Vlm0sv+H6VHaQTuewtTuSOlTxh8j4Fo+loZmqVPkbf3M0PCn8a6yzGbKgC7t+VV8ntthvIvN8hO7q5OJ3q5gBtlY/zR/M3Tyw5Oe39sXWOHXfvjJA/JQZN8EBEK/NFgdOKppdYYKDRE+c+K78XwweZYaW6R52UmBhNYAVc9stu9ydKKsl0emWED2uuuPHJYU64F1MHoTROGfefRFeE45WnvDRgoD9Us/LOiulKBr88g0gcpMzxN0j6WyjtyQGXqrKd66nqpaKIdHNr9+d3FogHbKRaLq7LLYCifnsuyMefODGb3eFuewRpA2PDCgaY7Y5LNhZMBOKKS6efKq+nHqNrZW8oiAkIv782xqne6K/Yqmb7Sz6FohT8RWhkYhpl8ixlLEJA4IWkbVBy/lxUi9Ff/Zcb95i3z+cOdfyvLe0uSB8wesO+5v18OrFePhGJKvxosJIwQgOxrxA9soCBAhshKnxVAhGeK9oq9iFtZE4emkYBrBd7vRuLtGwh6kO/ZbHbyMLHTRJp1muhV3KNOgYBgIp2H00Oan+aw1Imc/AHww91ZGJV60EgnaixOSayUWSUL31dzGaL2hjlJrZOZOfjStK+9CPzUkmoivzXfu0IzcSJTiu3NGMdixlbk1Ssp3GqSuso2KJ+Nxaefn8xJNPrQZdF6ddLrgtDZ2ZviPSDfWLJzXIyo9Cxsg/l/fXaolNMo6ALnqT6YkZ/ZZw8/Ag6aU9lSFJI94k/xJepHaJu51ve2FMw5WxXfqrWwjOYf53kyUB03s7FcVQmKzFm+HwH/S4fJPnVCAkF7Y6G/YysW3wENDyOisiWxZ3lOZNn0+PvDkD6a4PeVW/JgI/I/UcBVqUUH1LSrvjrAoVZGlDsYQDEdKmXSJ69vlIxqsWo+ItFxTkv70bM5tdATHD7brWPApemOYNI8vzQEG/u3VQluB/LAQEQFWoTVZG8vgjA1bC9aGcaaRDMa7PDKn+xw9aIWF3JpdABbIhr60oJBJQceYI5dttkrx8TUFlXC7FldmB5gKS+1OBbfL1fYbmX8xRkrIszhTAT+JmyOUkOf9NOZJIMsO+jmgs+VqB+qspDCEFLp/2rtu8VmuCJ9xgbAP13d+4NfRPc8Xmn8mAylNKV7NZGwwOG+10iJZ2Cu9qcl3qAcsvNSwjPNgOOqYxPm5+ESVks31pR8MC7UsPWNFtXalkfpn2rVRhtPbdwv0ufwPn8n6s5FzaeQt8qctYBhhgMn5JjGhcJkzfq2UvSMN/w2WxpTQcJERy5NgVYhyHM2GF2LZ0b9Jm/8Rq4PJX4ImHQMcBuBuSti6QObhfsk9o0PY0U9WmG/jMvqKPQqTocm4tGJ8MNWNY0xnerGh4rBz1o5jfr4StUUHkLs+ih70v2XRco4zOs9Ou3F5sUfPY4pAi7jWR4UUnhnwHu+GohZc8GFTFkFsceEcNAkITm6IkSRlGppklMzx+1E+eAxaHSaiyMKftGiAcknoTGTgQmtte49+8ZYV7NhFSOzKzg4HPaqB+b9/brfoAurqTWzb7UJbxAZQkn7KFWP+2lq2k3OkVx1th89ZnVea/GsxUq2FM61Ry1GDwbeTTWp15NFfENwHzO+AhhQ10pyU1rnY9arsOcG3JAodxT6Mxwmacfe5UllMYILfH70wI3nC4uZ19IR2TfxjfPFEsCFLefkczjFLhum0pVgfenw+lpawlFPM1tvb5j7VfSFXxkDazkO5Nl+4n1tOlacwY61SdJsvd86mfy5nfk2lowqmrsFW0jA5opYY/R0hkkqrjOEskk+nU10NBKoA+aAKDsEEM13LJuXEoFvlbg4ap3f/vBMn7MUZeBrdZt9tnjS+u41TfOjuymsXpT8ao1SlepBGq99+j3VNaffhwnWcQDfQ8vyqd+GTB7eP+q4/8T8ILXGi2zIDj8Ha3hm843G4lZem5/LWIp+gIWw3Xmt0YPJoN1vUJ3rBCwReDmRWW4+XnHpdc0Cjasyn8JjaSgYI7T4LQ1d8ley/AmV0dfBDAYKwbyaTYEHmM7VqzujGszbtNNzSbBii9pC4XCGN6EDwb9qAfAcYjzVo1dQdeNY+/pWaLFhXrgpYYdBAE9treO0254gOXazd+uubjRnHTPh/hw1fTG0FPHFYqsLJ5He6dKWuEsz3anH0uF1vSpNsro2eJyORyWYh4rJ13YVs+CFUciqT6TQ/3h3UYpiVIsQbb4lGpbWttv1i7BBFQ1liKqYPoZyuZufLs9T2YKEWxBMTR4Ih4ugaNnirJNmOLU1t1uzsLYcjxayYPdJAoeVXpa2s5jQxCwTpkW8lNFXwZ2yvb/uSC2jQUWS0vg99n7QH74pvjz1/ln0py6RGfktnwSAcEvZw5VRxBaKEYZw2XEt88R/+vtc7M+fYqXMrERDWjAlzSQlh+0FlbFnHBT/gRxxk5bLVwAsCGmC/R/7RIqCRaXMDQeiVlV/N6LW8UKQk+c56ENlaImR6YRFbf1HvYxzr6B0avJ2sTB8wfZ9CDnfpqgxxOsbCJXBRaTZa6GpmOQ2fJasjVBAcL52kwIylGIHcgX71rAME53qC0EVbel5T20YiqWFuMyKfm/7GH5EkgnQsZnd1525wIcABhhj95omU2N2Yw4QbTmKswVBlDOCA7A6piIE2qWNnvazGCKWMMAg5Pje0uCdb/yj7n8cpuz1WlyKKoc/q0eHICwNNyY/VbxL13xR5AaSgM9Z2BrA89ac63TRsgvDMWnnrvtHyf3Bq3/QZ8e1XcUIv3ZP9C3VrR8xEz4qiLSPeN2tRGgcUg73/PFUvSAESVqKJd8ajvOecb7cNjuJrs9lFFhZZk4yE8pr92bbPEa9ihSilBaNdFhtDG0xRDv8Z7yUxd0EC6FHpLsMycxf6ZfN2fmuaE9CyLWSvs5XMURA2HS9z+vQoMwqK8c/LAkqPlxP9lV0pEJkyCpuS8Bh86vntF933ZqZ6x3HRoifFOo6ABm1Bnzx25Tz7z4qreSf24t5fxbilsPQQql9GeHCD9R8WmBy8RJibD9nYW+sy/YolaHEgLVrg1vtu31t/gqUaoW6lgEAdWcJqWc3BT+o7JXt9AWxjQLOmpFI0zbRo8ucoLzqvY+ZIlV3b+aaRzmx+Ri4lJ3Y7bUJkPPmgBen6GLyVHNtqi3aJjZdE/p9V5nWST38JapQMUL3EOeQq1ltB6VYMA5Hkaajw4bhsnUwbp8H6N/jr6Km8TbFz8smScunMP6iPVMSc0fRo4tMt4sCyZaouI4Fco1HvHeqvfnV0mV7tvnslQv2enPPetiPGrhjc7Lbv1HDJDRxYyfbo2+PuelTGTuwvn5K0fLt+H65lq1rzcSQOsPE2r4IplmrRd/9FK27zZuLq28NsSnmGZMv3yqV1ZAVV5leC1GDyKcQUBnyimdjTvDhTI0fVIGpvEGCew2S9HPwXDaXDZ/tf53/2WVA7ZNGLpDRyWj+3aDU11JeL91cK2pjrzKcZGoIfK21oiYJA+1RgMHVGHMP0NZfKdQHsF/6RuDcF3aVwcPCi496L9zwCw9fRsky6KVQbj03S3/g5vTyCQvvA1echQ4OXfweH9r1WT2nuX6c/Ld8ejZmOtJr8VLdqAckPenWC4h4zvUI0QENYL7bjk0eyZcpkqgnxtzEcmw8qA7KaQFb+NiFUuQCGrYw1eWiDs9oTFj5u8zF1IuFz12UMECslWhIBBZHzEDeoXYTZCdeRSBM05mNA4x9GkuCd8sLVECV2bjICvBAWOkX/Elu3S+OGPngggeR7DkAEFq+cldnc24QA0gmwXGCrlOP+s7zNXC2jYLk4k86DYvYQ1Gojl8GRd+T/ydmUDIm/b+MDLHjDGpN2LLgY3XBEvtgOBch/5O5iLpKB7kHy9sfkoGAN77NB3r1pvSQtiB62WFnOm+rCGsnx/EtxItyuxuViWX2Yu5S6Iz7EnGtyZ7qynb+9KtfykDmmNTIpcOqsTfDkkBl838z15bNNhLSKJcqg/cdh5DRZ1AFdWm0Hg1kV7ZL7By5BpHXf13uCedIILZC+V6DqxnH+HqftNb5Z3tQu26K7KNjsXHPG4jOdWxAi5B0m/rbPBhX2M88PkJj1pWGPYLg6ogYSZv+rz6JgNAZXpXH+bhZGD8lesBSqSgWHA8mdvqsWrzG3MG1oJ1Llqwv8fAYBPHkya09Q7Hr19rNwfs4ax99zZcW39C/1mCgQ1U7+xeUbc4KxHz7AMMMA1JNFojBNZK9limaFTTIrYo4TZSLAMMMB3ipmHecZlF4ZvZocOqs0og7OwDDDADWEKnKoERrZE4SmvyZo1czMhabJG3n4AAAwFwYAGGGIRgGGGAbDi6ZRobhPH8nQkxScrP6Su9DZWcA1IsM/YU3bcr6/uhAeXVJrpjW0Q3rjJDY51zkSZqO/aAgPkbjUwWHDX7L0BNOs5/Tssy6d6Hgq514dPf66pDzrarVeoVsmvCg9VnHbvDeR1okW+EvmTmmhny+o9AllZMwXaLL/GsDe02a7S6TD8nVJtalJgqnxQxjSUxdAg97mCTZ1gWfVAJSpBEBgIlBlNQ+cIzW/s+GlcUvNhzunH3H4Gtiq+NO1C43AvLs501qOiFQtM1lpTKgBjwqHN6JPuX9H7Y4QNgxV2DqWDthbVrio1Ho0jGkMwlePLk+3e7FUeL3T2LS3U74EUZQwsL3wTGGDPdcFlRtL1q8ztqHmFJpDSHJ338L73bJVZqJuU4TtrReMPbcZTnDc3FvDZze5BltwQTIEPyhF7QGcE51JwMEPJJE4QvFDMptI/Z7vn46El7UEDCgwqqtelah8tvaldLwySc7gKo+BKLNpRz57L6AleimGLb81I4si+2f9m6xB3fKT+u+YZ45Kvc0PajXjXkPaq/BjqwzHOEpbcTUD3/9Phc/7RG/RiTeoN1LIHfS7VU/n3w18VKGPe+WtmCjsf0xqniIUhyMuJSv8ptPwv7gdBq759KVRsU5A1LR8iokrRU0uF2gK5EnoIFXgSe/KBe7L9tNE8cjvNNCLKBYg1i2nH4rkgUnurmJU0NjNH5LqjtTG3jyl6uA6QzkGe81QMRrkxD3sn/JkzVsyvnMiDn2q648+Nl/laPy569M7kEsFmZHX9fm2NU9htiPGPCwxVF2Bg9XUFAylYKUHjp6rWqRPinK31STrsuLSPFjT0ncG9+enGA8Kukoq7jKAQb6IF3RI8ARgj6yWIBKEmoeC8ecQjzrMPpE4sCGEjaUc/AG3MAwwwDn5QpAhCDaYoYJCsFTyzjifivnfv+0vthw/LXpxC9rwW2reaXBRQxz/ZuZhNi/A4CGJ8nG9HI/WlrARCDFdftqHngm1k7VYcu+6WgRxNA6u7JeRgFPgTxut0M6VKqIXADHtSGlZTjia/b5YnrqLhvE4xpQQqjAiQ5BZOLrKeTwCZ0NDK+ZUpeODpl/MFwGc3LYUiG7iQKEi+hYoIOuKlEE4nxj3mw6ajnWGur5TlkuYCBNKL+8gFWCtqM1z70lbHd94krOmM9C6waKY3AnYha/cFA9F8/jz/paMGsdL2lu4FUVypZiPuvfQZmD9XS3g5rMH/b30KG/Lhf34YrU++25dGv6Pu9TBBI77N79Pf4dXm8mpzTMsPbYNVVDKeSgx0VZjcYwZH/2z5uLY4xQ561zc6nMxNzMq1VnDXAOY/TjNAbWJSBV6zdtRHRERQA89TdX5z0ukhueZ4o1ws0hxqF6jQzkVu8QalUKj+SX/hYGxdPrtK5rTW2wZnr/Kf9bjUtq7lOUsjyhUGDa48nMoka/LV8eM6odkfrhKALz3hae0CKjBsAbGnHuNGIJCUtVqvlnUt1TJ66T+RKV38bny0Ah53snEGhraprBoR3z0z4qRbEd0+aeXhrb6BgGLA3E7ZbgS2uJgpZfzBbB+oMMP3zUKYqsl08eXAlqsPFMaTYtJuM60pgdCFlJkN6cCvsagD3zoGaaKjM6n94qc31DgX/Rbw8U4BVy5e8lOZPz7yZZdAPptHRf0l6H4TrTZ6NXf/x26+W3rZKJz6Va7zMH2rDH/vI7+xJzfP7eMuUFQ0kNbYHqM1sn1RjvdDSh6yTaJsLtnc2XqS30c/zppLb6K5fSUhMhtJ734WVV538Elm+F0KjW953JLxfSqqVnl06IjZx7AzDXuRT0EC3Afe/BFsvgJWtk+nySkyFF0R+VNdDHVyiLsN/YKrcnVJDlkxo3RcoddIkBEZEo/+0PAcwqf7vnMS5lmhbniuQkIMfZqJT0j8WEbizsPz0TZeQdpheJMne+40Y26eWGzGOA/5XAN4hqCYMzQedbVXrjoJMxxbbJpgtTQVzRFnqfaib4KYvN8UY9OQv3H5qeX1+jzX8itGvx2M/8I6j/dabUjkisb0YU0Fk9Ip+bkmwSJUBNL3dlMHe/j3A0rl2IUn3OR+hWDW8elyceJOmBZMn6P8la5mDRxiFiIt3/qDDuDBe9MfpW07AYlIiCknD0JuR/go/w4l2ygVZbKxecK+aJjMD3tfSdDhR/lDZa+XBVwKiPphlqldJ8k6TU+8h45XjuWRYrWmJfHM1JCmycuxs/LD2P0ZkuqoGtApn+QIjY3E7IqtnTSE4r0JIT3oFBY3roCiD0PZArF/APiAKmAuT7m+OTrueRL9FaMAELDP29FYfJSPGyBGHNjpvEfX3G5manhA+2ZFS0Sza169HCAEzIJpEvnJ16M72j9tkob3lfINBhAYMsYYw7o4LwEu2qYpNZZjz0ZX0BdJyRASiTDCB4OLwKFt5UfGSIRV92zkawczT/mGvrnzQcbc9/JwQy07GZuPPhk2KGBRmLb8CYmuwqyfpMybGuaWPhOklNJO9O7QBhGOLiChPdDAwdAkYCGrwT/HO2IIhgzbjhJM3z/luslhJD4lA1VeX7FWdden6qtdKtU5BYDu2421no3SvZnnwpbYfbc6DjLx0bWTNyz/Wg6b5yKH/qwlofN44B2sLd6wf7bjJLZ3hJ9ICih0mEz7za+tFLHQpkQ7jZDQiXozXilHohAsuJgUtb9Lry3pMDiY9vLOFuGNkxA6pL+S0hAVzuEiO09vo/UkHg5h4yYgaD7NwrAAAAZau2aRFIzn5bDix/R6DwHPKRem4aHDMS1AWb3kuDrpuxBFiI4rfgEGh5HAT2wS6h1QWooQwMVYIheBzAdbW4f7QdyM/HkbMoReoer0xMKAsE5PM57ySzrdWzKMJNR9jQaP0Rv8f2mglhpBxkDxEd+bx7oLdAJ2MmHktetmeQNDQk+GDFYVdWzSX14Z4mbv9KE6noVQWgsZSZw8sC/U6TN44t5yKht6G2fOAzEMnOKLrZPJ4zCxoQ7FE4htF4YDEMj4LzxTRw3J8Oum9a8bgTf8qTfGtJSYx2UQ/29EcpzN/vIswfaDZbnjKH+F7lo/0FShp3FDPIKdpdtoe+3BPUPfxccynPNZBkGdTUeV6ld/bqCtCeH9tdO4EbiYR+dK8sbQ2VpTktofGz0WrhTWdGfIeuBnhdBL70/N+BIQat9V5liO6FIbykQX1OGU8Bbt3NDYxgGGGA9E7uXkwOPVtxB/GD7rpJ2AY4YMAwLAMMMAmsaHQ+iWQbTa6YDAMSTpyNBt95nV1fWtDuEGInIMAw29/TPXtsroFx6DkLFsAwwwFvYBhhgKxiUAiWPDJhDSplFnOqWMyZgGGGAK3p3aJKwDCyaAGADfkTAMbuaInugJ4MWU/I3k7m70Kv43GmZDn8flPwlw2YcZorBedQ5ioMK7nL1A5WV4WEUyin8y56oRouHQh2dxpT58XusXlJPV63an5ZvImiuCDP6oWgMA/Eqwjgg7p+FHCmwiog804R4LyK9mxWCf1Jp7SGAYPwGAYGUdbUMyvdp2Dt5wY7/M3hfy4tAu+VDketYZ/MN9BWabYx+7f/a/NC4nS12PEvW1/I4PBsK6r8I2iUJZad+B8drIPlwQRf+/PEotYm3zpdRoz8zqTQLvXj0EaFmVfdaMqN4MUhxEGiIiYypZxXtVdQMNnhozuF+E7eaP6zU6Ovryk+Lz1n+QfCnqkcc7vo3D03/dj+nRXylPeMIRcNi7Nj713widD4mVIgsvw3lMrX8tpVoZ5r/SQGapLcdBzYXOCwXlAsz/7TgeNJ6UZYXfjN9kefvle0x5rLUfNxVcw1NCqXPX51aH5CMIn1I1TqFmgGwt6Vshk1yIrE7BL/a5nbcR4OF6PlaNXk1BNsu0fn5BvanQW5IEgV1HpaI2y2jz/99ag95dtNYIUirv3xOT1TOflKme6KV1Mp87/MF9ycrjNiWI/qyrfJ2hf0hZWmiBVmvgkWPs/mohf7dcDqJA3DK/IIlWfgWj42sZ5m8IcCBoKf07O3ztWmW8X0FAtCA1OUs+Te87Wveg+BoZWcoNaLeeLP1CgauDQZuGNLIC2tH0ygJPPehHQpuhpaDljYUIJKhFRtsEF2f78sBCiprC+E4w6FNN9z74ocKIgXMYHXIWE/aUOcOmCfel0QwvHUxdloPi/x77P0jF119wo99psVGQ0IELzDaYctzOsqW6qoWm6yVoBshUKG31Gfm06SAWLlxjeXjdF6wDo6OhyvIfHTs/vNKth6pNVa7nNEaNfeZvAe7r0EP89p2dy5dFAwzA/N8DbilRyMBnUyBBzwmY1yXJZr6iOKW7owcpxMjQ6PjFh8DxG+FRaO940OCbGaXW1/efxkgq6QKgNkzJdkXT0cP6KS0/s0IqbW3b1o6BynYpDesiiC8LNH9BoLPKK4zm/mZrfCu3yMezYMiUd0Vm3mKNg/5fHfKxubcXGi5JjmoJfRDUYfOZy22JqrTuh+xwM00BQPyQQN28YaKhXvHjXtnc+H19LhT0h+Ir4kTCwwuBBv6/SYqa0T0340yugx+GxqW/bjBIVggXZSyjK7Rd6BLOzAmQlIc08P3eEvej8pVbhFZccSDXcimbnRjnaaR5DkWxv9A2yfONG6v+Adj0U48thxFnAkGPcIQAUf3qO962NGkUPcKUKrY5G5d+LmQsSA7yLNnqbdswUHINSIs/l8L5Tl7zBjzsvqXEy4vL/bowhwUCZSCkQssSvzPt2NxF7cO0YCeCVUZqOxseUzOoRoWaAaNjfSUTzTD2ye3cp4byxfVkJ6qynNKa0HuBqFAVw0wKJJ4QXbgksM3S8U9/SkywlmQZcqLlH+X8yi5KgJWYukWz+H2d7G4rB4u7GrB+4jjCiqk1w9PBwD+bq/Ww95xucRBtkM6RAcEMl1UoQJZmE3WRPDi6WsNVy7U73A5+wNYZks43BMAAMBoxYAGGGOqwDDDAJoCqP8lwlLQ8lBBysP03A+kvJalbwGGGGAkERY4roPGVIfMAxBsAwwwH3BhhhgDsAAMC4lqJNXvVff7EgwDDAAEIwDDDAO93JmYnGQGAYYYD8+1L4Gcq/NNTt0kj3U5goO1NG5Fp9vltXJCJlBtPl15JPtVTDBHD7LWXX/bPRdPXH861xK+VOJeb0osf/GG2xFZmUPmnDZ6/dFjrGbvn8ekxnTP7+QbwI2FwbqTFobfYH2005kMXuoK008yln6g3T/kmMaPYNyVkPH7JKa25Ns6+GX81gF7KLcr5XbUSEb5g6wfjaH6ytuGQ7ySJtGSaDtW1ZhghlvFaKlzFT8XUxXf9JmG5jUKKzi/tTOvyuPw33Szd6NV2ryZiArsvwiQnzMUHj8g5iDukGomDY83g6nYJ4CfO6WL5C5hgc2eWL/IIV8J9wMxNbjp3ZITFiK3RRFX2MnPSJB3GikCI3/9ZcAae6gJEPTW8GpeJp0z3I7Pijr+0NDMg25Op8gRrsfB0kh3mRergJXOmo+1vondBiD5KXpwsoITN3Vjq5c4SBdWf8lWgPWUT0jQq12SYrnFg24ApYrmS85WoiLgqeijfNH+NHWgOU4Tc7TXsyifIGc2Z5RmNrg/RV65s9SOkASzPRIm3ZBx650jrBEC+IV87KsrOpPaTU88ah2HLe8zOf8jPPnfj44BRP32QdtlY29LtxBoUlSw5htXWRthfIYp0IvZ/Sd/DgLgoGfk7Qa/Fed9GWqSqDrzYlmfo45GBfjxCdM+if/MxNkbMmPgIdYf1hyYnCZpUn19Ip578g+kzvP2ZgYz79eq+f+MySpshsOHKXqvzEqCT0NBsK7m2fI9jJNkHio1hnKOpDAxmW8qv0mAbe2w11/CabtdTx749vrotCJDFjKrbkRkruHf8teU9JfrMlNRYeBIEQ8Zo0DjVFf98p/RSKnCP14N+EGyIsAWxD2bL/huyN/RlN9j1dUGTunOS5ThgC5SDEFs/TszI/R+aZNmGl+PUzpDL6ym7z/zfAldEnjf9Iwse0ttrfBGUSeuXcrsay+GjWA4KJXIGH+dA8DXCyvgkh4Gh785yyzaNexArv/TLK1Smf6/nkAoh6/Odh6L5Os0sW+7jbjjSyOc+G1boO6EZaR5740hePwdt1X/Tzy0CvqRx8j6MzZ8e7wRkmQMJccgNxz0U00Q/mlqV/FJ12fZTpp1W1UJ+13CqMwLq9ik2roSh6oQe2MFtD0qGOQoAJfGIIKPhmlBUy7f2HzJYhuNSsWUtNCM1hsjuVn1vez0QHtvUpHRwcxf7tpkwD8tLu7xKS66r4kY600VuXvJSiZzMA8rcp8vuan5G1dCBPjY2QJyRgoyo3b1CW436hdXXZWQ0s6dlK55D8YaJ8YnRiRz6f2Dbt/mLWrLjIRuO8R961Ciol8iWWv752IWaaZDL/LMcimHn9b6herehDA53I8lhmDZlOBHMFhs4jKe493XA3n2DMCNMErVkCcM4ApePI2TA5tzXbNphAt2P2KZFQg5OFIPjaMwwk+lUnfib70wWGtMv7iWNVH5LTPN02qOyRF47fdaWi1pkuuP0MLOkruLtR4IQkRAd/h4WVICry9RmfAYp+ObZOLBvXoWAYYYDu+j/kNvmSD6NXM6DUoYt/dbbqdu9dRdoLVO9toDuxk0ER7Zmfe7YBhhgL9/zi2Qz/uMaQRhmAYYYAwQLRWvY/tsn07gZlzj848JDvEkcPyT0To9Diq4OEGgeS2rPF26yyL9PgmEmM+mxN6AZ1gaTe5fr4pnjZD3O/KgKrXM09w6pfzD9UTWWR6MWsMI7CzbmW2+ZIBTqjPdL90g9sz5Z8GMC2n1RAfQI6hLfUfI6eozSzHEIYYILA4cIZgfahiaEn57DPJtpx+XltcpK9ft1BB9iIp8OzAvDu4yU3EzEl3ustfeLJsgQKxtmsWk5LHRY/yNgQaMl2ng5FEJ3uEwbEqrggwHlRX3XSHidL0POcamv5czjtJuzQrLukBMBd7cQTqKc0/76VnuDvVq4fKWR4xZDsg5qi+CcbBrEjul2ml1Ag/2djgl6QADe3hwu6YyGwVMsYriBWCcc8SncvFitK6Kn0UCQiT/ovk01PaIxHsoC4H17iq4zq23meLw7ELyOAV0gXLVmVuSDIImDua2JXfY2w3DfHJWcTLDgcfWGVV6czDPDspTH8mTrX+0kIJPEwu1VBbRMtkEdNId6HP5fYBXuu+0sMmOq5JizYEi62n5jwc3hbsflyzgokyl929y3W8B6BosQfpa1Rk91cQcaBt8DHgHvf7vjf30Vej52M1t2TxV4xdPvhcsGmhNzBjpUDy8lHt5dAIF+N3cg9HrKOTCusUfFqBFSgChOdbBZRCnIHGt+Kpr4lQywPqLE/3jD4TX8UHE2v3QNuGNvXgXs0ISq6uW+akQG6MXpMGw5wkEKeOnfDRHmY9lT0UjYJ/GqGmu2FtdHcZ5QBwnBC5+jZKrPkqEJ3/p3CB3kymzJMt9RVyihU/LqYx1fJUR7Sv5/NfeAjiY1+ob0RV0ohVKRhhR0uwYwVOO7c0OGWaIP4/4ptmINj7SDJjx7rlDZBwno5BqwQtagk6peSx2RnLeoYBhhgL68YBhhgEsAwwwFboiriATRgGGGAnLAMMMA8vv8wJQPKBzERiAgIRAxjCYxjnOR2DiByMQGISMYxAY5iExEJxMcjmEjGIROREJGOYgOYxmDhA3SEIEEEBCTBGAQMZJAcAMdgxjHOBCAmMciORziBAc5yAwGEiITmOQiYRAWBMJGEROBhN22mAYYYDs47sz5gGGGAfXBgGGGAhgpW9iGAYYYDG1HHMAwwwGsv2Nu52AYYYDKe9ySXpDAMMMBBXGNwzAMMMB2e6ZnCeeKPL0VHMfa6HTOafY5Yja5qTLPISxqZMhPbIT+1u9edsJDe/JZ/sWb/R34iDPmsXKOFbHCDF7qS1bz3+Qnmpnb7N7gqPBBys0czW6NQLbuoMA/UZIuYZvsKD0qK94U1ieI51kLXW8r2Mwpi1YiHNHbKdsljPwgNjA/cgKCLPRX05o7QVBAqgQTImpNHaU8EElJbOoPTB5EAC2v9A1MyAeqhR6gi/0AekjOdKQJgRwx+9e1OvSzTw6gHXE3+J3uJ6ojO3+ZZ4tHxkSdcMw+EHAANQeSrsyz4Sndcwo9caL6GQG+iBOov4opLJ7sl4+NscOfw5PqcRrJRdbgm/qy1SrvC4Z6IgekyTqIwj4OD6JOSonlCn51dFJhHpvzjbqWb70SM4hzeiOlGrBcPm4xVeYDT2O3kJpsxObo13MoczGMdAz0uuO/wgszZy54rsMl72XVoWcrN4oLASyHDG1oK8yDivOrwkiGbvGYsnquycBiGGVHbdtj8UnAmRSD8wgiGpdKfTm9uQSOQptj/kgVzxnNdC+vTn6KbAk+APAvb1E8qWZc5uh0d8cDECltt4AiwcSzA1+PNO8KrOCC2RwhpqJ4H0lGOQuWKwrw9k0UDlbVoMkcveLbOHEyBIOGWSnc9tzII7lu5dbqfZdBhhvbNaMQjE3eBRESSGUo89flcMhe64gFyZ14xyCCxzaZuS0gV9oJjNvSeVgjpESEOsjImX8SREAkyLtUhkj1WUVgzLRTDbLAwZjB+EyWhlJulTO48SfN34m78IVaYaGdcjBXiCg7KiBVTmD46oM0EH1kBdfSVd3OvbG2imbj+XFZ7lmaPabeed12HTiUUG5v+GkHBoQqix1ZpNWppq4kFD0SUBpS5TTsIH378lDoMcnvsypXSXUa2leQKbp90yPYhOMVhSCkPEbvVW9MPA2KuZs5i0iQ0UIgCEgXePQxRtFqGF7t+8qm/e+4pmHInVAXoeFfD7ldbiq5l7fH+hfrdaEl3qV64fA1ChBr4bQ26Hf8LF7/DOWaQ4Rc55qL0Mlz3ecyQQN18KD8jR1TqZtIxvAECym685lnhXFtQsV8nKBK0R8v2ldvT30S5Ddpa1ijJEaK3fiuL/aygoSvjOHBXoE7rkVsq2WFNvh86V7y+9wSkva/dnR3RgcOsbGrb8G2mdkQobQC8m1PrfHibcS6tbpT65NrHyPOvT263qhzvU3Dl3/Bz/K0cmrV6eVqpClDdsJSHu1OgW/CLndp9eUD3SpNdZabm89RhTs6g+350fus/fKoQMAdxKjh2LFrHtiFiZDOfjSXMBzy5P849p7WvS4e9WrxHb9hXOIJiadSGc8pyRwVF3CuFskYjDM7pUe1shxxv7OfeyHSUDLrC4o/575L3uAdhHx/INYaYh4en8kzjgeYYOAvoUZWuyM23Cmk8LLEBhLCZLXbxKQiSKuiGKpDng8pd9ZX+8s0CU6OgmXwt7SF4+mg6MqmCQCasDmjnpQwvMQk2mnqSS+ZYkFjpqpGurHvMuitarhuq7pT3fPUXnrjH0hA/eLbUbHFM1v77bQ7oNBY531Pg36z6SyWN54XVwNWVllCbMQiN0sRmxkd2rQZFlP5dkYc3uLfNN/aV6mucdbHsjZAUggA9WLx+x4eZ2URIMLa9+AesOAKZyBAOLF9fueOJbYm6Ui3H08VyD/MuAlGZtkivs4e15qg9AT+XaXOpanqsy6YT53PcZOLPt4oSMbtv9Uv6rfc8muNKQ433P54bd16pr+RJuY4Il/WBdm8f5k735O2cCcfk5Pr24q2iZL3wzOCd7JKaUfE09dGUaCOB75iDe/evdNT314unZPT/DFhnoSjQzcEv4NbGlKboksYAK1cdvh7gu4IHFDey9Nos/wI69qu9ap/ucttkS2uuWdydhtTWgfyf2MqzWFKmPlWYdOO04YeeiC7UqsQTKC6uzpqXBmsOm81LsyZQkJQhkEvxnC3z8uKDt1kov0+h+7+KIC5Iy28tCPX+xqIdkI0AHQJFQCf1Zh1mO6DKMkUvMzp3OUkODrDg5Q4alPYgQ+VybNBtPaefiGiK/tNjyVMi2w+G3mCnVj1qg5WSaG92zAMNrYYBhhgK5P1xh2GGGGA45sOXShJLnup/us/Du7Nx8JwrEEazHBAjdykR5I29335c232MswDDDAFBSTr/TvIReS81VrTnKQUSDDDDADUZA+xkzAMMMBChJD6oGAYHQntzTPM7v+UdSY8whgHNYgab+LyoCBXEf3ghQakTo6q8cekyTtWtFb2oI1K/fJh+6tgHFt0mmilYiyj1OMeKk9bD5caAkP3SHAozYf3QPBA3zSooFplsJMltrAmSD619mPwZXvOVyh8PvoJ4P7b8wOlvcf4YRNbFVy7zAMT60IbEI+m1bAoVS+XYracGoCqN+JrJj2kVMUaDKhyfa8xVbxNgX2Ly7VQf+e7M81hFPWwpNRL0+aIal2G/qg7vfTxPU9MlwNh5WVfMUIR6vMy+kTyhkV6ckKt4yyTaWS8WrH9FRdCiF1VmHJmow5CyUNhKZSG8FuuusoLGy/qIF7wtv8p8kaRFHTCR0383+w6fdTxXbmoVaS9UIjad5ivvDea+uyoMXd7rfO49cDXrflVE4cGTBr7SFbPEeFLydX5sv6pzjvZJ/LJCioGsUjXLZPhlFi16y7q/14LitWhkNn1vWYOf85yyw+C4/l7JFTK+mjCopZdR9qGyCAannwBX/LizBjSJYJ+e57IDKDyMLuERaj3PN41fc8KPIrQUnaMDcepE5nNqXz1/IR1A1tq+XWTeNYETag/L3k3G0eAym+3mS0lNrgqzMCzWBA7+LNwT+WgtIiq5p+af93VVtq6A2WtKr6bCGDmXl5UXh29+7p49gclp4515uX3zArCDNeRYqrHoG05SBBt1ZUzFH4JkBk9JIJ9nPdvcGq296LUmSykbV3u8IsgeB1SJlm4nj0DLL/Orpsygzb9bFSZjLojv4mFz2f5c7HoIOqQDtXyFISpvQ9KS2KrpQvlRVCRYeJHSJ8kM99ZsaSU/Y0svlzGVC3V7iUovR5/daulIhfyB7rbl007ZsnoDtux+Kjj9Qupz/2TLO5GBUVvaD1m4Mp1bUO/zQnHhDkNUureZaWx3Iv9Ty+B2LBNS0fcjGqhLE0x4kuyU2NDk109LdrfufXlUEE0sK1ZDtT/bKnVJ2YQ1nsZSru7m/ttq9087czVvV7tjjGDVcxQDb5EQGlB5icPPZxZEHBQ0W6bR4fkpYVZtijlCCIkq5htZmztakABhhgYKSNDCUZKwN04E5GoEcO8YckEa1bxjdyOLTsk9Gz9CqIMoKxsOoh0OKSO6URpul31pGy9velgKovDDEC6HaClhRbiG57kxoWwqjSrghCXGSIRmbE6PhDHbZOO/gnGSLD+/jLAaES5Gu4cFtUku/325aWt2ZpDYwiWHuZm0Bb159NZKCepk0gGwXZ3BAem5Hw6tH6BEYVSPhU6kX5KsqNcaa24+FVOd6NsoyAQQMjCVsiIZAvZ9qNvAupOOl779mT5W4xJdWZPsG2yN44VnJ8SZw06hcBlekyL8TeY0acDSLJ1sXraM6V509SmdjDWuhGIDM6EHvFulC7VGe5fOefBoq87Pxe8raMGLcCT+cwW+BQmZodlDTgvM1jEUMOZjFB4F7Mlu7UY2Gs0fYqa+q3Me1etPnVk3ScEgLRrSyDnWdxIcdpUZa0POD3k7kViPaldnUcFgKRHEE9PejadgGJJNMyy9X9iMvbFUMurBJYgsFDbs+7vy24t2nFukAZCfvfd4wDDDAUTCI5Fg34MMMMA3y2AYYYCzWUzuzQ0DJP3VqWubjuDFIMAwwwCZOa5D6D7L8+hnpySKYBhhgM0tp9N3+JgpdILwvyo7Zx4twf8kbnBxhn+j2TbdgFMOvWVLbflIXJpUTzfpt8+hYqApGQ/h2uZbzXRe/g2Ln6zuhf+M3S4XNrTVeZBX6uGC2SH8womZXRXFQnAwpgm28AQFgAEQFgAY9yj3ciCXlJaB6u5Jcf4YTS1jKceko/DyOenzGiBgGNbT6K11oamWpsOn+pnR3j0dLPY4D2/car+8XZ1Rb0Pa6IIT4IDaWqJUEctNGIJ+KHEZk54KzICx2Z91iWI/SqAoXRWPpzy8NMKH/m+FqbRhzocw2tgRUylGw0uUestA/m+Kmzu6QmS1uEzCPG+goiUUz5PVTpR5lqJsg0a6odURFIBvyMWMEDiX7Jqak3h6r0P2G0mvoDLKP2tx40tj39js0ZSt62lIljeKIUzUf0iWHRrpNvSycg9wSodgBCp31OCi4ZbQvzf3xeEKWERdWQJdiCaN+x0TZBXjtT4xLw+Nv6M00Ge86BlSPcYDoA4T8YQuK5p2fWcCeGR2IZEmR5neOraSd46zTbVXaKT/PrGIpqICuZPbiXCzemOuiKfMxaeWFdYyfSqLQ0wm1WqPvuJ9mf1L++jHZDYUxp5fd3Tbo5B5OduLLPc8sRcRaMv4eSwb+geRttxTNj7BEqQ3LvN8pe1P8CTxP3xqtOLBEubiK+e86FZTvLVGACFLZn6gpEjpkiFwYACYo4u1jOOoK4sDNI4hRi90NaE+EtTIQpwyVzV/11SbS8s1NftNq3fpwKJt++EtcxLRdOs4A7T0dzmdmc+XcINCVZN/rQRxbzfZs577h8A7tOTSdtGXcl0T+sEnOcv8Ym0u+ooYl0e61rdHDxCscQKpZBkZA5XfnY3hySAlDcv8Go6Ew+2y9NHXpWH+CC6RF/tHiam0mqFHzN8Zkf1zQYq0W1SgnTPlWSJ/RzpEf7PqkwKCiTEI+KrI1QhQYtKcUtRtlmkRoQw9FCy1oQnu01Z4voVW4Y1xQVG+HZPGd1PV+7t5Muz9VrT6z1epQkSR4Hjrpo43/r0h8Fq4NLe4GV8T+9ZoLpXfwudZQwQNLysJ+KK7Oqq151qgubujO7Z+vSsOklguQUcYn3xx2MpEaSf0IOZVk0s+MZzDhR/y9xHMK4hG1FeQ7M9mGfVD+L5y50iDIKdUnaJmVeSDllwGfWr7xgFVbyRsGVlcuTJNgH5lADIMhJYXbqpE/F5TI580JUb+ai8u30TXsyPppkvwnH+ulJnvB0PXsnPp3E6E7YuOBu/7Q/Kk48FxqTP18kca3FqpiGfGkXT6d424ywXFq8SswhZONGZzb2gApNHebMfk/xu43vqxKiseZFLVfTl9mItnM+s0n1UWYHPzQGLzG9qag0zDNH5Zq7NVvmk3sDXlfsFrb/wB93cf6EOQ6En8ll0NUnNEU4O3P/J91Ye33XsTwOr+iW+sVNCK4AZVb4x6lsbO45AouQb9IYXh0/TLenhfdMs2QsKdN6C/Iho5qZfNoAz+AQDxrpiGCdESv41xcg3/pLNkp/CNYHJnMckj8h+kZYkApuZ9CXG0dwSpsd0bVH9RgJD8jPxqCMsAADAD0h1cZ9rst8CW6wYxqdo07sQT2bKRlrz1TRUK9soVSl65rAjAheXjTsGYBhQUXCk5gMLoeszBfCQZP5JveYTSp3SpN0IprR8DbaaYNvxC3RBjQ5e5gGGGA3VTzCbgwDDDARbAMMMBOwYYYYCAwDDDAe2rt0L7MAwwwGmYBhhgKAwDDDAQTkgwDHXKGxjAMMMA1JITrpuFFRbteS8navMzIpyLq7sAwwwGqP0Eq0eqrfSpqHt9W0b1002klj02eylaifFlHQKRRDSSpT99A/kpk0XpGCPBSX9trg6rIK4T6apFs7jSIOk5bxbZSm6iYGn+uOjRkBjhiMBndPkeSTjimTDOfttMnyiZQ7TiqcwDD9gGGGAtjDAMeJgGBpbI85pp8+3acXLUbCijgKDT5il4JlchUWKLo9YzLLEBxVPDoDq8FGruSaeqYb252BQ1IWOLFlMuV5gnd3k5aJ3yXGUPtnhUH+9qsxot5elA2g5hzhGejOrMcIxuIxCka2iOwqic0IBMCWGDewZ+5xIJQCfN+NKwYnAKDqE7SSs38IUv2jtkkaq2/W5mkvZ2KF7walaJ3S/cmxsSCKskiLB1k0tsrqliX5ZMhoRMC6EQdKqJFkvllkaonxUg37rro2sib6lXT5OtKnRJ/kV2OD6twKBIU0fOeEHNHbT2Nnacttv8/1f4T7JGWj7hRv5GleuAw5sqscf92ZC4LVN3zajItVGCXmX6GvQdUpEEITJjcfjiJfuX6pGzkqQ5XrdLMfZnrRpttd5TyG+l2Wlqr1RpRgeFY+6GsXUeJNNzJLBgC6ZdfrTIxIxFNWikIxwmEMgicQj1EBF7zZcZFsFdccxe5yOtxkbVWuNV4SS2byN415BZYWwERmo2c1tl5adBO+TDnPhXJxdThKcP8qy6sLamj3Ir/lrQYMkpeMKT2PCIPBzMyaPHXk6px5EPTg1HZi0/FCpoTCIa0bhLsPUr++xFZeBcKiXHn3gaCOlpfrbOzV1AJAX23QU42P3y9rQkBBl8QGC1mMYKMhiRdXyipBaV9kQMK17p3NV4399CEPgdIoutl+PyrTikANfzY4ZMG6CAa7FbIfCBnngoMvI75NjUXYQFwyckAY2OCqluKhNeZCUL+vBaiKw9VRbHAQdb3ZeaSPG0bRmkMtl9+KtcIWJin6lM2igVWDPmXUoGaG0FU7vQ8NBv4cEvl/9rWbhHLv1tKoBi5fhokF4J52H3LUZDCWw099TpPTXxW/y5kzkAvMN4HwC3huewDDDAGlryi95y+Joj6ortqiFhJEQwQuAkfYVAkw/ERwosKA1oQ89/w85fFtVFQWm7i9xLOpQuXHZ+Sx4qWBs190EsqxkrPNWFtf37VPP7vu1n7pk9laocSlr1nZhmAHEEmOWv4/yZ36ZUUjZ+zIPcCDbhPCnknQHNycxNayzwdY6x1SyKXUxlTNMaXa9Nc57OX9uvh9sjP60irEoo+vYEMbGxxurZ1W2Ez3OPguFcMHvMm/16Cmh/OMY6T3n9Jae+M500F4+wRFywVq5Kd0/IBgDZ3JjVrZePRvKPOZVYx92fOHIadz2bK/SiONr+mL363QmBjxsB9rjZ0unyuID3/MU/X9yqDv+iyBbJEwo0aNR7+JBFWp1bGBAJPO+dtbDaKp5mAb6xip5brwLtzto9pfds2vggSSq3ECS6T4zWyaBI3EQRZhkl9vdnSgZxsOj3nEJf2Kqo4wot3ujWT2lqROHTZufOuvcaZWdWK5xzBEKJ0wDGF3sbpLCrdAwDDKpwczbY/9qKIaOYBhhgEcY3jsLTBoSKKzHOBtUa+MAwwwCztTzzGWokVC8nDwQQK/5KODSaEbTM5RbKFTB/bHbUpSRY/TjzH5cfB7XRqAovbrItDU8Y3TKcX/DbwlbF3NLcLRIIuj+FWb7Hzv10eLPCDo4NppuO+plVe01P+spaGnYpnyifARZgNWfYVhaJuy+tEFu1MN8DnviFvHbYB5WeMlguRerobvw/IcLMAhuKwvxDaJMBKdcuUkAlYFusR6y9Cop8Ij2n1ph/L1Pmuj2tk/EVDJhMCz21OhQMOw2zDH7HWRfcgfgPvd4F0oJ26op+u+vOQ0W3cfLKvrixftaTXp8sKDEip14Ijzik8bZUz3OvGJoBZRFZGxPFB8ggUAkIgxJkHCRjzSBBBxcYs4WbzFZnlNixF7Osmc9bGikwps7mKufllPrYuXPIup96CMgTuYETCLXCj0vsn5PxYnxi3gnSdvAalVLgsFLvDHjSpZ5axEBGzomEV5equYTtzn/C8g5LMuDq46JcQf1IWHYSOLCDfQnweSboM2Hw2x/iYny3dhlVy/iN4zGzShoVgNsmInsRt7cyTadhGQo1L8DyUfCbiyuns7fMC7NLNUKgTPiRI+gOugeR1nhBrziqF0Mwo70b5be+iLHMwD1Tdo6A3nTBnHaCkvcpB0gQGMAagHKVbnuhsRakAZoF+YwnDfRXONcvtrpGx92XOisU+dO9XFKELAtk5CHamaYfhIi+vZTB4sS+ZAPNNCd6gV1+Ylc0oscBB3LLD/yIC7/pfiisNW3NZGa+pM1/pq58J0jMhfX3gTFNwQPyKNEEDiy81uOtQEgiAQn1v8fdxeVzvUXNoNxw4FCTj6bpCU3dQGfhWqtRuQd8sAgWrE1OTIqvUlzjFXBV0JkCmGTFi+OvJykZjqCXwsC8p+mVYI+qKrPGm5s1yZynzJrl+AG+txYGy/D1qFSFP0vUlKXoDH4q48E0b0IFLh/EPrJQGO1+UuaJOsLbCGDqjcbVy1HEQmjNuPMbWeKOoxpyRH5Zsak8UHE/PgPfhXZMFLTVtDZoblRu023bfKY/mtab7tK6VUgmle34ev5O2IwYFleaI4av5HDLZh3G/5x8NCz7LnSZ6JnQoqkt658c52Tb6aMAxOxYBg1CbptSZAyWACbiq2QkD0KcEtvZf65Q22CVBWU9p0smLA2k/DaU+bXcLinqKKmJwsCGRCvs5QtrIV7w+1X/SFBG7/wpOpOOaV7iSRUx3x9k3UfNQy1wqf6xiXXfzVDi1mpxSt1Qbw6vKEF/Ju8z73TIWixffFutYRBLn6ERkbsCj9fLDHDHDzZ4beg+rTHGJqxwf6f+A5yy63nhxbN2SyWkUNS4QjLoCkcSAC4WFL4HoPR/WIJRiH/lVj0GZOOwlmA7197eDlx6YgCtsm+GIgr4bPuLorXG2gjJF6lSRcQm8bgMLVbt2+ED9vmzqf4CU6QSsFrQ18j+yZ++hJ95XhkrmlpPqqBcii6mw4zHaQptOsNY25Wim3slhO8kqS5NEi0iVnAsu0yYeLDZJ/o8ums5Bo2st1dOcdK7sJ470wP9r7kZ+y3Uz6IxQHAMNGOo4WYodO45le6mR607curAMRblPnb17OygdOkr/cETjAMMMBgFhHoKNjbk/CvtbEXnzrD+/ZyjO1ybB844LsM2UdRYHCEfkz1s8NvS4RtFJj4oYhu5UHu82pNqBVM0ZoNsO1VFOm+Zc+/XmzX1CI2qgOZnPYM2aDAj7OpI1l7uLkxvi3uBs8P9Ezz2xrZKVrha2Vsvt3EsT4qsUseBLelF56NDb6olDyLVmfE9e99RpSQTCUwJQOR1WSU9vOonhl9mQiLrwENB6pKg2oiYQwK9Doub0LrJkIr9OYBibtt7uyFkBZ7BNaa4lmK4SAb2ArG/k3BBfUUHfIz1kY6pza9oTV5WgTZtodjYLguMGRp6LCqab2IpWmrDT5dTTJfJJuCufs+04O+pcvm3iod89PY+N+t7FohMDkyVU4Fh/lEXcs4n4JKxvH1VUyfHh6mRcNg3o5qSLWVMYxQyVlrJLR8WfMQ+y0JuK7XWEOsth6fjevEWjX6wN909e3Gt1msa6WR//ZfFyTOctIG7e0Crd18pGoYnV97gSqVkCQPx1rbOvOh1R/lv6UFkDj8SYtHapVgMm5J5Ga0Uuw00/lPw/rlEAxyM/Li/iNyQG6f2b/2KEmDt+8ma59fUMOKzb9zy4ryWCLZzOPaJEjuGYHrhrZgraCUx5KSfg2g0a0iSq3vBUpL13tcTuqa0iG46Y0K1G0+0UFuewuX8CJ4FGyRPEZZ4S9EbAKrc2XmAxGo2nTahaFZDJrYHSlB1f0xgo24kMPAI2vEafDsY0mnycT06il2OtHvDb6gXAt1MNfxuNlvXRkt26FqfQYXuuKcRDl5d2QYSQRwe0f0s2FezHOK92LMtzGBBi/PTO/mXNyxgF0wg+S6h63KWxA4KiKRwdw9x3kZy2b7xya4L77Ms3n8ZxeR3tiXtEBq+3+4LwIer7NcLv3SECC35ZQyQG7zjjVzK+RM6TVnqrfp+fRom8QVg9ScKRo0MMP1IOvC9Txtz7Dp77JWjF6Zv+bmdb6qoyTO5xfThpwqTmBX5gpjEwo5i8ksdmQWq0ukC0Okx3BhkhZ2tHMsBDN8oVyfc3g7SCGM2VK43uQGdUGQcLfa6mK9Q+HaKDgSGzMkBm42iMTsNNPrh+GoQsoaKBsqZ7dwbaWPfvwduFgvHAD2tFE1FWexpBilS+DKajWkixKgoCfF7XMUlq6UaxdNMeDxAlyMaflsISxziIEA2/kzMnB9DQP3Qu+Q7Hn59+sJUQHhQJAGkOu/DpjX6eLGJ8ROya/7qWa0FmQZcN6C9IofZvPh1N42UnjXQdS/NNV7k6dwXhWtXwRRV17+ek0pLv3VLmRaM25SVVdSXS/gxl+Uv+23b2FIgjjSm/rzlN5HieXrElAKtb2SmnLCeRdcvgOmYgSei7G+a6Ra31r/qmgFTMwgywfP6OWM6f3GWTDxz8GRjCXBJVDyhVQuOXelC8DeIk9ToA/SGkksfEQvOXMNVhlAsHSYqkQEdtDfuHFjItC4/CGBgaeAK1vJd7i2v/GxF3r9eddEjX1MvEc+hZbN7x2FIzfPIo5LQLsNVhZffIPluQHxn4sp+SyqXgZ5lPtR7l0mCKWNMJE7c0MYUwadflMsbQCsMWVA20ZFOSOrfNHOyg8xNFGC4yXFzI9J/uhuYAww0Ey5/QlB6Y1G/goOEgdxap/1oXjNBeW565RUNots+PJ3fQBnjIexLe3WQZB0SRFV7SZlNfOCb5ckGnu1vkIK44bxgCI/Ph7uOpzXA2BHG7yzThMY2XrogVIYrEcar9B3dPM741uu/P+caUC4LLrhpuaLwhQwONN4t+IFLMCZHlh/Gvcx16xUPt9l6tqmtZUY5BN9UfgQZ+X5OfFnr9J3bb/e9wVszwsxy2ZVbjZiNtu2s/ZxXTPc4uUVsqovAGqMeneHVA3O5GgRL2a6tNebjJwx6jURVQuOC99rJ+Unui+B9ycrFQ0ITNL68btrHWkH/2pMCzsRKGyARXwaGMPkkRSyrBTGu21lSqMOwNpTTw3NbCa57fmRa73UKBrXtkXU3kq40sRmPt1g/nVYcO/AyPFpwF1QiohAhhOUCXEoniAnPk0mEs6dvCI0tPTqzFCpk0UsWuZKO5u8Epoy4GBn4BKPf1C3UUxfm3PKd0sFERc9mK0/Rufa0Nhrdi/jEiY3AAjRuaosGa+jUMzrsk8HNC7biLpuC3AzCfjla5RgKUBWZ1X9uUgP7PMGkprvrw4L6V/abi/Z0gK6P/Sd3tkdjf6CTKOg5fLQ+qg1uQ03DLHsOHnnEneDBhk3+bzTsqgldyou44MxxI9+o8YyK8oxJTTJlpLmS71YzYX7I+jNhszpbcZcjHHd5AqOcLlzj5LyQzCZK/iTdS/8pVNbG2+NouLPq8fwLXiiaGOLNGtusjH+3cT7xaoxQgOFTDSg150uU/HB1U0tOwZdXTLFbad47/VV1bcRHuGFG3DHGUFq8OnhH0aOmaZBkSGmylJjk8TEH6Ci7nB+6qJNaz9unHTbIP7OMq1dmykBEDTd9Z38OJAPCuKwo39TUcOSxTfpLn3AVfVcKiXfQtudOJMZfmhjSzZVQ71SxUzIEyLHV8EKqTDSIbwOZV59HFsfOTvKwj0YnALcR3uBUzUauUevRbSRHwtlX4qEr87RcsetvEvIzm8cqZfsIsIXFu8RMPsig5fnaVIc+kQ+Gv0v/TLqgkkskI2O1JPehdxoW2/XuTbFqoTo+8QuKHOo39lqCq/QlyJy7QxAtbSshh/uhc10GwMevwt7O5kcr5Ik4M9vVcqJ5qJLhqNT2kRRZF8eII+DEpAmECEJ0al920d78PpzaW7SqV97IdT/bvLd31auuZLjM+qj/alIHr6IbJM5BM/pVilQEd4a+wm4+/PyUcWqROlMvQ4Yb8vCzEKpyP1e+XoLxNQtCPIvA092CmvFe26p/OpDpn6ZmIuoFJpSdHNj5ORbWi5+XxTdBOI/m5AI2mYW5KxFe6ZuzWNGBgOV5tqMvvgI0yoYy8Rn02jOyAI8HMW7COWf2ysJQTokuW2c4pxffG8Rgnb7Bk/mbS5s3hSFm72LHEXE2wnIpAuCsb2C9rNUBvjWN/9Xqr+qKKcCMAFlLMGMALF4BjATZGvYwYOlHWdYsaSDuKdhuEyWcs0yekjNec0OLoMeJOiUYjZEwFeLSQTfAqxQ8lBPyD56snXFdcwTf7fE1eb7Darg4103YuDDX6JTJ81k879fUiCiydxXMJPM9WgIede4+OI8pRsSL6c6i9u9HUue/JgUxdOUIHE6h13+JvHzVUAB15HlGNYWY6Il4SBHzYj/Gbp+4YGjc5bUP6zPsKDeHx0P+igT6MZaSIgwARLIi65xAKWqsu+YwIS7++qZQwaI9uOoqK9Ijl7P/I7nmRoWIBgn+pr5Z48/8ZMffz0x6iy8zK+G/tE5j51sinq8w6UQFNtrEvkDq4PqItMmLMn29AkUDRyOwfEtuPPDsVA/YOvISlQwHwjGWnmajnXfEfVfDr0/sSNA8L17P1PwF6yYgA5k8OBgivXmeTbC0JCK+t0yPLWHMVwpXRaiRxiCKBPJUbGi2OjEPMJq6yzjSo3RiTXO1kDWl43Cp2Qe7r84Ws4viqq061ggO7sX1Jt/0OlXjUEYRtfuP4mu1ps0c9MC3AGJZwQ3AAA3k4ZCalUi9IGhRw7B/EPneYSBDF7ynhqzx6bUdu+ZXAiEet87IWpYJbQLED7E1sZSA2wi2PevuqEVj7oXoOJo4VHa7RTcOerZ0hf9O8xjwCNpo+BCX3DKP6X1oAUa5yRTAW3+MJwN8ThnSm8syXnXhEihPOs2vOdl+/i+enLTKsrt+frU24tWkJ/YLpwjzdpDclAF4Z+Y/FzcEakRrTQ64MSt9OYtCb2StDa1H36PbAmkkkDEoPeAZ6yhRApPU8NmEfBnO3aoX4Y7pvYmdvDvMZpEBHXK5KnfbfaHNGS4dnTjqWtuvOVEHwhjNde9Gs8PrcUgXN8ZJ02vzF3tbGIH3txWaTsAv7lQTrVAohKIm9XdQKYG2bEVu3USZAR3ktlDvWvzul8WxVBJ3FmI2o/JZie1s2JybLIey4PznY+e0ovzwril96aNfO+oui9JfJKRP7dqtgTph9Pyw5nVKNCNPDpe+wqRxA/IZwU3lwpIVO6oAIAMxL6SbKyAvONH1Lo2HGf3qy+UQ5OEMuAlJB93bMmYDW57P2CCa7IfEeK36iJ+CxDA+7bYjN4WQ5xc1HyigRjp3iRmPMkoKJ7vIToO0hodljMHCX3crNJUUWmLoL4Yd9rhHS2WPweeck6pYISQnLl7eJGOrFHTdliVwEzOK86QlotjSFLNthI2dN9MRm4VSAVfPie+oSbJe867t1+z0zxHXamcQXETJqDO3cSPUNz85rMqpyvjz/CiewnuXYmDrY9P1ceP5IkTbPjfhH5Px6IXvuuZbYWM1SP2YgrFkP42GI/bnBJX9wUKxnm+/dwvbtxc2/B7O5HeEzaQ1Bb+v7TWusra/7STpUjT0Am7zGg90SD+79hZd8G5/UY8qEJ0k+/J5nRoV8Yt/VWVOXzB25F1sx6s3efwfh8QOpc5bH37qJRLKUl7RoDIFAjAT2VhE8L2iA0GrpCLoM3a3hfbr3nBtEhzSp+xj/ZQ1OV8psrsC5h3G4V8xlhkDCFshWV5DWvlN9ovqwrcrxvzmdjklFUFQNSzPzExaO+7HyPkVTLT05wDPiDQsV3qyV5muO5svaPGoX0YvtbvUP1UInWerTZKirfP3f11IUL4j3CKF0ent6FcquOQ4saaBJAjuVNi3XciF8c5L6Cg0Kuaza4Mlw2N2x5V/9zkyAQDEYEYMIXkDBOeDrwLanynqSkH4iTZWN9CxtTyaVUG7/Bm3uAQCKhlUsYBhhgCA5y9rQXY0IPmFiwcguuMk1Nri4zfvA1DyJ8kBHwFHNh5Gp7dDoZtYOlbIRGeUXiqkx23zXbqBkPm2hTVi5O3ThCsawp0yYH69avkpUolCLP3GiS/Ju8UotXq/483FaLIsnLZ5w8kJldffbTdWSNq4rswiCfRZDJg7i9oaFvVZY5+5fPt3uTJ3ylxBjVEj00g70nOClZAxPaOuE9iHt1WBoEw8Zp3XsPwVzJ/IL4KIyC0kP6oRcy9KjCNG+nZU5Y/6gNiHKDAkPXjvhMcuJOsvfxZ2jnqqNvfyJfSGBFL8XPk8tJ/WhMlXB9TjF81xnL8TjawWI/e+sEU8L9BxbyOiUoEFaCDIfYXD6WGR7XB8fdYNe4zuHGSoH6vSPdNiiINXNzwhpKNzgq+UczESjxd5nAofBZzAFwCEI5GZ+NPv+fLbRP1emFeW3WtOaUhFuAPRIbmJ0iTuPNpQJuvijWkFK1XjVzwE8cexMJDXrj+Iu6ujcwXjACGxvKKzvVAq9cxyitIhWwq16XHvLJaiJuIUNyWaPcvFojjjdfHSj3a6RdjHnSNtVwL/RUcyyDFXslhs9lqgy28OtHEfGVwuv/FE4DOTfjiLxwzpRjh6Ro5CYBu8gIMsePWWdroNzlBChCUCAlR90s+0ef6bUT3VpCgzo5xrKm0MGSuVbCUtE87z/zpBNTF2g4MifJ7zFeLMdNxhjsfgtvpnW38zEPaOASQtkUToQNZsI2HmKt6uRFa0oMpoOI2eaJ2q6OHW74dxvT0Ya12zwJBYZyOhxf+1xUDbi3iW0dps3rXgbnr3xZaREDMLE3FIKLeEDZ25SaACBXM1YyvFwCMOd5piVtCS+YDokbBdbkf+v+xXIojH3DI211dVIU49LOm7uLt2NEMWZEl2X3QkcG8Q7bp9lzFUkPaqX3Invefmng2Ab7xEGtb80sFqOuoBDRZAzkAU3dNzE+bwb9ZVJ0uInReq5CR+N/86GvpfwibZZ95mV9p5P47KtcrNWUl511yURfHO6RqtMWRd4JGiupwaFDH9kjInfS69pokF2mXGf9aYXe+t37FFkm71lHboW0Bh6KM2OmOVHcrrIr+n3bLod5KCUMycjTu1pETZ6nmNkM5+QWdBDAFzFNGTb/sPJXfQkJhv46qf1+4QTcJAbzns133CF+ifMz/YJPpon744K3wCjbPZcNOVeqT+T1fbj4Xf8jwkFMhOJHIb0dQ3nkCF435POkOYZ7IDjqb0tDDmnPzbZz4dTFj3yXOyuYfFX5+q0HDQnFrTM1pzB3iEUzTxcTghyD7K1fbWBJZ63bV8TdcMU0txwV36cIEFMGfxnwSH3bq/BN6MJR8xRO2K/PD2cs/wo4RY6JlVMRVeiIiqIyVBb+8GP+5BFp9kTg/veSU/G30GWRO/7BVNS8+24vHRrDYUiOTB5KczaOyAwyFgwUkYACJAFZcz4EhFVBMxN+8YhtFZ8Nyl28mC/+GyMwBvdoaScQHE1FXgpcCXLgxZ3XEKzj/NtxdYt38xVduwgMCdBhorwg89wxJoJYSFto05cpP121wrEj4FP3js1EHpU3E+9PH+isWcpeIbF1cEbgdEfdKtxvZ0JpalMAwwwEItocPC9Y4a9CUcX2bmDTUTqjPJ/2nkAbebjPTjFxbmHlWXUNvZspJX/r6Nj1d3zWByqe39iPs8MbU/Cja4x8SHqKuoRdMYBZYIgDBsuzupgpYBC4YjBqT6G+PVYD4IGTzbrj1JbMursjMMpYeqCsG4cb6w0lKuNA2Bz/cIiYQ+EYPYQnxtDD/RGvuyJbCevobUba2TP89c+97mfdh3/X+dXF3HiFXrvGNSzjFTobE4KVY+dNJWFX9Fbjjj8Vd75HMI0MWMCpem83GnypYMM3Z2oFIi6NS4oZk21LhIJW+NKl1cr3Z9wzLa9a6hoUADnUsjld0nr8gz5lh/pCjAcnWS2vh+uhUFaZkd5AQ583hjSxYEb3I9y6tW8dTuR/VSwfAvTta4qGUFWMy6YGRbD7iKT7okdy7XqOvyKtVY55FwKn61yDHqyJxLaIzX2NKPR7LI21G7DIWMNaLvu4wcjdlOYo5WWqdBJEEntqN9IWW6thHQjMup6taGGO/isR+OEGUHhON6Kc/UebKZ3h+hE/5Oet4LOMD247592+R8QhusL9s+refbElvyYkzsoxCHkftWj0dtLDoot9G213A2nKfpL9OjEow9LS/Q8wcJFtfGxAtsmTrvuErbeTEqwtnaNypps6xRSbuz3YaNlf0cdO60jIIuJyV7YMRwZ5CVoElawIXmkV9UnYoXWqMkV9Cpyh6NFzCtgufCzsw3v8SxdYWsZRxU/S7M0ffLDtVxYAWILmbwYPWRyO2MCDTwomtDdM6hBr9IyhW2PngzH5iLueVpAjmSVTnpVHozplkX/NUAdoWwSK7DMD2DZSxerOBWsWKjv6Dx+dYPvV3qqEYsBC4PK4b0h3EBjf6E47axRJBl+g76PCDUUJcnZvU0NUHkoU0PNsZ58i3VmLGx2jR47jDX8jJTdlh+yp0miU++9b6IP9y7NtJR2uiNKntCjnuuTOeGiBg5gn3DrRArFDuCy/I2As9qZVAERl6i4Ykf1T9tdp3Wo3NgTaX1JJK9UXh6E4bGxLQ/g8NbGQIa4L5jFw2Yg52n4SCxWT3yGVZtE395zJpCWXUzG929w2WMeMjE8m0xyN25X1h8jFGYpGTRfIdUPoM1JVZDnqk7OGThDXULBXMnqyXBS+fCFZE3U6NQxVEoUGnyExzCJXFRQBKMejITQbmGNPNtghsmXvzh6VOhwwWx0ep0lPeEhf+H4KL6L6XJ3tDQvsL6iEc0r5qqQedFsLL/G67Dk8iHNVrDn1m+u/CQpgxoX23EdCEGa3DF/lvI3R+qEjFrznWJqYy42TCeYCiG7Q6f7mK8KLlXcFV88PNTvO/MwH5uceu9j2mfXF9nSEkG1Skm9bqzaXYWfqxQSpEQaAwuIT3aZq9RrI7SP8Q0aAyjzdrE+NBSDFHlB0d+3iYyKZGd+jCNo4Bzzbe6HMiMDxYxU6NHbmGZSAVTW4b4X4uNutEvrL/Ne9z+64cu9CtmCXXq6mq3aw95ADhO4+0kFanjE5QoPbjK2yrXaWQB2xeGEiCBn9d3VcqZrtM3bMMvB5BmwooOJC829ROGyyKM+ISTw7NTca086d7aCQF6zp7aYJohnBCU9QQ2wmTH92pMpMF8jgaQzfvyf0ytPUscoUbDFbhcSQwCAuuq+dE8NMufgIW0p7brX7Bt54Oznj6LbQFC79VSus5qVvS+2ujTdN5XG8fgH43bLL+klWysbmLBFHs4UXgNgfW/I/mtvRM0iDhR039Ztc0/xIYYCW/ysuUQC82+jGEFhE0GCRsf2liOkfYbzv0lM6a9fRhH51ueorAjguNZOS31LAHBPJybIWYKIMtXawhQNLzxzg9ASB59ahf5E1aBbWz3VeMIBsssOWaJjSCAtwxh+6ySbHh41aKDB884M71JuHatEbBKwMi9qsY3+VdQ1U29Z1Lug7eyLEAFecGqCZrhp/719D2ZYRwGkP81/elNkQ/jCmV5vocPmjq/Po1MS04tsk9bBBG/ZbfwqBj48lNLW/OINInS5O6RF/So+24iknjPXdlx+VVqyDJmOmqXUo2zW5ABaxq2YPlXl/Pp2tXU8aTgFm9yaVZuigDaDeHwqnbN2Lzt02k+ySqf6i3JFidgys4uLCNXe+BmmloYUcv8mf1Rc9CPrHWH7LRiXip7bUqbQJs7EjQoBEl/nJTP7kxN0s47szS8+sTPwK7m4ba84zp3uEq1/3WNLSVWevN0Vqq+FOIIPkqID+x7E9B5bloq6v2p7zuUXQRc+5ICLO9N0Nc1ZDMDziPl0kyGrIqZodPD2k6qjR+0ZSa8TbP228mYfwKD8S3tbrac2XYMbals4nAZXqfBJCdXTZegoCesknCfYpg6jY6Tt0hUvsHYYbTJs83CmdZitcz7uTHUkxVZdLaI6Vj4iN2z6a2O/xOcviXzosea96jQGA6AizY0WxuBF8JwoD9cohPZQ9r5/gKpRRytD3PjJVc/PUuOeBYb3xLC0jevA8f2lVhvgWqo9eio0nuW84nNjqd5cu0VOQD2BWQ4Mg73nkpXBH9ZnBoqagPkQA2AWzuH0oGN4pEeN6xAsu7RhyOZdcd4Ca0MK4RcP+d/NZ8Uj6VXJ/jke7EMW/JEfEngZpCrWmS+zFNMOByAnQdyEB84OyimPpRQCCN/UVJlAtaDtzHUQxXF0EMfiGP0bz0TkLmAnoVh1jASI6CSlrEpdaWn+6xH4RSRDfEqB2qpRI1htGLfy3aFe9dSwsvmvWqCJwSi+cRlf0E4gj8vDZRi6ySZ7IRlgy915VBQ17dpw15h1EPNUaFUCEbiDZJ5F7ELah8KxWb3d0OltHssWd29Vqqv5BVdn3CSUnCLBeu6lHQdxE35KqYND9DWyfj0d48NJ6Y7Ks8+HXfKR1A5p6gxlIlysWutO+t7uM9C/cxlCIgLHi8GrqVYfZ+JoHB2GMV44x7IhjW+hKTifdbEG7ldsEZ+Unv9qC6hhMvFICGjageOI7FhyDxnxtdXEMjzrMiraYARhGQaGxe87MLXhRSI/3MrMITvP2I7Gwu+Wcq0N0s3anst72hNQbtJtXTUP3gS20F0ocJr1tGZY1hpYYtEpF8cmkheFng2udP2UB0mTcc+jMfWIRohQ1HxE24Rra3UZYz5DTU8359uV1ZVQoiA5t4idrLs9lQcVBBmh11NMVnRe6OSW8J0YZiYCUQHB0yG1yUiECL0VS3tYaE4bBfYWHhJYPPUgEPpjZrnoznqe28TrsVcVdFB0dhjvELfMGdM2WjQAs3C73z+qAvfGquWp8Lc7xpKnBBn+dByAhcbLX383mX6qblIGip1DnWBOyoYalesuUKkD9fJuYtLNrYntFmy/ii0iT+FC2usu938029Uo9YexGZyUicNUOFqlclWR+dAQZtr4wVG9qGq+PqlxBy+8TrAS2StBushjtehFrLyzig+50qYy1ciiZj3Dkwr7Z/KXvFqn+8fsgeLLYyotL50msfVuHx/O60UPf67KZjkcbAVhjXEjFEDOohICVBnGUtCC3VmPhyES1tSkglRlM2AQQykSToEIqUtDHcy/c40xZEszYLLjxAXoOR/x3molt90C2BbYs7uf34MPCUtfJ8fNipaEYhgthxqCEi7RYQFtpDyjeXwlx8bb1TF1f6bSukdFLkpsAvQNOezlMZgvmDDvlx8aA80tqGRomFYaIts0mXGFDcNbcHLt0KMKWMpqiQ86xikk/qFyDyp6BDT7wpi3r+4bfsLuTRDMpY2VAcXGBDIEA/O4Mutc5g/U7MgRDxPfZaOe8xtm1qqnXVaD1Cc/fDAMYW49AgWMm04vldTAwgXgIH9cH7/RbHuv6jUqYi0ynNNYpDVUZPpxnOlInb4aJG6mcc5F07voiS1QJfBTR76ykGCrprAHFWbTb61cCPQXdPqJ1q2GLQFol0Oh/R11FAIeVZf7mIKM5nFW/Sl5563TecIQXL+CUCW1eW59u1d0qjMqjkW+Ri1GfFt3h+ohDD6BvzJ2BFkbpKbq1U+fOj3lYXHirXgenmsRiP3hWmj0ktbI+xOz8yALFyA88R/1QnFLtGtwUmlm/Mc82Er9ubc6vxQGEMccGG5Jr2ZSySL7r70UCR+tjFeiohs8s1JTeW+IdTn+4e6RYDBOWmegagojAHnXDY0zpjVVc1aDiwjrogVB1021MkYXW5JCM3lIRIGoC1+KW2ID+9eatDmvMyqrICf6e+mepYxpqvDx813tU3lia2jT4fQNa8KQe89F3XKilyDihrUVXAH/+ECfLJ8DcAB/jvg4sEHE32AAGYVHon568BRgVp9pcwwg6lSxaJq+ZA9Ks4gRLUVs/AwF2/BtpZZ/SRQyoxKPBlr6qqBtil5+O2WaoVsAgWbp1aER2zGUjQlrUbnB9jsLjSB2q3EPCWOEt5ELZScIU9dO93Ymjh7s5n2AgtzOLw55Hl/OJli+SnjOxH2unnBOxu8AtabrVdFiR++dkBXJ46z8pzu5ZflOZ2HojjASVn+43dYxrMrpQv8rYl79GiU1kL4GPMGEKuDCjwe101eQXW+D72y78pa/dI/ZJ/B2blygiwwelbWw6MosLW4znU8z+ivj2onouaV3QcelJbfypGzUGJD3+vuYdEq6FgHknrOd3K7JFIEz6LH/HLIoZsu6nB8YtGqF/pThBBZNIlZ5yWhU3OZ8iVXu+UVaxSI8nu23JStCa2TBAN8xfGo+3YBhhgHrAMMMAre+BmGF8pJ8T8iNdlKivbYa6pfs940DlbEzRAFDcuSUHk+Ceji2CqaYMln7hWuLX/+tkzkuhSu4uBZsCXpmkeCKKCp+tnu9Ogrs+1KfCw5KXDUK0KnyItXHzdmewaKa7IbBq8C4+9lIhgmtwKUqVdjmEoSz1n0Jgl/hhgGA9jvE3x052vDVNg3tfOuM2MZEKgZ0aualGhq2tuVIajUcyLNm6cgP8c6rw85sDdivQ7XF0wSt8jhY7spj6NYYuu35CCCgaa9EA9dHnDdPnQnMf1GAL367ObQkhMXnERVR6W2ezSs0zwDR4L2OpxoGpKuU2oqAcCQBNwRYjnRm8EeUZhIBu1hHK9d8Hl8yAoEtbbOS7i/xc65FWJ3sVNoxrAHuQqdrkKyRsHFDEHNLIpJmh3Z6Umfs1+aUkg8038pdGutDazrRdn/Sx8w1dHQRF7B1py448vcYL38nfSNsyyjbTYlw0/a8TNvkq20TyT5kBG4KifRZTxGm63zRGwM0qgVZYaD3RnIgif3e9mKCo8s/Plx9dLQSwfOlHtERFvNVxYqOKc6VfzWIVhI/KUZ1z6HCqmR5rfyZxU9bA+vHOT4u67m+YYCH7DUYdepoDpR2ur2T1qCVDza9bNKmnAS81ytmbNKAfnFAY5J6oQHSEZkaoaZmuxjM2guhfBNyCq1zNus1vEGza+ZaVxioJaKVzidTw5M64+UWSn4I14Wm4hEXLVJZp+xsHxgIx+b+xvBr6p7Vun3M5Rc9AYzrxbq7oaWFmlRJI99SQIncph1LsexJayZwxAqQPr+33ceoME3R3JQig1QU1i3bubM71kHyynBogxSWhKOGXENFdWv2ME6lxrzismjzii42t+G2O8nKg+RpsPvjKd8G1pKWyq+vPe+qdNvmSpV+WaX3EwDgDLSY3yNa18dEqA+Bswxqidrm3KR3tkMVA+DEgzgNOTVvj7MZB4ytAinkmA3RpqJQT6yKAd/8IsB1CqdjuVxIDu+SQ0IM4PS03K4CBKOjyHSAbvio4T2QpvAOBlDoXxcXn3tWylzOqZZGDGVSB06HzMmrnQL5Y1fAqroHx89vMacNCluhZRlM4RW8dSWZytcYtBw9nz7G2To4wqNsHO/YScq3LZEELc3odA0Pyt1bSJox/vh4IL5tnEycNURd/aXTOX1K9X/pzwT1zFDVAu8H87hSzGTB+wgbBk2iyKw9S5eU/E1r7R6YFi9oa7ghlJ0kVl/Gcily0D6a5UTXj+MwSc5iDPd6cGc4Zb7+hXpvwL7Ks108zTJiXXk0stp72sOtDfGOY8919XT3+8CFW3OjqKRdZnUxL4fuFzoSIjreu468DHGcmA8wh20Xr5/4lpI1F6M5v2TTBjskAiB4uAiX3K5/wy9YaVAhtvPtesFrbMwzGEbgreGhu/ZygTC6XlKOCPu8rvD7exFleKtiZPPQb1MZ9mxgOX2vrXUjMfOjSDxgVnHvEAb9XhRbFTmiidHyEkfBqugz16iFvvavTzZnz6LaNIo0w/v1bm6617PdmB1TlBGqlKSbI2RYAQIGl3we0I/KEHpqgPtcd2H1mvpCdm+UT4/4Z4y7Sg+Ntze/1WUV9Zy8BRwm7ZzTaHdICEW9Xip/GnVbST6ZXDDXilujyUuGpcGftGkzePl0xgJpG/oZQDxtqarM9Piqfu9DMS3BYDA7eCsjz/PqCl/DCPpjufUrFVHQYCKQE+yz989LaXv92rg37XUyb8qQbqD+Z/Avh5OiZWpXzdbCQgTdbuTNLerFaxV49NCwTqx6oEaPN9XnOU+7S3GS+xvEFEKzqM+/7Jtu79hcmm/Tb44CumA/NrIMG/9DMeLqu3qVckq8wwNWpKpKLAOGlUYobmYkbf7Nf+dygKAnhfCVUgw2/a+3qWDTm+6QGQR04QvTSpcxN3BsHr0SFvtP4g61QRHLZ57b37xaRMk/tG6R3BKxct9HjTY8sc8g+hJ5snfhcxG+/4ypPooNj00G1Ka0Esfcxbr3TKE99WwNacdZhMJJF2TWp+7BorzKTXvwCMvVsYPyNWu9KEJjIov17w20kZXWCLzEnXMw0riQv9POyWxXs2DLZmhHY0MjE85dA5boOm6fn6WYU9x/OKKXQtL5TpMuXH8wLmpsC3XRFlQC+Yv7ip+aQVSwaH9CTLqvLGHOlvezU9B3XsGKUbzRXGjf94Ix8hXyeHyYLPZg7h+RKL3eqzeqbG7STYawc9ohjsBgKhI+AtP0OTZIbH4nGUGNfsEMBbnhRKzwgeW6+VzNNPpsQbuQyEOEXDlgNnO2eU/hhAwveoYOu0mXauD+KMp5Zne2w5dqeA9ZYJHb6R3Q40UhoR14ks470ZhFOaXOv12FbfvOUH+UAaV+9Lm3RLpWLEs4k7DZjBYPLzCU+9m7naXrd3Bhh98M82vza7/XtQDbQ2+k6qbS0hEFwwEMckjjiJTGxIdIXZyKpiFdkyQjU8RIdTJvJdfettFZBo7kznSze/L9C5btoKM6z0mw0V7UKEQ4Alyu1Xfm/y8jucfZDRDnVWDowZY5jdoepWPbXdrrMYpwFwhGlL2VHdhVCgajfsgmyDoml8nw9njqYSjmmKptvjpEwGk+4c2juQXyxa4xAr3pMbLlVRCtVPUTd/VZtt++yD3rS+HOzuDlJVFZ+P/pmfeNbcWs6Pk4Aj2xfUHTGgBBxlYhAQS+cF1c/WuOB5P6db2KY3RQCuNLJjRVrNVrStsxxyp4Vk+m5/B8vljp3hPQFis/ptlzxUNj5dSafl1lOGUI9xkscJ7pbaGDiKOJHm/jXUaeMre52KB+E8txWqmRHQzpOPtrScOLdR3DkvEJ/fAsIWRmHZeNtO+hGYsCohgM0lBT5Fjh1Whp8IO3SVvZae8jfzUtqbmT+45nan1RnoHfEe6UUPRmH57xwf6mUWrNWv+PC+XV7FizhvzVbHz3JMS3N3G9JmLgX9I0WfzyW6e5ntTGRJ/YsOk6WQ5DC1zWgO7vALCSAFA5cVf/cSWq0kkTJRVKE2Ga3VaaUKdJULJdYCReu/WygM5htnl1JwO7bs026pgchyDuDyAwCZhufvqe2IYK63q5TKvoGdvD2hgjCC/Kiw7FzWwJa0SD2wvrioKvTSSwjD0ZXalMavE18yoS8Wfgo8LtiMaJ3YyBN+v5nQjhEGkgY3lW/pepRmeocgAyXHqzZDYNd98PJn1Ae1zPr6AIMFzWvN7yWbq3hkSYvWN1WG0te+HT6NlzjnUE8bLrUpM1RlWZEvcJP+8oV8pVX7tsruw4NujlQLswydwE1wXcNUN+aFRYDN+8o/ONrfc4jbqwk+W5YeUbcoZlXA05rj0/NE6NNJFI4+qSflu7W2U9Vj6uKQajQrtM7D3pA61fq99xDzll9O6sLX32YDenCCGBK49KxFZphi5G3RaZYehehkt9M9F1Rv3gPMLX0fFCM9XK0Z2El1jOWeJzyiDR/nz3c7IpDWVaSoB+Ib8cwbq6L+wYfM8Qe7j0IB8Hg/O9yiKS/Gvw0kJ4Xp5OLl5Hlr/QaN+V/DXwTfYmTiKneI5OknIUcCGevR4v4lr6HsXrizpjJdC1EBWbuCCy9WvJwdut6aZIFP7kfAxkCPuJcjg+yA6nvdcnvfM2WC6SwLsrYWmvlpSZZEAtUi92+jsZMm6m2+8lOwfk0gYbJxgam2cwZ3P6SrlNLdRB/vpMnPxuFqWzvHc/nN1u3wkMxuuhyr47VU2BxTDEUDsFUkgODHXAi272ND/s750DrXrXIk8YcBf85NMF+5htavLln6VR89jG6Bk9ZARe8s02dMtTBDdr/XJXrWu1Mo1o+0APTOSePIwc74+8dNmzfaXyxSmnbMj/DdO/gKB6xVSRu5ujQfuZzwjOx3cd0II7A39c0tB0BuP7yJpQkcgVdVuHGGFHGwBS0b0P5918gvuiChOl1DvQlCvxaxxuYQuob076QBtl5VcKkcYjDCCyMCFgSg2tSLXSQFgGR8oNVefidlhhgGAAFCwDDDASwAAGAimGAmAIfPi/Wng2qzHVV1j+e+Ux6fJJVs+xFh4ySrj4z2tkLKW5gne4vk79721zl5q+tsNAceBFDt/1jNnemtdU4qLgeIN/gl/usT0JfpT9Ump2zCDjBfDdLb00pZiZjffjKIJ4SCYdTJmAvaCnj+bKKXPRmGdkIEc9J5L+6HXW4t+SrXNgK/aHGaib2zAevSOOz52Gs9QwBOBj4MgKbpRQXpX0mhhzT7cSZ44yo1rENx1oJCS7A9VCH66HClzssXnVG9A5g09EQesDBWr0UUjo4kQOLYr9JRy8jp0iPtatc1rQGh0+Fv2kUAKGWDcopsiBWj99E2n3pK1GdmGU60rA4Eyj4ghPjimBX5Z59HBI+2ruUyZCPH3f082nHtzVIcCTgmgVjymW8j2de+qVxlLzjWveXzaq7a1TmVlesYjdyZeigHBK618jKh7SgrbzW1sPA2owzBZr+vIzo5Hhn/hSijUzZCFaP+7U2PtkcKD87O8eefd/FrYqArLfaq3nVGcHzBp3XcEkfnyJO+fNToNjV6lnUIOug1NYow9RuXIFEkubbV+aZcXAkr6XbT2s5xcQdOUQsrFSrDL0aO+6Q71v8LQdpN46JpD4mRigXkEW9GKs7k1MFR6RwXWj+rsm7IcxPTXf3WT2d8yh7H9TTQa3GtJQc6MgiKS4e/Lm5INpbYX3qV+ULH3089Z7VfSQvHCjYQjHCRmlpuiZxOwcm3H806nprbCFWby2yryhG+kFy7VcupUB+Pj0EpjpgJTsc558Czz9i2P78oDw4kU3EhxMo9nR6AXo+ZE5o7lPy184Ntc9fme3O+FTkF2GqYgdYjLzBJoPTdRWpG3+Q+v4jI/AibQNYPVga8RVyHSq6SAI+pjTGw08MBoXgiH6zMLEtKwjKzFZxsx3gh+sNTDL4E6ZaylC8+JVm93x+aSp3cS+q3bZmUobnskiFC+maY3xcYaH1u0GT0NVB3BTAE06YgmEh7LS5/VUoMfK5wcFUEsnRV19/e10FaYg/cNmhfPFZDwIoGii0wP9kXa4i9KMD+qx00Phsph9/uZBMiMYNDurxPTKKucEuJt/e2aFrVwqW5jYiKXlMfb2lomvBDP6+Ezh+pZJW1kp6y0NbMvlOxdnHTRT09OHzEdTnV9NrfNyNykqHbU+JGlOCFU7NI7IjczUVhyPXin+54lqR7agUvulH2ajsT6tE09zRg6QUReOoZ1y4BEBAvy48aqiE5kHXWMnd195zxxhY5MZbHrjE/uKQhZop6lisCPGFrFn9ftXVNPZG83qc2Cx1BXzOkeGs0HuEthbUPcT7RR03UtR+jnfgyTrt6nTI3MlGFDqomgoVygQLwIQXi9jSAe7hxdu4hd3Oee8JPgY2six2ESiF/AHUUUdSIcq+qS3HLp9vqK6d9fpiG7wwcZz7dJc6iZXD8ptyjMRYHWe/qbueHT9r87gXZUtSyB3qaJ3WhgidePdoxKP47VhtEn4FbT372ccPfKM7MvvX7UZ3GZsN+gMKByixhU+czc5gxPbTLtbk9qizsjT/r2NItreCpIUmqcdC5UFfhmR6xKdvatc4aS4m5vk38X8ZWt/fTs5fXWD7QuV7jCEyMfciM5aH6PPIXDokQEMniTp4wxb1b6G/zF4zoVW+G1f8Dyt6+avnFyRrfMtL0PCSp96dXTRbZj3EpeAon12XNg6XouStNwK4ejUmXlGORd1HqqbRrCePlPujXrRruBw+QbOqQufaHEe205onkLenB2KLD+7uLHJarIMCLELf6a+iWHhDmn88FeiKIluYBpZb2lY68Op3N41k7d+K7GAeizh3Ld1C1/1911/GnYV/3EHj0olDU556PuupY6VGB3mq86jW4ci4PL8An0xeXUdIEVTk56FrruZVKK+5Ut2d3PT5B+Vm5zZ/K6I2qEsziipgz+H+Mv6Pj69j2t5ScTDb3EBf9pTGpGNY0V7IAoe+HA4X41aCZRWhRikw923DA844quu8ViO6Fsd4QNRWOEoBy4KihbBPOOj/TlQT+Xtwap4Pfo5IXzn/hbPc/EpIfx2lri0SoHYP4bpAv6JJnyBVMK/4o8xwqKRBSL4ff8U4iJgva6Q07GCiDiia3hs3ombjptFHiNXv99PdbqP7ADG7Ug7u3LmLLWaZ98ImC676PCkqaUChHC2eJSe2YK38VoLVylSSiFbK69dZJDUDA7UxwVXI8159n8mSwrI0W7Nm9PYNcaqLRv9SpI+tPz5L3LIlo+Wn09THzlJWAo/UBA0Mjvd60mHMRX04np7dVzb2t7Mhs+N+dyW5OwpQ223WjCHX32Y3+Ilx5jhT0TYk1IcnympWtbVzSIPzbobjergZPx/d2BTcAzqID29qUGFqiyIDo1b6/RB7olhYEJR4V/OPaIzlWuqQLQlHokUqI44S5+dGYc07klNn66uvMQEWU1BN1sepwnRP0HHEyWSePRG/fdvLaqqw6OlalgfkosyXR1f0Kwr11DsSsQN2UNzteQNQLJRjeRpxfMVeS2D1HNKSmbmwbzw1xV3S+OhLGcH3ghW69NWOtlmGz8w4K7f8/I07+bCLSsP0++27vYe0ixdwsJfFjMFBH7KGdwLyyQPqZsY5lAHT8vourlycEQW73RR/0X5M1xmrIw8GgKw/kW9tgfH8aDJ9Y//yYpunDfBw7j1rGNrnVrIEZ6l7+8hibF1HzU9F3NDSiSPbF5wZHL4e8Nr1A4xm2aY4eqm/+0h6i2/wByM25vhg2TSrZkgS0qrkt802gW0giuNfnl/ueANVeZBYs4EUp7vXP3oZ4gYzHZaSMIhpo0Yr2su5ztWyV5YuMu198URMX7f+LCVlsvW4TKuqf13b7iGDg5L/xMCldPFkXneKAdxINwkHQh6WbnrhwWbzw1rXp+suq328r+yhP/Z9r9LrNooQhikIMO5vy412fPJD7/Cb9EqmP7znN8bE/y/stCeiy5yi5TmQ9KwiZFxwfnvCjTkIUdRv0K0l3FMJA3n7DtCjASCPYBR+L7eHUkBxbhviz3W3zHL/fcPzHjbeJ0jLYGcAtwQKjBmk5vXziVwOBAILo0rJutJ0motSN0oJs8K+eKvPHdkd45+gDeB3hLzNZTLuf0MF621qqmDyCvNnmZ9S5FSnYCNSgvoSCzfp1dU4qXy8mTfU1bd2VWRQedfcj2XR4CBFIvpUcuWOMoOtX7Y26WbAnbui+JvBhZKdi2roxv0auRSDtKryq9PqJfRk0gDfxUnrE8UPI/4ia2vFQRhVXIkDf5ecISi8iA8aV5dkyunEqmekkCunwsd2yrRcwfIFcYBOoW8Vx9Uh8P3Biv9QWVZq1sIwBB/RbbAEis/7MKnDHvTPQFsIel93YcIdcGYSjeiKLzKFoR/71fOdfNK9obZIXg1Hl25YmTQofvra8h26dTVKl6W34vHDkVPbqjTeanVr7huwMKRd+pMvwunrRWx54yMZEYgA/Cc2WWMjv3xW4eYkqXqfCvsy5xZU8VYrWRLCAfQxA+TPi255BkB2PuJQR8PRAmElvV66nnQB3GyA/1WF/qQNg2aFV/OlRVtREyEJFZLKH9Z/N9ZFbZNAV2p+Kt1zjnRyl4Gfcx+x0r4ly5AOWsk2eUEbLNlyBD/bSGML8JLzsGVOjaleidtfLTmIyQ4CNneREqZObCspqoeEA5pQkQo/kxquS8fwXAcW2ZqclkTbtTs1nKctQ/nJwLvaFfTOpopFJH6V5Ea88kIiaup+KLkbuDC8SBsXdZEln0st2H/yUPjZm7D4wuH8t25mY7SemxlIdTaF+8UyAarmkTt7JaxT7pY839I81cTJSQmHiSalC1c6FSF7ufAak48rT1GdZG7WkVUCgaxbxTceTy8wzcCOo3VEku4U+M4pEQFaqdHS2Y4VCemxO/1ly6Vtm1TwvHNh3BA3fklBWkBA+Fsb1mLtq4nfIgC7QOhscIfOpKkUzCo3uCg4x00GObQYQOGFEqL4OXuZpOJJdlti4Qjn7uRgeI6pqXN+jrj2zqRjMiVisox8oW+2/PHa8M45py62NGAub1uUJUeMJ4S21dIB+IKwwgm2w7JnQnkTcoP57eijurINd2QH06qq5o0zWPEnJ+auY4FQyAcdiKccBEOd4IhyXQK4RrDuv9s3Fbq29LNfNu8eOdaui8in1aZPZO2+PNc6STjE/nReZEo06tUPO4BfgUAL7JSaqPkg+Tikt47KDU5dmHQdSL+0tMy2U/b7n+6wAirfsXuSgJX7/6ZjSd7/PUAlnx8iHV/WA58i/b/CVm8SqZtQgp+bQ8antfA8xD9lL6WbK+XD0wBnoIAp5cUa2RpzmNrbOQGlpIiCP48O4kB5Cb+8XSf1f9Aq025Wk/tbrEp6bKsRY8VEQlNSoiBqYEH8d0DBaNggI9uKoXV0R+mR/4dL4iJ4q35IKFG+J06v48qjep78eyT4HUfAQNYpADc/NMiw1WSKf/Edc8T3y4oQFz1NLGCZBL0PMZQGzOLOTAIa1QWAZAjHamiOs6R0+hyfR9F25egnz4arknTh+JwlXVejW7VoY2rA0AWaMA0bgpe4e3b0/KAkHuJ9Oqjh7gzeiij9valvCTmfxyjaLdd6lNcbZPmp8dhK6sB3AruIeJDgrmXpcxUt3+RSpMRuXCZirTNnt4M8+PC7Y/0HuGSu3WRNMJa6sffgLj2ervClZUGnQeSE74LpMNtSo/u8CiC62H6DSBX+GhT5u2s1J0S6hkfccWXeT6PvMCjY1vPd8yLVaJnUwLXoMjxTa5ibDnyiPsPkiWoXhr2Ij2sjjmxz1w8FpuxY1RuGtLQ9um48jP8Tg+s1VViBZ318pdLqiog5VK7YMK26n2/JM27W2Vkp2xmsWayD3WaysCDaoDMFJh297SmeEQRnuLr0pCbfnaC7fYjK0HPS5a2ExM8V4sZrlRu/DJcXiMISo58vrR2KxLIREgbIXf9HUGA8ItOokWrCBcenZoQi1BlsLJxa+hl81LPzLXhOpjbsmWEsYmPKZwBLh1tn1E/tXf+/iqiYbE1xCRIIb9ZLYe8MkKKoz2I0P0xiaTm/caoYYgpo33WPIAn78NYs/C6hSl7YQiklfDYHY3jMK62vJpyXi5273NR/WDvAJ9apKW2ZqDV20r7cUnm3oAEEdgkfbirKmNt81qOsPg6TToYNHT86rvQEmESGzZwkYxBh9d+8tU9Gjm3G4zzfSSdmi3jL9CWU1tMJmd4x9jLOceQHNnBBcPYZFC2tWGsD78OqAveVHnEKtMoX+o74eBdo+peXbbpdZ82N3ZqhBBh0u0gn0ijRTxfVf01w4DVNId7MwMX/XT716R/dtUiMkxw8C7e9qX856qeLU9kgjNt/6B0NeKN3aPXaKCoeL/DBOPPITuwVAXCdRgS1Ue9E1Yswbz1csV/xOkYOj5x7uv57y/vksbsg1Pv180Fx7HFSFIBX53oXIl5g7Lo6I8Ii3py2/NkHz4PQJqMPtyFt6RlLCGCAC3+3iKwNIPKYDqT6zVPP24r+Hd/z/xjvPKARPj8MrHfD+1rQ13SCv79G92IsfkIs9KEVXXc6JyyXN7HCf9x32vLNKF6Yj95HMXd8Q6bvDcP0v1R+NWWwuoZbqSr9xaqysjc3r2HuvzgkWjOI085eLzvZfdsiKfiV/4O9xmKkQe1EfoPL7xcLVlgzN0j4b5P7x7fOCAVvsYuZRadAiDU8sok7LHPM+YqmoHk1h/2o1TFuq4fa8Y1loauSapjD271V7oI1lRWc+qmCcCGthZV0CHDyH3Sd2Cc4MdNAJ3CXhNxauhupOPSX59KZ3ymqzyoR3HY2mT+DI08jwd+4wxvYIXWCvtxKPf2znTUIEt5HkWMCmkoDoK/PQo0/hePXfTw+P0KSt8zXpAQxjETdfOmse4FvvZbdraTswyvUkB7P+Cvod+szD9KxiIWZ+Eg8XvJfShZkYL26oRWUy5PXoBhWdAdM1AQBWJBjaEgxeu+Bg/HEtqPNoHqt2K5e7PqA04WUa4G4h+ANJheh4fHx6lOC1DagsbZY0gYmBWZiWx8/jr/jWuRziqX5LcFf6uLla85/83QJ/ER1fDS/evpUTuRQJM8W4WrJGNvQov7D1fpPStkUu1FPEdjXu09jy9yqSUm2AuyC9YgYPX1xfW5GQ7xfjooAsJJUtcnPxnfGQFRUFbw6JZ8s2AUtz4oA7LawJGXSWgS12goU3itY1Qj4EHYZx1lvRQToQay5i7sTE2FrIu7GHyjAZoGwERzcql6GAr8JD6Rw7HYoWHcEwrNB3FKPEY3IB70dQUIBkmFw13maNfZWro2PvY5DIP1DlMcv2cNl+/vD7L5pONflsYOptrAkR4zNoI3ZFMON3kx70pDGUq7lrmL7GNMi/sVMcRpEm5JAWhyWbU1qsBKcHu5S3WtQQM3x3s5oUV0Afa0PSTRGId8Zd4AmO2fboojjom01loWL5hPinBKG+mrC3p0BQkvdroPxqB+AoQAwsKgZb1+yUro7+mAG6FmaWOcguGnx94FN40VA6piaNRklhAAyGhi6lE/me9BzZWkVSjGhgYpOriyDFlZ067+1jCmIlyCSMiLfDk3uN+Sa26Q4+/HWf8qW5JSt5Hd1h12Jpg4ay7GtQm4K2Ob0HLBnb6h8TVdF0bTjxyYHkRvWn2lGudje57W9rGO38dmhTjoBcIKtJaZW4FyK+gaWGo0RbyqX77aAvBTNwnFbSlXOgR4GCDVuEHhxKlYvolM5eLd3p41BdjV4Sy6acdPAiHHUTcc7nuYDl02gR3MttnHHKudJjRMyNerE1V43v34dA2l0BRIMS4j2PUglP7lkNzSN9nU0nRiVd3f0obMmLXdg5SotCkp2A/dIjGzsmjm7he6V2zU2eKsmS2nRybF0GiKhGQhc7f4fdfhWtznLumG1GDonT5UK2BgtwdEAAi05g6F8KUQRC2YNQd1x1Er6aM5qN6ZQ0rtuwn6GhHMVWOZYmEM9XJGahzDmFdmnxWzcPt1hdQ1jkePvur+/ff3y099F2ubGa+AvcRNNynTLSYQGoiv0S32G0YrGG383tx+wggbEZTwTJOCOAcsWd77USA7OWlj8x9me0KJNL4kIZADnyQMVD1v0Ig28/J3DVRst0Jd7wcA6t7gplWmQSLojKB3DiQ/ZQXAQmNZgioZ9ELI/nqi+DRg6P+w1tuxjP39yeOvFGFLU+yYyR9LrWsgJRuENBUsavKsEAVvAXUjuUW93f9lSJc9BWEE5vWVreotSv30bmnzXKndXTvKirSj5RqnMSBhthcj072x6COXDTXlcJ8S+dD0He99+PMfO0nkQ8jF1gHwq6Wm2GoL4r2Zn4SqjwTchNVIeZDEPyaE/pdmmAgUcbVdyT1jqdpQRoaAYOjSVGAJtlX+0otfnbjS54/cuGRsEUVq93L5LGT6KoNqpbbWpmXW1X99xPil8rePBPWTublk0pTJx3BSJhGDA2UnOLr5VC65oR94MC1Tdgvk/gjSza4yrCjc4WApAepEip2WD+x+AGHQ+2Zna+LIyx610kaSwceKZiZCLfy8W10G82jq+g5u/Ds8t5UwUkVljqr5i3IJKTrJE9as63frn1AyyJlmlze3ZZWIwNOf8W/WFE2kvDN+cO3zwKba4fLtBxb9afAutWqD+Mrl73VWQsYhH1LALu5fRNn4uve85pt3BFNXxpYqj4loDZDM6k4Atf2sRJpLMY3Zj2wN9p6r8Gk51CCd/rjrsXN71gHl+V+aeCJZc9KNI+mSMkseq+tbSfNJjjg2aKkYBDlWfYKaF7lH6r3oXCZq4dxrYb9U+pA1iCA4JbqNOibvzu0/z9h54exF3kyPADTZ4NrIh/wCAolkuUDz7JRpaPXm9uH9q2K0aPhYSdDvmVCfosdv88qXx99tHWQnafRqKat2odmDQ3n2CZaGPOpmMZ3zg5oq9OoapIlix7NbYebrafTnffa97l2j+9XtaLb8vty3BzO/9MuFoc2oG0NmIfL6tMnbNAn5W6NMebfpwOpl8cmhCuC/k/fnzQ2gdwLp6RQRE6cuPOwes9+F07IK8NsM43c/VKfehniLYKRLKwXFlPpQy7kyg8eNs5khzuxL+ihtPUGaYiWYO0KWCvVroG4scSm2ivkdkQ/rsklcisLlBsF1tyRNIcX268ciuiCBCgMBIXzSpEze8W9P6svAyxHhT/CHcOL/WE7XwLIrf3uO+WFZde5Xx5p2g6Ly+j8muDpiWsoMoIx/OISXB7kjaH++HnXdxIiG5Io21moGFJAYnpED+GDUwrw2iZ4q15jiUvSYrfqVvlB/6mfanYCZwLLF7BXl0kK812pMmVYeUqH/i/0PijY9mupXdRsSW5YBgp30/7+pZWcsiXmyvER7MXRfst3P6KbvTVpLEBFzsp/nW1Kre3JlTV9P8+YynV+qqn06PMGbvqaaG3HPsPNbkukakhC37nVC8YXvv7D48xm6MsOEzLdYzTNMRaMxqn+aTsPIvEs16YoYAud4DQmEBvZpbQ5c/InXRTbuomP5JfD401lvFVPVR9bjqnT7bRVQlotDy2eVERhvxO/q6uyW1cCN/2Vt44bmCzEj+fbjCUr7pV4VtYajvVjfIFc5u5xn9yM8OS0jm4H/fXzyuOXYj1w2E9XE3xh7UObm/iBOjlXmoqUpjfi4A1HWCraYTmMv/WcRRoS5+2lPJaadEIsyDl0U2md+p5l9aV03Bws60DdGeaTko02Svi/qDtkk3LlyLugxkS+G3OabO/wikA9q8az7T89FYyaR5n6hH0fHviHId62bFEg+0i7dWZbiYFA3wYy5Y9g1iFP4U95KeGJo1TqIon/TSl6ykkv5xWV+FdB9b0UT5z4i3WmsBXYWpmcZ2ulvT27eLRcmI59p53s2xnP+PObbDbq0In7BOT4unPkSwcLX7Q9df+wVHnu0EyqBY85UY1uWjkgU12pfu+PpjkHvns/sw2fmVoM65KZdnBc64hxXe5nk1Djg5ADUkpsW36WAQOBVaAZCXQXzJghLlS7/duiFIp9sSRV3eq3ZGBn0KHw8EkaFamlCA4p8bMks6KP5JAVs4B/4XhQgOwI2T+4jktXZSWjbwkS3hdNX4VLXH6pNZEUnpiDtBRg0csIajJCN9BXXkyx94VHTlBTDmGRCDEs9P9ZpFB6bLkq4zSjlGYomM2e9GYryjyHj/yQ33U9FyXudl27zrrTsP8j969Sml6ZGpwfj5lHvZlOiR6yBBgDk7XFkRip3F5otEqDDStO279Y9Ye3QqToUPW7cvSvoh13zvO7lMGpC20NeHIUbS/0+UGC1ISg6qGsoQMH1C+xt3WunarAQ0YnA977M7dJ+fRiD4ukExU0/NRZaXe3LK+0rXoBRfs9V4h2bby/NT7cJtnC/szb9qfB197uJtU65wGEh0YJEmFehQ2ULoFS0mhGUgOB4xF3hjAI55E1/Zf20rUBL7REGNl2QoG88KuNyo+VnomAsTumYmp9pYXv85ezJQFNaizRBphFZsYKKdQGAOuw7ZqU5reNyMBKKn13z2h5wyCR2nIzI/iX+cOLRI+oJUD4DKM20ZRO9sl/UfP4MwfAh8Smt6SGtMLgI+UM+SBWu0iszmu/PoW7t/7O1oL9/0UXL8IMi5LmL7i2UGUZhfEpcuFGpP/L0Fpfg1D84TDkFoRhUIlfSn1nMtGmdJUqbUXi1gdGb6BdeLhjSHKp0/WTW2vO4zHvnR1SUtdWp3c/t0yDAeG2i/0EJ0kIjuq0+la8grjnWrzc0USKaV/cPVkQp3fM7VlfM4xyzRFiB1u88WK9vrf+L7LeluuOeltrK4Hc4BS56d6n0KXr3O9fpJsKZvJq4bJ8R5Gat4EDB28ATUoaLIdxcNjSYlgZtn02PqfONFOCWSjzkmmdUHFCXNAVfXhuSQ0DpLOvN+SBwVgXy+zup+tIGjnllgTlMEfmZ4JkRSxEMUi4GP8LlHqOu53aPXN04wt4GmjssHM1Jl75ZwmTW5GZXO1nk8zJUmxJcAbPuKOLPkFfZ1B0Yg4Rlcq/zkneApQ4JgA8qS6x96sgvkdzutbcUICsq4ADMCwdzQIDW7zAYU30M79I30hwVoZc15+ZlMG1Mu17HNtOI55TB9/N7RCMve0zjqY29eT92z8NZBNl1rf17eZ1aBR3m0FYudjzV5ZLObSC3vnefW9ohtTAf0W5bUlhYH9Zy5g4B/TraI920UReFc/XNbZFQIjtbi4CH4AnpGpOt6KOwhXVhu2mbuBvpzyzBJPaUW5RDNGdCDmCK72zF6NlmilkFuhCTyoghVirvanRXtD+l2k0M31s3mDOndLMYO36C8A52RStyTW8OvBw7lyn4mEisgE47GeXzQqcYRwZQtJ7QVW1yC8ze/jiriHQRQlfxnh3DYHekYlLfzBTttZWLFhpllqliKWZxkmN0WCDoxilGxNn+Uzm7AJ6vE/+CKZGzL7+ZLxPvBpCXjcxBMqSkD0vD5g+wh7hW9GyCdLWcfVGXqVFjs6gM/YCFKjQxm+t/h+m933o1usmwsF/Hphkq51mbSUMmzts1LEkTCAjRQ30reWM+4QOy6qbLndodm9frRa+EDV/mBAIh3/5GCAfpdZRVO1CCZ18ry+76e+zLjAfbnDhBp1itFRVuy7vdjwZ5SaYXic8mxck3u6N4JfKgze/n2IZR3zx3bfaIq6hGg3cyqoisJZlBsPuKXleGWyuilb3/Egs/ynYBfSkCaeo10dUXGlGPdHHXX+6vo9vISNGEjZXP6z5KU4lblVXJKoBxBCDzBMbHaoM27bE4sQUy17Bd3tY8QKKfiUb7s6DcrF4PKcJ2d9sV0kxJmf3jEy9C5bn6fyUZ378F4Iju+/mnw3RoaqiVh5Kly/+3SRdh5Gf5TjU0m10kSHJ9fykBTh3dJNxubJhHgRqBy9U8m/ZS6vxfGwMJzfX/JRmRiObuH+PVoHde3b5INassDhn4jU/NP9BQGhVSvDC5EGwyF3ombU2NPbmlTjAyR9RFnYz9A1sVOoItqEv0MidpAOWniCls8ZpATZwo4AUILOFeVtKds/WZMM58buBs1yrMWsmaV6LAwt0ousICZMxHDCzSkLT5UY5oB46DiEPb22tcu1JpNBhuLc7pQ5k9sHyOjhtWTVrCoVBYXrRoMICPXyPGNmBQMfC2ebw+LTBMNVWpnbtGE0sLskg7bXEHovOv9zoODWi0LNgSbtpZjjzE035Fu5mvl6cx9Y6QqglPQ99lMX6lbfbyJVuSB21Slz6ODL2vgKruBAvNxH9SZlfQDoL0IDLKnqtO5Y/om2Z0OWKQbkVBeI5JnwsSVU5dnSgXU7lSEzSr8FZxokrUcP05vVBTLAdPXRBUgxGcFhw5fSbc8oUElZ+CxuMJS5rswHmZNj03iDZ3QoB+wUDb/yWGWm6vjsrgd0p3Gz08lt96JfO/0EGSdUHTRkgblKYHbFVrFMpevTkMskdOjz7HIl8j3sLB864dNBgyfZlV9wHEu1cuTAAABsWAYYYDjMAAAFF3fd7cM8fB6TcI8CnkRjQ6IXxK4MaQIpw8ht0if8GEunNnP8nDlinxBcezq3r0Qtk/0cDW8vwuMBqrAXo3y65b5omdYiqzaSbGDS+2+Kd8VLkiIHBqIt1t7Xw7F4W3rh61vdIA4lchHGIAKD3VFikyKi52OTfkHg1T+caW2Pg3RDBy2SrskdeQ11Til38zp9mMTJCbRZdNvhMeYIZUG9lbgkzYg4Pe/kZbj9DU3pPTGE/oBhI9sK/UfxF/5ultvpXbnsiuIO1ojZDumg4hKbSXnBKjR3fqRVOyOsNfRkViXG3mnifCwueOl/m04pk+OmKNtFUW6ZeaPmyUXkjdZyj0hDymI+mfKXlWXOPPt/yPcYobRkG5IbEoH1ZXfcDJBTS0M2UrAdLlIBj6WCDrr8YyaeTEEnn4vaYnHGsFhlWaej6yjbDZrWkREp7X9LMAiVN12mYff8/PVV7vwwUumUaLiNDNcCPVPSfjrPDClr1smfWOM/Q7hLK4RrrwkfzE0dlP0stzteihbBidz5hnoyMH6RkSelsKjjAvu+jviLMHP8SVcJP21N5eFiPrJMz2OpiVcVtC2TrRCjMKEro2RIhE14iQJiqWwav+7jamoA/B2o/9u3q2rPye49DcaM09jtUinXpwWiEbHYWcudLLDN7ux5it/w6IG/dOAwNnsaG1Eif1zG0ipK7X+sGrCbHNN7ENgG6EAPdhAiCfMAZW5T4bokYUCGFkZx3Tydu3GZBkiER2QzcwerGFPYVeOWHnxbs3BFwFETQ60wbnQ10yeSPBEDQMS2G6hdF9OpnO1WKi5SZWQcx09AwDWru/ezVDQ+HwNGD4C3MWmjXOnuzI7iwNUrrlZPfJR+dB9tnqOH5HQO+XpYRj7niKQqOvBZPTY2x6SBWQSQcbdWxrxviJaiAFnwC+P5nMGvV6U7TMMSG29cs1Uhs5RRKzNqGkG9PwDBGpiTYcY/W2WkNrbrjtk0fOVUiJZjRp462bylw4YLmMtu0MCSTTLbGA2QLoSWhmwqap7W9KliRd6L2aKNqzOZyZcmYWWNiFPIAYba2KR3Fr0i3gLE7oO3CuNSnjZxpFSz8U+l14lW3dcJ9VRB9gt2L5+bm3nUXLl8WyPjazV98Pwtnut0IiApZyUdlHBSbqGsouskSfDI7WhLZVtsezCK2J/OEfBwpNBygrlEnY38WVn0Vm76MGu/0w2S8dyLDu5P1tI+XflJc0RgvdmBK2pgWWszX0DBeE4oFFohKl/4NkRYGbu5Dl7ObzZIIQlXnu32A26FvvKMUCmXGDYvSzJTXH32M8UacThNa8/Xm5vqhvMclX8fal4Txy/hY/8Q02cnyn19BuZidr17uaebj4xIsxf4ItyZY9u/vyWVxAaUw9f2l7sBZMdzcc3v21EIbrUSL1SsV+J0EmmfLk7n+BJokb3LtP60mNLbehC+HXwkvJXx1ynnlu6ytd6LmXgpQhz++Vri3KDzph4OWTdARl4+imS8L3IFMgJ0zfQxSFU9xmS5pOTnB68omZviI0CqlLHH+7UO0M4karK0GrpOix9X6qyWU/ayD58jL13EDui41OXgjTl729NJiXyqH+2E4UutxfJIuBolEFij82yc/5qCrTeldt/nKfR6Qm48/ybh8h42WU4xXisZvYzlcJ5LEyEssXVzJ31rhsn4OM6rmjWZUs9jZ9VqjeIax2bSbljtRk2aKK4Pr8b+ACcUNmEwhwKMkzGhEDiifOFWT2sTj10MmspjD9KvF4RmstKXJ1NnA+Y+EsTUhSIgBKASMrNz+1qqylycqgiqKpcOmdeiWmewudbNvbZa1IDOvdPdOinSRC2OdfC6idQYKiJgGR+Zge+S5SGqzjMl4kjsNJUYN2MvKNH+cCWOafOVDaHTUEhGMuOBkETrwSYGOZEiRlm030+5SvQfLQGv+xqPCAO1BMXjHBHUA5g438VneVJFH8mvV1+NxNRfqSbcg/doYAeCAe4Mf0ZZ4apRdiVkmruG5SaIwK6J8x/zL0Vjp8GpNdvfT9SmiS9STMfzcVZRyfpUp5dUi1L4ixKibdFL3xmkJ/tRQ4ZgCA8RamixNXnZjSpyw8VACLAQPvbbqWLTdeeT7WLKYPDK8/3/t+7UU5MgNUQdlS9czgpiQCgQ8eapE7N8bTxx1FfWlPZrn20wl7RU4kg0X8B4YiAyTmPtnbUkPN+fN0OItf52TG1a0D/XI79JZxblo0LRhP0k0yB43dzDbc4ocF56Il5U5f2I7WPenO7vpuMeon5q2erDRwVaVlRNoTCJnWztxUcO38m/Hwu+ceaXGwMwl/WR870UQx4x4sg9iyyvl00NO0jAteayDZ1C/Qy9YDu81wgV8fqsBy6XNoacyM2Bl4yCHrKVuiCF028/CeViwjO+aN1fYfK/t7Z1OAIpciqAnWibDjSJIkxA0yoVY7izJN3ZyGvJZwqrMqAZPnqVGcqMaQyIhzC0wx/MrCPt8aZkyK/14WpoPsyKUEZbwrOLxAgvLxx2D4vu+RPoVUERgw9UtR+doiJUcJjCOS0orHzJMHj3/rhvj/lPWF1uWaKPjsySrUZu+WSEq2y6SqeLim8l/quE2I38GDc1gkMmek86GGrOTfKvjTPgXXUS9oIQ2ItahAD7YW5CIICiycWkXtyTvkL2j00xXtZQ5dJkCvoYrN51PsaqCG+B2RxfBa2Q7EZZjDPNdn+tZ0VQVFMXx7LsMHntgjcMR2MrviYhJEF5l+Y161UsaX+4hh8xPzb/l6/WoGbCFBikyUvWGdTF5fZGWu5tA6v9Pqfb2UXjG4P5nquVcrOwq8R9UQcCT8w0yfu5KpfBPvLOf1icRl4kwNnXa+JvnbtYeEemsLNUTuegbEOo1aF3eV3FUEnCmVOhA4PjkIaO0ScTAnVJVGXfZJmNNUEE0HzyvM7UR/UvGJRcjdQ7y2uzXEQkkUSXQ3lrDKPpLE8ukY3dXgVc1n5rsEVAQ9hs1kCW+JMOK5pjDB4F+LR4Wg35WZhCiXgjVQ+2dq5WHM2XYyHhT2uDWyhFa8LPLA4uUdtzJpup5Ko/6AU4Yr1aVU8XNKR2PTMvWI2n7VmuNFI1Cn2d8h0Rb8aF3CRCi8M4vqQEy4x03aDT3ere/BSMRz+xuI0fHi6VJKS5rpm7XlLwhpI9LgriHRVFzYXSk8qhZp8gVb7IVOBjWtxhjGKCxFMc9PdT+HVO7U479jlab1LKBRajJU3bEeaMtceFxnEo+vs8vMemfEp4l6RUGxf25HpjQGtTmG1Ey1Y/uYZ8oU39kouZzS3aYo8AeCLeXEGG3Lkg+lUZR5gqOBYlPNdG8H7ULDhl27FmwvBzdLY6NA/wNj2qpuoYhvGQ802X8QGqt6fC2xoso017I5twSfo0SG2vxa7M9BNo/p6N8BIBlaX7YPNupEONRd6QP3k1gOVQ/mxa1kWIjleaX5NXhEgZS8cQDwIRA8jsVqhP+rWWwKBePkSkJ1eZkHTmZsRoRhy5RWsth5ggxWqxH4z5RlBwk72v2a7RTal1HjqKWRvUWL2US3vgjgg4NN7BN8p3RQkLSBoRU+xS+l02ccwU2mq5wLo+S0QQn32MtENHJCBOp8WiMxLByY6lpI2lQ+uQ30Xde1zS+riuHpp3mQmOWubr8tMVAGrR24RhcU0d+85aPDlakE8OFeBRk6cSMKW6pDWwypBbZ1Juc7eulGAuNacE8SKaXV13dqpyVnFcxpsQFjgCjKnZFseOIIxqvzUHnDZ4cArLiycDQOr5/r7p1Yx9C8eLa9X4h3TyfUXtPdULtWIo2mcX3sLyhieJ0K+Ryo0/1pb1dUzR3FVbaPTm1xoWGFmZhlZyCRyf5E17VKtOyPi6NuNG1pWUIElohjoOYb1UMbGxIugvMcCLfZ5QBuE2UJnBDHUQ99Eur7PvEkrH8kQfjdlFDCCvUjdNVgqzp7FYvo5P2p9y/p47J9+FGxTcPwafHLWuvm67TfQryXObD4u2F3TJflJDDtu0/zaxXT60WYH6kjeu55MerpEbxuxSGqVuD0kZva+/9i/zy3lECLXSS9FFaOY+V+WrVS7Hy14+cZgBjitZSykaACxDHwpSaL2tCVq+tYwDAp1eAFanhFbEEB4G1M82Wd4Fveybmv1Ee8geGO33FpOhsgZ+w8EdbO6CcQf5dqk8h3l1saR+UnnSESyobH9C8Dk16eP1ODLzW3S9+KyEvrcDWPje7XpQ6qi8TYdfYLlOATFPo0inUhM5QsJfefi6FRJdyt26KAUseDGmlEa9nw3/9S/QJFeY5DbbeQ9y17zj91VAfz0A7TPUSZctmUPKd2AMtWQFtFEuy/9mJgv1UWODWsy5H1m1ilvX1WOM3e3dg2eBTw7+f6Wsk+t/RYFi4q1lgWH602XzMKAaNmKLWf1MAo0ybluv/pWKL4jLFYPlqS7VkAaiYVN15uzen/as6IryeMg2jEO4b9462RpSrWp4fJRpohDwPIIPysAETldzrHcwrBcXQ9ZXy1b7OgCCaw1/pZ6C09x0g6btE11fPpBbikR/R+u3ktLf+0xdTU8nZ36ag9qIKnFJDY5T3Ab88vfORkoIJGlEOVdG9gli2ggUsD3b2hLtwtU0rumerH+zAHOS9d5erymOf6fq+Llt/mrjjqym5gA0FoJdJ1COQ3W7EAnwREA8kXD8HrVPLI/ir3p/SUCz4jRglclYvnnL6f7ZczDF7lb9WbWZs9x2WbAoQagajTfRxG/jEAywaHcuK8m0XeNk9VVW9qrEWSwLrCFPWoX+yzIJTbtOvuWn9Gdut3RjZNHNobtC7ibh07FZSq37e1NI6bqGBJhJARgX7ptMeQ+AhZAfZSyU51c9hZIyK0Roev4jQ50RroM9Oc+SMbHbVUKpIjqZ1SDIuUmiDyWub7fPQQFladgGhEIQ1gVCabroXRFcYEb/k9VEk1SivcjheZWI1xPcxcXPYLAPu0RJadGlaF/3ER4IBW6T7jBU5i+/M4qfIOCIGM77sziJqaF0uxRsbS5UDl2cUZoHX15hgODwJYZIHKJ3fRUwpTBkLf8SEARIYcp99MrbLsY/yu3VxSnqmm/oxvxM3rlL4q5w5D+O0VSMzXhtm76wtyrEYHVAeSJb+aHBmNxVtgm8yBIaFVOFCUNIsbxdL3P4THcvxfT+1D1sC8CQA8cil8tGHlIo440OOjW413tRN+rT4IOKKxv2oVZP/0vHA2grTLZ9fEaLfGftAWb691bm/y37MGkk/PSKkqE9T4L5e+bP/2wOMCT60CyVTvkk6Td0J2E9VUOlV/zjMKytEhMTpRt2RKUh6o31WXVjfjWARRDBomc5K1+cedJTyV0viMzplsiJ+yG4wyMib3v67dzNeKMw0cXjBaT/pk1wbrOpKgIwyVYUR0PL8DJiPSaBTeC9FigdT6I+GKqWLTMnwW7Pbk8fOA1j0XcyY0ja5XyMDi57WbH0NU8T5FL4ljDOTvMMoPfRadpDIRS45yZWMUVmyOS4drv01O4TYeRHeE712TSRTe2mER6FNA0LG/BxZnr35d84X1LAlraNMz59zYzSMgu0y/mjeljT2PRp8cKx32J+ouct5Sa9/X9Frf0lBsoj2fG0tWJy3MTc3cpLeMFMikA8BVbGCkVFdz+WKb2BdAmq6X2GsHj4NV9HG2TkH6q64Hov/ammcpleuMU6gCtUsOUPHKPOim9U+PBhEbR06aEPzXq3Kdiln7Py3cFbjy7BdZ6sHzAMMMAVYM/nMsCrnvckW/DuFbc+q6cYqmmNha6ZFpP5XVKtRJUBSvqzlE55PtvDIdmOwzLMWKXQTMQh4K1t52f11iOAEDL4mOI6QXXwaD3i6JdEHkSFFNZfe9myueoZFb7sDE+sYNiCepSI8AQhcQqo8RE3qCPnMufnVQXX4ts5U86rqCzMTPp661whAQP+8hwfI5s9JdGcfckjgK4tucyL1WnSsa5/nVjrxFW/0pcqQvU9+QwLBKbmBAqT3nmCmFMVMsaZyYGZENBpWxqIN2yPVwN2XHM1T3T853IDSsW9uEy2x+jdPK0q/MEcGWcxpFgFVFkzEk3wQUAYe80KVCFMFZyIxpVLublwbbyCCMIwH+1hA7k9sDN7o06OGcnBzV4tdi3+9miAehN3zrHnA5uFSPFAetRuJW1Aa4Nd68W2oicougW6fN7i6RzAHxLvub/6zA65PdHJl6eQGq+LCrH1eG/WTtPAvXPqnUxG9zfIZ660ZgJZoI/THZVxiTyF9agxU+6w76nxC8lHKo5OSRQgRqjq12QDlzWPNkx+NIvVl1CDuahA8mL+97yJkNFPMbiEliy0JUfrezgWqOcDIf51JuA53mfRF5oVayHed2FRQvj4eZa5/yuWpOE3Au6fVjjFFFTuf2durQ2M4aL0YcoCodLeDun3RdBtE2riKhclrLEkFpYTVWCuUmbim5DMgQ7tO3yshgxR3vY+5+gg37QEcr42exl/DSIj0AtQcz8VLuZJYpyeT6Ppc51AnlqNaCGc74etwzOZdB3NusFuAsNL29XR7Sex7/nPtfn1vtNQVDkUsJXHtakHJQ1uZBOI7IR23tgneLusx6EYI+JIfwOgSKUntd+ov0LtShgJZkSf1wcUI26LjF4CXHqXph+vmm/L8mUD0N7YCMDXlZuAJj9O59vXyYwToToMEEgkJtiN2966+fb8Qprjb/AVNicIlCJAZc6AgQXcSca9k8ofI/viaBdqcU51CC93SFr1/XjNBSTHAccJfOnKorxdqn7+445yAK+gZuxFOEE9+X/as+CMQZuTKhn25bDiDHP9G3b9MdMUg57si4M7uXz6Ya4LKnTDSmtMbW0qF9qQkvz80LCgj8QpDRRIMmkzvdLSwYG5PlszAV02vXJm8bfeEb1TUqdQn1FgPDF1Ih69aIShf8yhkgJkfitjbfkDh529z0N637p2TfeICvI5nWFA5Gqh/dxUtMZY0NuJQlM/l34+h7vXYut09q+fhGHyGrT5eVK+OJ71ziCte5yAxOxRoL61mkUeayReGbTcGUfsjzXZK9x5GXDRmjjP67pL9iU1C91OzZeGTtRwnogvg+7SSAQstj3WCWhzOGMFhZmp7XMExYBwIZMVr5N9KwfcZ/1OA9H3eb6nA90mT85/yWtfkeFg+jZUUkWhnXo/W1Po3OlndJ1bX9i1d9a+/KL2mqsoXyCUFmgRkZfcRFlSi0LkOBmU3RpIiZVeTyMwUHd1MBC1Wx3o1akSEqhOcsUU0vIFH3N3Ss2sJ1T0y5E0liyInqEMov9A8NRyNYHm1kyByh9/LMulyjV9tCPUxvnLZ3LAkvVhlx24r90rra28oviYIgpga0uzTKtNsNK+ECK6ozGw3GhaYEncPMDjBlfPNOXdzon7x6Pa3a6Hdzmzu0FjbMT0SHNXXdJwADLp1BzZjaUMjjpZZGEyrOUpq/whDQkly7GB1OjEDxg3wcwkZ+Zuk2IMQdsCzvdb78H3ESVZLiRq3AbWkquH5WEXReU9u1rExCEBQHCgk+Khkd6nwc0GBeVo2h0bG+g0Nzq6pCtIUtyJhIjsWeJl72r/F65I15nVL5HnfTAJeU4uZqSF/JvnfCvm7tsah3bLA80oYzn3CFt1ylLtx3ZwE4stcuQ5mkEjgRQdt3b6mmVrnpHsm4/tb8FJLTS7W1fDoj5wVaXzvSmobwD4VROCvd4QO3hXyF5igPxyFV/imN2gUmJEAcEVjDTZmGY75U6EHbIb1e9siiiMcxK0BdbvRAXm5mYLvxa97LtATYKzAjiOGV7GwhH1p6CjHhzELYlcX/TpGZmPRXQfgFfFhhgAEGAEQEGGADV15DoHZBlrPMToy1vJ/2LlCHbGdzb2TZCdKp0YMQYPt8Dqs1qMsKevSfBeGFlwpX77BRKai60Wd/Q+T55PpvBYafkj1jk1e6IOZNINS9NImY8HNpuMZvWasuvP8+u9zmidzGZLSFWktuvS8L4S6nlnDaB9m5VFO2N9n68al9Cgm4Xcq0al9DXlWIPiB3FAa7naSveDw39VpnUaGe8huy9w/cshQPP93ba7zHfQI5YZ+Ca7b6sqn97oLY7WTXXw88MH0Z07hEYd/l87XM2q2FwggY643NUgQh81+aBrGIYu0l8QmGL/VExqus03uMFYMFoqc83keT6EcvRzZWSfE71u5mZqxBVhxKrh+3Tyy4zTRtRbzKmMpbXSGNtSTLOHINe+fZkHn9m+9Oouf5a7R7uj6aNc8jgjEU+/0uUD3cB7AytjL/yRwcJaTayhijGhwm1mFrcJsXpCGlyFsQmP4iI9Iy7nLvphAesb8PBkrOmV0kkbjFri8Hd5xC9DVyDrZkDdQhXjGqxo5Y6aYPJH56nlmw82rzKYuCOp55Uk1eWdMAh9C1UnSV7zMkZu3q5g4kG/nYyI3uGKKWEnL+TCfooReC3ClnDk+Rn5cv4O0eo/BDyXeftGFLkBeXhi17MmO/rblcgslhS6tfkNJV30Tju+I+oDQOk0tUtOzHMdH7UX7BCh17uozWG+2sthP/N3OHoCJZ7Pl+VmPm1UhcnyNuvrWxDzjRhlWsOWlstAEYK78XkcXrr+UiSaoiQ5W9Uh/uQ6HMoofnO0SMJ30jS90bjlyfXbB9PXHDrEDIGvafLRjNeoEksdkyxS3Ow49PaOCxMlVLEdD+gA9I6W2/8OecJH5wFaDuU0UOTU7l21dzAzMDou5G/qcPVIDX73c3fM87z1KExmoy0TbfjxNtdrAgC3nFlhcq+RZSYiPuLc2vMg/tvSYB82nn2iRjeUrxZOY5/Y+ZLtirzzvPZv2Pz9JMy0d+X7taA2aClwphHUBPCpKmFapazMHyBc8TdmUNv5IX+pMZg2mnWBLusk+SUr3tjThZpaH89tTQa3jMmfYMsgwAKrID/Hv5aSW6ECT8J9VO9W9r9ngQhHVbQrM8qtS5LUZDDw6Z7WcY02tPrZwTxhIE48xn9HLdy7S7pX2Fh4VMlp+raagZyf5qywKOkud6yXf3rymQiUj+qaUlFY8BgGGGAFNn9VCTPETHmxsMHQy/4dNDaRCHHrHrr3TWB7laVWjLa300Mf9QFcYjruk7IwrLBT/S+ye82Ov8RYHALtOjDNiHf+mRmD9XMJFtIeh9/WROi/Bv7R10iuJ1KHxbwXrg2Jv5hM9nqv8+rx35k4428u5FovcvuzIXFYq8qzmtXqAeh9kwf4IEWkPvCWPE6gaaMKJzyiM/zat9/1y26NMvSv3O+xeu1UlkceHzp3AZMzwokDswcLVxWzb1Z86+qrecdTdFw+n5VXPOH34alVoeI/PJSGUcYS+AD9M66JwQ816ruwdBMPayKVrcavQrT4WnWpa687dGX0JAgzkj9r118nzf7qKCZTb6NrBmyb9ChR8Tstfc378uqPuUeXmeSJI/luNDPT2dGgAoE4x6yEZsrHMQ3h/l3NHvAspwKCZfOy4+iUkOBTB8Wib6ks2Epm1iGNgDH3aCzLH8P6ajHQ6wV8nW47xvVenG3BZbRBaVyw+iEj+31TMpmW7TDhxjrnmjE25iiT6P7mHgeDhpVFm9mjJjf5vAuI2qpggmR59Ze4LaqYOKmLYHuIfyeSQM4qW5+7ZUkd+h8ZwC1yg8UUVFfOYjmPpLVK7YK4P9bSI6e2TWQmmM8Vb780vr3s8dXNq2oYS+7vIV7D7WP8z3kd81CPa0GXR8pbyhiX33IPSBh1PfiUt5qYQQNIHA7bUVtlVk6Uw07GCfohDufme2flPA0zRtgQTrrWUiVf5Qgu/4hFxT5Rj1GmLF0uRNCNSqInBIC7DHUkvDS2qNaYGvVg/AeSnrwmEP+otm63+Rwrca0RHavbsw5SqaRFR9b9d0yeuhDoCfjNv+oOZsCbFTpBnRSqPMDqMsgqE4jjRffPBGSF3ILMvymAujxXWqx5IGlbheOFDy9dd6ejEQJpXcm+5jL6nxR83Nh4LS/x+vYbRUunqVL99rm14lhUBE5LpDA1lWYh5J5ek7R0K73dU0+74tPLPex0eZ/C+V5Ta/zWWUBOW5aL+Re6kUYA+14hSyo38epR0u2nXbBdbAoL+O82/s2u4U78wXzTBnsDKja+/c04lgZuwHjpu46OmC8ULLO8DLKe5rTGKdjY18juXwbARDCBgFBc6W4/vokbLFpgjJAVehMUtZbOaE0JQHZyS5ELdgdqaI9Hkr3ZhP9iVbrhqcpr3M6gLzvGdMx3STVoLZSRr+MmUvDbQJZ/FNk+NHH8Uw2cf9iPVdbK9q87edKcbiA6k0J1Ht09f/njWHwqRmOxup/UeGN0V6YnirU0sIpVEeUdn1hPxenZKRpz2ityGyrDZkfAGUZzTTpfc+FBjxDnHICrgesJKSJfX37KNu+A/hXvVvh75O0kfiIQDgX+/6BfD1Em7jBSSj1DlnHb9hLSd8r8aFGG67KeTKzgI/K7s2AowZaX+q8zb+mDuhwWwdPhSfiLy7Pwt/5mOQofnWncXJzt4kbN2C+r/SDb8Pxnxcl2YrEltKpmgJY4w2IAIVPXaMP+n64I4GTEY/ebOoMR04pOY++ef3vlRN3TMTRsakvnZF/+VL8Zdyg66/nkJIv6AtbzE9gUnM4PmQV/NDzLRLkmrbTjMNxN9z8ozL/G963xPpetXwBt/eECQklbBs+jkfT4H21WiAYAzXgtUeF0v8JCd8TK4/wt/ZLe7/SWr0urZ1bBvS0jHGRME1xSkER2AfAedEimluE4N5rmdWdFABGAiB8dniSGLkApH7BWLaC7twOmBCYhbXhCOzYCK+Kok+dXPUPFGacBXuXJUaOoWqAYL0GdZqtJQ+WodV2pmHWRC7qK6eNcGZF+cvGuFEJJDDEL6utuh1JlIvV5Ln0lJQQg4wOx0Ld3aALwURAcmG7kVgqyMeWa6rnFb1qWGtLJTc5S2iUeBAdK/owh9nXvIaSOsb4Nm0CVpnOHtdMdqDZq1TXV1qlAIDICrHWXWmOUWSCgDza0rvCvJ+JSVfSEpM1ZlLtUTVhl+GLFmHaYaoRhUdxAKUdeUv3SiuOn7v1VB99cCWaJ7QguZY7IC7JWbnrp96Mfb1Ro90bymq/76nIkKHpXAgxecgp5KKFkU/1dOyWEaOAwCeB2jkrui5gD0OjziVVPwpp3X/538307hT6sQar0iwBEDgqAdkd/boEDw2Uc+P2PBq38r9a0QWY82205Pd76oPnzkvl5HLr2De+OUH1kfBCW0gVL8nx0NfA2nJrvu3LTyXzU68d6TxCfjcup8uixUUvY7iiCTP/CA2S+aiQrbtXr1t3S3PyBPMVPMSeII4fht192DfaCefeEkg28w4WtR6hv1trvmclrn1nWJevK0yrDShOq18tuSXvkD3ykYrWDbIEIFVuvzpOVa1dLu4+WEhWjw0vGPBMIeubKuwIFo+Uu5C71kJ7FATHFluU/YxYecB/o8H99flYtWJEzyLtKWo7qOuZKDnMOrkfDweHCBr1jo51KNWbDdzcarVijXrRt8unOz7KFCzHNbVX4W6XKQJXQqYhe8ZaIzDPSf8iLZ5KfLj4dC6NHgyYUOd2MG7IF9D23z8NCkrCpN32jXLPcANyM4uVNJyqouLhw5OchQU3DlCk7pxvhp6VXaHXW3uSZdiHixTiH/Fd6Ll3yS8PhT1AyYeHXepfWKOrmUdrtNoNtePYulmuVffmUPyKRpwh+/I6kjELuXeQuvgVvGw7hSlt5wDFKlowJszy0S6FW6YZrSQ8U6bpK17zKlaWdQ+JQOrcrvzdJhg1OYzpNTAOAS9Q0YWRODQleyDImkIOOZSbu0zhWlmnjxNE59ca4kHW5gHCx8NL8QOMlXnOr80pBpIEHGkdX3s9WE1lbTUcTJrtKObsDm+GMg+Bh+44vu2LRYTaVj/WPRYT9NtV90xKNTFXXad6SZNcV6zhvL4iwPUBGH6xoM3I4SjYLHVa9aOETy6wTLwkGEujy6ROkUGAqhFPhodX0/b1VnZ93l5rU/kMc+j2c0YAoo8XP+OjqcpBKDsdSOumC2ij39k3OabNNYGTfg6k3Qwyrb9VDDKo7gK4+ZYsLTC9ua/m6S4GgwapN9wh27Vlb03IsCE9QXrn6+xPzHhc3wxQxEZt+LVXj9S3+DAiy3dNthj7BXpTGrFi9itDtJRu3SRG54Eh7tNTDbu9NRveZNC7kbIaV38ut8QpeCto1M9F5uwN4q5LGfAwmnJK61oHq99lDfS0jb7QNVwqu4Q2Va3uPAXBpTMQ8Z85cEHw776hlL/7MUlbZk2AolZ0vLunOTeeboPyLRRLIIn2evWLVdyG/G74DL1mZteymzMQmkAfPRpf4zixYkGfgs6E9oCrr3z+qOgQSMqC7G995mAn77YJbzUPVRhyQH75hVO6itO7dxwC9ExIv0SMYCJJghibOieqiaMSUvQmvAlttyd+LucdKldQs8dhruKgmgyXy5Ks/wN4B8AwxEOeke8kS5horZTUq2FIvmdEMQZVoHHVVutlGVXA/m8b2+7bVs6Zws4DvOa5e3yE8tctkVckkNiUWZVJeLOYBLIx2PokauCicrIUNXlzIMLAXCM5Dx7b53BtA6tl9qdAj2sC5hDOex/mM89AyZ0yerk/2OGzhkrAtPQbb7cY3vh4s5fNtuTuzmQKL3iv637lay+1O1pbFjCTonvi7/YfIdBJ+UY0Z2JHEomF5IFVktlxSA+RKgef8oCi+yBC/xGr/bYGSIdLBxskaQoeBykwDoaIosHRGs1dMuk/ONV26M6zll8k327p9tf7voat2iZ1SVsAxC2ztxdEhnq+DWomI+KGIVeul7gcRLDAOJDxAk4eQeVls1KUzlIMBk2qzTijd6kFvN9C4VAMAhiQjWpqUckC4GVcCWNAjXWrD2mZpYYBYg8XBWf6JmimAYCqwyDAEGziDMMAb5H/47EH4s1k1hQ0gwCzPDADD6Sn/tuSkES1OA/r9UJNFKBnq2uwHCxikUgwE8otSn2WQH1hKNMn+DobpI0q4aLNHfj1hLV+o0e6J2ayzmb3VZsyMKHWV9ROwLbGrOKYaXh1PQmCOG9jSHF79YBUwxwbQHyE6ATQbOpklVENckdzuGEkzy9z2T1x8WpCcyJtGwFTusz6x9S6v1iyPyhbLDzHcU0LS2Ge/ft5QJVOG64wMc6vvx55IvtLjYXpaVVsshijPrtei8xTxJnBUb042vQGP8Yw2tePujrhv1kBlt5S331c4PasZqDjkvWO6O22sMrt+B2ezND5AFdq+jO0R9mlZLS4agKMSLYxpvid3de+bCPNDZ4exMUyLeeef4n8o90E2HpchABcw5jdVxLCiPxql4vrxbw5pu5NUtspiyL2EnuCZM5HrQV2d8ir02/9s+mB9p/wr2gIfGHZq8LjuBlYTExAeLYWnzz5dnq6wcqvXxnskNLNxuKB31Eb8VK9TTGNdQ7QKVKwuLus+AALuCJ3U2PYOM5MvYprBPo1gX3IiD8kdvQe0xZ5nuDhWHMqM526QRU+zytDmWsRjHxh87gag3F5OMQYKio6q0OdQJ480L2ebLiYq8S5K5eCIzF4NKZfEjyoQpSoVrRVTE5TXQSSeeUpe5SHqhJhV/wxlvuLm5wsIpHG7m4uqelMzfEbf0Kv5zpJ16obcwu3PGfF794gP8knLoK2iqu3lx2OYu2GlKyQ9z3IjE1HLtvqoRWd9sJWy8s8PcKLcdCpzTX8g33TQZzKRJw7YluUmul2heBryghCZZnL5ppCMOY1vF1D/m3nTUxmMgviyH9WUaj5SvHGq1JdPldDJR3QWhbh3pBJVJkGT8YoQybRr2En9DJPk1Xb/yFa8HTtPxkiOi3t0owOefz3akVKaySrQiMsNyXFhwZtYZUgPjZunGWskA4FpHmbg+QXBLlK00LwWW5oDYZaLx7lU3+m4LqmRBTq2+6IsA0U9drSH+wiC6Pj6LW9GjU0UmDdrEDGCP7cXG2ay8JMa1EDBDR0AVOTFYWipDsYbu8FroSFH5/BaoMxo18x7LfaWEuE2DsBL7bh2hiv8YHnDEsh4SQS3Z+oYt+/Pr4B90ssyAQF5EICuSEC5vFuHDBp+EFrfyICtP6/Od+122IGgeIER0uFAEjIflV6O8Ftp6ljWAm9fETeo3zkmu+6imORcfscUFy2KUcFzOFTfDQ21Lr4iqNLGGav29Qq5wbImkKnucbWfYV+s2qRQFDA3kgWxHGAW44STF5ACfl+aBwBAHObPUkaWRp6e+Ug5C2DfIHITzaGrbNtAVJ8TQjxM/du/HKU8v5LvQGM76adxNSVqeoKUKpTwUUJJfW14aFthCuhFhFQvQ+B5UaxVmsdkHTeMZ9cMtbPi/YywD7RkNqjF7SlMwEMcMi7ZNoSzbbhEb0SLy+TExGJXH1kfBOKkh0NC4e7x0/zsxEJ69DgcGCRsoUOP+5U9nHwMEnLf4H0JpHIjmAQnqLX7irTtcRBP0jN6W8qiQP+scLp9LWXgRN3gZxYccro0+DiestUPhXB/ypDavoTRat4Uoh/on6rxWs+UUsLtWp5WfUvR6qO/B0Sda8/xFA1OWazSiQTp8fvh1Uns7lBb1SQnXCTJpvlbf9WadH8c1b0oKASxmTgKwCn1Z4xu3izbsdhoMXRurYa3nFvH+YiOpl1PwX4WX1Y2lg63ESy0WA0hJQ4pVG4WZMiy1h6rbedrZG8rPFf5zFfdMNll2DW5KGtJIwyRcDHdyoJSt16/zu82vEcc9j3ccxFbvwZoVqEEWOGJOFyXlYHjC1xG4Rd07yKCoZnLkPv+sbWpzd8npm5oOMh3/puNCnFPrXKqVB6ZUD9dekUlV/cWACMAq0MpMfmnKurIDEgrvHeKrKB3g6AL2ikMEpff9b2sbJ6TVdmsx3jp6ztwMvTmgFQgpAvFkOAbR5H0HKo6dgcpwvxYVuLgdkjPSzP+uaEabdlPhsghNdNb/lxrvMVbZ1buxehhYMRU3cKIfjWimDj1j1sk2KQGR2d44ZGgcn3CZCMTH1220+6Y6ZVR5haLCDSeu5OfN5TKfys6Lg9d4rn242Ch6BhD0EcFo2owTkCJn4znYHtfzkHOFMGFsUdX7NVPwp7QNkhhBsLm0wTzw/yG4ws8LyZy3060Hg/Vlk651ddPHsHW7dL7EauvTlIJ7DzLnC4lBR0WGS4q/4YUXpPlloFTwr34wHJ+Zbmht7bz7g7t/y1sEy+zr9Dt5riAQnqJSuqiomytTWHVZ4S7x99W7wH9Jo/iVQSFIe4FxP9LF/n70UCG64weCzj2WDSZfK8nrjP0euZK1WTyLfuATv097X/m5FUQW3bGrL666XZMCx9JCaQqJoAMYJjW+w8wiEYlFodGbKOd1Wi6edTBJcsh2v6ma6kC9un5WUNnuLSOG9Q6Cs2a445TDoYE0PEQ0TdfAYho/i5MIKNhxwenDTgifeIfrfF1utY/ObbaTZCNIDoCWh6L7tJZLU3wTcd8e5iwUA6sfW/Y45Mn/1h/84v+jIcumZovnB8LILnA2rYR16rASJr5egn6O5j3FT/ArCGB1t/V89994DR/9ABH1ggOTdur0zwMLFdw9lF5GlPpsd8d+HKjranvJUMESwgERx+lcX6vaTHwaZC4ecnqXPfoF2V/ZlU8Qs7MvzH2MHaeEqccgocad3UqPwTYenYpEm86TfCksm/6LT4DsRT45+QRujj8Iu0/ZQVIcRhLAZWUEIgzoocjQN7vZV/f1WW2KtOLotxFQk7uSicRYF8QmLOzk+rmKmgUFENT+eGrsf3XKJLFNhg8OWBdPv6emS63yKyEqdHnYpgPJtzPP5F3dNCKLY8K6ClPn9MbFvCI4/EnSDEdzgD8sR0cYiUGSVdcFm6qhX7uJC7ucg2clW3vX9jgpd9VI4G5TA5mPDcWf9jvf5LRKEXQgQw/gTacV3x2lz3qik0dv/rm68uDcI0HS2hiPVD3RpVon5/bEvN9vH5j3sIBFtjUoC/Cg4hvkztYubbOUfIV85RR6dhFlvlUpVCZffpYS45ilNXJgvv/cIbgrpicITyyDDJo9QZwICswZA1pumkKypvRw8orLwa45C7JkTvIvygQYAxD3iSlsP1eCN9XURhjt3t78O+Qs/zxkCqZFgQtKtg+T2Lu6hcuIk+LwC9ML9S+MfF7bB0e2bJsM8n4aZamXLjBKEms8w6msQXFARcjg/utBThdnHFWQItFazosVVB2q/nEWGg7RGI36hKjI/GkxXqSoGXrsZkD8O6WLRftIgiHVOg47x3+y7MjClzNJrBPqJEu2MN6THuz8XWEVSaasnJN2hDESv2zLKo1gPfVkkuVzH3nGMnD7zQTZbpiw2SoXK/UuQFWjuRJT0oI31Mn9pnPc2T6cmqD4phA6IJPlHQUlIkOb9a4BL6yPP0JE//bCU7/hZA9zyVD3LTpzl4CM8L1GueAuUqEAdYDc1xdYspAaB6GZom9hORt6RzX0fjfJvTXOZfwkIwLwzuT1XmyHK+b1NxtUIOU5vyMf0nSsdoEq+GG0cnqsbhWi+R391DRR5mQYDRtD6St9OLgwwUDDOYwb92CDAY7fRtNaUSeBzLSftdCnOHG687yNn2c4NhsVgKBxsVOVXF4TrElX8S9A30VVDd25RCl/zKWSvhxs1N/l32Fv1gPYNlZb69u/bg29+th9Sz8Czs3lB5UYJ0Lf7BT3Dule+/vWQ6DqwNnqg9wTQEhxpz/cqdHZn9TNGenmaaZs/7G8t+0i4GYtA1ioTVPuGGT/uKZs9ymkIZAWvCGapwkDNRMaAJB+2rX3eznr3YnGga05GfF+/+/Wp/vzryGRSErsMDeWC5tm3BDSxDBpEBYiE6ZF8223CMMnH4XB+8yei0v5J2rTU9m69H6rJnGS/d681xwGQ3ilhOCCqDcKOU+6inwhH+US1EAOdnDmaKqv4hngwFzQfTxKdNrYkvnmcV0pyW7imuCv5+f1lo6wG6bLnJMy5HjxdZkL3U0fyl6Zj0xW7axQaa//GGJouCrOMOG5f0VFEShJlenkbjC8y55Yq5wpiyglAkBi792tEbn6+NlkgZMLp0eMLPLei7i3uKnR87ON0mVixxLQR+nUMR8r7e1gYDoIaG3zspgrWv1tgi0FBC1h1MX0xQj40tjJ2cSPde/kuHLjoXc6ZPnkLBdSN9DJcI+F5Rz2Kl+Uceq5s/f0od+zgVw1NF1Y7gZTdMBxRURLQCgR8IgG49j8oBuGFGt8HJIjTmKfmjY3D0MEwO0yrM8s0UCSTMzhv8cvV+6MhP2ekgwjxljc8faM+xiSM3trTL3GldrzsTwFyx9/hvKxlplq5lPpKrjxw79peDPVp5CPgPl/rncmMjmzJcAMy9m7/Xm8qy62gKTAt1NANtv8PuRmInfdFVvS533Z/GM4/10owedIkB62p66oUAMe3ObFpiyaZGyur2LmXbQ+aCPl2dhgSfgx6onb1uH0vZln7NcOYa3QsA5gOLtAdi7HtKupAg/9FyJEXVtTkjyMI/7L1R1dQ33S4WO9qbj7jk8mrtQ0j9Cw9w4tsynmuA98nceAlS61rNCcGOIYBKmXMD59HZqk7zrFDoyA3R62RAIGddUnSETgixCiWRXI2+sA9yEtiucyThfnqnibE9SB8kSx5meg/H570yJ2gV29/Ay9/rW8eAcXdwem0j2ImBPh3uR9XN8Vy1EcsLk1gDRL2uyhPg0j3Js9r+l5GwJnZC6OE44N3wEr7bWZHGtd6YH+w6V41j3rIn9JB8rNuRsdIuqpHR97RW6efaE1bLYDAKPlYogNThKYN0ZUi4unEL2VB+j+zc93UYziK5OCEDpWSS8vDyFgbwB272SBJ1HAPcURKYi3U6HMUQevNfX60yN8UX36QgfC2fugog4KGsD9pJ0hFnOI1QSDrj3khP7xbmbNvGk+zattDLufQ6LU00/IziMO1UHgcP+bXTJVFQlKpk3T0au67dZQHYcC+DkjkoIkSMIkJE89eR4Rzfy6XPGn3FutR1W+2l0ZouBF44k/Wt8d0z1y6xtIcvlq4gWCLa7PGF2Ic9G3bJk7A5mMf90sssBBIIYnyDGPyhFHd8ad1pvcaEnDXjpfyY/PZ16Mh47I6tPQ/V+Y5pEbcd7fIrSaCpEcHgTw6L9sNiAe+lZjuqUmIXCj+y05UKgtZJw7xrN1qYT9YO4n6ipbRYNBhR9L/2rmvDcVWPXgj/1vBMUIVckngX8HEDANf1wRVZUP9PN7/4DILWcCMOAlPgDF1u1CQQrM0fZz7GkOTDrsXXbg4pa85yXd8ItZtyg2ABdUAxqxn1boqEXnCglWWfYuNCgdjGAmA8EItQrcf3cE+5PiUVlRy22wMc8/K9XPznw1IMCLPA+eS0G5lnQc0wY8AKnYTIVdbR9SWzirtpJ07eWBkSY7DSLvI/fXwoTp4d7PCHyyyBxRULYu4faDJNx1w5N3pyTv4nCaLzdhfKvEUK/TJiNnttHEDf7m1ug8KGw77Uo/4Ih9jpxE26UIQxDyVgJa0WASgZFNtVMPnvWTdDT1D3pZXuqPNrlXyfuQLNrKD8Kw+sS1WyhkxfdTd/+1NZ5z7DD8Zt+J3Wn0dqh6DkHACWShIfMWdyUl12ot7nPcUYW8Jg3InBJh9XUEhVM3aVWd5hlLMQjqilH4StxF9HHtoCJ5HyT/p5foPwih+Vn8x9rs42UbZkHygIdSSCOgpYtzIRwlP6wqG+mEWSxvJmPZ3tCWlqQo+eO8W4ncDHMAKDXv9dSv3dwaFDVqPnWjuZGAetysayCaKgxyOakhZUJn9AH1ukZBqdKSSRzvMN3YReoyPqs3PgD2PzXrjchjtHOz6GjKeuXV7uUJEQEjzJBrmlZ/Obi0Gdcoel3JLZXGZO1CUkWKNzFdMT2BBxvDkikCGIS8ScTofCMGXk4c7L0KOWtdNiCsefXO8Pe4dKeCRlzGW/IWm+B7H5ddMNGcjPbEegnnke23bFboi+ePlvnhErVqkgHILFXUlnBrndC1P4s4gCDK/zUvhEhAzrsA+hYxx+09LRa/uf6hAoaOvGShXkEEk71FuTipeReI6fGNES3UTkxTj6Ax/b4iot+ctlmzpOQzDDF+F65xGmb+CfPxTdM+7Gq7Ot1ioQGXFrJyNSCuVn6uwiA5h1tdshRbN7TD1yEPqq4n3S2nSHqqPo6qTaNgK56qtKPdbJYuLXgyhhKOZJMx75rOBm9amA343oxbbqBHvLIfn61u6idIJvzwFsOUlofjUMzYm8M164+s59qHoKGvPgemmKqOgZ7pu88GPW35rZF+GAhcvjNZF0Xc3wMpghkV6OE9xQ2r9fe7H8UI0eEpTlHrYaw9+rZIeYsTbGiVWHgcj8Temh+2ojG+N+cVc+BNGRxZ9wG1FjltkBmxJ9LZL/fzALi+r1Gv9wXzQxLgQ5fvARq5ejXYZ/k7ZUY2b/1P4eBYVlBiIJCV5s6OgG9loiS1CAAvIFChNge7my6eqzCuW9cGrJlyToDSwhzN7cjJ7Zq+YJnWzgsLxD3v9pQ350Lbgi1aaIlymn4yqKYh0jo0tIvgMFtLsSBOC1yU3RG+WJULcPA22v0VY+NhEzJ3vWVe5OOOxc9q/U/tBFT1dVr/GayhBSL8mHz0nMbbX94yEoFNvPeP73cUpWDpcLHf7bpCPXr+USkSt61VDpOOeEJvYDwJ/DriP+wLrCORSiklWkceh4OMG9mg+vnnb7xC7DT7GwxVLcjFPMbvIZ3gsktV1GW61Tn6RULMSHm5U/RfhtqUIt0QfnyZvYi0gQIYieFy3E9c7vp5mnt2qmtQt4+3iV1/C7wFl0JuU1nHm9WjgOXJ9Q0EGMqAzB2E0whfi3BmUUa3E6Oq7vHTrLwayup8qYEZZLl+OxGe7dgehChiLkrn4HU6HTr/5RP/ANR+CL8OTR/sqcws7krhLCrQ1BUb1Tm0FDb9tT6w6h1ropaFIDh45c2GD3JZU5tYF6gyFzlXNkA7HKWdB4cau696OofT4fjpGr1R1yzHaggaL+7px7uu2IZ+Sk+1XpbWzLjc2Ct6l+2yZiYEJzsfvcD1aieaS2PeiKbGxNefY8MsxBIEfrmPmnBAehDEtNi+o3NWtfVClnbmvEr09Ziv4QLzjcmxSxqfEIGPpj5tHK9dodT9X69eGR5cypKRn/FYgL5FUV/+Ao68wpjvpq/6PiVzInPAem8lsRCYtXdbOYKPWN+vQyHerVqESjKIrE6heeO+UWIga7PDi7/3T2vf/DajtRrDBjqg9q5r+0rdvwPvbpa9eQBptubpvF18n2ZoihZ8QYjTIzu2QGVoUhpUx8WUhGR6vYs5s8TygAQa2kEfKXlSexI+De8NK/RMx4eTcMaaKM2TBQ8YsYoJXfTph4SgbBMTRysKn7MCmTGHqi60Bc9/MSakTRcXo4bwVNfWNqWEmCv2xQ/9sRfeU3MP6VnA5zocXBZCXUqdPRlZpr6cBz4pnvaltHvVwaGqZbavymgo8RWqk9ldMbgxL6uT/cZeIGwf1KuWK1IKgsj0PRhbsO76CZvxCBylF/w8p11a/vKDfFVpog8Hgh9lc+XRFyiaeVs4rf2nAW/C8jZpCyutbcHIFKVa7X8Vx+3TrL23hZDlxz6K5EUvWT3dOwdJ4kL+MW0rD5ElhJpMo8nLIdM6okoIXDk7nJ9RCkkhIiCx1ZZxQiLMybKwR54qZGD5Db3qGGtGM6ofneMgpIkL6mdt+wlBFFOjgs47OUfsyFkfvADB9StCT5MWj8Mbx60faxdpO2gCibwwfd3768sjwH7S1zt9R2G5ekb16GeZzt55Hc7HbaA4mh47dQq9Ze5WoY/zooGL6eG95dNQ+aSfY30D+RishdI4KbSiLHFpQiwcrDjD5rhaly46A1aediPoOgRRGdsIO47sZ1vMf6Tiv7I8KCzAgS4VyWLnCBM3+ljwjU4YWYvl6eCo+kN6OzviaBgeasDg5suinMA98VXaBQDw47OEZfxqwz+Ob3twVO1ZiA63uWXDU660+RKN7cyq24Ks8Oe1wBjs+U06Gnc7tknisuOCsrHlnKRENjj6U3fkxbbAl8NLvQOnum60GL9R4CPiNIDBHkVv83Lq3BzmHt8t62oQGf5msoxRnv3MdnxfJFWb+f49p67S8CJ81xTjJD9Dru2CcYj/PoJU1XE6za1uZ0sWZUx28nfm8PyNfEt3WP6ujCptHuIZl7VnUYmQ6IQV+lxJasVx+3RNmw3qIZ5Nb9Cw4tWS4dpSgEVnGbI3hl8vcUqCsp36PXjUbsbHf2kE4qWrUEnETLahfs9PYLX3st4UGd0cddIypqz7J84oXgsBksPgmbaLG+uljwmvvgd1g8oZMnEOr9ZTmBx4TFEeXjuBtrApkSiiG9bHoYy1CYA/8FavkXnl0hCIbG+Sa+fW7VJM2506gnu3ddDPTvM1xxnfLouaVcFF003Tky1GD2FtVZ6iSasJQJKRhGBJDMAkZDFq/EXAdi/jkfRPnJqcwo8MC/xCwBHSKDh/x+Op+7ea08vntOazZUiLQIL5uEwGlqEmV9Zgb181DuK3uuOG9tm2SEGvakXQJdZE4mhbgXK5TQZBRbVnlm2BtKtp/ryQ0twSoZyNBcf7HoIs3VRpzbzGuAl7PuYPp6C0KX275BeiURJQdYhbMbtl57e4snbRI6gb4pdEyJYarkeZ5MFhHf4rijtULgDpU1P6Mjm0GDgZrQk7DgaSim8jNUcWIS90W3ENdUWjaQgK40/PXK5dafPKPk6jUjft1X+VUm1MTkIUl7e0gcZ+nzcAIaC3IVsO4evGi2PIjLNdu7dVM3YwU6cHhnzO3+zr5TctG+JtFJMQ47IDmNJfxu+oCqdrkhOiqEV6P2UjhJwNIPPHq7mKsmq/M7x32zaGifMmadVwKrQHdE5ejCqpDAIiyFdvFvbeTXADNpMA84vy2q3aQtgwAgIGqA/kk9Af7oMbVmxErPlg4hSfe1jtWlf0OG92MgCLYkHPQxGXGiZ5dkMR+0JICGHuBb3miDIyiYNE3c1mHeOrNKG7rX5QVI7NTBCoKkI6exrrvyHyrWzeRl8gj8dg/C2VXzogYU8NW+mBa2iENreo9x6GVPhwvWWUq9TNLwGj7LH+5u3icwgOTkzt9lvlW6MfyEsqUj4XHIR2i4cEdnYLRfyV5Pqy7n8soVaU1vcsyfakXbT7yfWrBjp5CjyqldgYtz3kwlCEVZVJZmgAPYCn/pNAli1pMcFjsIjX5DecpgUOguhvx6H70MgbM+e+f654COatYH29EclDALfYIS7kPZDCry1BHP92cIryQn3/rQWtITIS1MPPVtTqI2QEPFKzuHJC5xTzW+lNSfKKk8oEsDakDSZ6hyac4Svuk1X7nXlmfuY+JSmKyiseAs5CAFTNdOW2Ozl6vhVXtXr/ctNuslzt4nZ/8N/cYyt6HXXJapw5KnHc+59tF9rPxs9rK053hWdNKUQNnT8oPX4Em8n5twcHYUQmMBU6vzTvXOkbx6JEF/yKfh5yZD1QynB/8Y8KoJDN6uq37bVLEppunD5ShOXfMqhrQ3jkfQ7ih3Q7qs/fux3BUhd4MGpxTNNAtoD3B+RpnPxm5teuHmZzfRx3IKxmhBA4j95SVKRB/iFzP/XR2lROXLefW91NYXFVMkxMS9vDdOcopbXN29Qx3A4Kwp1UJ3PNqRuXlywwkl5KITvGTkynQt/zD+7Po88t3fccNVm6MNsoqQSO2bKGzN/ztkl34jq+y0F0J1bhpVkgIC6Y/tWWs7ZTpYthjukdQJbLI0W3iOIYHDVEH2zMBqekaCSr7y1Yv/IfdXyY3VeB1AD3eVvhv60YfjYpkZVh7ENK3Lbuli+NpeRsGpx3W38toXUVmAR7pRbGAEPRBEFqLJJ9BCOc3F2wjdssqcdHYYe85Q0tSEKAWhYA6OcMzqJQdz1X5ep0klprqjxnj6UK5M/trJ2LFHc8bvk0Zaxq+6IayUDvNSw/ocJsv80h1kqChfQPkoNr+4QxzhUqClfjJfRqWn9CZM+QOThTB9rqsglsJmR0yttY5MBPgWKKwzbf6aJtwbR731JnO3PcLYhvR+uoi5k4Ijbb6OVV4h5zTwv4a0fodMXEY9ahscN/8lAsfnrLTrooR12V+oHTLezeEvyd1yVeE79Zx9GVYp5moIt1X99SpCopH2NTdBfQJ7oYpiELJ7/XR3aE392AiXQfTm+L4dXYC+929wFvKexElQVRrqhb3KKIv6zGeCmTycjVM+5dXM7nfP0ESZpd/Pvj80daHzC24mAUXk0v2nS247XkpsSIeUPwShoEewW3ikcvWEDY05F5O6osgcByPTH3L7Zy2NHyT8CSlbDBGcAZFwOmBtQIATjURWmfPmf8/fLoFB2T1bhC+G0WBtLTYaFNpJ5lMj1o8T+NodBwEjucGy0YioARRREYi+gySr66bZf1/zNNN1BuXOyOM9wF8QvSpyJyCkoZzhZ8Z82g9C0VhPxs2Lo3JbdgIIFH4SCdQSgR4cCYLw9lNbOoLr8nfjlWXU7m5zcGXEiG27K28lKo00D5gZ9opp/1t9EUqnh2MEzBSkPjiHgbS3X5FXnC16xJXHWBOU4aqCQMVIzA0S4IeQtVuNLSgsWhq7jCUrK92NznNsGxcA9qS8azZVfj3PYwTufr/WHZsSc6IK63dn2ermJiLJg2ncZqCMDo5WUxQ3AiVVaRcjjgIMonF+RHUxXS7R75cUWPVCrZL+fh7x3PVPws4UkDTo2ZsfeRGKib02PnzRoNHzjo7VbVSSmpW1pUrwHHcEiJ74cSAIl16OfxFGZBONHwBksH4UGaZ4g9wlKWdDcmIHe3k2kQ3Fp6HPzJQOwbp1mA2+bx1gHLNvM1wf5gfxAw3g1ihguUrPauu1vJcwjOzWgzON7GxDEdoe994s38qEbuL4WHYwGB8OJyNCrD+pRtcoMsM/C9aJVVPAPoENwFfPwSHD17U+XIII+hC+ivX/fSd+vg9k5BanMqVz4BJv3OuK6OiXwZ1E1YgNS6GeJmKbGMDVdhXgKQFDgArDIpJSd7G6WoeSI8H18rssp/Q1BYgrUz3e0V3bbrkaW3xn3fpHHh7r6C657kf/c6RlwaBI4dhwaHbFuYqZyMIUAoa2NwQuIyaGlDuc074xJwbP7iCZ/M3GwMQaTx8RHNJzItb/TmrYc3OXlbQ7tBM3i2JlRguHfNhY3onhksDnVnKajNYDRjIsPrvsA+N0BIvXMN9n97X+o1FctTW88VxCajtRtB9LUdd6Sxh+BIlzSe6vQr3JOUR/ueTRoPnB1rbRNhHk3nexnx+1o8sr+v9/vx70ntirIHS6VC5PEquNaD60pvni+g+v2F1ntY4yw6ApGT8wQAYLDipAaK1eXDldsl+dCws0/O2qZSNjOkIzVjr6r1ekhkE8RIEhk1PBPPhDAmdCIG6OynOos5reo4XTFmRxZbEGn44YTpjctjzA4D0RJP/HMApCq8cxwE4ce4z42n8SQiWyehWixjkgYAi57XvOl3EDqKTeHc986Q1jNNi7ZkTg/qQk2NuMb1eJnTV1FQs5Auu99+amjQB6/l3jOq1kEG5Wj5XMb1t7W+VroWQLr+SoBYFzELJpaSQwHcppUNLfbVAk9T5ye/JvbKAD+tOLQwSngDstGdCm3JrN9DJTvNUrOnzLG6WE2BduS+g8XYvLft4wwI5nOmJ/zvGhYQ88YFnJhfxueWolrqf5bw5y1OdAflgUh93OxaNQsJDheN01wRT6s/tXRw3NeAlMtQVJyCASMHyyzoadJm0a9zvFpYGP4x6bC3Czt7TTopMB7GoAHPCMpf2Sh89fa1iwCdd5x3xRbu8DtV8hwZ4oBohPQFEkBLvDwFfIBIBWj9uZXHuu7yKOYBd5jkz7+b5JzS4D8yRsuotbRCw4iJF2dTAuvsKtc5pM5vhEXbAOalxTp5LQ3d7qOeFsP8rSV6Vwh/PgGYjI2qwmZmBFt00WA8CAjRBUOaZHN9PR8/StEu1sG1PRpzv8xdmg7Bikt2kM2Fl0ZEtsWe7DoTJnTRJ0APWbcX+OXLeXSW8pqfmkTP/mVvND+KhCGqEnlBKV31huNevD7zW2KS4H/NAOPDkZecFM0x0646fdnsf2HINoYlMAD8zgsIjBppLH1Wdnb1/VMNBgzoIfq65OOyPc/GIoZQOrFtboTenObSukVMOL6a0WlFngjG7pdp/QlXEKlXHWJ31hE4UkzD2xI/gJVflDdfhjSutpOpn1tNHhJgWzFdjTUbQnqjXifuSN8UMVrh54Cvxjw5t103l8YHxiaTrJVWzBVPHkZLKrgfDUxXWFSrJSxNWq6MS8C9S75I54t3SVTAc6BLyUbAgkBKqPEMALg1ThhBjL6kd/bRQzriknvQEIEIC/EWy+fa+BFtyJ2C3gfsNXHUVKJnODaPNfldRZ1N20EnHED5fmk0VdiK9kDcP5reledl286UxfRXI0bxy8bLdGs/gw3wXBwB1FHI4nJsq73p7ZP2+o1bszYQNg7u8chiYkfsZHpur3BZKdFYM+9N8vg7dg9iTNaNecFMoTmi0lO66QxeH7TQHW8N81mcEaxu7cZkFi6gj0qzoo1DhO62+S4IBCTPkDCSC0ODzIE5t70jMldfKTKiYHwdm5o/6AzI0E8gdECkKYyAxkQopFG2BBimpaZ26YkhR4ur3MkPJ+1FasGB0OXY/qghJZycxJEnoUr1D8u7oIWPNiOQKD5+hUUP369Y10rNhRAzv6E6LAsPe20VoMe12N3P3a8JvNCrc5UR4JO5capvsVRfGmw1WTxrxgtbPfDIlcM4Gq6lvl7HBcjEYLuKWvV3ZcjDiVulMIOmCRCBibonASF6QRAiNHCaQ++rbJpIPAeZqJ56vbRv2Zi/NQxqZVSzfSfwykLextwmmVRsu2qOOnETcDXFjqrCDoeLNP7ZrMo0NoH0SnkJKWZoCXvQtnWeNa1743/LrBKGG2QVWknNkxVKn8W6p6zXAeZObZ3aB41pmP+jl8LR0/mksqMEiySL5GrPJsFHR8laMpoghfUzlVNEorWzdo4jEoa8696L0OS2BOzbizaNmCxYg1riapjCYwcIihHGf95ng6d9jPR6qJay22xR3oaN2T8nct4IEh60Gkq1yPldFMuu6lA3RP5pQaaiusOxSS3f1fRFkje92Wt6Q/XLpZizNx4wIItvXFfFh8N0MTbFbeLt1M5fOUCqqcPrQfVCAekNRDc8x3O3TE0CRN+3LeAL9Z2IhTJRKk4iKiZnQHJUH+fnt5DZRSE/T9fdGHZntYHVsk0+qS0eaFgz2BHX23zwb/VV7hjOhiQKB96s5bCVtF/ToboMHi+vartZE3jBD6mfM42mP9d2qu1BWCKLv3QCBDZw6F/+mTBW+2t/mzaIkWGeWJJviLVpEZ/sLDcM2Fvr+tnMrw3E9rXzFChIiTJIoxw4YIg9sMm27A5HLKI0kOM1jKCFwsl3CflTmxFQq0MqiIO6eGpWJQUBBYLscHnqR47yvBif3uOu2Ubw5Ou0yaRq0Ld38S4QjKH2RvD7WKhxTIz6BVYK7u/QLLJALhiEyTX4QK1Egfz5dJ88TDq7w1jx4Jt5w0xZnqJQJCahVPmmPvGsknpOYbZrHB7iahcUPshppWwQ3IrBvxcomPoEOFofQy/wcKde8nBc4tBcEw5Fwyiu0saf2yJ7ojea+9ecgusJOWrg+lXxWCotxg402xxLg9ctJ6WGeCi4UciE/U4xX61bKluwE66jS3AiYg0CNG061iYPcplZJ0iqPvVEMoICvShJJwKYZfGYOkYIYnCZIhNHz/qmCL7T5ZUdQ8Rw0Q7P7tuEGDuTJCL+Y87/22zX1YSa9Hon57LhNwVLlaf4344NSQE+jt5SuPjBEI2hDQw28jXm1qBxg+77LIRBHO1FHJE7xzQ8/3B2tBg3Ii9YcvloCke4zhrJdns3ZDBT68BVCyENEnzNwol+kNJ9SLJ0C0ZODqrvNODS/8IlEr7q8ES6bHOgnepLYSy5pJckeHF4rIXifUotiLr5y+YjoeU1mGjoJUjYHBWGw0J0ZNMPaLTqXBuHJ6fU22imyx9kQ/VzBqY8xBKlCTJWxUwLncRiL6HKga8u169dWg5aPD4cc1K7yKG+30uTLFn5DO1fV/EDI28Fww6TTFznMuZPIfP6BEnjfJAtK8H4dpoP3d5Pkwa5NUS1/xu3TiZPXmiMYylGEt1X1ILm4XgiP2ak8YUBNB3bJcmu3KEaQMOxo874KbK5xBmeQ6QmHu3K2GxH1qWYwSFMme9TQnTj41YGlpMcpJ6ieD2jux48phQ9k34flDZMnm0eK+zdXOxLRdiH6Li6pRuC0G9jSZ+g7z2FikdyAVI2tB2nPT61Ws2mM5AO/GZHLaHQciut7Xj6UVo/pNrx3RMFd50ZSGvq9k+IdafYFhjlhY2GeiNgRZjn6B4QDH1njNkZC8R2G9jTSxz3F7Mo6L3teHfbltCbc5MNcIwVwgahHvLWO0ySiKFdGKmoQcOw852uNN+51TUK4AIP63KnTkWBOVG9IhP+EiEAfzXRsI7uawnFsjr4uXLKrt6Bkm9Ftb/cj3DFwp/Bzc9+clcTQGQadQIP6Vd+dGgC26yXuskR/uFk/C7Teo8Er1E/oz/o9M2wF0J3qZ86cQEC3zcut5jFdNpZykg1sKqY1KHzCxTh+8Q6hqSqsjAoaa9zS49tJOj+54VjsPtmaV52pI5w7tV135Klye9cbnxTbujvB3AGfbFQEmLFY0Gf4VeyCusg/juAYdXSTX1sZnTBMGHkD3w+DE/gSmjJXfiEa+joL7/Yuj4KYhmxCeX0lef6RAEOZn4+Sf+cuusAitK4vktUlf5vE30IyjPmpC5ba+xxNNet75QRq794xRorRKJAaZIEuxVO5lEEu8+DGFh9zcbic5LZv8+qN+qZYm/dISp+X8c6itMWCrc+t7Cm+n6NNIbB+iPEOgmizUyO56ahQB3ufIKFEib2UyTQ7oe9iu9b/lHINaUIQLxi1WcnJFyeAdxnAQNqDYRDIWU1z7x+aLQ3EbjompI8tTrXXqd0zM2/KSW70eXDani/j0CDsIFYOEyhn2Krc9LCF6UvZ+LymR6hP3pUXeA1vhx+NNGg92FcPAWNjHjo2Be9KrI7A5aXxocTGln/b+lYx2CnF0O6uFEys1GMG+aWAFXZA+lSeZKnhsyY1ksk4Se60smetxVLI+4MAmwNAtAn2P57teftxpRm0n3Z+yWh/sIob5fOS6PY3mcXfxqjwhAI4ncSIRv6P09Cs3pHLLmm0la7zsqPo4l1dvDO6ohpOI+kRASCc/F6lGyBpPk65g1Q5aItFdeNpqWzMYBGYbPlpPBNgquviRr9ursjbUBQ4UHi5qasogO5hq7ISwRk4UVq9UVeuoDqzceeDn5tVqRlWamPIc3VypF9zTBqWFrgFiljfBHkAyfFUcoEr4ERIvdmKQAX9XwEzXO7afhKBB/SKInJ30crOz70fpL1sStprp5y6sq1V1ZW+HM3JS5UUEZKvRkqkYFVt/JTbOXN7AQziGQrm/qU6tKQp/lWapDCKnOMP9N+WBlZP9xTnXIE/4GJU86HD5tppawBWm0U4zMglPIEhzldNPMx3IOKg0s3XaEbn+3gSxAaRP9qdF1B0y/15Gj4g6btVKhGNQld2y2MvEknlXijn3zAMQJ+ImcFchgTds5OVtRwzRzOYPQJPUrDc3TINp5egm8U2gFawwPqegvluyp1ioORVgPq3+PGVc6hOBz2arWnW630ux+Qch3SA0Sn/tn0F46rp7vywhcTpVRUoztZMBgBBYFCeV9RU2lIFrHO5Ah98qg1vOAV9DGQ+OokcSttgSiX1g+EjpEon9PxacSlBKzHR18GdGF/4+Atg4V9z74sLC9OoX4lCmtxwv2kYcsVdouvzC3lXsFAIleNmCmzpmXMxj2hWTtVme+EA7bsaYdijstS89cJJg4K3pRpjGigEdORvA0YbMXVxTZiyKcxM+meTFSr3/cv1vbQYE13J6stUX+Im018Tq891rese6p6iZ83rv2YsKKgBEbzc9laKwa3EZpToq1zXUd5JodHu5tYqjyYkMyj+cre3C/amWRW2NnWBBLwMUZ/ZCyelLHgIqg8Qrb0rtCx2g436w35cFC3VHtU328QzJzZzoiHMYS8nuex0LnWsDdrbF5LdeEVTUmaKaoYNJ0pA+D+2e8nL9ggPh+SPc0vEDFSTbUYG7rBQp8KwwwDAO81IMAAAH464vleqv8Rnt8h8q3V6k4s+Q5bV26SFjXrrBsMMAwHPYBhhgBBinsx1t6/pPnBQDkEWCF2OeqdKkI1rbe593PQ4G1yU1b8raRsmLJ/sBgjJoXx8lRep4DIBacOUUI9uTXrVPLCJcMJz+iIilYiJCRiEhITEYQExjGExiIiMJjGARMYRMQGEwsGYEzDDH0YBijug/vAU1KAYBgJ9ujBxoUmdtYoQDaQrqJqLv7VZOzQqo68zJfIocaCdxgGGGA0MEY1Ew4G5ssho9tBvfd6WXkGeyJa4QBgeTLq94JpeeVBZ1lmAwDFSgQIMS7snBvtY3l+qybhmsRkY3ikBekTo3S+NsgMqYSXcYBgaVqZ4IAxV4w0R09KY5AeSJRRgB+DTRc0QOYgAHlUfHANoAAcwP3z3PE0kLnOadbbMI00WAYERERERERERERERERYYYAMdQtXbsR0IWrQW9tFSCeu6GwGEEAYMLDAMAEkn9hsM3nOfwe+2tH1mr40oqsTVZRKtfgLx5y1/d6vA9soJP0SdZf37EoSMgPEcvDQjoBOJXCPi+Im+elf5zhgYVSp/hWULBBQq96Ea2PVSXLStXj+xDTK3Wmpt8dl8bwEewo0nmVb/CDXGYhiQDyWLrT+MCMrfGzr2ibTdv0zisq7XWf3GZssja6QVTyRIEOGNu+nJeJDfRxrT1MHym14yCNGLYUxAhEYCDdKzxcsa7fBhgTMi7aFIQ3EegVKxHgjmUywBEN8I1nKAWU8g6wGHhU6uHaTueEJWSYT320qOkznORYEtm+fNcwyYmHZtHMzbhx3SND0R5l1Lcg7DRhIuMwM7zVYsHHnjKDmKZTCe2HbsVPIusvJkLhvJ+ji6TIMuul9kmNiV/M+h1s8uAaDCVosxKNfougGT+wgztQKZqkm77+UCM9tDCYjEoSEj0a/WrDLrpesNFj3xiqrqr2ci1xrzWIvMkFff4Uza3kGmmaKoxtzwx6RXHFMYTQgYW4HoPIsdgXKg1V4JD5QdLpfwS2blC3ShF7znuUPYopVQJ+uVB3lKJ9Otu4/OJVqK6KlyYHRt/L1VXwwutHZOgpHvwhf3be+MydZA6HLiO71SWZKCxV2N29NkgV7rxqWEj0ePZ0/BfCfk4TghfsNirwhcUDHz7ff0dWAhe2+8LNtnieHn8WH4HHyvSKs2eoUtOVLtfJwCJ989PBKueNt4u9jvSbHUwmYNo8Pnop6gNwigNjqdIUlY6X9GhWjv9/OYIc/4xZZzxa6lcpDHLgJqMys8qlGEQLhlZimR/BUtYi97dSNYUp2P2xnjKtpS/iTGapeKTU74gPlnmVHvLR5ee2nb1ElIxZD9vylZLPtj+wkKnSeNPXaTVd3v5xNj93OfCxXCaRXEv9Ml6SSvySAOW9InB9kLz1veKOOlCAScQLqlPBgIcw0nre27yAre+z279G+28Q78H0fv9E7NZB8cNGbxvzJQJhmmVKjDJ+DM3bnsxGI6+D5SgpDmmN9vme4s0jIVlDFCAWGQEe17Hx2JYA3i6y1dMlwQ3ZK8jS+P7YfOe2lVrqPHD7Qp/O1TdpKAv3jWxPW0I1KyvTIWjgDL77plgpjOS02amrMgd1l5/zv7/03zTcE49zlo3R9w9BKgKlcWtnOqiYI60ehM9Qcc1qFfA6hlMeuq2zt5s8asF+bC+PVul1/sMnzyZjA3zOqWAkAwkE/SdmLAO4WBfz7g/f4CqdcCAUkWQqjKuuJ/ZMI3xIONxSZqrnshuPw1YYlH4wv2PvEZ+i2tKKbPsciUYnbxwHnq7/J2XVxK2QQCx/q7gedaFwJjpdR1jHittxVsFlcOLqDrOaBJwTjp+tokdV8lgxOANqj/YjYwCYh2USmhZ/YvsZUEc7tbdIcL+iLT2utHqCisZs58xJ8wIEknJ0sVWP1kVGRGYhDTFOiU+uaTSqfV34RYEd0/q88+LGau5O6PuoOF3kWBJLMtGALIDXfr+Iy2F3IAMwjgR7gzhiGVyTcJo/MY4qaKfdHniuRSvjFP22XajdQMrLm1/C4ab5GMWtJbH1oNMJdPZ77AhUbVLNRsUroJsDMFdR73nRLh79X0TWhUjGUTqgtBPbJHR2xndp7c6peRk2So/12v80HP2sZs+BG6uqCWuzulgp2dAsCgZvbyOIeLn5/VqG0SCVi5P3ZVWk6CeJCfvJohvSxQjxMTZj0LY7RP6mX4Yrz4dhxmLHgMxeI7BB2s5MujuPZiWp0010RL2QChszqE+TjJ4G7R7f1BJwKKWYhH3oIw3eYmenfZ+8VA+YsBQKpEticeJDnNmfsk/HF5GnJXhMUw1mFW4IJh3JQdtH2Yr/nlSc+kpMrpvkTUbbCa7dURuZq6LhxEGz6eAEcbyCiVEF3TcFH3LQExZR6Yh7TlcYvMtnugzFXZ6s9OrPRS1jB0er/OX75W29u8dZ7Mz2sHjrdHqODc3GBvPf24FZRcSnu0rMqb9I1nuvY+ONMJYp5bt4q56tvmUu515rvVXpr7kB7rh6z0xkcUrooOX5tugeyrjwsoDfedtkl7JWGkJlWgFZp55+B0+XVroWgNAES3vU2XcIb35RFDr6Ldo3CTrqeulooEapL1mP1bHLBMGgFur3ffdlmiLX5wwwboibrbS3MCCdQ0rrf1+1wKHzD7qQx0biQHU6HUKL9kXKDeW+9w4wipvs79QwlRbl1EmPVlZrG/Hyuvn1Fq+T9kQJSw99Y2HNqrs2N5/VO7gIlnoPq5ijw+vxTbsuGWc6z4eYbrKRQUWbxX7/izfq/NMMB54cdoNvEwjYIZadzDKvyZBJbJMydTtS21Oowy3YWqbmzPfgFw5gTHb37iEZQcXkJUpId4+3Oz6ExhgghQ1pgvdAbTqnQAp9+U8XYxSYJFa7QflDarC0V9Q/ctCF+6ls7cOWmmCX046hrS8SeAwzcbhQWG1zaDxS6kaPVAM1upDKOUpMF5lXn1ITq6t2phZ2e1lMjgj7gEHX4xxRhzPwXUL6hDm8YRu9uUBiddSQ2ViEmVlwxI2WyBrEPWF+//arB4xJONOv8gioYMxng7AVG6lqT/uQf6+N1cqZ9aOTnUIiksd0zstERposW10/WIPySSlY8UlT031ip/Fp9XfaIgf4P/qgveJivLzCZuX8l2Pp1Doqw1U4dNieC9wsHnHszXSX14fiLDjcQrUp2anEaTCeWHeCawvr4Y5o+hnP7Pe25m8hQsze4NMduGQcpWPT58zDaPMryHpvUKcXVDiTVEY8cIqz/lmsTHNRuosDtocN5iiW+u9VOUoO8BKFEv+MT5ytnJvCnD9FJExIWa30UcoPAdhbS8gxITHiH0eOPwBYHcbifhApcNLaYJAC5GAzA1rr5bD6guGJOmgiReKdpNczA8DQVtIlaMu2YMQ3dR025IL97kI8usn8QQAx/ArlgbtTQy9iuHgyGBr2RPUu9EjR+zcaoA7P4MuaTHUMfxfgUG1+2MoWKyPof1HPyu7YOy7x4uHDxtYCJwsoSqgxmpvVbRLlC75XW+ep/K18Ql63CadIV9G8v60H/2Tfmu/8Mb49yq+PqoBveazF43Q12Q9HtZK/HmO85EOr2FpjWh+etwo/vivqi6Lr3KzIp3/1jfAkPcQiCGf8wpsP0yV9id7V7VyC11e5Sf9lLHTvg1mJ1/dihA0xA8R/5iA340EnRbO45X/g18qL4cFnRLLMOZDBdV8sGSFHGRmP2ZR+FxeDw61j+W9GmwAWPp/9D8nQRGxsfQzr2TetoP62OIS0GVHonVEM1nuXNz+Jw9YEvSDDX66sebxypBEOZOt1riU0Epm5oxmTj7YsGk+Kw3sHHnMI+oLjEREh/1AONT4fXlFijHFjnpmJDe82eEJW02PBW/aFJsoEyjxXubuEIszqWsD4Lx+g0oNb80sfTs1MC28lsQsnP7UuUTHPMUO/MJpoSlrTwIKKfAiY6q3DPVCGOf02LFnPFfJdLhVmbXE0nAM8iYPk4covfs9c0S1X2Hog/Vfpz75KFJHbe/ez+7rh4pDS7e1WnA4h3kiLaC5ExdJuxgx4QbRORCgC5XfPJFR46E+QBAQL0dZA26bCliCxNPE3HpPkFby7Q1Ajt4E6l3lk+uiBKx18wUDhoC06/FmdTbsEEnw7cYoPC7I8zLR8Ore5IaObu6Xxmk4UiR7zS00i0d84b49JDJL54et7wtbvagZMEMzY/Q4wa98uGI3BQGffWkpva9r43p2A3mmr5S9ghV+JU1fec8AyhNdH6KJd+Yo6pWRhpFcp6YSxePSnamzdaPhPdovJoETxbxbWDR9zApSj38VpcpZsQwk65t3/OfdcEJvXm9kTdGxwouchnEL0EDc/u9MpbsXbG58xtV2KhQfodbB2dtT9Pf0cZn8yp/Osl0Vu1oqgoeVkRDDm7LyfsXn/ZWNmtYbhh8cU+Y39CBtE/8Wud1L/uO3BdnqpT97LuOln5yUszPtZGoOKJ6sdeR8bhggxObeZCtxiAjmlT/RNJRjq744GATneYsMdnWwzt8WaVQoVrbtBFzAp3svfhsFOidhog9/PJCY6li/Pncsnhv96QN6wqA0fkKqRQzAnPfDfmYjr+v7PfflGV23W6gmK6AF8QO1czbCNQDyvuZ0oXnSKoGnWcXRMJsL9gQ1+VfjRrAHEY6ZJE/w99yF9/mUZaB9uCqrTduplXDSnrOxnuM6XJoMoD8O7JKLIUI/Olao87CnBr6uP03SxW+EnerLikg8g3XAdlM6CFWsIE7BVNmxDQFx0FcUya6J5pIYf7sZcXEtumGfF793SOQhCio1AkHdp/m10oG8U6rpb9gjc3fRiV5CtP1bHpMsh7FmMD1AcsaRYI+23+droYujssXfgx2CIeXnTCa26wbgBktJImhabJISETP+LlN9UGWegg9anQCIGqaAFcG7QASfAS9z6qZaOxG+8MQr8Btt+P3oceMIADjCd+hfgmt3f0wUgMOlp1T3BAw5pww27Oua9iCkgDt5zcZTHrt2MMqb1F9bWin0ZZyvYIq17d+PjV0mH5oCR4+R2jvbqMA3doST6CTho+NFUciNCov4kXVFcIp/A42Q8HAWpN0eZvy5gkBRt4b/G+b3IXQmxzanYJdx88YNlEFYgUsHNjyX14wSrnuwuG42WM779rEWTmMM9uhJtoyJwhWYQ9iEgHsoXaztVAweK/Vj0+Y62jRUe0/y8PGlJEH3wh28XqdvllYSTNsi8IhF4nMGRuk+Ef7mF0RdXFPWFo1FEMfbpEyLy3c6p5kNsXS5ZBbSKwKt4JIqSTGGneSKPAqFKrcy7TWt0MrM7+7jqP4Bk1coJZVjDmOkkFVRNfUEg5UrskwcT0OS2w6NGkmMa6tV7iEpl+hGkFh8h5keEs5JPtPVzo0VqmjJ7BccLZhjBPC1N3yfJz7rnzgvofMkyDS/QT+zhQLr8UyEM3prcWczmEhrWDqsioGv8dzObtnhso44hPeRsNmnGRDywnCMveuUadj1XmPnSkvybpUAn8KDiqaB8/KiL+GoqEo26xiCvhM9xslqdlyjU1OesEoIFIX59txIIxAPu6lznr+leX3+y9wVG95TdXTz0CQSK/987xeaRqv01d0qg9TIFDJ9tN4YXbaEqEzYLXmLcy6gE0ieyN55uM/deHz/Qv9qF7wzwqQwYfOtfl/ZzlTf5tXVu3h6dbOZtYy+/BNcOi7USYj+53aUJWtl7CRDbDvFchAqlyIoURH2KqDPIIY+IPCW4hysrP+sz0DXaU14H2+nt72oU9rst1QPBW+HNtqrP7aXnAhqzD0xre0ezhcIOj7RrX47dMHPEN+dvA5neLZM3oJ8KBW5WMfphqiUf8h1XUKM41rWZZMZxX0aAZ6ICfB0Tnv6E5uKOGXHEPpRZI9DFYIdEq/W014l7Nrv8r7Wv+SeNI+5MA0EuHjUakRV1it2YAGJEAbSXy2DgfzUQ2vovtU4a3bXS91r2n8Q6x71pi40lIGpuSsezaiE0x/I2n/OHXMChRPsWth7l5AafUXZmVtTHJn6eOyydHC8pR28UUEZZkKPECG+/KQtVv7Gfo+1hGFBRieuHEREYwv9y/L2DgkM3gPSdjLzTX8PERWEZfuBD08KBMDuxyblcz0m/bnx2xNMk80xHeSg3Ur5ntm1Kwhd6KL5Q3EgH1zWz8j1qjkudQ9b5LiVgWdCK59LpxrSSRplbuqRvwK3WFZpjKZmmZV4D6YD8rrfLCy3yT6e8zWrurFTFB4g3rW9YrFUQgN9ftz8t2tX6SOHuUAxohXl1rvLcW1HRPXZGJ4Fxkfepn98hplFb/vrGz8zXyZo8b9fmMFaVEyxDqQkfohK04caTjT/K8vLOYDuUQBqQQrIMi7gvXNyCbjt/e0sDCWPQQh9WyQAny84pNHQCLiKpxnCQiZ52S5V39n3g3Sa0BpFqbc9Or3eVoUsPoRc1ZlGLACWqaaXwX/UiXyps8kp9cxt9taN3euRHwa95899oBVaJzoB05YeJK3EePTgnSxY5phS3J/vvl2/Pc3NUn560dWKGRQTTRIhLzhXk+BciNHMPtxuINjEmbI7LIfpIn97rsAviVQpyr2XM6bxLF6DbA/I0R8B8ItoKJ7s8cCLlReNzrk0PF7XhG/BmcveQbOyMXdI76XpDbdq/pokU9X4jHwJ/OO2rGsxGgXz/XnWtjEE5Owc1ijnz26rpRCIvLEHjNc8Qz+18oOljE6ypcWnG0Nn3q0j0dC3cV+77Ts7Rn0X/NogsjtBwP5MXdL+qykVBrd2BqNYSEGejEimp89E0Ozms/DAmjzOx3zLo2x5gbhZtbWTMC+rIz9Bt9ELfIjQdhbiVw6zMEojmVrH6dl7t9lfRE3SoU7/EJKXP8YC8+4Wnw5J9XddHRfN20W2+Uq7+HW9r0Uh/1PyhfTud+QABt4lmr3bvZgnQwLuj479FA+DDJ6BgKwRJAhhcKLz1M6yGxVrfKzHXXaUvmuk5N6TbkObHic/PLoRSNH/cO0f4rPqt5kk/F68BrWe6jYaNVMGng7nLbu5H7Ty7ibQjCNHMTylFauuXwVKvUzpklBw5uIIdsaKcgSL3SE4J6Elriki+DozK2x0D4Yng0BWKgfO5nfCEyqhGH66oXJCvphGiSA8V2IXppNxgzk+G8VOwZBk/PLCA5e17xKmwoemRqDN0F04OOmuO6qLCbFTU23kx0T93nuqnkTJUTboX/C41mDGqHsMvEbbwmsbK/bWhV5PtINYLbXjeoMqvz8ovcSZCkwp6RJCPO66ZHqEQ1viV6LMGzMMIO6TizamWJ+a+MaOE5VgSLdl2GWx/1atVYv6kZEszRYBAlncDTcZVkod99I0suIXcgJhgR+QYY08L0e2ZkEslXCJ9ejZSAQLzrIGHrU745xSYIstX7oZiaXFWMreEurjce6k0k92IS6ld51rcAjWFC/AKgiLTLLG/VPPoPiqxo4lb/fFGsXKI/nseFTYa7MOY3ovEHA6rTqUdEltlFRNzQ97a2gLdQhUhvZ/dRgGxqYoMpkBzh80TrT95J3IPnvnsn0S+kYtZk/8w+NmQnHY/85LEvifKkPJ21ad8mZ+6BWt8/0+/Wiw5+zul1Of76SGU/3m9Lpkl3JT/6QmVfhFDQa3MykxMbw4EqgAlK32+Tdf6duwkX06qDEA0wELOKabLFzEORK7f6WcYRIsv+tIwifsBAPf9YXrT0oEQU90rF2FQYs+jQdSH9sx2wfPzjWy2246MYTJeiRO/sPsRNU6NYLQDsmIwVIbkY6cUID6u1D0Bibk/pVwey/pEtIsvLAF6aBB8gupc3QT1D1srIonwHo7B02cfN1Cj6IybkqN6/lBRxwQCnJVhjajLJlA9xfXl6jIbLbDqTgXMEhY0HmoTwDo5/XPhPglO0cN4LQT1ndeM5js5jc7lJ81ssAcGciSZKfcCPoCBmlnVB7P/Q38yIa8Rxmyq2LCMIJFuGoqe63YKwq/xhs9IxUmYBHywsWYAjHNpsYk0EyTRIIpurxaJ9MNIjSXV3IuW/SZOWS5XhfuBBzmR+Psyb3EqXh9FSNMkigDYZ1gkh3d7es4WzIZU0bXVewvaKFMoXSAxnEQV9Ph212mW8pUn6AypWLHGYOlDroe6yEpfLowInD+ob9cPdG932maZqmtAYmPrCG0sx5mOaA4fqFz6w8NNx19zqEY6Obctnf1IyQ3DishGLwefCtD3sP2qSWvDwg1PptEQQbgz8Sev1mZYjZ2zbNU0q/crO79WSKl1EWaaYGZI5neI/koR+MR1d7L3fOVV/kZCgRygacFH842hcEYcj/po29JHOL0AhGWG4kiou6TJJyjXSpOn1odOE5IoejxC9rdN5MoMHAFIYuGvMCY7lav4Cj/Rf9kKyvZxdZaS1BhigjlXvB6D7YmlBwEEyGyrHhXLgt78HjX+nPgnBOpR8uu6dtiqvq39ZaQrD3Cdv577Y4hdfM+lqTi6tl+aJJEUE8UjTL8hJCxY2gU18I1q91zsh+XcvXD018qsuyPk/ssBGHndNw+90FdDtkv9yBFBn2JVJ1vjc5OJJg0Be3Wp2wtsefgR5R+TEzsk2dZSI0MjFkw/EQbAiZLgjJ80hOjDrvo+xLDmWNV4Imumw0L1S8/fxUVFN9FDOWqXdv4n3KGvvJ0GPM09dGdtiHRb/hlrKEx0Nyz/c+ltdKEYDBLE/NBxPL1K6DHZbJbx2l0alqrVT2skuXJ33tfGsWXVapvhgwDV/cyPnJY+jFWRirWRal+u6Aj5ohYwsq5lP0cFwnbNvHpLCPhsPsWrj2fjpb+157xaOGfy6V9covtpraIQ2WrPBuXzb0IfqkIO2TeiM6UYYfDoEdT1Ljq8t4q231NcW3Ny62BXZb2I0I1HPrpapXKI6Lqt54fp1XUe7cjSCh6KPrx9tJyXkRbGHoeB/vNPlMQteXznxVFRYpZIK6LL0FJhNEzAWjG0FlP8hNHifUtpc2bAnpH7YmcK6mBADQLqYwr/qsg+IYyV0GhcPkYgUAd1EcALG0Hw/3yvzyvve3E8BbWY3Mjgw4MLVt7YefIvNhQdNPzeQTXPwjLHHIBy64BYkXI3XQjMPqVYVUU3cE8K0X3Dg4z0Vq2HkfCgQTvf/EquF8THF9MWJ4DJxWStOexyXa4xjz16Z2fglSCQGmgDjDPByt23/eMczP/lJsxQA55K5eL1Uid1ofT4+lGQk51Cm9FpZvrL41NQ/kGJttRDGB1yuCHjdwUJ0wAJ0y3fCf5ScCETltGFEajwMAocnRXx9hYHNgXxSr0rvOdzhwNluaycIdtmj/bNXCcmCg+ZGuxR2ytThRKAmCYLb7TcNp4Gjaw5PQMOsLpy/P7s5+foN/5f3XSFXINbbfHega0cyw5JOYt7gPdIo6L3Zq2zK9Ngo0zjnPm+8q1eMkECSOh5rQ1uniEoyhHx+UXTM9xmWVD23cWWYlRpuw5PADSs+NKfF6dQTKsqN6F3a4Zj7msXbIqjoJiapMAmnot7zLcaqF7YLkav5+/85lmMja1e0WjEDGlwqmQFD4VHDQK1EtsMbqY5BxDV1erXdF4fsFRhn7uy0/zF2Pz3MX2XEfM+3bxxxZxsJORaeo4Fh5pyNNRHoRbTe23+Oi3m0GlMVmiJ+qtXc5Pmpq2TdrMqmn20NOC4nMxd2HROcjaa+JAKx98JX8TEp0ED4f2MXg05AgcAvAgAUALACwQynH0lAJuM5y2jRVbwQW6cRCnejRiXh828gzb1wgfi3aFcON9e+V56hT85pqsZfAasfTCS8vm8J5guQm+FxcbwvB6HXsr2UCESIu5ww6/0lwc48lxIABUQEBIcsRW6xzXrRcBxW+ZwZr3/Uyv4yhIDfmTfiAWEfIeHINnqyCGdsm1seTpQZTTfiAJKR88u1RMFPX3EebXiOwr09ldhV5QCoTf511dWNMsAZHJ1Ue7Tloc6zygPZ/Gs43gpnQDAwUCSJssnS41hyM9eDylLNRWbfWjyiwA9nbNC5V37mbNGWjr7SNVUvZnM9RcnuthZmuRSHLXkKHBSSGmZvUPwpJBwxBYheuxS9Att/a4e/2utocXwJn92097491/MJ/ZVRkeNEEzfD4xsUIOrvBTzmqM0HqupjBuOOXieb+JodxuWsx8Ep0xmOn4zfzevTAHaqcznWQ0aqTNo1qatlJYFEzLk34uFWGcFZGHaERJBejllIzva45Ts9pr0xTVGLyyXq+Pi4p7IxhZR+606vHtXWSVH3RZ7xhZylWgZkJfWGAK2zaf4exvr/4zg7wrIS33jtoMikpeCpKV8JEJbBAuDEHw7PIvyLXI0iGQC+hqBouai4id3OBkoeF+gURrbJewjYZHCE0ClD0hmfFGvfdJdC3NuGShi2f/EkgNErLGJpp5XoU8BUT2YmhEBvS3maigx5cGcHpCxue8ChN7uTiz61Wrf8Df6SMhBXQZtfIK5KrQIS+BqR6wFtGrf4k5XuMPgyXP2hqBiOydatTY+VFfc69/kD12641hsnE0O2BLTgunlaUFbaL9MrshlT08NUTEndqObmtkCaUcRsKvC1YKwRmJsu+I2wFY1bJQeOLz6670klQGgbTeDG2WdcKeM6SF/7SwtxKxyjMaHhfLnGBVjE8fw9toP+XLV5IvQreCiQH8rKvCFVgitCOIJgaa9psF7k6k5WwepqaPVaTiPu7qGM5TpwRsMlxC/sKZ+Kov3EUjIPptdIbT8qBJTNeaITEEOIaiidBgc+/57w+JH/KNhTrgpQ1XcC3rc4zBq3yOU1lHIIR37QsCYq5MYVK2mSQ0W+GPO4ScI6HyIjs2JaXJlAOlZAf13yS6Zf+HnXWaLLlAOr9fCMAWFygt9/CwGr+DMcOUydpvuoLL4CAqWEO9WxdTh57uXm+ezt2VlNazvsFvNe0Hj61NggeFQ4O2yJqO4ZxhGYxLfZA8r++3X0ChY2iLJYFvFCrTyMR+9pJaXFKn1sxJgV/SqPtgBKKQUFOp4v/IgxMdR+fiOybZdNxqr+5vQolBH7KRseCnjOVfpexbUc5mozWa3Mcx5dGiYUIMUbRsUKkIA6XT8u86ru7FLA+MWNrgAUhxP/CEL7DUOGzc/RCT/C/C73ynvtjJowX7lS4K1u2gliiZD0nmOVEcGEnHoBfuT5wg65jBuBt8yjW3Wr/fHMOYT/iNhJVo9X+Xtk7UzflAJ3hy4kg5r1rieQVAsCLOfukTo1nGJy7p+8+OeYiWCEINytr9CckqBfIHrPFwiDaoOZUF7uUy38cBOsaatIQIT3J0Vt5M/ws3pVxN6brwXulHjlpEIukWfTRmKqi9XxIvUXeyKsQP024NRqqdG0JkqHBrF1qrDjPz+aBoOm4L5rzULxWvo45arb4j10V+jM2cxkw3P5bxZG3wDQf+GOcFx3efBY69lUlm/Yi5sK7zhVojAbLSuzEE3kJW+sf/1z4G7CavsOdvjkAhKSCu1AUblKEOIEAFIiA2Cl8XZXFKXPzbLJyFWUjPkQ0ebvROB4IIPd3pQZpJUYlrud7Peqq8VwGv94G4XsKbEXj83NFpHbo02MGOtqnVEZ1hycuTKgmYoGvnwonrkNPEQ4bv0/j98OxApamQ081EX/fQhcmk7jtVrbKSzZqdEoZcXO6EaYwAu/hxPhZZmrpqso8bbgqL4Eien1xGSRdChINnVBbx4DM1cP9vagz8vhpcrfLOjU7ISRxJrqNq/FDHX/KNHdyoz2vMQ2uKzfHfCEopHGsknwwQBq9JwRtNzUNDF4wyWw9xyRT+LKdWnaqFKCqdRUtHDAMEKoWWiHeQ2ctpuU5z5n2P6r8cFNWldQTS/XCR2gG5k0Af0IGLfuGtFDFpZs5kQtOHq+llHqTdkj7rijJ7owy3yCUzx1HWJINMqyYsW44dyRVNk6DvPA6oox1J2jMtHnKkrgQj09N8OdxfBytW7PKc8zZZ94RtxV3svkSTOtjCntqMsPYzBIHsqnfY+eyt0DV3vRcKu6V3gb1xMHeqbgfxpS1fYazt2HkbLxBYQ69QumGCTKGq2H9KElMD/UaKwOHkQy3ijEp2ECaPNMM9f44znrkLCv2Ea/YsxvvCTgUo+nWZXUqk1m2bMyPDmVyEtf9KDVpw/iVnHIdIs7iv/KhWQ762qZmcI3tRS822+0ssLDHqeQUNqDCeSKeNBLZYtaqI2RoMCQt16SpwFrf4YYYGHjsg4H05J1EA2pXnuV1V5TDXiLXau/iRx2fY/CRsy9UJ/Pa6e7QWzHrAfOg7hwt3sVFIzCJp1sRmei2xA4E0z8mA8x8mDQPohyLlEN/PK7gMjM6yF0bykA7psFch7tcN7yNRZ2lFdHQN4QI2GvklQtyW9lqeWaecH7JOCK1eGERsquKAZBULy2ahmI0umV7Q4/tQJh956zNNQqs/tKZg6ZNezZUGY++6FV7HUAj4BfmC0UpDFS30v9Wjp/Sa4Zys2AfYbkDI55lS1iKWN6b/ePp9MO+EQiZoLzZjY+RUTbTfsvRA7f+cOH19MyM6oDNCmBXKK7DXnLJj2PlPlrfgKk2i7FYxqYvKu6m2CxqvQR52Dg62rxfU5+6oBSAUwoT4fO8iuhq6z0Uzd7WL9IHCGMEwoBXfY/0oNEFoGKidkNTniF1G+MWJodDrRowZvOuQYgUJgUiAgTCDio3ibxaZvXKX3UfkwM8taEYRpJzMdn9Tak0WMxXeV52BbYsu8YzyXRxlkKN/Ig+KpiTXbBakx5NWtZAjN1Hgvr51pMtIkb2qHCnD17U8sywFn/xqbAlwOiu1mU8FZXpx8A5zLT6MOGs5VwWsODBmA/9ASmu/BUNvaV7mzL84XLM7qMmKg1E77Cjh3FG053VJQg2XN2kla0hz6D1zJEeUPRENto4c10VSMzNDy4bkqLPBiG3z1k8Mv1vw3IfZIMwfIv3CbYFqiYqdYDcUhdt5Y244Th02sLXhuJyVzCqeUj7w4YO/c0Qyx8Ux6pde0Pb9SP/6OKeQCwZa51/r4BEoukxrLQUmU/zCqeOMe0Y+v9x9OAG/e7xwZuzm1lwpEFAb6UQ/QgCMZ7rRzVcllbTTJE2v3+uu7h7RbUlCd2eTly2tAIYj/ST/NJ4rMY7PSof/CvKulZEF3kuS6u/o2jT2eDyJKpZOAfh3NEuVTEbs5G0R06nN4svSRzttjZVQiuT5sUslEn4e4JKVdWTZKmdVw4UUUch2Z4p8pu9Q1WEo6FtNRgV7laPMi9qb8ppPOpTwPXGLwh6+zw/iPJuA37jFtR5Uk2VFTwLGKrlrGQnaWdTbIsrfOdSn/eXIvQeK5SUu+Mn/bjPo0dIx65SiYvRf1/fII7f6pqBv/l/EALv8BvHccrpfCwyeLrZiZjPaGsGzHYfGc3EQXnF4HxOGe3d2QCWQ8qj4esaYwJGtJBc8RU26ChI0jdU2xnZSTlWNeqUjF/PLmBY+RoifkeKeaNUIlLuro8g9RolUUVjUT8qY2uspxt0K9bHMT6A5bPcXCZCsVd3Ip9FYhDOZVqHQjIicBE1V2u7fCP7+jcSPqQLhjl+fJscggLCCf1VAjKAI+NOyRcSZW2xBwGia2ojcqqaPJwtyTeBvaRgJYF9EMKzejHCvpaLUuTVGl5HzeTm4YrBrb3UY9klmSAedptrNrGXSTBWvvcSurxjcjxfBGoMpWLiCf4oiavp3EvsoNfkyHlGTiK62jd+x6eUz23A/z0vqKhOVP763mtyhpQaziGNs8Sxl+m7Az2/KPT1TjRpEg7NDTRmoHM3hh5Qv3qxw9MrgHjzRNrZuwcpSbGpbBSlNuTU8kXvPdFbEZHdCc2QWbCVoBOPJ4OVXBg61l03atWwVJXlliJYckDgK0gYsVHzIyALXbDkHYtT7SI+W+mduk08d5RPAIg4mke194SJgEy4d5XwdF00MF/YXl/j6D1QTki1ihZiW/5caVBpuITMOQ2dCyNYqve+3cJaW3hRSyHCt3udf1a8RuIoz5sCSyRxnXPyt+gnTd1kamrwQnoG3UkJSMdDwA7NBvhHLolhIPXR6xn0tpdYH2n7xc+PyxUwh/g3KyVbYUgbCloZkdz7ePdpBBFt46oV/o3OSPJ3YR8qHoBt0fR2VyxtxFvHgKlqo6iVp/a9IrLtOu/apwD4h7mOM4FDGbV8OpGb/qicefbsX4vT7kPUPksM4iRqghKqjLDEnOofoepLiWPq8nRnQuu8s2QBzOSV+WHVR6pCMOq1h0y+UMPRS13MI3Nk6wcx3ExqC1MlNIlSXF9Mci20bLVcPzeZuTpgX7qVOWQ+y+EYy1X10oGpWPllJjPdE+RcFn29+MjySsdguNGvhkMCGBAuPTr08YdIJWCQRw4ZebXey23Cpkdkl1P2qOi+0R+T7mmogHc9NIEIBNkKk+G0jqd3bO/7tPHWX1LrAd8j5uMw3BTBQT1P332dLISlYhcKkoZDsK/DNanaQJ0vFmBAwRJCoC5Hf4cYi3DPBVBQUFkzRhuTdFcf3NXcdkggXw45w21FST6PolNEtJL+IPRINHgzKAMEICC51TF1JVxeSOedrHrn4usLr0lyqynImcrdSO4UmHFaUht8vrRU8ZwFDWuNVtVNiL0az2WT1/wMjWH2t1CmVitrM2nwWECwNzewXHbEY5Om+aRU07ZYYLFYJVQDz1JPnj3PXY6AQ7mpw1nlraldjD/yzfdD2SkDlXnqMi5D6+1bLf+blqsjUuuT54y+MGRTas4yQ+9IYpb7mKiQcCHTjuRwQAYGq9tXBZe0IdXZmHFwPvvDYxt9+Rj8jEZ7bY9C3Tt4nYFw6aRgJwejq1AZIN2Xz3RLFxzYCL7ttP8Ub9pF4U/aDrwhD4bmIf+4zr3dIEU8Q08wyPD5IRoN9lIYGg0AZBZxg8JXVYosmgZP4cdx3n8MfI8Q3rpzjw3OPVFgIjTQJ5Qy0Yrmc5rKwL6FyCp+c4N3hUqrnLxl6zrOGZr87pgQvNK+ulm6xskuTHZw6BDT81OPfttCk/5nSs57f4kzhwZbAddjoIqbtTEH0AFw+44Z83xf0fhRtCB2lRLO8ckOkzazecojw27i4f3jip2/1981x+/xKp4MY4eE4IFeS7UaW3/BXn9S6A5v+xXX+18P5AqWmwqM1PoxhIqjuJml8y3yih06qas9LZy25WSCx+G+mX1XunzpE0o1Alafsd32pxV1LwFBmf3+/ZV+8b6EUkSCb0UijAngVVpqgYAMeoBFyFAzoITrAdnm481jk8VrmagM/YBhhgBzGP7ME2+7MQvi9svsslFhiNke5jjcSf5Y1auWrwzrq04mGeBCeSHRD7C2mCDHjcZXe9CUnwPa1B4UH9NyZzuiAmu1d5lpkQgquA34/ZQGC/NpMpM5lMfEpfZog4w/MYpv7GoprKzmXnbpqTYEiZwprxmWsekoYdyoD1MrSNGyr+Tnv77XmcbCG/qUWqDIPoJLIFu9ob6yxSQ55Sz+9rqvmnTODXoThC6lVnXZ/80umbyXxnxJDfH0xRnogtC/pUQp474NvOxtNz6oZkDHj+pAKc9s7d3+S9XU2e+Tq8PXK4gWZbVRk9ZrxwuexMaoCwfBKTAu2xQpyE31laALaso1myWuAqmOo0u5ITI5pzeJkn/LLOoiUUNCTlQ7SvH458knjqzgytwnuHlShIe2a3catecCnrrRCXZu15Etj3ekkXlyuCtv2ajCjh8XDE/rcGKDhySp9XTayg7OHfXbrEE0FhUVlkb9ATmQ2S9wiRlVhyWKUm6aQuLFFD9HP9mpS+91vM16899mbmFcz5OD4KZATUPtb0Tp5dQibv0otxgJWHq5C4a6AKEsPybgg+/qjoiCoZUITUVTyeHi2h9yJETnpXzypqXhXb+l9dZndfodEoOixwswKRwrZjp4vBBYZq5e3/Gl3J5byOeT7BF1f9E68seocJhihhJLsZze0cYT0g5ZWT4LWiQgyNIWZR00Qv9hDS50nbw+ajXxwyaekQFdhmEArMgbda21HcRpjgS3kP6/tZB10wc10TcRz6xx/cYeHKbo1KR/x56OigIPO9Zhuj8TuWnQm9vuT0g5vxEceQpuSgfwiWT0EW/zPp9rXcUZPoETkah/0TmZ/MVZHlZpRXqev8TuFBVMWG/7Q6SbZzpvzNjPguz7lmG9d1gVOAHP9BWEgFG2gLlI//w6/BAd7aa67fywKUGwKuIJ7LySy15zbJDgo+1uoR4TwtmN0ma1wUADe62i+HiUsZLZzmCDLCjfbcwYpu6GyuGK7ZCG3lI6FceA+4kn4DgAl6Cmzh7CvR44d+Pg0yzd3wsn44oFwnwzS4kwgdYvEWeTpD1icd0ufC6E9e8mz9N3TI0qzyWiNpgA6wZwOY4mNDUulb5D1chSpe1xn7h7ZJ6z6HTnFtZmRHy62DDDIW9ER0qAn9HoehWhS6T/tsk9s9XHt6Grv5rVqnzaqHcWd9jkplPz/FUiobtrbpMHzt1W7o3/TFRPGCGMFGPDEqi8bGw2vS/YUcpaBKB3euyI0N6LHVqVGeRQYDw/GFqigwYdMEFicmCerZg1BT9c3JftnyBqZ9rA58vo58V4iUtHIa4UyWByUkMFdx9UZxnzTwOxJ7yJIaq5k/pdqMHpP7OmTk6xjy3rvYrqLYDZVKv84v2mrttyAwzOugb4CJABImmwsOKYB7Io3W8xGnqXSlG6K+q0eW4w63nQOcvlNcePqA3ZV73Nc4flIt0GGFwVFnVtPTJeA8nyr0UD/XaA9KyuQL07tdfPtRv35KLVYdC7X4VDhjeCkh8TP/D8OBuo1tUstu80U2vQ93CysD89AeVd3rz5/SLvlcmIslEJFXx0vD8Rc1xvlrvZeXodvvXDrWdCLOiH63EFsVGbtrrXECDxHS2JKK4CF0DN9VIMWt7PQZ/2J+H1Ykb+RDug252L8dXCxF3N96ziLwZ/LWOeK25XO37o7AO9iLKNgWq5fxoO3H8+GDeOnTj4cM7mcE1RH3Kt19+YANiqzrMFn47xxFFdAHABvjm7s+4N3cBNMm0DOvlVtigPzpOYZavxy1s0FAVGiUa8H1don3nqmBeZfYKi4qxf905Q77AvYIhQJaET0wu6Ie7HXB6yK0+o5qxG/lCv6LSdw+MwiaIVdfc4p/BDZd/xfAqV1UVCGYW5/jTK6ZT3mayRMXIlriqAQHEN+RZNIdcDzrIrAyFT6RpEsvi4oVC55GmwzvPmJt/9aQZsW5iYmjcUhNCIuJpl0dkDG+9MUtOt5EXbGqXIUO8T9elEv3rNsfIkSA0JxVhQpPgQlR/C7ZN6EzalpMznbf8q0pCZ1yClTVzxSl88lfwVGisIpCEBxbZhkHQmgZV0Un6c2shJtnkVIcys4BwUm/52nlEZ3nK6hnI7r17PhLye47MqsVoGW/5zqZq+PSpjLYfLnD2WQgd/UoQwelp/8ts7DPKYNu6w2G1q0obgVPmqdOagwF2yDFWDlUoiP5xAjkWBFDgPIXVdLwmacxdCyRGpXpi86PbKfdm+qVd8NmMN/TeINRrLy+nYAqnWdWmf/dl2WpXUdYdVYOgjRWQKMZnLyjg56zV5HPVP/qS44Fe28862fiocaGIZyH2lNEnQPVgyabr8fTbET2hB5z6gGcXl6t1P5b9UpaN7YX6ohsSwNncu3huy+jkbtzoDJw8X5k5uTJazFZxuWvwphfwj8hJYCcw8xuz+WkL9wFFQwFbRo+O78d5CCSIcFfwh/Ummq1wpaXVFaR/pLaCDyNIPOaAi6UgY3Hk76kqrq5+ztPIf5egMuoe+u+c0plbhUzen5U38nd0y2DuRC6h5wfBitbwNTchw3DnxW40q/4KG6VgGxlCEuldFY3Oa7rSC/jTuJcNbLUChIqNI6lVFTkQnonOobMVIfwKV5V66slPBpARx/h5IwqDYivV2edmQg2i2V0j5hTtPkJYH0I/0lXPsTCvZwyjimP7JLLHM5v3z9dhoc+M/anqXQ8FoGHkQs9SvpJ4r7Vq7Ddn9dkcPm8v8OVscU7WLWy91eNDebSYmnDQI+6jFtIkVhfXt25CKr+FWYCCjT3+p8PBnCwagjnY5jq0JTXQW7DqvKmZnSBjeZqCnKClbMcYRKNINGUmiJeERvVWayat/iIeNvBY1godW7HZ22eTVR/lGlaNM808jOAWFXCJynx9FGW5xOZo7ltnrkWz2DRhqiK9qcw9mwIUJyH1iDvKymUtBfRXhiAFmCgRVmzf/KA9fmP3PSWu7wSdDIwhGGbmL1eK0ShTlq9yzdImuBMkbyC9UowvY8C/hZmsNeiy3jg/3ISWRgwvlGxOY+z5LjhO9GJXeLjTnSN5emCYr5qUD+ISTOM7n6VBaLKId56vQXjmy+fNMrvHbaPZh1M8UZYTZ1qEWPUqibQy6sI0hkhFSLVhB8zCyGprBzJXLfKIlb9V305yU2qD5CacXEKApnaLOkpYkr6V331uknEpj5pEDqYaLIb2mIiW37+hDvO0/97IIWHJNHnymGK5X5Nl7X+59TiN3G/CfHvtiiO+Op22kMUvi/g3y3EOag1nVM9NZsIgwNoVDrn1kP/Ym8kUkGt7xekFxCpP4y0HI5VKHjWqp+iVTuUwt/TKuio1Q4qfmM2j5ug7SlQDtmBoC7nDBbWLjY4TnvkX7S95A2ulJ5wtVFvwd72DCtrqMWtjkLlJZdpO4NYNsvubSja5C5pULl3LQNqxdUmKtWc1rPfJ3h5LVXKbEALTgFbWJVOd85AF5tFFGzh7O2p0VuVlinm3NK6L1dZ2ZjBgKzrbvVwXfgc9HcQfnHbeEeJ9qhKA2jnwzMH/EIoyv54zq2qMTeiIHX+h5+389TeYfxYQxiRWGyD6o+3PVBa9jLf7FDHIeySXK+gqEQLi8qMW5K9EFCY7cU4w6w4qV2VQnt2rKztDhRjwhgMPjs8yXEBuRBV7jyaLrRh5pYWDeGK2lczSzEEdjtEXWuP/HBpZTwfNrkMgfT+radaVJhe4SxD57Zwbf9iDm/B7E/r8Zp0DqOERG8ds3+Q1BwRTG6b/h/uOTQe1fsq8iLdTcU/mEPDBcpld5i4u42ojCE/K+GatcuhQ9Q/JIcHXeNs+kJWn6JvUlFVpe2kEK+xYDCMh47yhQfCyEbI/M1pE8+ylojeQn2KPXDm68GYDbS94a8osl+5Ucr6E7IOevzbeawvlfP+S3ZctbCOrSvvRPekLfwnZRWDZqnQPRyzeqEN/aaZ30D+pRIp4bn9x7wTRaGvQx3G6zQ9G2By5TN++0RJnS6bmnop+xIU/oai7O79IctFwwtmQ9xze7zCGjwj9IniHdgjDvbuwkXew7z2O923yjF358xXKuyfuxkXV8ozDU0024irMO7o4p+ddaspW6P+wl+urx0GuTYX4rOlYhwQHo6LZmQCQRf2lrVFAmHiOsdLNYpQO9wQ6CgoVYfjvsrnK9vHikIuyQPGyJyY9VmHTjKSxiE9KYDILh+0yKBXRSuLjw0heFChXfC8x9rv34tTVMHaNpqc6HWQLQqvyRPG649XY7orUTdfxOGgRjVtAjRix/tNInt6nblYjQnezamH1wRIGHye78sHixETmBAfg9xN0zDQwym45pPZyFrglyIhntR56H29TsSgS04bfRX9IE87TlajvUCmrBHWUr9NG3BCYG+4Szw/YlP24cHnbzNQDpJgKc0sysT22AQ6TxZ6xXUea69IjiLZCTXAjQGmciDQC/yNlv+4GBR0UjtBYkLkIUlm6xEhWrk/c8EhVKzUNEctxB9hJpx9eWb4C54UBVmtyULO1IKXPDaAHFqzvHPXOW8qQjWYiP8ybUVWsPYz7vJf2xitVbRpKVqcDjOdqO4+ZXnJQR9IsCHu+H5V69XiW87cORcK6BP2cBBA2KN00gDfi72C5XrTvJxPAfRzdnkdrtOgfftWIwCDfpVUYbQ2JOEQA0pWxGQQ9UHd3EDQdTsL1uEQBFQtky29fIpAJUvI5CaGm6Fmpedcq/FUqze+fvMDQpK436pDCDtS2kkSXgLjOIgk58XzN+6OPHwbCKlegVty9Jh3cvrdhV9qIBcEjVT2DTkIaFtyA+F8ayP2QFxbeaopau/lspb0Vv/PIKB0AjJ6LccfZYRLa92y5X8oWOMFYEkkZTf+i6PVVz1fZehTWBU/vaXhQzgX+p0aOkVFosaNHgJmWBAYJAeNDtHrE4LI5x4gEcGgmOuiFXNf+s7QVywNqQIJ+xSChJGCg30iYXyARGfRDwRqhLkb9sJR3v8lJ0K/zf4fyf3t8qYWaBFYmWvIkF5742Ln6pzdVTQ4SKdmy4jh2j4OF8vAZpS4TLh/O9wjIgL6Y+GaJVd84XCxmTN/tHTKzaonH8LrbbdJV5Z0VNyAi3D1S2+dwT7rsd1d9hfkwQbwdl1ZCWymIjng7cahJ5A43DfLw34rPDrp71Nol2YP1RyBahy0iFsJQ+UONKxqpoQwWYyJMEttrPO1sX3dgd6hb75Mxo3s9H+5uoPbqEpQHeDslksaGN9I+zBx8OBu9c4WKd3H8GfJRdWrXJycJSDf7ox79IVuHSbF5zPBziUIbgTIsKwp+9ruYEfZXLoneBowQgNIAf3qLuTPn2V72j1RUrIsI5XUqOzfkqJpB1cJAyV4g1mbYrYiACSQEMywTLs/4C5As1ejXPLNj12/2hFowZcKj3QIf2ev13OVTMuoOeu8KoiE/g+ayAVbd0fiQlHncVzf74cDiMPfWahq+7rcSmjInPB1Ck8Hz9SxjO2/2yBDeCDptngnIun3Xj69DUDWEZvbzfoTRILctF7OxuByVRVJ3YFUvOUKNmHfNHOf/i41VvcvcqjWKbZM3/jag1eZmWCJaCx0dYsqhCb/Yd5poNXCUuBzKscDiFcICYF4k2zIqvbbzcOggGf0SwFp4h8ftJ3/zsij9lW3am9p8NX+MVHzvbySiYF/9uqDn8e8ogahPgl0wcoIPlXIwpKSQSANLoW/uk8TFgofS+pRHh1vtyCH9OgKQChlAvWwNdRyG2ekUQ8YIQ1ZfwlPnjKlxx8fB/20zI/jdQRaQzJVguhKWWnohOltjce9Wz8RLx9UFsZ5rEsjlbP8iQcaYbQIND2xGC3QW+nJGUwPlAICsrS26uXrz2uq6j9I5VCwTKpdRYZPiLCK839hQ4+n+lS18TR1bOV6owcAY0bpBV80Cx2Z8MQocNHiHDBBf/Dd5fAYkwPZYOz8pEqoZkMaO7BBb+Bwf2gAs34JoZ4ExPwtsBSb7DIvGAW69VhyHEFVNUC1cG0fq4bUqnilvni8CoV/6+1g6gOd6IxuXbKajmET3DgnaRfv3cVbg58kwr/nX9hanNTv+Jmbm5JLuHMJO368nfzyCS1Co1DKcaSQQLLCEnslZElthSb+tRNRmZ/F+vrdTKwMzf354T/wf7dibwDgaX6PMo8aPcPqa0WURPGL4BZirgX9jnjsFO9GKHLsMELUzOMDcFeH3YFD7Hs+gK5vXmiFVrg3kjol8PmH6xNCTF2O1/SZqSdZVEaxTRbmrLcC3u079GFJ5xKSPgwPaN6rM9PmLIg8gYVAJ8Y2GL6S65qRCFVZ4F/xpgx+7h0RhywN4lW+aw3epYfdcyOekmpxRTh14zeUaV/k6azSUYLvhP4DGoh5bbsxg4rsfWxGTgBHsT2GlEEqPvU2JBerC/9fbvkngJySu5eHZKPOwP5Yk1wOgHg63nA1EXVPkZvAazoZP4zxYOx27osjPb9RPuju6koif/tMuQFd5QqgPY475WPzJja6uGCvRxfPZkoTvYVxBrdoDptwrEyhMJsk24kL8O/v7Ju/ZfR/EMOuZCvGd1klOHXlgFUnqt5S+6aPbMGapktkpnlDbDPnkhIdudxEru/s4m4duSgiv9QKzxEzNN1VkxRJfUTQlSMz3D81NgFlVvQfnO4hIKFmfZRaPZZmVIXQv8YwB0CwUgyabpKDB0Qf3IkZAYnXGCMpaA8L+ibunO+JS7YzD2117uy9gAqyizEYQ8n1J7epHQwlg7xCg32TsowO88bm9/sjnGi+wSidNDdQ4MoEwNwEUwlVtuzGbqC9YyWboFHQitIR4vvRXLpiZNOjrIp6M1cBB6lt5PMNAbFhry0lC3VBm/vFcFb7V/Fk/VaoG5vKXWG77gG7TdZGgt3iI8bmsFsIUS3wyQwZaen2awiijrwS0hB5WvGSfM3aq1w0IKgTtBBBYY4fs1BAf410Ab1xilKuR7rL12iJ6Q6/BaX/BI2zcoOxCwu1np9NT6hBhq5mLvrTBFfZbP1cfLJiQZd2x751OVAcUvNIudFmkr6Q1SnocQvMVtkWm2UcdwlAXJoSpEL+BrZf9PiNIC2bemd5gXlgEmvK4kcPOz32jOVy9E5kcLgajgeoNK4dTj8+A4ynZuaLd489irUXBMP6xTy0W035WayAW4i2Fc/0veELHue5gIuvsteepe5olR2AU6ONAy/1AI5FIhHQYEId2vdvTcvkUTp7AJhLD+DUZYEAkSeFNHLLxZGYoNzZeynInyLTiO+JFSrSU2T/6mKho/kbjpzJjrDODcXu0gPhU9O8tSieR/KkLDdqctzNhCs9xXzdzIP7qY1tK5pd5QEDOZzoKv/1U7QL4IvIYqFAJMyWEaH4Gudzj0tJEaHBbPdVyYewsu/zqolOY9ij0OwsSPrBh3ZeRYQaJPZf3UFpeOirzE9YMVt8l5a6cAJLhD30+3W23ah9TplY+K18qKRS2/r1DubNtOAOjT2zQeg4IDOi/ASIMXrRWG/RiGYX7phE4abMczFNyRJ/UjLHTGBnSSCNOWNgwnL+N9UzggVaErkf62myzuaexfhzkI0d87ITVo2RxyaZWStNEUFFFlFHG4uVScbCUcfxbbJcXN09zVV199L6OLtLRD/nF7gLL/jFXAFHA33BdMhTSWjq5KdhJeaIeziXnqTbGlI3j71Q/Lc54+yDr5G0do4d3nr5+Q3hd1rJwMEFl4viyaPVAAQgef52u+13o7FGfY2uxzQwZz/lyNgU9kD6qU2s+n0WqMMjdhX7QqWmHQM0XwkGQEhthBulYCEuM1OFgtK52/LtaiMed67QZ9jj8DdPTuoPkMwRvq7MxdT9rHwWLFN+IKN9RV8pxtQ2GGvpicJBlHpmwfBNcHpQfQQb+ypRPMo2Pe0c6eNzHlb43b1aoR187v7FlPKwH9hh1pcWLpvCF5YUevbpiq1pSZyVTZeKt3SR5wq3LaxAKxfjaPr56+YWamLjCGoxYb7qAlSBpTBQg6lChpXpx32f66VbAuD2wA2ub5/0Suolz0QOkI/QNXRhHBs7YWzLS1bSFFwIJTSb0eR5xDXgf8j61JRYFqu3GkZy3whrSz99vwxM2iGVXDa7G5FGCIz3fNmYMjD+u47GFfR1FxnHjScWdEJNwIU8VcOOrpNtAhHius/4e8tinrq+uYfev84Zg/vRt6PWq25AJvskTrg2UeBkxo+p8V8wC41Tmv3XUrPFHTqWpz8+Yw2wc+jDnWuYCKA7bWpfrGajqXX0uKLBe6d6cuziOtuMVjGld81Toc4V1sj4hXyogDkwdPaDdd19EK5I+Y5MY3+tFyUA6jFG05EFH6xfA/BHSHpAu+JV9m27ZUIQO0dlBAiSCQ00/GrUxR57JBbtbG85+zWeSfAjekgfxyIBwpNQfsgeDZEN96ojcqUa5r6m3R6FN2l0Z9Xa+6V2eWZtYg7u5isk3epaTvf0tH9FA/A/uXS19LBOpW0yS764cRx/PVLx5nXu6nNOlooSkHSlJgpe9Ka2bOJgZvT+PAYOm6pwHtPIhbAW3xYy74SfHla1lOc2vyK1ywke5fm8f24g2r2+JUy4/Tr6AzTk6MWeq+alSPcySBBJEEymkbMPRWqq1Rvy1/BOOn6QzuPX/Ex1z2UEH6p/V+DdDnvdjo7SvGIoRwssIdVzzI178h8mUpKUwXQ+GYZCZdsqfc9Rwq1VE/iAV1ItzZCDoy7kNhVtEFPGgXT+0kORoyj4M+YCy+xVZ4q+aUhKxXisfkkfI4gxvYL/mQkEmakfv+GBPnARYs+NgI+8OBpphwoGFQVAUgj/p5Spd+VClaKM0AbJblMwJwI1c157iojcCpN9L6rOKFr1cDPb1VZareqNF1kxCpiYOzvIunhPzlFttr5mtmrnireshrn373zRqQfmMjD0k3HMdT89ob/5Wo1Ssxb805AYLXmAzawYtSQqU40Xtme308z+XAYDEHpJIaOZzqt9oWHcV8MTWS/BUHcnwgcRwRgALf1N3pg6Hx/Qausmhu7HLRh97Jr6wSvOr5lv9nz+pT90edIx1pu+F19gYSPo4NJ4XT2pQ75KXm6OZVuqvQWnJQqnVKPyC8u/feWBIUdamBG1Axe1nn19MPZIJzfy5y+pnPRRL+A+QAK/d/2SRn3xxB+qqyM3M1sD+07rUCFcMJYLSmi1F5qn5VeZ7xVtCIT2SZyZnC75zgrzaXXqrL/QRW/zmK7T21LJ3fhAo4ggxMI9Ucfp44wJo+YpmyaTflEZc1NfuCV+VaDZWM7yD/rC0TsYGvKU+CK273H6amN6Q4OimncpERafGN7QT/BPoahixrhayokM0HP6MVuK7Vl2rhnfyINwPBQH325jMD/vmoK55kmu11bg+NuWZ3ZaM2DY4N6YTa0uT/zuTqRNb7qqDWzTyoPHaaynrXJkSV7EkuhRTjN5+ZHWcNCYX0Z2Uoj8SzLztUrPZIz5cgAQzxcRXhdZv1RK7cgKC2IQ95TnG+YZfckUBm0Fe1eg7r2Lwp5ZuJO3EZiitnyWsoHleoBPsd2AT68UPrLiNjW8RFgsR5Yx0e26SIeo1WPyjL5VnQvT/aP6zPUFrj8pk+Ob9oqRXCYLVSJPJThk1SzFLwzxVoQzPv0L0Gfy7gnGQSxTUFIx2tU+6Jq2JSRlW0EW/orD868UOnjqeXbbx8QtmEmYLhr3Zjbkuqnv85svl5YSxwKnqaR7C/F9wCVYi6RwYvkseZqcp0nA/2i6yKOvZDkUBDh9VxGpLjuht4Xne79lOt/4O8NPG8D4qAw2t3ji4QRl3cJSMEC3+d930cfdlL/JeMWnBV9MmWcBJigv++VCRaZJhV6HDThxfzFVQGID0X3FWYLmpjvjHXjZmPGqRrSUHuJ8/U4cCeyWxn/PaQlafWFNDNeW7tZ7Xc8Ls4MAKuIymnrnj+ohf5GR7ldxDJLZH0i6VbqfskeBAMV4V0KQnTp1XCrYbrwcVykE/93AvF2cPtmJpOT+9iHyxMKrYeT0nDkyPcsy7SXE16qOPP0cxnriWdUBXEyxjNbpS2cpbObIVPv8/Q3QUcwcULXjwyfeKArH6I2oISrlX+6O/oZkrJeNJjiU5Jf8yatLUjdFk0y6TYWa+GBq/1KOUi8BZRMQqHRoTE2U1u2zRWQuhnyijO7k1ILPC9R/MOh7GQZGifHY3l1LrLuLrBKFU0DEihMbSrbvC9DpC06cKPXrEAEFtGrRqWLr8C7yQnsIczUUVKnaUn9HFWcD+FIP+Lhbvl8gsKo0yBuoJjBygxwqgBlygQUElwBoN2YKUT2MOFl/AtGUpKx29OutbxUuyjqMox1JGh8oONumLGOUxdlfTIuvD8xeDOTby6vrAVp9Vpa0kQNA8uG3RHvUIDYhWHHjAJ1vuq3qtOZXJz6YZe0uJ1dhs+6pSoIt1Q5cqK/NACAENpihq8ceMTAha1xOLFsTAsKC0Xs/f9OiNEhk9MrpmPBqYRTAx5WXtQtP6Ozn8/ntmkkXorJA3Fjtth1fPg5yP/NeSO1Xh4tRNIGSYvYWoCCDAembIA2W5bA8aGo4xSHSQS096IvAp1Pc1/wWxACQwLn9pmggeS0Qp0g3R1AwBcv2i9q2HBhwA0Jyw1VXpUWiZNbBrCA76eTuopIN2mZd0LuUsIpZazfU6f64UNU3vlB1UCAQbqJ+H+QlROcG5x0+gEs4lV/99Wx97XtekeREcpX15Lh7R/dYivSEX77tdaBQvMV38WX4TqTulB2ZwSjo7NSkp2+y2x9bhBrJewvcPl51f8xMGBJkUgrS1kg24rVCGf2rekUYg2zHDmzeYFbtEtsj9XXGtyw2WD6GN3xx+nZ/HAygW9qRtdRninkV+NNfiB6fedzJrnUhLyIWabvIsyWi1DzXh6FkIKZ9N4/MYikEN0Jv1b2n4PuRh/F+1y0SjzlNDDkLJ2oOxfogu24kwOTm8WI26QQy2oRoY6UgBw18j/+jQ+1E/1nQYLR6AD5tQEE9yZmNaynGc+zpzg81Te1eQh9SMS6AmZgY/lIuCjsoaFU1DVe0QKpTogEYI2Eu7yKCRn5+OxNK5y+HAcEgbpdkYwRRoAcSEw0MdoYffGPmUfJ31B8d3g3LSSAa3t7OZuY6Hu6nvV50wufUq02RwDvfhx59/jy9vtOmkWT1/91bSzJlLBmfjEpkE/4UXJdrWhfZIMuJvYJU0mr5MEUBQozCaBdP35lmGp5RrbqFOETPMFwSzDdWO5jSRqaXt6Ev7FbftsimeO3lX3HTUFAPVUxX3pHJtjUI+eLVvj+wPy92NTCAXXzR++yUlCEeUa5UdbX4619imm9dcrlhxT70/INSHZ/SGPBzsIv0X30ZXSDNMXSYwM7AxqDZah212L5YKJbgJ0xd+qCU7Y0MD4m98RzDyjjOgg/0aPLJE+0T5jV39Fpy8sj/fKbD9/3nJdNctp3zxWag+z72lEHfJiH8vz8+TD3OS+iPUDy3DCvvRV9Hoo2O7jDoWOOSh44SsCtxRiDBCl3Pn68U3jY8bTpoMaTI4WlfLCfJbJaJvIeMRojeNC4AEhl7aaXiDRKbIxLcn3FI5BAke5y7jwTaXYQ8AUA7aiHde8WI+qBzDMfQYCBzXzMXOClQZBw4EqkFcMVOZKB99mXIeD0qLFWHM2t1m+eDK8trds/PVq6zIjfdJ020UAvAPE0DT9EMJ1oZZXHpP8AdxfIUkFv+BNYios2vXP0i23L8/ZWKcwFamNrYQKLA44187XI3e/wQrw3i9GloOoB+N8jKY/np8wdYjAGAPtOEBHDQgGSrxNpTkcUS3blj5EQjr4j9UQ2RPJZV+JmY1b25wCH7ZGorO3OPtFaXW8WPYazUTNaszdyOM831S/XDkJe2FaL1TY0t/IGuidHDkd7VSDJfaAYC6k6DVD/ICyYxTJBAFfmP1hPOjz+JuIfjzOxiFoS8EwUfJGMz15TvMMlLWgWQnHO0E7uQRMRZ2XXlxm/Xev3yuL79HUWezvnhmHCEQsxtTBnC6H2JuFs9oZCiAqaRSByrXv6RPygATzAj9uwvcz5itw65IY7Vpnm9R3qhqrY5lNQBIS52YeUiDQtSZ4xPT7+fKHzH3Djomexh7m5KXR8rQTHxIsQDE7UEUPjEGVJ+JS5Gc1RJH98wqPF/swf82Ur9z6BF8fpLef3VuRWstrxXbZNmiOECYm276eL6ZhWbV36QSjs/VXck2d2r5cXV82ZnHzm4aLW83zQOk1k4pykjZlVee+JmApm2l9Bn0Opuoo7DRB7hg9pwlg7Ac+UYrVodWb99SSrQsVM0odpR0I4bKaqzIW466KgvF8CZblTNC13yMUPwm6WJI/VPvDsCvY5gmSGMTJJ6wQ6jy3wm+Wft92Li+p4lB3/WVtFvfrxZc0vgC7nWEH57PhwOmxWxxrNsRhydlsrqsP1FLLJO0ziAH9E/WdvxMoF25DTWJZJTPZrSR5KA0ASSB8SgZ+6TiQJ3uzrgjxiLdkHNyrTgz4B78ePXIexrUT5dHNHIyjUis4p7yE/5tqmryRFrm97JLX1EgyeU07A/CfC2L8RMC5qJAskXw/Q8xdsnVfcNaB6MNx8fN1T5M+6HBM4uEHaICSjI/1o3HtXXDuYxJNuoyPxsp/AQ41ZKH4OI+ah0z+3hYSCcZmvWRiN5X961WvEW7IPI6WTfEdaYr1cyFkde4LtFsfgqCww02k534hL71kNtI+GqOQYYq5DONYBrFIGYwbAQSRRodwPA4DYIYqI08b6kQkLIFEH+hNVqct16tM9mkUxqHpm4n0G/4JtYzPFVtNkr0/81bgHEpgFg6HwKyQerLGsiezTJIVLYEAkXx67ztzAddJetO2mj7umkNnh8Twbuv5QbNjfBaPtlEdvc1cz5rd/YsRG0s3cvpzPV4o2/Q5YtgXUjrW2eWUPkGaGhkBarOvqF2rXatvFMvBb0sbwodKdaIG6kuZ3iEW4i63UcqKwsGgUvQzYk+Z9rZryDISRBLZP70dVuJM7XljVWSlyX1gxy/ldMrwD6V8UG6KjuwIQfauHPOvvW5WuL8nkd6hVmNEPsBkMo5X72uDOFcJmv0f9yla6SUPQ78MrL7xqHueGAwG5yN5sQjBvMBs1if4NimdsXAXbSjQ89fWthZaz0KOVrjkA9HuKMimEmVeXfryOXRB4bDYCwdRE6S9Vt0cxzlNv8v6vBxXfyVNcDWtFHTQ1+uMC7ymM08+417XEOBXPTGAyp5TzhVBbS733rQg+UjVYe6lUazi2TxirNO3V/wuFW9Rj6tnIdGrbWYUzmgPpdmqAbCdR60L1pZgwrWrayDKTd7qFbzhyUnYobaRvRiGiWkYKgPJEX+GUBlEPM1OJHoGc+qM8Q7wz/im1cA3ElS70zBJkqMW2xxB6wlrbVEZRUQ90QkKxFi6oz208aAqkLGDurpbiA4QH6Oz+SSJRNfQb7cwwx5XypzU5C5M6B3MWGD70+gnOXN69P2K7ONVRiYxPa80+AmOSvRR1f9L3vokv1Qkjh6TyAm5BoHzxuyaFwU/238+3iDFpM7cuCv07quGIAN02Pm/t8qiT7aHwUIiGj6QM2EH7LW1jh1+roDTGHAlEUGyRFvHMfS+oHHE8L6V02Zgo/xJSSSY2X1hTbgv58i+FZp4uii+dszIxsXh0CY/PV4dltjGG/U+AREQs+WmKDhVllfhJfELIo4RUUoZXuxvr0mt6tS9WmEh7tFGEWuplzY6Ronp82JYxMZKb+gZdI4njcEp41E7nlc/e/h9wI3NguPaVe9B5Lyk/gHJgPm2CIhVYah5TwP6UNn6DPkr24wDAZwFV8jYfTIg4Wy4z5VFONKIIdQkAW/41D5C+Par93x1jvu+BBRS4EGL/LZ53v5zqpxsmmvzPu+/dh8IcDAo/iEDnOZgjTB2Y56jbcwMoexaLzuJDu/VGXP7h1YeqYOnj3tObe9ldj+A9Y5r5+mG1Nrw1Oprjv/fRpxIwIIlAuvYq8Q5q0FDR5auDBfglhHK7cIKrXd/f0YHvanWnTrSgB1Hty1v9f0ggtpRco3qIA6mx454f6xSqP5b7CLBEqu5po2jj35AHEDiKqlFTI5Jylo/D5muNHv/f2qjfr4ZJZnugjWyjbJJl8Pr0x08zB+KxFOlxurTH63oaRB8ipQdxIa8PQi6FoC5fwutwBQAsF6O2ARdfMtTMY9CDWAL2XUWR4nDboAyWwnBrAMI4RohHoCC8kFAEMD3XLgOrY2gTgYS1j1ua0uid22SWl8XlmDWswaAHvjC107B4yBKcI0oXKRxAfoHqjPnuN9NvpipkXe9BZ+E7F/UQEoYEdRrjX6czHJy/WdP6QfAzn/1kMi2DGzpEcxo6XdTLvkESvcHqibN4+CXFuN1OAr8ljUOwtWEZYTINsruQsTfuFbnRHpY1S+TGQcdoxHNlFTWAJX0zDSEYzzrh5LDVTsKLc2hUh+4y3STWlNTpyYZKmOwv8jIxwob97mkme8ea8p6NPVvDjKyl6RH7HQLKPHrP23z0hfT2P3Pqp+Y5+DG3zkqWiZyDSf+74pqqAHmFiqRz3j4IvpAkgCQZZewDOkUt8zFIKQtOBEjjKGgsAuw9tqUTvTu1xw+c2lx2ypS/aWlo2H9XvrI76xQ/pEwgIQM3HNrDAdlFCEeF4Ox4tDxsxY7JJJcfO6in51h69ar91pY2q+OgiDMTgFxgo8mgqz4XAf8hS8xqFaZS/xyIc7KnraAgtTmhA7/kSkAa+10SHshutuCSt+s2fJYm/1a4f3GkiR7Qnoe7ibFvauy5Ij8qxjNQ+RrqHJCwlXJtKUoi7WdVxT/p8iQqasZOMZp8a3xWt+Mpd4KBX7cTPp/JBT2XKoqANoF2IjiN9RDHjr/m3ZkEA96XnnG0RlMchcpEkfabSmrHReFf8/9hro5SjZkoLeGth5u11e+ylGx9zw92Zv4jA/1nzdyultZgOGy12hIS8VX0UNP5aEP1LS01qlhCMAXTQyQ+U/CbcEWwm1wcmJnWm/jjg2Spx6kNWGB2DQ8JslfraPqHal365V2g0ab5rMHHwtoVl0UiCLuZmx2w4OQXBqmU3baFFZcds4OIt/lX5vxg257EVPGLveSpsCh6refySI4Gjbk3SkhTaIWesmVnsstW3FAw4faZs57PJBl0sHMCjTSHYfCpsL0cIVNWQ8EIQL0tEsA3DZ+8reQBrdFcNaYdHp++prRngmXuWHOz1wt2ZnP9Mu0m9JlLlqUsxgy0EKyLEBJqsnrKaqgUaY+IAFKLpf7l1XUMyrCAM+3HJUpm+KebJWE+f6MKVOp336cChbbIY1n9W6D4HkNG77K+SEdlEXoefxaaI3HztoAzxcAyE3QkrF5c93DpmvGCbb9iQdYoZcSMq4Ove9H6pqxzdm1O1IuCWCJajyKnIByCrehn7HvI0qcN0EX4uCm3ik0Tr5ddeeaQpoHfL+v5GJCpalqc015s7h4mkbQmWpk/Qc3qPHZuZ6d2hJ6Yl5wLwSEj5iZNS2Da1LN4pEl22fFPRcCy6zdFbcKqLNb1QYYxKmSpo22BoOhmKXt8ZsD+AVxMQz0vRnbRSDheZnfNB2fmlwf67Awe49RMcdVImc96IIIpnz97WGZmWBNAzUK3wXQJnwg1rPpp/Rw7j3mpDdNavdumwOp7cEXZ8U15/vXQdetsJpQz7uCkywY0Yv0JBfHDaZsVZaH01ilmUc/K8hcX/XVgkvdpGgRJIiEkuIWe6gmuHz9zOCMxjnbqJQoRUaOqJhxxHRzZXUMMZMdFl1W7+VClr8IhA6fiCBItsYU0KC557BH8wWlabnB0P2Jbu2gV40pfxI1B1g63mbP07PxXduBhtlx1G3i+9/72JIi/7erkgQqwK0YSqZa2an1lAh7gpPFVVpvAzsO0T2XUTKRkPT+he4cXK2Kw7Ka9CvTVTHM5Xlsq47uxz5VJ0GEHfIKni3Vq5nQYoXrJKqAT19csesP93ClhuEZ9ajeta80euZ7tefeF4KTQ4dyLP51HgY+7H68OJ8oBCR/X3JVuyW865vT0spylMO21YLWImWxhzJDmEs3tIxgpdHJ4HZRr9ufFHSM4uGmNXZlJvnH+V+oVD/UaCCaegoUKF6g3uBIN1Kajz47tz6P4S+/rjZTR6lSmR+sueaPZ5umEDe0XO33CvAolbZ3LXRw+6mMn0ePdm5fqkMeOO/6VxT8QI8J3UFCCfY3Rt835ZeEGJ32IPFw/NB9fb/eCLVvkNmwacYd/GQQk4UaGjzjbeOsU5VHeiQggBaq7H7RIFbHfipkRc7/y4ugPRJlaIq3VjG/sNgtPRRP/aCd6uSNDcKGMxQqn5/+j9LT/uX4praO2Nr/lnTT3z7jfo0YltygCqDikGfj9YSsPCPdZI5WRpIJT+oEk7BeYAZOIoFAPkJGyDz5OPimWD3M1z+XJey4VIy4HNXpPT3VfpofFj3ehrIP4hEpU4pOaR0UPNkE6o73W5SD2YkQ63INtg56ywaTgpc7oM4I36Wfc0cPVEO7p1109kEzQxJgQbYjlNYhJxj/Yag3xSXFscjALsZ1Z3c2BSgtO1u0O7BAgM1b2hp4ZBhHA3Qln+pqTzzwBt/DvekdJ/JFkllIx87M9eWIzI+Tjk1x4BluxL/DueMV43HWdrCbx6pVUkfXF4P9beJ+rVkd0kzDpyHKS3s50AjI0bWtdq2QjTNLLVGfjfhkZ89Bxkuk2G8XT+FBZH/uwlfWW83/AbMgB2yIl8nix7naluAcDZvOg1mVFgrSeT8pHxVKSOC4DtehqFfZJ+xudH4Xe/ly0LK5NWNBBv9Xr3tGaaBMYNJ8Hq0eJVo/eS42u/CjaDzZvPLxXRom/mHw3jBzdrQmzmZqoVQp+Zcr/OEKr9VZMhQb2wJxHq4uyUhmoJpO/hL7No3u2H3CEBrt9kbuzYOjagzu9dgfDyrA49oKMKTeMHQYoU7fcV0kcnC2hiqkHxL8sID8eO3ATgLwluH2DkdmXW7dMWQqFCdGh0ABA1Lp/BXGywarbisrCeqbdfSjuACUybynQZSGta3fa9bAYCgwRRZuiW/w/wOreBBOEegnJmXwK50TpSCfQwin8wY+g5JLcGVOQpwt8xprIL61MdwRwE1+YkzF6xxph6axBAleGPqT9Pk9cyWKQGLXEG/uHIWutYRTrvPXuaD3lIw5sOIHMzYdB30ujxtZkCEVLIyjK+2Pt+BSuWZ2B9ZDJgSPAa6X1MCGuliaTDWu//mgFZMfh6q+DrZhLh/i5x1RqJgVftSL4AF/3C4DdCINQE9m0le/By+VYWX8kVAuyxPvx/y7EqxNkAa9i5SLERqxt8ojmuqisNR6s0vXch8Xw4WVSPI29L43sho0iLNnTk0IQjk3Fk91PaDUQujyE0jLgnc3tfuXB7HNok5PdjhsgB34jaCAGfHIEG6UEd9kKZUUx9oWtbnibHJbGgM0PfkmS9S+x3asmkfMYfKNAaZuT9fMlz+luVZMK5pxazW+MDy8bascBCBfvqbq63R+TpqHyYJvRCQuheGKnaguQkHxiHvk/iEAgDacyGkEU9MRmkaNFXtp0tNsm3icOyEEMgIJX4/3tj/TpqCnXTGZ/xrT/BgLT3jM330p2UeB40B5i8joO6XUzX4H4dW7HalZb0ec/cPcODzK0zTzCXV9K9w3Qq2aAg2hYAQgVIVjmkygws7+bUiWArmqYEDXZkY8zBDywcKV39vusLFgia4V2mkKAsTIqLawvORBUfN2B5vd5LQn3wTK8QTcMOFm0eh7bNQ5iANjf8qr958SRZyLINdrTWg12r/TpFve8yl8TovkP2i7rrU1ezeVmgUJW8xRd74khQVcaPGlxGtXe2j8ICaGpEMYA4ZpLL4jOCQTrt0xg9cyNcq1V8lRKR8twcwnb8w28mgr3SS7gQdg0jFFN2Gt1CZCMAMosvlwHE/z5uyu9Q131u4HWzzcx3UFRiZnVf6LsNwZFW79eu4azdsvfNNfjr0vIp2NpnwDMQevycXW46KdB+maiOEYWrXNrZ18nV0UbhUdpHJA17/W6rlYHihIt29vFe4KLxgO7cjonpbkCC3+fNnEILZQG/NMefp8ttO2qcPqhKOCazGaQvJth2fc+ovmg0974xViuL7wLl+NrVX2DY4boRZpvm3E8AU1Xu0vOcNv7CeTPkagVmXhhMBHsTFdVlk5pEiiWAfOk1VYYebW/2twTwaZrhVz/5JTVvgGdh6Jfg2UZTQgUM+uXuQ/ER+mLXffTDDB1bAKv7YToSFg53ZWlfyeChp+dkLpK7QzTw3RnUNCXe+vdNHHUeqWnZfb3ZLjtq8ZWGiMRtt0zasXtD7sztyA/zRN7y64/UpQCCwev3HBajh36iEQoJQRrobciad9A0M9gJJg4iM+rzs1gFDxleX9O8mt4XIK5licCKl6iG0n1C+Ygj7sZmd8JuEX1VctBCBvCIK8LNaxpb1nvJO4HvmJgpauhtCf+3+4FOlwHxrqoJZn3B3hYG6a07cmHUudTmNKDTimxQT1dz9l6du43/MSv3uzwyc533Q+P82QGVJi4JCUySo3jR2HSMNK9U/la19nFFwvIXZ/6nzZl9oQNAutd4cGT2uYxDdfz1xmz76LDzse6Nqu6rElo5jivt1DobZ8qOobs+LyTwKXtvCHMXvRj7Jthpgsks2Du++LmdZAYYmPD0czZfAwk+ULlT0C6478sNRh99OtFAgNQMRxehCbg5/qc86pRxMYfKOO1UXp8cwKyEzpS1pZmhdhAEIU/17h5CyQVbRsfS+Rl3iplYiQ84w2Y008h21AUhzvsfAiilVhYZemI8UKivwnriI/6YJ3n85db7jn/jxMkwCcyuLDUmvxdTwpWN0i51zZxnSdA8NY5Uvipi4j1SGg9F6oqSqJU81ZnyZObdTmp9pYI+47zXYgVARyKhyup4gfMoH9hmRlJGlyo6CTgTAr62wsICvriTGoSrNsn/1onSQoBxFUoEK9mxM9LqRUEhY5EzaUrKy6A+nttyO+fnweexzRwvSv/9/05Nno0mrmVSTNyK+v/Y55VH3VjReBp+VRuT3arcNFwBbHkb+3bwc9s4jVkxT4SmOQYQFQiyUAYnTd5M/g3mFU40lwLo2PsPj9hEQL1oVr91RKjjKIoqgV+Ve48v/FyXUobFppWH70ovZGAYEG3G5o6hzAb7e8mf8xp5y1QVNbXvNslzdteUAl5xOEtBBTMaBAO34vdFaDAQ1mzgthcyssWWoieiuQPgsHdYAp6cMowAOcMIhA7s4jfOMGb8nG8C543CkjcTXPepul1whbRLfKp2/NEu+VX5E0h6G8Ndw12CfIdIGgdFtFnUmJJBhmb3IH6bIZJUH4A6lgoqHSl6LSWdB0ujU85G7JjQt882gVXFBjPrzXRw2WpuNLaQGMVWXHzCRr4qflMTbMaz9G7s1fvc6W3qRSae1iQQe6QiTupb9DKzuF9Zq0LvN2j/MoFzrUU5qfs0taiZP4uxVpQK9lb+2saeRedrMi2iSqoe/7rxXjGYxDWGbK+r+o6pUtZSvqrY0D3j+VxYFOnJaVTSAGU3/L4qfOXQAjFLP+f1fXuyPtPlAp+KeF61cRNCnr5iIn18f6DIOu3vXGHfTmOt359unCjX3tf5H08WRkq89AdGClEaN3PpTH3W/RzIMyoRVkEIvk2ktKetehQSozguCMF41myTsg+WRncZW67GzKd8aouQTIKzpN7TOELR7/vkOmqybF3nXEu6i5HhpNBz/xUD2A4BePnTLjyZfzeLG2h4zeyT0H6Ne3G0vmYQ5zxzHRK3DcVXaPcC5zn6atNUH5WSNHzE5ZZupjpbK4rz07vG5oG5iOVzK/I+KE1idHcV4JvjFiP/Cf/Z6W0ulKivUVfTgGTsPV2x+gPeiwclXSbtPfoi3TIkaXm9UVhI6ILzgXqAq77W18psB6OsX1hKIJsRQuIUmsZmRYY8+VmKUfD+MQtWKZf+vMl9IfTktFrYdJSPWezKozBtDSsDSCq0+8czESDw5ASMLnXwEa65QUKtuK1GszAzXSPVq7BifcsSMcwB9rp0QX0bsTpcYin+eQQJgW6rNHcj/NFx7p9P6vm1XiGMNo/tbdUBrmgvB5uZn/Mvu1jK3vHWt2Vo8clpFXzmm1vnnZg4vNtnz1iLTXKRvT2rUMa4Q5VLfJvAsYXQHvWPhPk3S/DEX8NnsnbpaHRzCOmEh1V1SfQWH3solXea4DrLfCNXiRgxJsGQxZBk53II5czLqKoPsdw3qs0IrI7zy1g63cG8Guo1J2A6ohFJ6WAriGwFKQ2G2PTbnGLWsK/BcXVvlXBwCwNearxwsqbbuS2NhhTVgbS3FyNWLMiAwOrpbCTasml8tsWkAH6fBMM/t+1BymHgoFh7MnV2roXrLIcnWfsjPQbRIGkxsj3as69fJiv1csHC3V6bOln67G60kH0yZqwGt5PRyV7Xvbi2ryMezyQ4cIwenH6nHSJt3vuxIYiKSU/DJyEZdsoLB4LPkAh2sEOqkFVoq+DV4YcpB0o4cUUfDZYpKtWAiCFl59fUgqdSVv4w8LoFbJoJth2MUzru3buOxG5OLRBZtu+Ery7O+X9WXsBtl5NCcD5YMvliAyjRUYql7RPYSFXHnF+0xt5RX+t4yKX3tFNdz/NXuV57ZGnddi/hAKE4lIgS8ESCacYgKjc8CoMMXjcA6hd20YXg6uOl+NZzHCXUCiJz9qDs0COHUpMH1Hor8G8giM37VPUXYBnQ59Kk28twCk/5Oo19v60JMFToLb+jQ5TwalL1SfgieUnKfr95i2HgaxviccYE28X7mKTpaQUMp52drBS/qPZsbpjN7RxU3lTfs+Z2P4Zo600A/7+56cInKiP8hGFM3legHss4OCfneOyN31J6Vy6yvDEA7gKkRqpFms+IKXd9GuTGihbKam8PxSH9X0b2heYfiquwUyUCUm/iyWEFiQ5ZKRIKkAMy3PlElI852LtXa8YPBeyBPgSQzCQ8WTlWiNtXhFu0+e8Uyl17N1ElaRuQT6R/kCRPeNHgxQTpkTxPQQ2VDLUCECYBGESwJL21bzqWIncyjVeCJzJ2Q4DKCuUazA7G0zJQlipo8/DwWITLqhY7gMY8ICUCyIyCDmBVTGEydJgxwmIzGA4qsrgljxgQXMbL5BI+ctnlyKWqhQ39yIYEc7LHpKKHWsa+SoEgA+wjckj7Qj9kYY2A2pUT7OVDIOfmnKsZ5uOsbajXty4v/aM/IXm6PpNZn3WOe1Yd+dwwh6SIQ1pOhlbfcThekppfWE2Rh6mzdM1Ylz6/0h98W4pA0VEIoYM1ssvy9rRwEyObFUrXZeUzojgdwpHzu8GPa/WpmY2nN43c2NRPihdfcwpEn8zKOa4CG22E0kyju+7XfBkmU2CRyRxREkM339rbdcFmNAEUkV/kG3R8/ytrGtztK1ic0wuf3z50JWNIEGRQI6UpQqMWfO9TGstXaSSOFPIJdNjCcPfnVY5es34rPfxq2KhCu8ecMFDnFzB9fNKPk6r6mT4vokYYRcACg7gCiMSNhcRbwRiFj6CCIIYU4E34p0krrBvBRXgBvRH65NX6ptpllJJOBpXG612Lo7XKKH0A9UuLF5BpfjHNL1gUQp859oFm3TsagiQbO6q1RH/DF3wq0NX3f73k15vTWYlgVfXiNjA0zphpb1t/Ic3i3PYYw3Vg8oNPUy2x6cxC/oWwK3J1Y3ZLDfl0fYe70r0KFQ6KxVvQlni2BuTiE8uWopB933M5AMdlT7pQdg2dNA3ucDWbXOkERlB2ZxdQmyY5H9VHdQqZ190WslMj+s22gvLph+txLl9CvYCaQQl7X/EXImifbxmF/05NMuYzYK0RAHL17kRWwMeEq1jfNqLNR05nqQY7uSoM18+RJ69iplenO4r2LxfqXQLN71yy+Jdm2q0INw3ODrmWZWA0rJ6EcXYT+jyluiRVQ0/ZVmOR3tKFLZGqJgU8FVWR2YS81DTG+erMUFUi8A/P3vRDu9q0DVlf1VrlJpjAMMMBPzwMIXOujtGQZvQ0O71+jN8pNzjTmhX9VHD1vjTPOMfJJ2yDiIrQ1d1qwUz82qcMfTidAgjS/KOytJuekRo38XQg+9lDVfgLdbCCSOf2BQB6vbs//WmZXiDow48ZTQqvMncdC5lXT7cKo05j7siKAVj816HXCN5MQhaoIwLh2cjw9BiVJ88ukp9RikWhkec+HHah6oMNqSyYWeq3qWatIlkOoPNICBJ/kVtVjXfNOSQImvkD9JJjp8dxhgah/7KnB97jkWGxs/cg8y05XMrGV86zTyMWmOSsg338aMn477HTebNqymj0jqtcfB07Qr/wYoiA33LC3ODyNNQdOF7kBB3VsKCMIINwfJaqFdltDWz9HrV/bnBWwmdNIpnowgPFJzcEQHlkuL41SureYCPqRsITko118IOlneeN8Cm4prpAA9gwGNwayQYHvMjMREEVksf/nCMH6wbDFIVxCDK5k4oBXFhu72C4qn93VqA6beS8u+5tJR448FjmpoOXRb2sSv4t+J+oc0JoA0GYK1kLfusI3Z2pq0dSt/oX77Eurz4htNoDUXzwgzmhWpEs5PRnVNG1mVezZw1zgTwLT3F0W9vJava9OhIF6wyrFiCJjglwu3gmGYdEHW8NKTQtqpIH17buQ2/7ncxzWdvzywu1XPRxxhc0nmo7Z+ia0GLWSmoVeZro9/OBeZDhv1SvGXbM64Fko68B4gFJKTZgJDTnTwFBbOsz8dqhgpR0yp/A0WbOZBNC9oYvIHPdL6lInwQ6FTK2vW1gUdwsFmtKOlUQcj18Ysd+HbFOE8R90+MOl6oZ9voj1zDTXlmfP/GAUt/zvbaK0o13F0af9y3N1zj/N7HE2yJUvuuYxPg2L+7MDkPuHkoOLVbYQwLjZ0Dg/3m6ts3fa5rhhW7MsRTTBaxYmFXgG5iQNSDll/ovoIcz6rF4W0h8UQ9ntaUhahsVLI4W2blx3oZTqHghsfOIHzdkEhMP/bQmJIJ/NkjSDH/JMxoX3m3fDtdMor4IPH0Z/2x+Tz2TZZnopIOsYNae+GYjNIp4euD847U0w4VDilJO9PmweoYHVj4YQhH7jV0kMHBgoB+Aok/63I8FFH4r+GSvooBHvtL5tV5HhSzCfUBINs9+/o3OxSB+L+uDAF3KK2pIMPthUUYbPd1oivQVYaNxLmirS7EtOlplP9hNsL+N07oSXZL6DbiiUYowUlAEok8KsIOuK1qgsRpT0uw498rmA9LpyPrXmskEylDk/Pp4PO+pkXIluwwUiTfC8BoSmXsSW+Kjx2gDah3FEU2XYvs9XEFw3qAxTkq4N799q68G2P6oENqfc3OGlkGwptDIBIUVrwsP+jO5hcmHnW9219MxHbv3VZe707TH5AluZJimGRuCE/JpX1Kl2l6ji2h6YN/i6Jau+fDTGVs7MIh5PZE17x92Vkmpw+HmZNuWfD57ULcJlRzNm4jz/j/oT+B6ASFGlWKzT3Z0qkFKWd/wF7UD7DDm+dMcLRL8QAruNUNwW/5/bGaResrF2sb7jZx4tFiuWUkPE+TXJDgK8g7EDvv0ekrs92NzStacER79ZyOLl5knTLTnBLrzkDQNWKdY9nIMpZIciJeUmYV9m73WQ7lmQ7uLv0h72LJNPEMHA1WsH6+s4asVJ1RfcTpm3QY9Xao41weUO9RoAOdBWgKgBIIa+HK9UssRUy4x7ldjMef+piy51wOXdm6Kqmxy09u71I/lXrrNM1pOd1iFZ+BtqzgJuiWNABfAYDtl4MyOMt9KIkWMpuJLP0Kzk5QzuBtVswsC4R3rFpeydggvQte2G8N2NKiOEoMf168dRMLRJ+4xOHa5B52afIfC7E8fy7GNLFwghxwRAnsANabiG1f1ngQuuf+NhXxirBvAgWmxPo1QRYRWHleuo083MV+0qQDBP/hytI6ts+1UQOJI27H5+3tx8L4OztWhA8xpuqCW7pPJ76n7L3qIWqN5+IduVg4h5umliHZuXx9GVJZQ9SrxSDB0KHrBfcx26h42iMIgxyeeGXKNVZjUGrkjqF9RxlPjUL/pdu07aGiGAQWXfDcL0WqhdajbULQFxvfDMnAFYoEQoBut33L9Wv9tW3DSuC4oKPtQwE2XyxlPTNyr3AvenK44LtUFy+PSX6D8l2UDekwTVgPxUnyGgLaVNUcqhDj0AdXcQxQ/bDfBKKNOpm7yH577WVv9/48vrK4NTlhMabuvgPi4zArovXiD9NxNZS8WdmcHEu2I9BGWUfJK8FvK/xZwNpTVdcXgufzRHbkEStV9pBLuoH4TewOTYPQsKlX2J8o70z6V+WIOsw6GRKJgR5AVyx4+TdWJvhQ3fj16Us3O7akefE+gQEZHTkRNN4n2lMtBTh8rkZ/61nYtHWeBn5iVkdRJtTiQx0jknXHhHjOoDhdB8tihUWpFMDH3G1toU6BE5NzJCR476qc0cRLHUYkb4ZmprW17E+ZbH0qZ3qheSnTCEdkDHeN0qGmVNOxedefK3N63ow2gfW5Z48xeknuwPzn/WRp6FmsirzZUcTYP2Ov1sp6Ns5D7P5vol/B8RSeMi74hQwL4JVrArt9GnX/sprtpjRaT3mmR9+/aXhjWYcuuLjRFDAKeQm2w7+4+Bn7U7qc5A4IcdrAsYqCYwJxyHbSs+BlcT/gaQAc9DBLyAhuE4LrGVPZEV7+eOgYO6LUH7J/DVAsk9JU2mZLQBI2cMc/e/5Nk9qel2yunoLN09mevUMeV57EooP+VkznsUcPHyR4tqpLaABqwhRn0bJ0rF+KvzGdLbXNK+nwzTM/1bOFAI5V7/tR+qr9+hzd1CcacaaUvnwJ1xoiABIxpEIwGrceooD1ZxwyMGNtnZHqmMlURF+aBLevrcxesauau3o26BDwAdzvycq3crKZ9cC1RVVdbDy5H/jvv0F3Rta0El37xQOHbPcxzAa00HVlTmufWhAyvw66DOByWfHjqT2XBc745+qfGxNeijnC7OcRx0i2TyyB3Sc5T7a9x0xgovLdPITGJiCDnPL5C5+m/14L8EhXz64eAp6MEPqsTttcomx1VdERGx8DA7vSO5jUkbddcywQQXsNhXEk3xzKu7T8ovkbIQ7RVWuiFFTeUoGDJT/SowZMu765Gc3n7Th92pj+1oefj4lwC39r/Z98JPOii/y4zyF1zgw5EsOB7cTse88M6+JpeVxGhURKXuZ1NNL5XK3SngF9WkNzzHFTuPCU4Fbq4Jxz6/qgGLksIFcAXGdAhRVh8aIjhx2aAJKU2onOvNdtjK6+8ahokvBVPlxo2lH78k+QXCFeNOcDDW/67PT1VeH1HU++cuKhHRTsy+X3iTPhPUm34lWqszF+Kr98WnRd6wTn1ovGJOiW4YFZnSJ9eVGDWSDM8dGAUiMBn7gc1lGHHr/lFts6jviiLMaEfYHkQdtkePLGlVmfiyJL7jRMdjy/2BFCHQ6hjwBtfum86t1hOStJm6x8cp5ZQA5fPnHOiabIXPq1LzElQ2mO2WVpU3WLTQb892SaAqurjdYPKgjrIg9FKAOGJP2ETx9Ox7fAkwOnnBKi/SnHDR7J4pmZt66j5RqyoWPIPeWT5m5cDh1FcHLn5uETQX3h13rOYLiqXzNSi6SuqQ8vXG3uBaE8yCVlxwVBIH7IycSN2RB7ed/8e5kksjSIKzGcMPggguhu4kj0IjCI36J5Lo4ILI7zUZ2mUVMrmpBypNfHWUyhJystKs/qeeM6uDRkQpxREs56Xo1YKVbf6YES8rDdvlL0s4M6mP5TySADrsLlL7GS2ljJ8kJdOpj3v98wmBihhqwIF1+a0L++QZvaGURSb01sbaDYESB3vnnG2XtvWR73CN41gaapXez9a1mB41I2o6+m6D9+B1gOykDM0pn3Nd93KU10KQadz+ox7AX8OLua3M4xfmsC+vJI5uE8zOP9+HtVy6qamLXRmD0x/AMmtN1seo9Nm2zTdfbh4z54SjKWMXMpYe/czg5F0vzyfpW3gZBWpdQYGDaPzBREAgZMP+EAQfPlxz0zxQDT0dAgAhH/CgQP/yfdyVJrh2RWwxNL3+1rUIWZi4AguJNTGb2XEcaE8kNeNqISer/VTYPn4hh45Z9wNJoaHJ1J9wk0ht8nK8jNnyp6nxKEPRFoqFNzzQOYmQx0AgMr0WBYbbuo7dX2IGYqvDMfwJdX5NSSAQloDmnPiMUnba7lAhNPVbfWbZPrl7LGl0J0OEcjsmAnXqGl4broH6Dm06hkLarMvcsJbUg0KX1POTNupQh2hh0wg6RtpgjbRmQKh5tdd3Dw5fV1UDQU/HR4JASPzQ497kRnQfkJe7iqSdJWFUWvPmb4mhap9SP9Jk1UHWiB1VZ7Pn/PqDxP1ooMShEnAKBM31mNM0cYt2WFpvEVvctZGFTwaf6dYM7YWH0o0QIDcmE4BZ7tnr6l0RVwPspqF8hePfY9rkaxos/C32/S9lkbbUheE1sGGrymSVyhgJWcSYdpvPtum+yrknWVEgERTx3qPN1dJtOMzIRBzBd7cZwUcVO6NMzU26Pwz54OLWiHcKSnVBD21Hs95keymWq8e+JpampaKtrJaHOiVaB1YgjENS1R3BLslbtCJYmzoU1W8stDa8jUEhgYKTftwxrT3TUTpblR2rdeeKeLFigw4Se/NNDVVIMczfQ9DXCUDb7XGbag0rEzgmGitriszPjzfaLU2Az/DHYv50OyzNifGrXCtu9rNtSqGdyrOvKIdVzOT4iEKSTYg1LEFF52F3zmfTOPv25Tk/lC7l82ovNLClkLBPM19qhZkPqmuz+iWuqu/0A/QbayQxf5XKf+QnIv0wD1xNGREGfTNSAnYoiZXSfvK0pPno9BRP/f0YIWMfxh3MvxG3QY3Bc+uEz5IlGxqLGpDaOuvdhmSufHIAagv4bQSyCAMv5nOcBwBl8kAXsMiAcTjgmMmA5Yj6D0i5YSzteWY2+GGQmdQvY5v/ongJRSvfli0srG3qiUlOlceyoljmuwHh/WoL/6246R33GJ7ox8ZFmcmd0pcce56utLxExRt10cmNg1z0GFzZh79y6Dnfnc9XJqqetcq+8kvzpGb6P1Birb6j8bPTOvOdk9VvTf7GezYv1sC8Yyw24nIdQ7Lp9bNnrAhpVjiYmkkDV0UmSHFoGvgltJV4qIjSIiMYx/vxQVxywXkHJAgb+0ZNgTgYo4YF1lsjWD7trcA6HPTYaoruTPJs2VyugzH5meCmHxspyrmFUVZAIcEFvkjJvtA8sxDjS3TuG1zwxiSAUn7iHBGagWO9SAy7DYuldiQ0RTFmcsY1+qmDs4fHd7l9KOUcYWMp/ursM04V/gehvrPM9L9GPBPzMm4xQkih/IvjlPbmmyp7EIH5upNCi9m2fGRszvDAq4vke6AjiCpJE3y7azx96hQKcjFGeDCZvaeF4iB9mPH+axyRpq9rr0RU7q0Rai54pxD0RzlpXTtBsQDpaqQ8Fpa9vSOuVQ2tiFj8/Si8L18nk9efGi5fP/Gy/hRy6zqq+DjmUy4xMvR+AsQ7YFII3UsxkedLAfj8mrzSJqOv1eksZ1qsAl7uxBhfGUmXjPVPPd2OVwZ482jbHM1tNQ8lU9faL8W7v3/59t4uwE5WJfRq+rG4qJ32puLgXmDZMx07C99h5vFEcc3rsXZW95yCyU7n9msDoGqot2p4VKPDGBYIqhsxc92sPUqqKDnoCHv598e1CF8PU3TZhH9VPpaQ9qMATWy7neEGpyO11Sg80kys3EaGAVyvFXDCjykeICJ4SUE3IuESZOp1zfJKxW+LDrE8tk5asghrF9mNikPZV5L1rcKyuwwBBmuyNxRBKPN1Ie/5TIZtopwMWan76dWi8Pv3wmm0aXGYl0b4Ubpe2jf9UutEh7UD/qjxshB9a8MOLbvDmo+KzVYquc2iTLAblKkWJMrMx8sRadUOfJ52C1scXleI9y5TEaF8HsZuQH7JxpKnnA7lF/VseYCTrj9HwukPUz0Oh/dLxR0jFBBtfQ+CIbbk3FbLYAk6A03KM943LbZkQ4JfKeNrY71+hBikpxTWA535LMBUmuSxpcsU5gvhi/Hzive5sWgfuvNtsFAhVjq3RKxs1495X90WmeCzx8CZ+5CMpkcMoNWH6rWZaXMPAaGrObePIZKe3IoW9N4ffX59U26YeuTeG4uxoM3NY1CI+C2t+t+2uY2d9O1NBa7nw0mr+jpvqizSpaE0XePI+CyKyiTw78dKGFKxiNJPYygZq2a1LiofmXv1ieXDdx09L6z1RZC/tm4hA4b3AgbVkghAYLQUUerHjQa/cRU2SdHRK1r7ZVgQxoaDSyO1RQRD88Fa5M7FD3o0G9gNqQCINKsO+bjCfsjotE37dzfUN3vDY56PScju6VRpr0/d2t6qS/VZL4Z4GPgBJYcUV/x1w6wUWqNP8PK2zqV1/flDO4YPluNjLm03SBNtMfmvnRhzWzqdEcCDWM63+JM235VmshEgg0GwNq/3Es2h5um1zWQeC7YQINDetJZjKpEpLUDwpZ1TQKTrJ5YqN0wdwgsxth5mJJa3PatogM6a8Wfel8n9YDtMhaJmx1RlT3BEtLJqSRJHcydYUdPAZ7DIBmw9XSWVei9ia0+Ccm8xrh1fZRDpFvyGihE3TNU7tZ1xvVxxui1jzcioEnZUCgnXBFopEqUDWI6pWdxymtN9/TVdwgzncuUz0lG0OHHtsDpiWpW77QiT1rJpPFBKH9ICDwNsLRUduXqlXM6QfAi1gesqLs9vOnc47o8azxcdcFOt0394Jf9lEjlI7L8zTXTtdUqWWiaq+E2Hik7fUW1M/1mP370wqESnUeBKu/AJJGa07O3hFzzMFV7Lft+LG1OItjzN+uoqajTFW06/t8WIKBO7Ob/97Ru/HAb4EQZwsshgLCqvbiG3AhKH01PEWOviPVA/IiTB8zur9GLhn32QrYTY8ocB9CugXImVMpPzUkH7TTL8mfmFQbhuKysIyXirwh9lRpX4mp4Z9QQbSMba0dkT9MuMnx6qxrsOkhHQIH4nDcH6F8j2VdGQp3KeLqgaK6K9zGWuiXccMP95NTjoz9eUXxw5s3TNvucqPmejD+TG/+ZzWuA+dqCtwRgm/FPvx2PtdU4tPPzJM7I2nfoq+Ve6uqMVrxssZacP5JPx8iFAWCAFGPJ3rstvsbx3G/ffVQGWBuwBHIb61nlPsEvli7bfwv6OQ5oa7SSU2HFN+slqPOqSUV7ZoJ58Rdi6qzSH8j312fBnByzo3fAVbpr7H16VabDg1I4ecYEl44TtFlaaQRCxX0JHF9tOJ6iW8P7Y/42yQ6MMyjlGsKTZQcwgO/0+yppvLeY/7qHcop1UarOzA2MqfWWqfhWwb5ka0MNu4EPYtoVZh8Vb15Pxjb+wSSReZscCTF+LRDbcb7CzlEkBKo2/HMAH6/GVB/XAgGPUl228OgRAT/cn0gOC+e6XP0A0mI+Bf4L+McXKbj1fWBff6Fp4a3K1p7Fv/V489DPrsqLKhsUBvC6qBWQAzYf4UmQVkvAuQ2hGbVxaeVmXGgCdZEYrJQ4VwwMEMFdhYaLSAtOuoi+SrIp5pXuDTLQZkmCICWMSLkC3udvHWzzyZJhKKGk0mMn9em/K4OESrO+CMq/azWr68DgVDH2h1+BSP9ub4IKfSdNbX+9wjPHwduXLg91QGB8T+XrlynH8BZXW6sYIS6UVe2bvLQSLjGs9dgi7zGUbeECDM5pjb5LgUXo3/GBfumArXzN0BDFLWyvGYmSjyDlboVyTzl5kKapIvtuaS2Gq641+3Ql4euz45grRc90chPKdD/U+pP6Dv9L0ywYfq6h6iy4AKejfESnO9D0GqQbktZn/Y/tAR0/vrI4N2clx/iPAS4/xlyTT5izW5fM8nUC3uRVg/78C7KCJrnoGMeoj8vDQlRFfHH6MfQlPhxDdOPfTpLqoZDDfJ8xVfChVlFb1jw/fFggEV6stayl3InGCa6RLGPiZOyz0Hu7420wLGTV/dN754K1IsReLAVGZ0Neua5O96S48Mk6jfwH5vZwRINvAWS8cyIQJ50VUMG7gUIOeTgItvVoMic9U2yzWgGgq7ebp+4CTNKwA245QmtJuWNFbK63lD/GuFtbs6NHcc3KeN9G0VY3oq3znerlmVUHaofaffFAewYP9E1o/TlLPIQmiX+B42FoEb1PFqarABm9XYwwYiPykETzGE0D9glJ9P6NNL0GWRvvK/rZK5fdx8Tvz+JUvqxBDSwgfmuI+zc4j2PqpjFWTcvrAd2ZYTvWZafJ7AktY5sevGJ35UDvJROh0o7I4Xsz/pxRIYPRIB319kir8u7/b5zdNZ0eGcoPKb74+iT8BuzizqBkw8dlu9KPxEG7xOpBEJNjG/9ofBl/KaF2grqF13Z3kMGyfgd1doZuELQYvxgWTrh5i4uLfQ+1viKDP2VLp0iGB3F4y046va+RdUnakQwASB9bnx0hLphq0ipuBfhBsPF1mWxPZaPVXsZ7/ip1AnRecMVrUmeiy3daKKZK4u3XIXMzyyPRRJLiyoTyElKZ9oaoxdTGxRT29cJgvX/ECd9xDJ+GvMkBO3U6qae2i6OLDdiDMpb2f0bkncmVWaLp4438vzI2GNuxJLihmojzjsZNF5mSCBKCQyDTJ9Je9kxoKaVA0K0IaBQaLSodizhex4NJHmAudPCb/bhc8BaV+vA0eFQFvuc3TKmVRjrvkjSdu6mitIby7+BYZEmTg7gc3i9EgJRla1miOezxzrS4Opo7HxOHKyGdkMb1nMH1TOihILIXik7c2bG2QTTh4TK2lKVIIittNzVF5EJCE1FFDc1M6K24hnk0nx39PTd9L+5bizmzWqP38JOQklGo+b9lscQUMHycw1Y7goJLsrA00Jh2kOBH1L5zZt/a48bURopT1qvYqzIhw+wkao1WsAz1gsQGFOM3goCUvPxcCTX4+KFXmkZ2aqXuxC/4JFLsCm+1OL5ClzvrEkCMFqzU/wCunwyCF8SEtZ0dYXreCvokRBTQ3m6lB9iAo0AQ/6bt0EJ+WseZZ/P8TzdddjidBTR7Pav4/Odpo4G2/Ng3yBEhVKsQclyYyf5x17XD/S1qBviNL+DzGKxi6h1D3HRXvKW6JS8Aa+O3fHvETvKT4lh5byk1Q3FLbO8GFdnnhyMU3Ma8Nm2ch+jnXkxBgsHBsWK9S/cCtadFw7S+ZYDHgFcVBoFg2pGjIBRGvGLX3H1uPCI7wG7f/JOskRtt6sJGEBGtZHHxMozd0QCo6c/1+v3u+dP1mO2ZQCuYu7aaRMCPCKx2wY1LlwOkgZnU0rVdpvaUGA7Prsv2Uf2mcT08++aXP3jyNMcOrlL3z8xcsiEQ0pSdE8jrRYaDfJv5KJ2euXmDKs6j/CPn5t8+G439C4BXFnSHT/0ROlJfIAQwBixC437Ua3c33m0R9FrdqwSw+JJGy12VGh29jGMXGouI088X0/SFA8oc328vfdErNpt/xnpB4sqHKfdhFRCoJKdY55zWGVMqJ/jRXOZiaxqpNcyr+OKS7VHf8D3B34pd4n5ZT621EZUBX2oXodHqM3tmD/8PrDijjdlfmtYv+/Ts2TWoF+AxCZRiLMYkpvz8uUHjI3PW6jT1qA8cSswrC74mGES3k0T9v5+q84BjION/BhLkNbBtgsOcKnX7/De6XLsFT4aizeVes3D4WNotq3bModyFUgHBvwmrsvTZqwqydEIpodKik0TDroYOKxxTSHLZzjlEVerPmrvxSjtbml+R6xhPIY69dHor9/QvPwrGYCrnPTlg0WXVkak8YDWJ/UfW3C+A9V0C2qb+QibqxCQAr8Hk5WGpBHhu5GHzaj5N6vSjmP4++o5/Rwr52OQ+uNfuhwg013amg1ouJAt6LHDFsnhnMEiMo0u1o3SJEOr0qItSV0v0uv610Cr2t7oxwOM64wXbqch58XSE553Xj1HDNN73GHZA8UanGXC2ZHLUQipYXIQ7rTPRgL986b6UTp6Uh+lfH/Eev1S5V/wRYJsEUGFAggZRUnxwT/2P7WkCYvdbXYLe/WCz6+wg+/v4HPaRwlQMzYAr/X7rnEP50bbPfN2qLfTLXWS6nexzcwK6x9oxaKwMB3/VZjTcV4arLSIc9hWH40txdgUqmwA/plvMvN1c9oIATHPMCW34idDb3imzM8xvZEeMqCGqfL8R+r8O/jk1TATHcIcy4icKfe9Nt9sig6KJa5NW7lMHteCVQ6uAU2dceX7OqgHu4McWH8PpDlukVZEI/rAmBHNEFJdVLDHUn8+mqVI4CKRHtYNfmmu8kYpdVlexqllGKTh9e29s14+mOBqShoRO9W4wIBUQ1f8WlD7SU7ag1EWJLUx/E8HGHsfTu3/1HpLDjYSasy2e3fIAso0r+Gw2LxAY2BLlia561VUVr0wRunfwJUH+4fconKa7rfTg4P+EUkb/PwHp5tmVhFJaPAsF79OP+lOMUY7H18LposgTW5ojYdDPFLvgo/3/b9JqirPSNhMPwgslNcVFW5JDZhXADMhpomHsoQ39Uj0H8eSEU7P8VbXpJYmi5XkbGhf6lEjd7ehoMoUo+dteG5jirKZv9oExEVDMpCQQzOhpf/e+AO4v0iZT3vM7idW5EoRYKMyzydPpreZcW8fmr4qnV7LBcEDm9Vc6CSa7XVGX5STeNVk1HE3OmFhepEQTnxanAiXIQVjRb+ayZA1KvVrenaSCrpjK/t0AhKoAn5IzDMJSpDGFEIc7KRO9LK006D3v0ag6HB9KvLmExiVG271e4R8dBGo04s+YgJWOciTyz0cTwp2Ew1W7nhfCsviPoX4hXciqoUGQRML77eer4ric+z603xSY1a6V2SVdCBDdfjDE6CVH1BfM+5Qnhg2hhNQF9ZQ8EhjBmEARfGfepdEbf8P6ecLfFRt8r8bjjneh/N7l6Tmat2i7FnrMzK1E2DG2T74O9IacPhsPr0edq1lzk2dg6UxmOKemozCIMIbf/qVP53i1v3Mm23u7dYvh0Xx+L93TKBaE59PLDzxvyG/T4EcBxBttrTBdFTnreLnwr8YKYWtOwS/zU/jclpYzNHqeQwL/3guzPO+EyH3lNO78CYyUG981Kl+PFPtxK73t1TTQcETtRfoqyYuiJOCGdIywP+K91T8Fwo1QTo3N/XX9druGHe7eXOCBqxHk8WIJuR4ydtcWcBVtHVGHf5B2NqRbGp6RBHuvWb8RhbHjjzX3QM2tXXq++hXXIAmrIBetlu9Fl5HQxXWz/M1Bbk3JvmC9aMUnR4bcKMMrmnWranNkeiLs9y+4OsbOsEzuxgTrB18DbFt+h3obwY7Qa6YmX+2huUzNAH3j3jhrGU98Pt+uRQ5tqMHeYNS3eKRZ1MlpL0Wmz8Vgl7PCLBK1WMRAAtMKSONXM+D1s0BOJQqQtD8emS0KoP/SP0btnsxzxaNDMDUZjQM7AIam08Ew0t45c+WDRWTL3M2AJ/a8JBHLb1V9kHnZhmjPUHwI46J/k8CeHabGCNZvl9CIhdQMEUTE3L5Ev3uOzg1k/lFCAGK8dd4IadoJ7HY0HTydXVATMnoz9teMJkIRFWo+aw6p2Lyg+ljme0bbbUV60Veik2N5neBy7Mw5jnTWRgoBS34TCj1GezLyQHQ5GgYByzv3ihEZ681araM2SRx0UxJmgYJyEZT/fgYFjrhIUKnQ9aTEYvt6AwRnC0qAE9DgoonpYCV7qIu/cVq0HKvYOqOZzx6H9/j40bHMxSabJMYYZ5kiFt+/QTCUD/88YXXNzKZTmsFg9f1odRNdOru/88mmgtbDqfZPrxxGUzBWdUBNi1k//VJUEkHgrIJlw3xoq/6I3Pfx2ir/0ksmS85Qg64ziLXMbWrAT3FRPIyBuQZSYjhlBT8Sww5GYQg33I5BNVROw/yJhGUqYGCGrZltYWA85OzjitZkQU9p89Zw8oo/bTNxansEaWbrGGSAscjDkbSkQU8YMz7XjTqUcDDB7dgc7er805QBBTYaDzkRUGbBGkFFZPBKtQte178r78dl9NhKTYdt6+bNhiLLybCaG4MnlnPoPHSTSBvDGAqZzjllLofUWl46lMgTSu/kBQi2HQ+pjE22VLtCwNkOq/MbOmWumAggrZL9P0lV5kVo6JYauh4EZfajuH9lBffaDm2MxrxW+cK3bvHlbGPAaqtb8sQKLmge9kScre8xRm+aM+mcw2Z1je0JUS6DdYZl5LxkdWikp0E/RZCWM4TnJhpkaYyH4kOerL810b3FGJO5dJTvKj+aCS5KogrmcDhPDx0nfvHinjCO7lAvbN6gfvDIula/soZJeeeOhWyjOG8ZhuK6qje3K2MqXSfP3H1g5XO2ERyXqjzLgWNt2Dq67Y4No8VUtumtN5ksIfMH3s1IXdzUxDfQu+ysuW0wDbTogQ1l02hZq1/6uyHTbgu3fV1iBc0R+684z4KZu3K7JohajXFap5RenefbopI3nLIwBclXM5WNX3+uh+MOuuBSuVkaGVfnP8jqZVEE8vljdkXNl4qscFv0jJuO+Tk1KIdSgl8W0QrII17Ugc/9a+Yp69CU+cmFn7097QqiRqj0Hjw+lOAOjS+VQ04OdNwg7oiAghFpyUnbQQg6h8rInBZA4dYSMfzN4RnMZbifNizqPRd7owTgMUfE+/JjdLws2rhMRyWxwkNgBgGzsYwP+aZ7GvxGkR46ukpFq/7xL2X8GoqpU04DbpdXtC+IfFk3y5MeqjYug8r8yyvp/tb3yz0F+QjtJFDqtu3Jnn/6W57X6a83kh6g4D6ypKd6fF8HuIYXNmdS7lO9VseYQ/jrk7itS/ynwU30E7c0jK1RzTN786oWYW9suRSQ3C6y57DhdbsvDmGu6OD7VZMshvB2RkCZiiPyYmk2IaAt4WUt+3KvjiiOSjs7y7kBzDCBH47jj3BRA31sn0lt5Dogb6KC3bXBm8JcHYv7RYRxoCNipY68+KF2V40eBdn14Tir69Udb9Ob5n7lV8qgJ8lEuFamI/qXxpN4059QYjbqJMZVU4NiwKT/EG68ERxlKPQVJycI8Zn0Mk8791l5YcQ3PrjrIpdnbUVqfmwjSV3qUKYVwXmumFs42N6IpBMyW9ga604mNnlP9XB6GF/OF7uDQ4t8lCIKvubxF6uA14xK9zK2Um4emLBbl3xdpNygpCbS+GB1s36yMrLIJiViAtOPtCz/6lHLRR5oUPKyy5Tc7XWLwrPWwrXy1vNT75w6T7aTItmSbHS3YBVr3XaOoWHiBdiba86ui7FVbYqywi79o1jBu4Ooqtyp0stOImkeLjgYcUFBoQAFjIh/k+lXxPV1xtno23qlBpWTfyuuQUsNb9jysSpdIjopsA4Q3QQcO4vIVi4R0BmfXyiSo7mM6ZGeAIYF3vIfXqfrEdfeLE3wlFqCWafX6mx3MieL4nuqchHHUoILMglXUeTeUAsdfILqF0Rabms1Z6q6mcp7hsBEZKk0jzM7gf3LNqkN3WfW8ehFjJm/7CtJBOs6BBMFhbkrNNdPPzIbl1aM2gf5UT/dyr05Zl/c0dpsLn/hPNkzbbv57b5MxWkKPPs8ozmwjcgfkSbOcMAb6Hvh26Vj3Woq/8cLOlnk0+4uKu1BOYpWUtSEh9o+1mz1MepjY5RPI34TgCl+27AqdAgJeMrRkp4SEzCyQyfjUWV8JcYNCW6G39t1QvVtbHLQVZnLrRMsePqtG8eP0cQ36ZJzYER3P65WqoVBelcaLWbM47FREFoWYTe823r8QnIo04yxmyOBjjcajv293p6MozJOC3BzA+NvLeNGGRIrsu6P/gUPawbR8xMmBQSlPAYEyCTy5x/34MbA3ZH6Y0Vys8ZQShcscMjUpy7e4/9CIFzNkmeUsK24rex7THkaMKQgL/gsc2wjBtfXIAJxdSfD7SNw+sPmwgXOsLb24IAfm+bqLNB/rLlbGm6ZJ0EvdXQuqqdmL09oOL+2V9o61TCpG6FConLik6FVHSMKMV5KSXthcDl3+ZlJbZkoz8l8BA2RRglH2z0UyieSj9lDH1/JianKngNiN5av9HQRB9ztup1bRHh4zgRJhZFtxVLrC2S6hpNdh8fp0uyY6EBAjYZkZ4kqwqwydIUSQ3P0dA+NVdnoy4OISv/EKd890vRsmrmCZf7LA+/Txu76vryEokeDi8djdPupC5U88RoCrFjoO74T1+7YXcfYTFRE+y8j9EvRKuzYjBPu+2YEFOjBQkN9yhfGpMgj1llmi3kAxngsfWJ6kd4Bhk7W0vydPq+tQJnxHnhE0wYkYrc4AMcLt6cOx/O4Z7LFxSQu20HNBW7bQdK8ZrSS7hB9kOAlNLXpNHdZJ6MTI51IdCU1xIUEuMtku5rCH1Pd55BKrPtqp41aJi+hAfYPDNAACf7xQmZIhGSaIkzuyCEpsPXRE+/pSU8r1MkJrVRjb3296HO+lvfb+dPscG4vhHTowKHZptUdtjj8t6HGqddIpAcMjGY6Jh6C7i18Nw6fOeOBvM05VBsKbqMZzYg+3XqhgQ0YYKw6+tNriGCWHz5Z/6eYi4LUH+TArJbRXsWEw304j2Yy6bqz0foInTi3wUV6QaqZXOQPyWmrF+v1jlWn00zP2jo7mhdF9Bg3ShLelJKRcYo/Na7/ptVwS5EsmcNImR2JzEdlCoglAaq2BxGn0MNDLrL4qbVKFdmwTdbwkt4fZ0FcC/Nsd2TgtnBRyCFrPWeC0Lkmajmf52i/6hog7roWoPxpM3eH5vaJCm6Yr23UPzSRD5Gj0cEHlC66l0arRUdRVkODx5Y0ihp5cu9pnUhyO3oTS6N1H8lRI1Hn2Vw7xcsTo1qGk7xMkqtIuduaYTdrteiPlWKEYA26os/ZvhJflua2VfYisW6ECzPJ7cA4/8k9jkHkCjZKUMse2vmuO48rMnBN//kOEvB2RQDFiY+D63Q3owe4odVUzzWVgFwNbPtIvmSjq5/oYJGT0BncmzbqBw9732691MDp4esTefFpO/Z4J1UtRyuQ8uOCWlvJAD9PJgMEcNXWWuOwWKxwP594RiBYig/Q3mdbvuEDcAKyQBG3QO5bJeDWcq2EgAO17YQJ3O9gwi/vp3r2HsFYo22+3uU9AbGMNZdsZAjEvgMF4bIUBcSuRvIijjtotFLPcVCD8/REMNfZm2NdHtFbjFnouydmmst4mss+k/cYi7rKmZhheQAZVNAIYjOyKpvGT9ggLni7iRD2+PwWRYVmj+FqovfRDLN7Xahz/rMCZirqiYcVxndkka2lh0F9ca6h/NW0AgZwNWMwnVbGLT+lujUKUmT42wSMsLQ2JpZ8VeLY+59nzGFdo65S807NKR9mGJ6IJe40d5xUo5EjFKDdo77ZxNqtXOLcgrJJUmbD5rjFOuBKufeW2C2KtguEokAGBCmA3P5zWHX01PRRCcRtz/0E6oXAKtjwM8ow83MZngq79xgZInifxBGega6pIDcihrv1YJWR6NQ0aTwbnMBNPLlGACImqAoP5EP0SDLqhH+b4UAYTRShDrbfT5CUNYVhO23fL/hvHZMfrP9YfZvaiqo9SVQBqLuf3kcuuK+VR+wI5bwf5hNjv1qIafZvOWq6LtlfYMAqSQ0euvawkPnxYkRVfrGO58mD8nSqj1VCGU5BmAVmLzOzO+RqfDx/gq4Bq5/5CqNAZi+S6YkmjuCh7iBuK0PtV4gjvsP9hhkvFhlbDb5xeSY+GLaPqUDQxPSHVdNhDmGGXtxTI5lJL0/H7eNhxNX6Ii3pB13zod1pO3/W/LLzHgZ0mgGfnfGJsorNmKctQsRnEbfmxKUmvFKQk0yyPLNHU54CL3e+7efia5m4696Qd8QKMtLqFOq9AbYXyctLj3L8RFcA/gg5GWDZej9lbmKPzmDZyycIOICMSBB3+W+cSj03tBgPoPXESQ/cSoZ5cDIEQ1ez5nDOiGAWQgh/aEB5Ngo4/pU44cXgsAjQMk4IVjpvKEn6ptGXuHWOH+chcVP+ymr1/URNtatz/tLJKA2n5zKLJtrQZ4MKzZaudFQ3yaI83YqFSAiDVE89SeVESA8OlGEJq/3xZsO7Dzut5xgimLJ0csMRc71OY267i82scq6+hzlMh5+J97ia48dq3yBRoXuVruU3/5WPwc7dlCWO94bzdf1xGU+FyiduoBXHBs8Ng/oPRXF8Oj8u/2PeTRd5ijay+2sCDsj5K45w7vnFD6goPj9VbM2DizHuNE48T2W3IAXUU+/lG+BMZHFt87P7ZA2rQ2yZU8f2mHI3UmggbxiGrybUk3LPoZbhkcR1gOBShFZBpVxkDYLaKp1Q70Se18wnGmx95eQxzbnekYc/ULnJsP5chqfBzGsdHYPxnhYTow8SYCr5WfCPvWoqOu+JrAvyYR4NbFFDv6yMTSaNQ7+MIU03MBzUh7/O7eP7SCqf2BroQnQWPepYe/sffnj7GVI5J1tI/0ZWGyKMEmsP1gEIStxFKDsJfM8KV/CmWFDk8JUiphlHLG9M93lJdeB30z/U5kcL1Sx6B8+Ti3mKGAZd03sJEd2vi5weEN/yPLt+LwM4qk3Dlz+v6ilQhkBOn4i981UVHMMLVPG74GbjJRLk6xOKJuF5d03u3MajMlc8SCJSY3qUlISyDiiW+Xqp/uvkMyUo6OZMARMoWIjX1ineNmpSNJBuP3KkXdDT6AZ5XuzKVFqFpb3RqEzx/5Uy/y3mZN/zZ37djy8jbvbS9y6x2h+Ml8uKorgexm7WM+XGlSYijslsNKhCS0QyBnuLOb375dtF5CJJ8sUTP0GQxaEAWzufmOlkLuKmBDFid93jIdwXy9jaWR/EwWj620yfm4QwV8MFjo2ETT3EiPAb1ZoXRaJB/eXTN/VHNfh39PLR5GRZZA+M3uDL4VQfuBFi1jV4OqjHeiuDcb2mKz1urk45dwwWkDAFysBuSAgGnxk5a6TDt014oPVEdesw6KmM8dl5/bxYvVoYSPAF+YPI+dSZCZyNovFZpSKZggy2PspPas2+yO6no8akYl09Z7uMRX241L+Ym61bjozmwEnsRFHm9Lx+IsCER9VnOWEdRsLc1HsOSKHQ8g4HswI/1KYcbPf4ROC4XJtrfNe5PonAUI9qOCHCUF71qvkvsdtiYCF9EGo9E7XmEeXFr3c2KSRej3Lq8a6V8p3EtxF0jd0gEoTYRN8aESdi86+vkllukMK1YPSUy4YiArywl8tLVpBWE4FYxNrrER8clGtWngVeX3pBAGcuoZb4f6rmRtit6Ygz2O+X/VzbhHD1tfgrsqJSJWZFZiUCY8SSJJLMC2trhim+gAWeD54OcrYQ9larXR9MltN2D3cSsr6G7AUd3nQPMeWhi3HIh8oDtGyInom2NGN5uDDgrsBI8tqDkjoeJdZ1JVBC4JVpjg7jfeDZM6ZeM5cFfJm9urkhIcghbBoxLueGtX/VtuubxaMcrNYJsMVSYqFh1YYQtN5r5H1rAaNQHeD4SDv6U5RfrPfjtNp+yKQB5D4K54meVgD2aoF14qSMPkSbTbk7iaby+vRA1JSgvHeb8Syovo4mWo3E9ekv20isbQYIz0XK3k3b+JDzoTP9G3jlfL+yGnwR17feZRw7uI/PJ9crdJrdjT57VrUEGAp7rxSqNzfaBvE1OY8v83QC5ND5/oewBT/xizYgQQkSYSSbY8PoGPxXcWua1eervQhZHkS5JhN1i1czPY7bl2whXqba0jNVREEcV9IzHzlRBDKYkjc9QFRbBI+GUa5LaKQAwwne2rX9z7PYyZlKWiBl8y2fcfW5bDNJdKbNvOHijIMKnRzAuDyqETBGOf9hXTRpHGCDGDrDYqW8Eg9FLXJ1dpjims89f/xamP63VKTSZugTLZ2zkjc3sgNYVFu4UupBFw1+oVt8vWw7398BZ6GUEIyrPVg6dnIUeVW/oSpf44O04zAEcZ7e1y6LD2GTi8LUH1SyMb65d9zeTLHgQxTTHNSLNRZry2sb8H+ezXERmJBjMdT0S3QNvEaS9NInM1L5Y/eWB9FbP8Zlx76nJ7TtEi+o78OBdXefzFoBC1RDEMYGY5mnNxmeK+IYbIcY+TyVC5UOL0b6WNvFz/1T6xtU+Wh9WUw9luJ+tuu7z0l/1dvA8ejlMQdlZ7DF1wqNILo7HYHICCYptLVcp+oS6Ejy+76e1ccPoZmWYK52cV96jSOe6TSrZisSvp7hO62lIlJQugbwIgItqVZv7TyvjjhvgqCBNJmRjL1WaA8xrqUHvMhYoVsZo2bAyWOTYVVw/eiy1cW9qN4QxtevGFX9rYPOipyUfmMAYxXy3g2vPMEUT/BVgfzA7QHpQ7Fg6dsn97Y+M+lF9xyNaVFLK3biTHZhKQI/pWLUg5Lm1MuwN2mKoagc0M++5O30tYZHPKN8o4v7PDE42urWoJdUvBgt2VVFjv/ZhkG5lSOPtNUINm3eRWJOEH5/WtH+kIBI/nzJZH/LvfHaW4qzj+bX2K9g+JlxGKTIgUfT9VraBgNG0h5r3osCi6bxvxFVviiIyk3fMnFAxFojdBNlHTD7WHyALPgjIx04o0MXuSGI5slTOxhHglU3+y6TXbdosQ/oZVb0lAIO9NP/En0cl32ejRmDYFQDGIXPFgh9oZcXS2iqG9uHlZokgztDra2Tra2BmyL4C2Rh5E2x5SmTyV1Mupe3FgKg5G70nV5v4S4yxzy5Bgb+kyUfkltkw02agzyZQEygQ2AnEQFIwcMlhWoQDmmR5xZ1C/U4yM5HHmIZanE/uY9ZPVFfdXKLVTIVVfw2Eae62EkNbQMIrmuQX4s1uPSrrUOFrKBQDF/E70pMG24FJ7/AUE5f6Rqs8xKy0Ew630fFgR8F6R8JS7ceuSkJHS9TbssT+nI13PxENmKHz+RpZnmtJI5UrwM2dJhexTarP4na7BNslM36p+UnSY2bpd/fbAslCwiTAFg0lii4f+sEEQFg5D38Ngh30YLTBK8E9qCn3hOWYm/8G0GnTyKDQ+zMmc4EJ+UcNg/w0X+GqcweIKy9AZa/JfbyFYIi6YqtU3D8hgDRcIr0gkDlAhAIPm4BIJ3tH2owAIW9nLTQiMsk60MJ45ixIwCzoWJPSJ31jSZ4jVuDPSYc71GohvIdeVbvEC3uGtK7IRyk743Lwmq/sFP06tXLN9osKX6hVjkGsPmKRGOQexWBCT3xs6vUFD3HxQbnV5abXFKqeYH/1YYkm+x1BuiyJcyw3ZzHldDqPMCW0dSEw7tqYMaesP8mIXS7IlndutE8x2Tt89HCF8agOPFv5+K69vXx7s0itM1Y8E3eo4wW3T8KwaAHhqsiPei7KUuA1M2IpU4LLRjOiF7pFIqk2Q8L6wuhtj8nbOj64MgaeNi8O2RiTUZKXbrewJ5/ap479nnrijVNx+lo8HXVOPiWlcHcnU7FrcvuQg3+HMzmuHDjs55/Sf+AJ95Nct2hBYN2Dst3R32YW/z+uantdKfNbkQnP5tHLtK49LydHftkGbtynci8I24E18WYxBuS9smOFvEGZaNop7XrgqT0yCyCizDg3vPk0Up29CwZMseLcOXhrhejv9TyHfXR5QPtVE+SUvTDHlI4+KdeumlEfdb05FqiNV6ygDhkhJA4x6fLzJJ0kFkT8D3CL+al1FNVpLWk1vzh8siJiKG6d8VFwqHFnqe5D2d0fXOMdaEOjJEAJdD+jdT1AePRGTQvmj951W4qsKsc4RcpXNxlcgVed0b/xW/0CDJ3q4JJNBWyitJygKpbcEXJZHFXW0z6QE4kWiq/tUx9Ma4/f2/jZlQwclW8URQtk+o2RKhZtKu9IJeRwfzk6w63yMmfx0GTzl/wxkgz9Rq1nZMQzyHjOUIy+YOdCTYlFA9O8kPwtWs9ZcIztRCFJEMf9Bknh1CGgGjOigeXXuq50me9nFWWCnyXL/FFisGLsBtp6fj92zUKiP4niasjMzySaVRw3mrnsQXqTFTeFBEnE97myIgawsQnCKhSsxdIjehH7mB9wlE+wTncuoQxc6N4YhRHqhpO1mhF8GayFM3peBltJB0v5Ogm4qQOsVzOgoxWik1BZuV8CX+lFI64uOREiHov9qqRLuQBYLX5kHnhGCdB7L2Zvn0zrpEtBNaEThOCXTKMfUxsT44TCr2vtdcmZCcqWl1R/Sb2wrBhd860CDkU35LFkEdV7XURyPenKTjn+tXDnDdcyO+YMBYdSDq3hYORx+VyHcxpHPp1jdVcCBAbwfBPqAq3KDKbEtmdijpaUx6oAK8DBJ2DKSUfHJIsnKMc3WYOsOvmNGuyeSRrUPPEv8YpgIm1BOVsoE+TyQZ7MDK/rWJrji6lT5Goxb38w1PzWIk+HhJpYph76wffy0lDTlm8hzCBik0aQG63wxSg1FUwBujXiDNt01xm0+jPrPNF9OEqZsW3fbX8aPf6+7ZAJlaWgMGjHZ8aempfNzaPj6dXQ1a4TNydqRMORhBjsebH6LGWDmPJmCIahj7yfif4WiuMDM9h12tJoknf6eaHveh/09nyWbr8G7FxkYSKCCHhE6+aSMh8J8VvaIdQ8wlq41zuF1mrKpteJgdtEDKGo0k7kxU+8jRjCCwNZa8fGnCO/muM6f29Yb67u4hYPtZLl6SfcLbchZ4r0t9qs14zm+UXXLdeSOCbbwvddiU2x3+UUpRYLNcUB8agU70HXpUqTsQaCunGHuRO7dyAePbIHIconOSucGYvh2ItiQWNu8TfHb00/ucaUTTx+tF6s5Me33IuaqzdiBddhiMOsYEkEAsNzMXdWS9hQu/OYT+xWbijLzit3qNyrQMkh0cfip1TIlPhHJ0098i6rdzxDxmQGqp2EGlG23es7P2yHbeLqhFRmn2lF1EDG7MkQHCYgzDFTGHhtp0rjqlOrdMR878UC3EvY1MeXcsyELbvZGDtD/Tqz2d/2663zoa6jTfvAdgcYbdus0ZXZ0wvt39UNrXtzUaJ1NV28xjePUMahoQOf4qCjspq8XsdNOromGYPBHogkJGqkgeFnFVTtmm/aMFhi0nUb3419pZCrhmdoSuYubG5RmIdYzB9FEW6APVoi97MsGC3UIPf065DTUqlMQkICs/HefW2IKJpq9owehmP22WZ2YbVyUNem0+Z/+EDS2n/TBwB6tSxAPR3+9vKhKnXCmlPVU8jFnuzusTe/Of0aYSDp/5HkOXI7A3lbs5a1ElrvCQ2v48+kPFN0XVQaMm3jV13tmmkdIpA68bGjCXd4p77crMIEnfsMuf4JjEKLzl4jz+b2640v1EloleZzPuWOM4MHAqQsJGv+QxhQE3MRg6L39XxJkDwVUVTaqwNATBD69X2nToanJiyIt5+xmxh9u6uXjTc3RKSA+U5z67dJNG0C6mwSFyvGmkqUYscj+iT7xK3bgjBNY38mdCjE0eBCnxIkOIV9zlAD+DKFb21nnksdxzxESNtdd/Ok6QTHbJ9kiQZBbOdkc+SuVzRwUFcCIQglmfiDYva5jQe51CD+kTw5hSb5Hhg4/AVCkvTF5D8fGLoql6+VaUTdFmLRq8FLzUy/LLq1S+bZUlNAwooJazFj/oiPWG9iaaYQdDM7Ae4ixO70fZ6DpSy4EGSArBdHqZKqECIeCuQHfiij2QrQMEYi0x/0QZfdYcHs6upAXXuySeYU2+b+EmnCvqg2DmrfHDh3RUHBxx4BhV0CMG0upIAVl/JpazVlKTaKbHzFPQFtnW23J2n1VSIQgvv0SYvLeLj+4uG4KnVUgjrSf34yercfNRkp/HdQpLiEfP/ihi00QDAWEEVQ//oe4F0KwHlNrhRwO02E/9qhaDkKaAkscJt9q9LjuDOd4tuAZ2UMNGtpSanPJ342hIHPxaG8g+SZ6LBIUxwH+dwCfTsfW7WjKR9cYISCaJu0cCNCy4Ha5Z3Im17Zs01XLy3lutopGjUWMRkkChvSLexbrAp6ZvsvyTdMTkgHAv+/EUK2lBsdTX7WTdVX7AWjonOhbcwcA9tG2eNr+L6QEZNG2nfb2qIj9/CIHSkpaIXvmRWE24qzIu1iQB/ing8YCOg3zxbdjNdrLa3vDxKZ757IVOmAVeCSa8fOOmxZ6EtdtVuJIdz9/lXe5qosVjwYw7k3zQuS+B+eNxvM5VoWkVCqO6prigEs5+zZVvgbGgoT3iLGlSG35pmf9w2Xh5Lx4phk301sUexo5YpZmZhq23nmxCram4T5ec2hA39idPnZiFE3tSTAfDwx+hpUpDdiGyTAgZ2FgmUvQ6jQH0k8Mk4ENGHDGWOfMUkUkwJ4FuP/3cQZPP3JbhoOCrvUQk9AiS0wQT2WlyUU5MCdY+2HXdu6ycBOKqeVat+Wya5GXtcAWQ51nMHe7LJhc+UxZR8/UUDHMpE8ONEE0dSpIBxwOHJNA4ZA6G2VorlFRV0zbdLeFBVW332mUmc6jJPpU0Q9wScpArMFHQ8QSKMaacHgmZDV0UzUs5Sa6jGcrexzNN8RMwPRBGwUydGqK6xjGjJGoKrY+bLkpN61TLd0RY98sPqgXxbeHHL/f2MLOeWUJ1DxPn7sZ7LumD15USel+ggWuhEv6qu9kZM/MMShKUEe00wzLID+Oz8R6xUTj16IzkCP+0ZPsaYNyiozzMdeij7CYfk0SzmIUGUQOhOELeDVy5ylRQZXYWKXnoIyYN3Txf3N3IeAU92msm2WuvGh4DN5j8/30xUta9E1EPwMbpa4AM6UywreAp9jeWyOiZvu5h2pXu/4ygLuCEAcAZJ63TQxIS8LDtR42UNnuYPg0QES3K9z4o5jvPUAUnBnCGXVhUxsN7wvV8m8Zxc3apiZyCviBWpT1Jkhr47keNCqzGQP2HBF/TJ8HnZcPTReK4jWlR3uMOSvOg5LjPR7C/I+qp14Y0BqiwtdDXEVC7Q0vxRdAv2Lezc1S4fzoNqbzwvOiaxFAkUInuoiFIBI5J2Lno8bczHe9XUNsUD48y+FGzsgZpYfu7T0A7A5CpzrLtnepW6N5jUBw/r3WUrxyS9znDabm3DDzDRVmW+8Q7K62Hc0xlnawkiEYc19oj1zSk6eEAwH+6OQMpqMVQhH1HQtvBBoalaEAgowBrtOuPrNAZEvD5B+AoM58ZcU/qbPXkNDbeMxY12L+jjXMrFVBKlSHHTJHAbTh0EdUG82iUGD03H2Lsy51KVn7QgUTK6LhAW15FLnzk38GkodrrtkU5LWx9JtZ6joO+ELeLEPNiQFmyRc1cIA7+Q0R+uqDHHbpLN+pvH0q2w3vMgeE4NUHKIOKyR0DwQ1J6ICB0YoJDvDq+I/FCtIW+BXTBHcJU+jxovotroFICJDRROHPXiXMXha2uc0sVuRYX82K5UML9LjHeBjM6Xl492B6sKyRCGE7vH1aL6bMReijm6E/OKp6MCa7z1F+ezsCVoZH6pE56JZDCDAoXn6zZprPTt7RqKfI5Qj16961ErMSXR9NfNag/qe7bs86cvM+dmnvaMlSw8AhQ4Wq209rqboG5EXwmnCTBaLvFqP0m85PJu54dB6D9bL4TFkX4nXTXLTQ1jP8J9wVuR1Gmww4L5KYIljplOAyp5MrJnRDwNXAE8oUpFsPNr4qK596MBpyG7EOeDWV0uUZzlIdRtZ5u1MqU8oRFHtHu++b0XdwBTyyOx2ulKarjJPSzZSiXrZZxB/RDb/Be5RaiIY8Go8zzXVR3Ny9O9gOYnR4XqZ6wQ/Jwy4HT/MCqUvVLKpRnuxEszEoFKeREOj8FVnVWzMD2zuyMEFCUR4Ez7fVdUijK90Wsb6wVPUGTp7B1bCkpmUelH4NBuaDwzPzhs05KvADeAqHoA5BJgeyJa0rE+dmWtNifu/f/DAMg/A6cajC2/Ur5v3FLgZidk4KZh5lhr+ESNEbP6ClGceXNtgsTkG4oojUH6q+Vyy1Pkzo+fxHTrZcyl6laYrsg0t/qqH7weeGu80/h3OFVGgQK66moIAC+QOrBii6eLEsOGeoc4NlyG2OczExn5Xd7Ns2sHJIWurRCQNtUC7tSKEqHeZPieLkTbS/kkFC7eVA1GnOhg9N1+4yv3esuxfy2+OnJgXAhaWe6DkM1C6fndNqEHKMn5ZZG74Z8wdfS5zZ6V7e0ZWFHySK8mf8xRaKe/kwN22hteMToAdmQdOyFl7JUIj1shSTE9aZcQgTU/1ex3c9kpWzrTR+MU/t7td8+ZWGZQoDoDhKzE2LIiSR2nuecBQvzezolB7ojb+ZwlfkUbax9GbuEJe0ejdPsmRIVqW0XSI2Dsq0ervRWhJ3TE33ru6aAggCXEFej90Z8PCItPnGuq2gKn5/h499FpFwgCC8+DxLkTPen545u6Keo390JE/5/3VGkH2WnutjloRiZpl3Fx9nAQuuCFIvV/96xVBX1CDoDPtRzozUs9KImAOp1g0wg8FqNo7YLVxWRPXVk/t77CODLr/MSvvlNxlhZH0bWoapKapSNLDPIOUBNY0F4zJZBUxgnc3EZYz1vk6qvuu25suRMFOR5eBU7AhpAGLG/pRyH0jIMsKix1rfA54reovxy8Y0UINsqWGmQ7gNJmGLz18HKS2fNb2aBD0/kbXQCmrXWxZazfDljIbd91tjs62omoY42vFBFtduvIt49QyI/3zP/LjMY/SAVMiQn3diyEOOffPUCPnPpJw5xpq8Sf1TOkfu29qbOMchz1USR4JH40PZROEhArtJIET0tNY9oREXRhr3pKt3NOz0wkVPHOQUnh3viLu6LT/tV3CrCxMNlJtiICisRd2+OZpZ8UnUDvZ9LFFQb+4xLdUiwZO2bD2HTyvsT3qffnSbn7e+9ShcHGYiKTDiRXEwmneW6qNh93NceYipnaYEuKu/qeBRAl9CaLiCmH/UjPxaBex0oRavxWHJLjKxOOT2LynYAIKRrPl1V0QQ7z0Oza9l4CRGWfs7HMgD/J0SBsQQDXxIYvEaZ2xj20EdbYLdRawJCQrY4aNKx707jmTxJOjFXGfIY4gOJbIK5dCZy0E0z6cGUKqy8/8uw3H8R45+0F6VuYLMTUgKD0V9eDfja+Q88m8lC8uQP9YIFmZqDPQsqR9KiGZJ6h6NQUldONQ5jGcNVEH90oq9/0S5Pntu0RTspu87k8FbojqJLZzNR9/0hqXYKh/J2eZL5M4OkPAxsJbE6XbQq6GPDOQUa4kt5YoxpHWSawUqSG8nyJevWYJGTVekROzyvUNNGuy26iW5ZnFDhzFxfJtne3BgI/Ddnmax1MSyBt2Qk6vWNuGs/3SR/uYGO0K0A8/Lnoo6ATCVRHF5VB+8nZYaoqLh261ijeEcwb0iylUPDcfgi1dmHocliLGsNFY4hlROIKXFjxBwoNBgySChIJAYYVv8AZ7IUfx8HxWEs5b8DbyeH72Jf7owapkrTIZNyP/3sa6DA+xwm8adNxpd4pbK3/So+76g2Qqim9eDPlEV4piRG5ik1Qwuc71iJMr5o4G3O5CGWNSNfFZK4UGE6DMPhDPmPQTrigSfH9le/QZ4nwCrwxHJClQsar3//nNR97cXXNLUfvPS0ecwQH2r+FpcKIC5EX5DZ5vt9YFYTvq6l5V5iqjPrQx5XN0mFVWEqyHhpj1Dgyu52ni6tIS5YMDqPeJu2Ph0tifaC9R+Qvtcfs6qOStN1MuQBBUycisRTqeTH9hoiy8yj5RcD7e0TY76zMXiBcPuZs3lPsORueubxvtcMDzcqK1z2I3SH0wKe1/7Bvrdg+srzrBwC196QZkaPeMFFnTa4Gw/0Ymwo/Y4Q9gH0cmCquV2JsCLxltoDmA59JuNsc44TW43p4RIGlgb245jDQUp7aXUNndRZKD+zCnOIPPsR/sWgpnFOxWebFp2XTx3WM6O9nTAbksuQqDjwhBpPbTo+whtfmn5GwTCKKcmyD4VHR6pP5C1WZMum8Kx4WAcFuWI0LLp/MPO6vC7AkxtrcluGi1L6R23UsKBOZd2qRPSM432nCMEJwWBC02rbD1/ooZMSYK8a8wZFfb7BNkBb+ooQ2BmrZfnbr6/LydblV0Ag2+YXB+8DzX/QVjzw4NsiQjVP5KLo9tiVLuW0gjL8NXNJ6ltKS2EQOswqnnTueM8i0OiEriQ7M8iL5q0QwNMWzEESwYKwlIW3hwun01ztOmgUg05fU25qvEXN4Y0hTACOLN78AQPBQkb+YpLnyfJAu7+FVlHa0R7H3eql4MRLto7OIhkK9i3Mt/Jxk1hwHQd8J9PKO949CKp8MCBTI8p/gtVcWuC50HlV8BfUcpRcHMvpknoq4kNtjuXeFVeRzvv+4F8u/Y5u67Sxsm+lbglhKNgmEiUJuh2Zc6cmrvbeEK86CnPliWvPB2CWnLBHrkf8qmEuwt9j5DkNjvnKcbhu3LfNC3jX5RICpPL5gbgtUD+TRuV/c7m00aIJs93h874rfyTznV6MbjKA3JosdIexp9EWgXSftYc5juhOtY8z5zuCGg9oqOT+piO8xDkdZ+JRA6G2+GoEdn5kkN6UQQiwzFeVfVk3pGbyLg2jRu643OMymQmUtITTjZd/fUUDM0YlEWWeJsG5fz33bvtggQgqW8ryDazWa4BBjrKGGhAQAdyQ4MJEEwO5QaHH5ghL8cHgNPmzw6GkwZVgmM37q01pEUgPXAxuVqPk7iyDk4LVcVB2K9Ch7dtR3AOe+eEH3GE4qQIxAYw3THtHgtFkkdlnLyQ9+dOl5JafXnmVYAkRup6VNO0IrIny5scP8lJuzxFYkkOk4YZJNV3urLn8ZNjLlDRkVyib7bppIqB3CDe9J3bBs1prAv803eX8/0OVaxmhXuB3niTznhDMd0owS4nnXtm0ZQNlWbR/Rn+9wy1Cgd8an2i8yle8ntXBk/loMYRbf7DYDi2eJCAYZKzVH6xbjsTJ4h36tBTqKz/d+3bmwh0PW9fTDgDd/Zu7d3dpr+YK5UtsyA76/k+ZUtPyF3xDXtG1jUVsWHKv21pvJwSDpYIfTqQykc9q666uVNXp08sSd6KGTM1Dsw07KG/xL0GeyqrXgFR/ufMAO913gQ3LweTESnS798iALA+hciWmyPLKS2Wu2jpOrvKwT/SwquwmPLxl9HqGoBgDDpY3OYW2oXDDEri9XENoxtfw+O29Fo1fWC6LjW4TORnb2PyRSVEA5VzTizXpCu1mf6azXPaX8d598nIVq90AFqPJ8x9Z5s+Cg9msYevCeL7BP4gEZF+aViizsJIn6T7ImOEB69XauULBut1uXifdxAnmcDv2h7eRMOZBUDUSpRbNpUCKzk+KevXg9GCfDE890+Z7Qxgu9AdPd6sulUZin0VIeJ3JAxKh4W2VKi6AdhLNHnxPjmcrt7SZ4gGETIdVouMIcHUPScW9N59VilUF/KD5Vc8sQJS/AUUvr0qpy1et477WZJxAE5RnNJ28v6IECY8rkQPRKVxP+UtJDKUySvJI7P1uMLD9Cw9Lij4npEfMJxiNUH9uEzMjSWST0raWQ4OkNRW2OOAFne2EOqtXPOKE9eUcCJw25i5zkhlO7dlnWrfW1uXsrYwhICC/QC/zwYwQz4qJfMTsrPKQwQFx0x1g1ixrYP76ul+7Vqo5QQsgLHMXWn031uOI1Zo/zvdpedLu7lfWzPdmB99Cs7B5/PKFeQNaMOb38h1No3amXi13qX7FIPL4dJxUQI6BHkCa9PpVEqzQ5M2DMvVkw1mGaAN3H9dyrq7+Zy2BvrrIPYxnwoLIfcxuvRSzdZiDA3869vMJT3PrXopk/L/mkdAniF+/gfhfluq9P+sgp2lmrkE1Z+M3Ntmmq/ry+3WdpERz3VyJp3rp/lGp+H2LYp4GYFMjRVDbLuwQamz3iwbQ9M9h+Il3Bu2YE1DgbDbbF3UpZjsZJL6skKfqB8LWlmuqIFPS8Y4bhJz8ByawhC877P7nbCrO34POrUNnUM9+JyZJ6huw+GIQOfchM74L8a5yat+oxMI+9qRKGuTjGE3mLlEeb2Fsfy1tmuiaGu2xoefmnXsns8Wm/Kt+QhIZkdbvB/+4AtiGy+O+1Le1rjdZ5ZPIQA8ps/64ebNP3+n5Dl+HcY1xgoSEBjQQNz+4ISdCRkC6p2+FKMoquMfHtZ9xsa2MHhjbR1GTnb6Bme49i//4GL9NbGdSrVAsfhSGT/Z0eyMuxf3kOgTayLrfVaNwE/Ef11wwugA2HjNyymnXwd0nlZcBSmkg359mdS08uTQgL5bmqsfV8uVEwYpEbmaIlkaz04pUZR/bxZUU6JtwlFlQh5xzt8+6hnFwFcTWeIXZsxfehuSkFv8aAuUzcTS2SHfYPLCryAchzykd0rWyeUyA5Cfc/um7o8P2pf/YkEhPj9nR9mGno09TNTejd6XcnYu5S3GY6FuEB0JIieEjSFXjlarvL8yKuKM3YQ7tLdYdzm3k3YrYOtgz/3upmRvtFGjw3TXgGY/5VsvSq+o3B8ugVKgAPdwkgFMBW+/vpnEw6mEVdFUwd4WUuqn2QcYS+jjIdSlNlWCKPiszQ34F/vYfsiNUUto7k2niEXNhq6YuUsOBQq9Q5TckpXdi8PDr+GA8dM6qH+ar6i0Hp9ZZ6FUxtp2xnI7BHSrB6jfQz07kZ5bSVmox19QSmxC8vD5NTn2po8NaD0ktU8WuDP5jccwqtYm/27MZ2OUplUgaJn0L7sisIQXCDwJ2lJbIN9ywsZPR8VvF4xYHOzCXsjKUF25qOK/7fn1vGOM7GUYkyZaUPJ/rZMLhozcvJHGloa+fAV68DQDiQnZeDB7kt1Rug0Bgi2Aib0bo/ZrImhjw1rSqfbxkU/pLOoRAgQHTJ0Orhi1rem5FocwJFc6fTEcNq1w5V2Mlbq3tPIYoVRY9v+Jgkzy+qNidpzn5lFapHXyQmUBmyO/lvakjm9ckuoywGREjkyzetxSSGi6XquRer3k6ssJIk79B+ruI8Ns7q3W0etI1u07DRWq17GLSMrz/Deot1MbIsOFWClyF6yxELl5BuL/1R845XlSW4OaLrP+9coxBLcYUPyj+GgzH8KRGwnFH7ogwMA/pUK+pePnfEjm+UpzraSaZKq/VIXOsdeB7NfIKocLQ77u4yf+ViMk0lh2WsOw2cVRUOKWdS6rhnMzZjOxlGljCj7lcQGjcl0ndl6s+eOCfv1QuHK2PsO4EYE++MdQnjueXT9MqhVc0OYiTy0jbTl+XbFPW2Q3gISzhG1cKjmTMPz/D0ExDLM5MqCv/jLf+Iln3bigjUq5LeVJVra9oFwnRyr9arUDq6nIlh1ELoOo9x3iSLshl606wDzUG1cQGghnFzncbHziOZ5hPcla2J4Y4x0RhKhLunLdx5dJU+lQ35EdNMerWvTF5ZO4gFsfJb0Oey7n9zEdkRoE+hbR5XQkPux8MsGlJlmfw4hK+ggnBDl5FQyRhqbmilRmd1MEtM9ExZkIjira7U7tPzKGUDMGzQWm+kTXUIHiYsg4/a09Ij823i4KNy4SFqAPvNMTXHFdAMKceo+KE91Q6gIOw2vzpZubT/B/A06FjAxiUe2UIjK+wjjgnrHDEcpj31Agm0X8nk3/X9AZwunGeOhprstdjyVervtcOfG207HVqwiEhvMVpMM7z+JUm2ydhioDR6TB+dBKv30X7nGFfc640DcrqN+NFrM3/wD7aIC2jujowxd4ZDQsIm7/9XbyUxp9dsKnYIUQpItxXmu9RSHTpqKeASA9EkdoTyEdqgQ4XcXTtIgdxIR2ErF2VMBcr3b1PFA8KigLH3MRJqTm+f35p3cXoGZDutWYpxrsNDU6H8ZOsWhCiufaqxkEQqDO6DYRzqI/H0ULRbDkeNnZOlRIEBBTAKIRb1P1dfR41pagQ1GHYCuJU90GTix+De6/fPpmerWB3/z4sKvlOulA1sr7w7CYgd17blnylRxcKnsCAwT6jom1VT8P10KWBb8+MY2pZ6D+aS648t5zl2z5GneQ8mpxfmXQBjdE4Jpdfltc4dwZxBOwJfMMy+zvR7MIr7N3gtYt5wsO+7jH15f0DZlfv5TvJozc1/ODzOua2hIdthMdNF/N3tu3w3woUHFjCcMU7FtoQOI2C12i2fKz3L5A1JS+x1miJCcY9HntNZahAhduIDtcrgIYNfun7ttSr4nk7AgMuHv2TtfH/M3q45g9zaCoDD/2m7Q/1a99R4Bb443xY7PMML1TQRkdakQorBivYnewM+vvKBpPvdun99msPd3tkwGEXL0vx+SkgsAbzslDbq5q//HznSXrENqQMxu6Y+l/7WCOmYrvwkGGBN8ccPi2h/1bWpmyrP3dmzzdjfvRroHcTwkK4qqKglwarpr2g0XO75dV2rnNq+en+nzQnN7VrgNom/qxwklBZ6ErYevCuwRFbSEE8m4nuvWF45CcxVHfLXYjg71lgiTdgxwbPZmORKGEXD1lluL261N+gN7FHkzvQGlmFklcQeOKPYHvJPmF4kU9g6ADSHZH0c6+f2ika+xihohkomYfDAToOBcGTDDCSZpjfeLbQtFgQB40JP8xNMyxRfsHEZt/JRvBdIgYAjDFB7ubYPlWFPGNJGNTmh0DulT0NBhDFiScESdPURe1If+cFwZDwNRQ0JSGEF52Oht2RuGr/yIAZq8OVCO++PvRlBzmkZvfHeU3oMi67Ds4C8K+D26pHGe+qdiqLtHyXOBwX94iW6r0vVBeCzpvinNoK/2Pbr/edTO2dN7Dygt79i6WMk2nCz7UpMW2V2cib214V6WzXhtVw3LX66tBKBDVoRrYvXIVitO0v2A0f1EAdYln6sj8V1cJ6jB63ZaFsMClfzIkS4EnGhAwuctoyEASKPzgioDFbrCKDzqepcFanAIF3D7kheGfh4aG+WaV810vMv7Fe9ntZpqvWWHFsV+SAwdbBg7to6WWm++BB0wy1cj5gBiQpyQa7ExJpWMTCvNrYQ1+KgM2WZjYAngwawB9R+RD3OMTLosA5E2k3JwLmjxA/OB6g/OHAbxuwr/TrFxRuYTA8UUPvWuEGbQdq24S3TsejS984ZM0FQS2ptPPp1l9FJoErhf9j7r5YAxEs17w+305B4RyDmO5HPx77gbfgV30uf27sqcICg3vfNqvFqGVUhDg8oUQvSkh4A/mS1WZM3+91qV07WFl0ffruENx8ctL6TSOefcNG5pp+3cyKiZbbKiAvnWDUdcmPzO72+FkCC9+C0CS9fXBt9gMNyawdpHBKcs7KmgnoGNYmHcVazt80RuwPumYB/PI8/I4gunQ0XbJIwnVzVYzcM0TdP5T6AbYOe2UwwtT/ZcGeljysf6DOJAk2ncGIpq6htKDN6kLpR1l3gV9RV0QYwMrUT9TRoXzNdnGOOnaDp+3JOagz5pZitep8GucoStm7IV3SZOssNE5b3PFxW6aw3mRTnzfAm+PkVlZs0a25gPH+Z+AeJkRxCJknLDRW/1aHCA7l1b1/2gvPWvEPrGT1+ACUyF5NZxqTsUaovHPWpJuKFBPmmApebPXnSSf9wzhKcPPpj5XeCW6kFtZONvjjC90ez8PlWR6zO2oKjtSXjKupZeidWQwfXDu3LL4k2cmKHzQlx/9g/9rQlXrOuG24v5yEHs0r2xM/+1KOVRcpLMUAs05DmJx5bHLW3CMiriGrd0wJsdW6CdcHiXG7/MV6vYR5jCM2TJDGRoPwOgtKrGZ6vq9xb7Bx8M1HovtsF5uRwon9p8bhXtK4xYK2UOV/tGwHEP/p3PRAmttemYnfCKYcMdsg+ep1oq9RznP1DZ8zuhbv4v9rjHam/AWXUeKX9n1bGrX0YOkn3kwUg9zV0OUQWPVBI8ayVmzUxXOJp2biUmzZ8MzDT1B8HxYH1rE7wgdSYhXhWARfBsQWAmWtte3hIQLxMMUsBL5oW+OCF8Xb8j+pg9IrMZWCbwtHzMyOQr6o+K+yznPafUcP8qC5RpP4JV60Hek53jhAbkhgm5wTA42x05PcF455106wEYQ1Kwxu3/3Keap2mm4u211JFrzb+ZtHHp2LY0TdAGNfWAh1GtChgIDtz/ZY+YX0Xv+qbIkkaYc56mmM5J7Pw+B/ZBmTTUDrQfv5JugWQJ9V/mwh3rghLkECmrjMexxL7WzQgCNbfU6Ier1IQPQkFtzC1LvUJvm7oIMYt+QEjuppp1Dwa2WEQsWL/F/VItkPvDwh95MHpjeb/gcXXehUdnWoyLOGRyisB4r6C3b9NyO05kgaURlZeRA1DHFrze8uLv1rhHhl2XHsqnk45I4xkgsapwbjC0ZixtQxUUDkSMLEuxXB+aI6ORYRPcnFUiWnDL4jY38xENxsaEj7qvB0IOlhmQ+TLwv/arJyvAXdcE1bSCLhYfTdn4Wga1gdmbM8ivdAPKNJ370PR/qIbc2WK0V3RNX0Vhs+aK+hcPslNdnspm3v4dgQhXBegzgP6b+TdfNrgMAi2/2KXqdOATKLQu3OB1jKtI4nkGCHX+aKfPnBR9pKXKJYX5jlox4yItMH0FAjoCOrQgZ9+LSqmNmkTdwYuYETPlguZtfkqbSMqRN2xMIiMlKgQOVKPs9WlFIse1NXHvIwr8PMXYQvoMIqceUxEwBg+XSbqRzAzY94EuLYDdABqmeNNe2tYFsVdav/dtOMFh3Abmn9K8CF9xCYIf8humcfmfL1tTynWFvO3Gpm6VC0cQL0qD9qJw47FrH/KNo31zHl95X3bTMDS4HkhmsgIyHVerMW2Yk6SzHGpOnq6GlPa08Pa8bveY1VBZRFY7faBD/sE9b1vHtV6HBAE6J+aPxELGFxmylqcp/sFadz+Psi7i0t051MQw/r7PUxMSuxH4euw58/k3j1+PRf8XnVv/nilxIQGKECMT9TS+S2XEsAn118epjZgQyDmiX/2pooL9R87XaPAgJqHEVyviUDdVx2r0NaJ/2hzVSkrXuLzKTAY5Iqy4gyk2S3gZNlZeIkjAeH7VZEPUl8IbALdC2EWuc4KtQGmYfobP5zR8PZWI3cTXPNYs6GHjqveeLzHTZWAqC7AchEZ7D2JT5eD8ne44eGg3n6Sup3KY0gt3DkUYBlZyfg0OvwOpmdAkehqDNCg47UOFSt+M0vOnq2L7UvyP9ROKa5ZO8qam0HzR+Qrl2QbwjXHLOPiMJngLkhNropfIpagAvKbiSWN4JFlgKooiwHjrGgNon09LsoVKVpQlatX6llcBgAvOWhAuEBAj/1yg0bsq8HxgWqBfKZP9ifUg5JL7TlsnzvT3nVIeey2+xgjxujdKmKJvi8ekxkDYcV90PnWE6h56sxxzuJ5un/pfB1noQAR3BOV3U1s9MMbz+5opyWOVWy5/o1Buz1fYbSZ1w7kkZUMCDFajDUSSGJeX67TLe++0IHBpfuAZAijvthXnHHhY4Dblnhwe/AkZgtXrs1e8r6WA90n/8XQzwxwsNBNB8iBQ2X2Ek/Ej2LfmSLb4CejlSPYQ8OsfVc0meSJFXjGBHMObWT/Opx35UeVbQOcJQj1PJ2vSMUH2rD1bPG1u1o3sraePb6kvOsJXAxQwW0zlHNMakWDTA2SBt8O+67K5VTwKH5XgvY7b1Mc99O5avxzL1t1wKV3qXEmQg3mof7bJcO5BYbpxN43J7aE/JTn5eXRITkn6iuBCpqaKu9KkHbLQTIerwRLKUAIymxpUEsDPOlOh5NcW1RRQ5P5O+OOPgGLDlajhGGFdEiIw590E6wOsBMB5r6h+pjaI1lko6D2OskUxO9D5ALAVKzbCd0D9AOB50I9Tmimu5rzC+XsQtMOC13XKlzYpX54ELE/8z4IHM1CdWodrXtR/LwVk4ThDA/0dFc5bjPeTz3oyblDwqb+22TsrXch8tpsqOzxd7972S2eN3aTzrUfo4lsEDF8bGLhqfQAe798S/OsNmDTPc8jNhMayzjzrQ0EkyWx9mct46DowVM6EDWuJQycIBmrolLfaiH/gE+jSmoNaPM8Kgsk0WfuURF47R8rF3mu7okkV30Hr8eD/Cri7x8quBZTGKnfcQnqcywP8XkgDTEoBzTa36AxD/bfJ5cRAKia/Ekl6pEC6YWcWkJJp+/Zv215WbQDoXkJaGKFYw+OUpblJicjzJx9Um7GklCkKewAqWehtk+fYvc8izXxHG14yMqH4naeqwtHeCjO8pp6Tw1NlFbFeUAieBaXjanzc29C5BNPzR+Hk7J+8/YXSCoWGCfgRF/VtPlHjxt75o1dPdifHbxAPgKTbUqQ/Cw4F+KgUvPqxg/tfwbi/8hNSKZsOuDx1gPx7XwnMCbAsIxaRrYEF8jm3jGekah2vqlRRX0PnQLIJQReqTwpb9wKNyAzmHeQRkvlSjyBgnDPzp+Rg2SoIxHcb9RhN0R2EeWm6+HitKonDYXcDT7Hy8tIGCTgpuXgQYKlKOnksmgog6bLJzQMslrX8Q28M4t1UqkjmsIddKFfciVt98pZ/NlprcX/bH0NcTDyfzav6NpWTWvZXQL1SIlCpEyFcR4Dxi3gO3VsDSMJ64knk9gqI/zBNCJOFvlXpEivEw8YNyv8w3OSveyhR7wEzh3FKXd+PxMjJlHXeUxin/qn5a4IR15QXytMMWo1qbqoFVZSm3wwl8Zrm+ZxXz4mOMJfOAvHWfKQLMZVb4hRYt31FtuFpA+/23ECI8omVw4vEaY/LKtB3ELOioc66ypr3+ST0B3kc6TDgVdhnp7tSTPd1on23ZxifFLe8N0MJphVVzCE3mL1gZ9Cbk09tN/Ye3Xt9IxZbUdl2G+9W2lC+GQ3gC91VfEP+fIskf0Ox0KswEW1GRY9Ou7EJaN0fqA+mwjlkZSVqKfP+REAC3hBAAvMBcU90pBSnik6SS2cyyVrFfxnP37GxTUJPPoDWBAQbr/EpNkg68wI3wo/oPY9oCAN8/bF4Trg0fojk0Xrh6KNWn38128sSerpIEfI00BUpdz8g3A3ZQeM96yzJAwvV78Vdy1ipXzUVL9Mqh0jrBZVijbj2dZiZqjIXEXqPkZPTPnpyNhuyPP1yst5BJvwuTjncb68aFUuqM637/bH3diN30Cdbg26ytPuXywXLUzie78OygFwdtr5izO5ynZC1G/nkniXjGHRAK74GpwcaKxoMxierlLT6IUkNEZ4EpDt/FO+quB4KDn22VABcKl0Ip4GgNgCkY1jin/2tbBGi1FE2HANXVNEBR9vkBvSikzroCtN76uVSDYKO/HRiGyhnXMfyfzOAYVPOJ9KZ+H718Jm+ZuuhTHpIFyCDTU51h57Qs+J+oeu6Y83axL2E+OnCuwR48IUC2D+uqYyfZngZ8gZWPkKGYCyD2xxD3u93R7Yobkxoiri/RZ1MQZyZv1M0S0i2laYyeh2iWIgcGvwSsF/JBEa72xRC+pyZUXnQ/aTzuPx03n+thILkZ5ynQ3O1lk3bOGxO+T+m0T5L1FixNWhZbUlBcsS/Z+WPctW/9atSnZlmdGGuY73NFpNRupilZOKfGk7jniu8qr9sd1f8ihe0FXVfuWGzcHPjxg/HOPeHWdmwIH+NWSCyHLfu+yCq6PfCOQzjoXfy1PqQtbO4+k5uMQXCywd7BU1FkjerTb6nArbQDhy5LcBFGZG1lvgY6WOLNklqWNcWla/U+wOubp0xVjFRPXRTBk0/lMwPt0reau4YeEg/e1m4kgBDI/vlnvR88FogHpfWirOPxuZTOxwAfBH1KTR9Yq+LQsYpZn8bZcZ8V0hjT4N8NGV3FgSg1aMMvR4MA7ACs7OJmBigvGYQCoD0ZNoWK8s7CH9RpRHtiuxx5tofDAXQxSedmd4kd5jAhgjiV+PlmllgDJYuJzTO0JGbpiXyj2txVYAdHEK/JAPbLrEp1B8pbJ52T2yZSzr5dGnG0xf0ae3PuSghp0kJMF4zOJ7k1FBuM7bc3/s4tVAGRrMOKPWwzkr0F+DCRIbenv6zvrX32tkWmEmX0F1u8fupIqaBNk59U8YEuue9PIbPNyhvccobtNlQ0SSR45asz8zesKcqIOwXoKcEBQsccmHMIvevWd/R0AM5YjnRURwcKGIptXWkEvIkHPdwz2q1EUfRkNhyOK9y9jkA7t2QJWcgr3QSagAwkW6S1T4ywzffh3C6uw5Yykmd1Cc/CeBPXsHXdbsc93VTpQikmhpHmWynoEU1ZJH0m6ntlokvJrGQDz984xj3A4RINM27w3GfENI7LW6arNLB+2V0Zvxjac/7I73LttznwzNUeFNTI0os81I0YL4F3SRRbSl9hsh3gr2YyzvSYkXcUWBxIAC1VwN5lyqo0NRlo0nwdGb85U7jXBB54NrICyRyCJgsu4zIm6fkRWF7wFzUmx963Xa9E3VdtL9YwitrMxDVobb6v067dI0C3KJJn7dYb0lZHySRN4x6zgpTs92PGjUYljBt34oEsV04jKez0N520HHYZ4Qh1VEf2NclglmNiy1VZjp6CXDSvXeXfYCOyZil33jTKIBjfysbUhgovjAX/LrxqCN+A/IfmxfmzCqWYMr9ejQdvCCAYYohEgBDmu7GqUhPPTe/WQYe/gg+wPaDJNp8fgucXEo2y+JSVPW+LfNh+MbGdRGYWCZrEkpr1By1B/ejcfz3iQp24HXSdrhKekuhYHgX3jQf2muoroK1/yweWT4ktVv9x+I0yoA3WepDdAWCkqqkXLM6SDPMhwkVn5SvgVEB+rclwpQBP/gkQDrfM6uTAKeV/d3MoerO0/Vsfrai0zOHFr2u43vFHFwRKxzLET+wfDtVcajpXsh5CVqMBbEIMoH3J4EnIcRCzxXO4Gpt6ud7owdMr980PFnTl4oRWaGJmWWnYSlKkTnWEGyyqe3xRX6HKsF60X5h6Ohg7q+KUezmneP/dZhPzzc7nyUQ6UbaDCJimuyEiUOKrUoM4X7if+vHS1zvOgBfISKhrEcVYc+ucou9NpnH9QxBTInz3XShozL/iMihseYnm82Yjs+4UhQVgfzgu/Kv0vzcBha6y6FQH6H+qBOQLKNLoUCRtcyGhMf5ZCWBfyxDBcpTs4KTNJXt+aThO96H8mkqhocFFZouwanOC79mXNsRXF6BV3nYxTX5uJp++h33sBmNiNtJL8ouEY0oPfDwxmBQsUCuWKonphgTEJFMY/s38ctH54bfidJNrwjrwWZxcUjpLjRaU8gq8t55qVK/VBk3KfrvaZwE/qWMJLL3ctTpSORSfkDpnhy4nckSZpWAXQaHOFIB1FBMFbDqYwi4CdfYRP7RL8/JHWh8vajGIcad4EhD5WEA9R5Ic3VDqEDRgdKUIo1MZGfXJ/1OeuTrVDmUWU0fsUH26oVUC1NO+IMbu/1A4Ah3AGWgxNa4LDsUu80Ywk7Vai8f4vynSGKCL5WIvEENPW5KaACKMdl6nyPbSMtAyY3IOSv/1WHPxkMKyHhBf8/uYmIsp9NNLSlQjtGrHssQcwkmVA9Lr7PuThrXs8e8XFcC9WwvUxHbm7VQvrqrdyEUMz/Z56+K3gq9WNyOEQNQvsVdOrsH/T7wHQnZOYRvcovD1UgeZB4xlCTmXu/F1NZJO3nDo6bS+C8gsnzNpVP0380/5DOjneuGcXTM3d2aCQvmZlYl+sywoxalOyFQsNlCg9hKCDMGu0J1qtvTnf2GpCeeHvq4W7mIU76HgTp9GR0fiGs/CZgvg0TlBsxmrgRzStqR8FyaF04XQh6KFJSASshQcKndCof+co2dIyllPUcOaPyu8uI4C2PJYeipguPs9Qs4YJ4vYI8CWDBjuk21t9IZk0o4uoZjlw5p+kt+vlHMXKqum9eUYUTDJSLLWpguRjZctdJdmMvdVZ41vItYLrYmGB5pVVqkLpI/psVfXGB6+C3WISOVM3RJ7XaC9G5/dCpSOLl1x27FPeuvBCx6m3DJ/Hm9OCin21W8jh7sYeO00bFiSS4qvTVAXwiODdxJQgY99y2Kcai5In2ogL9uVLBqkcIsYnzC2AJPqmzEb1sod7Ko5gTdD1C9dZScjvAJCN3RZGQgifZW5sVxT8AY8AJbeb8j7VLSA2JzGkhXULkAPpfN6ZZNcg1oZ+pv3kCQsPaB92hzTG3D4sifrsf0AWysTS/k6T9CS4mLaItDwH69aQW49vgq0NFkDWTjfCzeWxn0qmWU3+sg/ic6gJ4rj4/98zuQN3A3Eko6rcWYbtbcsbIz1F9ia5W79AxOrCzmJSV/t88FRPFjQgKA0p2JkYvNEZ9NKGFyDvUmyrNg4mtUjYphwXOhTnn6qD9K1hSMRv4+N1bjsXAxA+oiTSVWYHx+If+tEylkLwSRCBPtg0cGYwKBHvy3uskrKpj1NBB9huZ76Z0lWzA42+uTaSkKSPCEOaw8crpVc3E0mwlt2PvhehSOZwI2iBvmJFx2LbIvVYkZA+4abfKf9h/fbdnccHGT9g4Xigf39SJ4DjnrGmlEUXfHs21MazknXlSh5xbyh/B9ozkE+3SKmDYEo3waoPXl6Wz1koQ52xCXRiYVrMi8XcLrYyxFUYqanbwG7bKWMCnprUMUJPQifpjk3geE0O7dtHDuDu4e781NxtO3/MZJclMheHhZuPhMkG7w7BXmzdmawdbnqty7LiRI9kW20vpNTaHRe7cOip5Nesk80GI5l8EHzp/qQi32+8IIb20l23wYbv/pQpIovmizE9uC5E5HreW5BuoP3gRdlm0efaBtXmjjQXNpR7Nz4XyLgaCXqo0fjiVhBCT0KXqcJDMJQD5K7JR+vEg+F7mZTpjCvc1+G2qQC70WA8E1QCFgt26td7n2zL9dMztsmsmkeZYL6nlUwzfFo8le+0yzMGlGo1uSDjzPQuq3rho/G+Sb3MFUskMBtyxHmioFsyB7+2LXenAPN2xjvGV6HIhAbwwy2KQdmeH9/C6hO0cQhfyB1YXShAX4QCi0VhjdItjMyIqzwL3QRDyEUEljI5i0iBDUJOZYe4lBIhCITPWLVQkBhSa+Qadu2VTAR30WPnj7kV92tz4lB7UxPP7NKw0IfpqT5ES/6I6Y1yiDe4fHZvc23j0qO+wmP+wxTSBf9igWdFsh2yOVe11L+w+cbJFm0Xf95suvR73SZVfjwkNGauDz4MEGHHzuXHn9Q89bIjcLLybtaCpZJ5gJWRiMcF4ADjRmYXbKKOwdJQypW1ckTVe/NF2+KUjuM0w/32RDzsef5Pruwne+SqJkWjUTNSgouOgqFV7mrHxWuZJqdLED0QhqFqp/jIuQxwg3yFfAuA+nnfKV3NAAMXZEry2I7ZfntfSXwntPi/qG2Y3WmHHTpikNZHmFlXKRS2f2+E1mhhDVUEKsSRWqAxiN3se+8Vujb2pmnLa5oaOIftFQPYkZ6CDNbsAlCNmR/bKKiCtJ3V5HOXSruvqEIQ8raywaFHF4WhdMjmvQa581JH1ABY+cJvQXWsJ6FeYa+wTdqYMIihRKDM44BkjKo85Fl2pUN6d5vmhu6wajJT2jby0iVfQXTSKX0cDj9VneNtQna9yivzh98TFeTsZVLT5gzZDcGgTGTRoJdCu3GTy3W5vcd5WU4PcYp5b0Bqre6ItGwJD6sWrRJyywSo8mKo+eZc2tMpuQI/6M8j8bexEJwSnmQwj4h73mZjJCvKOn5NI/nhHSzEp3aGiYxOi3CxGYSzCZfnnhIHGavReFBV+h+CYhBDZsttk8/JHDUvEefQzKMTSNaeIUk/pLSUd8VKv2P5OJnNaA7hYKYFqhyrKJ63AaixzjZiCWjsIiNwby3NhKHihAB5zQsrhwCOIkFmB23HclccP35WAuqZ3Tabg9EfWhcHMIsjz3px4mO5b+NFR/mpCrFRBpSfmZVBvoiW5ybGlMvoo8xHK2X1C9rW0OI2JXxC5jSMTcf5iGL8t0RxE14hFweu4XeTHhNT49Mg0jUpXA7cgKbaQ/mLvMunP1EIcE2u/J0EPsFf67NMQip6cDmFAp25SYKPoyJN9FnEWSaE8GNNVLwzrGugKxnHVIP5obSt8BwuVFstpFc4m0z21hDu6ZEJcEwKsm8Op+JZ6cUvxeov+grMMLWQHSiM6vshBUbAyUSbSj/t/w2HJ20EqmtaKihiViWx897WVKO+TZjo2OVOIf4N3IHbUPlAhrkxmQtrnRmkHhPbZXaTD59fG5tPTMYu4X1RK9g93VcW5gVjr35AtOpBR9oz9DV4NIT1Z4kN/4kywSb/EdImFlPiiO3mL0jea4DAndHBXSAD2yjIdm6/Zs/Sk6qLetqmkyb6jTuPpECKnuLKe1C/mMgDxP0IxnSX1ShCpGlyKjjxduQv8sr3UkCz+sIet2XwO1Zc3GWN4XctBzD48k/I67TXfapxRXKeipFaGKPimzz5tlTuz96uAEHZobYqvxOi26YaJPK/IRHVruJpui8rVaI3woqoPI6i6SLp/v64DndFiLb3IXf1BFq20K4yLS71BOCE0fScTmTI7JyqBbeFwxG1TqOtP2tjFX5hoAjy0FUFpNSKi29glRYBicYTOA0e27dPgmbbkxNkLaHrpRj3pDa6wbY1+QWcPvepVASaUOlMDI9q3PY6qhmUVB+gEQE6wzh8zClwNbH518jOfLOEZEsNjjHKqPwe5YTIfSOMTzjDPcq0cjz2PgNyWn42ZyF5wTuiLX3trOcPJoX1Xqf2S+fDf0SwG16v4xCKssuQsoFbZ5xvnc1XgP8R1nDEK5BLa9AOXkiR0TcwT7c2jD7R/fkFBU24S2xpkY9tBb1hPoKFtxXPJ7b3KB/Rndk7+fSx6imk2/+PzKKLFkFmBPvEv5q/HOR3PjwKQxyHmm4Iq57CnDbAAfFmTgR2r1NFjvK+0gzUhZSMKhY4e1Jv4ghZ0YLuOUYJJSQ5bZqWVRx6NFNI4yXoqpBoUGV3kqQ119up7//KgaOItA/gdS0MSTgf6HlEU4/Dxy7nNX82zsbsyjfu9GNpuD/GbPFj9EUzNh++fkg0ONTmzTSyTpT1JionpeNK/kXRTsa9QtUmWTL5Ie8cI0vL0ZWnz5mTKIKkDDVUkPbwITCYCVSRT2gA7Bq6efUs9NzLBHkqeQ3OoFoF+SpGP73vLV6mRF61p0rGRKbdHoBZ/GKil0iEDBwjrjNh6scL/jv2Ic+myaICEUZcHm5RHQu6Fe0XirvWfhVxG0E74L3KgI2Ef4iYZacNP9ZWMhp2rGjlf+bKMuRlmjCA393zwhfyvq6GyAuePxACYUALLBWgyh03sMPTFAR7DIgAVl25p/smq5Eg/yzHvS9ogaiwXOUYItXW6XUbAUDbRhtzC3Q/u4W31fB5Wz/NHw/Hpi7Jbq3wdWb07HlUmTZhP1d9YfXn4EcL97P2vO1CLoFc+2DXC8rEsjvjtiHQhJ2i8tRSjreEqvAtpq/FsAj1hP68RKJk8DDcLxcS056yQ+JX+qUO5S7jBFaAKPzCmcrawkTlEGy/yZQ+Lz+isZ/FuSECCDg0IDwUwuG7c2H/75IGJY+2PVVa/foiv4oUMigKMkLy5zVFr0GQWXdXfJsAIvDtGOviGpah2SKCJa1c14IJJHijBJr+WdEhqjyFFH/bifwL5mF/3q957Dx8MiJjqk9Ja+9rUXK2yDXgDmbmZJKDTJSJdK+XLJ5VSwFbjKhb+gzC2z/Za7HSOc3ESqKGlKr1dGHkQKM+YL8oXynXvO7Lq8EjZ5VnN5+ZqyPWZbxH6wklDGDsfCJLYC86a3zhqlgVKf3jh4MxiC8LDUJ2OBdCUUJhTVrDMKo8BfISUrIqIivOKVONiORVW5ZRsb0eIDM2iP1G+YOowYSkL4E5uGLtrxsXv3XPFQNlcwHim+xwG6O7I3Ok4kCUz84+3JfVoSGCHTo0NeSaWBDaXnUiWHfkgwv1GZo+xgB/XlXe0W/tNL8FrBApu6KoKhkYgLE2W0V2xk3FmufVOxtqK7ALO/VhwqkCtk6aGnxcw6F+SZ5FID4Hnw44LXOnhK6cfgfvpZamNrQJuG3BRu/QgopdnYnl/eNVhY0PrE8NB/xT1/ADvPfPcRBgriFrlrtkKUYlIlNATTKRvauZeCtsHcnf762ZTfj5wuv7OGrqHI7hXrz1TX1hvMeRkN90CAizyYQnZ2jZUIzGG/itNSR3ZWG/+V8o44UYBiPWy9j+Dk3CtvBXpFxNwLQswM9qA4xgq2PdNbIUXm0T6HWvvMQL0is3Lo3uPH7suaYFVSsqgNGZVN5T7cB0cn8VgnMDC9jWYR/GrVfHiFx9466dCAD+MIKnIoC1iVGmUdvXKK9gsvGoh8nEYZUsGoBPn7bm8K+htMB/gJEzL0VdDkeD/jDpKWEtrRWzQWEJymiqJ6qg+zAnmpkIX3XFYtEFZ8CpIJKL57byL8KDgfnPjkgd3D0cb1IWWh0JQIKSb52mHqlpheK02fpDMjCXjadLyb245KehrOYB/OqVIlb8nW0p1JVqlDVES/asiPYUT9jO1Wl448jblZrE0E4kXvSuk7nMsV/eZ0tpOU+CRNn7cJ9RNmly0I6JHkNZqpjmVBoC4C76ugVh/YkJ6Qb53md6SpWURUyjYQk+Yc3Xqk9z8cB0Ws6QFVA9v8odSVrP1AWaoyOnFGFeYUCsCdU2eRE+HWSkCFhVdu/8GVPmup/onoCSLjbT564YB8Zus9ikdUok6eHC5ukCXxGj/mK+uZSeZdY+idFzSBbWEgDtd0A7qszpJxebb/pX2HQgDDsG4+BAi8m1x5H2aLL4RyUPaaiAQgPuebBI+fW+XhaH/1PO6ZZtM8hGNsLCwlAm3AjVn0W/kcQbOpGSDp8qI4jsdiRLDx009J3whGZJlqh4hNOgwyVFgpAwFzivyukaDOqPETFM4CpqNHO8/E3yHyIRP3VbR8HYtWxtTzeDjQ/ivMxYH6x6+FySb+upcnCCE/UzKjTu2MKudJBj7KzIT8ofPU1UtHug1ZcCVN5/vHvjrn/AcLzFyfEYPizspZYrseMY6zEhd9c4kb8TSatpeurxQQBHigC/2V1CJW3kNEy3B3l+FEYh1tuh1ldUA12ZbKaB+Fie0vW23He1QK4/Pw78LjA/ewryJ4W4uKjOI4HBw3dDwZH/xrQ8p4QWXA1pPQLBmtapCQ461fVW46YqqSPhgliGrCxIEsVxMlcm5xhQN17+CCfZSM5eU/SaofVb7pXoeT/UUO1o9md9OMrA8tCazoGTP/1wfoRbsICaVzrIqyGgYWJsD1JHuIpaWCXZK/w/BWCrM0A49PlMZSE3E4mtqoTObiZ2WYIsDRH1VBP+HR1p84DOFO4QNGc8ylpHuB6bL2fSU/16WRcqkJkxt96wmLvcWH+kDPWdECq1WR4hYipVGW1CkJrOy1V6aQ+yG7iGVragd3RlTnSSjt8oGlv6Qvby9Uy+CpUlyWaozHafqp0Q8dDRA/kV4gK/x8eynr3d9LnBPdHwd/azAIA0t1iCyXwlbdm8FSoy3HV39V4c7rD/nfsphuB1oyz22lvHxtMSbz9SBXXgXjFU4V2M+T3ib/p50qQL1VJL4D64I9uSiOHSsrzlsMJbRzTEDp/KhGDBLoi3hwFLY7n9XH/pUIomXTm2KPjbuxLeDU8r3mskA2B35q+eZftw6kS17BcRVKPyDepJBBZRG8rFz4F03litfWRI1A2byS/lGUEUJpwJND3pN36K7YkwG+gm0DxnFgniwT+SrolHZ1RWCYCTQqljycU1sH/k4qUoNj9qL0j/sbptGJaVv1jsV8tF06+ioijt0NiNc8KRP2z2P0BlU0tVos8aU1LOy2uJC+zYFheBCF16kHIiOSIPmBzhXpXvmHI/oDR0ynqGPtNp0nQqraQp0O5BxCYVHCZCNHMwKE19fStAjLeYJXqzT3POdsN56xLRFT21imeyNLYxBr0Xtyj1QhEPPdTnYSbHjCa/NAeEJvPU+YCmVP6iA3fCcdLFn+FA+xDHIcpVN8ADepoJcRC1TLOeODgGWuetIpzeby8hYbNEAkyVkptZrFlISXStrXbdzQfBzDooBWQrbuCSzwt473k5HP+6Ndc0eLf/ODGoHsNswXlFBOsCQOMxp9X2ZxqBic7bhSK1FBNqamOUPk+u0OefY8XRNvgB4r3uBVvBCXQP7MWKxndcloyJbbxj6vHlnUHVNHtpk4fPSKAe2aX1/G3RjLse2SfxI2SbpCHBibubVBz+cJ2ZndbsXIqHi2YD2aFMFEoR5ecy2nyaKiGkWcY+jfWQSPmx6aYUjk6xrFnXEA7d/Ig90v0Z1+G1QhLy5fBfnEOOlsFepKNjqSQZYqaqlOrYYxXsbDHeEJQXSO0Q5kouay9aGDKnGxpclOOzN+UM+6pFuNfcHuD4Ap2wdAendr759Iqtx5C9Yt6tHF8KAp58AtEbnY/ukFzjSg06hWYI3oxbxg+Oq3mvpXnMEvXmPgkTpexbK/FP0enwsXEL+lM4ywqcIJPD9O0JZKnFMo6yxTv4y0m6uQztE539qY0XNJGknfMXJIeTRE1SRb21lK0q5IgZvfVzIMwJIf9tDW2Vj4LWh2XQBo+ruh2eBrPP39Hn9kO1stNNXK+foS9fHb77Q87NjurpOfvo1uYTUufWqRUmfVaxoPfdi2jiB3XMNZ7JPUtx7B3Nvm6xedT/BT858FI4sYa/c2xOZNnf1fMzUvZfKZXKSx7Re6Rrcv7l5QITIcbj/+5JemuPtlaBmVX4TMD9FCHz4KAZDbJj3hJhRen94jEZcHRFWV9rqNFDIzL04a2NKOHXcUCoqZ06xcPmiH+KCFkMyO89BlpTTou6orzVzPZyVl+ch3jTre8HedFi5rKVfP+S38b4vFwmYT06dyWTKCKiHY0UNwE75ejasNAZ/JG/LFaBT2bxZshRzFHnC0jAnN7vFp9NJTcgTUvQ8FopnXxaA0kI5Ec9hec768BS/jZZrVz/0Ot62tAhzsEL+opdipArE95DhXg0/IRrZVEjZ3hnYePGl5ZVjONcACXLaXHZbXq6bwMs4Fw5BVhYsjp+lKODxtJ0WsT1K60HUT9XA+F5hXvpFlngnnH9MGDr2JLM7u1qk6b+ZoeRx7l2tzax2DanHnx58RBhQIpYLIfZK7NUhYBNiJNwU4T3GcJZiz+9PU0JubzWAxe9o9j3SuJtkK8AUmeevUBnH3RKUHSTHGvOAIiVliBI/gm15V64DOuwLvFeqt5TjAl3amwq45M9lEwcpjWatHGFMFKZbWP/V6/HiQHKjZ69s0OXoXTkiFVkSqG6WfTHerIhsgFQM9Nw/9gCJmf9CW/kPumVF5TFPspDQwwcGrsmVC9zqAPP5AEr6tDYfyWuBHiliynyS7JljkenARwvX7WDkmCTXtYJ3caTg9TOGI3z5F9oLhpRB23/94So+4h+5wPHYN0AHfU4wOXMQzsuoie4WZxG9Ce23xoyOTRZJNB9vGXUEhwerwjz6I5oQx2hS97bQG5IveKrgmhxJ/YUWB0baOTkZeS5vzQzfOWQDR/WCxN/R50o6wlW6535K3MdPMF5ks5yJs2UzgCPcSQjXUiXpDjpBgMxow9ZEO73mqH+PeFl5ShsFiUdeGkPLca/H7YIf4K9kKYPT/dY3CCYtjRvhG19cYANb4rr3xArzNmuIaruDWZ6X/dJw7UWvLLjfU78/vH+kitf5RXYgg7BYNE7Ocjc3Q5VhPpgAPQAz5FhxRNbIzOhy6vLgz3LxIBqyxnllKyod30Yf4WB70+FhZ6zY55M6hDuQ4set7WsL8XeHFcW4ZO6pSU/gZ4mNuY3efWcK5d1QhiPWBbEcTZf9M4lMXd6lHV31yBoqxcMvy8ziPKa8w9B1Dskpl/qbau3GCF83uoXy1L0yWtvPPC++EeHf1N/V6lDlxtu6zR+21djR8qaG3NgvTaRaYbTy3d6y8MUNrpggdf2rmB2RCLQZ2n2Y9qlOscvDQ8WvJ2susfC8P9lbqxVovYGg6mkaw+NVjXr3F6yEWqnb60uslidIlk/6p6LiK6nF4xuNF/0j38NbyEAzNSWlbRyRJCYw3ah0Cvnru9/Q+TEHo6jGNyBgI70Jcbw+3NngWJl9gBqbImW+d7GDq3bOLb/FkO8Ef5spZ1yEMAau/0C2LBrrr39xV157cDZ64UeVUbEnzM+YHuedqbVmGFI/uNsiiYFX35Flpsvnig/ZsB7L5f14S7C4pWzkKC7WjGgIQzwWxhth82z6VRvnIK+Ya9kGiN22BOxYy/LA6tr/0Y8QTHoiAabGYTH6ToeNTAibKSgHFw0JRXWrfNd6Z7Sfpu7WNNHNqmuk7UPSAQ9oa2QpLzBZS+nRsVa/syIxguBZvv+4cN0vTZndk91UnF72oJP9DKcUGeOKFYZqCV5IXP8kzTmG+JCaf+qjjyhqZzaiRXyGYa+6fGJbZHzVvq8eTTloqwe22u0d4I9YwF5aHvPO2hG5YCyPUzEu4aJtLaqH9iRYo5Jjdti0toaDJOCXcFMUGRfe4ASEfezyeSjcRY24qIn6dPbA3VLaKHs9EZ1E2ajuNyqamc55fpe9+2bs0G83PKhiauuIAZefnJ913mH9+miaQOITzhss0Re5tozwwPUo4wD4V2X1tDRDFU2uvyBYac7LKISlUwUO8LIjHsxUL7aQ+Cp9TtEQmxW/UY7l4ao4bC7aCPSVmS0pQKrK5NRclLr8HIl9487Vfxick8k3M/K5bSmLL6SW0p2+V8ZRX2XBpd8TCN9SCTSvYOEVHw74HUbH1JjJahYty4nm7C+ZotHcZo5UmuklkimQy6U/smlAP2n/j+D7TvlREc+YS0wqJGbnnZpWO7RQOISTe7Zn7oW1FIW2isTap1nNBnB0NEIQenJG+RDE5ng2B2pTtpVlbJqxtO0SZHMqCyrA7DFa70IWSQXdLh/0SA622lO36YUAD2Mr7eVKuokQWj6J4R6CWftZl5sKwFZ5CCFUkOS7oRn/878LT/39TlG9OSvEqZz38j4JdXowYWuxZ09WgxUwTxA/gsO86ukm9c+f7Uh0unUmCoxLKVgLuJixlwn5ROVCi/lulsK+rbCapr973nPHQtiRhzNIy+yEEqfS/QJQ7zUinT+nmIJ93WnWzBPN9FXik8ITl7SCQpTVhY9UW4Z9zyu0tyNxQC6l8KGNUc6/bXkhF+cUO+W4WrOt+BTMklEC87h7gS5re3N7ChgGJtt6AtT5/UZkxvIgYp6tCvOt8CRw9oPKVgGnF+jdPB4KBTLisTxO0aKTgktksqMs3hObHu0NOfDIXMAsg56pdyqNWqaCqJ8lwcwKbyS10SaPsNRjdOOBOaZP8u9ZZOR2RSBI32oIoHdjBdGMzFV3avd3seJGUabYdpyoNv0buyt2vF4D7cxPBDd+eMTLUVM3zMwLCVOwX0uAXrmk9jHO2oHshhNpU7/pXgtkP/SVPqgf71ze0LE9+U3ukEBb+1LJsuCG4/FEXmpFZDEIXFYHNKQ4ps9Ic9yrGhOGKAEcT7wf4jHoLGy3oUo+3wtn0jkl2+NUwgn0vo2xtoWriOGLN62bjb4m0CNjA91xaoYUx7ZYAdJkE/gua8DlQyF4sRfa8hwGMGrLTN6lDgf8F0jn3G1Cv5Ek5EiqvU1YoDp+IcaCeswva/O7uIGqRCnMpml2EnR8Vy8sXzb6GHfeKGODpaFBcLQ8zJVzxk2Ui9YpJkTX1pqRyXvX349vlDRSrWqx6TU5KxNDGZudx+44gaxeDUfhNKtUhD/mwd6SlgOgoVZlrqOgbRvee/OJmsvqid6sLMvLSDPetMe27FGxcR63UlgBRVlOpShn4K8QSH3nBF0RR8zRIphhUU/Q9DfZl5muzrybP8g/9eeqekhxcW/vbjvpNw+3pdxMRg6y3yZ78XJDHrRUi7JpqOworKvExlpVXh/zjGCWxH+mBqXlu8LjpLkEFMpBojkaLwOUpdmaf7Qpi+lpgAMB8dbCOXIS7tGFhsbm9YqYl7n41KrIlWfNhTSCPRcWS2q09ATjow+JSJR08ezd8jSE1PlwhRIzg5QPDJunBr84Ym3bEGZz37MLUyYIGlj3gSaR7TIzwgKMR+ZyQ1nBuFB1XLH2ppWMJWEsXNHREDkdIrBnuwrUCAAx8NHP5Nxgx6tYKMZYo8fksEWd64KCs/tE/zmZUx4tdG0qxV6m68X5/gvr2RPikyFk++WZH1KO9Q3WDI9gk3Ti8MFEh/sI7jhmNJO4YyLWEV3qlI4cZje7yxGaVtien18Kb34+XI6axHNBFIrJ0tjG6MLWxOQbbXUskbfgcX5xMp3jvdDT+dJtJJIpTyDTyh8o1QArzzVGikiQsfMykh72WeZ6pA1UoinIW9fcmlsvCaHVVT//gquEllLfXz+rov+0Zp+ElJgICaXjAVm6EIpVBrktVHlYJbtBmBZBkf+TkoFHX55TJsTK7x9ksXaZ4xkysLjlUIfiqOew6Tncvak7YCaRTlmZt2XTX4R9tZAgsi+UAgNMg4NePuq+XT1MCMFbU5//WuDCk47Kqc5Z6c9m3kpRbiWgR33uXb1KIHtlAAOpwclWUk3TBYpNlFqn3wqUpNYicbr5WGHNTebcBLNjHbmrXta9b4mlejScZ8VmBIbRxWydu25uGHHjjW+jU8unkgIA8VAoOswG5Av0Rl4vwxLwzPzInTw2yo0SHZkb27ObeTZ1O2T5wU/BFHP2JkFTjkz9Dbzyyt7Ef15PxOc5K7nt1HMktMKiixM/U/CjYl6OIIXZdjxfcIAQv5176ZDzqXmz9aWeDKRtn6ZG4TlnFq0hvX49Snq/aK5NRTPD7fielOxky/KBZaomuBW5TfzKcm9nAPLvrKrPwpDwQsRggDqSLNndiG/4trbN2ySQTSwlEGBbbMGmKb7DYryCymJr/PFdB1cOhcDQRQ0MticxujpsSJFPHup39logPTLsie4LqmGXN68X5qAa/LbrI97rGWX6rJxyVDr1WS+4EfFIwIA36V2fn08i3HMJbfz6HgJgvrhySfL0e9o+aspuWm8lmLMjJTf8rBfmvFrD6+X+cbRDKyq/S0GKtUzyMiLMefBK+O2EIiw6+KKZ+uPlHtA6yPA5cayaHizqwL3dURYZdNV9v2yc3htp6fmTNLrdzyM0qiVTJeL0RK0x3zfuJrStj0cuyQxbwK6iL4XnJdrXFrOVX6q6ORbiJi6isyvVhwjuGo7q/VRiuMtylvxkjTFLm7d0dUlQBhZd6/6lAIoKafMXUlYE1DF/iRMJW1kMRLcumsr88xGj/geR75MUAYnBfT5HdJ0dwI1PDsbqFOhQtbWDhFZZZnCTHobBdbx2amJ4ZJz6fKX3H05BmjMeWQUXsxxU0qRJfngV6uo54pyi8cMpEuQq7PvU8H0WT4XHUKZEe3XUSuEiPgUyf3IlBi70QORaMoJH8x14hWY6mjVFWc0D+1kklzsj4SVcUq9Y2GCIHpUukrHUhgfMevYN9sYiEZpzK7N/X0FzMI+0/6Ix3vDBEpIx1X2T03CjbN2y4VOnRYzH6v+aGw/v/ewVtSTTdWv3lSSl6sP072bvm705jeWgm5YffkLWl27r2wi5bxMPP3ezu+EcNQUECmBngxwaGRdqR45kpf6BkJZbAE5oEm7uofTagHA5462h+1v/eAdx/w/WWBvSHuaNCFbQZ3sq9jfA2U083cfoi03G6kjXfKgbTB8JY2KvAPi/OfopkKauUPQiRj8SkAJzMhWsEibeLwfmLTcRvqfKzmLx1X3FbMjTUZF8RWpGx/7L26+b/CI6qszRsF+W0V+k2fxJBQlf6vaqxsFLHg6crk3T6qMJZxMoLDL1399LjW5EC3yFUbc8VwVPEm366eIgPjIdkUV3mPYS4IilovyU526XwHb3TSpKrxBVExSyAJ57hDRfJN38qfl1HfOL3CFM2jrwvFmxLmTJFrn8Tdh5luKTx7ENvzv4Yaolf1UtqILQyw5txq6fQNN4IuT6MmEbnOvsgGRtmt5LXCGKJ4YPHAJjx/eaCq8VIsj+vak4AwU/AwGpcEZ7PFhDP36fPn/VLjDvrZkKXpwhrCd5GAfD4hyUrJSGG46J3S7DBpu00cs7juFFWfd/+KTiHgHbIkgHIfRhm2moSKVYMEb1lcvZtD70D2mdJgi/6kBwwNdmi3wKbIDk0Det8hCUETqMPXFnx99FJPOXoLi/Z9wKmw4TJmrJeVF8cF/0i49ietQE6zpnBhw73ag9/0ELBsmD5NCmhW9QUc3LQKZ0MJe+SqtuQZB5Z7MYtUhgl9ac3/23Q2kGerP+/kN1ruox7emH3npLYQjzuXw4/BjLlxpa7hg3hD4+mwOUXvLYRQlaLwxITa3rjMhEv87NSR5aSm7DQ9RjaSxc1rLn3FD+eRIVj7+tDORy3HBAGRwyKB5UzwJ68p2yw76/V0YBJ7qjF2tFPQ7lo4nysfey7/DdYJyWJEOZzjJthEthqw0hCj21ZQubxoTdFIGGIbs+ZobZa2imRt6DddwzbU3Jxb/bRNAivNhlsp9D1jTzSo2IffRY0IjtYyk7bWcd8Dxx4yg1F+0TPBJ7/y3lqFqZsDD9IkuuKd6mMbBpkrnD8Zq5MUalNYXNZNj4AiqCwaEnZRI3DAtGsgc/NUFdjpK95HwXLVZJkyM/d/Ruf1HWgmg+AlLJ3IC1Wsl1+r9YJ7uMbxXjDBrt6vLf78OKQzG0ET6D2YTQkvd4JgUoMWvBR84NaSykplmiJTrR7SoKO37fadNYwSkiRcdBW4WxGP8aoQ6EWvYHwIcnNaNj5fF0XScxLUhG6owTKCRshwG5Yxha8EaJ4tMGFYMCRhhZMZEpckaMqO+il0sEA4ODyWR86fLsIaGQxJRsbrnM5Bqz3EpHT+f9X6iAfz/umWQZ3bqOP+qsLDJyy/hidcDXp9rFp9taHSEgb78IzsA5ZWu/NkG6tpN3j6asldG/uRO161DIJoH+zfqiT+3hAqU5pTeYmsRBz/7+Wjf5R5Unk3qUDZQ++y3/3BWedBhOGcWlqPpFdrFw27R0h6zwj/Ci0azyzNbA5OVSwacRQwkXYJdcbijX9INbXZIGcnmF25DrZtk+CRxrET8+m83iL9vw/axyI3duZMOZ8i16DyybInCpjca+I5vcupLBRs0oEUyd93vllpIF/Qq/MWoNKLCVyBQvBZf5LcLq/8zRgezkj7STewh0b46ynx7f5t5jLZ13LPmGZbXpMbRW7VN8abKoupvaGZ4K4ezrE8SevTCHtyqX9S+t8EUjom4xR+zDqmywrjEL68OL0nFOb0YN0ZrYtsuzA8jtHEAAffREwrX5EyQnJqrVMMg912bj/FoJKOB5oa1mS7OWLWKy8Er4vrxHdILP2TdpnV/PSO9VgLQy0GV/5AcJXlKBudv4GWmn8ZB8CKRqUVb3J/2cbY2c8ZdUD6gYR+uo+uA9j2f6jmFg0VxCvwKV2gmotIxaCv2Qr19vTfvTG+BEhI57cOcAgtyR4lVTNo+A69y0X7V9S5hidWlOS9ss9RTLP4hJKoQ2dCSDCeRUU/J0ExGbd/Q2NfT0Z+QF5voXRT6x2X2HR9oOO90fvIHqPUi43kV1bM3j8foTkTo7pVoFigbhgUCHXYGnekznWwao/FyXTQeMhQwlvgHFUwAVnb/DvuQfLgp2Sn1s21jmLex90XeezK8RFd42s+hxKBPzpT8loOSHWcTUQgSnEbbm/zJ+OIej1Ie0h3xrZZh+5rqOZKdIUqcZIKPWwOWLMvgieiEOE+U+/2PbdMQ20ihCBmt0aUwB+VvjHOsasKlm+OxGyrWpHwYkr7TfgTtnKQSVOAgkDPiN45Z94ptolWDRfkBUm1HyLkTfilPUkZboQG3ckgk9XSp5+ky0RtFXat/GQuaeOmcQJHePfchmThJ7bVkE04yCOrkoD8X+VrpHNB9tJNVMsRbYrNmKwJpTq+CXipJUlTDtjRO/iOWH5DlvFdOTDvg3VI0ouYXbj5Yr9yTWrNjBL5ItyLAqaeblcelBhB8sBCXS0aeVfsoM1o1A6MiMv5zRvueQWYv93JIbNjdNIs1CuDD7XgV9IKj5qPgcr6f0wlpuXCfNSkdhy5+TprXBP9bEDS00+Fq65EeXLxrcIdhUAKrTSEco9YHKMlDh/YgCXgCekG6ocyriiDQX4KBeqEoUJBVGr/JlDfQlrM0wqivMzpijYo3gpkUDtPWapAXqjovFF/U7j43JgjW35syFquwnl1yXdfBs3jjlpt5QLI7xZsF8PTvExT7RWzZ9GI6niXPpCh+VnCDNIUnmqXGod/f613cqjgt29Fi5eMrt6MszqoptgrtJlAhPpqTGdWmmo+wOPMC4NGwiODhwbHCgLo32ttSVHgxBpYTa72GPksK0Io9DcfCQVs6EUJRPYu2ogAagTSRnai+y+aPwf4WFHHk6Ct8C68d5ROHcYlVOSyeFMVcbqZHNHs18UpPzjJRvBIuhO6AQSqhrbzLolC5M0PNEzm9sbZlqkx+xiY8I7nPBWkIXcdTvKSMKdEutFwXiTTheVSoVjHfI/UoQqric617TXbW0vfxD7x/wL4USWVybbrFP8Wk9Qw/7dUtYmx8KudNvzqtUEM9UEfiJ+bMUst+/mfEbHLvLmbiKLSDWwzEQrR+VLS9rafYcb3ubKXULEZJGvDHOvP9+mnV+YVLs6kgcMQK8Z2NDx3NFH/Z+fDUrOSFC+2to92y+5FegrV6Fk3hrx/dKIoWo+Rmcu/JtX2TGwpnbzNWuU4W3LL+gQMLLjabiDIrFVzkfR1OT+8nMJJXj71HTo+Vp8Qpjt5icfliZv2BZ+3fNopQgwRrDHg9S45A+6cbyNM8pLsbSPQMcSE9RmSHNopCNgQ3w+MVdjxAZzIWiCnz/58aeFUpZndsTDueLjmF8su1cIzdsQlJFPAW56IIIa/Hg84lbIKA4bPkAgGT3HlXFhZEvEKH9vImWm2LNQ2fpRcTIk3/WvyvjNVXcznUGkBfEu/wNnyopbN84lULQkv3iL/ifkmJ2iiL89UjOszIR7OOIax10+DilWxlOEbDwzQZ0hRWaTstoWJZ6nnn96SPHiuBFv18aF5oPndiiCaFRAvESBKP+mQvNWTP9TDbB5r4GUfzv8Sg1f/8QVCqmC1iJJt9Y4NmcD7VUxF0Ys4/nQULAFWtR5DBFEfm1WxdQ1x5wYvZflpZFM5dqfeT8FWlNuS/DX2a38Zte8aDnnM8kW+HufhrTWUZloHsH/a7Oz91T+7xpTC2uZ3ui6MyfrZudFXj1DwheyBzMkG1ozwYlbZEDAZdc60/Wc6aIpI3Tg8KtXVPiQFDFWQmzb+2A1aJ7TrWDcD1Yo36mMkXmio+cbShcG0uPkVTJGr4Eb4IS7nXe4tjTCFlwU64IMw3ydKKJsygYbo10ZuL8NwuwNuLj7g0q7cR4IBiIqdDpmoq2a2TOZ3FmVWSdri6wCbHtyZEox9QRjYE8mGuzWoVGm0WMyiBeWditJxKXZMXfGPRAz6CHvo2hRhs5aLoge8c3KzK8YhHIr7eaxVbXP84aaUzlF3sHdbmOFZOWIW4ORjTneovDU2QNGejG8KLaMIpjc3cUkFoN8KMo08NSn8BctQ2DwBR02KymZPSuhBcyh/iX87Mim2dmk/7/cv+9jhno9cqpA6YVdPAJ+pZSKyJv1fFX7ecNndK6xI9WorxnNKnb/LhdaNfp7Q117tYO+Dt+1j2MNJY5XAt3YI3NTELwUiFj3n4BXz+ypvozqcS/vPc0a8qgeiCwtmq/PNriwavLKhH5b6mAkdILAnFUgNMfU/N5I2UVhj0ic80WSm+5Uq9mAuZcUMD8BpEfpKhlFkdzYHfa0niTGrLrnjNRKZkfwmGH1piCFzcG1AkB9wTkdZyP9ciJuXt7iTqOUsK1SCJ1DjHV98R0SyQ0so4hLC3S9NZH2fwtZft9cllI3XOiwjHyIlM/GHq/cwr48MVXHMqiBFK7Y7FY+6oj9Iv4rl2b54D1pHaWSbf2Ia1nzL19xf+U8VTXX1Ya4vhsxMNESJbLbt1UcyafsYXtfuJHXkP58CHBDRCA3NWPTMgqZ9x1ItJcRv6QzpdFKaNKjpmMMqtXbzguJO6eZWXwWwb2HaDcptN37VrFhqPxXSztFg7AX25k2qNjehC+Kj0jFiF5uuLcNaaezda4HfcvbMT8gxrViPcMzYbdJKqshv2X79Ggt0TGrM0hUC8ZPY6FG16GGKMISVf3kQvJFL0UdKLZ/VrNNrTdADy4I6Zj1yyWc4QuPDxmrBeYc8I7681VavAiPhPhdywkwPjBD50q9QdJ/WBDROVPMUDmcwFtN9UAd/VmNjtzaen1ivZP8YMd02bmVTNWLNnYt2xyGs9USy9F6A9LNPN+KwksAkOlXNq+7bPznBCXNTzCzbXtKsIi7C8WPnE0/YoxUjR9I0rTS5xc2bjfk4kwuHMchJyIvTmQTSBGj4iaGWlQMDT1dtXn8uG4elvm5LXJLULkS658hTBxqlpsPsurU/eluH9W9wLZa9LgW4MO9IRnl6Lp+G3BV+aXdiAFddaFQ6WaTbyLBgEPLhQinydtjgHG+SV5bhRGktcuGjEbeWQ1PhKcUF3GW09yIEo8sCdK2cX1z2TlOuJydM+6qxvVnjuMpvmWMiQYPpDAkKalRsoZGJT74fJ9xRgoLQs8LZ+J2VUpLHeF2OxpEe6sga1ctqQGIzoJ57/bgTVtFsAXDbMsMzKbqIuziGDpYEwhw1GD0zWNN16AyeR8b5WnQXHowSnRkeHFGQRiW7P+e/qZ4xbYJBpFidwPK5mLpOIwz0N5Y3VGcqBKtXXQEkafBE+xU1EyrKbeSv89BwfUznE3jvuWOebuFx729sKVsfY6Ns13QvscOBf4Jw55mebB2y+ylmmlamHvM3QxsIT8p1b8S+Y3hCgX3Ef3ZbkHCxYTGfNtXvy3oAfI2qv56B5DKxi8aJLJlzG4/u6hIgFonxLt6UccWp1WYU4g3pzE+5V2Fyy709o9HMHEbmQ6wsIKagK0ABXNfvbzPX1jeWpJaR++xGbsX5rKxjQfmC/8SW3kvOZabs+8zs/QMp1PAZfIo/wqQbp4R1oN+EoNQuDJhDyePCLF2sheFMwKND2stRD7p0yYcYWsALs0+QE3twKFfsVEGHyb9uBQUOywLVNug/hiZzyTbCA8kCEqzVloHikMDhqMKihXTSlCrTedpcrkqjqTWfe9qc4NIlJhRI2qWi80ziL9fMN1EM8G91MvVLOqPsgu4l9hpg9TAi6yMLuO3UGkzIlcOTmfFwxXrX7DAVy2wiK5iVtIZ3r4VhBM/+yNgONsz0KCo3E8wOlonyTNNkkdmNCUsNZebxD6eIuezpEMdMlQ1O/I1c+yi9+Tg++oHh4aSU/koe4Do1wWP377Ii50YE5ue/KlO4zYuythhxiGS3xYt3mFvVFjWluqeLCJwLCa/e2eVxD2IBtcMnUw1EfMlRglr2mqKdwIVdg2XxKxhMkIwzJwfFIVqOi17Wv52po10mvpG9Vcdo0r6E2BrhT8C54pseMUbCSXhf/QFAW1OGpqY1G0YwiS01qw7Y4JLBENZqiQm5eNRCW1iMTOCYk2UUkI5YoAIJLLMynmepkOoKG47Vluiy6S991BQxGqctJJGZ+rkknPJRAqgBG/ZU+VX5xCqXtHqweTTNsiiS35+dqstw3PF1EjG6bt6YpYxi4YVIbP6N5xiJxEOwHpRhc4f+LNF7BMtYHXRoq/Fak5XS6XIDjMgPOPpUZ0ibUeNYEeevKldaCpqIvdA+PkreMrKPGriWcFOo2xxOSY1fjMZVNfv91NfU2IdaeabV1A4Ihfo37vAaZQ9HiwgXOovIp/XKt4SPekOSojGskOAV2R8y425b2PkbapHBTastISZvOdUFdAiOTW7kvUanMAJYov6EzzSmrmkV9C8FB3Ld/XqcYpS+VDBvaxRis9dLe3Z9fR4F6yq5rQnhyPcOaFGLhUu+u6965X9XpUhbNeTFLiSbxtRHxKIH3VtaRjSXcVPQCH7M3oCCAWn9fWNkbPP3s4+hs85WWdBnshrcVz4YxqUKLiElYR/mfAieuPHTzzTv1YsQ56kOohQMHf+GWRJ2mnzGXSImWLXWRiurvFuKfy0QpgjRB7oiazANeK2FKjoYjUFuX3DxFleXrJesfkphnTfFDhJEWWNeD89DjGZVyjJDvdABGnb/QFkIOiUN2HQLemaMgmsviSAMWCRfBG/F4AN2/ZNQOqxBMa57o+9sd0tCYgp+FNtLEMGKbdOGSZtQ6cqR9sYlOcecn4/CfTslwhUmaBJ8f3DSQuvcKKC2+GOcEoxjvUwwJkgjolQdFhPysDdzS1hOmEFB9U54yThYm1QwQzJHiXZu7mgWIEj/1Iz++tLK7AVFbt6KkAQgRM5DeUVxAkR/LMLHhj1bKP4RtX4bMQkUaJl+CqJwk8XoNAybn88ISPqjpXlR9ICJ0Y+mWf5UDinE+SeD9LXRqzdD/Z0m6d5KSWygJgcJ86Ula/mZoAN/JF0XupsoE31dkcF6VsQ0c4jTPNPJuW86XFRobUXJ8IXgeHqYcYB1p+CWeKSUkENLMSrHReE1eRHGtlaDvtl7DbEVVY8rTJy4cADQ0ECRJrf5nL654Gn1l40wb88SWcDv3IcjcybwT2Q3eGSO0qux9i15VYEI3y4ejg8fI2EzqHvskFemM2SM2IdkYk6t+cm8MyuXw/j/u0oKyMnYQ/WrrEaFLSuMXmwugG5uOU4cS70uzOepJ0psM1x3aeObekiknWJgj9HSPRtGIGl2Qme4XtSAyUetUdd0x+XNVIrcjCT5GgMy38hmfuYKJSMJ0AcsIQKssCxYYIBPw/hu4sRVHhiKsep7IbQIz4iITu1WYhQ6w3WO2pTX+6hdvIgEpoQJfruybEEEMGx2QcrZAfy0WaW7t/kNRw0pqTLFrrQ2Kplbr2NVPNZN98BDYP6zQxRdxzKffYwAXaH9EDQ9uO2NH9E5OX7jLbdP7JhnZGJbB/prPgzH2FGNEGy2ZEibBQW+cm7gYpEisIAMLfH5RnPBTyIJNN1CpZBUVtfh8TDf1LwwK3Yl57FXsRyTIE1MwgkOe/J3dMgP6cKWZRXggUW5RDwravS3Kd6k2cD6jsGKtWOiQEwhnIhQUOd+hH6ayxLWzNNo9Qp0sRLRszyyZe7YyA+o/SWkFZwr+zWCP3votPzVWFCz4hbypS/80a5G1sPejTgvEjzcXjkb+o3Z0UVl58LWbGdXXuPNTAukCZ7iQXHwiB3q6rzPt8h+K+j2QIy5SuDU7ph+XT5Xaz70uZ39skfU8l6URkRjNext07wd4uCwQpbq20zVE4uaGEe5MIdog2kaC8DS8ZNqNl7damuE+3+QzZD1/CbqaNPASFuWuIUWrC5dFY1l4wFgFGTThhVVT/m5UPyhceY2nnNtFr1YCdz7ZQzvVRg+EKlgDWtrE/IUaen3ifV3VKHgXB+nTbJj8gSFKMW3FlCOrgnl6/81SiMmByJdgQ21BwqwBRVb/cIgDI3/rKvfRB9Md3RNqw6qFuJdj5JvoSy99+L8seK68oJDJqIxxZDhSR830phakSH3uTnl6gdsjYHvzoO8ce28E4syNByNE18o1tU+q7A5SrcyaW94/qxzZK09mX5yljLYcShSx7PssEG/tFHWpuLMyr86myzBwJPLCyRmLfJikIK6KnR+KB9dJe9alijcWwXr7C2lDsXpDaVH1xKAH4KxzNmbOVdNlHEU9qcW+ljY74Saefv+DexUseAmP9qo3x+aadwjgzC3XU4rXgnJMOotMIZP4oj8n83UZyYAnm0ZiCq1bl5qLuOQpJCCzEBR1Mdd2iHffiodh3ALiW9+VA1BgHQlep1/AB/yjqyTQHvOtJoujjtuuhjRA/J3+ZV3mWvpeEU2nLGnnLb9xgH7P0BIDpfPt8jJBwrfOg54RI6BH1sean7UObvA6EeecO0V89gM7zWeKV/W/Y9ckrJl405U2GemgBRt0+WyyLRfYo6yLIiMwXG2UmiV8q0yaCOCfDBCsnsCH+l0TsmUfTInZW3vZBVZ93AcJ2LSTzAbbyGUugInUVMdDmmg5oXmsrGVJe5SOD4aVO2ntbkDTQOnt+Ve9eA9Np5rr4eVoPrP4GqZtGF/pyCVNDmYtHC1B/ceCVw0h6g3r3nNZY4mkzTtH3yZbxJWp9pwPpDx1YfcVO+QD3v1xfEG8WmrjkbQ/otjr3h79LVKbSPHmyXh5I4VvpMjXZynqCxVA7AP87K1q0Zx+8gfmxcaAa9klsS8CaeojBw2wa5t7hcf0+8+RiHOvYHtX7hIJwJ8AS6ToKaYv490P5hZ09JS9/m1/zukk7DirYC3pGvYYM5zhEit9mAQo55wEV62Nak/w1cyzbojaYuDqKVGVHTabsUmR3iFMZyPbwjg9RhJ6wBX3OpdWow8uH3VRV6uyIbL99Iqwo4RuYE8NWru6Q0rd+bVvZ+ciyoB/Civ4ah4HSCa0uBpIuYjOTdvTRFJpUukSMvzG3FXDxng8lLWbEwhX/27/L6p3GXChGZf5k7agrpmLOt8rPHSn6OhQmRzzYhoPJDU86kswNfMjqbtjvGeaSTMcXg90u1HPKqlIrDojMd97Qk6394PPUNtcVPmDcU9DgE2S17hEYFtIEyvv0JW5OeXsMXlwFd0HlbMYCfJbR2qt0jXS42u2nFn+vH8kJiqIjtipkcd+Qee9xOzGZYsMjeXbgASc/mWiQmKD08t5ZMWllDJUHOGL9voKxY5n24g2ReH3GOgdgf6f8c/q5RQUYqOfsya1rmEV5JqgN8LoCym2pM+NnO8uvd21pzYL0mabu5X7ZI06Fk+ocUwdAyZT7G6qyk2ugGFkkLflk6aymFHLrbQwkiXVGgix6k+6bLQXDMn+zhnEZaJQHSypzf2c90KHEZSV28GK3qyebgExfdWqhCTWcx1BBlzTbdFbjK4pMLWS4ABAVC7hFL5hDrrj3FIfdvrc3Pa5k9l72Rjt8sT98W4upiqdKSbyZmhsEbMi4+0iUTpY/h1R3vLqYgM02DZ/dwUxE4FvqM0z/zWv08Gjxwpi5FAMlCHeCVd1Qu5L0PqUXhdryMgrQSnJnckEnhouqMEZ52NIfPcMibRtEBcavHxmDwsX/3zYE1kKUiyHPdshYA6pndrVILD3PxApXDdzsbiQhjg6RSy/ysqC323mRkDtsRuyv+v/nrP2N987bnH19pugZiWayFwDaTch/iZEWd8MGnqXqGMh91Vh10iJL2DC9D9NZuZgyA8J+NwPKwpzYaLsyiwXfEshwqosP5DdEgFQ3xJ6SeMfCTAKtGLR5THJoTEOg4gTNmNh/xFXoceiFhSO6bMqFYTvYZHYfHG5TBDMxYqH6ZBndnHIq/6H85ww9sV3yLa24yq9Z0E3p6OXseGRdcQ9kjBPTU80XMoI3MLgnH2wxxaM1QjFBvywxCXCTnDNG1THzqf/NatL15MGYrjwhLjkU3gD0yEPt4KEw8iTXTHtso7JqVfTvnQMONufm0363RG0BD1b+91CVHHDOMsR6zuPtThovyps8/tAoOAqzRhg8E6bqWhaev96dOfd0SCXYY3srkp2gv0y6AieU1fKEFRLPbfwXxdAJNegos500i8Nbsfpoy9At39uAcoG00NNFLXkmO4w0pn3FRqoIxbXGsEiAu/8brf4HqAFSiuETTZ/fFCo2CA0AMlwBBXCVp4+W0SvOH7H90TC9DRNY3SGceDLeL7PdGK6oEX9ZLAUDI3q+L9mzuMbP8YAPXMD+3FcR4lZbhsbYm2yg6OalRe0kjE6XL90RO0mbnbA+6LwLn6sBtJ8FDHjqInCOxXfMDQnXl9Xuxh3vp4LXUP9iCzYsbZLawSXBwxd0RxWmdS/BCj6k3j3vXMHOGvM7BIyL9If4+idInYMQnG3RqYBwdvKR/O0XDf8Vsk640gS9r2oBbhGk0ACPecBvXtQrHVYPp594rbnHoAEMPp2rjRh8/eUdakFudlKtKbiIeP2jsmfVNgHQqXEiZgVLywVsyyjpy3XE9Kt3GHuU3RgIt9Z/VLip9IUvCriicZxPvjq0lPcCGU18O235o+GLAHvHbw0mkKxofnhjypHjjZAXC2WchD6XOUlp5aKPlxe89APwiyjvqfG84hsfqYFI21CbRL+8Osu1ndS5aZmrBD3RqVZezGanrh4y9r7TLe+Xu7BYhlEql7CUSpulR+rTi5831AmAPQxNUxGcVRcTD6FRTzlo8yH75xjVOOfo6uhsIyU1WWkpbCrUsKWshqF4m+hb42OCe+/Jr/Kr1eleyj/mZVK3QeZSYVL/0GwvZEvWwJIc5/DbmSv6WKoI2mu3q0Raw0PfqbJnsagRcgpqfy2t0m/yo/lPasD1fog2rMsNVhLYtNZgtjUV/pBZO62pnuETiZo7fqC+I+fJLpiuuTkK5Mmuz9X94dsO1cd7cIuebRmjKw5KIfhdxFImR4Q4P8H5piPpYsXw0AC7PZzus4lkBl7Axp06lCiR9Nhqa4FwXWop89mdAw9D9NkLMmn1GFbAavzfXYVjimZitavX212Hruf6aaDhBQ602juV7dkmpdeDExMA6VfwSz8smfyl1ZXZt5KE8VsdfwU4BpX2na9GbYJvHYeWxHmyF4uPVpj+8alrrZq9M1geAQxFlIkq2EhQQJdsWZFuonZEdNOTT6Gc5mjCRxLqioiDKcclF+t2B9MfyycjlaaTHwAdF4lKIZo8cvLV01k/NZD3pLm/+9xKO3O1J3Tpwi+Oe4nbKqw6XdjNoo0IuX4IPxcluGZPWOzc5h9ouXRRzdJkEDLbYzo+n9jpEdxqiyRqQ2J0r+bMJ0qh4LWZ+n1jfTAzIczaKc+KmprLcLSPZKj/fAnuH4zFJx+kZ0FWJdravSS72Uyu462L09w45MQRgW+x6eKqDqPfWcHIRDJmomt7ycCtCRpnMIVIN+s9xkDTSgovwPkZRINCoxDWx8BH9jRImEZV2c/MnfFfZaSq/ohDPcjQB8lLfoYUQgIRA4zX5d/2ISn6B3TV7CPk97J4bJo0ur4iCbbs1nBpBVPfERGXCa6BQQVrY4UJuzDfuGqlr3DVqLyJ3Gwo7Xio3WXJauvpDt1k9dcyZocnqzCktGOTd5S1s5MRGn689W6W0o+lQgqgypxPQBcsQ8JYnN2MD4DvNHL8VfcxotgLwBT2gu2h8jZMUy+mQIIh2u09dRhVDzu+1nBXrShoecERijNIW1M0dOibes+SxheBoCF1AdfQ2aPLC0CRDmebWbvFbyrGhfg2Ris9QQ9l1gLrwytp64dNCr+dQaJmiK0FhLCj4bUjKMjahADbf/wj9WR4zTGTqhzgAv9OjXh5rlHbR7ejCIOIHIJPM5FLdGNQFwZG27DNF3LvX6Hd/s65ImfB/fNVQS0M3Q/gj/2e2G57n4KV6zn6nUep/cCv74u6WW8hIkxQ2XEF9nmcLE7o0ZPF/7SSORXzvrpNBhL2Q44Tb7vKsie8iWUBbcgRz0cF8w/IE6c5FqDp49CmkZV9POTVxafTKqrU3RPmI1KG1Jmlhn0OI2NOP7nE2uEedWg+ZYoq3HnM/W5cBvFQ2O+Vi+B4+bXd26pzCOotqbFmxDsGRLJmkGPbmseWwXEDi5UIR4dJ6L0vsjISwIQ0K6RAPr2N09ujKIlJ/RZjrE+s5LVZaAxu1vCwGnowuGuTP647VyPePjTeMr0SYZkm/mbV44mCVp1iheYaSDCvkOc+j+3M7XQpmOdtFerfH2GeFuzLWaI3ZeWnVzxDqZcaPq/fxFjVYTIUjRmKXWCY4lla47qRBS5HoaZax4fYZuanbO8NGfMff9a+0Pxt75HgbHck7ymTVCV29fSpCRN0+YWtTOpOikjb+sap6jaR6J6/AnbuB/eyLXTiswRmFG8j5FvZy3h0SvBZNwv1XQulBRx7pIUKgyNt6OYI89Q8yvn2mc2JEkqWsSczxR8swc5iqnHuUGunFaiNGhxxLJ2semuqQzXeVOuA9MG3IWW3PTPMMpyYGfe0zbRtEMcxab5RHtnZWy+h5ySN6VxTZpYJM9mYVimHp5E3dVE8wndOefxpH2N/qWwX+OqC/LHvpP3WV9XWssUsEQ3n4jjZx7XGvu9roJWe737yPaP5fU1FSH8GK/09HocM2A3yWCdZWEk4WTRPpz1c/l4h7/eESH7knU1m9lKF1gFWSQGGMrMuup7dUwTPoVvpozsiVO3P8KhvcwaoTFfoN7XipGer/1ZVdFOKXWXNLtIbuSIlDsZgQCXGw4pCXBYPiw95XJap/LwqZRgyUh5acXkOvGs+MovqeoTTwpQKXl5zN8Obs7IB3FxJN/GBn/i7BIV0/nZyV0vYSilxa8Ell/2MMVm2d7h8X9jFv1sRBybp8f9QUThEvKA1lZdinm6fGsB2ijvbfaMIE1QYrDbwicSYx1j+MUhzXhrkkw925hZSD4tZTNKFtyzcqhYee8l1188yObkyjEcIz0VuAWt7UXsyfoPFKw7dVlCsVOhflDHPQemLbZ5A8u+2IdCfdw3JbvuZHh8eb1ZheD/mUx1932klNeZ2NyjKTWLx0AgwkdARnhBI2WnWOlZ3lZLok+DN5niW9feVvUP5QZTbauvhG9/E910bquaO25EILZNFA7J3xB7GOUWmcKXSCl0Ox99RdT5fy3p58KIo72yYqaE/5AizMVEq8ag1YjrmRhYlc4MsSWOujVK/vcIBfWj1mgzBkc/wnOZbWvW4yrc0a8nxi/I57UI2gZPWG6B52u/Eq/sG658Bw7GMwm3xqKuQHhG2eaROnssUQ21gcJasd6rtVzP0fsLqN2olSvz0ge4Jk+kWtXrBw7Dkb3WnigmouOpKr4081e8GwiE2IDY/IzvX5td6YpASpfls9OkyEa8jBfubvgmaUn6rN3OTC+WrVmNSCTGAgc5Tyzkmce2h7kYZJwsb3Vx1yyCXVl7fo7vGyAn8eNC7UrbCuJu9t8pOqFYyIf7k/isKULsg8k2KE5dK2YHA1NIgUjQ5h0wql8N2UlWy90JfnB5hDuZRf1yiqKrA7ZMCQ6WNI+/5PRqkFTHcNVJuzdyWD6JWTQDzsJ0J1QXLbyswUI1lpblhy2IN2CJxi/vCPuYvokJYJRQ+x1iWpSRE6imh0mKMzeUd25ZBjjaULIa8JtvpGa6FPURhKcMiWvbCTB6oCkCfNwk7kVZZ1xC8LRCvpPt+ymcQRVlTDcf0Tz2XOuK0nDHiKw5c6xrYxDTtX78k1a5UgxKgj/8LrKKZ+twe3eRkxK//WSqYtLMvroq7MWFjTQ9zWhJiMn0R3TgUl5erFjSfdThYASE+vLP5hj7dT/GTBQ2INBxSChS0ccxUP9haf7RpGJjHzbmLHz+rqWoPOvvcw9BTLUfBe0Em0tEWHikTARfK/qO4s1H1YrKxJzQGnG0zWCragMUiTpuAiMIyAyJQKTqiYP9JCGfxvFRM6gAZQJGoeItEqFC/3mLwJiEmZaLPJg9TQkvrI2GKXFeJFxbPpgvDSWhuZkNzCK2Bp3FQfIDo8HCy34iOtD2J4tER9HkQCJMKa4sH2gwVY1PfadWbWSZkKPmuUpg2AsQNoQSMZchanQ4lnbXzyIPv9fkyQwJp4JXoDhM6eqLnpdQGRe2SIQdkdWm+COdxNknyhi3ZXrbzN9TmWEYvQiZL+s++4dy99rrKxlJX5p6b3ejXBaOXe8uI5uBnaw4sxLc/uy8CaKmO/tzBDGJPG9x2wVmVTIcelkvOmyCd9CcgP1K/Elir1CrndDZIQfgbYT6L9ISXnkZKRHGzBXuQcLX4pZKtBjf/08+5aANeIYxqzP3V1aYSsOwEvUvypuOooaUMCICvagqOGQuJB8ZtEXVfAZkmvHkr84dxQ4IhGtUi8SM0THhzdLGbUBuduotOHVCzVNC4OH23c2ik7HZl5jvAnDcJJrssrFPtSUtI3NYsXdXr3ZYBuonZXcxYZixOuUhwOy2jOz0t3bv9+c+g0SQuuq5AMoh+o84PqZ4sw3YGRk63P3Q3EpZSMdqRnGplSjjlpFeMdH0C2SM2kMImvQcrV56cq862uFKn3gjPoiZc44Quhho9qTpe/DPhlbSb2SIKq/o0ZpvqzQtuzEasECJ2EutRmyKbJfgZmDYtVojWlm8eOFmfCD39JHKgXKIJA883w6GIbybqwJC2hzsNk4q3tuV5BE5QmzKiGA5cpS+kyBSqRLqGuzs6bPwavPT0zTC1vFDhosWWhGwKOKjVVZSJIOxckFz+W2u9cUGC3EkyIQxbyGuwgPkrR+lKC4mfLQK9N0nOSZeSJDswGaIpL6FotvOLWdsor0XUt2Ypaf2I40YO1OPGm1vB2oapbVqJCU080ir8e/ojmSjQjoQSJc2/+aHXGl2lwlYs7hnadm5E6lG/DjwtXbmS9jPZh1pT55QX9xSux6BIK6slF8rH5zdnndAIyks/+s28FXyKat4qI69Zfo7nQcftQ+SnkFHp18grHleVFfYLb+Sa1wK6qb38+YNjsR+0roPkDoBjTI88wzEwOgWv+TDetsqSxYDcajJ3J6QdpwGVFqvn/O7J80JtTdd/ytneIMxgBYic91e1SGnDptrfsHQlMi2bd5zw3m4NMNOUC2ynvjiOHtTaV8N0zkC4k0uJ0GYlkNhakMRxvN3lYliF4G0ruJR5VtDZAamOJ2JqWmNVMHDojkC/nzXwgYVxuk4ppKy5BMSYgzte4QTeZmz+kgxVBjsRBYLOB3fUe0TLUe64SkYnv9hmozKxrsUx6OTj0JyaX0z+et02jdao9MO6tMQbIPhejASCJMYMkjU6HCtvuhMbM5OeaDRQb5FEtbHnZnY2yWrPenaQGNsOt+s3RGVDf17kgS4asbH23eNMSUxEDgvJgUbk9+lFVoBorSsU4OjlxBjsh41wfksIEXIs04kAFIXSxM1mK2h8I1LiM3XxTDQ8N8qyLIxuWkwBLy6FfLxUPHSDiYTyRukB3O4rB3sSGb3+rvdNxdZ3Qyk/8LaNRiThMlAEaWLlG0CKnYNDEoVOTtfWOjI55nsbrw2n7dL0DjumStZlu93I67orWiw1XthExUO4tSHUsaJD2ASEMoFsf3zN5ABLKlHH0juN1jLFS3W/21FmIZ78V0bHfiknGYOhY0OXnJs1WzUsKs1ED7T9LeFtQEFXLan1m7uohqbR94G4Y69uthafIAhJ7rneHhmpeI1XkJg+bn7VuxR0L4O4HQvGDQ8+WZkocvGDOOD+34LWzkziFNmroEvUm+hlGERRUY5x94wCZDYpEtqmxobqBQOMz/U/pL0tH15G4P2unhPaee6MQU/Xb2TO0NYB7BpsPVtQX95ea/FfHP7Yrj9iG0kyaP94vVKiI+xA8rt+zin14Ceh9CmBIq1r5ALRfpPv4/RnP60iU/UZ36lzypEjEBch0VH+UvLFwX1aE2kEVmqM9LpqxVVCXHWkn09gbdv8/YM8xINRsFJSzw+ugesYSG5CG3lGDFE6tTyR6/3O/ZxMlKMmUPiL2w3uTQx/14KzctaYlZ7Lc2YrgSI4xgobvH4aVe0dhAzeYuaXdOTRD0nALxNpKx1ih7V/HEJYG9qHHyRxdCiQwtQ1aZo2Lx4mlhaGRoEaq55N+y0CUql9hs3ZBFa5RSkgmjuzsWVGyCKYw2i52zEZOJrfIOzCUGGqKDjCOGSCTO71h2nlVKYmJ21WalVJyM9kkAmfDmotfLYBES/A5Vwru2Sgt0jIByZYONq5WfFTTj+NLYHYUN1povMBJq4mY2uD0veBQcs1fDt78kDe+Ekzxuf4FqlIKchy8/UlbHGxyd0PFhTxefAoGMs+NbdCY8d+/31wyoN8buLKttUubO1VtYa5Ieo6ni/4ooKKxKk4rJKq8p/3NlyrTzE6MIKCTMptUMr5azPR4gaJnp/Vf4Ch2Zwbk+8nlw8kGuHbosu8hqQkrBESPnsWowCHP75npFMsUYIMExUR+tptvNkZu5PXmJ0IIXmj8B/Z6ob9Ah8vK7mXzZeBgzEgROimeUma5TlcTPnjbvh6v8Tc7aLGjY4hKOnEKx6N97a775X2GqSkB6qIAxmHMXRHZtnsVxDOdmeXBnSrHNEw0UuMbCOT8bVwFwS+bZgjOrFfpjrbm12AINZe3Ef9oVcSK//a60NJghH7i3EewZ7l0GQ7buKKnRgBLCa3lCpVacE/3AKjtk51H7iaMWz2VRmaKK4lx41CdL/mv+azsrjhMISy+z5OOcNtRtDZNVT4oal7IKNxKDXdlr52FSCPihAZ7YRKakGk7EfjOzmjwvgkRzidWPVu1nhcPvidoab2U911WuYLag3YLVBlblOD624m8bt0b1tzjmFOXw8qfsTRz1N8v/zH0DERbe5ICJQzIqX7PxLMfk/BlLTuWmzM8TLw6EoLnIqrBfCLGB44wwY1a/5VInSn1BEsJvaqG33xxYVT1bM3hHVnHJVqEXx9KD8krLlRz0s8HkZrZh4UHvLnP4c7f3Y5WyzjROkf1csnOGwSfXIxd36ApE9+LKZleKs/FRVM90jcHK/ezfaftPK3dro932yOLqnbY5NYV2LWtJlsuSa98i04hq/fE1CUD2BhFxqohkRm1kX2mJIbaCppOCKlXMRgw99oDzn26I+JDO0bhONy2kBtWRRlHWugPF5ZBXlIcF2eNZGCeD9HNOnRP6ChY6grxhQ6puST5ksttsrkeN4lo67GaizI8SMoZevTDpG+7gHrQz7EKKkhRpf2EzVmt08KxurHrJxcqnAGIewIoRsFoGzj6SzvMs6pXI2Egn24oODfSWmILoU3xTbfVCFOz2MOFSpFy8EppWRYrIcp37hJEpPNkEibOmJSvi64y/T4kkWyS6uJIb15YYPGqdJdsTdozpT3bBYlGwLqzk5hiZSDTCFZmRDw6DzxuSCDWSTu+MosL9fq1Q+WODfSU/c4RdLz+0KR4NV975WklsolBaqHxN2QafuxZQrBKLb0A5sgxd5kODTZ9sfYtw23BzY3+WwLEd+RAiD3GLMbGWgiwuXL2d67jtJ0vC519pRx1RuOGp6oW1VFRxqV4vgfjZvArblI2JlKXe8ipLyoMndJjiblIwHOSwGItQMn+788PDJhOqD3MT1Esa2Rrp2opyf6BqGogsY1uBhE+C8b86jl9JcOHNBE5nk+yTKJONsdwEzNH9P+OdxkX8J005ywOOBGlDzYgwX/kz7CzoCxN5mvU5MbZYiCr03VZU2ojyatVGaXrhwzLadtwH9ioI0+BVh+Sp00SPfkcCdRe1kvdSeMipzIDuuVJaT3U5QgJIsUogyeFQkQ85DjhUiIDOPXvUb0s4382sUF5TdCWlc7ytEhxDYZ4SiTZhRSHgF5NNg9Ljvw8iTcl4CE5qWYq2KrLFnJLlStdbi4Wz8RIhYgIM6ctfpTDd22GSwzS/PltdzryCGOuq9zpqo6WAvEnFGc/zhPV2wQHzw/a6luAol7UCkS6v57AbA1+wKl9qIJW4UcVlbfTeTz3AsVDEWMvOJtutuuG6FDp15eHlJxA3o4pAviG5ijnPdd+jFnbpZ+eN+J5ynqV7IdreiDx+JO7niEvbJzc/YrjXlwuBMB+gU5CeKG9vhkJB/2UbPjgjlTwXAYfoXoxn5xhAUjSn7IPGxlVcjRoyUOUooYvWhjl/u4nkz8KkqDRa03xbOaJCQZzUE+PhGdzpbqiU/udLsNxFaqaRY7s0+ygW6WPg6MpZCyHZTzGFUeCZm9F7pr6nf4hnUlN4NkVZgap1cOAYtJPzbRqognKvaKf26pGqLBrKXXII+VIRal9QsQSeLryvFYc7q7yuPtZ2PBpvJuiZVzAdFTOb0Q+4lqVwPJF6l6FzqDCPLgVSH98HvYEbFWBddVl+0haQiAnCwIJI/2WA8Ss2t9rBSMtCJtTWUUlUk21UvibvPNis6kklPWS5M+KgJD+tJ1ey0YHAzsr2EJhn/S7LF+TxJ2yjA3p92dCOR2tEc/ju1qiax3BSxN5tFd7+mz+lSdoW3RAWU/YnR+eaNptCK3GzDvkNHhgU2+vCWe3u1pUgKZi5KJLeCq4qzyAD9NMdqKgRfm+jzkXO7fABnBbi6cUhLJLWD7rC38EDfdnx1xCFy6eXfptdGTewbVUJvObI/sBTxxaiK/6U7gxueLnXlsY6Wc8e+TpZl3fKj1U01mniwk4cjnfRd4P7123krujWlE44bnJhdZbUUzBFxz44LC4EcFvap1FlUFQyiubsBLP3IqDi46zNUAIrGLqd2WB3vqx9vmCyOLZ/s5v0/6sNg/b/XgD7pdmyIlsnP8SwvMu8lIZIRz5QwZyRiwDX+euoWepdsYV/vP3QgvRtJUNqU8BF5sBhp6H7/Ta256luVHgsUgPPZEKyfsEvQxeOgNgeq8MtKjNGlPdXAQTk+l9AOKLmAOPbH0c7baVfZZ8ex7XyNjSLdcPT7z/lgjof+L7qndrCDJ7PRhfCMLbdUWA1fL1S0Dlrixusq5gYsqFy7TmZz89X6FvgWHqGUPXT+Cw5RiKQY9tE/pUhmJuQaygqO+b2sKN8IzNBK/xWhXD0mNfZMT/P6aaZzCbID6HM5PcxUOqnD/k6yMWi/JY0XNcm+pPb9dSBxImouYvOMpaSVANy62+83SIklNZnaof5j3b2RS9to5z3T7tkm27F24tDNSPVKpVkJ0tqEgfH2mIB3KXdPej0Om0YAvG2B+1915tBkEPoi2hTqygZP6pjR3L+LEIOzWtdPX12KuM0inS6XBOrwFBURtsKmbZHIaAryFaw682x7W9DFl93hLYrH4TeX7zWBOmGxjU7UhMA0O6UYgUjhzlQPzWBbsSGeZuQX6q8A1DC0+Rnx2OSlF9p6ph4I9yKg6Sp+8xenrBnCDnCD3Op909YuJ7Psi4R23k2Ko3363C6vQlZkRH9sOLWQHiecGg5Gpe/fF92TFZ3XxfLhya/b/QLnlJWYt4dJWzLP7fxYWz+ZMvXhCnZZUUdBnbM60M3EoeKvSnEGk/DFXk54iBWj/qEQ6wW1r9Q1ktSlkAti1dti9fleMrfFVfFkk+FyZbok0VRWoo0OKwQqqUtiRyxxkhliPcrD1FefPUYLz6vq5lZhZDG/ygW47H7bu/MmxzM9ySNt6PF+bdQ/fKLk4K9z85+UdD0q2o5D6b8bvDQ3ihRbwWjnJPfGxju+eXEqpG+Tmjg479V4Ow8mqRrJeBLB6eLfoYz8lF6YcknJtLPqmBqFFIzI3u5G0lGS8F6MHSMSmzyECoB/+yFef/gXiK2nt/q7Hz7GYslrVM9wcuM1D8Kn/UM1cgzZit/PRm1JzA7r1iVWbpqHzA/desA+216aIdO41b/MQfOSSrLDT7GjgqnVK08Glym7z5sp+GHmn3IglPSDsSVdhzbzy7U0uWEN4sd2FrzzrVWNHOxEr2n69sY7U1QGxBHfI0rxSOFfee9Rd23MnjvpMfviCehv+4QW2le9y7aFBBPImR1osAsUVLGm6E7+fx6+RLrRYdVe/kDfJiMMyq/RUAH0YcW6q4QB1LFoC1FxxMhct+1K94yyc3zVcAOl5LQB9T+fQiVJ4AFwJFqvNfXQA8xLcBeQnwFg7Lj3FuwUYQzGRz4Y7aXNmSJIjMhisJ2ChXfJ77stLrPGqGEVFYFde3vDVZ7bLqblRYnPnqfXnu5KjbgurpLE+OVZWbKTD8uhxKyBBdiQrCQbtUE1KPX4PnyovmE5N90/WsEHbK8kYnHwC9giIZS6+/u/tRVPpsrcyjby97XbDfuHKwqCYOZqAH5+rnL/lVfjMHXYpyB7GVgre6iYc9yNJaDBwFI49sdAPaNHSfKrdOMQyz+FUEOc6sarbS2d4Y/0q6oHlx188PvE7xhpyeUsHCu9bxKieKfjFLwXFZdEPjXQKNlakPrh0PA/sUlNy4kusPRc7dVilk6KJamjkE7gOEQNF4zQyBTmEkmQEdVG5fNleERpVlt532li9j5lisks+e3qvymgCOosyFZPfPuccDPE/D4hrhWkkI2tFkVddP3kcIjz0QQn15GmwDWcsBK+RsoRKtXcn5YXqPQrdzEP2QKtAGWSYo5/EsaUqUD5j7WECJlZdWvEa2D6yeU9zHBHZ0PkTKF+dK/r5gXDbxu8+HCjVund45nAB8oNFCdxMkNbYgBRxSmoW4N9nKLRUMaeqG0mIQEkkmefP9wWkQ2+eIDzGUNprOn9LvMeTOG4ttHBLHx/FQ419DtiUkBB/PmaSenCYmuWVi+US7hAsqNw1vu91SptqD0tVmX408OCtSLcaJXMQNzPTBrUBke1/GhvFJ0UX7DHGJfrfs5I32qCxhu2xpdy9rjh3QnpBzmWZouwi92EqbDBXRTsefBxNkoCpgegxzheYC9WNvS0OMXeOJ22fW+jh/Vw0PnY29Il+yzPRy6D5Kud5JdZVOAy/VRifMKM/2r6/erkkyyLsAfITA0TOVAFrqEQwxGtR+JvC/RacDCW3AJysUOpdsDI2tYXpPwT0keDqxHPb9bpkpPYyIguM4yc0Mo2kwb0pr74pXCvLMU9E2RpRRIaLfBMJe0EyKpHyk89j3x+Z9I2q0B6nStz0UiDt2DgoZRoEQvWkKm4OSkEouCj84kDZC3zNxaomzQhdWS3fKbPtNZLihNoDt8EIITtDlsvU7YatgnRmbryIJpiA+vaKDkzX3/MUXnHN/G0ByoE+2SsV0/LfrEVg/DJdeudQvxBF3Jaa5UD4rBkSUsmY/xrOWoblcYYPXDGK/udktHvnn72LNmvlC8vz9Ec72+aGYWZozllJhRkTLFn+O/n1NbNZy4BxSD17Q7wEPNBBTzaih+mC3uarfGFy1RNG0dKXh22MZR5OpQqPnOFxbHYp22wqZ96jN5Om8Aac+9lR5d55kpTh1Nrtiwmt2z6/cca5+vR9NxgH/ZK9npxqtG7OUR07yH7y7gxLHcK97C8I9a4xC13qRF1Uz8QBnP6lNR6lGcGVOJ8psgLGIBFF1eyX4rtFQ/wsCpc30y+2JXumdR4GHWPP5yMl+E9NeBbNVrC2WPkoLTvunK6hp8kOv1hqRXsgfTAQ020jfu3eXye0d7qnOzKnY+7SJJNjwTapCf3eJhxzVMSE+nvXZCJeNSgW9STjpBEksZeO24AWj/hzxF2fQfMZE2p44ng6PMb43V1dWatRChkngyidg9P2fRaIahq54lIMDMbl7GOn7amxwXc3ENdfHkdHbJ05zOnUs+xz2Zhc09U5T+C4eYwKROcAhEkje/JwgfGQpaN58A0eH9AZYzcQpKb3nMIlnfbmt37l6sJwVHXMz3ITawcZ5/OEvpdaPMA/EtnPoTb+1RP6bAPcrNptdpsvYJ8msdIqtiKInu0e7xCHapKaxa46YbT6t5JMRL5ckLn0TrWWg7sSO2ykWWfltVbpThlHtVr8cUuQtQ7PxTnl/L15/anuGORrErG0jA9eZlVtG/uNZ1Y+1SsBIPGeOoZyG6fqwUjonEkj/GQcRcvjK26MvG/5Z++x8P35iY2GwiVIe4mnBVMTIIT9jJj0L6c+5fMV+6z69IxuTs2FMiqqrZ4La8/LkfCKoNvSf0Q0vRnI/6ezLGwcjbgCRcY1asiwlGarzHqzdKwBI8ZbW0i7glyyjv/zLX+iws/zpatlVWFOszSMmvBPuntLwzzDmXAxSGpBzJ8+gPtO57E11lo6jaNi67koQMu6RWTN/zDJtDX2Tg/NCdNtTxD7timbU+IGDQfKFTajqvlL0BlAWPU29EZBhLO5l5/oxfilJE8E4YuLDHjd+NuXBKT0NtisVtoSmwuOd+VvN2CXCpeQlYmYZcEXJ51zU+cCrtrrGKTY2ZKiDQp3t2ASbkkF09ZBdeRzbD+6DSrfQtn1f2zW2NH34Gnz/l74T4s7G081VaEDkUSZ1eYuh8w3naPZwZ6fVAmtawEonFiJV0ixDaiEvL8NyldvJn+sNzf/Ezr8gYXOYUhqyW7fXDfWNz94ATXvuTMH7St/1WoaS/qic/BCeQ1hxmpitKHAe23eo6Ppu/9gtgfmTo/7uC5SvQUuiMERO3KSQMybi5Y/dlGVbcDBzXxCCs577wrVscXHOrNiXzyCAo7NrutQnSlBXK8QLCE3MJiJxV010flKMu0X9gXVmz6qOVe67sBoJ5G7f9M9OGHZ48/onl9Zzh7788Nizb6hLkmQiapNwbql+I2a/d24ssnQymx1ZmsOndRtXZl2UN1balnL0ILgQx/CeS71u0d2qaoZE27v9JxRp9jpFYcN5kiwev/RTqgNeTDey6NbiqPYSoL9JaDdesdvnZqot71Jd5MzqYGJg3gt+g70hYXTTV1VwOJQmX7jMQ8U1zh6dM5k6razJ5KHDYUFodH7ST8DeC1toLkrQ3CGTO8s2vo+cE+V5qe8oNaypuJKn+iEjPXRmqwzRAtklaKglR2SzGxglmRYbfryDcLsM30Q733dR9EZuKwn4W0Nwn5GsNRb4XM+IFxiCnx0epTEdxUoSSOX2VWIRRqUyDp9GnYlq4Ugk44/C9H6CRF6+xLJ+ya71tTBr3CxKg4J6Ugq9z96pYEUMRFozGs7dMwuWrnaq9KDkpNpjnXxlaAjE238OxNCDkxEERu5CwIesCwJPSN2qUiNU65jhneimnZD2aZHaSIiP+eTQLSXH6NczvkwgR9blOzrDILhMY9d7jw6AK+nJUw0UFZZD4x+K9UIvxJQUIrVMy/llJmYUULVa83N0CYvw+Ovip0sxVY2IRDibKblLbgYWerv/FqQZ6FL/cnHaBCPoCuZZsxkpEB2NqBG3Xw723jiljOeU5Pc7HP3KjbIKyIL1cF/xb3z74M7F9sn03GH3iiEAWSyXJXbc/SdB4tdiF0NqWdiC9ecoBnwVu6F2vifY/Ao6xtdJ6WUvAJp/nbmmqMePJRYCRHanDE3z6+MKz+ewDPwkBXsScQmnWMgFA+CGOxnHcQH3lsN5wS8vY3RmGGiiA4bGaD6Gy2x4r1LgL7BibQrzWijq21ICsDcnYyrNbGjBS2Xcl7jU6JgRQqar2MCLEOWa7ufjEuiGTHLvVghuoSgrtcRbPZsJS62NsdcA5oLabDVCoOXlmG/QtDy0jLj6FiTH7RH+ILyiYVWVlbp7gX+BPTDCoUwPwTZrEHr6+LzZcVmDViS0dE048r1iDaE9Wld6iWWZVdi0OuFdV/ns3TKnBGZwxPGdyRtgYFLmtEWec31TlZ384gawwjdkn5rHBac5ZBhLZiWesQHFb/09ST/guY7POPIiZAUzpibrSEjmDakFAbHDalMmKv/UzMPPjMBQlY0T8z4Mvek/GKtemKxr206iP/tFW0X81J4iORo00kXmeZo1RO67vxsp3IsaRystJiqurODDs3iY5PcEUNEpOYlaKRct0nuyACWhEFwI1evKr6IYQMhoWn55e72gHRCsGTaj1KzTqV6ZR8xgCLzArDE8gEV0CC7jnECMqJmR8sAHjz2kqC2SKzHS/sQRF0y2VTBMwGG2QDMksMeCJkxiv8K/JQaz1LFaxyJxofJf9sdUIr8TQToi7lXEn0KcxJmyBr/gnpTyghSaZ3jlkGowdxVwHUkdc8Wo0hdI8rDUo3J48UiELEQMe2umiZNjw5AEbffzaVci5xFlFEvU9oEjIyEChNcouYAKDzRbpeJqh3ueOFe5sNzNb5drCKAVp7owtkbTMaHa0xAibhzaI5tKenr+kcfbalNIdMYIC42m20LBZ9xXxox88dsVwkYQ7eum29VNDt0svQo7TRPi6/9xRXB5dEGo2FSigvw2lKASeGcv7asYfZ+ikNzysHnDQfOAgNMg5FuRoZtXTfD323PR4EdFM31u7fYNirEH+BYzbtWNSsIYE2yTLN3tU98nCdueZf8mCMRqQMEM+0sOFsCTPseSS4lB84oU5M7h4QdDVGZGdX0Gcbm7zPnWgb92EqEgQmT5vQa5Vo9SwO1KDEdC5WrZD2nAFmjAG5jDIZ2rtT+TyVqQhYRyZkAZSR6I8N9yd3BZKR+k6BOx3yf+fpbdFbuZ9ZdsgiqsYGr19lyJhlbGicbhafHtdMmM+7z7iO97JCQaLbph58rZxpDcyz8h3oUMIjkL1VMD3Nc0EFH3LIdAT5g0irNQ3OfHXVx2R3S5eR3fBW8zFeXAFpd81rH08qNjswG27RJbPaz6yrxUFW2xIJdL1VIW9CiXUNKB6RbFOdu14mwr5WHewyG79s7IfDJk6OK+n9J3EvIReU20GPkEo6FN9A9rQ1sdOTTZfk5HFr9UBNIlE1UzuPZZB3Octi0g5x4fS83dLbp4Z+WJISuappnbdCSjCSqcTMA/F8OIs9OeWzZY3zUn2vpdWxhpo3fCJt5AE89n9eqNwwimrrJ8bEXrpTE6I1FIm94c/FzND1KLogcHXZnUDUaqyvXtXu3TwTYSrAAE0gTHDCTFfb/jMwTact6jc+Z1P4bf6RO23TyX8FzmHrvQzIqBc5WY2SDc60eYGFxvFkXPsdBCRVOhm0NxOwFPZ2drZLQDWVLngEzt3i1gkohHr7y/Npoq30TymnSdQyC97dezTbd59ejBlOxdG8Mg6DRhMvyVS5OF1uMRexSVCTikYVbD3ucZMHey985ol3vWcwPOENIDdRSMYybijABLcpcXikhzDfM1t/45EW1xeM2/Lfa0K9E4mKLmTFBTUecoVw+2pMhcFmpyFEx8aPzpEihVrcKSMSPRi3ZDYcpt1gAaOHAq44j4DffKP+ByN68mChMtQx8jE53EsGIzlvaRR+xTNf5MoqwaBknkn/lEb4hEwobTJfRuEGj3NhGwYitVLV1maM95xb37PjzJ+83cDpfY3NazvwaLiDIY1u06BV3ME+pcqicywtpdYNgsAgucjFNk+ct1poteQhvJYw8p3KQlWNZaz6fXUCJYOpHgpEY+vb0mQDqC8lP0ufOAbCL1P4cd+k5SbL3Z4c1Ky3uD3CJyhapVwL6JOn3h3T9c7WOqZgbRLG2AOUS3YKGbE2KYer7TKTZJVGnmOVuNmENuTYEEVygXMt6Rd4ZOIwL2XVX+NLVKmHbcU+yNQ51tes2slOWmJPZIGIClW8NLXnCGSeooDWfmOnT1yhh4lj1T8rGkv+4o73XDQ1BWFZmagCq4woyUX+CjULU3xWRtEztO3H0vbP6+1AxNOEvruBV4Mm7Z6jDjx9UKDgD1TJo+c/1P503WynkAPRKMjnHCfCb0KFdKq+uvrp77gtfUGVvIBOxITZqx75smz9d8LbFnA99lGQBFmwTyN1oLQd0vke2nXicE0MPnpPIvRd+mkvDWy4GaebOlP1TW8CZeLmEhY0iLOr8cSDnTvnnYvr65bTBSUHz/Va0cap8FiTYyMewlz1XERsF1xYsHyrw+nSn3U5ltGspVYkUUM+iA4fZFMMulkHeRAYr0biNunhBwtM0OSR+2Q0yvzVQG7TjLohYKibZpsxBCCWkFoxkDnRg+nPqSyvCk2RKUXnmweu85QY1uj+rQP4UJ743/lXkTNcnhz4/ls7+RDJHRPa6cJTIrywQYxbUlJTaEd6KCII9ox5ln9Q8Fefe1YsSVA18cRb4hDa8kGvk2GeNtMmOGR6WJ7ALtBCMxo+ujaFRkv3mdl6SVaMYm8zCP1tr9T8W6rnBvHMdrIiUPEQHxDJZ2ewFHUrV+BX4rg1QKAZHny99yhid5VQsfuXgH5hL64wqD4H7wl8/uvIDZx2XgtcMwlsn0lEiUzrfwddW6hRO0AcZD5GwCX5RPyUkj5Zs9l8dR5RPpTI28POHjF/1l2wDe9JqViJPj7pCkURncvpahb2O8B/Zs5qdmMSiZyNmOSFYwlCXAdJU+WrN+FBXSUip6sqyE1YgT/1GULUr/N5EC/cIN/mWx/qDlJWsjxLBc3CnNsy11NPLJQxQS40jNaFQC/4s+TXUg4ZoTWzDTzLKTmY9fQme9mdGQdzFA+r1I951D06MQ29snFSqi0scPKRhUGNoAX8ogIFW/qreTlzUYxPQNteBMuC/Jj0HHlaCC3evdCICkQix4iPM1op8fr7pPL+IitGmQVNxCw7CGGy5gStxVShCCFz2frHJg70QIzxaF7C8qsdTytefPdYgssKBCZ1HJfI96ceWL/+8cIR/hwmVfZW1rqLSrlsAEhOkxT12cmhM2kONPRrdNZdvlyC7YkSnq4grFR32NXBP6LpSN+DCuzH5eI2c6H+Gy2gn76zfR0zINnhchszZYLw90MoDKnGpJVLgEhupD4W3YKD8g3tMxLiaYEObY6OvcvS/Esv7jI3p9THuWKG7zhcPioFaorcuoAudCZKq3lVE2WyKPdi1GVuvJNrJoVOU0c/334OLOwo4cHe6nNJYbRfoa/nrCTpk1q++yKBrfBShY1ZWqEGVv65augJ+zDr51rTRlLfO3JcXjoo/NzmUywGNX5UZLYfoXcJ4KMZkdL/jrr6cNROgt2IP03GsFRkH6K2YXblmxa/KSmbflrVioAdUkcruBI603V1vNodPw1cRMbD+SheQwSokqFjAlYWsmux4Vsi/VpPA4GEvyS/sUKmsTH424hxr1TZxrJhSQJuLePlh9vgIJijYB07Z7DLIoxF465/gigT28S/BJJ3KfckfZZcoJBx/nL17YDx/HoHP80R/0uE0QKdoKwCjBko1fSLD0bJKfUovtKrEVb7yzX0dRuavMrxpm7Z+JFfnwlcKSrN4acpzI2egGRFQyREpyRsdQPV3eJXVyxNDa6+lcJ3MuSaD+B+9JDRhMO/Lsuf42cLlwxSmIbv5kXW7Cw0W0sg/2LgirXgbtqpqWl1xnxT9k4KRsKlZaxtV7XwZVoMfAOUeFjUcB6UTejBibx39fAxi6oKCyyA7dNbzTfJNDb6NN6TBINpUyY0HBg7o78CKWtUHV2Iots9HHaZIxEenYtAusNdFngadlEVxpd2Sw13EYVn74lQjmin3v4QmiA7VJiopyKGFup0pFWOgo+ai2Ev3h9HOWUgMpbUBHnhPJK7/xTKxCSdKEr2TPOiMQ0Epez9WNutpyUlGzfICoJw8B1phv1HqJkoGjA3q1Knl+Ts+zS5N6bYpcttKU21nfisFtnpMn2NU6Q8n95mkG/5N8dGSSjxs0f3Eb2wRAdl3YMjgF225zVrL4KI68ndq0+LcI7QNdNWv3R1LSLKEEiPS0YuircUbL6x6IDSaaqyKkbIOuTuxEXcvJNM58Om/p6nDTy4vXoher6VRW7voZyFNbSx1QMaGFiJpiCwcMxIqrAaJzOmo3AGxHSxLHZIjl/7c9JfEWo+VbDrGZRZLz2Io/LpBx53eo7DUpTzbpqzOIadQcUQiwvHB42BhD+qZQyYRG0xAZiqSZivE65IyjqDLqWail+z+VmVxqnk4asxiM6In09QcK1tjuOYLoHrGYX1exVkmXjV0GSf2Q0Uhc/VGeCmSMWpZ8tcMYnbva96IYbiqfCaZwVywR7i8he0ffms99xjONtGVV7zpeYQcyE9CeD0i/vmBgl4jkwVdBv/cH/k7nPTCJBXiU+qHiaakYr7knnSX5g7U2O8MGYF7zb14ZEDmerZDPaXhqG+oR92GNeq9YRpOfKuIVLIZD3lHdmYmu9RUcpfD35zjl4XtNTSpGR6xbIYDV8gujRFUyz5amRt/3i/+ojpNjF+50dKXYzNqF56AprEqVQ14XaNbzN/FpzG23F3xsypnWywWGjhtQ94YmG/JhJA1ZUqHEZXGyxYK1burt5GZwQRBf5HjPltqP+ZV27PYUhOYYwjh2Fo+4sgdF7Mp5BtkTFcjN/myFFlp0jhjVn+dXVhmhxvjJufQv+pFQj8X4VFLxii7IQWeAbBZ8b3sBC/u9oS0nMBx13lQkumRBXKziXyQwpY+7AaD/IXsQcS3zF+dm9jgcbNijhY9Qrk1GEZLfhWJK7ZVqjIPaQwBlIg2Gin7c4UNEubSHL4ps40fy83fiqcm18VLcekVtYk8OVMd4swSsaB60ypMvZ26IUnZ/b8/4LbcKIkM1AVdFM/9+N0mlFdm1LzkwMqBEmUIEr905m2BDSH6Pn2FDPSWsi8P2UU9cHlvpdgt+WyhJXbEpfUqCm1x9uMfDVvId76Q0aKIE5TxIdoNyA+dscU8K+zJnsdYLNb0GNBOC6J9usHOcKERJ0qLrGEeGntGxEw4DlpAwh0akHQek2mTEoqu6Dgoj73jJixXzluGvfgydEnSepoo9Yha6BUQ1D9VVzdwkH4kpj9Ekw3QzV1LKOQXqd6eRUZBnJQacMRy1rukO36kKpu9Pv6Z2xlguBnPkGeKLGxJEkxtnpcOe1tZXinpZUFwgjcJ8H1/HqpHZ7leQ6Jok1p7wPkdPHDzUvstNY0u9WJUZtDArx3t3KPkFeqc53j0Y7L2tptMuzJjlVcVhqDtq96zmRFxWdvKLxaoZSPR60WIh8oIkORCAPUIoOpVrddRM0DhOqlVHwlrCbL7auVjtpKh/809hQ6Sqke2d6WMrSDOBlfQC8hjwRNlOC98Ikm8+817uuY8POhuM3QpbZmaxVoi4AZJbUEIv/XaWJqWj6OmAh2Sq4w1gpporzAr5OTvyE2FrFkp/xIIF9MmEsQduPswZd7U9XioCuGea5zbS7YZX6e4Ufse6S9wtB+lGvq12bStFvMtWtOXjhsGz+oMWs4laYczEOdVgUCubUVzAA0YU4w5h9XGI+V7LN6opd0TTqCol18kbDSL6uN7vzXHfnu0cu1NExjEIgz9QaQgB7l4ZHzIWDVrgi0O8C7mfTa7KyHs34lt9EQ8keZlcAffqm0hpOZf9+SgF98jYsPbT2PuMhX5+2txEdob01/GDE9UN1Ry1tSPPEj04srdCozIMJc0Jcn4VyNlAfzXF8QLN5tkroPQYVLeG8nTjDuffQtgJBJ+7iH6QMPSekCSnL3xObg1brdweIcnfpv1vwHlDHWB1sV+5WKw/gMK3vteZX2nu4OlfgmUIvUEz0wNmvtG0fgafSRuNsEaeuqttruYHr22d53ZNwwOFejmLrS+UflPt+TRfxoszwpTJ6JIKRlW/I+NUjy34oh5OKCOy4e2nwlLNkFTutX6rivnpEN0bZWQOi5RvIDxYYTi2kMVkEqzKExzz/DI3hiRLRjsojS+BvgYO7RenUbc+Xnsez7Bsou4KU2msmG85U9Vf9iHakBbTj70BSfXammYBiCHsjfg0omGO4ai1/iUeCT9vQs7tilSTZMlmcCRTjVTrvXmkf06MQumslTxUwp+OvaswflfFgeK64Ry2kCrKCOVGk4pfMllB2FZyiWm9fhtN6oEL95ZByj7CvcmZxGn54vg1x7ppuMyGl6pPTUkivEclhCWv1/8n7+30AgEm6TUe1y5thIggrdlmFyx+svHzk+fSkhQ/7zpSu9+kHM2eHp0xJKA7FFh2OT42c1pwPDbvfuPLDuLowHUP/rJTF6Ruo5xLczHQ1xQDq2msr969P32Ut1NC5oidbXHCfF5GZSuHNXtBsflfk8/m9Ew7wmN/NoDx9L3aW9/aQsPvGqHsGXLnlTqeMOjHMaBdRJIqCziR+wuJJJ/h7aig/8xO5opT2SEPFZngdjJPN/wscIsJnXLAre9zkCclvUwxEyo3CPFzahm1GB/5/tVRgOz0Wbf0gSsWndmtvtjEUhlfQelbH20DxP4bM0D+VwERMTJU3HjVwoVEV2A7Yu6GaAh85KP4QjR3hZTn1bRmSjBqfA0kbtwnai/aM3yatAcCYESMhgoFtg6ZRwqsCBYZPrsM9J7n0seuST77EOiloMRZs5pckstfLvBD/8vOMj5IH0/lZ8DahVU+mcHA+ee3/aw0XZQwL/OsPTJSHfNiG+54Re9WZTIHbmJCE45Y6ASbApgt1r5doNbr89i2uqk11eBXISjnRtPeiSl+rGQneGNZRYwjWE8t0ByWq4/5o/5+SOj2+z+hfBMxHxj1UPtJaE2R60hCSChR7ZElp1NQfCFTUd825l8NRdn8ZF0iKz8paPeII2P4k48YY/wP9IoU1ORj1FmVH3XgUFj/IxUZyQhXHTxm6Tw2gaCBBPpGSxlbuJQ13SVaMPihtIwPj5xLVACBjoHeVWLdnfrVe42vHaMw6gRuRTKOTyMb10Hvgm4HpTBqcY9u9GPIc+g0TXI0JfgPJVwCeB4Z4rchsP2CVjhe+aSBrm14Mpr4cdbQ3btl73z+DViWTedjUW+tInlyd0jmkCLMPuK8y9wnATnthC1UFTd8cnITdMtSHp1pknnbAPTy4OJtoAz+lOmcxR0l+dyKk3HQcP1ozxoNK0Czj+qwX1MDpQzaZPcrdA2ZmAAcNpVDHq/eAJXEqFnJ4qase7HrQAsKJq9vQNHaya1mHJ644NR4EgFYZBJrvkhzQEb8kr1P5hx6J+fNLSqERsJb41/iEvioolcYoabY0hE1Jk1N86MARy+8VnncCJPxa5uNW2qbI2rpR/Ep8PiSaxb15A6jT5DreHNS4f6YueJFiwQf1qirmiMhRcsfbC3MKNT17u4zm4JuDVdczHEm7LXJec/dEUzyKfe+X8QwsUOD0bjz3kLgBDru7WBG6ZosYNRy6u+NUUw9S45wtjXc/7pKzuzhQfzwISuwlNg9xFQXSom0FuvBTLpuISgZacurBpZu2C860kt9cirUCPlL73uE9GfxxHVR18WfAuu9hSJPUeba8HhEcNWlztwBjV+9R0mGprxkjL9/dNUybLyaPXdkWQnjuuRm9mItMC6puY1HmOy10JtbctZKrqDMg4nEtTBGmiZbUqswJx2Sa0JVziKXu104jKkoh7XOBxuEvUmCbbZdhebqwYZHRDHCfikPwJL8VFxVT/2gvWWUbwXEF0f1PMmey/mT9VFzdPN3Q15AiMcpn42+0bz3mZKVZJg6oOcjzs++2TE4MN869Eml9OsmqjWQC8cJCRD+1yR+GvolJ13WGksEACIRGoCSWtExcHs0+DG2y9Y0kmWXoX25+++Ri73cI28pFBrNXQV1m0E1UkNKjYXsjnzU265b11g7rC5pvHGFIPwlM58Gt/biztfCs5G8emzk8JrDu6vRZLsSnFgNXhLiNqAgxI5mtOckjTuZ/LKDGZZr9Hpi+7J5jBqIzvA4iiQSerJ1uLC66SD352s5mIuTLkQ5mKjmcfklp+cJf1p482HhTtoE97ShVNR+gFo1vERRjz+viS6wDwynzzKB3SZvzSjFrgGuYUph6aUFsn/JeIEJpt2ACXB8u2qSBv3GelqXrsvzkN6rPr4FtEb5TwNgPp6dARAxWi0s43G5ciBUMZNpryXz64mtZKKpr4/EM4S6msUzPcafUMjLjKFxqd9029AUoiE+ehxyGEZLCatUigwJjtBif8xJQffzZESXIae6H9CPLHfp/WcDPaJZuuM8dtH1DqV7DIWNYiokzm4SenGKupBocEq8uVOFdh/irBAWasA3siZjDTT6MHv5yDYZa9CrQZY2n74fiwvo3l4wGUSO3AwQr1QsS1S4JPWePsSnrJWxKm4aQ8pAFuivTeNEImwbED4TuTSHbGHI7MAgOPzbT0WiZ9KCpnE9ogpEP/iidcrKyU/zpCZGMx8db/s11BxWuENd5jaMQUNuhO+/2cQKzMseHq2lMsZMsrKLxF/CqzEfcRgfShaMion9thI9lqQuQVepkUwiEujLkfXlTdkEEXf1/PKZKsPEUmxY8B/mf0S8wyeT7VHQmTX0dj5vuhxCJjW0Kr4y5yfRgGeBpL8TUDuD/5SEWWdrdMB40SpEpAbwybEoL5J0ctefXjR160lcD0Zoo71uX8u4iOKRRh1dIjlHc8tsbIYSUAZ3PaVqG9erEbmooEai6B7oV+4O6MOe3MoNrExiqxbVJgntn95t9AqmNeDMyMlWE3YL219r6Stnx5oR2PAnhfz8ChyOPTaIklbG40euSKMG5kPvaXXQvA3GugKiea4IADcnObYj0ICxUAHAYXty8HKqL/fdOjbIdU/hYkgOc5U8pmEofSK8ZhtAOM/M/rprjxSjNF5xMHcsf+UUsKucVLMXus8OrrxyvM+irOEZ9lFekH3npFB97frguSUvtJL8z29werwM++YqtNwIHr1dzlgzpJRntHZmV929LAAjYY1NKv8KShrDAuZuUH+btiBSsy+jyZN+bQ5IVFhMzv5XRRrxThyXzW1F4J6Lmo6kuJ6kz0Wd6u8AKpNZwdCHcTBbIIKNQ7DjY95fPVc6uD5Pbs8aHkLJi7R+7zv5UZMwsZwjFLiYqWIRuiw8/6Ka21QQ+U3qasqkqRSwDNjntoV3rZi3v72F88rtNFv75jyiVQxU3KTdXlOibymqGO38i4d2kbTzBnaNY34nhsEC9vC7PbnTDrgi0ofoSBZV8QM0z76tdchsgYzjNMZIOJ7FFAtcpCYXxCekIEIMnknr/UVk8k/hBXciw+5KJU2NCG14aFhyBlh724Av3XaKjbE2h8t3c7hJfXhlZkP6JRXGktRUyvoPT99jG8HfqGM3feTrctIO90ewmvL2SWdXD1wW3r/Y0kxyKqK2+eBlW54wjqvSYtHL23F2evILYPZNH4NDj8TmFZ6d3axamVuT0QT5pYW/lPEYsk0+EqdxfCMMBuzaEgWCIEQ1hqSkTJgK8uIXja4tgWW6G2CRnDfQvHEjvXfdUNHvOEAV0gR2fT+6iIuqpfOUWNJBZX8h5+xEVnDF0afS7ievxNB48iISvFdsgU5VdAOSBTlceCQb6kzVwezX6GtQvNsGuOGxfP2HJfOTCSuRkcskeQejgbDt/NOhIsXO3mzFX3n7E+IgzzEeL4j1oz++PfgBNIKuamizwymCCxEyCfhFW7RjKiYfmTuEjgkMlpt2J8RrteiwstqJEDjhPHBKZmWEkzcrA+sAcJakjLPxXtLHN2GcV9pEl/VREZ0zq017y+gg8wEo8ESh1f6ZjoXb82IvwuBpjpw027xeltjqkTIIJZqJC83LqwsrdbCmrELZq0NQI199P5+l9PDTjvXja012YLixiZmmMF+bDs1q4i1IM5tzhuU2Uh6pGqLE0jLZUHWwto7HkcTcQLhkh5o3izGg6aQiLSUIQpM115cImLTEautwrwymu/1e4a6Y+ZmCMIDhcZQOZ2J7ZzFcPuSRo06AtupA/8++WHc8k369ZzcCpuCSy0HjpZVuv2cTcx0jk/hN7cJNxq2NYvoMEVBrW+7Hp5KT96KkmD2+C5hjKDYPOhSn8EA/W8MfDsYaK6DEDQ+tZqDOuNb+aif2cz0xImFJJQNPQ4vjG6VQ/4vJkBa43sQbGglZk0bWR2J9HxkpyFR+2x87GPRv9wblrhGpfjgtFiUt9ZMWIedf1gQs0ZO1ijNss9Xczi1RRSuGuCFmy3y+OzepJ2xPyxWUrxeX10dxENMwrR10Fx7ogpTQdw7VAd7WW+YoD5lQnfWY8UkvLYjKOAruTIYORuXnO6CVzIFbVKY9uGOUivNJtxRBWPr4akMJle64YrXseK4M94jrH0nfwzyiTP7CQ7npjfSoZdHi4CyShQ4RAxz4tF5stRmy/K73JUL2Fm8Ep0JUc6fwx9XzJUv+FPJIhzisxiiVe31PT6LCytrHg258u26e88jAgpVE4z4pKF9QE4yN5tRtcDnSrLHHvLACEUuSFLMohc2Mt4Wn9M1lJTBy6A08hMt5V7Xcgif3xEk4ANYYH0taTI8rXoqSUGzHlpVI7VZLdzhUZ+8dea1qtnn4Vqinj0NNBrJIB8xF5mLOF0ANR/thOnERnSHsmRDtv1D90nQJJ8sTeCHOy5PMM748AjxuYYWpDUa9CSnnKAh3D18xG5C9Sdsj6neUOT64GnBGsu0fHtmeD2K6h3dpVzAMabmtGWgqMF0rYuxHdQO0qQjdbIsTZRyEUZK/+rMBCxMlQ4NbfLw4MRB9KrVNkT/HFogn+jvhEZ+LFt5ylwU2/tHWXJzu/VW5VlSecCV4VrLlXqhmWiQaHKtkKaUFFeoUT3vEJli+pegtj2CJ210IcDPuDXjpLRALEzwy7X4YraPpPSun/TyrYIShq+I+9Qo1A2eriHfNzh49mXUffwsVZOsL9vvo9sRARaznj0vmgUeShGmlkIF5iY596owTnYa0Km4WqWZElt6kY8wTMqzJ1zJ4ay9Mt+CGcvajk275GqqyFMTrgz5MFDo9NB4MqZ3wtzvc/5SuZnSni8wMsCyFGPNMGrzBexMtdAnE2v0LrdlVK3PXvQlGc4HbvHStJ+/7OMjGwMkgOmLrJ5FVNzo9SRpxBMrr296lFSZcvR1XYPnzKI4djezaN9k4qK4HkyuRyirS0wrH8zreGydNO567VyPAZHW0qto5DcuFnhJUJwpWqlyxFljnV7Xd0FQhtm7ynQhEcCfq7FiTLEMK592AqPjM0G2FGwwR/K7vieCLgP6l3GOavrTejjOLo3DXLwVE5savKEy5A/zaV4ub4fPoioGuvewOBtQhXM1vTV5pDbm4TPlqly9Lj6Wl3khFqdV7cKd7lbZmnh+8AhAAMWXLhE9yOVPUhGcsCuh6aRSwDv/pJtuYWRjTL2HPTTr178rKcUOGYcZ2Q5apckE8sUDvnaEyCDSFOR+6Zqiadxy8xsW29tb8IRRVOjDfM+elSw9rXyqNhB5YN64/g+4F6wwcXC9UH+GF71dysKQGulAMdrRcmNOciL6WoPJkvG/aWShf6mLq+etQdghI0QhnZIfp2Ot5U3mdDSWjnuVt92Oj7s8nAfaD1WJEAMWRna5+PmCUVOIJYMjYOYLLj+zaaL9ZrQyyJ2f8QReE3zfaSWlvYcwiLgBib/Lx0Sool2YNDxHYXO+HwywPugYP5dUIfL/raAvkGGMl7apatlo5P49HVyF9P405yHK4gIyM7lPBuE8NPhxFmu7D1CNG/obZ6eIBd80aJh8SrNUt21nc6Ou5tS9Lc0F88KEEZ6y0PiAGreMgJFo6QaCNq6mBcxwFiy+DTTJ7Cf2fHHwYyWXm4KfrIip+bjx0xLWm8jRME7GAtvHT/1GPAkwzNHTZ0906ie9hZAg+rHd4e2J823FPS69k89oiJBprT4jfqGWVphGlPUrhWEP/0SVy5RLfW9eDqKpErbN62ouDhvysUHb1iDoaVcGmoLLULa9ie3Cy8gyFqMkqpz73vkeR8vhYBeH9kOmgdK4roe/7pMk8ZlNwfWR9FlhkttIJehBPAUT0aPTL2ZHFF3Q/Dh5anid/dd2bdTVvxquwfgZLkFLZbnBghzFnlCNrStUqet2WFC5kOAq3qYy04QtpwDBeNPKhpvY0rQJjl/CuyPhaYU3GSFES9ZWU+x0Wo+gIDNxC9QWSLf3b6n2zvuCdZ5jayAfKvzwHVwDY6byvY//sunciDzpGsyl74dsN47qcywIdJ4loLQljbkELyXIliZhVMXGuwEkYK3e0bZ4oo+rYzO721h1kIsYaglAYg1/AQEZelSbLNHLn9s5oDLS0NJpz+RK3qf4XwHocG7JPp8cUEwoYBFTXeM1rx1d5J/L9xAIIm2RUUC2VXLgxJCdmRgF8MA5ZTIB4FnAae1+5zmeBHMyqy600pTOT38BuEMYaFX+bBPiYWmtk7PNGLc4+CRIFGLdJ+952yrcMIvri50MLOFVTn2TMDLZFoq0v/uS3EH5BeszalMuGY7RQ8lvQl2K5dpYgDOo0e3RpY3mXCC36HhLhwXyFO6bJolvh+/m6Wu7rosoWNVImp6P8+MrcL+8Z/2GZojrm7tgjvNAXnfy9E5Hx5JK+4n94YNbmp7kfq8WSBr8Q7ijL15EQ4KFaoSU7SgfS0bWFB5MeezlJyy1/DIa9MLIMbjFIh7UjewBttoJfzhCViRFZ43q/YbHrKTyIZVRQ0shCafbNpZnNvll+BLAW48qf7GVocanGq2BKCht/gW1xSw0hUrNG0V5gT2H0C8jLKB1yFAq02L+gZI2Vwb4Bb6KKarM6nNa0Cnm7vFYXZQe3u2l/gEdu16PgXpFZwxny5iJDl3dPQjlN4XHIwsKtiR6Pm9YlrjFetJtz907fCTThzlqBb5+0OGAEJVo2go0TWnbpFElYcpVWeEstLC0OeUn2ySlLC21M7FkjqS9VhFj0Rowv/41pmwriOeyfdJewv7ZnVM70cFiC/KFb/l17XSKiS3rp5Th+qTPVHGhAoLSFsiGvo6QhesehJ+jWWhAJQlLzhj4VqTXKn4tBytltF6E8c+kvq2UVrHehdOLLtpIJFb9Jlm66JqMpFSjrJuZzg2pDZR6ASymXWKGlhccXy08ItSI3g7SF7P4h8t5Lqh7aScteKIT2hrSWUzxw00wtj8aACdFWu6Ftj+JHqIOaFfmzKqyP9PvuQwQlU0IjYz2SCVQwvSXu5lJTGnfzdhNdSoKJm8sR/K1uK8EeewHWS++AajQCtPpc7KErBku1q4w4Nca6sSMPxbr3iLRhfAeNoWaHiA1BE8L6TKM3MTotCxjbfBXAUmEAtBHRwxZMPH9GAcKZyedAVjF1sS/Ugf6WO6r4saUkZP0VDkG4/lnOoj2juUBlzKoB9eLT8bEd8CSbz0Ne2KggPH36FC8JbEEduGM3o/eHot4bExScu5tRHUEHW6Dgu8bXS5BQ6eLLdDxxmR6I1CX4HHsfW65a3CwdGL24Tg/n05oFB6P10EW6g6RO9p4fp8qHIcHDTqFEdHt5NbGywAE6pXhEhFTv6inTP0P8yUpukWqYzuSS6sK+HdflQw2yfico84SedH5SP9VF5i16WoAPB34XtRR3TKNzuAW1b9KuFvu4noF8eGxD0+7XGjnM7cXCKTI+pXpnV5HA3Y58bXNl+4YdeCwB29QHDTK72q7rRMquZBbz8V5MhKA3jus/l3/SO3+FK92NKIOpMFCv1sMDRXV1UC0IaUnHdd14KPP91AtE0SKSRSUrR3OwxmexSy8ywPtbFn6eC2ht+GlahqnKlfeVfCOGkc4++rz5p6yuyUxyQH+XWufFFWvJrrzvYRy/7kQdV6HizhG+4GfUcgeLPEcigZLPX0IVKQicfLf5cPwxG7SQGDh7hPX+MANg6pm72lbiNv1xYokcA4GNkerOqgHgoYD+1tqlAocwX6WEQRLIjBH2eQbQv8YWVVlH46a98MIpP0IKkjg/gP2LWJVqpw6wkvzFJL4NkpJguSqcJbnRWFlKJN/tEL+32WtwjmgdKM3shAYfO4jzVC7fld0KfxPMLcC+NakwjFmevQvbyaeshiH+F+Y6m+Xpp7Jv0ERcQqKbEh18fR07ElqJd5E1C7BwSEvHkTT5N0Wvf4MKXB6Ioxek9MVmM5jHqStLckN1VupZWNPVHz+BFHBxxSsaiCihh3YUyjl/lM4/gxHSVAva4vmrcwN0ZBi7GuKOvPOZcQrawcxDuW/9EPGE9tso1qylDUGdEJbuxBzHNDCdJLBCu8m63vomotbhvi0gviJ0CLqJywggq22/YwJpa/adDZaCqsaTm2PZdkpFTq9gNlo2WR0QTIK5VGqlV4owtqZtTnYxzPVK1ECbXpY11x/5Tc2hixc58pIl9DzxcpfZZNxrQ2ywdumhPIoP8qZoT7XPbMlfioUmQtWGco+iTGrSHpDxzBHYQux8xjp5spZfe0hDPvU+BiwrOrYaNWf2IyY9hWF0N6DaOyHj4Scs1mPNyvMzTIN3ir12deYnYcba6ijK9ycR2E9Tz2R3kyErjOsToNctU5f1HRDo5iWMw0dn5jeyig9yAmvI5645IuoyTBu+MODZGqm6PH+y7DyblYbzEkU3eVpPxLWsmM6Z0XODxuOPzwpG3ntWPWLuDzqVZTkpJmCkKs84VuqaOn2RlLpuNNZzlr8rnRhbFyF05dgpjF+A7gLJfYWtSc8Xms33P3OA3ORY+iYuUexv4xM99fpvozVpIICcy0eUeQnf1srqlpT7fTuOS6k0M+3eIsa3+qXqmyMiVRqXS3aEq8i/o1m/P/VYdKp7AZHBUT41C9EM2IoobImgyHIO2bF1WzW+p/3G4lwtCOPSohkKeNh8LdZnTjVNo5kz9H3mmMTvc3D+RdfYdt+RIb5RX9D2GtMXvDUlEqPYxXZJtdf5Tn0YzVPYkt5rdZX6IUnwzo4Fg0dwVLz7l++6JkhPiP+bL87h2wplgndeAV96AO6m8iyPcIVQkII/zPYqji9SyLCjB0fAObGeaDMmbpYDOxZob6pM4X45tsrFvT4iQdaGCtMEdmfvQaRlPo4YtW7AFdF61fKWwKJjQHaYMzH94iLTvrvsdh9oJFGbgrgYKKusoh7KuxXPRq5VF0m4u8GqMzUjeom0YJor4DFstT+2T0zz0KR3cWup0xxQ1ZwtNbd6guM/yPlQJ7gu62RIMcJBLJVp4v+VpNQpQL8OnLZ5bIISrYsfQmCBqTkxxZXgIjZ/zynyPT2eTciWbiOxmmc3/hsczsZpXqLRua8VuQ4d/49bFISWiR/MNOVOS8jP6mPeIyLkxHnzlgZgzT/KFbSOg5gwF1SoBItOYSs1ExuXYUywVX6nCQo4GxLfHs6yZ6pH24u9f8wBzWorm0QFCWw0O7mt98NlsGrFGfOB5BeHseDq8CRRcjMQLbM/VYlclstBB9bcQcIQpjn9JE/qGrGgHwdKzklX28hOrxkAjlm+vYGg7sZBzzxkYwjnPb54q2w/fejNNu8XYqdx9BXn/YEEU+Q5MrzeIqQKy0cUrphnVCcVk0ppiNrWbSWpIdv1JeihZ9BOUy3Dneu1LQP+KJJ7gDuKcwmk3WGsZL9DBK+EjWqNhh50lGMht9F7RqIytnu1fQSpxQS0gGe3TMmlvVdbbSvjNBH9X0p59lioP1OTQt/172upbfEE214bZnC7qeXwLpQ7kY5TqXH9yHOcRrKfwwu1RIvfLyGlvUJiQMSiRsNG6pHTYyyBb8KT8rjmn1dAS4j0+6e0HxKHWN7ptSpqYhoGaMqbYZeA0dQD0u940c5NtABUcPIuVyfJrKwNJqpVZJjVFuUdpSmSHrMJPlnGwSYxKFVZi/XOa+QReg3ZriPrKaBBvAEX3owzAevDwO4kdKvOW9DCcknozBzZXwZSAkQao5e68f8EFsZLBARUkGE8fL88wNNIldQr6OxLFoOFR5XplAZR0VsAKICOGv0AOUKGeXMwXU08WDmotLBkg3qDwNV78hlwOC9OGPj5Em6z+T4Jb6lftzn9N26o1707YSlt0xTNzt7nDe5ikVDojlL2/4ghTftlDWFptLZvkebX0rZzi5X5TN2zHfsl/hqahViVIgsvnU395/lt9blKjvqa+hqkGdjR+xuzSp54NNzrCrHgDwhNuWS6rw7QrgFxUhJl5z8TiDX9NgmGn6r/RCBUDq8de/mZ6neMJpDVmXmLu9hl9O3a5PiwW5TxFgsCCPfutUC9tc+uZpHlyw2kuotQfc39XMd3F6Dd1VkvdgKrKAUn9ezf1zNRbozxJB9N2WXqYoGjXZ2LkuX2AttNcPcRUR9pFC0ktTLmsPo7pR01riUrkXNO4GsAhqQtxZcH6Af+eCNp11w6FD5yeGdnGqXAUm8nubqSyLMZs9xaE/MGnYA4mliErqsl1vdCUjdflKo27UVFyB78Du2T7kjJ88VhlhrI/4rWF8osvfdsCzO5uPEVKm/uRp7nth7ZWDDtJkpAKO5COgFBV5vouUGFycLlw7m29ZivaNvy1S4ageg1MuBeV1krOi7ezG0vzc75p1d8hKFUqQc70IcmVrKKnzn4919KGZ5pdCocsw0e5HhndPy8h7zmuZbhXs8S5OhamAUYoGdTc00naV8OY3wUWfwUMrm1D/n4gsbWGeb2Es+K1Y8qY3WqtweIMvcv4wGG4f6eaAhwuXlkv5nK5PrP5Y7vyg2QZx+XwM54L9S7o7YYjqn+H9uIr1+3lzqrhO3nc1PsDs/F6bwKLAepcb5zHbQbhzll48EwIzCGSjCc08PGoG6PoUrVESRHQcJMCK17lqqsGJj5XBGgtvHfI+vBlvjGlkY/9u1TsXicMQUK+BUuXUsBgC0UisBzBfdskvR/Rynu1+F+FgmfA+X28qBAnNVxQcl5bW34LpbavksSu9/Y3H7+cZW7LP0Ybsw9UK3DOo8G2Q8Kurw3mLWLsLnqkSdyZw/Ybs9N/Vm2VXJ2Inaqy0o7p8Y1KKXPQNgFA/P+lFV0UF/UhgFFC04PETdvs8Ujj1d7XQyfbRnwd4LqFg3vGbm94xiisyZ5aPHtKFRgb24kauphDSOmtJ95rVfH7mkDO3dvKqBqnEMPTqvmsMxoUQudrViaIjSE5578wIt+6Ns8MN240JkuidivGyfpuFVV2DyFSzwsMTC759uPfsEsfSyzx8P1rRujPBMz9BRpsC1xFiDDMJIPJxfD/Zlr9FJNXStuSheFFI3QMulISlCX/+jo1+lvv6/rPUJPzwRWfpX+c+jQXr2+jraYQImukKznAWuYp+njVWIgIWO94HIx8jvElkaV2QZDjxes5/hNorug7HfRQMrSkTcFO6P7rrVAOWhgAeOiB5+PiRQhHKTVQqtod8lY3MJ4JME0VDWR2Hz8d1qaw2EVAtSF34KKe6ss0dif5MwlmN0T7qwcIrz76LZpLa9Gdb0dVUTXX5cPcd2U0B93XPpv5AZHLIfiJQol1dp+ukbi0CMoajmGLgbc5CKIv0kqGRwmciW3Vwr73+0/aqrdEtsUu4XjEurQgpblIl28C3WFDeS7mcCh11W6uBUSTCMe8H45C6qq4xI42DfBtGbUeqRF4W8tpTYXCAGiShtmHfTYqBZQ0Fr4jYtaViVDYKiGmNusfwUret/dzJLCGXPh7BHvwTTROg9Siw8rt2igsYZwSmJ4kLpQZ7UOJQbDNBUJTDERKt6rNKAdAx+vMYy4Hhi8FnVsx4CVWNCbMPx4RDxoyrXTE+rX5KRbKQp7y9hY1wSSJjMz9VU20MIgfoVbTQMotml0UbjLJulDLHzRKwy+qscadkb78fUvCa1wP2fnH2N2BvhCIKZ9z6bG5VZspMSXVYaG2eFXqNYiuvb+IAJxx+KgiUno+zLKeI80zKC4vfwqDIeyUiIl4zrYFdhBcKhyAQf3Sk9uIanyanHvW23mebvQKKEbXt+eYFH/WVEic+u419SICTxub2aoni5XRkkN8odX0cK2mO3uLi/OIJh5tuIJ3nVo5A8usaLHfeaFIWTJELNpNZAIGiPmylJX/4AlySjiH95OFUjpTzJVx6ir6PErYwy58rb4jXG3iSVb0qz4ygaX+iNKHka46TIb1n30lHh36fIL9+1+yNWABf24RXOp5VVQJYDDiomPWhSb8Y8j2bpckt+rIthPNDBd5++QCDYvH437ldnYE9piD8T7XwVIOcElv/Skl+qTgjX2qRvfNevFENKj0HoaQL92ZoEuPcB+QyyON0KVRztPsdWh0FAzlc+t5zbieZJtJR3jYLh9WkgHT0xW43ggXIf6acg9gzirPt0WlG1hcRII1pwEmCSSGfbRc+Qg04kUTlBrP1wcV8jKyh+UO67GHDb+at2NbLKUwsvzbj4np+6HIoeN29aLCEt/nWCJp4ti2u2rkeLj6FY7Goxd7l2cSmy2EGBq55uKUICwoEB+7xYh8gGH/UhJSOaHLIFGq5Td7fFh2O0vQJ09Rm+TLavz40RRZfQ17P3eSuO+wykpZhMnw1u/LCY4QRz4BoX96MYWisjmK0CK4zghsIAUcAznHh4ewaaflvC5pohpl5LIq/ku6eZFAcHF71msogMv6LwJUavyZGJ3ndG9wcoUTRtVhy5ZMvDC63OWpQ2BjoPrNPcAp/MvSoNFbfE+0js/fTWSnobvE/eZAe7pwfekchlWOxFVMMMSQeczlgouudoybu2nJjuXYV+asj13/pbMyJJS40ZmDxS0QqrFpxJQTEVwcahzT13OTcP1X5d2d0Wo3dkmIIs6YLxmuktI7A66Wmm1hDNIyEv6P4FsvsFlzYl3epf/Zw2rvJ7TYIOPL6DxcZyp1rXsQvvTtI1bdFm4HYvKSuVCU2jyqOby21ZrXk/OC7tex3GchZA2eWD9Ua+jaE5bcViUgr4x6hgPcyYhisVJn40eH1OVkZ31vWTsqj80AdIKyymnlVsCS5TsNMUums3X+CP7uFhaCpzxdrYFWd7L3V0r6lZeJjWKJz1xMe78oiSsaF+C9sdru00/tekuTxv2RpAiwlTUTYl4mRo7f4qZ1wUMpAl4hZOOtZbMJoTHe3H7F84R3D0DtyLCpLh/oAZ6pyO7LaBj64vWKMs0PKgT+xXLHBtszdPAxi1lees4MOOG0cYZ17ep8k9aHIaUW28F+4fMxctqpQ3JZGbrMT9/LMH2lA+py4Kkv/lwloCvCt6p166MhNUya5VIWzA7Vf5jc+aSpg9N7xTP9FxfWytDVA7DZA83cJssZOVQzIlH1pSeyksgKsbj2hUCQQtXPaAtwJM5wW6LujIBbbIY/BTUQdZv1ejMwuNwu9zaMc3EQj1QCJ41Eu4vJOIKJYx8teNYbhgaYCScxHMfkzBVXZZ+mhNZsrCaMZPHIu6qlcR3KnYn0e5jlNf2b9VyOSJJVpaLPOSRrOg+Xjpq6fuhCVxcm0kM72ku6+84Twhj2Nz4BqpeaOy8rnvzVGHeiocRfYCzCb1bGe86s8RLfp9izl8ulIW8gtwdhBUjNll0Z7WNfcjY+oGOUR61BZvXo8MdhaQx0pjRchMhgeKIOYOctQcZK81rxJ3kcqd1DUH6Cnh43bRvtCGbpEmu+nnJ/2NY6J2aDbIUNIEuA0WFK2sg2bcMszqoQ4uBDhNFyqawhper6Mv9naG19GJg+kyIsFurirkbToZfCOoibQHrHpMEAnETjMxBRCLelmp+/+N4tTnKt9zxoAjuGct+j01pGzzbNDEi/fTbSRrtk4Fc6tlChROlWtB5khbPf7A8Enh2QJ93GJ5IHEmpXvEvUbJt2Kw/pVWdCyWEyF8AYiYO8/njA88EshTw4hG6B/+vn/tBjxJFOcweA8lQyVjG129hOCrbhgQiioDrfP4RRwuWzMB8UAK5mFB+rsU8wmcoK8RJ7aVZeLG/kApyR6RK+rwUsVBvVQZKCKA7TVvc6mr3R8VbGQ8bFPg+aKMrsOogkDLkU5COulH7XQPb/wNw06g1RtItsaJW8N2bHcVNgC9USL/bAeuLgX982qe/89G/dSK+IuewNV3+R0OBJIoqqpa6XhrDkwbYMHsLkLMx4vmj3PHmeR9LNpZPWdT5AWewoaVFfm2LR4q3d/uPAHzyRCLoo70hK2l2T2YXxvkqBww/MuvCeJXrzc14nsiZ1l/Aey+AE8tM7CJ/pcMWDiwHbUVbKNP+CJCTDYyYR8uL9/B66mMwSrmKlituXB/nOKIfVUpQNHIqLuYRwlvhAwNOJIQKDU6jIBGtvtlQLtaCXWsYPVYWHss20ao4OxiA8Y8vILN8+U/AZBYshDigx4cokEP/xaaRWvMKPNUSnKebFK0xhNg1M3fIu4WHEfHLeKhykFvnLSIGQJkXckCsnC1vUI/iuek/3yF3DXQSw6f8SETiD44suSnorWBiYYmqvHXa6gimi9KJV1oCaXHRQ0rx/XlXI+gjyiLbQoCaRCqvNZ9OvUc3UB3YYUvGScK47pV+eu2FefWvx4PMh5oXCU8YQR39dND4YCrP0ZkV4kK93qixIflzTOdU7sVEypTqnMeDwzOZFKBagFBIa53VbzR+yF6j+uxEo7Ljmko/KC15Em71N8EIs4PA5bMB36Dff5KWbL6moqlyYjgJGX7aub9H7tBZ7gHwJ8/iR4Xi0jeRMfrwyJQO17RlRSzEhDL67FiqAPszuaABqnMhFJ4UEGj98t0ltoYRI+NQ3MD1TooJ1tq1mzVEG2eFIx6PrjSB+mGujKJwn0FRvBlJI+3Mk7Vn1GLjjuIoj/KLGVCW9ecw1w1GNhfExVXqBM4y98rnbS5IhaVWCFTCEk/V3qUAhdiztS/A5TPTTEFaAD542iKwmoLOQ9dTV5VHJcOQ+nUCpn18XLnGBphkYi2oaC9drzWUuJ4dcwphyv9q90unddDKx3Ge9sBRlsxo5w2MAEO2w5pM5k2TAgs2lf/zaRahXZyoBZhI4DKuA1hXDGJxxj8ZBbO5dC/D7y/N2No4HfiQz8f6k1+g2gFM4fdprwS+BReNIGk/lyv0X7uumGboQDyzGNUPRc34BqysSsdzXROHbefItEaKRA0u61JcIyb7vRINVVnLqlpjc26JHa4MtBcliCZKUDEcxL9wJKPgLrjk1kRpgameR3QAhN5kwh7EdhyMSrWijsg2KsmT/2r8OVhWTES5BH1YVNePjY7jqVFfQV3mEAHlf+NiVoo4qunngUZ1l4CWG6UvXek/H+DTpYlpMs2mzAfUcSaOaNfmd4crrFnxCFlGNmiDepDi7xBCFOV/lRJ8M9alJrPBguY/96XEuPz8T7LCclqDRg1OJn2Nr9hIRJwQ+EPvDq4drw6b5Q4TmhtFNmjbxJeXpuZXKZbuL7ABUV54sWwIqIvFqpPTcBABmS+G/DbX0nsViTFzPPmiMQN0sYTRcnTuVEKcmKwZl4W7k/RR3xmtiqIbPdrf1YTfDJz4mI0nK8sbV5mi8XpzX9z2Si/z7abHXx7RMnzg62yAvATE4C3INZtAPPQNlQxOTR0mR+qf/6o51ySNLtoGIpUkp4LMCT/N9F4KuMsqc+k+GL7WSmx0QeS8fNXjJDSvXr6vPdJ8voIaaRJsPCvKkMfEHE23iKQ0B9x/bP1h94kxp9GI93WBGaAJqIxYzaiq8eciJkZxysXfi3jXWC91FHbOLEK5F8g+Wqshz+p4y7SXreRYyN08XCQ41kUBUnpAChvU42mvYPKi+WO4DgceuX0aOfT+LkoeZbLvFtMrQhWRLohkGPCjvU9PKv3uYbkH0DyxPjAutegKBVLwLAiof0dsVS+zzwrBfl61x6NNXALnEHi9wuw0bPRGnzuuYnVKrwIYKEbirC8veBJ7ozmnoIsVL6KkbYnURbXL7Ux+3kzEJRojaaX+JArfYfTbuxQh/iIHvVzBPoqfJSMz4M7PNKsQQyWoZXxVCI7/9jz7nR4RCq5zISr1y3KRurK5bTR4ONj7542MVmFRKIjJ6wvGldJ7WYN3ZwjPG27QNZhkY1OSnejhD+5mnM5J4Xntwm28fjZ5TPfOeCOj0GMQ7721fSr7Rp1xcLI20Jt8LttNgPvmmwscdqJt6lTxgI2Nb1AHDxQjv5GZGGmh0w0L7r2Ql8iA3cyhh/KyC/jh4jP4frEJZgszRVpWZ5D4maGWAUKK8Y9Ij0P80EOzh/stdeGBLAHxnHCRIBL/ZYfUaIdlDk3QVJer9O9jCG4Yar6e7UXEz47iDmGCQTB+nY/zGNm7gM/lENOnWwU99j+b17hy4nIEIsTVxvmKdWhtYWXUdx42Jxv50+C4kWfJbhQkyOosvOCwt04OZj8xLOHPSdDURGk6p05gwcz/GhemVZQD8ccT5IhGtw7YLNfSCPcqb6cpV7OV/tbwm6Eqzjr6NjMKEgZC4GTgGpur9VcLIrC8q9+P6pRp/LyX8s4czwDx4/LIRlYa1nv2BEM4jNzaMpd0u15P8HyAXvIaKEGlbZfka0k4/CvxfX2z58qIh5CHCbJKO32d6M0rjBUe66svQjvwjC4aZ4+5FykNCRY1RHjUQ7KN+exDJFNWuElSaMIqw0Ro2LN0d+0ZtTZINnGObAv4et7+RH+mZnvu6GKpYM8cTtbQ5+V+AUXhos0vGwuJqyyVNJrFPvyc1CDxjN4y9K+kq50aQfD10lVNN20hMkUvbB3UvPgxJE899lvL8ikwC5Ncp1Y/DPqWw03I5z79ozoNyiBPjg0DhlovkbzwUPyC4UwMXBSWLmtQxPh5GSXpEp4BF0uyMpqEx1WiB7un31vOELOfv+RKCIaAgkf38gqK8JajSrPAbIZrkKZrTBUdHFmi3uj5YniPWbP7koEd2Lw/Zyw9hjxaV9T+weyVhlus+/tExFgbIfQHtIOxThcWSttv/PFSCwo+ayFDoJKptkUoHadVSN2PhEw8Lo+UvbD8XwbBzs+OfGmm+c0mdozuo6nGhkc/2VHusVvMV6wqbmWjxk0P1jGUj01LZBayJoxSLSelyjn46FdgpoVlBAks4wDGVHv1DOkQ/SlrSXMlq9CIYmxyzM56UcOHAFHHzcn4FL70Ekf2/cyvzPDqFn0jcxTvAMrk1i1GyjekPjQwPf1TVJrXjY46r5RfhuWIcd8/KBzzuO4GgVbncQwhZUn5J/rrHaYpUuxcETFAg782/en+g0Q8FtKU67/PPguHnff7bmdISZ66hujZy3Rk+6/Wl5frKueBinEViQiisUPi9PczS693LtIKO7blXBMvIyjU9BjLDVnMFS71Ui1DH6zRfom6V/zCNVOQBLLcHrG+YliQiAwYnQuxchUeT3CObEIQG9HCt9hlkfyNebfRjmoasQjNGw2SnCDxIjEABL2cJYrdrMXPiSiRSPc1Ukr31EcsxziMMaOpOLOGoLPMofTZS6ksUD7/eYhZiH0G6GUpqmRJF60LHhGG1eFqd1axjuAwGaHIADrLtUKhgWZzENz7tOl+oYolSos6UTMoSHuRjekaV6OA9lkrpT74Bq827tpCuBQLgrvFXS3/JCkCxlVXtRHIgdI81mjpQXizgDIAaxNyrc4UWTX9d1l4wPNiy7g7jW8J7j1m8gA9ScuoVdizKf1eZGrxEDU8foG5S29iENwSkE8m+nnSy+W+mBwK9sXO/pd6JMJ6lPbEi9XJojWyDgnLh/xP4QsoE5vwIm7sMqI6Q0qPYXC/Tqbwsl8tK449B1IwaHJyi5Y5PDar913pty0st1d5QCwWiUrjfg71eR/wEuuvtZ7wJa92NC/YsD6RdTT0UOkXQEpfj9J7d+O2mUFiEtkfihXsMMX9o4LGEVAAHfLjKW1Rm6K5BA0gNmiz0fBm8oW2qJtZ1pA3rPKXz23ZZUn9I6eCVvFLMx/Le0rzTWLGROy2o3R/xGR614Lb0JD4ISgdPNKMND1sJ5kshmelVStKlVkhSg6NtXGR/3PlyKrDUFy9BVAZHrB4qHIJFqXSRQSEgyTptlmVf89l7XCnz6G+gH/ESdTJouKA/E0y0seAmKUtcUFGmAutuT9h437aSFEZYHxyQIje69bqFUiMhScpcMzr1OsDygrtKuFf98LGQErvCoflokN3hj4QiWslAcMphBrjTCEqFzd4muUFzSlGSIaP9F3aHWhW/0YSkcnnU48LBQDWqeh7SukLf+f1E5YKq79upQUnvL929GgJq3eLW9EUnH7BdjV8EBytc1os/N3eqdDDKthMhOw067etEmXR5IiNWXOYb3EBiMXGUCtFXcTVZ++jGbApJrdNE414e3FL97ezTGWvU0JbsdzaDmlzuQ0iy2M12f2Cpdkbeh3b5W1CCQ86QOMzVuKFJLm/i7N8gNgEtMhjl5y3O8V4UuFkKMA3RGjEms1g3wd1oh3T0jC6c8kk7TjRS87FS/FuhYarOEHOroPwu6ks2Eyp5TAnHs1/YalxU61oA+exIyDkdFOQClPMLlWtdSqmz+UAyQ03KRDwq9MDmUlNH4QUm7nXrRIc1yFAVSxRL7mAwzd+W+s16kvo3r6GHuHJhM2zhcbbWYUubqNC57zfBgzm+fW1ab3LM3PjtX6el09QeOn6MITmzzikIiphsiv2kR6HtGVMcTMZHRAb0N6gm3I9phxzi5Sa3LpN6YgCZysKFQXxKcX1NrJedi8YsxyopVJYK9KIzmB1HvwDYkruGm5TeaVon9in6jUVux0yKH03JGmZCmPi6PE0O72Nrg/z+QRafhvD8DRKRdTZP0/TjNK4RlVqYeqcjlYkx0UZQgMXOThyuX456i2xaKFz5osKTCjaggQZD/ZFrgUHnB3YUaZDb/LjU/CAApS1X7H/Po2/gN90ygxlALJe4iAlpseJpQIiS7VBqK4c3HlX4+NnmqyWhh9kHyZ/eX7ytFLJQY7ybavYzCWDRIItrIOq5EhwkrHJv4bFjRUdvYNsEmwRzyjq8v1RhlvHwoIeo0grPHCO8euNuiEUkSAwQ42J5A+2ZJn+cktSQD5Tm24Z5jlz4ftFXTW5rNi2CLKeOPGXC3ZB5pVX8GUTcm3B7J7GZzgZP8ZZpKFlBa6mC+W/kZex9oLtyYZNkXI8a0pN5JMm9p+wvV3I2+a0gmuvZ43RVcv74sM1dk3FuuwifR6/9THqMT6jJ3RAXQwy0KqcY3J9mCpjPr9Q62mURvSlFk1nCFQWQb8PtCnsbMPBeCLdjtFqx1swlpiph7TiR7GmSJE/eheASo997RLfHRhjEPDNiHpYKbb29KpcIt9CCU2iLQSysZiEeaCoFd0Qb0Meqpyoxyy1cbtVOsXpb1OJjLsVU9jrzrkUsNLeq6Z0QSbDxxkgvlcvDZ0WEglNEIRNcnuScFM8Ttb1fspVIucG7ugmBvP5NCk023X3L9b8/jpEzrIT3C4uZfIUv8QCCbngDlWsaKth97I6Puo5hsn3tn7vHoNdm4iCHQG/ap30rOPxSKonIWelBkqqttrv5MItacegeP13YbK39YDPpNxSpT1T+TCxOcGrlQf/hJAbrwnKmn5AkiwD7hvGGdXAGrt+sYbdaqnXjIkJDXhp8aCRWxjIHf5YcQLc9famfEYFmntUEcBFKC+tqqwwzPsjr6SKfIOeEBa9s7n3XvfNzZveg/Fym+NDMEEE4UKDEwaE939OwOuCG7YpDgVYv8yt9T2PjKn6Mp1JJYSM/KRgcXPhmFe75ZNudi+M9KJ8rn4rRw30GWOe7yLRfSS5istndbPGCETjegOYAbri2MuEKR9bR+lBx1+UhVFKdBjQJqq0csHijanS/XkRa+xGZVimM7U4dWlF115RcNpjtyyDihdy8p1zz6hRkAzC3TjeMTRrp9I9+XWk5ZHW1M2q9Ee/gm9LkySK5qnfeSZw1ulcqE30k4OCuzFUmf8cIvkEBO4SPjmzSiPmE3AorLqSa89CaGW5Ta+kIood5IWDtVt82R0VxyhkwSuSqnvHEdxIwQcOZ4k/joLLHFbvv4Rk7Gzy52Cu3mx0SjOxMH+qeMJhXH+PRR+z6IHrCyS4AU55aieuHW/Cu9Ohtu9PWfathh+dWmo1fd8mFcoDN3BgSraVFGRZCVF8CRKRKxW5HYHJGjosPZLsYvYj/zEhGMu0IqRXZTm/dirVvGzxeHSMBHlgrgz3m0VpYrS2ou9c8MK6So/2UZ2QLqYv3MK7vXtN7rzMQxT2/0wQeyKomJZpzIBPqJVcQh2oS9IcjQ8dLy7XCBpdFrCcFcfsEKjRVzwXhO1YWr6s9jEyMKYbdN93DbDc9JuvNLzMDvk7ZxanU5PPle8shYMwsxMP3I3LGLFsIzoPd4yqCVGv1wb5dyvNQ3eju/+q1g6qLOsBUSSJJij+g30mPno2wTxuDE7SuSQ5XPOMlzP1f36AElCPn5lzOdHm2566pDNm96HvzlR34ZuuWD1rPFWcZFtqHw5kCPg0LXMg9uMK9uRqGmHJ4LtIr3JddYyTGYxpor2xuDmSZNb3hhaCqm6dHjkGWRSpJs8FVDCu0aVJc30+2GsUnxKZ+ZoKeMfCzAEsOJIdLOKNxtNuWQFeKtF/v8RZjq11ZCLZdZzpQFjdiYIlnPbzKL78UaGQ9iVGAmYNll0WTj63OKYtmIo0w8zplj53n8FPuYIx93geGVnmFG/qx0zqgxttKexgjfiYsarRxTvNi0NOnKM6tPWZrcz4oY8kL+sY6dLvfOthHDaw2leCC8uCPTOB3eEuSaCFo0AZSZzaDw/gmnqoxb1eQ/93QJ/XTOMeo3bljG9njxcJ3saCWONWLQx56OVER4+UTuO+UjoCmyI1hJhC4psiP/SiJLmEIW8tkVtrkc5dP5Zlb+PixSPrtmHUqsQjOx7OBk/VaFT39PkZIOVWlxKjRCXyN1BrmmD+dHYVSUN2KEbRQ2HZDe0FWdyLcgDfE3YYI1u9u/AnkoXVzehRUj0IkIA1YEQuaWfAo7SmIrFqUqEOm4ZBzr2sS6Z3KR2ygCUTfzWmAy3d0+BYvdnFMMFwkk11fwQBrVvllQOxgWcR2JTzVFax+vLI5HnWxNvI//XGA3yZzblOrpIdtA2U3i4a9DzKq9LKCth7Dc+SW2IoawMJWUgSuP6VCOZbaSIw61YhxKRW/6BCLg2ooC1Z/gpL57n18nt1WikHgNyJ0dGXIkRiSwsxHK3/2Dl1WhjGqbQVMAszKV8uaVff5VljLAuVvCgHptks3FfXjauRbCH3CryNfZ91d8dsrmQF9cEIME9BHL3kevgRo106FvO+11JGNjsnGN5LeBQkOS+mvzObbxVt4sUg+w7Ls9F+jXwDOR4tDS/15pimUtYAMj/LpDrDDcYq+OUrZRL7Rct4VP9ILqR6efoJzWlXa/4tWpDeCoiE/XaXoPAQTx6p940acVpIJp9OUp0jzzhFnQespFBfzAFtMNIJ3Uy45Z5DuZ+JZgnjH590IIeZc/Sc3YE5sO03EF1cfpBScD9DmYmWrgpQ4037IciLPVxQ/VqxBLBCFZ+LzDJEOoi4OkBwHf3fQldP6Bobm/IGswnTADXC4i359Lo6Of6rusaHhktYktYfXbIDPtDHlwaVXINuDcZkrk1sXHDlJG3tbrHyEN2v1KKJTgZ6Ir3lJyERQJIMIyb/X09R8Egee2LmcFEL/rvocw9pJdA/l61Xfr/bJEapPh0oTnznPIReFelLkk30odcOtP3ScPHyCh4cBUYLNrdMFerHxCDbuwpHUfa6p9kzh9RdVR9S590qWh+SnTmqQTmZFtjimk01KTOVoOZ2BHG5IHGnT0XbVFSVU6hFJS8iNjpFr+8Wk8yFfCIpXpxXDG6JlGx8ik4d14c69dvwZyWxCuSd2lV0xiQFStAht7sSfXUx4I+xsM1gkeP+DatIQV0m8Z+Fx+qveyTomSNe2RjriQC93aP1vUtrCdZYWfe3m8hi7UI7wPO54fWDODs8ZsumXjyN2LAZYRYBlsx0PtYbvxe7SOu4wO1gn/0RJMiDP2i/WwpSoJQuwvughihtDAstXC4j1o0OlSl7PqbWVmc5CRrl5BSGTnAMT1RZkSMYpRsI1nxIHErkTghfTDC+dNmoXl6EiFA+ZWVDHUSXhTiSzSrITI5jfrQuF3Wik3ptyQMC9TFZtCXFmPp7bJ3mHZWY4x4tSkl7c7gEsi441IKV5Tw7e9oES6nfgXyiPQt2U+ZCQqUYtXYVUNUj3HJ9xrdfbNvFE1Efeqdkfe+K7vOP27E8j7KvIl67WIOmbMHWC7VGtCRVUMMVfa6LOXXs83JGShqw9haCyvgMhk9Nx3AdQvDYWUWkvzZmmLfLzWlWn9M3/KUJp074VPIdP5fZZ8om3Auk/X5pXRdKHxi9cDNnDpES55Lc3yqebkZcg2xM1j+J40A+9Hmt510xsTXC2JLo9P4rW4OmFVrZc6gYGO6U1ZIhI/LjOpLehxjYhvaFRLbd6iHZMNIH2DRspDkyHTqUmZCpCVCaJE8YCf9azK7SWnjb9vaXAqQ1We+MIRWZfaU8MAgWzL08RYIkpQMgK7k0nalluODomvvmr8m1MewRIcyRWGvWbBpiGVols20dbUc115uePVRyUMmIqbUvm8Zq0TGftMflk14bb7u/vgauix+zrdn7yIJtbzklCFe3SwepZwYnzGgyFFkxtRKPT3pEp4Yj6V2+hkXHj3orK8PAJSFKZ5x/radnNAjI3O1rOlXMEbstW7EKPZWMcSomayP6epXbzrPXEdG6HKLDXx0/2rRMxLd+I5OWVV2cc6WGw5Hw6VzBL2GO4PEzlN8wm61FtfIcHV2yTTWgEEP9j6rQC7/jNu0mqMZPeIw/FHVswNqTY+La+2EP6bJUoMBdkRo/9+5m51/6NaiovD80gMOJ53maSb5vUlRBJx6h5FQYVeCOJeEwUjkZr7i97RvR2HOiv7OmYj3aGA8T2yKMtXGfWAhtGuodNqMvABjGIzwevqW9e0niboI6yYuqtEjMHVFIwpEBQSeY3QdSZKGHGGwxgktaF4jFhMG4LwyDqmUdHE/xRVWjxtRHdkGgQuyE38D7sL5cuDTY7icn45r6IcLzwmrTW1mDm5W7DVyL29xZNOHTezKSEQlxoJaz7aCfMl5TZpRRvGXMw7mtRnp843jAbYKXTZMQ5KTp8d5+0MYodRlPdhml/ZcjsIztxhNSYaBpCYh5vjZmsbnSszv6GH/XvZ663SXecFKTnxiyQPDgnTDXf6ckOaFsAo61m77AbUbqRXYoyxhl1C44q6q0Ior5jtDA4c81rnEH4SPew9G/bzNF0bSJXyAqWDIOCtuNmxT/eWlN56UK5f2wY6zid/d8d6sdSPP+IEdcqM8WnhbpmeXVc98/ZQzXI0LwX/vclp41IQcbMAVmVg1MB7s+wHzvA7VNRgScEP962/t8sg5+JEL0qZtdi6s7qwUCwisvGiz8x7pGARLOFmGhiYp5vfhQB6VIpGsmWe24PWOTghCfei4hAMP+nLnhcQb7JqeQy7W8jW0UsDFTeKLh5eS/Au0FbJ3pb9C2ruljdZUL9dBUbuAVbYopUoQR4BksdljyDpoksaEeEt12rVBs4+MZmykO/fwy1ZyTKRAu2ASZrUPyJBmNc2gBEJbdzsjDEwtvkXItuSnZxRE/dqsnT1X4TVGVzYeg2jMXsMO3llsJkkAOktK22PnVtZxMdWkc4NbMPtsnXkbwDJ0j44vOZjjHJWf6x2bGVAblU+5z79WFWTrRoyhNAT8XmblYmDEw/Ovy99o2aIqZNFFBVN0xXsoISxYw0j7vNdeqZr7Z1KrZHFjDtQdmon1aiWNWNihTE5XmwpzU1NIX+i5TO1k9gRYjJnIHJ9wg30/HRMkKTCxZBhQR5uMLe4M53POVafuXUMsgLu3/0M82vVnoZt405jopXjo19XgCHymoSIDZE0GSdL2EjCKvSaGOOXp00UFs9SEzvp/Dyqr5ipKYSdOf99nP0dZYE0iFbimcj1z3bpDs28GduSZUKhT/VpJrWoPyIvZcg+f2S6fuCIP4tKWsg9FPICNnUfMDoeMBSK8rYh6i/wtbLljL9lxY7CuRt9DEMZuDssczTBzxn4YB7aqHViVVwc8gzVh1ouaV5q2/ux4HvT6doN/Nf1j4tHIHJ3kPztlIhKTHQzBDD3yMNns3Wg2Zvf2Ecb3+oPBDLsnc0sW7kM0k8yVoK4GkkcXYBwaI15yZkpPyY0sfIYTT8VyH66Hgnh0faKh4Au4HUHlnhoJ5zG5yxZjo+wYcf1Aih/GjHkJExZWLtercSd0EUD+I8fRXMOj7uZFkd5TJ8fPFXOcXI51LR8+mKw/ctILrklLIpQKKexkdR2tyZsGv+YgJeMfj+HYbT23JdoGdgRplfrTL5MHIwhPVw03QNdlcCNE6zU4Xk1KYlPBPLv7LTMsf0ZLBTVf2xjPCcoAgmnarPPq1T5LqWItiXOQPA+5FYcoZMf3MkyNJ5ewinlueyLQ/inWVjGHZgClu+yaR7snNhQc2zNXvMvfPvT22ZUXTocbABr4O+S7z1296A2zIgjoMM6sk+Bj0iomeA5RGS/M0Y9U94jg4eRkaYd75K/50Fo/yJglARWpiSb/5FwVGPI3avXKnB1IReODMMvD+vvemIGJ00oxu3pC7JdYyzdkNAzXqlcvG7p/Mk0OWuq490z4MQiK4jKaZA2PY5hyQUFsn/pMzi+/qv3sLilS+pnrPEvB8cN6AZe37c7zzxtcVhnj8MYykEFdAOWe9CJuS73Fzz1IldIs2JaiYs2xECvBPpvufiXmSobTDK2B3kCoAfvL15vB2/uczBvGJBSIc0SGCm6fAmqEHIT3OU4KlSP3MerwwvykrlYELYQbHMhHpNqmceMwlUi7Pe/T7q/wGYiWNIbi7ciMqrBY8UFz5sLBLnSt8b/Ji51wYnsfAEKq1jzGC8TTL/UlYy8vrhSyEjKFd4fPEMb87cj7muYjID+sjplJTpQ0Q668iKUAj/+fab3LqELjDTBs4b5nY135yO1rydxtjOw3Dp3awKSM4Wwn7JkjUDBahCbPVevnZPEaM6FSn1Pk4BYqSmeoxKiuN+XiLhiMLzpaUZmxQx3z4gX6SJURItucfsCczbPitCvGpFYvGqLw82wijxmiKNgt9jjTmO47o4pbtMrX0Sz01Ppru16nNepGh+hIxmIdStwS59DL2psF5Fj6K/pd0DPU4unuNgj/eAWj0sSXCxd2seskqODJ28yxFvKiMdwwvB52nerty9raIIT7ozRzL3BhYPObJtzNLWP2fWOfoSMs/3aJd11sIxc6WQGiLBZcnhTlC2fxsZprd+WMHGdf7KZzKoUKsVqwvKeCZHc2pomER9HHW7XD7wx4kts0+Bv0KXFT/nEgfQMlr1xUT0EdzCCzYalQifLsh2j4dHTh9pGRmsZoORx1OXC1zL1c7a0ZzHahaXXblY6L9GTquckM7KLaSEfyMcZuMOPxw3AL/Idt9RrYNRr03xThH8m/fCVFPK14mCXeukylGO9m3hmdNfPzKfQoA6eEWqRXJYRvmKojHoM7WO7wDwYFsaqlolGutvCnovsAW4/st4wJTvhWIkpOk2WwvSbj/mTuL7iKDcmjcGdfCUUuh/1sy5uqijqvdka74fXiZ5rIlepOt/+Zplk2cKi5m5ZosGGUYLtVxuyJR6GoNc3Gua9V/lAQ/m2PTkWMrweM3w45chLyOasCGosdnccwVxDT4kacUIowmDLX1rj8VTNp2SFvHRx+NJpi7YOEe/Zdd9IodOZq6+31ZC4hw2nlEJhFmhWFVB4fklhNtqSDVxEWpEZtfDCd45AZDnXcu5khPaKY22IW7ECiYWcmVGNEprQmsIc0/xqkDQx9Uc+lw2DtLxAQb6xi7ekOsrC2qbyUH5Gv3+x/4XUz4HxGxGOP7Q23XuQjT1FZHmKWTUcaqwXvj7XgqQ+Nk21D2AzEEvXaE9Pq5he7XJLOdg6YL+ymNU2yGe9i98cfO4m8ehlWK4bOn4hHy4H+Il6uTqNzjyz768v9IeOeGjnk56hrOBzDerPhQ6HSABPn6fqAtd1SUVi58OYEzya9L+4e3fgwJ3fxZlOsmr8HrPOb2IJ54kpreT68+xrTbcXnBDXZN1CEyL887mQTTMGQB8v7FEDaLMuQJKnqnKLJoPyT4Vge6hmFPiyvhj8grcTgh0B3ghuWuJ5FlpTVe4ZucxI+Gg6UFFs8NcIBUidaUOJVBrpyZc5Ob4RW0yDlRPSi0yije2tKpG6wG4jGZ41qnDTwuQKy9cKuB5uYV8s715cQIt4Ll2vEmHJmP8Hc1xDQMQPXviIRG/APFUbEDc/gF6M/1n8nIWF0Zt/rWY0Mo0JsN8H1Dg1U3i7XrBuDOjzKvBrH4Kt1M1oGDCCLGzpJeBZeYzfI/ngUeEi1uiLOJeV3ofv1hFHcYhD7JBG2ncVyNA4dzB49UYk1lXhjG6rfOmXUNniEqgNyQH8vfeyRlJpbUxIsbasF727BuQsWIxQZn5/DW4O9/FE2vEZ2IY8PZQQxX/fNz9Yocg6gLtdMKMn18tHDcjItu+AH4CoVLRwD3sQOcO7MLtXt876sN76RBFQIeGWnFS3OyPrRugHaoXnY7QL0Uq+qgTvgKwJL7GjnNPyW3cjZnHuP+gtHjFavKSbq2a7npVthxrQS/g8MK3FPpjaWc2UGTluw990ZrSIm8pd0+rsyV+q35qk5ihgpB8D63P8rMN2uWdcwqx+l+yLXI/2SXdo5HUpgz6yREMclcz/lFa+jt757QkVljmC32YUQ5Ssg5MGOPEaeE1j7QnH6RFvEoc1YP8Vqf0H0QNVY4j4oU6YFnAssNxQhzHAEWkLuPIsg65KWjNEPPILMth5aoVZqbV63MrJIODFCuKQ3TXrXGFN/kwyv9rXlzbSzfw4oBWXJcOOS+8EXgPq+Q5NbOOPIFYgxj60cFMkgrhAxvV82UTGiXMEKndCzAN2rM0/7zsz6hPVJc8NdRkrV7GpFboWN1v7Oi69SO47wXDGCWtKD4RmYruaKU7PkoK8H2fpDjhcIOx+A/wCR/fvpChszdln/k/iZYMzPaXB1DthgOa1OxpNpbHXB/SdxDCg2/VEU4mE7DsGKM8uCBd0RcMaRc7uwYYXgxegdFFxWmew1/1z64iPFpRa5TyT0Ybhi76/+Y7rkYDaH1XBgOT4TcCG3ZokUABa2u6jgHGrDF28mY14lOGsxQC8eMHHIoGbrOsfvKujMJ1LPEUqvg6WbMRpK08yZNpImKaWVrCQe0/oxsk8T0akbTswi25nGvbVJzrwdTG1ZDeGG2JDOg6W5+doo+js2CD2Os2RryxhW7tWF+3cTry/7va7N51UXUTwbmq+RAIjfnU0cfDTV9wefBFjC2p2wwAETyCYQ4FvuNxp09CdmsZMXsj1Z6wlS5Wpv7eT6zL5muc41oX4CDhBV4l2vWdQ3xLb19a9nRNkrDjvfvo/7SYB46R/gvUFISClT8UKXp9wGPPOMGyHVDj21xYDaIul6vpIxV8tdjRBAEdrOgxMg/3UdGxl/COll02Ug1F0WT6n7f6yTJ0pxvk47NNggA2zWx8hiZfF/dQaczuPbYMDRFQSbwNTEVxY4/P3wsQDQfbgt5xOQ3c8Jnkq3s2enCSiOZ+z5CFZMWyFccxgSvwW78Xd5pYqIWcQpL+Pbqq6/IiN2ZOnC917mUeWs6kUZ6Iq+EmO9aXO5xjzX1qUbn6sxrWcGDVy13cSb539GyRRJccaza5PVgJqdBFWTXAHOGrpSdW0ejo8sq4ITT+Va+G+LbJ40R2ZEPl3a9VHtq/IQM9DlqK95qsA1SYbCX9lTDIqO+Xo9FrReT0XJgY4Rxh8LZrrVZkJZe3DVuYsMuL/RdjBHQRXwFFG9oLAuN+bStjJvSLyin1FrVkEdCpBVGcqpltyHvcLw42UHtdELnp688xZMh9hmJlFD2vEINoq2j4+d4Y2Deze1/8l/fH1XwDACZgh5MpZCLtSrYFy1x52PhAda0aNPvL2OCMZH3EMd67SprEA9c4zENmvlSNeAlAoAQ9oYxi8R9Xz/FiI0fgO4SQgjyMG9shkLwcoQ6phFKbfh25k8TW4o4Nr7tkrO9tqGzgTjbQ962KjfH/4hhWaaIvupA0noiRYY1Wdk0CdIoTWO6Gp+YOD4SQ3Gl7zp5gAy7/4PlT5lQGKCpverJDFehFXbF3OpksQOSj1OnFsX3lONBcE6sAmL6tKgZY62a6WpWplUa7R3FH3XejqQpKexqQuXPTakC6/WM85YVjdhPqYlrXkcP7TbOxEYsE7fEcqBCWMeYCF4s84u2cZ09ZEvMj69JhrBjODSya/bxIofiLNjEMlHajZVREfVirX2hfCuZOaroNlc2tnEpPUKBApzSbjxAjPXTiQsh2kEqlqIb8TFv3dNQ1gnJR+BVN0sOdLjDNioLNyjHp53sJLMEOm+QjXIsykYBlzUN/nxVWLYh1oTl29qgPSRbK4RPRTmTwOOnP5P0byI/fotHsLaoPHxybva7f2QNZNOYkIHJO1Ozx9K3X9Gy62m+O90teO3SewXuXzVp0TGj//Rh3liNHo/RvH/6F0SNinPDR7VGbcx4vUmrQdrhSZZKdZ/FZYOJAXBLJoDaknIVUqVjQAF6eefGbZXZw30gvv6z3dSAMB4X1Uus6m0u/ICUBqyHjC6LKhWFE2iMOA/tY/dTolyG9G/7P4zGEOlGuuiRQduzs+3oiVL65sZTVqOlhVXU+UKYNCR4pIp+/goOBZffWXuZKgwn8DVEMdz0Zu71AqV/oM8ilyFveOkLk4ishZVreOqeXitMzGNFByK5SThxfyeSQAVst4jty1tZhO3gYIPV0cnPeCVLUn+VFzgXcSe1GFUj7hG9vPaCPVW83O/D4qZCyGUsUwg+2zVfHoNIfrMrKSJNZv+bDXRgPAOPFLm6eJGKXhM+c+YyJtLjJxmQSZynufKwLA9ooGe5SSiux8mh4nnh9fUWlC3OtrINgQgtD8uJ3JsG37d1tziPBrNouYdCmiAYT/wv7yYp/hAZWGisb837WbOH2wtKyXEJ6lkhVVB5HVqVMoVv9tl8eKXidJTfzHQdzGpCOYx5kgfKoc9+gxYgdkxXrfDkxyVj9WkPfHBFClqWra6sgKAqO/HQGg1sTrlGvSdHc3NkugXYzzjwudQscD4sXoyl13ShP6yCqUVrPTKMQpYT57ajcJ0+ZG9zaG9akQU0rlevPp+zpONRgvvFGH8G0CEjQc9E18tJrSyz174aEfpXaI5EpOOxNDNzvSXVfMRr4Ls2Y+KWGibPS9tykiw8N1eMycc5Hab2faMhHSAV4UrWBCMEUO9iTrzoGlNyWbmNo6qrMoul0fAV7nHE1GM0CDEOHtU+H/wysbRWSBp+Rl+TOT3EQYHc8m4tAkms1sCElXZVqkDshuB41p32qLQn0cRCa8aqwZta5cEBKul4n2CNzo6EMtF8oTNEcljHHYaAfVTOeLM0sFiUvrCJdtTSAei5MBunTuAT3fno6nwLRgVOXYbgBv8LcuorylIAYYeHAMnk36uf6p68+Lvhz8+IHcDAK5qff7Ka/mtYx7VdwJYT/VAw/7wYadcySfSu1XQXIxrXmZgD9npgOYUW/BcU4mEIoNHEfcb66//tCfjnXdU3Ud6YIZKovskvkBmfziweVhdT2pMufIcfEiQTchyKYozzGpQVycTyimsuhp95xxMLgDK0uMCRJxsRjDVpdnmyBDUVMJNqv640DOjamHwQFYimhY/p7KZiU+W/j/nfxw8DoC36k61vjSCf7dk/Z22FgJTM4fkycGTbyaFfvuEKh8c8Zb5TOL8TP6gHE0qs6I6mhM3FodEh1T10CBtmzOPwvOBkVuaymClCK5bGv8dSVUMEe3QXQbFpth8331FjLdx3DE/uDnaqLBYQ7+sm5CWOGEdCHUN5jcrZ0pXMBX20CgpgDJxj3ptjTSP/lvPcDc2s9Gz1358LJl59x5+igcQJMRm8Al/VcMt3+FNuYcjW+6ZVwev46v6kvmlQb328CTFys3TybwWYuGrkpsVOMh3PTz9MDR6mmZGhzZQnce47MoK+zkhh17m05NtCTnbSUEVRYl3ZeigC+bMRRR77haetv42vG/ltHpL6Dca8aKUEIqjvShHqNWrp2LBXCpQi85W8E8wsugBVGGwI2pEuIwlJOdPVE6u2I5RFP8Eut354RBzA9S3iHaMF1r306V8tu1E+C/JkPLcny2n3bLl6xC+HKKJWdzogybx0Efhe8uPi5vJrsgDfKSzi5ZIxjT4/90VHtzF1+HqU+BqZUrMVautaFr65Y50zesgRm9qWyYZSn1wjAlOkhXsPI4VUgpmS5cKCAPUwlL6+PL3eNGOf39BVeeXPLFcu5PrpzLm4/123j2FWbBrVvPLgm0FKrj/YmNFGmzmaRDdWLVdI3vgcfybkA0E3RxsPgJ/sQWOXSI6vo8U94Wk0ixXLo3zcj9JLdPoI5RStlyDjX3U+c6adO3zEXfrN8TFpOfIqs1etaT+d7KEGuh0mwTbPUaR2LeoH5CRpYZtC7BLyGm5kArf1qvQ9H5Q+qzegVHxa+y2WiWMui+Wc8b30+1+4ZbevctK/smJaULWOZmraKxXC8wMPdtsXalSm1M2F0sjnjB1ZSvzWgfwydVs1j6ZvDFH3Dd8QyEHgdWsE20lHJmn99ADDdyLPY0KiYmIP2w59XwH6KAtT3KMzdKgtZ75LlkofFPSFUHf4MMmFqzbzGv3icfRCZLAsdKlfl+tYwGNjSHojxy3IGXg9Lbbsm0lsgssEeMdQWERN9jO53t2w+q6mWZijSHxlyGXYoQ0hlpGrfVaRbdqta0l45zelkGGv7EfhtJHDRTv1YzTvhi8ZvrBufDB/2x47JrHeaqJE/zXVY3p2gkS765SfwTyZeilYLtkhyMF+uIoCIBeRDiBZfWa2BjB5HWgoVNc1wJWSirY+iLzMPxnP2kX6EmA2B3DDA4KWVmMeBPzF1Df1wh732wmc1lxQ2Q68dI+Mcl8aj0vnCUdXukw3RPfDO7j4bJ7+g9dfktLoPSIOsIgFheJZlX21lNY87wrcJM3+uij63YzHHMLh17JGzwUpr1jjRqq6D28ZcefPLH0P9uEGX4cQdKRv+04t99FImSF1o0i395XDLHNB8OXBACMw5VCuyzyIG7QIFFUZOUCZ4ts4pvQq/lVDdHAGACqHMldU6s0FgH24jpz4sST+8zkS0lcRSRwCXGhSatDEaqF5sMpobwRQpO3QxtUJrsH1zk1FIKSh8WFyYUrAe8RrRRs6Q4HHRyJ+TOXUtQ2iWNWQIC0nP2pd1EMlImv630/u3oPgZg2nwalPb24WssvXc+tPAB+4TdUTDPLmIx4UkvdQaxCiKs0bPx6yADcM1gtGHuZYsjmfv3roIS1aHaS2SREPub2vQP1yXmqryg2YMU4pGrplSfRzd+QdzbGaK71yxP2tgS2DCXDI80El2abNJzz1ncAhlC2FCUqjPndW0TpMtK6LQGF36bOcp132WErKQQUzeh1baK6wxkwsAmqq8QzfA6RgZ7jh0xdUAObZz8B3yVOmBcXokG7NMH1VSaffDIZjm3mTDwuuShEfPURmn+lmEYDIfStM5tRSwxZkjWa2A6XSj00DBqadkUMAs+7wL730AAbu9GV35UnBLfQZyRLa/rF2pHNVeWe9ye1cUJ1NEwEs242z/ye7ckRSlCLWbC387xxDshPf7Db4i7LglXL0qrxqYTcUupbiEcX6rUXO7OpHauN7Tz1FKMgw0W/D+PKqrpHC5rJKoU1Q/JW9IVbrony/ZAa4i5w/CkpL4hIDGxlqpdzsK3sD715ysIKnCp4ZZKEny4upLu7GPcM7G+G99BiMTqDRM0UKF9GFodDrCFCKE3q6AiVahKrfTcoAcTpaM9zD+cWQN6GqbwWr06vshXoGb/zyvXhgen4QPseRUdges7mqWM1yUqwfeSc9QQ/MZN6t9bHougnJRx6DcwNL67hf9wwPx/c9C/6fW78XezM0xFC3djwEhl5Agpa3DmfStTu9IIXxJ9QD4qhzCK3s8EW7LRczUIOyFD7Xu3g8i0seYxLpQ5g78Li0qKRVOqXvRtdTei0RqR3UPbCrVdwwiDHx87U2A0wbq/KcZe0H2KQmBYj2uQrXzWPP/U2MZnhSfQ1Z9yjW29Nz51KxMvO7Kc/l9DicvqLvFU2YrKBO1PQCr7loW7m6wJWmr2h0c+Fu9URdd9U3EAWnbsZd1iNvRPmXUzQ2jWEq9IewH5u9daJKzyTVjgWtu6olya1lDcHQhKqJsDpEZm0iw5Xtqp/5bRsleEiRAM5ZnwH1turFr8ciapM7H9hQwYp86om2vlhfPV6K4rYIvyMaGWLRxTkujW0d/bs6rr4cq9TFGrpXLrohNfpgKVHLorsxq2JrEDkgljgl6cFNXfrlfsviiRh17IwbdY0+qwslPBdTVECEVv521PHlZIFTufp9JhjUfI0rDH7im1NdmtDCu5Jya4Cwz40OwjxIBukgodC1Tlk5LMW62biEJnO0X7cCBJ7po3sSyeYaAU8XhNJszB1gzh2xC+UMdYp0n6urOwTQiPsyO+xAmAZ2u0SmsqXHeFlhtWvW00QcseH5KEJwyQybO0QoIM/kGuqHj9CFDva99LJeyW/7fEhKBH2P1thIHKrL2x05m70QYLelnPN7VfoAWqbimxYq0Q5ly5W8EVBx2/FYPrtJW9XcJUTa+ZnX5O5JDDUX4hZ/abZ7pA8TirTuNwvYkQ/3BD+8aXz6i600A6AuFaFjrushCYZOz9BUyy+Jdmry/9UnO5iLGbRqtgf6Mb8CwjCtipJUAgwwQvbQlE37maTfhxIi6EdLXHv6pN6jhedzd0My33BylBa8ubYX9KHKLdMy9fM4LwWcsSmxjH2C9X70qCbLjz01Jv0kLuyv2QtmVNTj/aUZ5hc54sMD3OFGPqKH5ZWhY/jTeGFFfBqSVVdoIs8Oe/7kdQ7S317OmB2HbobzKG1Hc2IaZbznWBYxUM2rkZZEXZQkbrRBf7mGVNoxNvMuZ+V+wHKgMb5I/CsLUXpu+mZtj7QnKBUNv7W+8xaSTlWr71ye4SxlYW+2lNlYo1TpOqveQ5sLZfJ3wOizHYtXWr/3uxEcyzoLR2NIu82J2ZiYM/tKsNPeYB57MH8x4EeE53OisV/VrlP0i5byGRiGU5dos7BaRDKuEo+wtbjgyPNbv5dZKWYnrco/hVDiN7h/SPKe5pgXM+hufYLd9Hrg5yYVdtzMLpd4wH0GuEoOlHELjDJrefAZxdagv5bOqF3V/BpJs4gv91dbeWUvc6QqF6wgnDxV/Q64XRwbyxtOixx6tOW2ZcogTdqMO9uJwY/GBuwQ7ZYjzRmj95pZ7GrJu5YeIrSchXA8Kt4pv7il/UNrV3NEaUos3cG/g8a+wuTBuhDxrPgBBzXxvCIzQZlkvs9kzgtLOlvjmTapnZk21G9JSyMgI2i6Ic7NSPo7lR/vzPKz2lSGx8lckeltQCNsd+yis1P0pKT63ITbxQcizbYBcMcMgrGAr+vraRCQVlx2xwTlNj9mvJnpbNhvozOeqyAW3aat1TpR3OyoGyZX2XdcA7NSkhfyVqV59xxx0z8xzq40a8ozP+CzouwGOMh9N7fAYs92ckTiPv0xAfUQNBXl1l4CEx14HVRWSJ+YM4wRxMeBd53076eaXA9rrPQEjxfoaC4b9u13d8Z5EJVYnYFXmJInL1RS2w8o/3hSXzPuUd45pdrUSlFAGRsVZRQvqIqA2zXSW2YvlcwrKmgk/HB80/Taq4oKOLNlbtJ8ZDhOCgPGywlU+giFMtzcs+I37M4RZPoevVniiNeqiXdkRJcvbRYKjXGyFGazdxnMeICIO8ypkEcr+YvYqnwnsBkz1xU5KGVMYE5nLKmJ7KLi067ROzz+JeXug5uSc+x/vCjVokmsGT5kbDzvYyMGsLuO3eI8mW3qxHPSoq3PxoR6w5SeSnnZuv0pKlW1zc2ER1guHY9LKQ+46S31PwXXCFRiovxnkmCt1KQQF7hiOnMUK8Cl3G2AtoC2HgLpeYhYI6K7YERZT7KSpcZV3BrOOlpJRG3OGbIRITFD1VoMH9gin2fm043B/8cV1QqhPulj1p1BJSO09o1x1SYnJnNFXqVpz7UyaSnTXnAXfFkOneiAjdCCjaWrZ8nd6dsqjER1Rg0WR+ktoab9BrFRBb6tQOFliO6crGYgBhjfx1rDz21qIoARDmeBPPoks4gC3+Sf6B14EYDJQZLrfE/slUrPdYy4j6dkN5Y5ujugH6ZQ5JvdPkT2RT4LqMKlrChYQObSucgYi4YNszvs7zOFhPT2oJaubf42OzlmuVVoO9csuAii/NwQ5rU61h7rird/dSzyJl571cHjMglh/Q89EbUyngjFNXp/XuLS4k3bFjSE1XM02MMMmK86CqmHZJA/4kqT4NEYNF8d+i2FKOW1OoahbYwC6lTD6WgjNb+xVz/Bxi6Crg+3Lnx6MlGKVirxUeuuusM3sghXmin4NPxksWlMpzp2bg2QXWUkxjy314kX9E7YYq/coDuCKKCf/QvICA7hEwDcDJKiUDUfbTJ9TmAmUjCuvWopwLUyyGHSFBS0lRA5mhEC05xU39flnOxqCSsrKRlM7bJ8qF0KuCIzSy33LQcRYyVQ61jxXkRfUFwPsmz/vgktiIBTRUFEgvSaUFRPT5YSICOqQY22QtyTzeMYVAm5ARX8w5IuJWPM0squFoV3gRoXy6CqjQiU+HkZm/QbAspisoJJ8RgJmDVvtNknqKqMjE4qghE6N4t6q5qO6iv2hj7hERs02gZ1zU5Jy7WYKWju3uFdltfFAedUJy2Q4BNVFhJOBmXjeSOhhvKbRGVjU5+nHUMsvvybp8uoXxrGz6KqQU4CyWi2qjBIFJ3btWP258FprOnqJpLFp7U/Ki8tQYWEfHBdn3+TQk5CshyIiISCVKi3JKzRCLhpxBAo/zyPUXVhCNzEhVLWa2+ll9EXV9mDJczLG1BCWHRsQm1LPvcIII1iKYP4JxsF7jz3mYd35F7Qq1VigKa24YyDvl8hJhhn7qgTGdtpKVqYFD0/X1Q8ziHplTTp6uEiAUsVtgXNlLIX8SkHbaa8VaJwzdGeJmV32glJaCrplcSrN6LMaeGjkaFBhenGJpsznehP66sYiows6xe49ePubsweIANM/MXIqxDGaDYeDKr3FV4ZyLaZfUFVPiIbezERcX19WCHsT6wIeTAqrFNqS/y0eEfpCMD7V9aKDTmVq0N6a0CfwPXU1EYNZS8B83NOMI0iXM3LI+BYuXuFRXXnOETHhPlHB6UE2WSPCol+mfIkuzrjK5pQyUH89oFwqYnK1YzBkHCJclWcCYpkWuw4+BLaDZ5vTwY5iRVBbVfKHTROPElGJ8Ph64luCHK2RXUWuRBiwwr7ZV1obYRWFw4dHDQ892nK6zfUcJhkXV6Vo5Bt2W4lepvpUmG0qUFFJh8oLb68hyhCQTya6IWQ7Eu2uM75DQtCU6T4sjV5JY6tSSjFHbC/eyiqx0zLqM726tdO5tTZ3hhUyIdoONdbYiSlnS7UXBEzZ4CCyo6m/E2GXb2fys8fPTMjYYoalgJDvD5fKxYr0TfUT/GxfKzk/WWjtCnj57FxZHmdeJB4TZ4Sgpfrcg3taSo6kV9k+EydnDwz/5TQUXnbvKB9LiX1mvr6bbEYdLmqWLFdW4O83Ma7EVFK1QYn6Ot4nWOotCvGt1UxduYVLtMZMG2irEhWjoFUdVWKlWON7CZmcBukKl9Ah8mVdmlKD3/Qo04YftWfwrBS2hVcxyE3tAwMCraolJZPa3+2445JdDIbnlgpWyupPvpLcRQQd+l97F4s5dSa7ljpBik5s9tyLYz3825JTi3PFJiI85QKni3rVW0yakKvHigVkq3j6WA7jfQJlTPs2YwAX36y/uyLZ4T3pOouHc/Be44XKhKltm1QDAqLHZUSuYx1BEkRR8ngyE9xQGtd0AnzZT4nf6hte+TK6VlUzojU0uFMz71FyDC+BSfRow6rbS55ldsE8dMFRdkfsYLKCgIRAwLZsTU66Z/M+R7+jX9Rn/de9A2kcJTmVCvDRDWS0dhyNgd0FnCz8PYVg4XU8nDEQ/Yjse+DCwdjGvTjBRhsI8HgWZcbYYEPGyuzVYeAjhrBjhUvkAAIgNMZ+ZD8VOq+Z4pkoLG4uKy8mdkPybBLObLhR6CrdEr0hRnVPAcThxPIhsiTHOqCS2YHyDu0HdbXHMO06+fDvbat3O9vqjgjK8uVCK2hfGBYHO9a51yCodIN5P5w4ZnV0eLL+IYwFEiGplwIME3jMJZApVRVKO01EQ6fGQaQngEp+CIyE5Oh4YIk2E0bSfQfno64NK8/AChw/RdgCVWN/6D9mUaTSMukAC25Xq0uDE+AevzawxFELEU3NA/p0U1viLo06UdFAmAuAg9FtFZfCqzEso0ucWpixoO36SWZyr3oq3BLPJjPUSB1aa3KOI6JAw0/fkYxCm1aHRO+Btb9mYeBYzSXWr0KFhVtPQ3AelVbmL6SWAjEaOAnEdwIqIEZtEhRWIV1epKKF3ulY8m5o6gPXc3GQvfDRk0GKBStl0WtdTHs4TEvt1sEiXEZgVMsXwk1tGzdrQxav4Y72PtPh8CJliJuTda/OzuI5xZt2lYasMl/Rq7ZEJlBJxTrWYSYZmFdzLSNgHLdOCytPpyy+8HPkGc6jGxKwBfQn4cgHwdYUlFucQrKUXkEa7NVm8sDAr9vvbxWPzYpnWatR5C2LTlkQqtCAWeU6QcoP3iDwSyHAPTiklhqZadtzGQiRMmmZnZy/EIMUkJ1doSro41sFWyu/uFsnEPkyMEEsQzaCZvaqICKYQfYHNoEU4pyrEm01XQkZHJUinXQzHSQajtoqMlVLlTHFCBvOzKlMTuN27qu577/Wq3XgOFa7StwnY2E07TqDq/zPWfICQ+HEaOJn/nNYh6VdMyMqs08vOAZtX6twX3lvC1Dkxn7AkC5wIrHzizGFEksAlqkIIBh6W3YEhsn7Eo4+RuGnjTz8XeWq7dKobmWldF33Z530JT1Z6be31vU/q0KdzfI4TtcksUd4YMFAXPod0/aWF4IAlLAviYZMV20ifIbGsLkAfSrqxtMNsKzAVMrLwhOCsPLnz6q5vQaN2Y8Pzos/agRZ+rPGGqklNxarMW31ptWAhQVGtzbOo9xVW+3RAxLGzNhGcSj5PBSxpZcEB2dw4t5UwqaFav+GgPW2nF1JRwKYcP/yxRjQ8JC1pyi2xMiCnNnPV3ZN9l+QEJKaMmo9rGy+DaNrLWmzuzh3p7wj163lRufjQKc3cRy8XwGaaTdwwWclwQboYrDy4Q59xFcFVVVQOiDQ1/59N5ZEM0psnXiTTmlXpjCR9coLFPv0fgp9esX6OQikqhS10MXPih0YKZTY3iwQtCf2t9VfasLzJDOyywKqIMhNdIhGx2XeuBfBOlCsgA+ah08SY11IZEO0SGJWWGRNRbYiqjeMnB9wKEYzyQP4wx8Zly0Pb01kiERsAvDiTT0hGZyLwG5bQrtoJdUBzKd/ay2Jy1IraNYewSnWbI0x6imqEAnt14hMSImI6A5pjXbFDQlPFhzw70h2qgJJ0DYS/LEAGdxWSPKeUhhWJ2GeFlFWFEqMUPeVWgZr/cBNFGPLCTFAwajIFu0vBOGjPw923tdJN0J9Bq89Io+cyQBZCbcVOFStc5tawaaSf5RS41HTRH4TTBV3Y0dFV+E9DnMSK1Vh08R4OuI77AA2KBWggU38euthFRqIJM4Xc1Rm6ymkkFDUXCQFR5OwicxJGiURdGM2WikzSJ9AzQFuIJbeS6Yg7taKzu0GIvCu/EipOz1EsPByadhNyEhMTHEYywcB6ggPgBkWNpEkANW3SyUfTk92BY+yBJRSqJAJ3tk/90GJC0j7MhELAlsxCMKiOnq7VJ5N5PacXeGaF6D+5uFfsBvaagda714OBd0FLE6gjiim8PQkraxnurSCFbjwTuWQ2DO1RCL+eYNl+6nlDiSjsY0px5ClYeFAoo6XXxEdwCOZeoczI19nwmc/IXQhE1KWM+pcnbg9ThGNELCBuICwT7wg8cRKvgK5ASGDKUhjJmbghMIdyg2FmD4V2iHbQxvX7Ka1tkFHN1OuOSgYHiTYtTELqUop8Apu21YIKIDeRzmTmT8BV89CBsys7pv8C9VPXhKghBltMUkriIYj6W9EoI+bOJ78+qL1whiN/VSX1+IpFijGUUUA1BKlMB+dyjcRYtW1dhTr3KpQol6zUcE31dbNLniZCzpUKqtPrUHCva0ifv2Ol1KfQraZKZXLRKLU96qGW6ZlOmWBkIpIeQgsLk1XHIqVogpL6URvuShjJYiuhFk2DKUApOO9YNHBFdGUZUvJRpUaUfGvuYI5CVnx4CTgftGe0LV1QtsojEy9QykYSWhnvnu2AecJqoKZi4/hMXp+gHyidiETuKNd3k5VZA/nwS58NaGOtqrGig12LiWkaaaOhZznNJtLfw7kO2ZAsRb/h0GTDNasCVAVP05MezNWF4xq81qCagwQEkHb0Z9762JkRRtBqUVDfuu78SZh4FbuKAsAZ6pHOJgQvhgUx+HgloC9uz8o9BgDO1avEvQCIjVYu6nRT62MawdQ1FHZbhLTWvMZCB8JFhj9ppFeUYOn809DqYo+NhVxydUWzVgzuATBudN3XWGpK0/KLa+AGz+WLscKdKlDCgrv4+2MToABF8oSHViA/cSq8aP6nz1m2IXTL/YSfBlKjKM8x7ehMWoT7EVK+4RxM3TZK1hTiWxm2acOLAZyG42uKMWCkjFtDdOatrD7uLrN70SYcisdyvMX3LrnuIXdrF0SvLNEacReJW9FJFwMCf4KVUVNXoKVmGf+8l+cI7aPPTt+2WYHC/wHqs4pRH0JBECj+i93LReDHlPGW78I3XLg363C6lIigE4BBuFHM+sewLB2tCLeZ0ZBQTt0tfVyac+xjL5SwH/dcErFlThQW0fpXJwe+FFtbxFZxrDLH9/y9x2H9AYfMYVjC2PQhstSkS6FDdM7Ur/fXoHzlUcYQJVpe9nSoQhONLePJ3DQWskqpxnsRy3pVcuzjxPm2N0BT2GoH19vn+2+w8N1ZK/ZksLtLjJ6QRY8djSd0e8DUV2zWrKw6IlE5QmeubyS+s+z8KC3Y/d6gkWRi3qwtMualcQ6g0lM5NWDBaOUaYMZIJPp2rQuQD+dB1Z7cis9pXw+sMk+OgHLcjK5uJrUQPpaaSAoBTJK5foju2rPCoceiXqsW7U+SCkqTFsowBHtCtGVQeIATUoYvoSxszI1rJciB3W5EHK+QWYruYRQ4S3cNPIUjyXR8HxrBYxkPL9KERnggQal6ZBJci24uEPWJnuxuxaTDX4cYgI3Xuupda+B5lPbYXVrVXlhjlfXkvSiCPM021NFeLWatuzBZkOoDKfjT5qm+e9hBiTRc4YqimpCZ0epGLpE523Ex41CRaHfspiyth0bInahTOhjRgwBP3ksDooOFI8CAJSo0guMz8mUAfu1AI6v41DqWdJLioG8rZx6sivHmmSBfBDyEa7061stTNK1kmeg3W2qQiApTQQcC1j7/zUSqP8QzrrMT1D+Wl4feITT5WZSXklW8neZo18xjpAkzSpp8IZPhHD1+Egqkpmk6Y1cZIuFE84U/Bm6WU1VJxeN3lDvKYccloifvKNptORlKUWUdVY1xFN423R7ZovZVFAYdQKoO+5i1KtkZpyYWc5dvyXDczMm3yoK5I0vkUlFDfkJ0Jn662IRJRHqDQEtHiEg21nOqqwgv/rehoQB+HpjRwXqQl/yCF+ulZ13sVgtc29OHuEdbzsJVQBWNMU3khTIx3AvWXE62nLkaNWk07erZDiCBCTpbZ2u1ttMJ+gWF3KhklY56NOwYODlK4Ns62lw6xaUZXVXLeAo1oCrV6qZaQK/sn/z6AHAl5kclCKBoUoFXh3BWwPvHMLCOZz9MMv5A6jrySgEFRLUAyFDPyiRImO8tp4lMBYRoqkaKYHUNCYuNoKGJ4iBk28caZkWkvcUIrGO9tqZ5Tg+F5lalLs2Dm2p02ZgLHAS7d8qKMWIMzOFlHL1A4UEPsld5V4coUKi5VTisnX3YEimpP3w8K8cKLpUei0YMPzXZuZk1p96eAVp1lnCDGswNTZxbxmo5vCw0UGar56zsbGzkoNTbettZWgMXr4LnI22IFrgE9xDKm1lyuxyjZk4xOqfwggF/Q3VjR2GJd0saonFw0moaY3sZ+wIp/IJAh5dWx3kfodU1yV53nLi4sUpjYsc86JM6//0qSOprCpJvrNCArMvToBWRTpZznhZsjpNAAw4Ls8bvUIx/yGj/EWuxiv0TLGhqKonDm5WQ1RTERZ+wo4d+2pVJIPFIwiRjQf4Q1HLxCOkCl/qRYovONSenwphLCzUUDaWaFPuEzz0bFw4BGMuRObLkVVzbFSZLKxSDqJkTQgUCvV2urlzd0qUALNn8I6Pq+/iIncd+fZ1YThf7NAGOuBbCnkH02bt4qdDGyybeVIoMQfnkq73mN9Q5u/PzWQleEg6ZO0+vp9asH0vc8cdhoBlAIrhXkagxzYY1cPiKQXyzmNN2p6232nvulMXj1VAce4mBBGZkQ2EIytLGvhCreWZ86e2Ekhs+YLgY8Vt3Ql5hkDzy2aA7Iah6z2mLeTfnRAJXgxdYiHxT+5FVWxxi6Piie43K4Bh+yqSUvgjRQsjc4OSMwqwce7xlNqnBJHByW9yVXejXtW1b9IHhubDhhOHJGG9HJwwHJ7mdKMN4PdddOahrmA/tSoUErvtxBiNnY8uDPHey1bt422i0sCFHwg1aY1yUgx1L+hdR4sSbEEBGppcmtk7/EE6Jk6xw0rhM3xYTvvr/2nRlkNbLYSbHsU0rJmTbYg/yK2s3Dq8iCSCypSNIv3E3QmzCErI/WqzppAdG1sf1L+dJtRaMlWWlf9KdHOEQmi7NSMhFAw7oCiAvXS8A5V1Jsc3sRjf9577r6YtgTJLFn88CvLSyZQNVMpv8BmLb478cVLXQ50y0k6a53c4qF9Fxh5n8bBjaCJtEFj9axA+D1TcDFX0DkgJxAH2CyTFQp49/LLYnz+Gk6lOf9njcd6X995a3Jqef9lLutd6GRh9EzKAQ/qOqHzr8JAloe0K1mhOnfxIumH0uyhSKZWZHoNBjIM+5h0MCT3iE3rH63KBsIYd65f719nrtCtrIGwc3WTlw10ZzJuQbycB6LcRzbA7Ye0D9IRuDQfVQZgwkOnEmdrygsQRt++pjJxu1V1o3o2ltkIg4TAfV4yDjdt45ci5iSieIbhap4ZL761QwIQ5BVBqe69CQXW8Yc+rR+ZnT+vC2NMlQ0/PYPrjuD30hxeKTL+VN6IyTf8NlOKiN2y4wg27NqqqxV9GNIFm34q/8SorsdjIODxZkOmEX6stsuPQj0JKldyy2FpE9pkdguNSNW5dB4kZBFLihBzE7hmJ+PRqrJxzCAkLOihMX9cFBPwjq2KtdqLS1wWd+T9ysLGt789Zdgw2M8exHnK5fJQ4CuzlTSEQuTJEGQ9lS353WyKZ/z3O87qd4rOmsOdIasz+Ek8J0CyMPXRlwJdK8WIW5s+x7PTttGdr5REN/qs1/EmgHx19oPn/BUBp7CCn0v6UQ9c4ReQearsQZYT41SoTnSReIcx0LbTWltUsYh3hECcEUvOVJwJtVbJmdPtv+4Jre82p+fTTT6/+ZtLjFe/0lzOsY65TqcS5fM8Hvt15exTmyEX269Y9W7mgeSdoYmzs3gi9jE0I2Ghbu/IHfF+4Q2H7G7C0+bBJHwEWZoLfRFdsGicOqnWRqjeSrK6TGtmRbnulgNUzlMpD3Jzn47TeWtHAEdBMxaZ1RpdZ7zbMYMkbrgps4XewadIlfeaD9jAJrg0WZIQlt91JkxZLf6gmOmUazr3HyO35ZP03RjJ6W0HAvKaGadywsYPxr2wysBgQch5Dr5Yc9BB19zzWHBn3VzfMlzGu8m1h442z+LRqSF/omr6McVPli+IqRaRD0Uz08xRtUd1Gedqq9wIxINcQpnOl5Pb5VHa/gOXSx9SRBfykl/zT/l7S6jEWzJGMe8S9fjZQUQlBII01dh2fErhTik9mfug4xXouXun7ry6Rly4DVKoIff9YSd7CQv/xfB7rW/PYIYOwNWXgk3+mDAqQPSgxa9p8h9n0ffyKZxXoUu7adPZPXiGD5sQTFlYFbudCzr5a8VJCkDGU4mXC37dSr9mKfEcSt35jXrDp7+QD/y05sh6XQc+ucS4OIPD19XzSjkYXf5EIxwif01aaUyj85IvabqJhr+oFDpCwJhZW/UY9boxGWoL9Y3pV0lYM/Ma9kbL0lqmQyWCwjZ1dPefzaNwlLoUuA4NXq3FKD4Ued3ItJxSogo16OYaxoustj1+JyasklYxC0NMCclSzuuHr1tv4nlR4KmjK3Hz6ki4Y+Jkb9vYhdTk8pdO5zTKqcIWVChf1PLf01iRMMKcqs7OKXg1Mp2CxLJM37vdwZWZUw72+H+caVQPQCcLip5yNQd9plDg3WrFHc/+HAty4GSYZYxTC/Ikm9QdiVv5uDsNcbhYLImjQ2ZIELFnIp1UnIFZ93OUG8xLr43+XR8uXBQRfnolBKiu7SEc8YhKZ8IZgabsIRR/SBuxwaJKTQig30WsEKwnBwz4gINeaODWsgvYiMlPXo77EReFsT1emyl8BTSSd314FJjgBXvdIwMyPAAzEkWK88CJbXD5M4IwT3/AgvcT9rJtX8+VyLmESovJYYFSB1u7t0RtzrSCaIscbfoa57zFNwueexRTWaJR/PdzYoRCtwNiaK1ME7k73uT0VjB4N6wE0jww50r9rthONVOvsnr32zb9xo1qisV0lUu8rQDb8LRCQHxuvyQptlgXLFiZ/ZSYW1Ed9bhVPBWkp5Sz8DHBS8ycuK44xn33qohsOKqc6+Bkfgpqy9q6ft7UlDEdvz0beTWjTbxxRx/iD1KiTf2Y+LoDGr80FfInn/ww/o1HtgumKMfyXlqDoIYrD51TDMiXW/vzsuxvwXpndy/wC5b6R07IJInAyenbRB2Cyf5hXSyVz6QGiK1ncjJHtwaQHeWNgE8Ppj6Ki1IDL7LReS7I7BBUYXB6yv+NDfjgP1URD9MuLzxBuX7tUbP3lMbDl6IcT5+3WLysMyeDE+B/ur3A4tqLhejmEIC+fN8ce/YwaGLbw/A/x5KefNtc/izqZY32/x8nWkjg4VEzxhQicGZcIT3c1qI9LKl+fhtQ/TREj7hC/5pNczMVM+R5m31avF7+Wf0CmILFwOpzEPUodDbaKkEoiehjrmhOWHGNuSTkk4nbJIc/oU6Gm9JX4jfrgCK90QKJYDStQ7Qxe1ex9QOpDcTAEDN2OKHvPKKxfXOPHijHCAa5UsVCPrm1wzBoayV+FzCEWpK8iyNFJFhOYdbdKvPakmjcTO6DGNppPRxh8rjLRdoIEAON1hNyHYw05oHya2Dol0mjXVH+glO+jYbpoO7N4OkZWZW2Z4XUKaHnWkn3w9+aqBQNZoTV4BVsH/oHR1aF2F5u9xVy8+2bRnI98ZpHzzt55VyGCE751fD9UXDBob9nJjY8W7DpsyQXc318Ed+Nggj6+i+7uqwQhYBuHGzVxf4N6rh5n8vt1Xf3at1o8opPQvazjyanalQ/J45/EEvT2d35HtSzu4SPjrp4tJrDwvxT9F1da9AbBe/1bOaac2nfH8V9HB0fMvumxhev7Y7e3/ibKljRheUuIl0pxiVl5gi7imgBAg5C7SvhHXeFnuYKh3mGgzQQlyIOKdNM5e35PuB/j8YysqTNvrtcNXOBxDC8wqeSAPLlMN5BeniQ8C9bsxGzc8a4Dy6bIc5xPCfJlHwIXC7ZMJ9RQfrP/m6T0F4Eo3DO35kOuI0N4nBo8tNI45myuUUzZmnIJprouSdNFvwKKKRKARvyUn8EJoZW5HBnk9M11JqVTIIlbCLkUAR5nCljYMENv6rIJPcM38U+5z3TVv8Q8VIgJsw2BBoqkD3rGAFwgowLMmCIqAsU7iz/5/UMEAATrNB/9ypeMwhfgeJICZt/LKgEGPnnYbppu/j21DCGHSqsYanKMlNaEtsK6c9ZKyYBHwwV9eHBsRqJeM/cMhu1aFMbSZYq/jmbLi1bN0nrm47w+gxmbjjoyZrLaOkmZUIQIi3V8GAdmcDyylQHvEu+xFvZm/jfA8x6zXThVWdVY9EZANHrBvq0qpIVpaJFFvtc7lika4V9A5fKw7+MPrYXWds78QaAB7MJBzuXU87+HWHGHUZWOdaLAsnU7uxzQQrNXiSYsV6jy8/muuEW1d+rGHW9TUuZV6SevxBb6Pa0ZBBDvus+LkqGicslSjGEzKNUBP3lGL/JRxMWL2BRnnVAiwFRDqPYYXKEQYUl6zUNUzbOERaC4TIIpZ9uLrj9Gznqw71kmnxP3hHGsCfCEB/16fWfN7wuzsSdhKXFHpDiUdJBWDgkjGXCjUpbRxLEZhkzxGYI8mZSGhJQAIkndrY2YXXhcluHNIgmkEc0+KKqx8+ZNsQTn9bf1WbYxRHrNkXz8/NbGCuLh+ii96KDv9zAT9/VF9FasyLS+KlC1QuuOPEOmVTcws+hO5AviiORLgQyz7kKBbUR7LiY4bF35c240q0c6skPSUZWJ3apRadD2qWAdOTrMxI9AKmeJWXH6jImioJSVGQ1fy8XhXo1RHcbOH+Me9K/qf0lBMCf2/exsiFRi+B+tzui5jWaQWjIbNq0NFUZdBa+OIkIXBZIVHFgyFEb7u403IPGLoNWK95M2zIfLeeO0nKZZHQrZl4K1J3haFz/qnsYfBNCFSqDjKsEs0TD0K3gyTWy852ZoRxN+vlabA75OaU6x7ZNkQWW3Jg0SSP8rPdayclshn0OXcrc1bZNw86db2Wpr18bGj8ngb5PdO5urjscgDUPogwXgGiE0TxaW9QoeCcx4cqnL7iiqDo9mjYXH3q77M99jlBgCEFr8jHib7BX6LaAMfBRtp4hpID/06fpkmYevbIzV4ND79WjEPQv7hPhbuG9ybt1J3cs38Q22qaUc1l3M2UCg1ghuMr9me6IG1nefr6pZ9UsOfS3vF8WHeCryNCn8uLP9OzSXRTs3841VvrFivRRsAO8ams7Sv1Zij9ymhuY8cl4l150ZeJ0rOyuvXUdoOjjUzFNixfAezpphOUtm4jIL8Cm0PxdtFaPzuLb+19KLs7oNehyzueqLPsZ/ACgCFc/jqTUbPPFbbGzuXVF63n67hrqjcC50ZJ3zZGMoJeAOL+xuaIiCo+f2VAibp2MIOq03a9qBLE8myj8oWM3KQL+x4naxmlP6kk1qXMhc+HZoJC18nVm4nwKFvK5vskGyA+v5TC6J6YUTpo6Pm+mMp+sj8n4q1j5cnp9oGd4FNZEiORxl0jTnLlcMU3P/qLuUQVDyshHF3cNQsrSiZwkvjVjBZQVoDK95BFX3slHGvKhAzWicrVLvkffUcD3N+i0bvViHzvTi4Qajge7mBI5djOonkRbQM3pgnwo7Nj/kN9u+ibMFgplqcPv0zxBolLT+HyUCQ3e9wSZu1wQyzco6SrtH8FAa+1irVObO1afaJA5NTPJ64bfUOkAhDa8Cb5qrpK70FujQzUyY0lvGBCZ7OVGQo5Xv51s+02UJdqINyJJZmw80XmppLr8zjlUcG7voLsK+3b9eOBctaEXCHtBR8gK3dAWAZfE6GoxzLjLu9LvQ9m1LJBBBBFDW2lcQnWMRXSyW3LLPxMGkuDaZuBw+iMAwdwHijfRt+cQWmvvqMXHZAbVhLJEiyt8dsuw5aKn2gQZ6uKq2Bb2TqljmdO8eJY4aBUAzhB70AR1xJxNU7Drj3FO+8i8d4HDJLHj9x07SN+f2rlsE8BpYKEZ1jvpUsNZDUviaGW4lvVj9zfO82G0V2KKPfpjg5cWjYekL3GzHe0B39BhbfGd6/1mhhJdWNhr/LWqVpeMZaOqzr4tZDTmZF3AsLve7AzSuKAnd3AD5jJFBASKFC3WR2UAWea6Qg0iX4osl6kJk1t7JjOaLtHtdkvCQ1yG7HuDIn6CfWUUZj4Eg/+IwfK9FHUuxefsr0jWgdMvxN9cF8BKfFghSB6HNV3qQPr1bYNSO19Z95cIHKdHWRTwzBL6D9bVFRn53zM0vj8ZsOZ3oJvdRyTBpmgfwSJskKZYDqsNtn6o6TJwFYKQwwV+h3sn/PSbwm8Tss0h7FxspYr6Pv3Q8t43C0ngLNxEl3eS3ioGaUv3VXjD1fwoFwkovIAC0fCGhurIPftfPa6O9tpyFznxZHXMLQS69GXx/LKxkOcZuMPwI7x3owXCDfysf6gRkNZCWeiq2tMdDcaZVbZ90DI3INna0/Q5YbmevaY8ZJkqHSJzYhev+yaljT5xYASnhpu81AsKAEfwiR96l3kDuYZLFjkvkNbvxW0KgzvRGI9XttJq8UdzzXGqZDp7EwMJ4EWUwoFLwkhZ67zTDlzd962Dy1JQMH67pVUN/KBD4saz07TQzn9+S1ilmDDHWVjQHY/beg9OGh9D7NXnKJqI5jV7FBbTKomg2RLligg/F+5WtSr5C9WIVxsxh8OYWY9N6ZfprZcjUo07SQpLdwS+6SW8HF+cenidNxFgH+nozt6cL5QdMYMjYyYzggqiw8sNDMXNPTl6FH1FvOws5D8RTb9aSKhrE1jZxprPulusu2ek+3HZKObBpvi842yf0Az3LvZKOOcTBkTC9AV2VqzVd0R+JfmgP6cbdYw9pZVTjmNzBQdX1pToOb+InMDvglSvL7gayidSu7lkknf4W99pgn2ZfGo5cvw8XgVAlOdqxoRd5o1F0ywue5P0LMqo9UPhEYhyP5AeYwO4CN+NGJIxcAooFv6kU4sY/5kD4gWhYBGTop9uLLk19/w7YwQvQ6PWb7+POyWSCy0wwPF/zA14sPLHf7OLkQtSQgq8JhmmND3k2GNPzOin9kFOSL7sVhsPUeyBw4aQJmQoDpLFvxepCdUGoiEJTt53du5mSJZ89tLBASRX80pxZ/xfDDBCC9cSs7r9sU6tqLxghPjR7iCatKtwsssmU0whyC3UNiHV6mmqQHhaDMN02ZKuT7BxpEfcx03KLVrMcbulAFig6QqQ0b4abdblClGJihjX8MGDttNhzxI7RiXfFa901aY9xAUHgsSLfqjIDtiD9kX9t3GtDo4PrTF2WcijCLhvPymJWBcprF2ceAlei9pFzgyfEv7mKHCQ9j6UzV5rjCW/dOdcoWwbA82UmnXlSCJrXh92GK+DDJTb8f+yvtJdQL/uPa/qm8IO+EqFRFIcdlfTBbWT0K3JP01J1S61NlVcaClgMzjVT4jPKyVpMtKog1zcJFqoEuOOul4i/MK2tTqf+fj/Dqqrk3IwcwJst9KUwsyVOxRw1nMtXEma5VSZlqD2rUFSrUUjCkD0dF3Skn1t7ct0SazvpY4GfJ4l4j9VWRNb70o4vSILL1DGa+eVaA2mGlZOxmRyeQ0Fp1epjV4n3WzQnk3G1cE6C10iGqB5g8g/DPVOz3basgYBA5DxuhdFhbkfrF36MbVSy1Vr/40y26uEL+0O6ZljsQGOMABz7IZepvnpDubpyyA97bLqDclhdumbORmT1jO/49BC4faYWRNTsayIVcMkgSt/c+Hy50D3LljIK43LFX/zngLbiExVErOtLaHh3s3r3cV+UcbiloPY+NlWH0Wo67SBbNICxotsp6OjYo1uA6kyqx2cVZMrlek/M0oKtrwvzcDQCEIXG1Ihgt9NQw6FSYr4sgmwhXKbdUQgo1YlUL63P7QkLj1Hv176ANJg7xv2ZLFkE4e27tMGBarULQfKQ3LrH9r4I5d1181k3X6dy764mWU9mEY7ns+ab2r88dr352SI3gO7LLPhgQCn5kKTEhEq71ykRJoWtLSrJqwfb0O8aNneF0j5QxUPVrXt6h8erA2YSmpoMZj0dxMjeY1rw6DIQb1z0K8zfjWMDscpycoiqSGHUyPZT3i895/Bw6UTny5rvGu1ugSrurPJeOspUvUE1qtNHBuRtC3nRnkEF8Ju6G/rmpjXEVNANhoPtVKKIrzkNgDjmkL0hf1dYqu3oqWCGW9MCVjPCQayIRQOV2PUplICkY2ispJ3Jd/Sv+JAnFcCfH4KRBahvC5R0S1ScUcwSYgPehog3mvM4bpLsDexZV7nZs1h2V7EZIb2itdjy5w3ffLjUgFG/2hwUGMMYfyqZMnC/Zdj061dVD6nT0I+XUdPFI51VoFH/aUPQe5iPS1VpgZvXk5WCp5lwclxR0sinXRBjD0kBNOS0nrqaz15gjrcSYOpjjfp24CQI5V/OyO88FL9P6W2FCGfunWcw34Xp1UOL7X7TYhdMDyRJ0Reoddv+PBkzT8iPF54Q24urrGpdPyGL3yLZjVGnU/aZ+ALNfDnDAzl9Jxtl8+46/8z18I24N0J/OoXNXON/mI9zbQ6K95x0CHD7hSN59eesLUuw4ln24XBZdl1pTZ0y0TFtpj7m9ntnB0LGlgu2r58szdmah1Ldt7QQiYfAP9D+ZyG5Ii7Zn3trEnTeJOKrMti1Vq5mKHKyZUIptYGFdlcZbuBrvyokHqOWgwEty2kzhuF+fKil6jZVplC7qnJgniY879eMLEZDWYlUKPynfMwk0wPN0nleNCGQzhtD+tR67P1pLdl/gaXcSB2X4YC7DVqCFTrAn8Nix8orooT1sl7L3GyjmtCpXmghsX3Yb2R0phyzXt1WA4c7TuUxOH4IZXvMaqxFX3Q3coxREVRP9BSOrD4C6+nt3fEn1aONF0GdwrzkCvXQt4Kp3JDQKBXcLvpgEPGbQAqSgh5uZN1/1pK7bW3KLvcjmPQ0V0RX4AmPGBLmmf6rgtPXFn7M6+KbYqrTOIj/lFbLhKh59EWBpsP9f8z5JN93Prx4g+o5vn4/lrKx9pFQg5r7wa2Ayi09bM+lzTO1zAKu4c+fDULtYla0ufyYF57VtzAX5TQ1nJki89LE3GoWbjZif1rp1F98FZxC9l2tYsygZzIH9GgVYMvUuhlC49eX+q/RXpCwllYdH5jwfR9jKZ5lUtqF/VThpEXbcrE6zhrgHb/7gY7ZZXD9U9S86eW0eOGm6o+6833emplZdoQ4nUzsS/LEHrtl8vgIpgztQGMJfZ+Rq+JUZN3xzSQPYeFLTMycprnJMZkBTCf64jEnYT2i4pgc7K3FAhSxKIdvy2snmizDz+I6JoQwIBTzHWenDnw1qMTSDIhbBGB6P2cusgIhZRvuW+Si4TPYGd/R1cDViXOngZAXzQgoCEMERu6eXpyiPwihMp4xAeMeGwWxL9F8V0squkgAxrVFda8z3vhU6kl48qJbJm/XJ99eNlfA5bVS/dmcXwXybWebDPj9XXFk00lSx4eNUDvsTYyQ63N6zR8jSKUAmwo+mgTxbmcZo3IvHfU2MKpnrnJFWMTLSA1TV8+yFpl18MFibKliQchRUb8jypifXx0rNRBB2LPlmctpdqybZOATkP6ZcgI1HlDKH2EcgJe6jZCkOEyIHyAIQ1xErOvDhxRK4UjOIqEjkeF/6IOS4aCuDEFAfFejGiQPsE77QgspplcPAonDfUfs4R9jKX7ISJwQ+rLY/bnjXPTkOO0B5m+ur4zL1tK5C4jaHSVRlaDOnzB/i9FYeqTbCam72O7Sqd3igR1tbzyTLRoA1YkNizSbIUgzIlYHrbOI3MmSXJOie7CHU7KXjjv+QVMe5umoO9Mb4fIachDsjJj1RibEd1hSk35nrG5oectNhZdPVVHgx5vXU5Q9Do3MALG/wxKeybm4xvlxBNI7ouqGp7mV+xsjUbBZ749wVvDlTXCdT/X2eHCXgG2Z3tGVBgR0NhFxx8zTLyZd/0tceBYbWj++hYuxlXWx1KfuFKQaeCvX67fVicOo/mXzd+KyQoh/21Ts8T3RSIyACBOit9W8O+06f6zShw7fMU6XtcsXP2K9nCy3EnlTxmp3BGzH5D5RTrMN/DsNT5MGfGyckiIsOyRbjmELOM+bJN6xEWbfUH9VDhugeZIodl1i4qTGSiFsmNu6K1M1mWLCZc32kYFT/wzdoJ9q/7iT35nuGIQtUSZ3GUkz+kIWLSK5QD+rVoNBrDNtxpuXLlLriPl7Do3xMj2B2347rUdnkmXbusScVNVeyOkGjrILfZDAqEEI02GmR1BmFwCh+/tRLnsdcRa8ewJgRVEWUbjq1mQVR3f7IrXLv6lA7Tqhad6f+UxH+yFUWGTJyM31k3edbqsjbGT6WR5n7OH4+/DNOpN328hGE7iZfVESxNjGPFLe16lS6be2U8TyEWt9uYxh2nHh8nTfVp1QHs3J+frI16/BcYPH/jrId2tr6Piim89fs5e3nXIYPt72ubbNdd2SoN67KNi29x3glCCKC4+aiR7pV8H0N/g8kgBb31ywDYBKqLWEz++++4eDmAEJ2mQjlDaxpDHLE/BIjoRH7L9VogfDDAnGCkn9aUKCybcUiMu1Us71mNGsUOXFXTlRquruFTBauii8MA9P+XsjLfnYu2cQcf4Sq0mb1/UWkMYCwQB5XciFsgNEWQLh9jA/MrJ8XnY2EwyPy613cdmvIco67ZriiRH/GkFCDPW7vKedsna6TS+4LvXy8r2xy1NW1zgfIq395s9/osj86xKwdPyk3CH1ZE/LuNo00S/h4If87Xci6Rqeq490drCTUu9X5x2mPWDiJXTdurgWLAnF4j1W5cVO7BMkp8fQqDQYHJFB++gAI3QvBCYd8lmh3FUevTw1iWyh70DBYQ6RRSNIIErXu+KCHYY3QgZFOBTWeoGNc3XczThkJc9Z4K20Tp2NcNUltz2GlVUO9EAm21WaA4Hc5F+M0KldWe/7BTOZbzxbOieH9755qRiH0PVh7Oi6ONWpIENkNGnhwQJF76AZPrJNqUUnWXiBgLomYz48/VqhTBRQotFmqZZ/KoeEnZjfqloBCQu0gTvPGXNrS/wcHwhDd4D6K7aI4fQMWh+Bzg+ycJ8TpF5iiYghb/ETsWuwyxspleUOmxntFtWoN9X0AD/G6sfm3nicYOppMGutx73H/bmjbYcWwUvg1X7G/f7cxjfn3CwSQHoFkt0P5cziLjAduC25Eyds7GrEnhCQgRCpyEOanFMdQ7RpmWEz6YWE+bF2ILBXzof5SEFD9GAuftl8CAHMQRwEcTHaJ1LqLrjGaRktI03ahvGpSKA98GYBIAbghDaCOarlM+bxL3hvKeY1nkS0dKUu8lA2jbl5tnuvX6VHntmj6JaQEkRFi9WgqodSFdLtK9r1PYbwxleZYfsQf4jl7hMj4+XIfh5lu55o2E5LS9/xz2ir/lH59hYKv0rP20vjUY/y43EupY0AzB44vkj2YeUVqXeeIrpfzZ5/DVKoREvRb3xbzM4lSUBVaRUsNfI5x0SGcRv8K0xMFLybZGWc2s+8o3XJEoDF4WoNmHIp71v6gmu/WlbcPOSb7WWG83BvfzD+tFfeRp4GjgIsOJuQmdXPBBURM+3pPBYWsvf8Ycbd7g2v2FCY4Gv0pOM7SOJi/b7LdbLTgMxS5/cuiPollYUe4ix99R7duhAd6laF9gkSPGKxO3n4r7rYWtGqyK2PVtVmEPTeWuv9QqHhX+r5yDeuEkwmdjWzE6hJr3oCYW39Nk/w+xpIqFm0nfcPgk3/GiZpcUavjdRTxpHpHh0A0Ijdx3HlyCN9eouBKpW6VWnE5nlsn4uvdTVpMimnLB0ApHYkYRN7NgYOvfE+8VP5eSo0QD9TKt7pkEahZhCp2ibxUpQxirguFUWR3Xdd1nf/WRh2eJa+nsN4212S1O/JsYRy2Wc4b4S5Tp6winBqCiLT1x9vJKB+8NJDq9kx/3lkGQFe7HeK7XV5Q6ol6TEbIZvwK90z3ecwKN6aXTPebjlpgzDhtzT7Pq1X9DSwTUGO7tJCr4BOxIg2nFYuJ9hcS31L1FgR4KldqtLmMrNOuSMZqBB1kRQbW0W5lVknQWaRUUwMtliF1j500mE5dhoYSobC5b1m7VzIWWoYDJqtXTeyYgc9k8rIAdr3SXg5QI46xPtYcQr18ZjJV1lyrK+ZhjQSbAYoc0GOfFhByE3nc40Bt1T+77exmG+u2PXYMsLRBtBY8fT7APfgpteLAPbnwLxo+mdNhR2v5++n99GA3AKo2ActoxEgcOCVD1OpImoldNWp3/L/UiTKYdtvKuhzAiYYB0GaARdT2JF9DCoVMdsibwNjqX9zmHfuF2HXU4Ty7pFV9Fd5OK+rUZU39dK3loonJLQ1rFB3wdXC50gR3h65Qb1smV7mOYSmU9CeY1wt5v3DC3oGSgcRvCwJ9NL88X20S7B+A22ypLhpFfYIrfs9fsk14wuS7HHX+0mMYFB06j0S/2A2Knq3JtqmppcbGGg6ca4OZUa0GN54vy6ex96nYLrw5jSEcETHgy95DJTWZ7d7F7kB32bMLV8bAzrGFSJ8jLNo6x+ub+fkjiCakXjPNxY6wnicb3ZZV05eqksWHUYGamXtOiKlMqrfYQDYg7rmyOeSt/Md+6J8CdLOWY1CqEcAz0UzRzt6ZBqLhlG2v62Srrz0t+CASIEIQ/e6kvySMwhSvpgnBkLxvKPJlqafJj+A0I42qOHWMQy9YKOo2JDHXeyKIlRhoUhPtya2MDzGsOij0Np+L8veE9a+Mypas2YgNza+Brsqmk8UL7n3tjzUPg8O1JMKgtssv5+TKNdvtf1xWLyR/9tdt+7NABhfeKy7/4Puv8DsxT4gawOwRMXD/yBY3RJSlTFOJzqmI0t/WJJGAVJVa2fmzVQpXiZpbtMB8Rc8QNyyN1HXR86zGRA7ILR+Z03rPGkFbgaxeoRFkEgFkd2qI6dQc2Dn3blt3xDuzcLlYBf3GQgo8xxieJ9sQYfaMoyQFHa/305ywqoy/rG+O9/iCWrra+K/W+9+WXlvc5Xvb1V+Z8vauYYq0SXcygtEk758qfvCJ6MeTFQIFaoASdifaW/qQxnPFysmsLCLtKIeFG560ruvM1hXr6RrU2eQmfSjSK+1nebd+8AfOLMU9v1Vv6/MYPXwLEMYoEPUgdjUDCOoBFQFnbYVyCzS0poD94smj7r8uhdsa21utkZaicx99OU4QDten6GxeFgrOTXMkHAeUont/Q0kaMPeNLVgCvyJyOjoWD3RmXQNDil9fz28OJ40H2n6yhSsiqfXHK28aiGHiAQQ7yUHACaGb+on4sHWel1PFU757tl2qK+U6dnMj7irw3ngXV5BA5VAYCMnYoCEpgx4r1iKCKCHv0pH4ZbHl+XLpzI/r2vPT30UbxlRtTttC+DQ2mRt5wQ7Lcfk0k4c3Lf2uw2VoJaMELWqKcnPe/Ug4BP/qRtlereYDviq+Dl2Sd5PmRjXRQQdbBEDm4I2AERr7eyyjK7QeXETaWcUOCM/ReB/LFoEG4baJncjqWurCBuyFh6BW1X1S00858JkxSzq0wbgaNXdzOSLGFU95EoZmTi5EiKTo6u/zuWt+tcu8QgmFw2Vxl8r4zADeA1r6JPZu7enmv6st8YdYbtU9YKtabGzNiL0NU0TI3ahBeMmTa6GlfSSeJ7lqvF4W+GhtjXIogcNRRo2laxClAg68sKFW0nMGj5m+GrhUzZtzjlSg5Jq/7STVXnclZ1GZVNDk2FW8hg4MdbTf21FCi1yzcCG+wJTvdU9RKesJsSps73Bt5+uJCtnlHmqcqlGsXoLc/4WaRA1VNeY0VjCET7kss0AsJdcxoUtA0wopuY2bIBcMKHA8wE15DFviu+I3QKWJ79gtCHHj4+RneB1mYKWQtukSZnBhq/tOVdn9eJYjEoozknWE/84VRX+FaVPSuk/ONwHJQ/qvmfY0pk7TaYmC7wTLbQQ6zVEgh96FcrgZ2Icf6IOqJ71DG08aeuOA4m+UwTq5D+ONaTlno1TdeCO+ZpjDgXyF2JC9AVp+Y5K7Eeqm18dFi2KLzb4ij3Nv7bYg0wReUgxMBvHvStpedknOoSX5ERbNbUrbfm3VVhx1iqsFzvS/tITytUGimL0G1t6SJGVpmq5IJi6yxd1uEOpMWM+Ev5/ZVAB2+MhNUUBSD+/0s8kG2n3kcnMUUkD3No3V8HvW/GffNN7a+vWWB/o7hVZTUq1qta/9fHz6ZapoJwxM2FQHvKI2/LQu6BnEyUYErcNp97Z3EBB8o0zG/s5LS7qknwEEs3zzRRADbRifS/LWtQybelwbscwrEjmqVLRIyVw3dvhBgBtlobMsYDoj3D4vbam7Db9/1k8mSNfpUDuE2STSblz8vdspLdtJRSby6exraA6DWMhu+YEPC/aZ82VaoHY+EIzcOxJP6BdCZQDFVAtzdPYpSyfjxBN3ZXDGmQha3Va/3BqCXc2nBpZIoa7WBzNNEjDNQIyfaqhMA6qoPaT7nieu/1mM5N5/a6NuUBnc0Ue43ll8ETKVfn19a77irwvuUeWE36RQ2pajD8Fx8GmlgrkrwkFgaFD/XsoJYxQDcQ84N0fyC0MWLZ7ArIj1PC31T41LLvQW5J6mMKnX++vIUM4GjmcMEuh2kCfV0Av+QqcFTxBLLkxA9k5SVJC+CiwnlVNV0ch67Mb5wxotf+BglLDeUnXIYDR4DEGWSq0vi+jLTFgYC7GR6VRVy4rmDwM2VVkVIhVMugrCuo41ZFBjgjw3gauys9aVYjAOoum6nh1iR6uC5EYN57JotpSTV5UREpRy1C22tdQYCW9Tdc9asI5TU+vZLLfK3TNzT3aK0lw+85b6CObFZQvqqS5MCt6/4qZ3Zw0tkggy/UN6x5TfExqTDOOrraY0GOzrtOTWb172v8DV8NLFuZYeapSAMNmzZhZM90EW/NdTcX7TnZelAwWPwD1PGaQwXH81FxgLiV8Gr/cnxYCsPbFLpZ9xvqzF405jUWIbZnPwme25t6xxOwmZ5u3oOWSMaMM3wl18UJQ3haEkQFoQxMtKh3Yq2RehLcfGePyAo09grJDqBKAaIRhzYspAkZSqPxhCFrXHyNND94jsyH6O0fgQhPCLBEWbzHAfZpEuUR4TfCyfXmSkdvF65QeoX2lXxve2lsPSYqgek7pWYhOUtyC4NLfO0xJnUG0nDqIXs467pBw87zJexxAfYGy8vgN4MEj5+Gho6CGxLNkFRKbdu0N19BkXlAJ9L266liGNqODoSOVVlH6ST8nd0Gyu7aN6VpyRzj/G7vvzh0svuU+QZJBf3JQX1zkPGO2tdn7AcKYMpVXVmEcCUeId9SFDjN+Ro3/rE1nW2lWfbapsKIrdbqHs+0RY5PyHdgmXI6rpnrZuDMI3YarHEf8lk7Iv/Z0RbL4Zp4wv1Mri9/At1DGsQ+Phb5qkEAHl6Z7MOyx17pUSnDx/YH4KBrllND13LQgIFsnbX2p+HfXY+yOA9rJGh3pOrWfreyMrC8qE3HI+zvn9+YFnC/lOAP8DzSV0+gBODhFU1MMSoOtogVJnxaMEqnZ7SgpT/g6os/qx+BK4qN++1SSTZojnFIqIPw2li5Fbn5fJAj/Kj37YoabFVRmyKQbX2g8kflcyXFU2vNvjvp5h1RDUPL+hxF7afaCu2TQu1vkA3nRXuaUIj65i+YcTD63gAVcHEWoSWGmTxHGGUxRadrWRcSVy6RyNiQiDrjP3arbiSMXVUerpgGrb5YAdvo9Z0RNAEglGhJrFIxddV7q/pitrDpE32ZOyEtngNNt1ESdHeu0TSvjrph2onfbVJ7JdJZF2teCqvSVbUyIMYKPFjho74D+gfWZcwy3DKBIG6VIcso4EyozanOwf82XxhHnnzDVFyxxiOxDW7YL2mLAjqjK9UJ7geP3GO38hasI8jURpeXrw/XzWphopRBM/8gxiDKWMuT/WqZ/uzO3YYDdXvGUNDrqk+HYlzHnCsNaerqcXunjdnq6gcB6ggqA3dD0UJK0JKNGgDab9Strj+LdqtKHfd+BeR6Xays6uYIuMLk47sxkShxZyhxPZzaw5TySGgKRnY5ufHUHVq1TzV0WrqbH5u+2Lk+yGiZDathUq5ZbriFVefE6dzE2uwFWMns0gnrB/9meMiLEJxRSUu1iBjd2/3s1Sp6pUC56KfEXYnM4NQE9d/nkfLAyRR+VJZKcLXpreZ5dRIJYINWsuv+yuD+OpVxjHjZV66G8h/a4UwJ/+sIk67QPVsxZtmVuL82A5X2vaGmMDJZTUG6QlTryyWQQ4ngmZwO9QB2JLzLtQ8KzV/1tvCdpqFIHEdMwGz/RWaxUkx6vm6K/omBpLaKnkUBL/9gFd2WSyCRSNp1MgKhXawQFpbJZq56Chx5VOvotZW7ckHYwXyK97pswUJVC8KDc8S4CqcyfIkkMycoVUZfKKjsV+Rg9p5tzc3ZUM3hUI/oHp+5Y0MV058Au4e8vJ3XT/Ff61Cg/IzSDN6K0Kyf6qTisuXcEK+VFtNxcEIUgVKnb1Hf+31i9AQDvWLdsKZgiJ8gDoaUFyduZBo10uVvIFvxlDqZxWyEAsGt69clKV0TM4C5x+6/ghCw1LLfbKQnMIvM7su+YU0gutFGOoXoIZKWmuBldo+W5+nz2dOdj/MBKpcpueGD6+rsJvQlMzydWYyFRiCKEJKxz9DTD8Rytya1lF4PvvREaqdcWWD5UWPMH58p8l3/hnEkRW7dUwa4/5qZGS3HTCkhli93EFJ7eqUeryh9EdtByDHyzLyMuOeNJfq2uRqsS4/JCoVaBnb/so/g/uDr4LenEEQ2V0gWJQFpmiTHEPxuBURWQN5qRxnELxhualnMAklBvgJAoK71BIH7qGvp69puZxnrY2VSoCgwxQUmJEfyCmqUzhEij3HGvZYwJqeEVTDgZKhTc3Ngfpnfg0nNpYR4q551XBFTsjxLPLlLxpIgQFIaNMaoX8yxPVqHsE7kuQmp1huqebtW0n83dWx01kj/hd2yDVkn09xnGXCRJfGSESkF2JXQKXX1Rojc8TLH/vQTV3kltpD7VbxINMhaU/CvQcwmT7mF/7Ne/sRaLBSwDBIQdhoYhsihFZf0jrGSMPP+gZ4vpXcdas9LS8DSa6CgNtle1a3haw89WM0hNjf6VSciffaP+Nd7cVeLdV2AHFM5ZLUUvtFNXeFn9/HQEYirGajJMNToquEm1/w9X3iGqG3d6SgKlG2V9dPEyH93bw1S6FndYgcb6OSsNrUYeMFfLwF0g6HnQyy3A5+cK5OIZHUY5aMlwyjdyyuhopdh17qa06aDmdEykRAZzPaBm9rRlPxPB5qrxh3CbF7D+pCUE6hDZpMDRGKw8D98J35wpUW48V2oT0oTgXrnEzPZMegB1mGcJaG4LztjVNWTlZBKVwfJmAYh1b2DWhekzdG19Xsz0Ta7eKd0mIE1xZ3DIWd1FANH59Gb3vNy5FtfvaOk8ux/lsJQ7V+pbLaWaBdNOYNA5T8wYOeCe2RyqJFUS77orCuQflj5Spi/WxxJSIPQNq5JBLfmS8tuyV7Vw/yJEshN4f74Zg0TOLV7irpW7SeEK48Xk+LDcyZytLV7/zIys3d6LNabkLMhtHf1rxkYuQXJ0ZDwqtFFJyTqVmj1NsHcrvJltANm9Z3Rv/1r1pEDugsf8sx50imjPqdefEwnqTCmK1CDz47M8pYsvBP/UiJQwMQ3lEvx7jU0Idg0BXLTjI/zylqS4XpgGACU7KDrZXi5fLa31J7hKqNv7srEdBgw0LbkNP5wqDpaIyk3u7caqsqirxtThFmvxtvEFjN7yJl5HXzvKw+5yBocmL6p67Cx1ERv+2SxM2YbEswZXk/8vpC7EEhMYMm9T7u5Jz1HjlgMtgDTJ1OKBksdHerL5xj8Lmm2tQcZyPoPk7W4IlavWs8F0SwRvWPIhjq8lYrI4GY7jP1chMDf5Mk1uvSq3OQ8acy3trJtASaTXM0+ZTStQikNF5iL1VR00fNlR1TeEyRl22KbZCpTRkLLWsV/STWgj+6dR7pyIKxJR9RrtPM8Pig9Y+2jHoczyoYWlCKuLNdqzxBvxWx0uAs2RaogUnXYgw+hIT0TlXMh9TFahhQHpcEK4IHWLRdzPfaF7Fqgvj7ZtzdGHVGkJz636hTV5OLzxV34hy8olEuSxRie4Yz5FXhrXjh3s2RT43+3vftKpBLyP4jMp2+6J67Rja4CMkIkAx+66F7Xee9KgB6Q7K2Tzpggzbo/91Re1zKiRa/d+V7h0VK29lCHH6CDEFvCfagPjlO+ShlDLSxalOI072sXrMEyVzrhpFf8V5O2LKlfS0znXeoAy4zqfEH6Ho/mHbBZDhYepn9hfd63kgwjEkDcnL79a0Oh/SF9WZy6hPK31vMcGgGvW+9BlMBocczy+uQMQ7wGSeFF9XmvoYA3wPeBV0ONUDS6d7uz3dMzNlxpTnAQBGQwObmADl2vYv5G/pSn53SYs3FZHkz5INTIBDF2aBJ0EJPE58pA7HBprkADC5P7lS/bj37WqJ/F4F6msyy7rAJCiWaCkoww+oZVSHrYUGm8i8LaSTFm6R7+ehPwVjtgqtW1aVFMuMfhjqtXbtSvSCkWGuIYNb5KUnZ2VfnoXd18phnXOduVdum5aRBo4fVTEb2ey6PfPMQGBYEOYGlUqsoTIPFfwiOEinB9O+91ESvgMkJxyZvKZu5+cttlBG72BbLEBa00Pa1GAoAgxxRBHNNYG4GTuUw6k7KsBES5ebzMqgx+30q3F2DcDWkh1tpo9MrsrklB3Y7L1CBognq4rkPk4J4vxHPlu/wW4bKDreIiWha6FWCSvNWFhOtMOcRmk09NwjAwe1dZticzcvcEm6l9aHH/Ri76K3FUc0pKhCicvCHS0ylBf/abqKwlX6Gt47+o/wMxq9EUZWOFbMe+hCDdBBzgWWW8VXPCeCC+PHmbZX1yjgQjTwQEJKcy8S1i13x4ebAylPQBqkXr90glWez1gj7VHBkQk7eB0canPLEPyTgK8aKz6xwT/wqKv06Ja1cjj6UwGfj0MSwjpi/7GUfy2sC4OrEFdUuMgKCmGCa7ZenwwGAdM2E2ZpyRJpLDSltBv8x+1H5PoUuGb80d7yerrrvDo+WN2kDb0AzOoS/jExrYtrrqOBg8PQ3IvQKoYfVvvJQn5yjOXc9T+0V0mW+iwT4ew84dD8L+GC+sh/iWyRMP4xk2bds9K+GISXO5Hb+Nif56elMWnME2Nq9cyfPJDQwv+dlEaLlt2ibXmd7jYqkWHw4L1SSHK72+xofPKUe2ybRYtZ92x+1L5H++T9Bgn7CDNvubiqwLAmF4khgnSAzZxeKybDHawpw4YQr8CkGMehrOocwThZhHBiJSvWoiy+zD4PgKXK6g44tMEB+B4OTl77zIR4WoWSg6hQLOhNQVEd7GLRB/61M7bgnKlPSqaX0KC5fBrzzaXfU2xUsuGbKGhOj+PUkEwBUYDScSE7FSNaDHYNdJabmCCBEXHVglN97c63e6r7bf543Vxd8uyQh12UTcq6IOwrb3Og0vBbigyDrGtlj6/YK9OPgt+G9ouS7mlxbtQLvHjJTCc9hekDX9shHAUFWzYQF+hX268lIE6ltLBYFLrocEOpbedfJTAZZAGdyjDG3kTTTfa319I2m/ouZA32ooPcNXscf4zkbW6Pip7q3/lDZEFTXZUEx4cCYt38PJ3092GKM2LOpVO3mKwi75QyZ8zYb5YDgL9Jwf3VUGDeBQXECiCOX/uAf0u8eOBXINASwRFAruEAAQYknSKfxV1zpJC10T1y+G8JVZz0JUYsjl7EB5zTVoLm3rRULs/NbQvshfzr6LfHIIdr2Opvw3o9a5t2mOEfJtkc3f+zC4FkpQXV2ATGXLgimUX2/lRGHs89IzU63fOX8eLWMf5/GrDcam0GFdALZ4XUc11puMONTP+EcXaS7o+zfjwumoxwBdt358Me5T0c5SD+nAz4nTBuTCbzU6gnNL5sDBZmVM0JL/3rj5jYuKRqsKwb0hmNXcX8FhjlTr8GMc/JfbYkKpIO+vAUREvdToyMlaZ5wx39TNeyRFww+7tA/OzMDrIdr+mpC7NcCGcOD7jA6tJIHfDgh+3v0Emw+dimoNnamwQ9Hpo+D9fzUSAxf02ErSCwSAkr8KQxjsejkKWmiKPy+lBs+94QbNTVDrJGPYK0vu06Jfr1zTFi7rw0h2hjQa9YaRAbENpgvBC0ssoiI7USs6WUJHl1Z64UCQcXJc+jYGAlRKHWJOrl8Mrkc63vxmMl3P23ffSBns/+z/RCkEUg35Nv7QcHx7oM8MXNaKwCwVwm8Wc7WCMygDjsPpzj3VAfxoKX6tvqaFeLPjlhfrXy3VLzUtv0Za2mIqyzPkb+gVzWWk9k7V2pMbXTSkLOuagG1BIbC5/uQ5Khp6SjKeq4YQLt+pdNDwUKGJkoUYGiJajCj6D7ucbM/XDcS5XFYkBF2dlxWDgf1DH0QuWF0UuPhp+iSKnM+zl7ZO7PYjo0sWM+9squULlGAOFWoiC9BUALWnQ+HZ68sIxnNlBFjVYN1r3f2GVQK8MYXRErMrS1nh4ED35dEfi9bUHyPXqg+qGS8rW6H46KABoI/FcZdI0qOJrrW5d/p87GR7IIQxjfjy8uDLk3kNCjFuj62JT0ytqy+SDKydac/aF3Y1OC76EUlD/1TWcFCMvsQMXUjd4cd3YxeY3B6sscy1shB+DnuAPh3yexK9oW2Ia0+UnEwkNIi5iEZscpbH/Y7fGsy7MNhF26zl+xZuz/ePMiOflaLP1kE4LVca/QOIs/B1TUiVFG5pUD9P9H0t0EAPTYWZshZxGqPR7kXAZRZuCrJF9L811EcHASsTQZDVVRNFxTLJMTi1XPO5rYcMtikQED6fuZUnl+Pv6zTXZKen+0rzYAnNUzboK/zzDFQMnMYS4+BXFG6Fbw7AiDqMpDPxU6ZuHjSdAp4Q4NgJq9xxauNQZWsKgelaKt+kwaY5rlSdN/m7YQQ6V9uradaW912UXv+l6h0iuiyedNhWxjISYjiz5gWx5rxR1hQ89rIJ5Ro1x4doDPxgOq1PVU/cF2HjGQ8uXcYXSepjhzAgxz0HNNPPS0QRwXIQe8NuUxT0TRbZ7GA/HZAfar/WRDZHIHIHMiiI4KoOydDKitY+hDsUfN2+EgcsKN2CP6sfzLloah+dypi+FPp8qjy6iLABsSMMEKNM2GgPmcKz0RDPCj8TmF9pU+vXx+qITMCz965J46qWBlsmRqdtRfPpZTKtGfJaY1rgKNcquKxjcpAHzqoxpwuAtXnlFr4kCKvqwFQBB0HRsWRa+GTaDsGpuErtymTzCTcmfy4BbUoP8fnDm2fuasTRMsJEH9bQCDxgPulBfZTheoKBgZjPykrNPV2+SV+rMikA4EeJR2mVeqtUO2RRHbWHujjNGVR+L0DI9x8VBwiID3fT1AtaT20PXb4NSdDK380K+1TQ1qzjAcKPPMKrx2gJ7DiQY+z6yDJgTBn6rTOjnIRjOoP/u5cCUqDWK2azUUVEVUF2sEhAtYq2C4atZdFP7cgy7VTKlaRK/2tBYqmM5ZHYmjDpCfGWuqLPyYVJ1R7RB1GTLEfnEOr4ZTirdkj6F0xlEUQzym20OQl5khvN1SOZ92Oa8fC3n4ufMzAyp8VoU8I1F91Ehbnf+ZSbkedmOJ84loS5b4/56eIevYbbHitezatlPlPyIjQL8d0qbx9YSkRAcWnH9/FKDV0Io3OESvt1YxEkIGI7Qt0oCxCzaaHhdAsOuq5PQ3ZkP8/wjzfTIu1wTQD5VbQ8kT9LFWl7HU2mKaCfikJIOkc9GkWhrR9vM7ZKWfLxjh/PW98zyUWNqEuu/mD5End8111RYRyGiT5CgxBIdnKaSW3RpamvUYjNFB2iqnonlUa9rhLK3EKnV54d9/T5brdWXaU/OvvgKpRLPcauXnnPDLg03WOuaCns1VexWGwof2NDjd04TAHn1EUwYEjwCD0bKd1k8jd87vIYtUplyH944TDchen64VvOIGQ8dgcp3vtI4fn15gSiPshrdrH4326Y0XamQ5BZUsUr+sqKh5qKROlSKkuTl9Q6Z877LnRJNARmuloMl4qi32oxVkO4w3aiHWHM2READKnUY89t4o1mLnxgS295VM35lbgT4flbpHBqtECV8/z3lOLedrYfNt9VZntuFj5hgzkUrZ4/SVg5W7fJaQZQNBaBZGM5eaM8cT8ejqzsGmiEKgXPU8TYEDAQBWHBuAEBmhYREa59ULcuR4fI0HvsSDxXmSN3Pp8Z/UZq5HstFOD9R6s3vsOOeltQ097tzodLAa+LEkv7+AmxwNx7eBzEj+4wcf/l8K6AtVTuOU3ZcuQNucv54dOXHhSu4UrI/xyTe1eh7iOBaqka98xg5rbrki4TJrJ2dEPAaPvX18I56dhslxe/3SI+85TL5runAKtLACHykdkYK2sAv5O6AMwyBs2Xgqej3H36Zq26P/pZm2qq2IOaqIiEX6O0YUuovpcSQGeowb1GfSo95sOaWmUHEkg2e/F/QFkY7Vf1H1UgdVubjZ6H8USma0OPhphiGgPOb3DdUL4PS6bjEQ36fX+O9HsLwLoyOaSXvTwMFX2IqThaZS07cTu82Rxlgy98FZHXxH4XUZKoj4spfTeyyi+XV7Hvz+hWAtLCz1od+1jMij/cv27sTRNbY8bNhNhQTFtL7ECKCNLi3u62hkl80ZLX/eAv4Wi4MNOfNkQASiBcKmxIe8hrZoqBlONqSKAlQrRCrcneDA3vIFS8FqZ2S4wC4FERXYMgEjA4oCl78fL33O1bNJO1CEOCz+e+1XoeMDP3+owHAmTuCGPOVzP8xOMQgqQMl4yDRyhx1dLsnnA6TgMy2i7ZsmFgFOh9etY/XicC87E8JrI1WlYwSitLQ2CRQG87gT4FoPpGfOWLmIef7i+GsriGB37FBbbaR5Zn98TN4Ih0gCnxdT+/fo0JZ5bmvihSB56rUgCf8vVUbggFZjwPrEhwb9s9+dsBkRq9mMY7ojM/3E0yDBOD6BBp7eQUVrgZKZRWfZ/dGG4OC5qnbC42zToUzffBZq85ipqRUqbd6unvu3bX+2QB9hemLzLcNk+FRmX8VQqCAFSA9wQX8J/bt+NA4Q/XTruhuclCFBS7zpbtYcAvajL0vH3m8we802rsPd4/k43u6DbAuSgboaKGURkpwO4QjikXNiDSNKAgzVxEROnHZJ7N0/UfB1tHotHedeT0DP0fA1Yxj2Fui4u6y/6jqs8W9+JuKNSi4tXIojyVjtHvLgRu2tFATLX2vAJfzDMdw+GsL8MTeJDOUyYJeh7TwlxP01u8pI8aacIg4HlEyIoXwJkV/FhDBLMxg9MhNxbbCZocW+DZ/ye4hxLnJTxAxcL3RrjeQfzfcTsLQ4Hn3Ky1AsaohPf7QL0sHUmLzavHuV8LYtPTpn9J3L4fHYfd5tLav3tSk/+tw/Y+YYjoQOuT+Qaq7Fgu8j/bS/t9iV1ndb+F1TcXmZmsYVCnXQjKJ60233aNk+XHQahpDD8DmMfoW/SGPHivViVPG9tXCr+/PJeaPAGf1QXQCGhnXgNebl3ny+WlsKWRzdKIjTI7ZF8yQPTg7Mk7UQMby0etKzSp74/Qm2XwvzOij2pjEPsxLiMpIeiZHOcPa1VMJ3c1utuv1C0Moz8xi0PNF7eAcOD6nzQPtvU6w/qod8iqwvtfGp9PP/HjEyqGfTsl4EiGNjsrEXqr9BCzyyPlBZ8sMZoISvJTfnQU+BJrEfUh06a8cYkBQsv7G6WtMW7gan8ZGVcH5u2xz4jn58967/HaHJtjvAW7ZTRYes/9vTA5vLrsrfptVawnpwbGG/Ut88B4R/j0e+EHwWEh680QwS0QVHy/HdCcYIBbaufgnOLYVB2N2La+zADyTrR1ajagMv4N778qSK7qD9LJNiU0aLoYjXeUrHEvyEzQ7oftDH/lgfvlW5cJ22aMkgI9Xyu1xfU81ghvbaLmuNCbttgD+ATsTvq9Bjp+TwfVsraP/cWfpKg1ZqyGNqIppWodxLXiRJpZofLxuQC3aC+hFa7L6fsYi1h4ax5nAC/WJsA5UcLx5vW8b10OoPv9WtcnKZSmxONalAS+waxfmBDjlPx+rZMjw/r7KPdzy1lVi4DKqFmgTDFx2qdHJQ8I7dUiRirWZg+AW4+q3+49EDwDIp3jnk1nJdDbRCSmeC6SMujIWvuV1KBGVSyJ27dOfN+8EuQrn/PeFzbjIb8ddcP3YU70plDHUfTY3b67CseTKZj/RWux3Qh9FtHk80+TyYAwGJpKhbupokDnqk+UqAa9cUW5SgDF/B4/BegFkEGd0oj3yahbKu182r7uKSL6AiSUG/epMfXlLBUyrYxDdQdNGv6Ryjwmu5jdibyVSgLhEDBRLYGqjRV6k6mqNW7xKrP2ahKA7hgFQRhPnyzIlY1fanNzmjDVqts7bt1/hS5i7QYLgPM92xkYtCRfGJYVcxpXOdvHThGyn/h/al9UxQ9U9N+MpMmRA/focFSpJ78ZUgzypUwkvH14iJAUu4fSDTSzSH6OQcIHYrlrB/i0cGsOMNT+EoBh3qt5k/9c+FTD0xoILHbjvBCOfblzFJB34Q4667HvLz6VOHwvxLDcXSJXK4c0GvI7YDmU0VQMcRyUqI3Q1rh7rw+Rs6A63oddxMtR1zm59laQ+h8TGGJHZhtBvGjQvho4humYSJqVzxbOgzcPzeWnkkqEYMj3oQfc/L8jjmLP3fC5EvWzEiF1+Esv3bDhXpfBEfnaf2livU+x8yly/pVgdNDzY32WIK4B/nAHeeR8nRmIlmfIJTCDnUswdPJ2wEJrEaAQ1qcf4HTjBsCKKl9UcPbDjtVk2mD5+yPK/Lpcj/qqqjgtVEznQ0iajxdPrdXC8IHZDJup8SkS+HZdFYtK2VSocy59rSezuhnVKQWmYdKolblWo+FU0q/Va6KqTqtQYaB6XVNvGNL2MjkU2XMui6AWXPOQW7ECiugzhtfrj6FL5E382I2cavyEKjKAOyXnxpN7KW6ehwyd7GIkn90d7ptdjXP0TZpxsg6ej67iuMKN2rDv6fvEw9n81vmfbiMOoxjAgobILwbIQMjPCtAUe9u3yNO/Y5ECN9FnezQ005BSrGzK+spk4uGXdpYjk1CJ2h2QHTs7+sR6FjKVzwxH+nNKnImguCoRIkByJ/InDC8WEMyL6hm5whd0RMLm0PbOggMnkK8CMbilGRiaDjGE/illgHrEFCKm8RhgeeucEr3yjCAOZnUESXS9DQqBvbU8r6/MXYHuWSqXReKB2os/wjv7tzCVSiCGTPemXdoboDStfO4hH1YsfoVO5NTCMpnS+hcV8yUA4TMYS6n4EyqlsO8aq19+Z6s+4ZoX8k1E4j3HsnB08Xb7gUAWwWbb/umFKCnfYY5hi25MNm8/azg0GKyPFwMXjIeyVV14PkE2C7riqhCWOll57kRUXHiwBdumIJtIFEIJ3LwBkN0+iu83p0o7SQdCmuCly0SjCGgAgpl0yNxImzkhvfLJMkNaWvBNeakI1/RsyP40wgfXKx3OcFA9yDLmT8Yvyi+bZksV5EoYQgbjdQMZZTAdg60O/8pEiTbqPb5DusFUYIKC7+CP/Rbszy7LfxrD3UqV93PkKd4eDetmQvpfUj6VFHlp0Le89zCidCHPiCX9TfaZyLuQt9BhUF0stUodoEy0l3QR/wQdkR34hnAHoFCISPtr6A0OCkW7ilPdhvWfUjrVP5qfxkqXNeI5D8mx6E8Vg/sgCdbKH8htPNefmHirNAc46IHyHz3i7DHIuOvFhmp7x3cmvv/jCdJ6nhtRk5NUsgzKeCeRVytFOyzyJEz2wILTv1xdEnpnVaJ1B5ilO9YrqYXrr3/vuohnBBUuXeCABeyGagEB4JhPvghTHUEm7iMjrwhaeO2vDIu0yGZftNngZyQPgewwlZ3lciMYHDiqyMYDtbsPStnscWjt6j70NXQD8HzZHm/TFOSSbXt9CDNpLkFoxpQA/YlgqvZrehDgawWsBZTIOVhH+muXT+aJrMisfbbeNEH0Tcrz50qVeRIKVkKHCderuliGgbCWKO2IW3hmT4bK0oBxs4KsQ60nnZBUmyYQQCimTG39ItLdqR14hlt2QakXVpLzjBXHluM5RgLc5ep6PJ6S8/HWQIugyV3wpvriemPJ9WAVy8cvaHIEk3CgrY+l1YX8wTUm5td70du5SO686b+RSHPzvjnymNL31qUFEpQyZNx1hOm/fONfLcWqsO4qSXZuYDOpGwfEv2mf8IdNUDfnp7Tk9DnqNafeIp9SwZhLACEGPFxW2Qaax1jW9jue4yj5+3z5Yjv7hUD0HiKCY+UoVoaEs1nS6Mf1VjK8JpJFpLaTqa8mZfKUOwn+Lp/ithS4Ifj/kg7Mmpp4f3SLxipIO6wTCPiUSA8nv/uZOyeTxdIabrt8XTaYJcNHj8inSKxGHTDh43ni11gz6Aoi+U+Vxu/wFOVs2GOrK/pHd1fabpy3Llgf1ECTbg33a8gQKMJ0ZbHau2if4pLSemzGTtGeq3ml8LFV0OeCQBXyEbFX6QNhiJx9F/q7UlPZZ8s5puQtHwXDSeR28w1a3k22fPm6GFzggBucdZpMgjLAx6Z3ExoLaYQQ45R4He0tai/4C9USwzK7bJU9/lY6/hX9TVyfLeiK5Rewv3/bzBOCeJRXTCNfaBedjZmDVPKxwOnqwxYI4YCBTZ6y1JWXiOPMHifI5RffaeZJyo/l7RbCGEECIfhMCYAsZR6Z9hDN3zfIcvfisAWwgS5o547CW84Io2RL8vkT7OQ/TP+YdQM957s597JZbFR7tZnTAmx5qOJkIoIu5Yfe2NdKOTM1cWdEcTZiDU5wv0fWPKcq0KqjSwinu6xSk+pGLGv5FFF2viZ3a0yJy8QkNl+cVABGslJXEcVyYs29ec83X3qD03Y3yBN/K1hc+WEqL3R3aiRjOx8PG0YAeckFeft8OPoKI3cLHQed1fIWD6Hs3L6CsoWqNZYRgAUbRiGAMqJG5wdTXs2blNutxuks85iNkWPukagiDXzEBYEX7v1vMLuq4FEfTTufI4As0B+IWVyyXvZ8+cGfvmxlmkyVP0WuxEMGv/rZtSO/0/WRuvf7bhysVBq0TkVhz1CSbOHilyZXmwVVz2E0eXui9u28zAnplIhcwpF9OZi3iwgxZDhYvgUNH6313N9ra4Un71R3HImKiGQDwELwYd5+t8EFeoQWyGGX/ip2QzAvZI2wIx1LYKy/CKFx5vGkpF/fyEls2Q8Euk8qu1rN14iPYVdEAMbC92/gxVwKGyM/L+39Xw/Pa53A+1eYlJu2v6bgZ2/FidpikfUHhxIJ1lmCsoHHZp4UgkQrVm2xDJ3uICl5MafHEXyUiGPjzvARH34PP11TySHjDBLfOtXUHrbe0bYOAIDOvGy6d5OTB7QpIXZ5uFzlQM6FEvZ4ThPiujfxuHxjo+NA2p5JXUY8x+tSY/OjdRawgPdpWtGwlFmVvF8DAmymExa5PS5cYS1jF1SzcKcBLUGOSb37bE+PzfKurdt4GuSaawpFtlBYtBbX7WuoMnBD1+rxC7Mfo2DFggHqDhQaKImQPRCSrKJKullFWf+n4+X99vU9xjvX+dow7iCWYRtph7d9R74ZmBzYyQrjT9VR+4UT23F+D2rUiNatvKTbINHVG0XfZDRrzGtKDUCxt93RN1KKMzChvgJthoDl+hz2filKRCFOZYR2p/rFxMuJO7EuMS840YBq4n1E72c7XLm5sy31zgQjaiJiNQ6ExzTsbrMU9etkDW2ymic7Gy3VBguFRyck3ygQc68tiVbYuYxLcButTsQlvjZLWqd6/lNqeOO+16TcKlszAYILaDHcA38PrbXIaTgOc25Aend6hjciwbv006ENaCt04cYMaEGYvCi0OpCchar8Zc4IdLrbNfxPyI3XCCqHngsXV/7YGOiD/GQsT0ma26qwjUyjHS0ePA+Fzp0vIefLs4khn0IsPSshCzs14vBMnSB6WgEnBUh0e0Ry0u45+hl90iJO8D2u6EFTNrJ8pqB1v+fVc8nWppga+si/5bdBbQa9UinrbdIHsMpCorVBLLIdZCeIU9BYQ3qjxw2+cI+FEyf1g9j1Xji0YvnmRYXlvc3q0W3VXy4HPi+/mfWIObSwbtCxv+JrifOXxDe9iw6tySDlHX3LcUtL/zwOqgvHskjdg3xBqIU2HMYoqoc5CAvNJ2mC0szVuOhZrOyMW6n4xB+ttfTugB0NO5R17InFvGgrD/Bo2pr5HWklT/TfYUmOrlUKNOe49i3QNyDJWAdadWeqwV00FWNniNh+T6SiA271RlIL/6V5GwBlESNUJdCo4871YEQ2ogyK+ylPxm3VMf4k+adCbtjqBMqt0rGeQ6Eg9KSicIw9CHQqDGCoLDqjXurt67CrmU/1iWcIk4sbpksBErMBEvBbZBo43nTJtKLibPkVxXdnyHfYqcS+1ElRvVGPC2rqOQLKCD/3DFCmKA5HoVuJrnUyElhZ+o1ajSv/62X9jdsz3ZEg+2ZbML7GEY2pMBu5z4jDd+MSq/Va4R+NkJYt7jiv76typ+ETjHXPNPHre40WevMrQwH5hws0/cnZ30ZRajvqVeagtf5H7yspJLLEXpPifrory4qRv2x9aEDFgFivdMstBVte58NJLPLjHVPjcPByyh0aVrhHxfwe1Ri8v5nS3TWTzK6P1VPXk9NjOJKzZrpN38Xw7fY9r2wTSdB3KiY7oemMALqgzKIzhFC+/h9qttm1o16eIShWOz/XcK/sntAU2UGVvjwXmdi1pdm8JAe0QFmnAC7bvPccbET0Z00+ArAh+12Xa9v4meNA89rBfzKYSrMZPLFqzZatSffd2193nR+3dR6edOVvLU6FWuHIDAN0moJyr6gqlUENZhfnsw36CkhCWOEBxT/ILW2k584VXjOt/Pr03KUHfA1U3aYXtG0jT3DQnKqnEm/to8EFEOVo3+K44W2DrI1euFYIri6ydloLnUjwPpIQw8/DA87+72zKOKA4ZEiWmIyqKMT9IykZDxa3LfCBn79gelHHSNM2V0R/wNqAdhuPv1cTxUDw+k5aPCVy69b8TROPSaqQsyub4LI8UaTnyCuCWMkuEAW89BUWxlC7ZMQLnY6iHi7m1keb459ftr/fBU81mLh6JSVdi7Ts5vUY+c/I1yBqntSTDJQl7pDMH4h92cN4II22Bo3PbpAqgN2lqPHPpUCYw1++lxguwthdCPRp3getmXVJ/di5jkeGwVLeTrnKzMHNtbfk90sN9RKpLB/IfAX42UROG1FPBJefNODxCotEZfiWzB8DTVlheJ7HPwdgIuXuzFfqAWAxvXXruMk3FIJZVzzkYGSfZxUvRyBjsEUzdJ0RHMQ6a/u44ZqnIjK2cUa8jin/N07fKOyFy3xYmIIVBLS85izmUiHp0ewZSbU0PDlTARQy/nYZC3vwPLYFWHDsFxZsMuzqJ9TKrRcEkzZQ00vV/Hxioo/HUNHksUDhj1AXSHMA+FatiExQev5yVBbF8RLPLdjCHdN9sXw3oL9o6jKQHs0DHyYcyKHncPnlPpauTY1g/wf0qKWEubG6cQ4FxyK1yTaFLND5SRB3ucuEZkbIjCZzzuE+2YQFfOLzBavpYmn7azwXKPVQ7j5rslKcYl17vriSy+Ejnp5Kl3+rOEm6drfl4kUQW0chyiroCGTYmJnkuBuK06yHmZPwBfIw54phALsbZpk4Ul3YZOCwtKG04/L57ySsMH3qSUhDWrw/wpiay5NbisE4udFpGMHuQTVRq2DQZxAHNad5PzlXr149NEIlA3vSz7s1ejgFW67Mk87K2Acd9bMo/ZFp4YyLocfv7++ISyKhY+CF63eJiy06zDue7aUquw3G9kdu6ds8jzjKu7kdhIiV10rlj7wmFdY/06qGhmcK/o/xcZctx18dNo5mpJ6OlPdHK2oz7ntz9aVWycucoXXfHDmqDmi0uP2mZoghF9bew+udzSmsIW54AYp7eER/8BFy+mgxeWeyG6h+wlPpOBN8jnPvishHeXrJHY8wte5wrRTyBGD815hrRLrr0bczgtrKImCc4BjsvUljrILguWz4SnJAw8aK5eqA6OGc4ROFPncIIgJXCDHG+8ftbFyfPxGWwaM2hQD2CB8gTtNOftUsiZ3GGBE6N3rseJCnt8y2IAbYSjcikAWStgpgK1ErUiEmrKdZgVpyDP0tyKsepqyE3Kr9lYIOo1O5mnfbXqLzIySbttUArUHAbyW36zENOVzfH33NtdtWxG/s8omWkT+hCSFUuj8Itd9NMh4nUXhBZUV8y8A8WYoGXl2UYk++OY0nn4KygbDtc7oW6ioEgnG8BwFqI2DYEADd3u3Sr67n4TNbz/nLGV7YkfJiKBJl4EDhJQB2u2l6qcrprarku8nAqCuRxNqtdFISFQq27d5n2i+RjhyC2+uapbMH18MQMa91esIq1Sgrx1PywRHYSkUFD7eXG6cuzceROXa8W37El1bLo2FURDCCKGuWzH89cJC5o0Y1MA34Lu+MbmvAWututiV9C8snn8rscWwSBet7nKqg9/ZzAA7lontLwaGnZOPPoV34tmSTDRfBKlitOiDNbzIwV0UoveGlifwYutaSFlhy2LNJNw5r0RMk1UHCoYe1uLTjMptCJOViAbvegU/e0TlUrzVUdA6FH9jf5NYhiulweLhUzgjNsoWu/xCoofFST5CXhD3SSe+MgSrdXZCUay+rPAfWtXNxtkR/x1LEtIPyJ2Ff/PY5XZdYwPhJI+mzyiv9rXRr1quIyFxhcUqumO6KpWncIDzLsdzJHuy27maGwcM+N9fnnSrk0XdQ/RiXjUoKh4NQxGDWoTRuiDUmoltFr2OiDpwrcjLoN+j11FauxGDLZ2rjBZ/pksr6OG0BYHKuesolTdtZqW/y9IMnin+EOGOb8yzOPKvYj+YYIfBkT6aMGTe3gxzFeBC+GIMQHDEUbc8MMgLoZ8IIHa1/Qo/+vpnZmqvQnEg8LL4c4GWvmGtsQnUjwPgTO+FgkOi0toQ2geUnqfRCEiBZESqgb1WhAfahNR6oCvQfCq0Le73T+/CT3D/TWuyWPhiYBgCE6qzHC5cTY7jcz5AEK6isGUylYlnXf+lr4lZnSqjp7kQw+ITL0l7q2ZMRx5hpAlw+DE6elrZ5ERgunHW8kcwsNLQ9+eYE9+RHT50R9BjPWRv9mtQwVN0uCrL6kB19AXFhUfTOKpYdrX/413GgJkSaJv312S99d/FkBvcNE1vfXOu12gPuVSOG6PGzcwFJ/O/BM5n9rOTo9RA8rD9yi0xCUHZHwVg0JCU37SxcUoEDmPGWJ2kk5GFnHk+OS5SjcZeEluyD4avtuz/MOFeFs3kqwucH0spV4HQrYb4i8NXT3membEOrFMIqLUweRdyOwd9BRi+gitJiMxbADdSBzN9CMkWtnymbwlI7e/N9R9ouh6K5UUW9CVE21Ean9oAIQTLZk3eHc4rs1VCZeNq7jte+dvEdY1mN4AWqN76ux2wEzGxOIENQYYQv9P8odRMoCefEVSjWB0oO8Z42fqvXlFTEl4To3HDCHAt+4MBcJeldxtdhUzqz3dW3wcqFNI//hoGMh4kCDCpf0ExwCQE2aaKRsyJn1KI2w+n3t6CbZpANQSERnUPIHa/YVnYtMoEn5UkeHyJx5SeA3cKezU06la1SGrIYbnniAlc97BEhmD4PjKesrExMV1KDsvbPTYASySidfJjeYIsuULFSczVppzrQLSwbR+csT1n+2k743Z+bYblbSlEF2nFwN5dXndBBOmvaYvccoaFsr8q2jirvu8KkXoiBaqrY2L4EDGW9wgS4Uwv0xroYj+Fum+11Mqc3nEPcB7MPC4z1uSRC0bK2DGIIfEu/b9+SmI9ld0suMFudVvAmy5CR7AhfW3BqvGGvABAx4gmO+MMFQxUdHUwtbo+rxGirnXZ25WFM0f6zIYOCTQBVWl60/+7lh4WxE9yFogGu8CCx571aciu5xbYG/KKpr7h1K+hIaGck7xBBsU92iEg9a634jt1qYjChL9hMQDDUQ00kSFsGJucPTUpHrE5YfzNpQi5/FlI8160UiNT4dXmjJ2oVW0SRXX4TJ8xAG9CKAwdVuIF56mIoPyW1SXhP9IXKXhzv+WnQJ5B40mtasM28S+Noo9BR6OWdzU1J3qCt30rWzKz4ZibyT/q+Mnp5yR3/A4YV8f6T3Hme7Ij+X8PBf51QuOKsGjsVqQOPKj+KQnCU0GvAxkU0Dpc8TlwoNNE0mnTv4fejOtsQznAduQOuHskK8yDSnpv3XXdwTM5ElOU2zV5/uU1Bm7gYH/Qc68cmL+EfoPPlt4xlKHlzmlKGYDrykIjJCBzcz89+L+RPsPf8/vj1SF25RShmleFXaZUn0yaYe+JgMaqrH6dFvJW8GeT82cYNr8Znjr/34+7sIWH01dkkKvmNbk9fU+SbSoczsEIGWiY7CJs/xEKRrP4DU6tWhNGSTMTUKu/0Vxe3Css3TmK2gnF4nwz/6cNuIStns3PDHwaF2gjwvK7p9gMgIJaJ1XD/jOFG/6KOJumMqooBwSOiMRuSA/RBJ6g7CkDmM9Z0Ig+8Oj+jZR3q4w4mmotMhiTSnSEellbLGdyUjV8j+5a7Bpa/Zj7wjufapKWGfai/BeH6QQAFFOcaT/VChAZ1I2Ix18wXpzgPSQXeQUlpeA4ODbBuXiGYRuDYobxpoY1OefYQx7q0DqXXejk5taPjYARf+v8fdhldM1b/MqdaFsLyd6NxKoQYb5rn6VKUGrpVIgIoY7jxvWT+QanQqgZCRrfi3sniQHIrWt5VzykUZxksFCoZhsoUfdKoMwLniU/GEgdO0m9jPW7f8G+pAnmom/aa1XZV1k2uFzs9dw/GQq0Dd2DG7GF+4kTo0J4payFBV5Wm4QgKezuTnYZYwHL0yN19/YXcjmyd4fkC58iwHEDF1ZNB2hXPCLjE88sAXCqJiHt/PJHvBvclp2MDRaDCpm/H10X63mpV1mcyFylS6rXdOc9spXNJNDAjUT8O0p33K6lh6vdCy2AsFwdd5iu48+iqgbtfVohjQrDFkP4jn2wfyNUHFFc28JziKDwTZP2HMCF5YWIqe2XPax+TQ6pXj7vqH06e71xV8n4cLk81RwAkpZGMKTfrV+VG/FoWsqNAGnt/aZY9JkqitL8+CUNiScn9oj3ZTVWcrD4mTxkBpJU/NZC4XnL1kr3y8Hwh6iQ4VL596vzXv207pEWZnxaKZ2ESfs8enLAWoscQAlKfOAMMFCIOBZiA/bEKtok5D8qS5Zy2WWdUeL1mpU0+jXMT3u0bA89RlsgQ5cjPEe1KDbPemOGl62ZaYQstbsz3mm1TUHUGJkHYUl86UF1p/dMFvGg3xUNp0Aa4FPDOwdRSNQeaBaB/giqkAPk7hNmGrvyF2veMuyG1WlRwjQlaDOQnvG0AuGYsmlYGTMrKff28dCwr94a9QUBVO+UoFgg9+bEw3pt0QQUtCYcSGPru1AVJWfQbjiR6CdeM7Oh9f79HOtvHPXditP1h+f4/z/M7C+D99qGdBGlDz0rmjBNA4akryayH5Wt/T8fzkg1+XpeLqlHdd/gmp0+rTrnva+5upw4o/4aIx+yb/vlqpacFZXClRO/lKcrCV27bbHlfWmMpS2/0QmYQotg+3rzhkmqh0Ysw33NqEARrm0pZOSCYYnPVgWq4oNJw6xX4bMtsgNOZC6vSPZ7pWYCK/gYMwe7Ek3kYWuKoeK2Kw+XK/qLqkny8k0Xb/h+Djz4G/+biT9BcUxAbJDzY4c07Q7vC9vqiKgghyJEY2hALdRLstcG3EWjV28vh31seuK0sdbNh73tRYW8xl1y9llHrbZqSPYFHj9ye/Rzmg0G1Q8YV/aQiFYEhQwxunsnfpilgXVBuW3+1heLAYDcS4pZAETXyH1DC8r6Tbf4yMszy7kNoob+hmgkhvcOYfimm/9/UTrxj3JnZMXp+K/48P27vQjRWNw3xY+GvMYtXkF8JUWNUKql8SKVnbZRoz0/BRKg3V44k/7FSTHMf01dRCTFHmIU66lDdLJBMv6reYcEKlNgf/pDSBstMMgIYdC1BjBYZsVJKprDYFoOouXCoPESQu9EApxYOpzpWQM0w3w6kkb7XNGwofKwaO10vEp/dOG5K7aAQ2HmFBYjjjxYePmoPr2ZaJ1l0H1P7e1P3HCbQ/oyZAT9mpxyAdMgQCMASt5r7jW0q+d9llVffW4u8RrbK54pa7pUYiTPCCpPvG7tjRXcov8NXaQ5W+Wph2ClhH7UxUzE/qF7Op+azyc267xVwgx3rQH88kZiAl2CbKk5nTIBBwhA7sowhJeuJy6w+pAwdvj0sdpOzBVo74xECon5g3G65RdEN+pkB2zqSgqqF1fmyr8EGhlxPzPHD7DDzDr10hmDp0aARoZtHDsFl+hcre+9G3o+LCBp4bQw7N0SaJtZbMQMe4C+XqpXlJnz4TMwdMdaeiVDYVVqCfL8njXBQideRz1Mlm1TceAkekgn7dJxJwn3SrFelfiTy9pm15r+NiG62ZeK94in7dt2tMepg0ME4QSQtBr215+2jx5EHmsCYvS27/JZXesk3AgBv0UN6trw5xpUff9I7yeFihOf3h7u1RcUTCFnygVa2ZdF5XEejOOMEqigtksee5HjeShnzeAuTSHpRQ8vVGoHRzxz8WB9YEvHsFBqwO+j47YzbJ5zBP251Y75f0hbi5RtpT+PhH4taj4MmD6uAchQQvFsVOdQGAPtPrfDwZ6v9jeQbMRFnk6K8FkSUFOqtUjdYYitqywyRH8Ma6Zhfoolj+7mtf27IrAfyn0t4IH7zlkydtN1mK+GOS9DAr5fMyRPD1X4LUkavwT7/4IywzPXR0xIwy5fzHdnwqKP8+Zcz/R0vOd9r4fbsX/MeFfM4ys6V21s5zPD2nj5PrCL3a8qw7JRgDXmZiGP+wlQW6JN9iOEdDimF8QqanmzfDKey3H5nek4NFWYliwD+b4zaIOh7lQRLJEYTAzcSMkrEgEe6mEE44MkGZapr3/kMY1ZBXpoRmoI28E55liC5PIpAPg7zMYOHGkOTLorQfC3Qxo7EmB7an8qOCmt7TaKdGBqZSrQcSgqg3JZRjvw2pN8Zfwep8dVUqA62bCoBMgvBZ/okTW1X1TRLEFIK7i9TpGxrosqPTHZtc4WHsgqp8fc8sPQaHGIFpCCs2nbvDqh7xPQ0I1rbofVfY9zxKDBPWw0/npk2FwB1CTNl4TisL85GFHl8IiMqcUPu63gYTzsjArdG68m0wCyCPd89OvZTAlMRuRffbGq6/fdc4G56LtM6glDsZROnRnLKqjC9Pk4IrZCmtYBk0DMlbLI3ST+vIrrF6You3+G8PQsdvjUUf+sG5gHBnAXUxge8gzDtqnMnEVFmuYbvVNCR9HlmmnP/b5b9nHpkgGPOerh+VXfVLZYQf2JruqpR1Fo6rM50lIi1VUHvjgVuaypX25kHtbsP3eMu22ZpH7V3kW5F0XDHp5oxl/WNZBJFWLG4fQ0SzGoX9+F5Bp/9OhpPLRE4poKI/9/zT+OmEMp6cnr2NizBh7/989FNJozcgZ3hTO60VY1DhpjKSpYr3M6ZlpLCU7cdraFVJwPKv4G/9Luln3oFE0xc7Vdxbb7gBIb+z6kjQ5/RAkUuSp01xIvO2YQoctP0ykeba+5iNEwFyn7CwrlG42/g7U6TNeaBtS55U4tAbJtmnbShWEjeQAZo9AN6hT9+ELCXhxkAF289uUgpIhya1F+VIH6oLExAbIcXOwogGetZyfYSyX/ysl+wnNzJDg9V7ZeBDhmIcQUeZLTcwdoYp+buSlr2WL3ed7bIlWXfv7KTt6BJIuNwidb1Hyln612CbdhwL2ThLCOs0rcmk8N6KbZjm76mrccfZOEAKHAQaaVD9VMbTEBwFOV4BCgVC7vctBHTNyZphE/0TZhdoz594ZAYQu5xcOYFWOylK9CQ39vZY5nGvVg+GC/VrNuhGdVj09XgRjsLTqWsSJw++zerRY851kaaU1WKpd30M0vk48zxYPSgDL+95cGrxDztUzW8jz03SVJYCudsqfauRlYPZ8dVHPqjQ9NHkoq90fSvzKDO6NsObbUXDwUqKu7za8m4UIkEO+p5L8T7D6yG29rXZO4P++cfDfxgZW+fHtsraV+2Ivv7GFzI5wWi2OPIIZMxTYd5QqXUY2jMyj7Sls4XgurJC+0FOp5B6ZpQYUnsAi4cbVFAgxJrfq586S9SuuxkXNtiYmjLYKbVxI32vrpdG3irabDmtkC7YwT1Wgp04QRyOSbr1RZ4j9v6tR8zW26gbpavSujiVogJBz2oETpc62GScb7qcE3b10l6GESGXOGg2sqsAlx4YU0rfhRp00DQyVrOnP9GYRbc8yQf5qBkh4i4sPLM0gNj6w7aFuED1cuOkpf0v7bNHlPWtCx8WeC3hPUo397ZCWsIsC+sttCopNWm4hvqH0mP9yuqpwu2+7GcddeZLOOa316jW8SyZLdl3pyQXSIK91m5a2+Bvq8oMk7KSezPGP7RfUlsLDpnz2SNXJp1+SS+GJNkeae2WEkN298c3/VY5jlNJ1kvKd6kCDiyokS13jFXO6Sb6nB6qKuBzdZrxOLxbkggBr7Xsnr3K95exOpkrQdK4lvptLcLXpIhCT8i7oOlJSVNE4QwTVnJfi25EyBkkfC0hBg583rS5cmSP1zLAQSlDMBVW31bIjpDk/Qr/Ysx6/3b36gbdmYGO6hgRjqmT0cnv+zoTxVIVkDtoOXfGZwx9grwa5UzmUIbQc7TbDGK/oKIK3FY5Mr/U7BxyWK072RbLexBQFvseJh73z+sh6NXakydu9WYd65BoMGm+UVmixF4aI4p1aWTknXQYAvOY8BEoOz8nG3Ldqsg1p1OvcPaFYaDEIw4dgUm5Ho0uNfzV73CiZCHW483teexytHFbxdoBRcEditIn1a44PRcYVp2om9TtMApJVC8Dx1griZKE91SKVxjhK6LVFQqgkj6GAE4jlOGF2C4tVfpfay6yhsRL7jw47yMDmUhKvuCTciYr/V2SN6DwZmcPxUzHAkYwsCAY+oyraOzn4hSi6XwiY0h4ZqX87HCGqwYXW8447+1Ebq4EOp1pbYnTPCbnNNEqEqNUz+qaUY7BlHPIFOcCOYyaNebALjYnS4uADmp4mqz5Q6x3nvuP7rv0p/J5bsi+A3p/RQFMlocuU1314aVuGdjT8MLElDZW+rN1id9NGCjk94P0mwX6+v14Fvo63twJb/KtVs1/KQ0aNGFiGtUbpAZ5h9HS2HKO/jGncNEeBDrd9/jt/fen77XjLN/UdLBW3o0v+Y2z8QXg96YByMxcAdNMc3ibTRpFnD3wYgg0r3UVIQARBszzN4yeAapstn1YpPQihKRW3hx1RLB6y6OkJtffHYZu0qW/IzLB+9gyuh98PiU9HtfQwLYOQkmxGo6CB5D9E51WIjS85vvZHAo7VLzTJZJCHC9BowzT/UsDBHgQgPcg0uj30gJhk0Xa8y6T3ZbvgUkbg+bz4KldQBL00yTGqqSHShxGPS8W8wZYldwE8132yj5J+4cn4NXD6OGWYhRDpczph2u0NMHTOvZRk8nuv0Ywm1RVV6jSJVxAQLki/t9ZzJyEXUlEBKHSHJK9VgSDEbjhANpxebe3x+Q8ujx3t2OjYRHYcJM9nAt2pwWZ/ODnkSG71QZCAt/S2yZptVschYpelbVzuURmrusLz9Uhu8KSI0p+0R6wbJdHK43yTNnbydlNbvdjj+t4do2Lh/oM2pEFDcAKaPYsuCA754FmUC+EpbAWm5e9WxpkVVaOiGRsA/f5WBu+sZBweDoY6T/REXjyaEhL5a0UUhAtmXdGI8JqGJaBeRpdPw/ZZt7qDwW2a8AKoohr0qB21wUfEk12iiomMOL82uJHL2sGox7tyZiefOxGzx+/Ejed+iNf8ar6UL0zHU54YKoLWR/1o7nFoQkSMOf22Hwv2ugXLtjdlfRagbZkv+5MvO8p2QztbzriZiEIIftX8XlqCDUYnermTejJhU7ZGumvANsbCJ/JQOD576fc+lFfqrOj5UXl3OwAknY2kT3rJrd+eb0H/A5RvzR+U6WohZJpVd3UsXF++88PEMhjfC68Yu+m9MbT2CYHDZIrZp3LyCfijSCD03Z2xw8w/zOJU6LGjfRpHO7iaujTm+pgyLZO+zftEZ0jtZE7zHwxr1yFmHd8J4Y+mKtWHwphgxGpy3HbiVNlTlRh0gmg6c5twhmq7Sy3RALzc1kURaU3GEcrKHkVWakZmcouYqc+qnEOMqZv0p+bvfKUubWEjigtOIByYapbW6Lb12CZ9uZhM7WqJENAPz0DQHEPVqjY78Evu6vQ236t7P+RXCPVdzZjSvHxr4H2QmipznKMajenRs5CQ73+WjG+17MdpxlMzVtVxHMW89OvXtlUY5TxjKzlMPKM69drLVjzN32HgyqOL0cOYBig93v1low+20X52S6YbhyIXa8fQuaRE7SJK7U0Wjb1ay5Qr1alMLghWZ7h3LLzwwkEdjUqxmXWPxrOlBAkG0h2PNvA3wIDNbbaMY0LVXPOpaT1ZfOtqPwV7c3n6edtwCqysJCIZf3LVTfBPKhAZMHbFh4HMEPdw3u5ozL77NEx12RpTD/DEIEGocp0NfZ2DmYRICHJueAtnVy1qvjjvWH1qbZheLCx4GvT69gwGL2/0zFr2B0Wkb4pAlGjzbIBXWXvHjB2Thu99/0rA8LSXKMQ0pYwLk+eS8fCNFqLDvlrduVAiJyRJOz2a7m359PawpvnrqQ6ojQbYkDOFskZtUwbo3gSw+s+JamrpyQXGFJ1x1DLTeO7W6rPdYWIMXff+c0STWfuAuWEKPcru74VhHSWhZYvwWs1hsUXkRyYEuvnIgumPcMb2MunSTzd7aqxyJKIKiEy84ab/o0CSngnJngermcg2SOjNmRHHj9qEe8EYqXiDCYJcaBDVrysbWFHyqjNt9sfTqyXPrtK2uM8U4O0s20bQi8yxrHjzOOk2hqI4cxxFsorwH91YSaJ1Sz82XayS+JKfC1yR1iAt4m/3H6Rg5uzq5u1OnfksCHBkLj5DHxdnSCUMyqYLBIIlVwUgDkrw4yzp0n9qC8rPNGrb912x8D0oB7wwkHvRmRKuo3sii76dEgPKEHlIIIfZaIRq/dg068qK1P4GeCZI1WhryhFSZh1mClXUgK7rc+jN0S92nWmtlL278MU/jmSNBtxbDothvwSXrp4nwlmgazXxdXvYxxy1IdSI6mTsn/CRq7ti7m65j6kcw7nvlhZ3Ikic4jJm/UMmAPAomy+51iI94VrwhaIU8gUSY5lOec5hPpkqDD4DDzhTIa2CwXrov5p0SzhqUTb23E75tvlkvQ4AfB6ETSuW0wILQMJTzqDD4LAp9zir5ga1R56FhaK+rjHB8K8+DA/PKuzSzNIhfX/7RT76phZ1AtVMKon1y0VfidPmGp0P5kQZKSt8lHOPL05K0qAJdH31X/M6iMk4+YUoz7XieLvjAsNNFL0RDQTc0y1PcZYyM+zKz6kUJNzvYmReKWfFcSwJ2+x82jRcCfHG9OdgU1MNF2OCL9RusB9Kg+XKAU7MIY3orPslazPj/bHvNWf0t+K2YMM2s6HjmCigCPJKzNtwC2mzmIRjofq2T6Ujc4dmmm4gDJqnKtMu0thn6u80BkqmtMl5+WSkDK3vMJt5YBxdrsm+w6XmzwDVF6guyRsBEHKj/JH30gN/JxFZeHmGMuiWdFGAkjfVWldea3EbXZJdv9jAxQZCuUN6Myo5dqRWGYUWJ29a9Una3CoIWtTVLqenysZpJTtvgunYi9H2VJqty65w+Is6m8mDDDm2p6aA+A6ZRgEhihtX4wsLEtbf5ZaaRsbZc9Rbu1EBp2+cjTDaZEUWFusIG+WFBz70O/7onRSX1O//fd5ShsGJU8Lgxm+AgG+r+91RpYjm1wwhUdaiTTXoJBkai80XVRRj+K+EdxkPli7nfsWq1Ycp3/dhD6y6+piixEGfR6pPc19eOWkIpNGHexaTXVtiDJd/o929QoOh3ou+UWGg2lQrVm6eHZ31wKUrj1CTGws8x8GOlukpsYHdsAbz4iNhm7X7ectq0yNPyLI6BRBuZKtZ79Z00Dgz5tiRmvDRSNgq7w/Z8MWp27QyQ7WrOGnaO+Yqzl7+bpQSe3zkBm7yuLPlslVkk7z23BNHphusy4NNapcZPjWiUPk0KFZ4EIty0uKgnvVqoHx/wrV1F1o7ujT2fTBhwPP8Es8EJFwORQUojxGSMX8hXz6gUexkUeprvbWyjwMAZAsCLIpOClvofgS2Qw6mtwpd6oh9NOqEa4CnwdOal1FKxwi3jcykV5Hjgoj9uC4x1k0b7wqMj1sODuzUCWAW9QdLTR7qiLgN6V4RoXWE/bMAJ4Z/T6orSW9Y8/T/uUSaVWng6dDN632Is4txueJ48UeLJT3tPYWk23DP52ISNYkC3lO0Is9XbozXXaS2bdUaGuXRe5PF5MfpkefLJYm5XsQTqyHCtBkEHPu3xk45LAjJlGXfdygD8vKt3Jk0E1rCEcY019KZXVA/SdAXC7g//CdnF2b418+83NxcZ3XmqboRTCE475JXUc5h2rUzvCadt1G6TvdNBcUaOMEA7K8VqjHdg9epWC8gnUCHb7aKaeStHjmg/4o1RxtJUy6xvlvP3asy2Lxk3BmvUVMeAkwDyoQhNuuqTiJhKiCUHRiOjFTrf1ioKuP8rzpx/ppVwD2epqg8sUbSVY5zasevUJmvaU4HZUtiFyYwXsVqY2mxuX8Iz8DS+MQayDJDa9E6uwFiOroxqOQouZ2foHR41f3HHfAeaMrYRk/QW7WsyqiQGXRjF525rHooScRZNtlXA5FTcWfvNkO/lHVN/0IHt0SzI6hggnEcnxmCkTW5RamWVdOWuvV5rXolIZAat+SPVhw3tLq6JPxE8h8XzrhpD1GlMLyJglYnwP1Kv9xo30pRn0z3cBwPhtcd3kZe9T6jjIaStQywONJiUPk5fpDeeZMi4TwfEV1TRaHWdKDaSqCScAPnXPbtJfQfaDbbaxdpxmP2cBIOnpAy0GYRYt6oyqMrXekmkdtQe5B2DICl16nfWwKtQsCApyQMW0H/NGLeFnBfD7NpzvUYGP9HMxdCWopFAFvcJPygva8Go++IIlWxcf7RtHyEiuZp8WvYIEiWYi7ZJqsnalLYKlX8tolHCE5WcGUixVDNYtS8sHbdpwJFzqhNESTb/6+Vd9Cg3QIFV9+1yxX7ubceAhSZuRqrCDUV2SOdHgZunKUXRiWVkJiLaDl6p7T39pny5aGwPwPtOcWQmW6iEv3GvyFy396+NN6++edxIqNUliMwg48idirISERdVgtF5mEs8CfXWIlOE2tfJpQiVXBhtNxpQYPKlSZ5yxPTvB2iMK0G5sPKKhLcb3nCLVOOlChYI6thYMbU3rsHG99CZEwbsU4rOMmU5xt3mJq0AIivy0fZ1DfUhpl3z3+4MDbYhwdvHmOgOoW/7HvM6uYzgTPfNMPDx3buM9bO1OXilBXzMFJGiAZMuxHDdmgDIWGpm5mNrfTpz7E/DbUhqgDnRf9MX4WgT0gvpu4jm9WLSvNthnzrGjZlZqUrCePNIcqmtU5o0mDQZQjW1nkCWokEgcfCJKKlmmvXOGhSTwRAR1BiUGUXPj5H7FV2mYK6rsbt1mxANrluQ22i+2N4FIirf4c1Vm2/3sWj2sXHMQOTMLJBSXE6XqqWtd3bRoUPBYE+Pzl8CgXTnHba6gOnLTf7xPovGPqR5haa5DwNnqGMj40s3HNOfYO7KJYPLS3pJEoK9Rmz0YiOG4tx+y6WMLY/c83uIfmaQOPibbZ7UqaQv90HvygdcDAdHooAvjwytGKKnu87bxk4Vh1DXjSGtWkzwzlQYBhCjV9n9oTdCxqqOhl0QicCjFXiyPzK3o72Jbj44agF3Z77OmFZ5xfapLki3oZfwmCIX3xB0P5bKPm8dgiOI+IG1UQBZtthuDaeIPHYHzOkfSIr3uvnN0+zY46SFG/RR0vREYs/L6VRgLKizRZ+ALZu/CZSqYQWk6etoTI7YeOc3N3imF3jKCS8I9nqi/Bf5N81gpcq7ljR0KoqcWMjrk93ROJ+ok9LRRsQnzDjMrlQNoBFcN039+/q0DPKR+xxEh6QX6ySefb1nQ9KrZTChHQtkZC2YKFxCtduX96f4CFDT6WXKGZSGdNVcyOIr9yqEI0Ymopj77DHbmQn1XEQvy4DwoCG6/lVXFGTkEjZHx8fKY/arOYovBFCZGMqOgiECAMgP2B3WGJjQVCSorLhZ1LaWKMvaZWETT8sRkFSD+IzhzQitH66IyqZ+JuGB7gLfx5FOhD4iwZp4Ic3UVRF5VV4LpoO5lCCxic7hgxj/gdn4JT/2TaMdoCMxoeTyIdOk2utaZaL05Q9TH1Jgo1kIiTq0+S4C2UO2mXyZ9ckgv9F6qsszcYGDIyK/PH/Frbg/EafhKAZVCgkVLyWvBRlqgOs7co4uy6/JqFCBo6Brz35v30kAWKVzb6mCsGqPqunLtKJogOYjdgPRxMc3JdJJ60UUXrv2G0Kf4+x74/qPFaDnfPOFJmNuyresNiOmy2XE9ePSVdHUVf/xBhd++sOBnZoYNcgJ2PbFBaWoFHE/1csO8FPgRDHeoP5zlwUGzyfUq43/yVTy4xp0HueYjHOwgUKkaL2NsZbWqvNTIVcIPAYW9D0u9iPTzy1FKTFempZT88/44D8RsGrhx/MYPBh7ZUF5B5Plxw7yZsyVxBlwIUwBVx6efBumGlLbXDvpwN0BP+ti/eAIyvjubFJ7VkqQhSnCHM3i40rKOq2YAO38/LYWrC0cS/PMGsboC3xYGZq78l7WCCh5R6UBjw4Etfl3mIWRBcTKdqOzceP5vnqSsAVBXEDdxpbfl5XNvN2IEHFYO+3lkQd1sqzJ5Ymfm/2dsmDwbupKAj+ZGizgQzP3NcZerao/ymKLkb7iStJAVjnCtDMXRpNu/JsGmWTVLiWAh+yWWTrS/sRog4rtBKGXt1CwoorwbuOMvB2u2GWi1p85PDqLb3TUcxnth4L6Anxpdz5doFGwkonwSBxW6f4xKbAMjKyj/x/3KzTTM3KnMJ+xg9nT1ZAcfNVnEol+PZHmP3y4xAukTFyxEdrJK3B88p+u/jBfLRZ3EaUgVXYcz0Ez3utYofB5SSpgv6bINHAarvjG1IguakcwD6jYyx35rHOkmXkKaf8ncvlMxzUZv95OMnVJMpuTGeOxDd9P1nSgP0cjsTXqS75dvRExkIK4pK0IWTpXbEpZW6Nc4+eHhUqwcFhYPJZiePAIiK9m2NIZirHpuxqzkuM4HLkJ4o+CdYUTiGKFiESUnrsGcKHK/0usIs9xpiJU99crAXrIywRdVTHIdZIwCnDocO/T3EwXUyR84pruYtCGeBuqbh/JSg/Nq/snYfUMJWyBKH8/VX7lzmnFLYqkvvnqENU0Uc0wZ9wJR4dTu3KoF5LmaSSmgkNPFp33xMvqEDAHVUhhIDOpiI76wzOJmozlpGb2EakKUcEQcxYtbUGQC/aqj9MkvTWjZg64O5fDt/DwLNoS/DBqferJIRpvo579gIYm8fCJN6fG7SxmSQSGjUxZKRaBY0WTPgZAUK5px6gOWQx1i6PXr3AMbahh7jxKDHjRq8LZB1/fSaPPJ+hXqCl0UFlTlqSl2uQFI9HBvrDo1AYrAOfiZ95x8baMg7IkvZawOxEW4vstvBimUf9Oyb0XH08BFkjedX/vcb23Z8NTAr7U/uWaUOWzAAlfvIdiVIUmi9x82q1TUoGbZfDEuawDvE1b11mfIB09bGiVKzPOiSv53+lR7rbrptuwtGFcL8ryVdKtG/HEPZztcyaL72iSntAXeqBc1f3/Z3zoqR+NaruPs98dcuYINe3QFN057aLg4loIgDgYDn8ScnuRYhQteFqhfSgTgIEbmgTtI2ZZ5hb2TjJ8xgq1ZpGwZc9vasLbbu4IJgwnoZeqklSunt8et0kOFOE5tLsFJ+4ut6yrqARrTVyHxqA0vpQzGvqR07qcA5RWSkyzMMWWWjvHeuEql2L6xcJMXqryK0h0ZLuq9a0fFsKe6OHOKswWQmHEpD4GYoWTONYnoRB/UN//GdetOBhvfiPY1eEuts/MHub+Tf1MihtseOKx2FeijfM2CO+znLQ/8mXM0HmIh3FF9NbT9CDsNyj0rG4UvAswlcxi7bbIKgftdSlOPx9lo8KX9rc4OeQwUGu8BN895w/llMy3+PxlNtLYKq5m1vTvijOMNR6yAa/NDRzD5xr1RJ+hxUU7Dvm4lAGXpsi+QEBarvSLRs4YXREUPXuconZ6mgOp/PCE3G7F/QtnwXcqUbpZOy7PBsQOsMJotSdVGPZwoCAaKXGMvH/M1VS4bfxfMQfVRPLoU0lE7zFLm7QeeChJWXu3adm+Q/gZFJhj0A+HzWckeEUBJC36OK0mTvXh5Gx3OqHVAdM/MgyLp/cO1Hz9p2+Q9acHRE1oUXZmvMHh9J79NxQ6zMM7cSoOiqeRyJfzEeiOcmEUVeIqGmN6WmyU+zGifArGiRdiVE+iPMrmGZZlAq2L3nwVX+PPNndynnXGYreH+ZIsBnIkDBLshT7oGm9sKi4qXSmjo+zGSnd+/HP314rz/kqC3iIu+U6I99mtJu2bKYMNSVGc/bWBUpcTj8G/c9DO2cS5vCK2iCauaPZqPPq+eNdwhx37VH94q9TkbCZ6NlTQfF42WRXzlT9Jka67iJXTL4RK7xJ/IWTS6ioV/o8b/rfmZtLGj1wcEgCyPLUHCFlNP8Z6biCQ0woI+UWXFo98fPb6cG5VcDXU81tL16IHGkyj/o+h3aafZe+eFNyi/Vl6B61JBT8hmY6lG707nr66P5XmwbEI9Dg1mjEFCjsYaO7q+dJ65ku2p7o3xhszhaLkmkmq4WvUh0+Ken+g9B3hKJWsR3m7Vkl7CGeTMdD/WSM9+WnMirlcB2igmt1UEaksdaev5T6yPm6eRIFZn+DbSc53jdCySSeXrvJAzOH5XtJmoXlD/3Drqyfn1TJpsBWT+KNlxAIUez7N+lmPqZjRPii/cfAv1ZDe5iVtxe+lkFOKGWSfbrgEfMQL9s3cCkq7cRv64pCt/4i3QxelhVPYRqAB16DWq3ExQkR2cOTRwkvxxHfP+vy9NEPO1m6YjSi8AeBwvX5b3BZafsme5sug4D5MuNwpYe89dtIWeQaVsrfdD9bAg+BFRXj9tBYQglzXKulLF+ys9moZx6+vpS3fv31GtXeQ76YLtKCzGSVAW1N3slSuV5iLKeIQw0AMTvsAo/aLPwVy6Zjt6cjpg27Fcl/tIsDZPPjADiKxNwtojV/kf4JQXMOa2tyTSU16GsmrXbVCIyQaBtUzOvAEGkZM0Su73gLkH7mS/pF09KJyrbPwXE5s/3Y0j5IIVeMYVNng1bK+x8Qty5+2YPUZFa+Qs+CnlzNkvOP6nXSSZmtdUnHdxxHPSl2vM9J3rnqzFHieZxbGFfET4z1MJTaZG53Mu9OUb7ER2DCM92z4XKdGaW+Fl6GIDzhrxmXxK6/Eba0uLicbHW7IRuV+nkvMPVq67r0VPfMk1RGxlYrh7SribR7yUu42BaMk9zJj4/qWgx8tXxxFQ2ffsBWQj7YNsxxt6EGF53ASc+rvSviPUvi61+vWitzl30iVXcVuM4auXsG0/sPt9GXI+bpjMvZPfsYevPautfQnBec7DzlkXFIL3QlG7QySw+KFSEHSH8J6O+awf46t52TTOzx5HMo2UizDFWs1umUATPe7utw7Jiqn1o9PzmK4DnSjDstM4MkLgJOhSr7ZBc9ynNqbPw0jWhdhaNkQODJRxFB4Oy9TenV+sbfpDAq6qieKpDa1P3C8gQQxdraHlTC3TNRJKiITG83ZQizK1IjJOR9HnTl3QlfmKwlfXWwWKl+Zb1g3dNuWoDudQjIXY5amkNeqd4Bw+nHQs2ocGckhKyzMwebDCUicUa5p4jO5TwLFwl4a+roNTBDhL0O5Bf6hlYRbnpCgMoe9IUb+9Sx0geGVeP0QskSy6xcDUDZEeSJ1IHRKEuiA0RQ5Sdi6QqEDmYgfvx97SwlW91aXtxn95FJK6EYv3Jwk4rCyFdGXGs5ejyTbTP+RBdnE4G+d0wDGL4MBrszS/8HcnvNz5b81EPwN3A/Q29QvaIC+0aYVhT5NajQf6cKvfcBk0Qm7jTzaqJDMwsVzBZgsvNYAEM93qFHU7KT5u/abW3DB6F0ogklLqghnsknqXGT+Gf38MhBZkeeR3mxeLaIGXaW6LTXbXG+xkgLavs3X1RwbdADavVsT2Z3O/2jOL2mHSTJsO5yTJ4RnHAiJgdT0yfEO8lTMkjTAs9dZaFfoX0Smhj8zMKFo6f1aJnLl2tzn75KppHWN3jsh11TnzoSEShghXdcQjOZ7GL1Ig29bMXRLVd0ZKxitHfOxurt2RoLP44rgkKcXQQETf2yR50I6+/sIqRGPvSDnbL9P/COAgkQkfNazBONkp58EM5271z42mSB5FhJ6zFy5Ms6r18IaOZ+I6qRKlX5Eq9FjhzNGj4H46cXn2uKYgt04+6t1RZpBg/mxTLnsIf87JKRYIgXqyndVEF3E3wuS2dZT96kol8ikT24RssyuOBFNOIQtqCV0D2aaYemeH54wn52bZxZe9hvhMuPWFaxboeCi8PbMWk1QYtxhHr/J8pWhM9wNb94krFZjv1YrsuiDKs8ZAL0ro9K8kzgv2+XZYXGbdJspBmM4yFU9NzNc017FPaCf/Usr1cnquV0CufJ9rIRkoLADvmmq5TOFJf5bj2UgIhOiDAtMTqehAtQpYbkIk48cILTB4i8/RogdlLSO/25Sg5PTgGB4V/PKnS8eK+i8ZGVPGbzQV5i4Ezl2nDMRBIMQH5st2hjilMZmAaI8BQarw667KFmy9JPs5EWfodiIjuuG4QP7ednI8v3PFVZVIBZ9YRYfpUu3dKSsdmQzOuNVqknyZiWcva4cQUS2uNAT6SjRf2kxXYN8yBCdv4kvmJ48SFjTG48/vTOdpvpfqprJa3Uew4SeTSoPFj75wYIGm9Hgy+Xq8stAynONVmFSLS61yz4UfeFN/rXOGiEXrXGL4M6JEdaPJckwvlDsHocQgV6VmSanbfsZSS6Q50axdV3gtCxiITd+x/HNfEwpo2pDR6Cuel2WJ51koANLmIAKUr+RwlLnae33xTIvNTGAdNL1aBgPt8EaHHsWHuEdf5pMGGCcGbY4ZwQfqDfm0L5TQsHXUcyUDdq7F14XOzFZXlmlmKUYCjoX0ub55erkLvu5RWe26s4vhfSWTH6kwLjXCBXMk2H6zFTMnbE0N0ZQBxEIrep3l3KqJuXULhDdJNDmWBj2pCEIzuCM9neMnh8MzJhaFZCVqm5KEa/C1BQWZrWyheWnaoz9LqqgfCLzpzm4dGdpySsONRaIbK6KC6uhgB6XEqOzb+sVj4tC5XEQtq2+ujfdGc0a5JpIH8tToL4r8Gb2Pwj63VUr9WUNM7KUfPXVgqzUVmChrWWvbkcpeeAlcWUIsDyrEmRSkU3GwmgVXNJ6mrn4eAZQiHzhuV9aZQa3q7Jwm436Sd34b9iagjbH6wonjBbDHVMtc7p+BBFl7pV/GZ7RZBBe9kxts+L176bGXxyCcF72OoXoa++k7NPEOAJ4jdjZfsSBiJuTof+FnpKLp8ZWrvTzwnyHy3jXvFGk00ujh4oDu4E4FwAWrsTDVCoMELgxbEsKef4g+dfTP+NwV40/zUFU7qwtfXo/Gy7cPX+7wV6vMxWGvIH7wJG360iazrhtJoq8li6N1B1MTVxJTk/YC+rjFe7/8NZLqdS0KCu6odULYTe/kJTi0P9DWsdez53lK0GUK6SkqnXuWMdpZJwrG6dEve2lBdmdvizz8KDLhWNugss+1Uk8n9n3yA8UvoqDCi7DQAubO9bxHgvrCyMDUig6ob/pp6k1kM2PtD8XkD2Wva7ulzCX7vauGs9PokvCo7a/SP8foHZ//szxPLNWCm1xYgtr4x4W4Yza53EmPD9VyXpmQQFx0Fr9skJxzl/VQbGenD42pATqf+hNOmRPrI9/tw2TivLb5PIaFqwq0jIdjsH1hBBifSLmL16cQyUxjvdb3ideNStO/HcDBrXyzMKjYEn4j1WirJgnC1jW7Q6CAiQ6uSFk7fR8un4pZdEBBPRgb6jcl8rZeHFQDw7rI3rPvATu1rXiEUasEnkndx0McLqIJgLnKTjFBymfzk3ZqYGyDU/GJwxzXSxKrPOd88xwYYbC4iR3i7XdkVrDKn7r+WW7X6ev7BkF43elqjBjqakwOUM79vPr1tt3EUXmmam0ktTEXSDuub06t3EGH32vmSBk0+n7tlk07Dn+KsDfeh2wz8Y5169G1+RvmlMjd5TduaV9/huGlT9fi/H/O64A1q9Dv1zlWPBwv6Gw4Q1Onoi8MinYsXoNS9aymIjLJ1bGHunOsgDZBOqo/ReroXqPFjAneML0t8OKKrAb0oPj4mkr28Bf+gj2oYUIFzNXZuCzBvoa1WkUN/W5GfIiQsbcelwc9Plh3N727pBsulNBSeHnqMiUL8/m2OE3cjbexgW1TCsabwb4tiXBnMB3LDNgcZ64eInBAY6/rQoxfBqv4c0SLEPpvt8uP4SqmvDTiDPmVrPaN4QT/eafUystzDsBX94IWHgTOMFmdeV8zCibQhqNKYetdwSDZyCGw7/En3izr4Ps4aA79oBF+9E5Vo9UcTrLoNa+QEDmhiqUVPMfqP3yv7DSbFlqkg8TOzfg5lH6ojs+uCHCPNwm0bZ7+JJnQOAfOCwT0Y/S3N39Ht6h/VbGeczscxdkhunksZhWBxsMlWl6FAr/CzFZGI6lkAmeQxNnYB289cFSY+rESA3zOjGpv9zpUwEYAsy2o0WhMnDwBSAJ28JiFalA0yKfQkutGXetOxAe1QCCDHTUMmDaO+X14iVtl8/N1s8eCwRWeDs5Y5vOLJ+v4f9E/tmovADSldGMicTaLr152IMBH3ixQe+zUqGtY+uSTMQMGJIgoex5QYKva0mALGsIw3KNuNecI7aWMz6sx05PFi2A2ni5Dmo1bZeQV4vpICWwI1XimHkrs57jTqMZK9NSuSZ6UFjNwv8VjCuShach69IZIfkdNooNoUoIRe4M+IsYulLYjnzbNNRGzQRByvajP1O+D/th3VkqkH/cdYZb+7QBWgKfdxoo9Az35pAwJDtQUK0zBJ5y5AQoVlvbJ6K0BBHEeZHyJq3aUwBC/x+WZ+mngonWNbXQ43RraG41CsqR2PtbIBw1XdoD4O1vLQjxD+mEU5ZhOfZvf+uJjBvobFscf3MNisNg9/IuzdTcUOO6m0dwNAX8MzwYDlEWeRY+sC9j0LQs9jut5aiWgIIXTHBHNN8MyEIXnFKEFseRDvIrXkXJbo/2yu4R5Jkc3Yt37nhh74HqJbCzTMTy9ttWVN921cWK6IiOv7sEAQXkMJOuXMFGmhQiNTR5enMaYHcdp6pb9uKuTcD5FSipxkDl/mYEtkPLZnOwKD6hp0SPXGt+rnshKmcm2KumjXhdJSKE5hYQ6bgCr0FdT/gXekjb04VL7iz5OvI3i3CHHJtz2v8S2Z1Bl4QyUXDSSJWIEqINGnqlyILGehTbqoX0D4pq6WUl7tK99Qt+P+jjVXbA2IoQW9uPtdiAYzPdnVd6jKdfvL22gW3IqfP9rwVXWUOpqepYft41IOVwndUiSpj5EmFCMCbror3FOjO2+5vHN2Of/4js/LCEccyL+nEBHtxpSc+wjsfi2nEvIf2C4wdXPwpnXP/P42nSQ0H7d/Y+1rX+dPooEmaDc14j00UGEQHZiS/jOdSdpHDfHX/h12D+2vsUnlDgLa+0AO7DyKcUpLRd2ZTFAQS6+Ls/yHKJdHxms9sw5MRR/Y/TC7hzSzAIBhZDHdOD25114vD65zvKnPoeckSK/Xqd4CMkQXt8tPO4M9jWiTUAv5u5ybaQVcX350k/tVCAzfcp2j5/UiWCKwhOuezy36jiT9HUurZKestgZhzdLd/zwBBqAUQPQJlt718TbR2vMNk+zidfso1Lja7v91mzBXo2CZPN7daM3xESS0rMLFEJ1a/fuj9DSS5lciFf/NzsiUhsxU5ZnvT6b0KbELbNVxQwxAj0PwNac2rNMV2OeJ0Qs5oFFFtx02X086FnftLW0y+9lp6TPZrsYvpH9NEguxkY4fVweP9oYz7gRw0iTPUsdsjpJzBRWt/3RtQawIqCgghwnSVD784w8FKyK4Y6JCE+ph/TuBfCwH4XvkyJ86s8tYmcjPlIHJxcOYQRATQ1hsWYzGPeCERi+J+NRE7gPwewUiP1jqa9CoFHOoqs525vWmtMB7PMV31QqjWCb1VFl7/03SVEHR8dJrA9gqvqYtsNp4tRM8FiTVleel9iv9CP1UPsH7dk1qLlpsX69JtzO7jLB8A93r8a4v8mH499ZCmb5tp+C1GoOKhYejKVTq8m8AzOBv36ppalMimK7acf/xf54DgHnw38LDwr4JkX+VxJpqFH4O7YH+VrKfzB8BtlQWb4+YvKJXnNpPWdbBzaK+oZcUgBcsRdhrhbNk9VXRlX4jhlboXDBT+vCoE5BDpNVUF6pkqS+Sm1A7CrU9IRB2cjR/mPEH6FBjzeZn2DKRBlqjlRpGuJYokuuMWeefydyh/S3YLE315v5xbkm55fIWRUzZvscGpMqDkoD2YRVMUSNseuXFkhpMtskJks/rhEqvu+i7S34C3PJDm3n8gR68hWLVj5g+tYhNqHN4vy+beSE7gt4ZnITO2eceWs6c4b3+mACdHlzL5UZ6fKpMYFXFLo+aM5ipNfjqlT72yX8ZZOJHmS2wGfB+oBIdkP7mnKk/uWDSwp0aRuoRYQKpRZcIircOX/77HNjX1jc1AFC7ckdsGSmE/z4x9NrXaWG7236RKkHXKyf6IbfvDB7YYjWBBgMOj4JHORcb4PDBNxdj6ZMapXZsJYPdtftVjnvUpNbyOXMQbgnxTgdDpza8uokhOV0n4V1FcB3Tz2jhxypVd/3CmAwA1XXEOcpzJG0WAd44P2RXx57RfwvAQqAPt+fL8KxXKYW9oV74dTs+qpZg+DiYj8altjxiDWTI6kNamFrMzkcbRcYjypytDJqKhg0+DXaB/TOxyvH3C3ombhCsbCznpruoqbDYoMPOEhuj45SmvBnTPvVMBebYKk46n9qJfku4bl4by9+h+74NUOy+PITxUHnOPHV/zAYRfNkjgS+q4dIZWLJ3QkLxrt3+r3hvKLgrdTnWKDqdPlYy+lzIPDtrO51C7O1C0SQNyUV32WzzRUYP6+UZLVdPVm9+s3DvzulqCN+19tJWkXY1DDQwwMvFtY8ZQphCs9ZAY8yGN3dOBHy0B7fplD5SLV2rn2jBwWUwdo6gXO2nSOtGp9UshvgTmvk3uu+nMdndMmZ1xBWCF7uksrvfQlnFD84ezJrgmdREk7Jmw/jekk6mUgI13MFYwO6BuZmNBjtfRK7rmsaFUQbjtJdwRvfGi5IyoDZ3MvDCSKD7Agdy7pkSziAoO+wYk7waKIAmm6DHTV694BZFqlG2hYCdrCUHi0X4uKb4HszaZ4LEjrVfoaL7sVNB0NlxvroiR7GlMAPOazPTXXl9eJxv4xMFW2Ysc8oxGIZjWY55vtSGNDe8RIbEYYgOFCtuF/eY7x6LqaNYuutMxJ56VL2ZOpmBy6DIYtPSSCC3wv4jXMqrMowl5wbaz1hQ1a0m1FinxmEXm7OmL5daj97OhbOJlWFO76hBDqKUlAaAorSzqlYZG2xZRmAk6cpHjWv/dGUB9kyBUUIZqZXOwzPn0V7qTIDBLsB1cnwHqstqGa6XlYUGXZe9Q1MOJSRr130TAbOiRdjL7l1dubLzBXQ9zdNBk1X2RvvyOvlTOE6U6UpDahG2giFA+5vpsYJe2g7+meFOcAZWFmcdwV9wc3UX4+9/j2+BVZ8t6ppKR7uDXfYI+gl9pMyiokgiDMc0hN5UXqifckBBBAx+o0EXdgTfj80A1G7Yv4Ocpdad9AQuA2uUzf2G4kyPtD2fJCLlGJaeBI2PXgNHDwdRabu5YeImH7qcIKiNE+qjkOfLrf98mK3ALEZD3jYIEpsmu+z+QbMVZzW6+y/7UVF75XgFJQmY/9crRzFB17PUGgPc5KbQi4NTLcCb58Csna3er+rgvNSptjPk3woAv2ce/f5p2nzJ3LXwqAZcy0CkfGzGlcUX0JSJiEKvfDvH6KVdeOtOxOH1FP+n8leoQwD4pYLsfl7ySeRMtaDUC928/FqBBdcZLjA6cvJGlourLDFv1lASEwPgEHo0QiqdwtVErkWXw84jmAKRdzRUpp5gcUO7MZixyVE0HNC6D0eVmiZokpbz1SKDRSUqAyORjzmDJUIxlfUy2rZ3foiUtZ7I0dVLDHX9gfpO3IGxCjcPrfqfcZLcL1bLbdRnEGGt3HJB7/GjADZ+SoKcl4oElqrUOYTmPHRf2rH+ZUY5IIr4HVcwo4/y4YlLCfBePZpSF5U4qIj4Vu2Y7LFd4//GvsLy2MTJ6Jp3joj7LEdOKsDfcERk1u3oi+5zk/qpwcsp6SCPCBA9umQ+k19UcI4RuiSU/hbAdvTp1Dc4RnX+uILt3oKY0Bn5fR5e5xJmDrMz/lnK7uj6nsD70nMQH4HwaD3qe98ZV9IfzRGfQLR48k68SvUkYYv+5nJN6z6TPmNmrP7USxwiLAdIkl+/xy+ixMt373L+P/e+hPznkfLSSM9P96qfM2opS2knR+JiSaN+dYpYtFas62/7NZVAl3d4K8qZPBZG0o+rAgxeSbvl7U3rFXJGZR0Gms4Xl8yuSPN96g5wY6WTM5o0haP2wgukwfbckxuk0U5wXn1XCJDOlt2QhhKGtZmcJsdcWs8Wvz2hfNaFsXNl5NlyLNnkMMIKve9itiPXFLWdIKW7HuE/umra8XKcSeSdbyJex6WN07OhQ633J7dJ8ZJDwQYttl2N5eIbALeg/5novFnTRfg2rTdOXfe83jZ++cKsILmyhVgRGcZN7DkHgcYFQMqaIeropSdtAdkjT6tkmXIMom/bf0MIn//G59pQyySDZnznOHy1ecPZqdLTK7pWGsS5AHB7kH3kzm4gqtLGgDRtlHWTHajx9BLFBXzzFWxmrwqzxk+APsi+U5Jlzi3EOsOhp4vaEB7ycYA9iC/Du9m698uI9XBKu9W6NQ49QSy7NSQ19csZKm4RYaMZa6H1YI+GIsHpV8X7/bgy0DoP9V8Y3bWw6rZOy2GjkJOR+uxhb5svw5WnsM2B5fzuTS0aNZDUxw7NyyH6ksbZ5Pn/fro+VS/AOnb0H40kjMLK0Yu7yJmZT6kNXe09x4MYPXYBFg6tvWhuOaYaOwpjZOabVCdOUOWiVCUgeMPZ0uRuCWpwi2opta1fUuOaboDwnVmzh5Z90piEBvzFDWRITMbcIeoVKJ1NSpe7IwP+CAVjF4WHJ28GX+FrbZqXMNN/H7rzC6CEwz7xfVmMFK9aIlsbzPj1JTx7ulabO2lfkslXvJT5rwATroMajaH7dRpqIaeM8V0U+MBueUTaWl5lUHo0MmzPytGlRltgZeBAlqlF5FHNxdgfXepu7ZqzqQSa+JjjVrgnp6pbMWCVeoQZVSkrh2/zJGG8mNy5slD9x+v3RGLhvnhalx52O1pvTVHbMgSRgld/NcD5KJezfeoWtCc6BBjkkTg73rQP5uNUJ/LDC9yW77T/1/NAcSDcX7M9yrevAO0e1pFtyphoGHGhw87QgkX1kn5bs0Sty/8EgsGIIq8mveCrwbXK6lv6pcA6KdNKSkPhecrUzwGyqot/4pE1ENv62XgiZ1/VsQBtVk+x6yUE5zNoVQtUFGNSXUNowli4kfwTKBAEIAgne29DItCPIiEoTSU7ey09Iw6M4w+aOKpnZEUSgBufEdnDl0V2/eZfi5JhDqOxevuxDD2AoXBW173hN0Ld3m3dDm7qnroBmCglmqGwjG0KhJ4QUuSxfcXIxTtbaDQmYoOoyqFpImBcazeeQpU30btySgHE7tAZBeMVOoVyroXDfF9FxSqSIpXKfcfoDtLytglS0/g6p/QB9YBg+96Ic7dYQZX2Fny2RWApUnsdFfZvhOtfUjPCXZQftbMcymkcEkMua+96ZjkM9nwU6LbWSWuEjIaEuTqsTaa29CvUclwJbevIeUUtQKLrQUxsiwhtxJOLodN4+i3dZo2+hp5A9/S4SWq3DNAttCTiHAkxG+dzz5o4d72FMRXdquNOhk77PDIiENRZSdTMULaU4XhLqz06oP1oXT7ePR4VIhG98ayPS/ChK32uLO/BtY4i14Poo6QdDP/Q9FZTR6HCTcZO2KlRq9P3OTAtYMuc8Qwj6z2cyjVEJBr8soTMIhRx2rzFOLVpsz1KVc7AE/dihCzruBhZ4Sb7EWrHIQ1FIre1K8Cz+Yz/pZQob0yLwago3f3ndwM1AlbR0ohR0P+FvePvy4RhRnv7uP37tHh/2WVtvdxu9fhhO/jUIldTK2zAz0bCrmf0Lu/ItUNzSK8qS6Seoplt7cnTIugfUmDZtwlObfJ7bQCmO1FwzBAqwfB3OVIBUuvay0pbsGtFck2q+an+qR22+VFQiL9j09a+ptwhfHLB/Kv7zg1fcc8Phc6Ywz0fYITTivdkrSG3Blb+W3o1fv2uR90UIQhMDsCcOGAjS3w+RCQ0VqgkoKiSskQBDuvR4PrNSLKeIN7Tj/LkCnkjYXkMNlfMOH5bzqYFW2NAKKOxWF65IgU85BzhZokEBkAeSQEa1NiGaLnf2aQPO/KZ4Mo7Dl7ll1TpHLZpswh4NuSAsU2HtA2iG5pQWOqG49oVH9eAIGWp1yYku+psCX7+0Dsv10tsmjF48g+UEEo1Ph37QjMsbQjxl2KsUaBJXiLrzM4fQaVyiPiidr5Ht92qX9yfbtsReaYfmfImSA51EyQybCpbaf1mHNRTi30k1TShaPhl+xvRGbQsg3SQIJyIA6VkSj0QBQcERxFiS5HC7YlQJBKbAIkvWRYwvacc6xSPNsa6ljF9R2pkIACSw2lSk2SE0EI1QKrBHzXF6rrtQqQZZi2julwkrJ/v+bZeNrcy/slt273SZT+Wr4/6rU9dfbFRgK9FFll7jlV+lpY3TSzSsIcphbC4FEjMp/1XikaxWXugByQ/vVO7hdXE0m5/cHk6xGxXrxdobpJFf1VPnwNrvuFWmaw8ye8JzCg+AbXwM9kC57R3ibOzOnm3lf81sX/J37eospMmdx6pP+Ys6vBdSd4V7DMM4iKnTpf6/Ub8DIabngYNUagVDSw4akNqE8JJrjlH1ol2DClIXCUdiVYBflydnjt2hx0Fqxl3VTkqDYD9TFu9GaYuM1tSAg5hEsqtk0JjPXUnGohyPrFsNxcFtf1dmnL56C4PvnT51v63RJ3mcTpXF/HHeiOP33XbXGyCbMyBX8H2aA+aha+PC6AT5+ORYIZiBgEBt5ruWX0sRIV1VYI73vmdTWNIc6h5Vm9ynYnjjU20bTNYU3h/4Y28UIfXE0KQHPwQi00xoN8lmUVTfgiDo76xvii2G5RAZ9RRidYS0kPpvBmPuy8N6CLdTQkYbeb2mOkxwtbXAIA54kqQOVuCTY+NWcZogwGm1Vhz0e8V/lXZoIep3tkyXadp4CYn9R0H707abcVdMBYK3yeD5fMC8bUNAfU7FxBTi/CJZNiee6thnV7feJBOG0xtb5kPGS7WLssfjl+y4pxXVZ8hg7gjDnKJo29TU9VjTK8uuNynVyN37jOWeIop+/LZtQDTwnAMKZhyWj+fwmC7wV49B1NFWR4ezpmt5SgazJScZ5unTnO4BTWgcA0R5+WZmSXu1HsVEm/5CEPqNgxkC8JoIokf9B+nsKVRjTLXMeGAr10wgqfPPpiNhiT1Bp+KJh4lXRlWfy3ul82nPdtbubYLKtmhCsg9/PstHEnaQsx2kLjdx+emLCnSFBR+HU5D3GvE8/z+h8TIPj4ksC9BgELvkqguHZNojSKMXb+J21cTf5apJzJU7xFk0k3uEvkF86CpCigCdz3TE9hKK/ZV4Lk3BjZ9GhePIE/DNqz4+8jryDqbVJ8ymKj1SbKbCem2vZzuMDMLYpe+Ln8IwUKZ/jp8fYrlhJjDx+s+pTPcF3ebNu6OIQWJw+OMcBH3o/Hz1vDoOmZZAXNhbD+ej1RRxVa9zV+jBJUVLfHpNOTUFOBerpBydrP0hrPtEx6bTwKi7BDViEDWU4UfTFcRvbpfxIvDRUhLBPeiixNzuGVwkW1DQZphZaeE7DyMPfMPMHkCBzNXFHOU1Z2QuTLMbtOvblIGthRfcqK+J4AwLJZoR2TPREik+6BDTI0vfkBeD2+OjJB71Nbr0ms7uKU6kWGLSfi3jxSM/UG/uia/iFtW71DG8yDhWrKrzYzpxHTuHLbgsX5QrWcWAMAdnhWXZfExsEA3GA5flM+ZEX+orTgBslQqh1eSoN8mhxOsd/msxWFS0EckAbqcdplv705JijTQ8R7MyVYGCGpcrWG/vTNkofXpwsDrR4DSqDdUwieFS5xavuqFisY+O5QoL4Zk9axeNjHTU9FUV5kQonvZG0cAzEkiWlnQJlE7NOt0mgAwcidE4fKW8PuxxAlxfhHqRC31/16q/ytHk9GG3DPxtVen+RwGB5tHiSHHvRYdxwBB8jh8EXYx7gxKant7HL+krVQ1+MaNFwaCLSX8FPKmmliMconj4Y7MIsC192FqqduR9m5z9iRwbDJWi8lF+1grTtO6JlXaKXT/WhCJcVqyNALzwgk08ANk0dLPBg9nzJ+VRhgsw5pHmEICU3o9eSXAv4EKjq8bb7RLy26bPJfKW5zY2OlUWtAXHPX9usKCDLdtZS5Tl5AmQ/DVLbEs9jEaO0zRw6QS9eEodabLeTfg56bCIxuI4PtBQFGude04nE287pop3n7Xg06Fxy+rsLbW4rBT2W7E/bJvxLRk/2Mj7CKhMYNqGIhPmQktVPcQm4UUxputBKMb9IWWW9pLk57vlQGhz+aW7/osOk3o0HmSCerkhh+E4i3iEgQiBAOd+h2J1tHtWWhd6xnp9h0+5GdrqMX0n+BPNvaVART8a76Ryl/u0EM1SxBOBVFGldBZw0gyCWYOMNukFlZd6jgf+KNsbqWtnFTqlwwvnc5jhS8fB9iY4YhZozdviPw99Fyf7dxbz6o7XxQb7QtvdgynFiZ0XZ/mcuqVi4qdjQevNXjEIgmT972YbFLP3IEepd5j6wtw6iiEDkXTQrYlnCofpd5a84dzRw2pPMGE3gOhmTMHxYhtzYcwU/aF2btalHc4zun5EruiDNMhZZEYpHhwyDYAY64+1rPXdZvxJ7HSNGiKVx6tQ0B+0JulOgc+iLArrE/9KfQnTsptPARcXOxeFB72SD588Zl90IHfuZ44FxIo0uOQQ49z25S8zLdJC2x1bhXEbvCmgpbUZwqdQSmFZ7vfEOhQbuq7TyofURUgZB0lc5oS2Vv34FxuXk4017zHMVMh+p9lxfGpKFSK6VF1Xd1WHRWhKpfbS0cddPA+GGbZ+99bAvrkLtESZWzVRRTdHG6Xs4XXGs0UMlYPeH1bIycYAk7elR2YB/Lq+mSE+tx2wXpkj6OKHgtlpzuW+/ftJwM8cu2phQt322FjJCzOU2mYt8dp2QTG/beS2mLnH/UQ7x6nTu7ZXmVHg8d3TtxHssRjX7Fw9JJk28o3fhZ0cOkfv5m03xSMnwfAzkppk4iwW7ToX5u9jTyyvNAaVjo/41hBzyvIsqK/Nw6mUCqGzjyLdZGa8mevMQsvMNvz7QQnjv5kisLNUGthmLFKZjMbdDRk6ePHgFOR3viPtEggBjw+5a3VS1IW5krE8mRnwtCI/eEX43lp2J6ktDXuNs0uGdykgMfyMkan0nNIRrhtKtoLYhbHODnDxzYNQFBgTpa5qOVuksqJFK75BrUki6YZdD8+CySJeamNKu+SZjNoZhnPeNQO7qVLHR7bHDQyWEUrOhaGAR92MMLI8DxQlwmvLmu95sJBud/kcs8AdNgaLdvOjOq4FRLHj0v2qNFEPXfSgJRbL7lf2jdQxYmUUPu0m2mZWFslcKzbaLkmBaql1+yqy30Qw94VmIr0grkUhPO6EXBhuPiIOMvCfFwO6YsMSH1MdxxVhx3dQHamOEla7LmZIgym20lTgVO3cNDT7f98JG7x5imYGVriBPpBKgEfZMXrYSiP1vmARXwSiDtXdErqS38O/X69uLlPGgf/g52GrtWzT3wqCtc9enrZcJOtyiCoHAuR3svhhAdmMKtkCQN+ktmytHsoPpty1/2S4w7+hGt8nKHB1CG7ZFiz7A0TKe3G3nNnsbeqYWDtEXVjlXZWG7upept0UABPxs5by2yq9f7uTb+SEvdOwC2bSB65F1wtFHHB/JILS4KBbHVnpOpNG17Puv61qV2u8tCJxJTXJViUfd6IVPd34fFrl09AOiXWDtZ9KZ1R89qGDpyFoG5i9j9u7R65fsYLM/6ClW18Svi76zywsWfocHism/1IJ+2thxVMTaa/Y+YbT85Hd/gkqkGsG4kUhp7LOIJCeXfCWwseb165xPm7sfqX8fNeHUocIz3gReu4CB4nduPbfT/FBNcayj0uoYawt9Gog/rfzmtbhoOz91LPaluYwYJrC+dU8MSyF2oKs/lkGamYhDhWKj1FapZCoHPcauD8E/WUZek5GC9KuPsNC5B0hPkgYs0rc+3I8rSwp88ZdVMr7ry9lLSYRCtc8u+6+qug87bWr0K2k9+0f90IZIdWAihPmadwOdZoavSD6CpECcCZpAR4EQ+EbSFpdUjyoWcaBRiu9sM4BTVevod3bv73pnjpUQq7aPcn72lYiEfnXGqNIGP9u3K+wObjD2X+PeEuvSHG4mLWtId9aWAPZphfTnbaLdxPtEwJaNEQxIz9ZZMJ3NNyke6rpwa1hB8tZb2nrTkxSwmWz63bQoMv4xIIumAHvrHvHDAuh94DtQyzmrVsrq4BRTOhXvFsYdxGLGDqhYua0cfeCUGu4IwDQzUezIyDgM9ez19x8/1xLJP03XbSFmaH/aihmNZI2uu0c8f+XevRtrpslZIMxzepTrH+pvXR9+EUOzH7M2fH9zFOXvue6O1GVXNFKbmX1RuQlaiWa3GDs56Ga3xjeDGgDebPtpQLJzD8BgzmNTbjTU1jIgkkW2RTaQ6CkELUDALK6kMuCkvwbj6kMqJrOr5rPMOU1BOKzUL4tFAyCoSs0BfcZZ6379xh2Ki5kTEKPXB0pfWWB63CfzABLRZTu5t1mebk2lY1Z+dnXJzri+ybgWuJuji8O1zP4imoyzbmAYzH55THK8u2+/Ma9UHiNBQ8k0MNY7sbp9UldLHVs6o60cIS3vTIOJQkRzx3pJiJ/qPdukA1Y0bujX+EmnKsSbZ+S9MG65kUXbPxxMoRIeGPSPnIzOcHaxyQ6QstxJEBZe8GlXPzkV8EcT8+L7O1S/8vnzUukFrw81NoFy+OaCbDfciQYRQATomhmvjQHFjSvJJnooloGBPQv6mxHRe9Wf9Lk4iGprR12Dj8mwmwOh4z/XdEOG4PfbxbwfLx0UNaNelOt9+yMBuZKsH5M2Su3e9/rKs9ogw+Mrvj+mDOgBt5eMSGLMuLvfCN+kmdB9IBFMtMbjHJFWIxsYbQJObppwUeqwdVGGq9heNwdTVjNp9zBf2b9Ec3Kp+Qe5IZZhgcma9xQpKDQe6mcyFzKbZk64weUbx3z0mFtkSS077tZdUvrjPZ3u2Zqy0Lyld9Jzx81AUIGxpwxfgqZ0mFCoYCnq1H1dGN7mbPVMyK/BVZ3j34orvTMf0sEfYaxMBLsb3Q64fPnT6lxCeoOizCoDLM/sWFMfh914tCtJNB9NQ4RzfREeaktaCEttJp/rmDz1nTI9V+VpL/AS8de9ou8rBSUfyG3lJQxtSiUzSWIaiZUtqH6l+xVu+GbGma1tL/oqvXLJTbxCx8iKgv48l/jrW3RBFtGa9ssPMQTXvHXSPOARzgNSyekHNGEBY2+yFjtaoghkkMKOKEIkJzP72yO+LRM7P4WJlqVC39Hcg6h5/Zm1mg/PFGLikF7z0XN0ZlRqjojfHeradY8dAbBZ5qGEExmWPLdIXE0i68ySO9aHcZ10h2jgdYYEwEdGN/JzUlJZCgoA2Vw+883HRQexS5e0hj+CVnlpntYLF2dRotMRvkMIEQmA49V6N1zRHAXCjVo0hF0Ndq5rjj9ZAU8CbFz+dg8hBOPHFvG8UaDNHKI9Rk+FOCoBaSTwbJuopLaUgY+ddFGnlmrVOkoAXL5SrIrJWNZnkJd2wwF9lCdtLS4quN83Io5bxQdE71E5xnJqdvRDcVudyaU7J1rR4T1dOczHnmVOUg6/mGTxPy0pszp4bNsVCgTCpgkR9fsLIeooEdjN6l79v1qqDojRd2VvVwbXFjUUobnqfeI56U8jcnmLVMltv8wPxENGNDWhy2XEne2ldjieYymv+iuS1qKH4wTFVjtiQ9kXQK/Eue7ANmGA0RUPDn51NwqxOvyiyYOoMlNYc/00KDpikdrLBQYACqusSqj9uqZrbPAOz/3joYWnxHAxPckvmUgs9LDGrKEVMIYn9cxxg23Ma/mi6rmdB3yk22x7N+h/6CsUFWo93C05sWadGrpXbCumKxdsIxVLY93zcoyrHbP5VK7ex8hO1T4LEMwkBgo/T9RxOC4Dd0E+8RQCUXhAiPDY+DdZhmrE8s6J2cmI971cKsTzcbh5/JirctWFsA/epml9d/zwbzB21rotgdIsBS8rSrOTos1EFB99J6SHzdEV9Q9gtDb7rQ5MMLbLDCCycwXPQlggLjLcC7InjfIIYQNFhgDkcwPWE4fl7OPNmUxWAO/aVAaftQAszz9OQqRE3kmvziS1TgRxw/pmdgh7k4eu+92bODLARFn5yoy+/R0BwL5QT9tjUcfzY1qT2uG8vtiuK7dCPQHY0Wq9s8S4tiJeohTgQhwxMabjKhuvyQYeGSgpeYM2x5Kybj5NFbFkazK9ofHXwlKrT7OuktZRBjzbAn0VlpSXF5XZC5UkZJC5825o+wJf0i66zrQ3GQ+ff709UUzBwXKavNWxD93D1n3f9fXKyfFohkiwwXx5z/cZ43Wu3uuinIPWRtuHpf4S0/bP5NgW07Eav/Vc3ZLUDWC72Zgju7leXJG9ZVSA0OXqphvnl3yrWzkmjh+4RcifCZ/WuShBR/TNDakqzqMndO7SOzDL+kUm8WGwxtn6pwf827MXYn0FmQFBnycEUp0t0N6DvgmnTUtp+YTTfM8XqT7cmssUquC3Hxx8rsRWgKdlONE84IHzCh1sBc96VOxNqdUOuvgPnHJQkd1G25izIEBAJICs9pL8Ib6xQhVAaEDTEAl7yuGfjQx9SVInECNaJUH/AmbPMDPPrYLUKUaoKsLRmvkiCVew2phITE9tu+qb6QvG52CIq17egDblRKMNAFP/g5LNlaOxQBewYR1whfHyOZpqkqtYiuvMfWlqByQWyRaFqsR5gqdqPYf0P5Lgh7dS0xetoKHteJ5VLf0Tj4t+vpch8F1VHE/0e/mX78Gx64ucy9jhWoBCqPVu5DQY+lVJuG/OAw2asPEfflPH8BlU2eYtZJh3TLW/Tr7qsqltUsffPEGs3OF2PbizFNaAjvFmK+4iDGgCGiVCHeBJjl2GRS0+WUZYeUtlGZSSnCarCSs6qHTR8mQUJNK4TVY9Hg+mTwgpbihy5n9sm+uPIqmWW7NoaU5nu6VmkW0hokBxIlHjTp3mJqZ08oid0bdS92lP6EnZc4z+2oCmYrOplrfKJ25JDVEYOcLZUF6d7XLTb6pCS6hm+2BGJyWafqRMDEw+EAOYxAZv15CETMEwS9uYgMWnSczHVj04Au408XRGmkbckDq293aihkkLGq6KdaJp7Iot+eRt5m5dzM+92v21U2zAQHb0YrpF6oTDfHYDrk34Gop2SON3TvTxHd/bn4liVKxViMpczBnvpaOvq9781TzDwsj7S/gxkVMvJOUazhlzT+xNjep5qJhr/fA/iWfZrX9ocCrYONiRsbhIPoyAO6L/3UxdqMBBCpBA+e1jtAkNhu+OtbQTKrZkY1naiF5SqyHULTmBp0qfUIAReldCZ8NLllOvWfonyMHtpTH2S0aaA3HUyo0tLeNue4B+tZPHpoTTFGAxbl1GiHny65n4N2bGjKXxr0HiUGSFcqb4esGD+LSivcrjKigKx4bLLUPJ1chCS0ccztJsovCiiLjSo/BgHor90RphLMtw/QYkxYhwmoQ4usrAh2yz+tSHICr85X6jnpy1JRLzjxz8Esyopk5IFVEScHhHxKOcgJMkhhxM76uvPa3oCBtNjdT6dUAidkEYSrvbO7rak0GjD2jxGZFhD3GBaMl+W/vsA54vcwRshqGJAktSRCwAC6kBjAs04z/EQcZ3eDLLNFq+f0ZY6t7d5XjJhOUEomMpPrU+ZRvJR1zsUlDyuOAg9Enxm6595WqMFJmZyPsGzChF/MpuXp8zxHqxmgWrFYZXa/pJm2xeSyoGAPzireT8Q+2H+6RQ+YoRWjAYsbf0tBAuYasH0Vx+iIJKfr1tUh4mGVc65cYLDfX9IiHUWxpCKhFumI4ohw3vEVQgNmjGNBb4Oh9isfip0y4PebZZXZNtpn/YdofPh+gapQWe1/yISk6kLxdTM3DCLGwMkMofGlQchG/GAtdv0+1S1QI9EnIpJPQFfiH/bb36Xp9pKYoIMalYfhZdb/g3CuIymHLmM4VImPzsNteN7os/SiEge9zUb+RiuU0FWZC4SJ55vihMPm6VROu/BTj0/F4ctrqV273cHJOWGul7YWivnARWCynhJFTydT3iIycErvOA7PZeT4jPsSo/Q7ZqvnFg6xvL+EHudtom6y11pJIGMO2AsJ2EaPxF0uggBA2Sy7H6amjxBOX5pgHAokqDefi0bqDy313mQvN38RDfFS/ZcS2hrEjT4wE++WI2nECOGivUIhJFEvVZ2JZWylRA/s6SviFkaMGkSLNKTxc8oSFuEFxGhwMYbpRW+1PXmrNch3gPvHFinyqZ9QzPJV2FPos+uiWcpmvXEwoSAI5Wm+9+KZ4b7anmwBtFGAqKWW9hukNqN8pripLCoXxAhhEfJ4XnQCwKZCpaJxtQx29d/EFmA8T6vS4IufHkcqZdh8VTHza7F11R7CUYah8RpV77bZRdi7TzWHOb8Cn6V8cAwL0FBmK94BhjxDtAIgBhxiBCoDQ9znWKVX6uO7YVQS3gxSzTD2bB7WWnwJ4lvyri1Lqt2J2CGTEPWZ/6t6y4D5cgpY1woeLJmYyE86jLrZ9Rn7iEFrEyvKPjAkQeohDwX4G5GQbL5+A9Tov468OFxn6glganlfHmdyhzANKGvyS4IdeImE26TFhZRJ4OBK8Cbu0FKpVpFCx15J99rJ0GhK+PzJe0uSqvq4hi7hNv65YU3YGOgjEh8tS4jjE5uI7T1bU/6hZkWMHWdHlT7zl9l/7eZzDeqa0jkWbDWu6yVmGrJn9dQ+3Z7prFp8+XsWFa5mIYEYKpP/MYcWLOgiLMvLIfNLnb/acbsfqohICFtEwjA0CqjIEPXxevRL9Ryn4bJ5pJiVzajE0v8XOzZDAaQT/gXHkExx4rijcvJRbTR6tugg9sYsR1CeoQL2OPRXKDSIVTj351XTqX835AXM+1kc/Bho2MZKLd/FVpw5yWsZdO0CZyTKSSY9Ip/hiHHNG5+jY34A0FgamWyx2T6/6de16Qkl+xsxJ23xp2/dbjG23dFigUzkU9a4cHljjIfu3yh9y+2uZLl5aVRsAL8VrUEooYwt/oznq+OSPebMvV/NGYzX8G32fAQ/1vae3pPmd7O7LJ50mrl/HhzQNVMo7d4t56MeSKX6Un7+SwnB577adlBU+gX/XJTTVSolU5Gf83BujuPXi7+3Ds6I5Xg4XBQH/NTtFhgrBB/xfUmY4C4azo7YGrfGOHnQwZ7S6Y/A4cW89wzsEYi+UrpQyOc+WG15UvTb0kFmF2A+lulGr2O57KUfKTkeJ75gT8nQQDpnpzZ7p44ftIxCcs8+bTg1xKRA49R9o1WrYZ+2s5Wot/DUzl+fOyr7GoTb01yEoT5bOGRJEhP/M8vwua4Q1CmNxtyD+RpLkwwjyEGNfPnd6RuRNDutFt0YvsNPpFot8pB36NvrCQ+/hqQDITFog2+SsVMWgJjOC5fJaN8OwS61sc3wkBs/3kDNhHk1DZXD/C7xyVCPXeSQ4AcqdtKc6SnHy4n1PjpJV145W7+dzgrppHRlX4Zc3wtgpAUiQZnMChqabGKVK5xX45aFb14f9nJBczLJN1xs4pP14m3GB1JiVSe+UG1807GypyB0hBngt4iGPcBDEaJ0nq3rgQWfZhVHdntfbs5khXSKkqNJPkVTgyBELWDMsHJ/RSnPhiqPyWelliEAF7lxmvhADm8NktHtsCAmj1gR96HAd41QtCElexyDi5Iw4rdjH4KxK60qj1qYNWduF4X5ml0kYwQvW2Ga+2EZ8tMxvSTb1avejMOWtTfAF+R4ojT667LcIoQ4cB4x23IumGChSXFJQ4PkySjFufhPRhos9pCdcgwYsQXNaOUPXT1MMLbq/hdLNdv3Ot23fo67iI53uAe/FMdUmONIJu0LYX09EYvPvuRruw5FXoRPc/MfzFukCTAPt7BQdJKhwAf5IAMAyuCG+41CnlFTjwV7hNwQYed2UBu0qNIFgFbTdl9Fj7Ea8wBfYElVseExDuWKsWCPIVtq6kxnIEleg74z3a/4MuMRquXKzMUIFq3ajRe/ypzo3rjY5QnjzOdRLaquTH9iKfezhHSTqYs8LutmWqnSJ8LEzhCoFICD+IojRKUOc9k3RJIpTAxhcAQHs+EAc3QqA6VOczJ7ku8g+qmzoMjdESM5jb1sm/2AjIAfOnYCEBUuDdPrWy7XQ59sSjDVHa0jhc3AsWrdtg6kWqfhMCIdy9SuFqTU1SFkH3GrcMqoERWiy+UjuD8mQ8FZpUjQrNZxGyaQQBBv2FFvQsV7bAKNZ+I4++ObD+sagCOytszmvk0V7gJ6z8gomW2BqwQPhAUho3sm2gbC1o7JvdatAvBwfNbwrezSVRoZGDhXrUtPDrkM2edq9SGWcPvO9WphCPWzn78BVGylAGYKLTvouQ7dCGSwVwFLnGtMVvpCCKbCm2Rs4O8YCiaMDdkqX7vb4qndt17bzt6GBB+oG8+eq8o2vYK/7myPgVNOR/dMil9v+7xtUGUBc+8CVyU+nBRLSYPV6UOoTcRs9f5Q69jW8YOkfZ0N0m0KRKU70uRcVL1pMs9PKx/5sjC+xiuB+c5Dl5atOGUmdfWO/xxqqgVvW3HlnANxDsGa3R54O4PLQCCcQdrH5weyHiYWBdfk3diKdMwUBrCObUY6U6lHf062Y3Hp/Rc5ogBPXHKCS+gorcoaopeIAJDgHmXrrCNmOcv3NWeetlP20HLnTfIKCR6tBXNRaF5+s7NKW2kMVOS4Q7WYFBAqhaOCPYfEnbSettTYQhk1O7kefCQ94Q/cmi5edJrKjDScJqLwU94vNkK+iVubZ2dcLFmOnym8xj3ca6o8d9xLWolYaW/vFK2Y0B5RUW8aC9ZAa/Fk0wyOIwt1pB0gyV+MVbvW9OEp+qccP4lKTPTORp805GwuI85c5py9JATwpMZ1MWN7kkaXLZ/HSVyuN1LCGrSXWm7CwlLlU30ntO65ARQhmsghu5OAQJuURVXPiGW/xJ+kRbl9T7kjU780xwy7oNYHG6zY2n1SCPl1Hf+vQkr123kHsDIcFSLC62tt9ryIB+JfPj9S9AKaYXzrYWWknNuQ0qV3hu/vsJrTOmY1O1Ty25FqW02EdDi+DhNNtq77Eeiy9Y2QcPhMOYlp7uW/USUEuL2h9xOjEC0m3nOqjv/hzh+s+eqb43GoEGKwoMbjqMahxWC52P5b74wIYWKe7y48F6JGgaAjQbHoaCi9ZvXOTH3dpPKo3RdTWcToMxpMBh8g2Iu/YZ5PwkRz904xPlnqgQUhzOggdO+nhAuGNzxcYORSLu1QRSOYarqM8xiADLGJwTmKxvc+PmAG0Yo5bSrQbsrYIrW7LRdj/kAwCz+exesREpWokAw9p6F0u6WXSZrt7uj+DkneYFHajajxMVs3Mx06/sRX8t3U9z8B+J8I27jVXKZBNLN0JxRPfjoJw+DPvc/+9Ypy9nlOJo1tYg0WiKoLHEBVx+S1IjsVjcZmKAYyQM5XPbBkB9AqhV7cQoU31VEWsXdHocNdjoMMfqVnP83fL9CTIjfXSPve0JGhX61NUyPVA0hB7osjz6wmsuiduaz0Ez6pkUCMutzPExuzmh1Yz9f9jzvAnohL3hMkMKJd6umA4HvYlT64T/JqSYSjdW4ewYdJxmaDPryY3Gdb7js8t5tl9ja6hf6VdgwlC9XQgPKsq37QgcHYCwnWf/Dn/VsFHg8S192dotBPoNg3l+H41sIa+hKH2r5fqkmsrbHJXCLq+OMfOQsOdSN7aP65bhtADYNC3l5f8PJ4F1Per+ExRwquUeAqfnG3absT7UhagLuhYE8CTuLC2SP5fTuYxBRDGtnw8x1nF9RAA49CKD02tnEGt755vhTbi/QnRyXubbFZB5zGMOXe0A0HxCTBrIR2omMIeiiG8dkEjWERPlu4NdIW7qigApCLOXcbghg3PRilssUcjr0/dq/G/bCBSS17P43WXybqlGhB2VRBPPBhu6S3eI+Te00RFe7SOxnn9g+qnwEdJVpwknyDMX9bKMNJ9WBF8/npu6wb9GGy3ELJzi8+bEYNhTjk27MX1/edS7MMjf3z+72ctTfA/11yodzDQoVayJZ5ND4YfAxg2COk6KUhJbvS3RNaAjo0iqWP38CCtPsCsXdy779dMayAlUHN5RmhKyV5dN0zSsKm9WyHac4MnU52PN/fVuD3s6R0nq/kiVuoL43k6j6mcAubK6C0kT2AtG8XjOjF5nuyVSSjwMPortbXIlLLYkPpsugOd6VnwO1QekuBaLSeU5og0djJnElCTkoJjaG9V50pqP8GBO7XBzrbWHAxGTP+YtNxQpTftfdoeUx81oXQ92+bAVAUX3Yf81KlJGZGD2TeaWoQ1VgLcyVvcjffKQSAXR8ystrx7GYEQGXsF9opKsLniYnAif03k6BAvIxB5+rj+b0uneBpfivxClJwNKNpNfttfFMNZfNxnpJyEFPVeqpw9H/SouDr/I1bIhS+6cFOJn7jzVPsXLjEFH2jqJOyeMesYdFiHy/bTT5sXI7B9ztoVpXAIm51/ncO2PTRAFax2ut/VGIeFBMhxQJSrt3HltMMH+JlHVtMMpRMF9qfA3HtbdgOI9huk9RDMl3ocJYt7tSC9VXjRULcpE8EehjFvX0dAdmxKAVM/4MYcfx8kTGZTXRJG2/XzSnQHhdzoebT0O0344XUi+wFjbh99qYu+0g37m/wZlS+F9K/VQkJxnMibPgucncjO5Q35elQEwHhD13y8SL3GfIoM4TAQwQ2TiszVfEbS/DxQrpw6HnOqflc9qnRuUQBENK5lk1VLW/lIGVcxr2s+tfd6aBjeNNl9xJPnYPSkczMNGKBOQVLtuqWJOlTBVtiwVS60UqjH1UuGpXvQPCTG2r0g3lg33yj48MJNz/LBm9XikWZu7IxT1OyRweUSFsYiKsIcsDTDYzv+yw2+e/Y88MszZqXJzjYArN9S6W9VcWS5b/LTQpd+6Zb3+QZ/xhaD1TE1xtWCCfWPGHWXrZWXUULwuh+KoNKLDaT/u476j2ZvHA8n1Hs0KUD5cqpEjKsypeKVurDWTJnohMzXUTBW8lbbjzPgp4C6AbXOqIYux61Qnk9EbXqhcclFvmgFWZM8ATiJ8iatiegiCTb2AbnR6EnBoyaaeEuiK7KCQv3XQx7HhNIcRugr6XBKaDj48IIHKpBE0OFRXzM7ZzeGOnIE1hf5DTlcW8fbdxSM/xlBpNNC2Tmv5lbHWkevhMlwcwYv9eSUIpUNi65ed/RVKuUNllhLa0/6ERFetT91WY0/4scOqJ2fvxWnm6ZXlHAebThXVSBC/Wx6x+jlchFj9o/kIH+0A/nxS9sJGQIEOiwxMr8eV1GLS8QcUt11gC45BA7vzXS8EJ8Nz0lLU4OdNQBvQNqawm3OxE/UVTOiCaMpxpUei/qDoNiKGHx+938s9FtO+Xdb3YbpbkXRnASrJnYsChv+b+hghc4fi9JuNQFLw3BKz3FSi7e5TYO/g2S5b7uKWjAt4BD3fJW6o/sxAKh/2X2Rd47yLuC8Hoe5a1+nZf6qp6LqMTGq4bu9x3VWVi74ixXocv/ZW9x0pIoVwdtZP3ZfxpxtC+yQ26n75OcgzGKFtqn+bnB18aZ+mYbXWdnlWEoOi8KoCmrP3q2Ck4cdd5Y29dIMiaSLOlKMLEof5h0z/s06gwYxjsqWXahwp4IwNBMT0Fo0snaMHJxlrEIwwZuDyY3pCreCmx6hCcS3bDUBJ/yTPuDlnPyspYBiuDWQ8Fd7aX0+enDpLr9Qy/fQDAtjrLXJqsg9yZK3aMtrMvMOUr9C0Tw2TIH+sFZBqWBi5HBhijhSd/ckmr3IpmhcyyqRsWUOIe2b94bpq5KryIM0DmOMAi85XYd71tRMY76F4R+lcm8kh5HbuxEwgRHZo4nJKbOZ+Ry5UAgxuwHQkzY0g699FKYdCr3+ggNY1NPCbbCqQhMGmT7fzOj6zvR3ypWefOnQlrfWUg+yxny6pmcnrY/hjEQ/7oT9tCbYQDVeICDbhASPqI6qT9hxesoTKz+vucodkbPPJPG/Q0zM2E2PCw8bwqEAcCbVGneYX5BZ7Yljbr3qSz8FKr/+IN478507znbeEY2qFteA0fuGfRUNNxlOfBQcRi1Fr+VkOwhdw+MqDXR1DT/lcEDsKIaWnTHrQLWMwLY4zNNqhT56uC4X9KeKRfMbuf68st6kC8DnXjH102aLdECVoTp+6qyLX2oDU26eud9RXjEaec7HLWBQCLrYVE0haMXueke1stWhnFaJCIAZwqxGWbla3b8a4NhPIJ0Tj2b4Y16ov8QIz0s0usUCqt/zSRsfIiQ2Ud/zO+NJdCWSwLC9uxtnpSqPNXseo13Q5HJeKetb8M4cHGRav0/GeJFGvps3KbITL1XjPdi6iOb+yljnVpcWr6I456mCB1q6Lu8L/vSI6v7l5OtQqkDRZFVltqhsM9PUjIqQxHCJY5zTcCDx2H9pEMg8uIL/kMdnSmX589K1Evq7VY+ga3q+zgMSe9iMDWjQwqRb6Sn1Tc79Gja/ycEhSUPx1tB6F2tiNeq0j4SBPOdXpehmrnH3nZ71DoLEw2kd17QBvirXjdNC0o4L404H6SujJVHQnN7dOxaY/T6FFJMSQclmDmFAyYxd48IY+q0iOshAik4FznCMjCT7rnC9d9JstVGu1Cdyr6NcVTW7RlMAkIJ0V70BzTtl3RVxB4q9nstFaCEcLY9RQHpRIhCcMPMEwjJ/TZmOkPiUnxXkR6VO09kiWKQQ10WKyYiNPOLEZMixFYdHJmK/hFCBafJ1RcpbK7LOmamVdxKn4WZurQPkfXWKr/HccF4yuvniDFuc2SwMv0MnqN80kz7LUG60tYOYAb2zAMMMBdvcTAMMMAe2Cnwjisu7Q0M+4fWMfvsgUSc21cEeS/ysZP0kOjmp8ZMrOKX2r2GEZfdJtWBYmQgBsa1jB/wPzAEu8prgjcD1gdlNupQIRiIwNr0IVvl1YSqmMnfMgMGrxNNxDE4OCwhOE8laITA7PZxN8TGQXjsbVMIVcCtGVRU2WRMO/XDeci4HbN3vlvacKs6vDvBqMr+K0dBMoQvmPt3CWLtYh5IpLb4Q8RBH75S3QgGEH/eqOBDu8ikBJnw+JiZDhXxPu0q2/PH3+YUwFnyOrjgI/1/gfQy5j4HEqE9vX87Ec9UUBdt/ovE7/zQxE+AOJlnCqLHD7f5rrGMqfayKGvq+P0gvuk8MZPux9ueXoBnNBSyJRkQkabG4HeTy8HBvKy1nsR6HxJSozLm83pWFXzIn4qjamUhWvRSmNSolP0MFQqK+wZb20jVnwsaf6N477Q6+A7j/XxthcxyggfwDiSuk4RMNJgWo/7FORKy7gNlyQIeGagsMOS3OuiZDwBT+EjUJ5ChYG9o0gejuDWq1aXg802hAMc/ubyVO5dUYORpW3yj13uuO2bKtWNRzPrkRhMJxMCilBPjAn13zSSZAY6+N2jEtfqC65mRGxRJjOnxgMWJIDXYjugtO70doh1MCNpVSPXr9yfkPFgNl2z09UUVVuxuQchDSCQTvzm745vMkw8x8pjXuicJOrX/RQFU7pjBnstnSav6/m60RQdPTMLYyvX1QLHWFgyj3vaIk11ZE7xPSlcnQVQupZetK1sLxH6He0kv+Jly9ehUHgG7m4isw+ca8bpPZNZ3tvBaZZt5/1naQvFXEfFBB9HZ/vQJFAFK0kWptljobfFu/KYOTIbGzF2n9UNClkeD0jfKRMqcNiuwp8ny5yWIlr9znvZHd+6V7Ix9w9aH86BHk5gY6q2hHSZCTjP4Us8lL08832DPuUMcPcKQeynN+vpJa54/Bjgx+FaAmdkUxNiGvdK5z2JnIKEfXpzHqA8n1/jHdBe3f6NrFXfh5eFhM1I1O7ek7jGGaKJmJ3LVUfYWNKMxl0tcKQOQJGzCYy+TulsHxcCMqKsVHcv8OjYDFJRoOAp9CTPhr8xzKjeSEFfzLWWTPGTktt867JDzjg5DUwJeG54wgEBBTR8g1kP4Xy8LuHxAW9ORCpzPNjZqn0HvWC0e1W7mUTWXAFTQGWsUxyZRsxwNU55lvDJfBuCrYY+XaW4lXShjPr/qtmetayXjv8SYSFCRghYOSeczwSqNEraWzDSpzDI3tWzXvLAsTJGTHgUPsBaAFSaZ3ivrU34H0tAUfb20x57otcunVvKk8BdPLuWSd6bmUA5tchIkgm2/tQgWwoHdilhrT63hqxUWgtenThrxUTZ/3RBmGQGei6v0pMNtOmDy/9UcZ0QZyKKrLiPs3RVHaSjlG6kGqUShGKFcnICiu8Tj4dkMK94jKqFksmbPoxBmPk6axs9rV5RFKTC5yQsGUXfs9fJoysIEKvyrzK+kPzIVIGO9IoZ1VuyXUHDUR2iQO1cUDhJsywsSQFdMJQIKq/peCJPi4x1PzX+V/W6fOD7aJLn9tk21sHcpTFz8QmC2Z3DWdyCSeMUi/ZsyOI8BidiP47iHrVqfzg/NTglLFt+mPveq0rwGY2SL+8Fjk2aMgO9xP1hlEKT9a49CYHvPya8rShTnCYdHPTYWIscVeUsuUiMIwiBwmnaoX/JjFRRifMmqRMYITYdOzPXbUdk18IN2mUG3VucALLBKqfLx97Uh2D0BsR6v/hTBE2Gaaiv6GkfkS2XYmJooG5GIxDaYCsIz6VT1t/8+PvVJ3fnP0IdUYOk5hdAoQ7fh2wnSDzxC8GaqSMFMK/lh0SXoDqYdOesojRJ/rIN8F3G5FZLwguXedTWwSJPrkC637biZDiMJiUmCguPycsO5vdGGW5i3XYqg1CB7SYFYhYVwyL1yBWkKb1mIGO7gMx2CJQKhGgaiCAjb4K0fkAf7HSubsfIHz4M23rvNR978VcL+oBfRG/hNEKwvfDrD1VaK1XCJIwqpMN+f/NVqGXl0riPTItExdjBc/Xg8Msff+RfeUYOAGF1UQxmRZIoir7zt2HJp0yuk2cxNLdecVQIG/Vq74nMlNGCfMsIOXhfAgD9BcnrOFYlx6iQydkR63PQc/XrIfd+tLQ47dNKWgyrREombuTR91h0YhgPliFesP3SIMUVw87TdyV/rpldFyJzZmWGSeK7GjQcXyQU9vhw7/4mK8DLSb0y2xO5+CtKkCopwo1dOFROdouOhZq6ZsRzCEGIRE9oNi8LUnPZQ2lAzyU+B73kpdrKjFsdN+TJ4sR+zWskRIr9W+X/a6zi80mm8PhhuW4uDdoUdJXq8PW2J59Dtn6k7g70t8NmpprdDWA2CzM2peo6QUeATARSvzISYDv9N1USKWqNxpPzJIUpH5di/NTbnyIb90J3efTPb3VNvOrGGhKuvH4h2hqkrDXm2AukkQkijlE22Uz73zhLVXXlHNzllUFSLAJxhGifMDc4mvzi5Znf0tYNC4MCcN1hM7X92mgiOsV4HhblKltuIyQBiuGaSk6jBpo6Hz0Ae23sTECO05HiuRCwYr3YY7c5uXvUzOdZTM9GhsmkKRJD1anyvp0uinIp7hWQIMihbA1YP0D4I7k5K6Tf+heCGzWI8iAfOoV3goTxqvPzU4ZPNrE30MaeJu2iPySuvPDBmu4hB/mqcPOKf00b9MzCXk6/yArmBJk28UCcbbpiZCZrfova1o87zzrSBHd/5CVPqXUJZMBa9uykvwIJ9lKSxOrRYIpa/8Go9+IbdygyMjuAMPrLY82AQ76L5iTUZEtdsQmF+XZuyRgqV3J61I+88YGuDBTGDL43X/aB3dSoH4ninoqtDHuLN3tHjU6vC05NDEyOnUbvuoZ0pY6PNmM1Wf6RtNkEn41wsKj8+HMZVfINb9s0lIaIoEsPrd2dEjSNYBtg93omG/YKuGOCYDBP9hSHb6abverDAJKjM0xOfVq8DYuuRnM2qA5a7WXE6vnk3LFXdnEiBYIoQYugEWJd6Dde8x99yFEtGkwgKxYUEZDKPKaKtR7NuZUfDTVTWfKJ4KnfWInSYIuGjHYQs1jjMqw7dNFvFjH6/amToyLaWWKf2Owrpbch8PK1we7F8gp7JgO3K4ft4i8XJsdqD8ZxxFkEoaY+GwwiD97L0dDf/vNokLTgrXsvIdrcYjX0ef4Ni/P5ydP1tcufjPuV05jwaQc+bLK7XGbJL7kC9N5omIeUH7u1rIID6gFbPvTpcohRkZQZ5O4GI5mus7dk9JdHxeCPJhUmR4y28zF1/EPwbz5Uq64zo5hHs+xenffJ/Fuj+E8OQUS4HuOjFxYaEmFCF7YRIQgNe5y4wCIZ9R6mE8RxagcRqXj9dIYMJsL6lyV+lL00aihtJ1+rf0osq9xj+6q5E51P+sblEU1JB2fTK/VwMY5How2ipKC1Xna6zCjjV7k0AyQI7JM744065QSxqAaOGaDMTJ7YtRu2OMAh7PsCUyadJc3ZthWk4O1b/wbYJk+m0pO6I5n4bOmvUT+6ciK05imez23HFGWCmrn+xLckHvdpJlmiG5iqtMJmfSI7zRR1k9C0NCsk8/+h/6DJ+ehMERWQ1mr35CgkBNNy7M8HTDeG4JQzXsDdyVCD5Je0nvYDLcBrU7urvfz14GAZ5NKxP8FOD8zyUE0IKlyzr044HHBWUgUs4ojjgaPSbX202swU5TQkMwonNCbTzIkBAGlAoKJd0BHosP5vcqS/GzC3by4s+ODY3fgRWqXQVfkxLJ+MA/zGwnSbWGYNXDmvMfO/X50P8/9ehEtyd2vqb7+3XT13FrpCWjNfOJyeEzN8Ur6ZH/mziNVvBTAT62GwencMKQvtRLyz6T5I88peKo59f47OYLPzZw/oYz3r5IbalyQgQVTafoFnkzbZkCD4WIK/V5YcTZ7zzn+i0uZ9fy3qjKluXl4tfy7rQGJPN22qtN9iPf2NLZbsuyIJYcusOGoZT0f6n9Vs+lO9wxTOZHTYV+s1b8NFam1USwCO6MtAiqD6JH0YR4+yx9FxY6xvSibgXORHGehqCxZJGG8HRHtbsjwofMDA7dyKv+C0JXdUD9ntFYVPcH3cbpnTgQ0CvQ33xht/EVJ30nJUZKSD7gojbPNLvB6h9KkA1PcUDXiDcVTV+ioKSqGWluizaXWTgmanxf6kBMwwW7SD5kH7ZJFK+M9hE2JUOWjukcNBpJ4Y90KQP1Su7lDPzfisfbnNF0sd0pynURDrH5d1V3w9dCINCTLj6uEiP/cEsjLzO1PFILwt5fLlwO3OZYF3hA571bwvUMVKP4zJgyDbZPbCWPdxriiqI0CIoz7LxBn1kkLf7Pmyl44VTlIHEXZhMpPXrtM1vY8fcfZs6/nn1gUoxZIc6qgERNLLwBD4AEN5X2j0UAFs2xUHBF8BhX4uhUJX4t8ppIMONzaXq1nsuZHAbBTTjSv7qJ0A4an2w5ZnSmVI0X5nZ9iTO76UyMBVBCpydBu/yKvJkrVPugbloYQAmCBrdkYf07MlPH/NsTrGx/LLIXZCerwe4lF9kiGYrR5hTY631MrRCkDggbdkt1l7ocFCCh9Rjfo7g3wae3qfMuynS1npPxTStPlZ3cK0rvD1xT8i036MdScrVH6r2bfGh9OtF7xXtzkZ7kGMvkMKQjzdeCoxqRgTUblCq5xSFDfu2kAdYjnIO1FKX7bIw2cajfvIsJ6zIwVmwWrfHApw+l3DlxsH6PdOOrTen6WZEmB2vgqmEz8aUakHiTbTCtIX956nUydnhskITCgej+rcSN0hgZvglZk+wxVAYLrErMN501A8ZJp2Um53Ukh3O8jUNb7qHlj6Ccf6nxtLQGmKhStpjFDmBQH1sDTR6JsGGQAQHZ+XsBhHZ3Ojm5Xh619d47qzWy6idz7dhrp/0prMtngJIX6+9wNOQ9rbdMASK5vxNmiDgk9io7r+P/JMvE8ci+ITSUdibhrFXwvkOqCuGXGkalyKP8x0b7Hfyvz61utW3QXnBhRdXIkYtZQ2460Y8LGE1h5ZO+FoJ+rYaFbnk5cmV3w+nOg28hfq69WUkk9pyFHRbECtNhq+GCqFo19Zm3LtdktmnIqE2S2hc692zbYBosqao2/L3Mc+jssx093A3JW84WQZiJhxOb6xpO8IPeM2wDLOfQi/mOcDR8dnNEi9jSbRPDbPNvKjXEXbB2bPQ6F6DjwgXFCMLlDGFFXNOIW4xTChFg9A5tNmKU2PG2GLpNQzHdXASR38pM54SUxRpZOk7qcdpvEZAm8rMyNwvVSs+e4YYvLTINrjwNw/ks5aWK1kD4M7yL0aKyPiP8qCDknMCt144yuHDFwGQeWfAY07yLgqvx7SK/a+3Dnj8kLJAUILvpu+EM7GrjyR1vPauiEOx5D9p1cPAzS108shlCQb3lJojLVms5M/PZscDi20M6x7xUk9up7G530m4vt6TUNjI/WUVFkq3xXADKExP1Fbjmx2jxUzyS0/0mwN+BCcQD05PW4sAyMWzq4KUJkc9tsod4HjJofHaXYUX9owtLWBi9hrDS7MmvIztCSjt8B8EHDvpchGJOvWF2fLZ+9WsQtGapNImPd7k+1WqGqBET7isknSAQMQJBoZv3UOB2Ur1U8W8vSDDbvZODHl4/9yKleneXupBcv62F/1ED2ZmC3Oy4vPVjsWIQ4qGCh8vQSDDgYaKG/p6PCWAn26PLgGU/NVMd9fQzwouTCL/VyehY0H9o6xR4XpyizmTkCJGibQ05uS2n4i3VjBaPKURlFr2Z354B2Q7ZTHTFtxDfjWVopbJuijsMbHT0bdCWKGUD6n9AIfsoApVALKsYmOIn4OVCMVxsdjsSfr1LyWOhOfwUBxxcBpJlBSceR0+nQSEbOlFtqxvySK+PVf2OE9524hbVxvjGqp8fgqeJwwfExk0MLFwEYAh+eplO8Ldhw5HuHMe/5Wq7u2blLkKZq70r9uvMctXSjCDpX5Um6FJBMd4G28K439AobBgzj4DXD35oEMYIQIQwvxLt2BFyOhv5WM7tUlj94j7yFoMoKgMMOiE9psZS+goiTlYPsYx+BHQRz++TGR4I8wRXrKAy1hRyUY8V9qtlTAcGbkZk/MFj9H5+GPmK53GcaKF791jM1s0sUJRdGNWfXEg0lNGujlpExX/Yi93dlqprlDhRFP8RJywoj9ccI6groOu1qlW3CTppPCZsesJ3KFIq/X30s75yq2ltMfoRcJRjVCL4vw8cQGTQcxBRdvNmzp8hXf7NmdWYsTWJMZr/VmYGpCA2XVJyDo1NsKOL7E3SzBJH/1IGYJn88Teuq0JWxzWpriNYYCV53aqHqImEm3Q2l1wMHedp9F033RFmPVk3zxFMGSnZE2WgE4IRXQjznhXC82/RiXQOlB+yXuovFpr7SQoBAbXJ00YNFYxU2V/5NhvyWVYGa0WAZfDH3dNzd+DxtDJHjanQ2Sdhtvqku/CRbxN6bxM4QL6K+kWwc7j+pMqlEl6OHTtRju6SBp1tI/dO+LdZk1g6PNUBY6afuAKpnZWfMlQEZ6wgqNqvwf8fZm07KVSSmSqDqe/4U2v0es+KDG+JPk4sY1Sum8yXJNv+PUPpopK0l/lvxKrVK/BETBItpGC2crXOSeOH4GjRBt71d9eZj3dSu738OYtmM4VRus9eMYmboe259o/GUzhS8SH3+Iw6OjjCdD+7Sv1/lxi94YScqpj2JZZlAHIXGjQJ9fCQgfumBGyI8m7booMTIiRCssJziuR2ZXRsmFP1KpPR5VQSdGLj+lEAvIm73kt1qWy+E7D/7BtD94ILusKt+V1j0c1RLtqFynqXEThFbegIG7ex9rHb5SQKDTMHWdbVm758bWQfN9wsOKLkpOV1BjbRIEH/UFB+bbuJ4lus1KyhhMNtN200oePun2yfHys0gL7okGWec74QRpfmbJWmeLZ1PnQ6++XUy9HaIgywR9Z2eoZSX93PcyF6+6Xe8Yw3dhgmTBrn4Zzjym+t3qlTd44qHNCjkTSH8EBjW6BPrZq1yaIHu2L4sgOJRN9FqUM3w0WpPxwtCMoXUUiGsE7DSVt1an/LvEU4EVe4xB1rzsa0Et16maz7bPQKzdLHL77Dk1xBBxN6tMVcPZj+fgWbgCfJXkfdOIZKpYfzzSfMVtOJwSZLsghbHcdOqkkdzVjAQDyCjULbzW4Ol9RJs4LQEH8O2/XFxyiH7hmNpOyW23zOh3r0NCB6J8fhGFRRAhWvvR5TdUSC33oaEmIWm0NtQ+htptYiCxZGQwIehdCYW+8c2CiMXduC0kG7oLx/8Het4dys2MY+mpmt0Xt8VxHovwWAK+182ZRDd8X/0NIxWW1YEvQnbEU6v7KhNCaPmAvbHj0ZDKjLdcb6cxOWo8ijRD838Fed85bsiJuQWg3pfdS83guhZpJl3Vd1nKIrttnEnaOS/EhuN8dQbKySaYMucJ7e0WhNyKFTX0p3vCDUwT1oLeLSOx+nJJ+j+HM1VypsOFJT+azl8sEFTOr3b9GvPqw424YAtmq2pHN0iAJ6JL2x3uTEAgeWhoBsegfI0HITnmcjczpWOeMYfthMgm4ZRV5ckpuOJnfyLHf8SGMwnbaVD0U3wno9QiggquUOc453xMhRvxVTK9+iZbHxvtOu0In8bBmDWOgxArcsWHxSIpnNaqY4Y7elgjGDMDn7ydHNvUfCrB6KozynNgJPTTHFWG9TYcxCLMont1QxHZMApQtOSkUE788hX1SmFx+lefEY8D2OjfEmJmqtK4F8IRDWxu3GTtLwIOBv9dckJhTuA6sBwsrrOITg6aL9QJBg+AdL0CwfdO2dY28F6sn6I5ikzJI4er0qzGJ0qSfuiRXH28Vom8jR569Wt3rOg8S3gvQp4PBYAA+YWpu5AG21b9BL6TIGmwvMfp0eZoUNJ8Dj64qXVWpa1Uzb+nWOB7xzWzIDgatKD62jcEhQ1/AqfszUMuKNGiwV/FPSbEQr3xFpkRA8BOeNaun/guNn+yuyf0qZzutVVcYGWlkUyBj7azKMBWIo6dYv5/s2yWBMoIjela4lT5g+q3TcknLgXf54V0DQzV6bGbQqxJIQCZ2DElZBHP5l9WWlYmtIFsYEKqMnaO3jswZT9hjTcumox6xepcEx4UQZ37twPYYSMLzQOJLEIpigEdDl4E11n3zcuSoMONJ6zfILJBo7pLs8OET8T4yBVNv8XgBmvKBIzVpZiBwqpb9nTp99bhHRwNhmyUbxY7FkMQPx59ihozlujakEK2EYJP+qWOE6j6qX30/URe7NcYexkp6pnYCVDrs4SFGv+I3e9CtsvYsFCix+DD9bz2BBx07daddK37iwBqXwQAkwAWqRFdbvsTioI4d1oYKEAp1IJVpe/8D45LOqElgiyHn8kRNx6q1zD4GMOt++Do/BTvGwd0fBgBOA4d8a1y6lSYlzRBE3b8942tbbb8a+bm6LyUrS2O9xmsaWQsXyW4I7E52z079GZKP1L5GoIuEyAdRTiFAWUMOwlhyLF/L93WCpcmrm0gCt4gKm2JZ7UCqNe7hlLGC9h8mfixmIWcWKZmS9ePip7P8elkNMIGkm5Q+iyQmIqcUj9yPo71RLmK9fKXIJm0X+6H5ZNlec6kOD1wl4pff63quXQO+BA0Uyoc7p7lwEEIO114+GTURtx/3CIjNiJ2wd1ID9tLnGP5VO/feiuApQOy2Pd4H9U/9W84Km8NFZiwon9LLTaiCNSnGho8+wvsfI3l2W2EdjilyquIXHscz+tSfbbqRc63sVgj2ukU4dhYukQjIgfLNF53/JQVlyuBS8r0Be/L29frlIBVuGMIS/hTKQekjCQ+pjOcM9KTSVJeNshyyUGWkO4QZpGUSkK/7RO9YqKNH+2DoGKf6R5Tt4zMQuUeTEeDLjrXm+Cvv7y1j7KPnp2VPCColS6vmalBG8DWs9uLIQ3ze6gHlU5xhZtmpXg7dbluvWSdDi0f4otqMmWsWJPVw8HqL74zfM5a0ESxY4MfjGI3wd7T5L2gnj9krQc6OLKWeoWb5eeAoGxRgZtX1lXVJE1c3PRx6QN1r6RCOhN5su2XDHUG2wYmDwrwi5WsfT6u2qxH1cjtMZ6PoDHY3NEH2q1Y9CZz0ZKt1BFNhMFmEvfHGkzZaYX1JoRujAV5lmDiOtZiD5Q7QsWPrV01p8u20p2vh7i6zgLNG599c4PewvEa3M2l2OqqIASfomkp34bjKkc7/V+3LSzTOqS1MeIR71DVp7d5FHug+WvPmzFIu0NhBqycaa/wCYt/KKqCCkdrZnPqyRShIH4xBjT65Rxj7BqALO1Q1OEAWiiY9KJVIjrhNEOW3HPr6dIQ/a7Cc8QRYUILpmZGskMzvDqKTFOd9ADZHgf9IvUBAw2yx2YiYbQ3hahbMonV4BJ8z4jGke3kjYOJ2k2WCx/ohv7sXhppHGAqt0Op0DeJu6yWL/5q1dtVnoqU6e161PQFDmQEHYxQgemps4n0cAyaLWKi2G/Uw4aYtlcxDxXHaq7/PwXK+KrPStKsQjD0KQ47n9KIaQTn7g3t9IB7tDk3ltZurjtGqTyhR48wPSslbMIIFgTkzToQIATfUX+tL+pSnFv/ohcMyUb7jkoC7JLFNVemtP988d7TrfIVGVZbmdjQX1mdhH714mNs2PrQ4dqUVN8UwgbI6zGequcJmE/vXLix+B2OvunTGlZZd9d0/fxVJX2x+UlmHIR7TZYr0vLlYbRT8dIZ3TeeMk+3scAXA3F+lmN2AO+0BdDoqIhKEV8b1enYm9+vq7qUx6LGHWUucHdPMedbP2a6hMd5vHS91nji7c7D2hC5g/JWpcqkGREzI7dcBWH6ExVqqmnDqQ2QF9nGJOgdUwcX3SUcVcUMuiAwNDJF1RAKj7HuGMAXufiuh0nSWlmDKrQHxTvRkorDa2BWYysapaGHQVNZNBq+t99usEiksRGGPlLxrIddn2i60zt/fR0XBFPHRnCHcDx1RIH9NlMwoVD9LCpEbB0o3FXaFYUpBijKhC9OrIZ3oSbAler1exhC29gwIRxYciLIm1mhOdpaTDIIiyiRuF95nDFS588iQBw93zrOT+jYZ5Ezvo6uo9meJLZ8Un7w7QdcFgcG0emV03ndWNCs541Ruzt7wcelbxDxQ7n29WJw5JU0GF2l7yh8y60Wo7VueKBaide/BFjT141gkakM4GgXUKOlLsKxcTSv2mJbY+hS0IwBVx9hcgcITrH63oNFm1jd9+PpXQRS9olOcQDi+/Bdhqb6ex99oLV+iDijPLrXslFIbn8i8CCnaY8cocLaa9RxzSx/it4bOZ6D8tbgx/Gxf4agOxAwmVd7vTXn7SlmsLh1iMK8Z9erSEXuln2qf9nNS1Fb5DzWLClGHkMLJJhJrVo+AoPRqEl/ULnlhkZ7G2uMhGxAZE5etz3UUsPy/jZWAq5TTqH9FaHbWzpQfYdf/c6rBc3SjV9yDlMvtPoavfNHOcGqwB5LdMl9X1A0ZTi00E5YNkhX7jzqQfSLL8rR30At0EFicCJKWxC1ldayJJBLqmnvW9Z91WXMHFrCBTrAxI2E5/C2CqnY/155beP5mxxX/YTrcmqZN1+9Oj2aeLxrtF/mvTwKUU/C/doIYtm31QLOC5QwGCDd5zNxymwxk7s+PP4+9dsCdh398HbX9B+P1XF3sk1uTC530BCDPcxWDyZFdbP5SQv/ZJuvqmDVFMAxdhJQnDi0C5AV+w/polIXdKD/Vxus2UFXuC0eyaArtURpsIRC8oxyv+hrWh+Ozkn4X/Hu3dpH6JgxMRHSTJBKrFw0v2WdgWIM21NJsj0QXsiWCOKKnn1ujLuttQe0NI/jSj1ZT6incOI1LdxgGGVyEIw8JXRztHWK2tqoTvtyL1Q1T6uq3h3yTqKonu2JOmvqkLAej6iq25Go4cYtp5PneKQUaUgrzGJA+Yxa7KYaXyZIJWW589H3uH22exlVb0nu8ztgP99d/F8jfpstghA2VKLXbfwGb01/MHy1/Rt6rTDg+aw/M5mx7Kd+0DN7F79EzPgR6acjMTW/WxIVmwV2Q6sDvkA3WCwHgiG5eRBQdDLBOBTRQBGwb1Q0Rhsg5+VzfGzxaL4X0CwZ6xM7XXZsojtNogWtDa0Bo2l+WCKJ+ZrviqAjIko9uWwyBSDOK4szpaCi8IH5VbQBoY/sbwkUVoMt02PY26ijdEjlZLj19CX2fdKy0N63V3oZNt9UeLXVmLzzk9hdhAPgB9iEpkWar+0RJFacYXiRZkvZq7egGtoUTMn3WaC7U6tiov9zyxXeXe8v1qMoM08wVarTBaFMDEEYliGuOIUBfRnl9s7QXsBnJB1lbmTkeXEVyklZOeuaj0WhASiavcnBNZ48k0DIXakXJIY6MRsCYjmCEIZnDa+GL0cqICE/BDgwwDVVbOBw3ZSHJYmpqqLAF9rwTKd5Jtp+9E6sAilWbj5Kn8QoSjEu5u2UTb2V25AasxYBZe0vtQeij6SdzuZmy03HLhd0vRNEG/TehmnLuBtQISuEiCM18chG62cMyRdxzXD+vIVFya4+v2musfdXbCytsm61pxXEDYv8/4HU6DoPooDo32ImYiQd/+MJoepKYLivzVcGy2XYQZH+SUoxgAIh9hNvfphnmFsnJ1L9yPGZOPwBg1W7Z2LsO/7NtNBD52ya2RFB4GZ6dU6zf4vsVQqSaJA1ylFigvDFAezHWx3v8+UdJ9UATWneAWGc7NkaggvOBJX0LVibIXO+fsJkzt8HVb36czzgdRVW5Va0Oy96CDM5F1S/jLc+oiZ0MhxRxEVm/xufr8cmiqLAELdBeKl1b99mC8wMSspEkyIt/djhbJqSunFpaZiIW/D6sSi3qkiLKEx09J2G9zxbI0o3PauiNtWYeNG+L9AEBsVjZGuPonLuFxKupCjPQ+pqqhUWTMZtCOx79Zi5xDFt5eeCsyXVGzFH/0GL5QXt/l0aL0L+5I6TLCrvGirHjXIQ+l6373vgFAk5zcOFCxTzVzuhOiNOKlBLxuBmPyCBQYf0ZgoqFdSzMXL7TChhehpx5mlQ6aExwz15p1T2OvlV6kIV3oeUs1mMfVIkUpV68OFfIPNz7zuKs6Imb+nF4xk0RWGjx8fT8iSSsnUGxm2WSIBQeCAxHceA4tKKLPb5oYGO6M35yul6NguSSJtJpHwpftU1ffaUkHNcotsmcrBAA0cLIqrMOqIOXg+aow/C8mj5GFR1xpeNK39mzen64SBoIe5iYZcXkpGCjXkbGEwYAZlFwHlBIGuv8hfMHrYlDc65Jb29qyuJvLUf7106ZLgqAmsljoFmhIiQOIVtGIEg0GPfPaHaIKbtox/oSuIEoXT2sRImPRkg4RiaGE2UJ2JuFMqWHXz/OnuT90bazSZk01JpIEzp2O9frM0LKJxHE+ZfuF90qEH8yuksTJXSr1wxYM/djneEpjY4Y5cwyGCmgPP48qGbDEI2/VczjOHXq3GVqbMFVwUXWJwrBoHSCg2oq1jLMgjFmyKIMgPOIIUWff+BQcI9pPTEgKgq2hLIIx0hcfie3b3ExtjDdaRYCIfysOd4DqSM9ZkW/ScgzxAC+z3UUwNtvMJ8z4+5DXlVvC2JHya40OYNwH8Up/PB2QyKSv5J14UBx497b4+MzeaKlrAkbfTG7w0EtzvStu+dLiI6RW/HUnAdcCn1MlserTDlwuDPsOpjSjddePVI6zSGF2Og+ST+z5Qzyi/TS1HNJ21tD8epA0y/DsyqaB3bZ5CO2wgRspf/rwOV+GfTueDksksjqGJ1UQzGOkbcqCWk/QzQrDOHyCatP3jljWOLH9EAjY9anpFqyPbu/057+vWkOJAkjr42Rq/I2PRNHv7QbUOe6oQCqmjYQx+PT4KVIgKVgsAXzYPoOtFGSrmbe+5M0Fm5MmBl8RpeLDsw7jBXT8B6ETvCM4KdIw9yJrtbD1+eDMmEGbDZ6Z+pgjdvZZ5rwmXP5fuSYf21Y5FkF7QsKPM7JHq/f9ViJ+lxgE4UYJeMDxA75GEcZiZ1ZEdbYNGYzQlJqaYHn7h3d9QwQ7YgZwucoTQcxAY+72At4Jgf9fHzMMUwHYZwgyBBqMyM1CGnXInmUJ3mr0zWU1a6vscrJERue049x1E3funleNntxkYldiwaA1gxM13iwIAK/1QpH8t3ZkVBlcfeZIqNvECVf9F2DdKZqo0XT1hlHUncFiu0TV2T0DO3zch26zGeNUBwTNM8OgsUTku0i6sGLfDzhpIMHQmYW+EQjTSCCkz6/NP3qgTT5K2fHjt4P/n0Vely3e87qfWzunyyFifDI57lmCMHv+vBRWimKvut1CbrzUwD1hZSwv0zFO/IopZDyG4tSQba9psW1LhHqn44wwoqOstcG4A8L88Q2ZQ1u8ghxCNhjjAi6prsVd+TszSTd3Po3jT5/Y8VUk+O5UlIw6tZpBoIeDOLD1RuGxUD6XqtuIDnq6b68PyRhsSCHXit66pMHpK1O0eb5w5SO1QaSodI37pKGlg8aiEe70rwYXODK3DB9g6tRTUB7+wQeqD4f17hKtmeSiIh0SvyOCVQ19JAfhFCtWdgf6uBHoUbB6J9pNPVbq/0N/5Xir0yuRbrSObWGeZwbG14nAcYtZZo/J48DRcbJ4igKvLH3F1lCjqRfTZTJmCGG9DXMaUhvBl9Yb3qS56SpBWerJwTwVCk9fORW2IP9xROi4A+rGfLXZHnVzRN1YZ334N11a4kw4WGpJv9dz5Y8f9iPGZkwYkXBGxQZk1xBQn7RoPdQagdcLLrwc87sJdbyvIc6Iwl82sK8gy2uRW0XkhBpjW5o0ZoEGiyBzfa80l0PaorIIhXzRkVTgS00sUz66u7iztqbEZSCIj8tKoUJDZjd8MbBnkJiJri91W8S4rLlbytxT0KABEaC8/QJ6yG7mzKVxcTmvw6TcYIDSY+wrEmMxpr3AN6vOY2xbL07iFNnSDxL2aL9VDpaAQghjZjTedAk0Jras5nk6gYHj35KiSt5tlsqCU9zLPba2WXRK2hhOCOQjUYl9Ai1o5REkO9MDRAhMUQMS/Q2IDo5OUdOKZe3KXJqrEuQr4bgOf148hIduI+bLaA7C4I1tHXiZ76nh9zz+naUO8hQi+3+a1O33uj16F0UpIGRd4yd79Z/VDhuhrnpQZzGEuW8LrZNVx+U1757MOBHyTW/S97C1hVWOWzypGyvjNM8eUltno4ZACeSQFH/+QRQk5xWZpiTHT8+ue8a9hPW7bdY39Uy8KBE6+xL1DyhT8QoSJGQsVaCa9YLCnG7zDC+6tfRroRDhsHOeDVam7csmzEmnJj6V718TpJ42cHWVkJqvdWtwnOCNeSuTjOMVWOrMEalvFCSshP9ekSzA/M+D6ZWAsdb4+0Z/xV7FGyzTJXtsHiTopxnvM15hbUcJXkm46M0wYnyrITpP7kEGuO/YuPpnp+HHd4UYav/QlThsMPDiYk4hhPCEoRjE6Fb4ICoTeIVznWn5X5ZTJBTTClfTvKIcdtYSBpcoL11EsYkJIaXm7f161xiDW3lqvAvaHUrZJ5FCfnkdZ5Uor1pnXqahlb0SMMOQF46Eb82XVOzxNiqp2h/SSqJSqIvyNLQky+CbrJw8NNRTpn4k/5n2uyPHMr4JzUtX3Wofeokbfr4tDFd5hKTVQ26QExFGD7IDdw47GbpHn0NHHR6sKFMND6XZd8fGWTT7uB3/SVA+9+7WhMDwve/aQ91mBSwSAQE4uilaMUAVNAjF3b/P9ROrkg+b0aDqeX8U7mzPp2Ta2cbTL8fl06XavB26Zw9TbGGdQ7/yzQ/Fx3VcWY6n0EK6exXRKmBap6RG6Ns4NN8rRqeQQLdICQUfYDsxp46x0PwrBbCr7hiBeeEPpbntWvDI8n3IzMZ4HL4Rv/AjQ3ptHi51Y1H3j22lmf70fjTKdJwpzxaB2xTXjHjPBvuXXX2YPftBCTjx31u7QezBgusWz2lgJR5lWRcKNrEDBatOMfxte/A+ZvfYWzB2ot50Biz7Do4hj/NIenY2VdyGxWoutMCzp0ZsGXw6Tc/9rEH9/RTWMmRxcWU4IqL1JInW7iIL/eQwRQ/HkL+xO6p3EkEsYrfollSxTduh8+QsWXgIS6bPRYkbnIbdYsl5KK80ZrD7SW2DZpynzz29yQvxfxHJgxfr/Gdf7HAw3nFeMZVsFpuTW/VGb32UUT5K/RZ1YtUwBs/4pQedM6bNB+2ixX3MCVDdhL3Z9LRDhWD8wXszJnFHNvx9SAxQvT9qGczF3yzjN1aaiH6v8qVjMeSQU+3NdPflVn4VjXQfk8wH+03P0ZHc/bWVGV7sYic94r4xBBQI+YfJC9X2ITHmeD3n0qc8Nnx2+O0/cMnvX4+9fqtvKQwbr+byfWURStwPnfF5nYXwQM6LvDE7uiMcFWEmHxvxXtKe8iyJNULORRfalW8noho2bHj72g6pl8y3ZItcXxGVbds+6x9/V3kNB9C5NMPiPEg3kh/qdIR2c1wgBVEBcxu/2OvO4Lcf2l92Pz6G3QdFg5S55R1mcuYFOSee61UeJzBYBJrldpUckyN1+mJj3b+2oproRFwR8WRWdrOsCGdsuM6Fr/GuKib5Mdng+h+/+VX7Vu5frYO5vX0dfqkzQdTshKk3sY3R/C3u2VquAoz51c+DxtF28fJutFB4p2UGBS+zQwIuQ+EKbJt0o5Pbx8BveFAO1+xnMbU7yzV1a9HVXOGWqqsXrJSxzw4T9iLo6qdyqszcGNdeoVALkCBT5L3aKTUmAjUXuBE/c66SGA/ZeJu7gheOa66E1Ynl5AhihVd1AZynw5HJEA48wMLZEzfg8V2gbxgoaOvh7VuhKv7OUcBjKtXT9yNCn3svjlWIDJeDwwSMBbOEO4OtW//JQao0z1jEoR9MieyueyVMtE/P9gXOSWlvVxEd60W8OGVXkeGa+8P0T4Ojt2w4m1ZmTUho882hIDBEbeivQ0YyHXhIIysnPcbOo4qy7sLsfdTb+u6QyCaRhTG8DonKsQIG49xPJQGPxU9yBwbGj3jZjFsijWDLiBbvrVvYT9yVLPnQtbcqbGiBpnCFDEHVC9iosHmuVQ+rxexJkGnv3A1bzgGfqORiNHNcpLB7J7TWQx2ewOrFqsksQS8CT8GHr/zX/yg6Q5vqfjB2WQ24oBdioECYOnoWiuxm/pP+PjX7hKb11YeYMO16nRJZJmYhOs36WXqgoG85fGkfejW4eyFAbg4PIfS0STegWLUIKIRFb3OAQXr+wv8ngPB9Csrwp4AAnJfOcu0RneBv2gI6XNvIcL9FBnfAK3hBR2GWSIHyOO7XC/3DFQdtrHaPS76jwZ9IdKFciqzBAI7Wg6Vezv7LMCKhTj7jfs7sYvF2YvzDyGUErCnkYrqjjfJE7Znit5bdBuV03SNaiAHk4z0qNDc1CKuumKjE/urb89ehMDRdvFejhU3DPmVZ5+sdRt0qfjR9r0ego2F8fyTpMKbT0ECWwYamTUwZUFwUwjRX4Y6mWMcqyIpx+lpGJN5J2VfqivMjD521I2m5152TxJ3STQ0zZvJ60VbSuSnFFMtj2yDc5f8REzMSz5M3P79uNyN1189qQwXae0QjqcGj+Y7w2xZHUNWsjHdf9ZUmyXytoE9SaMDkSG039Tkkupw3OlLY9n4BaOSV8wwvY0rTaq0LZhbD+XpXZn761erFTrh5P+Zzml9bXhefsYhSwgjYGBAe/E9JBSRcPzHJkrMjD6OoICzDZHm59TYLrHf+u1d8RzT6vH5lxX9GHqVPN0TkF2hMWbi7JsyvBMz9XjJghmOLSc4FuijpSX/I+HYLZ+0pvIEsYE2MZ2DrY9HvyS7LW0VHZoNiMfv3q0qZ+eBlZlvx55jW0l1Yv4oMD2Tx8uXB3lDBOMTcoXr9N1TsLuDA0G673uO2ImImSdKEQVlK7eqG9UvvTvuuswh16CO7ID/99NOl0CdBZTHRX1D53eJ0rUpoYW7VQiknOMBg3WL4TLVtMymREFisUUhseLEn6JwRw6PDK9XHqJweXJFekOmyjZu708A5vw6ILSlYfupIWouDdzWH1/VSkSN2csn3Ul/Vk8S8frAP9x2KCQcFF83i1rmxQHhm+JaYeX/OdBiTQln7I3fwdi1qTdoqEEcoNmOA88ZEeHTGD6+D+twJ/4VWZFh+2w/nzny++5SKi3CsPMUv5rRw1EFwiwtg9S8ukiFHy+dBYi2gxtfYLeJ9CXEp4kyZ0SK+3R25BPjiVwsdI9+P6/B/vgR3Hi3OeytZYcfjyxYl8f5jPakOpfeMM7yQQbEQ3ddKlQjjaJgppVYO6Vi1mf+fVzk3dTE9KFD3NACIT0lyA2isYe3OJn/ryjU01fZVqbvw5R9jW9nehYfUxJVI7mdPswLgse+D488fE43wsNKz4/d6uuKaABmp3ekFehJASesiUrYL5oyBG8W19CwMdgichd9gVHGe9bHSIzsaHVkQBADgzPW4DDWbWpPV13ExCeJ0ZOwdFU0m+uDucWjeTQxmqQ3TjgU8hsq/RVNNHNoyseV8tXpaB3qatRtcylLj4gMJnNDGG26ySvFLMf/Fq9PxKTy1tqeYa+Xwe+Lj/GQYEQWndEJaPrfWvXiRIR/RrA/R25tUF2Ldh09MkqTJdfXEBGm8siv5VLBxanX66Bsj99M3I3/Y/fQzTeKB5F5+K+uihk4TPxYQbGLy3si7GKJw0iAeMgfRKvSShikl6K140+PzKdY3gmCrYiFSXXQ7VA0u/2PqaX9Gcl8b3F6d9XmgYEkkNRN/8tpijPFswFP225g2KMUuIOq8uM8LKlISOfbJAgQwDjfFwgef3nlFr1lo/PY/nmXBt6uj4cpdFfZ1M+0TODQ9dEYeqMU1A04cfqEUyCAmP6W+iLeUC9ftIwyvQaM9hqWYtzzj8IpLh4nd6JyFxiwN0S+0EmXEnI8fIpBCCIZoY1zEuXse7yndmUQ1P38aqHBv5cI1bG0JIKnZPP9+5Y3q+3DvLETmJVV/dXUaH8bcaa9H6tUoVj7YwmiZeXW6hZIISrZz7E6nZQArtRFsLeEuezW6nSkP77WnElLAhsolbQJsZvz2OAxMv0UTnR7G0nzsLyEH6MXCrr+++I/4GIB9sJb/AgIaxa2LgbinieGY6/Edr68+1e/g6cAHsx6emmyloKmGdOF4MAqfkTBF0BzXfONOc6OSBkJNOOGAScT1k2zHvH4IVZEyanj1br7g1eNSF6pWZexpsWCTYSOvVLHYcoewUwJQ3SqbEbad8SOMO/2+PO9uz3o4q/VeV8BmThhxpUjAnG9GL8nQPMWcIuYiYZ80VwEg21C+NyPxvKoDORnSiLMljUqC0ybMxIbhLKvWzCAJz6vLaIwSe4EFpOVLecPdD0el5bpIRStjA1rpKYyDSKGJhhrFd5jt0rAQ0RBi6Dd90l1ZCr8j3oBwrvVN7PM8T5e7QZZf01MQhB680JqCfy7AIfIK3k6MsZUu5aS4ICbivKsk1YTUgaBgLSZPTuj2G5EFbVvWRefIpsLSA5+vOpaBScCEfHFwZjgksRmJqr4V5e3wclXdiulPorRDadFkyXfMoSuflXb0wTHv28SpAZPJRF4fOamiz1WGZYQqwJS6fZijD61ACQXyS/Iy7GvDSyosFTrO1N5tyuQJXUwONUXAwIeE0I+adWw35GBrQmH8FrdeTCpATlIvLfS4mC/JTgzoZNNSonDyMc8+qdN2yjn4J5o9EUdabmpr8t5SGOlB0KABOgQhbugivnYeKt1PTmNUm8xSk+rRt4EsLxI5kyvvoyzVJ8kbHfpSl7DdBzg3Q4u/K0ZvePBBCeOzFzQmrAdLPlYrCHS5o467L+gZeH1/ETaetPnvXcOTPLx+Mw+0LaIJ4bwr3zQMahuQ4LsVNavwS84JEsa/sKxbGKYYt6SFHvDd8kjqpKlaqLEBYv7P6KxQ/yuLlFmxI7ztg1rml8medmMt49+fNbn8RNQpFQKP2MdzZH3p+q2bzVFCJI5l+72V+lh/n6oWnCv0+2ll2sQBldZSr3R/90nkESnPZItoYwA/twJC4JiSH4DAZE5nksg0Al0SuCdC3aT92xuHOOjlJZK4Flk7Yb3G0P1wP712g2t5NMktwfLkPzfK9/rnCSHjr8mgZTqk8F6IvhMJEYTGzxzVYSEKZzEqqeZVAqW1zS8KyoBubqbG8v+SuuK/VZx96UjQQzg9U6HhI0nw4E7Qp61cGYMfxITjTs/fLufx1ZpvLDI14shgdW9lqFLJxeZQf3WFlMq3BJ70gYw5cQn6/KYMtrOFmPi0Nv44QFU3T8Y6/36gMDhvegHLahQFDWSvZ96Ng7FskakNBDYyAinYlU5wdVTIjihhXR2g+//SKk5yE6vQR4pbtDbEXLsTbsISh2/cH/GBWa9FeGfx6dip/Yl0EbFpmvUvMP42m5uFb3czIPbaelb/+7tc/kC9s/n6L2Eg7fUwi+eX8/ymqYvIbncQHdRlW1vNkTn2wSM/dPhgL/nM6yFzrAmlrPtH2+RzyNYKJJAq35S3UAGwYn54kMUVbHSD4x54kdqArCsIpqb13IH/WAkIAWg2ITYPwz68nKd3e8rea40z3wputz33HxSsG085bHFmuc6QkYIN0PsT/Msv1w4hPloSJ6ik65ZC7qhcFcVupBIzs4aG1kbSpsPB5upROc/ozWdpWeWd/ChPHG/xrZjomYLQYw066yOd6MNTONGiVYPB2dYz1iqVIkm4vyoi0GS24qfZNPQzyAyc0HH6vht5JeLbZZBCRpan6c+I3r8iw7LYuOXkqGs7g+Plrz7PxFbSqdTq1fBtfp0MSOb+2tvBG3SF6/Fdgb64ec2Pa+oaE4xhB6wYigzwsf+tbKKOg65iaYPfB637u4fAmGj8AwdN24E5/Klj+1pCvyehnBOH+8zWhEDZ2t11FZ9YQ3HIPQ3XYRcBtWtvWn27nDubQLmkSVaevGgFQfsQjLcmAy/FjpEqX6JAUlyqGTBeW0WA9LzePdssA+Swa4kQnAfaP++vKNUk3eeSZo4ppF4ziEA8hMAavV73KaWErMGY+1kaceBqKxkDK323bOMZ5KNXs3sXdg6lDTx/MaeKs7eeZKHd8pf67k5M0Usk6aPui7foKDHe8q+Gx0gciM0sDAfZKn87OnOey/B20JAQQ5qM+6F5+NEKAhY7WlFLEONDmW4gDtNUEciJhMAT1b5zdMJV1BXTF5RZ7Dhaa9Rf3JVe/J4FUQbF3X1/wrcviSeBq5R6DVSqSnLnYehGZp0YNJgCBOa0JpzjYts6oErMf4CQW8UaIThpbwy6ySYvDE0kYqL+9Ce2Jyc9H/nLd0sK8O2CdEXegBu0BQqaAPJn8rytlm/fUGGVwAihIdvSqY7fTjHhKCDSjfkjyRZoKUF4dFyuafGk2+BpRftUPmN7AOqX2SCcKY4f2J1Z2qhzICweaF0VL/1fcYqO9U3kbBIf+BLDi2ZjjNOsf3zrAhrA4+j7sGewN/7kNGvcbklvDTrqFmtfnOjNh4IgXO/BSTS2zS4SY5cURUI9JisRiMju7DHau7ZpW7avdWSsOva9m+wZlJuLU9WyFTZzgH5ubb3ImxWkePe/CR0WBtbrD1YZ8/5RRb6wT3VYqQ4rs5ZsD1hB2ogSDWNwwyBng5MzNaodo1IHN+PgEUb7f9aE4JWqoAYdrOsttRnVc7ULoa3b+1DzC0fuU73fH426vqQOxkRR5rInTBunnMTfeSJIapyHMfCFrTzLD13mMsRgLw7oToUG32Py8seakY8k4MWtFRokSwWZNO/HbzezjEtkt7wssgId+nGrNpWGAlL6W/XA4drtwjcftavX1dqBPx9+CfWX/vQ1Qb3TjXbdNGFnTXnMRAdgiqO4ytfqz+VbcirQ8E9i5egqyHCeRMKc8PfmjBfffqk4zVcHln9J/coM9VgB91Fi8sl2sgENaK7BDIT0Pj4vbjsqrMv/1fuE9SC6WgfKmKTEbW9VvYaA+Cncm7AYAed0EFb9Aiw+FHpCed3JDdjHsVq1IiSkjz9LWGwPsTFMRp97KdjAybpYdp4HE3K0nT9iDA0k1V/lCzMPCObywObTbo0K0D4NceHt9DcysdC4C2lyPawEZ/ehc6ypXXlzkn/WB/0rsL7PYUcCCM9huce5BNxR7TfBUy4J3grySxg6GqUStRvUtWFLC9IsyLoSEVVyWD/WZbeir8wTIMK2QmIxKd/aQKer9pbQQ4AA9P8eLPCNyvIue3HwXuiWSR4l/+Yh3Dp0t1WmV/y+2EBzW7rXdIg4vo9TrATm8MUeBSNCimDeE4tdaONCQRgSxVIGAlmUFqooPjRMdFLvJ+ji16TpCKG54AXFUq+CQA8y4frgKtdsmhjzqKEDRikOPC6rOQJmJ7XlKApShywx0X0GWdFRsiAvexeBkoBIb7RZsjh9FqqHM1BIrRgFbOGeB8lDcf6QT9Aa9ZpJHhyUVtCML8kNgGn4IV3OXQlsMCzkguQMpEOFN1OwHe0svOqbibYOm85ttwlAUbmMv4VP6/fTNmzYELHHK1bQ/qoyOAyiCsrj1VZUxsXAmbh05R+rJo1mTVNFIpPYRV/8DMHSb9IHvYkCB6IgYIweJw0mt9eiLlB2HgFuZGhdFu1bbEfJ6iCGrlrpsSNhnNfZ5yrmTaTGuZ9oxnZbBdMqRAq5C6jJm5XUkZWbj0pEuxVYZzyM4Vx+4AiI+BrxyFNXp+DXAMwqYEYAh84Z1xwZ0re6osj7ixKD4KzXhVit4vmW5aoprun0as1s5yKOyRKLhFHEqCqK79USymMEfaCKzw/oUGChC8oKxHYJ1ZcqwEQ5yA/BLIo2xXm3BARiDPuCJTdILUMbQMFq1uolcjE+pC1/ZDUExPro9Ts6OXrPpc/V7c5A1fTaaJ9ooPQFfo4YSaFVIbRZ+w9voPC3P+rsmcErqOYMzbQpX0JXalmuFc4uGUmXuzuuhWH1pr4FVDN7TooaSV3qZo32DvJ00FR/4u3Sn25e+5wBLlbal+BcK0XAZXHIcB17FmQWW6CuBe+9rkpO8AIogH4h64A/750Nypa65O/8cnO9YaRADfYMWZHJUl+Y+krJlKb2QSz2H3aU00h7aa934v+upTlCQEwVAxGHSy8jiEy7ticPe+8X/cZn3HdZESpJHQtoGUf89x6AlHjL/uZ82Qcy+rncH+tlofbNWs7D+EeG/4nUP7bGjeeDt3mvduFh3wOZsiDwOBBGA+p8BGP32diffsnFR6b+zIDNoNU/j6z901iZbb+MeZYt4DmnjBOOueErYPwdHwC0ztfF2d0Qms8aynxmLdPNQhmmEePYOmflLs2Yz0d8zhjLzWc9kPsvMus6hrBa/VGdYS3eKLpG0xa10zxbnMR0pHE2qtWF6UdRCBbQ/i9YTWTJaMP7aiCwcKSN0/CGFRbcfrzXPstnP0Npfq3C6ie+7uxzAdT0KJcUnIkCIS1am5NZXchRmZMxwcei5QgzIKCAgjAEAGg0u8RhZLiRizFxqkfRsN+V+2hsmH9478cCXyCBrddYnsJtvvEdWMW7p0XeOIsbIbCweUl1ay/Cn8XEbtFGDc2ZP77k43GCQF8/yUA/J10UCbXQeODyzBnsjq+P+G8ypuWmLxH5A/ahfiQUem/SWJfpBN5gWfTcEE8ji/iojzMg7ztOaHwMh0LU4DiyCJZ6SjZvOy3cGbdCoy/MaGEKX/KJL2MsxjnT9P91i+QzINCmDSnl/w24GqPJbbJcr1ajw7T95sGCFyZej2w7bwhciexrAScPDL6v9SqIscy+Kcmu770rjJ8tEUSutaR60TqJrOiSHBVWvUVo5czvQ4ySFEcugKe4X9VBg/oCf7RFdxtxqsNlwXyzWY3J5ZoHEFl9gkCBgKAh5WQJRBx4MCGAcQZjgTHqvLiiMe41dUE3/BUf4UHnLTFehWfdcyc382/SQCMuvBmzgMlMVvxsSacIV5hI+a2mKUhAx8QZi+Vhpdek/fOHW+nbM2Dnr0eweJgxrMmjuWkGx27YTzWxPATJg7pkB0UChHkcjvg51F9wsAtKOMI3Sfd47D/6Jqg7EwEELNYAgjSypFg5MJUJ4cYMEVBb0qEH9BT/P1HTIwnV7ffen2UMPqmgww8DG9Tbtkjgi69LIM3+2v+1aKXiIR8Gk+NNezWMlbfUuM8qZwCiVXotsoIuZX68hg6JRYCPreRCGFRCIh/vh38ecEiyT4gXfLIaTHDbTQjrCoxCkBXadTbZzrwbXX1RnaPSZtJm34d3zmTWAvoklYQXPhhXit84etOA9IwEXmantIcrZm676dI+skBAI5soIVmGoGwUFV71e8EGWmbVy3YyvEHr2+T5zlKXKp8Lm6seMZMFVFo3taC2nRNuTG79RYZSuTY0npSOBJuN933iGUv+zcORd5b/PZrvi3xOdZ8kcIRo0NAdMbthrmA5MnzCjvusNhnebEKPliL84FgwK4fxbPoXztDrYnd+salR+bZ2eoWnTrc6MejR9G/mtosOuOF78QfoYYQvbNO7nutO/kbpOXFESW/3DkAhWvhDYfvWIeEdhqL38qRjILqiGVI3bnvOIThFi1dsOu/Y3Vxbf7zq+Vi8Sg5dqUPONFxAEBgHgLeAuowUo58Nz5RhpZv17Ec5TK5Kfa/7L2E8qQ1WpKCwF6WYRtbZJAegac/s6hOFlVDTxEKoo4XtQyDKUDjn9QMBH1pkmgxeu7S9vL1tWeabF93kUWklruLjWWXzpR7E9MdAEAUf/LgZ1oPNWsZBKtMuLdPJs0D1E6/MYfniheHu3WPYB6Agr3RBZG9IPwxupglEDsGsI7bfr4iq8LHroso+DSHobaROEF2+OqIQQiIPOaIePrFgl4GW8jgNt4DUYm323VpL7YYZo+v3l/EQjZzs3vusskG3kHabgehWYRanqbX41065qVJlP9G7Lc5SUwPRjCdC4Va8k0KLt/e45XzMTp0fBDi8dOFxryafcoK96BiZOkQvjvJcxxBK/tslRaSdooFPgTLSDksgFCl8uCHVcro5fPDN3p4DRwt5B+cPKMw49hNfZ79XhwksR5rBkIj1/Vf/aHFmw2Kv7rb6FL4bLkdzJ8Km3XpYG4DSgMgRv2ARY/iCTmFqTu2goU5d4SI/ouYLJ0ZKoJqCNoQwZE5NmncQc8dU4ROtKZakRt2GAonLro8FETmgEU3KMAKPPFBFv0JmyOQsKte9RBpfZ6G9/tEzyj2mr5VSYirgog8Tf28pkVIgot8Tla/qfqbiTpkTnsUK6LnSb6Z2+xVp1s7Tr2IXMcK8X0dsqxqe/BsxWHNIatToqPQUxBlzaRnMfZeCJia/OP77ljcVJiL2+J/YJOeC6LEH4dFrjp9DkFJMfkufkMEYOe0n3amrlQD2lfsveeAMG48qU88sZABxMoUBLlMkmtECogF1GZ1TTFEMW3v1WW0RgUsOXLVB2hASwvJ60JzDs/gEqVStLd8WVU8ouZCsbYtYzHkUhBHEhNcL50boH8Q3APzDhAw2VM47EWf5fjjk4RzLoUOV+LZoe9ulUZIA+XK0XWA+Iz85+3HJYKoUI9NoBMNrF9THzec3VtZpBAjUaWxYvaGCI7+eiySgPsi1gDuSJ8A7Pp088z9wuA50RAzLZadSGuoPi1HaMgPR8uWcDskACAxGgdSplKqdp32lOttRiD4zU0/MiESCPsVtntntjlNkadPD/RwrgrV1zpYnDYjV5b8zLLTCJB6IDKIjiUembqERxL/Gt423qM6IBPI11q2J8Y55dNkCyy8xVnYIPp7VRQ5aEB2HayI9Em00qS0EJWfm07xWlNFqfQyff3MjIyqEqzAMMMBA72O1xVWu+s6LtFZLANhhnTy6ENmejCwcbn+/bWFs67CqNGbiFKyoO9+TDLjDsSslv5/joazPPA3ibti6uGvuBgGxQO4RdFMSiXf/KiJJOpROoJ87p0e9x/pZf1zluR88OTHbkmaOYLvFDQhESqVKzf5dixpO55KtDVPmXMqqDCkN/ZuTXnywar50TwtCSBsslPW9gXskUXuantPiXtAM4Ar/SG3hu45ghH25y7wDechkoZV0YjUrbTdCr3/4meXLE6GQ3s0k8ROPeJXhnPlsxSRnuMhQrX6UjfPrvu7e8xGkRTqPuDnJOMlJ7LyYsQVLgDdxPJcyvqwqvOr++p++VHwf+xjaBuvl3JHCgSVOOPe7pa6ce/isWqfdMUhzz+TZss0Fu1/LAbrkWJ1sW3gdmWu5WrNCpXYJ3EIhfMUTbtGaKF3/mwu69ahNQwJGVKZzAvflSjlryTMv6X6WlAUNx9EaVLBvmhYQpd8ebqF4k5OmGiAVmlV3JO06P0PqtphrbvXICgbeFwhnhuCOvxtjuh2qxVGtVyKw8mG59ZkNgVDgiwdSR1aYtgoqn4rolv+F2TnAYy3s0ZS/sl/GnYaPZH9LO7Oa6WAhe2N6HaWOs8Iub6kQZg7Yc92xEz9YSfPmzrGr4pj8tMYbk9DlMZ5kUILrydGeXD6ODkESV7Z1vG2brMGD+em0wlc19QRfcNJJDBvIoerveCHIQK4HNTEUFewQ2GKnWAGPQsIOvavjKLcxUQdv+tQwc6TsOF2bPWK27JOzhjRyNni9BP2WxK25v2lLrvDZLzlQw8Ub/ar8GQCUGCT3tOIapVT7DfrV1d//d9gUOjQuZ+QgqpEcwzGETKiEQbf/tJx7+9SPOxl22mQ0xKPywpShCLdWeQ5mUqGd3mq6bxLru28KnwlQR6uwnQbEWY59++rJSMzzuvC7lSQtArDEMwwL0IShCxncixNYeioZMpLmfgdxewQoEYY669PzwT3Unc6MKk+3XgoayGVdgnanxT65NSPL8SMMTrRcRMiwyeuj4OwkOKFh1KUr1KdVc4qGE75kis4T4xyHlJYBpUd9FkhGC5B+887jtY9uw6rgL8RRdpu8EqAFj17j9/TD/gB/5quG0oN4nd8Nzx7jh6ZefUgwBMMM+L6eDHTZOwSubaIgA2csOoNY0cw3mM2JpVqznDdCQopMUfKngGzUNTjY5rfLBeqKM8aUQ1K2RbFbsVX0VxZPIcQMnYonI3qu8aqQLfzml1EQstAfabfdePvy4MQja9rzO24lRquVUOkRop1T7kdtKNGWEFyTVtJxaH7+XtFReRO+7bFlHUTyr2tAznNfqVjos5ogs2J2Lsi5yqndggbSAvYGG5p4dYrsQA+7L7CYujP+W2l+rDbIXwQ1MB3meoede1Rp/ObjJYj5dXKUrkVWxrWa+qffJaoHwhWTPj6VoD5fqnYbZXi+0hU7Ra+L5VbpvxIHDhnNcsY7wVuzsuY+DymhirfIzWaimqPV3HFpzhmGn6cXFqHXrCDRUTbtX6GuSlj68P7noqq4RaZ29urJpw5yxlabQuICw3pyQE+vF98woUCRIOdeuHNo5KTSw038KjU7ofjftIrDiLOfZawqo7NR549J3UZbpr4PZm2pDpVEeDTFzE9cMmCfIrvsJrOo6tC0fnZsjI1dDWU2v8pxru/DTqgG6fC15J7pVF9Ej+r1AUfnxtG3puJyCaoexSt7/pX4vUP27VjXbcPVNblqju36+5uHoaOkxY8GaYvYyku4mXBE8w53TOL8mbkPI8TIWc/pqzcCAYzeeD3qWALvbF0c+MfJZP7BvWIMGz21pw5ZWLDUgez550e0EWqzTdPMNSyH7tv/siOIExxKvaBndCoZgnsJ2HaXvOMOVaPTearI18Ni2vJcRZ9k0BbDxIIAUAJIrHv/BQ4qBl7dnCyd91i6SBPDj1TCqXFDchJac2P45UWxunxrXV7k8VD9R+TH9GH2kvcX8y29fNLi4dNgcYzDak61M4KPLCpY/uXJDRanLEFo1TyRwk/wLaw883WYBPbzAamjiPDRkP8TgWlzEg49cdQjSAGwNywc9Boj1Fj4stydk1Iu93eOuEtQCGpKDwOImB9SjjUDm0/qIGhlQM6frjG8DUTRGzbnNopmnKRskYsL0tK8Fjgg0NoPv0mUjPciwk2VFl+2fC1eoXI5WmttomdotLdHvibpcFmanTTbIHdOl4f5ivz3I5gjMbbrVKIYtUeCfuDp/jk7xqEDOqT4JMIy3gUgPadDQeslxjVca1KnnuBXJ2z7GI9Z902EshMVjQaa+rhOdkWs+gn2FhJ36EpC207e33R0nOdSDstMhIl2EmHV+J5HVS/HWGh7DIRRw23xd4cxclNkeC1bCd/xMSmgv7Lkq0EworGXY9DalI13HCs/xclc41HTxjCr7at6MEfBHueVZaT3xUywYn9CSaNhDH3y+0K3RwZ2mQvi5F4d+af5l/HBzhZ3Ss+6sV2aLbx7HovQJKMU1oUc9GzXSo5+fPhu5kkap02KJbUKxMdYzqmnw+iaKi5kN3vsbv/4a8cNoygjgd4Z8+Q/LWBHhozgrDIDB7Lmq5GLemKTxS2DepzU6P1HWqJS8hmEoPy6NrWriWLM+2Aw8gSO8ubZbsLCfu5EmczVtEvVtWEHC5qDzFFdpH0CxsflJoZ987bjMVvE1qqpJZZvZcP8j1fV9NuhVXeaO5IQsisfKs35brQTzKlvP11TNjptPSDT5G3wuLz+bpd6xWck/DwAOBJh8UZ0hyM1U8la4MfrCqMcQ9A36eV3G1pSR44zdqc+44RkOUmFk4hJaBF6lMNcl+cTzpr6mdCEkjbFmrAt04tzBI8ommJAiBwzA6E6WrBlo8jqmeTk1gaabBV8q/+OdtQFUBDBnp8NT0KkqSZDYVxJpYghy2ZhtggNiNS2bw1jlH4cdiEaUXnT4C9QiQ2rnm+Ohn+Bu8VNm5H+bNx3+35gENfVK27KUUNBYMP6rt8pvfWJuCCk6yT2PvAzWrsXwCAkvgOcBFokaMn5kDfP5zoMh3ALqLseVX/aYsTmvj8jgUBl+zuUsUZMOiq9WHW6fL8Mjq2YTJIq8hYcMlkQYlJm8r0TV71Gn1KhoeMWFvwqj4kYuk2JgfS8urLuw5sSR+oY0YEtnWRvQA5LGCpzQSphcL0CIQN64vsJ64M2JJd3irlJC4q+10s1iqYjJ+56z3hnNzKOryGzJ9GVeHbhT0Q9tiJbxyVD1DiQEVqt/upmG14Y9qyZizzTc+1FIFpokbZl2efh1ojKxVvoKBJrBPIj/HIB/ToTfP9ansUBDSK+J3h34uGH/K0SGU6oBDIvS6rLDnbF8bVLPvrk8kew0yunWTMrwWGoeon2cIxoNWpAf7OGjRQ+J5+qrZ1PufKZ2lRmAk1D/MYQOCuowIX5QiBTbMSApi1iWwXimtzc415ZKdJ4aAWnaZg26LlIX/McekD1FRCmHzhLYkuW9Tj4vjTnUfmg+WKX74iLYn2DPvOJJ3S3Q6T6xPkbH3ZsrFfmJcaTNBeVU49aKL384qA9cCIzZYTUpQhu7B7qZM4Y49pbBM34ReBkv2wLbtsLfXWbXic/4Z/3HU/NGy7ybU1u3AicaiTAQLi+VJAoQUceKD62rGv31IjMCseZVjCQ1lc7DBaQz12cuyJHQKPzT8iD7VmTG9qT9xVpmx1NgV1P9xg1p+OWaTdeXHtTsOS59SSBhRAakO2enb0okFj0QMIdsMJgBBFjnapm/B43i2JNW4hXHszWxKCK7sW8z0O02uWwlsTKD6h7OPeKcRrfP4Ob3mmaz5VjwPyw9Fz0DwFssVTUNBha5axQfirJvnqI7CaxWBpussiQC3uBr+namAa4nE2BwNhzn/3vwfxfNHoyUSiE6/euaj6a1BkotrCc8TQywKuDBwi8SOHRia7xf0+IXYhj7ZQXFC/0FmT4XQv7NFj1hgyyH20/vsN3APJbyFKDEHWzN04IIRXwFj+oR8yurj+ZPS8LOf2vE2MPCj+Y/NdtbGicrZF3WGrLx/es6cW6hLQBV1UAeiCGPs+RGiuG0bkmD985Jgz+304InkyTdm7u5s1HCZh21dmjSvDSitzcgtrE06GKGGttXwbxrsBeTZ7K1cKCMDGu4o4oeEUGCoFfOEtSnTwnqjkO1Dmp3KToc4l6Emw2Nbw6utxrs87HjY62pP9lA77VFRBuEvMUs3tTz8DzUaZlJgHNEDwBO/0hHhhAi9fqUb0EmtE2YEUDNn+8hJnvueJFu4Gsk2lH2UiU4a3VHvNblZ71CvJvdL6BBwWp+hjotiujAdM1RJOY/nW0CzOA/bEhD10YHcgge0IKm/CAwr8rLMt9/bl3lktwnNMI/r/4YENb5gfhwQogqBnVxA6lZedxu0vXM9x5BJF4TjTeOo+nFv6CIbyrt07jo9eci4vsVYwcNTXkV3qqf9csobE1No8rvYTrTLDh3KUiMnOz7m7jhol1oMtra212XCq2mNbu6ix83E6Y+Z1sHISIW50VvaIIqH+FDU06KRXxkVBHQom/iNllyaSzTSKs3noW06AwGbMWQaiqZBZZ3y14IV6mhtSdh2bakBSubjS0yJUqy8k7YroaVEqUWe130R7KBuelfbYmXwV+r81o/6lCipOMPo3burNQw9nZpAU1fRmlCAz0hWkgqzQ6oBBlXCZyNyT8+xgeXP6/0tQE8UOm1P2nfJ8SaTaMNZk33zfxL4p3MBgO96ReIp1ia1YA4zR7VNp3k6qR/+MYGHiCaHTfJyzKj/aithyLqOmOfWSy/ut7aHheI2ohHec4i4Uj8ICPUZV286kUgGql+8y7lX2xVFs4lDuXAIOmmUo2jydl/LtkeJeKXze9841WlXe2Zz/sbZtW4udbbfWLsl7a7kzI9zNcxY1UoOEETpmusbT40BlPLBivSFxjs1i60VflHE04YxrBpWTdUdIsjxaYKndtNRcO5DIjc6iX3ac+0yst2V/Mmo88jXsiSQOiMZkNLyvcg9W16pLHfE3tlu+ad0uvqlnVrCjvSzwmH9tXNv/kRaIxZxDUEXaeEZ0JKGYGQezncTkkFTVgycpPpSo4qQI1eBXEHQ/0uZcS/zRl5nts+S1UX+qvLkV+6O/ew6zcqZW83R/X4zbfS7eUYgX9af2mmOe3aKhxV2d6Gj55kpHudBJhvfhzmL5wlUbDh3mRa06avQOvp8E2j8noPLzn0P+T+Y9f5rWA4MG1pfbIBKJ84YffPiWx9j4GV2y/KV0BgzcEQ2efdpljLAMMMAaU6tG3iGk/dF/wzPbVMRWIalqfm2PeT36BGxGGQ0f/mn42lrKmuCJ11zejQQUa84rWIEwt5SRyfj8aLspdhhihrarE0LEV07TO6E2WFl8HuqAWs+dDdqoJXwBAUl4l8B81JAAEJnYNNnyngTn1DxMBf7bUO/Qbwvn9efhyCWS/qXvy8U+901cMeKhR+KnJAFZmxEzrGOsLLc64h+opp4FSBHfJqXpq56M+2P0b/WYKyEINJyozciv3LJQdNNm4RDVgvgSk2Ju8vD/Ke7sCvdoaSDgW2GtzvHgPgvquyBWDcS1XMG8hhRTKje8LwxQnn5dJN+49x/zjx/jeyJRPaD5aVbcbT3RNxlTAQRKJG/DfiAYwB9/cIDLhGE6JUJcw93CwmtQUewjfiC4cX2x2zYnjdAzlMS78ZKQ7l6HYD0TEUi0N9SfQhBnyQsN+mu+JVqEmSC/yuEQcbN2pCI5pmNnkVTSpdqoKU99RTIBzZY4YNe4ndfPxGfybLssG15akQiT3+Xb4wQmd8MIfgzI14cY+AuhURWDxWjfJqskVFeoi+cfrczckQHtXMHukjxt1HHdu6iTIVGaloDkFDEO8P/HLTT2UOgQAQOMt4WmtkPBZDndZRcDuQSyOer5zWNYXgC4G204tRVJ0aD2LSl/7Z3FelTl9O3dN7XW+f7+s/t01eK5Wesq1ozUG1g2fM2/rqNSQq6Lew8Eumz4omFm46PsakQ0bDiBuafUIUid0SGgLnwMGNmbz8TqDlg1O8YtGolFrdy2tdkXNVIPc35u71hZEFiIplLVGvFkht3a/cuQW2H9ie6e4u16U9S5rSThqnIwOzV1cNUu3PeN+XqhqOs7B94rrGwprsYORljwmFpfFV4Ehxnq5j/kbOoMt3TmFhTV3OT3kdKewT2R3t6Res+V3zguWoBnweXFOtRjU9HDTdPsnB2x2V39LNgwH8ZRYSDHXa5wnxppV3djsy8aUT4sUJ9kkSG/U+eHvrqcPz3vos50cn7GrU36WdLgYku9i6xSR3ZlHscnhPkcGq0ctIBFasL1SQvLu9/L3LGD22vZ+fUx3I+RyLRSK4FNFWXZGiQAUF5IgJS8VxFK8RHilG2mAeu4DwZisyPX4Uh1pmipDOLZwh0DkKn0IoVrKvfDA7s63wxOe3xwwzZPIZYPXeXMcToIU9oy6QRwGGOVi3kHnFTWCVpj2QQk5wtH/QH6QZpss/jKL09iAMLgJ7lbyWSv3qzHR8HEwPRLBtcciLF93ApIv1NgG17Tt3bIPXMdpXSKWmYWy51RuEzmHSzYruSXJXejnaYtdqI6hK6CBVy87CuoRbePyzhKdel56Jph+thDX7JJ4ongaQzy7uQIhr9lv9+p3kS5CzozTIgm43f7R9ak073iZNOrOmq5hOL4i2dH1U5RGq/V502a9I9CgrnxC8oVlHi3uSs4/zjd7y42CZfNEemA0mgfJhtZX7Lq93O6CMqTJ0MlYO96um5yxmpz64AWxYOlp5IxaclMj+igs2g+x5YLl58d5jOC55zHaovzzphGAOqBnM+IxJQDlaQkAD0jw651X6z4F86KUEuHWEIKBAm4625KmnT7aGFkiPf6dOAz4LjsY+Q/99I/+cFkKX+auw7KE4uLj/vQy9xK3NOOqV1Jowl780QON1anGaAvjEeJgk31gYtVxCy8gmwXQ/ZjuW0ydXfhtX7UwSbucqOLSai2VQPnaa7XVpUHB6ONpnNZLoNP4UPsaTuR2jcFo5/w+ewL7+YiDdVegJR2lLiZB1pSAj24xRf8PDfcU8y8gOgCBXDoZWZmj2Aisvc6WriTgqCy515mJrisIw7cVRtxjj0+qB77rabwUL1BNQURhW4muuHq3sTwEnyGb1zxFL3mksJ5tAbjeX6qNaF8lXWt1B+rVySvBD1MbO4r+CofFY/bKt8XEyQzrOlJw4OpfvhoSsEyahtQcOtsF4b50yq3JNJbIY9ItVEDZsUKnVS335tuRKOqbDa145mo8y7z6SmYn6aDefZxux5MZVlPLmRSvISz+HBlMKBnBfHUPKrp0nVLSOZBL8+ZKqzSqM+OUO1MKtNDVhkV7D1Z/6VJ4UfR8pnFxCiC+DoZgV7EtOmLDs0u4alcwGJ1GdyHussngqXQ4q2i5xRgjWTwmOMjqdVHxCWJ/4+Ye1yzOzlYWobUrSGgWncZvibPpWqct3JtuIxQmlcjH0U6qn175mmpHkvI+4VVRBS39XIdu8pU9ZFKhbjLmCjC6MH2GGB3fMD3bBOtkLVCKAuvXoDVuHYaFEvVtA2vaXF70M59IcvkDoqcQafAq3kqBgSSGEW64/AydYSXsRq1/KabV4HBpWRvFl4r0pNGG5cCE63N+iZtpF73Autq30D0Z2NOolpnbzfHeK92YdYlP9Zxwf0koXR78Vea9CLGIMcgfb7glaNUYSUay7J6wnL6rHcK4Ku8UqheIDncQVTpGlxFAC0XR62dsJ4ysr/hBCwDoRNC+8WB+aYAYJj582UHoRPErxlUNPeW+QToKkjlhaokP4k8z/hhxEOX5LJMTVGJ3PukO5JLdHLBnFFbzWjLkGavzVGjkUyvN6nMl2EyUTcYX82IO8ghqJQUqOr2wiOZpFqxi9rYrr+oxa2OiusRvZj+8yzvn7ZtTPsvofBbvJplyfP03uOnYpCY0ApF1HqBXC/5Rg7yA30wbNvKBEs7y0EDYXP98OTyT2daTXuGiHAXkhgK9MMYehYmxWf+aCwbuzRBeXKXKQBW+60j9UWo4SYVi9fnHZcoID9kygbgUwO8QHd/qIOm4WPtzPvtNAon3YM17TEiTo/76IQzsxVdqAlIiin0yV1o8Fll+oZVsRJvaL+edqBrlaoZnvS5yT0HlddvgDMm6qZwDTa/l2rnjVKtUsLQbHaJdtIacem9noqC/oJSgfhnBMXG1pRPNGsqhr3hZAH1EPy22FrmeRQZWWHnid73V6IjY3S/qcPWHegY93oyOAdi1D4/bh6mMiyIP6qRiPI57JW/AIcWRE5wZ8w7XUdgX0pH285SoVtIHSW5gwf6aQ1ENCMGXm8c6MjjJCGNUQOXkbaXpV3uIaYL2lJ5/icwOxD3aTg6dRutPYSl04H1opSHdH5rUa1ARm1jIMiNAUvkQfh7k2AYRK/fOtDD4RVkOO8gCxl3dNmL+fTSTWEejP+9845VgXMNFzJNCiuigE7Oot9dYex0ml1gyyYKUBWoe4TblICtYF+MeKTxIAWY5IpCkHaFA9Ynjok+fhZqRCO7a1H3iQwUmh0eO3QmjsmBnd0PBCfVPUcoNLmNbhX5IFT/h44gsrd6OKhsDwpokMzvIUHBLAIBYq/uawnA2GaF8HDw9Fl1/j6fmphLK3kzHwsLtrypEC3rtpyXbQkDQEAgTG95zYq3tK4vjJMjWLaf8MGVP1Il2aFVCAjf/rvqq047z20BiHK6utL3FyALkbP/r61NI5GaUsdi+GkICg7Bzq3yI0ryC3LTo5UG/RumctP5VVGSAaNnNOY8Nn3xgORART8TAaWDq6HJtmr/Ju2cSaKqGFW63F9JhTGz/RvgfGis4fuGwLyYDs00g7NXT9oKvZpJwcPVDB4WbncXTQLQ2LcWJYGF2veuh4X4PfL8uEjFG64d/n3kYJJYCCAdUUGIEPZvFa7BrNV5T9XOsikiocGTpeu8yQn8Zufqvp2DQuRFRJL8NaZ095xk3I1lMvTku7qprNP1FkrVjacVbntSt2TRbB/eTZjm62mGMFR8P1+XUanCmaxFgbwUfXJR4yBMx5BjZmKIDOg55Sh94UH1oqder3nOECmlJZ0ud+FGobu5k2o1MXQQfjKeJFwp8CdXYZuT7B+Anf9Llbk7ntcB1tzzef2Uw66Vai8NXDa65pH/YmI47y7xHU4FU7cFCEfkICmrrk8j3LReuxgTi6D3xCknkF95y43Am5/ouIJ4i35vRSuHdVX8jjbts8KmF2Sdje2/LZyFWAYZTMWk3Sl6fbdi6nrG+LiPGB79K0Eu+TYYIaiaQwTcTvA9hA9wDAYnqVOf6TqhixEQsZXr3qlpCtkZ2JQYXfnERSdcON1dfkjt2p4woAcqRH32WBxaglIyEjBJOIpnqKsihpPuh3Nu09oqCXPss2gvaAPoXDSP8esj7UNK1xtiL+zurXi2wZzq/fnjo01dM1UJxfjgCkFJm4xHnuyaMcCGc53g45xu9DOLs0ZGpMBczdFJZ8oHihCqJI5XSTHBIDEkE4Uczol8+amDcO1SgVCPR0StcgqynXHOICGr3XmNsn6Qd7syGu1hjcIUI9MZSUCLYUY37spBhW+VihFfDfs8sf9LqB62JxhCKRds3JChqdYG4VKDPv4gZDTb2QxBWsODXFOwWLHXmf8w8sPjTFfxgq2UlRNssTwJQSfWaPP5EpNdghDS6mp7PjRNTc6zdNhG6vKNLr/vFPqTjGUBzr5PA4eCRZAA1FzNNIYKH0F9Qyns/3K/q3zQX0NiqJml/dfRAfDdf8r5ENSfcdtj1A3+35LmE+gWiyorrbPeY1Wxw9haju5ig1vvMa7WZMa8FoXJCg6VQ/HxIcK+4/RK7qPVkdHqjcOOU6NJV3q/QrezQLBX7ceiwDkGos9MpXIa3UPrsRx7QnbIwcg9GgqxQ5ryZ7H2ezzeNri/fZ7MvH/VTj+2vbNk4juqYPiSdeOccsZhmDGfTStJVw/RD7VEfnYInJ3HW+jOZMx2Upz3G5XQ+uibU9Gwn+6IJlsho/6Z1I/yvsifLusRFFG9tIZJh+Y+3K+mDUyMijBNMAnf0jNvaRzXhZaTSJPsRqbn48R5QPulGwlv2j5zuJN+9yhhfKozN73ZTmgNU8jmRqTZBEBlBgGahtscSWBCnGipRuSTOplSazKzrzJPeLbfgZ8jIGg++TdTsUdvJ0QITOIXN9TtJBJ1Ek4YT0W34KzaLWJiq0iWFe3WgR7FaJvWXd6LDZsVjMgr8kWj6nRHusC7jSeUxgCOpe0WtasMiS22OMGACaAFIeR7T5hHw58iLdtnEctjXYWXviYwKp9kjuXKe8gOshNPD38nDe8vrunUkdErBDtWtEj9ewsmp7AwJvTXT16YkEcmoiaCsxtSdQ/WxPU7viaOAv/xdyRThQkOdCouY=' state_dict = pickle.loads(bz2.decompress(base64.b64decode(PARAM))) model = GeeseNet() model.load_state_dict(state_dict) model.eval() #model = GeeseNet() #model.load_state_dict(torch.load('./latest.pth')) #model.eval() # Main Function of Agent obses = [] def agent(obs, _): obses.append(obs) x = make_input(obses) with torch.no_grad(): xt = torch.from_numpy(x).unsqueeze(0) o = model(xt) p = o['policy'].squeeze(0).detach().numpy() actions = ['NORTH', 'SOUTH', 'WEST', 'EAST'] return actions[np.argmax(p)]
5,281.582609
604,151
0.966882
18,764
607,382
31.294234
0.942656
0.000072
0.000102
0.000075
0.000804
0.000589
0.000257
0.000143
0
0
0
0.15684
0.001355
607,382
114
604,152
5,327.912281
0.811252
0.000764
0
0.086957
0
0.014493
0.995568
0.995454
0
1
0
0
0
1
0.086957
false
0
0.101449
0
0.275362
0
0
0
1
null
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
1
0
0
0
0
0
0
1
1
null
1
0
0
0
0
0
0
0
0
0
0
0
0
6