hexsha
string | size
int64 | ext
string | lang
string | max_stars_repo_path
string | max_stars_repo_name
string | max_stars_repo_head_hexsha
string | max_stars_repo_licenses
list | max_stars_count
int64 | max_stars_repo_stars_event_min_datetime
string | max_stars_repo_stars_event_max_datetime
string | max_issues_repo_path
string | max_issues_repo_name
string | max_issues_repo_head_hexsha
string | max_issues_repo_licenses
list | max_issues_count
int64 | max_issues_repo_issues_event_min_datetime
string | max_issues_repo_issues_event_max_datetime
string | max_forks_repo_path
string | max_forks_repo_name
string | max_forks_repo_head_hexsha
string | max_forks_repo_licenses
list | max_forks_count
int64 | max_forks_repo_forks_event_min_datetime
string | max_forks_repo_forks_event_max_datetime
string | content
string | avg_line_length
float64 | max_line_length
int64 | alphanum_fraction
float64 | qsc_code_num_words_quality_signal
int64 | qsc_code_num_chars_quality_signal
float64 | qsc_code_mean_word_length_quality_signal
float64 | qsc_code_frac_words_unique_quality_signal
float64 | qsc_code_frac_chars_top_2grams_quality_signal
float64 | qsc_code_frac_chars_top_3grams_quality_signal
float64 | qsc_code_frac_chars_top_4grams_quality_signal
float64 | qsc_code_frac_chars_dupe_5grams_quality_signal
float64 | qsc_code_frac_chars_dupe_6grams_quality_signal
float64 | qsc_code_frac_chars_dupe_7grams_quality_signal
float64 | qsc_code_frac_chars_dupe_8grams_quality_signal
float64 | qsc_code_frac_chars_dupe_9grams_quality_signal
float64 | qsc_code_frac_chars_dupe_10grams_quality_signal
float64 | qsc_code_frac_chars_replacement_symbols_quality_signal
float64 | qsc_code_frac_chars_digital_quality_signal
float64 | qsc_code_frac_chars_whitespace_quality_signal
float64 | qsc_code_size_file_byte_quality_signal
float64 | qsc_code_num_lines_quality_signal
float64 | qsc_code_num_chars_line_max_quality_signal
float64 | qsc_code_num_chars_line_mean_quality_signal
float64 | qsc_code_frac_chars_alphabet_quality_signal
float64 | qsc_code_frac_chars_comments_quality_signal
float64 | qsc_code_cate_xml_start_quality_signal
float64 | qsc_code_frac_lines_dupe_lines_quality_signal
float64 | qsc_code_cate_autogen_quality_signal
float64 | qsc_code_frac_lines_long_string_quality_signal
float64 | qsc_code_frac_chars_string_length_quality_signal
float64 | qsc_code_frac_chars_long_word_length_quality_signal
float64 | qsc_code_frac_lines_string_concat_quality_signal
float64 | qsc_code_cate_encoded_data_quality_signal
float64 | qsc_code_frac_chars_hex_words_quality_signal
float64 | qsc_code_frac_lines_prompt_comments_quality_signal
float64 | qsc_code_frac_lines_assert_quality_signal
float64 | qsc_codepython_cate_ast_quality_signal
float64 | qsc_codepython_frac_lines_func_ratio_quality_signal
float64 | qsc_codepython_cate_var_zero_quality_signal
bool | qsc_codepython_frac_lines_pass_quality_signal
float64 | qsc_codepython_frac_lines_import_quality_signal
float64 | qsc_codepython_frac_lines_simplefunc_quality_signal
float64 | qsc_codepython_score_lines_no_logic_quality_signal
float64 | qsc_codepython_frac_lines_print_quality_signal
float64 | qsc_code_num_words
int64 | qsc_code_num_chars
int64 | qsc_code_mean_word_length
int64 | qsc_code_frac_words_unique
null | qsc_code_frac_chars_top_2grams
int64 | qsc_code_frac_chars_top_3grams
int64 | qsc_code_frac_chars_top_4grams
int64 | qsc_code_frac_chars_dupe_5grams
int64 | qsc_code_frac_chars_dupe_6grams
int64 | qsc_code_frac_chars_dupe_7grams
int64 | qsc_code_frac_chars_dupe_8grams
int64 | qsc_code_frac_chars_dupe_9grams
int64 | qsc_code_frac_chars_dupe_10grams
int64 | qsc_code_frac_chars_replacement_symbols
int64 | qsc_code_frac_chars_digital
int64 | qsc_code_frac_chars_whitespace
int64 | qsc_code_size_file_byte
int64 | qsc_code_num_lines
int64 | qsc_code_num_chars_line_max
int64 | qsc_code_num_chars_line_mean
int64 | qsc_code_frac_chars_alphabet
int64 | qsc_code_frac_chars_comments
int64 | qsc_code_cate_xml_start
int64 | qsc_code_frac_lines_dupe_lines
int64 | qsc_code_cate_autogen
int64 | qsc_code_frac_lines_long_string
int64 | qsc_code_frac_chars_string_length
int64 | qsc_code_frac_chars_long_word_length
int64 | qsc_code_frac_lines_string_concat
null | qsc_code_cate_encoded_data
int64 | qsc_code_frac_chars_hex_words
int64 | qsc_code_frac_lines_prompt_comments
int64 | qsc_code_frac_lines_assert
int64 | qsc_codepython_cate_ast
int64 | qsc_codepython_frac_lines_func_ratio
int64 | qsc_codepython_cate_var_zero
int64 | qsc_codepython_frac_lines_pass
int64 | qsc_codepython_frac_lines_import
int64 | qsc_codepython_frac_lines_simplefunc
int64 | qsc_codepython_score_lines_no_logic
int64 | qsc_codepython_frac_lines_print
int64 | effective
string | hits
int64 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
d211f9f70b797554c340157b8758a3ad51e66320
| 170
|
py
|
Python
|
movement_assistant/models.py
|
davidwickerhf/movement-assistant
|
570380adf440faa36993ab8f52e386584a90fec8
|
[
"MIT"
] | 3
|
2020-06-11T13:06:21.000Z
|
2020-06-11T21:35:41.000Z
|
movement_assistant/models.py
|
davidwickerhf/movement-assistant
|
570380adf440faa36993ab8f52e386584a90fec8
|
[
"MIT"
] | 25
|
2020-04-29T16:44:05.000Z
|
2020-06-11T08:18:47.000Z
|
movement_assistant/models.py
|
davidwickerhf/fff-transparency-wg
|
570380adf440faa36993ab8f52e386584a90fec8
|
[
"MIT"
] | 1
|
2020-12-23T09:33:05.000Z
|
2020-12-23T09:33:05.000Z
|
from movement_assistant.bots.telebot.activate import is_subgroup, parent_group, purpose
from movement_assistant import db
# https://www.youtube.com/watch?v=juPQ04_twtA
| 34
| 87
| 0.835294
| 25
| 170
| 5.48
| 0.84
| 0.175182
| 0.306569
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0.012821
| 0.082353
| 170
| 4
| 88
| 42.5
| 0.865385
| 0.252941
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 1
| 0
| true
| 0
| 1
| 0
| 1
| 0
| 1
| 0
| 0
| null | 0
| 1
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 1
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| null | 0
| 0
| 0
| 0
| 0
| 0
| 1
| 0
| 1
| 0
| 1
| 0
|
0
| 6
|
d22b24091bfb015dc2acb000ca344d333973f210
| 30
|
py
|
Python
|
root_utils/bmn/__init__.py
|
t3hseus/ariadne
|
b4471a37741000e22281c4d6ff647d65ab9e1914
|
[
"MIT"
] | 6
|
2020-08-28T22:44:07.000Z
|
2022-01-24T20:53:00.000Z
|
root_utils/bmn/__init__.py
|
t3hseus/ariadne
|
b4471a37741000e22281c4d6ff647d65ab9e1914
|
[
"MIT"
] | 1
|
2021-02-20T09:38:46.000Z
|
2021-02-20T09:38:46.000Z
|
root_utils/bmn/__init__.py
|
t3hseus/ariadne
|
b4471a37741000e22281c4d6ff647d65ab9e1914
|
[
"MIT"
] | 2
|
2021-10-04T09:25:06.000Z
|
2022-02-09T09:09:09.000Z
|
from .utils import root2pandas
| 30
| 30
| 0.866667
| 4
| 30
| 6.5
| 1
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0.037037
| 0.1
| 30
| 1
| 30
| 30
| 0.925926
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 1
| 0
| true
| 0
| 1
| 0
| 1
| 0
| 1
| 1
| 0
| null | 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 1
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| null | 0
| 0
| 0
| 0
| 0
| 0
| 1
| 0
| 1
| 0
| 1
| 0
|
0
| 6
|
d2508d5673ef1a39ce332c042c87a8ac7aadb0e4
| 32
|
py
|
Python
|
kernelml/hdre/__init__.py
|
Freedomtowin/kernel_optimizer
|
2676044e0f287cd8dda8f9f92a6d3813544965e4
|
[
"MIT"
] | 9
|
2019-10-03T18:02:29.000Z
|
2021-08-09T09:30:33.000Z
|
hdre/hdre_bycython/__init__.py
|
freedomtowin/high-density-region-estimator
|
a9c4d30c32d8f6ce16d2bc0712bdcc588124ed61
|
[
"MIT"
] | 1
|
2019-12-11T09:46:09.000Z
|
2021-06-17T00:45:16.000Z
|
hdre/hdre_bycython/__init__.py
|
freedomtowin/high-density-region-estimator
|
a9c4d30c32d8f6ce16d2bc0712bdcc588124ed61
|
[
"MIT"
] | 3
|
2020-04-18T10:41:56.000Z
|
2021-06-17T02:06:14.000Z
|
from .region_estimator import *
| 16
| 31
| 0.8125
| 4
| 32
| 6.25
| 1
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0.125
| 32
| 1
| 32
| 32
| 0.892857
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 1
| 0
| true
| 0
| 1
| 0
| 1
| 0
| 1
| 1
| 0
| null | 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 1
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| null | 0
| 0
| 0
| 0
| 0
| 0
| 1
| 0
| 1
| 0
| 1
| 0
|
0
| 6
|
d26ae3d61cbcd3e5ef2685ce9712c2114b3a9da8
| 14,662
|
py
|
Python
|
api/api.py
|
mcass19/moving_features_grupo8
|
fad76c6c71506977f2a56d5a3432ed1832515493
|
[
"Apache-2.0"
] | null | null | null |
api/api.py
|
mcass19/moving_features_grupo8
|
fad76c6c71506977f2a56d5a3432ed1832515493
|
[
"Apache-2.0"
] | null | null | null |
api/api.py
|
mcass19/moving_features_grupo8
|
fad76c6c71506977f2a56d5a3432ed1832515493
|
[
"Apache-2.0"
] | null | null | null |
import flask
# import psycopg2
# from postgis.psycopg import register
# from mobilitydb.psycopg import register
from flask_cors import CORS
app = flask.Flask(__name__)
CORS(app)
app.config["DEBUG"] = True
@app.route('/', methods=['GET'])
def home():
connectionObject = None
try:
# IMPORTANT !!!!!!!!!!!!!!
# The following endpoint it's retuning a hardcoded czml that you can find on sampleData too
# Commented it's the connection with mobilitydb
# What is missing is store data accordingly in the DB, get it from there and return it as czml
# Set the connection parameters to PostgreSQL
# connection = psycopg2.connect(host='localhost', database='test', user='user', password='pw')
# connection.autocommit = True
# # Register MobilityDB data types
# register(connection)
# # Open a cursor to perform database operations
# cursor = connection.cursor()
# # Query the database and obtain data as Python objects
# select_query = "SELECT * FROM tbl_tfloatseq ORDER BY k LIMIT 10"
# cursor.execute(select_query)
# rows = cursor.fetchall()
# # Print the obtained rows and call a method on the instances
# for row in rows:
# print("key =", row[0])
# print("tfloatseq =", row[1])
# if not row[1]:
# print("")
# else:
# print("startTimestamp =", row[1].startTimestamp(), "\n")
return "[{\"id\":\"document\",\"name\":\"SampleFlight\",\"version\":\"1.0\",\"clock\":{\"interval\":\"20170711T16Z/20170711T1620Z\",\"currentTime\":\"20170711T16Z\",\"multiplier\":2,\"range\":\"LOOP_STOP\",\"step\":\"SYSTEM_CLOCK_MULTIPLIER\"}},{\"id\":\"Aircraft/Aircraft1\",\"name\":\"Aircraft1\",\"availability\":\"20170711T16Z/20170711T162001.65996549888041Z\",\"billboard\":{\"color\":{\"rgba\":[0,255,255,255]},\"eyeOffset\":{\"cartesian\":[0,0,0]},\"horizontalOrigin\":\"CENTER\",\"image\":\"\",\"pixelOffset\":{\"cartesian2\":[0,0]},\"scale\":1,\"show\":true,\"verticalOrigin\":\"CENTER\"},\"path\":{\"show\":[{\"interval\":\"20170711T16Z/20170711T162001.65996549900046Z\",\"boolean\":true}],\"width\":1,\"material\":{\"solidColor\":{\"color\":{\"rgba\":[0,255,255,255]}}},\"resolution\":1200},\"position\":{\"interpolationAlgorithm\":\"LAGRANGE\",\"interpolationDegree\":1,\"epoch\":\"20170711T16Z\",\"cartesian\":[0,1334148.2169703,-4654069.88053539,4138607.58771276,91.86139701440516,1335484.54584316,-4653037.9376884,4139331.98105418,93.60663214893611,1335509.53110048,-4653018.09267666,4139346.13232191,95.3518666688924,1335533.68948835,-4652997.79399382,4139361.054846,97.09710055725736,1335556.9915735,-4652977.06637069,4139376.73044565,98.84233379994839,1335579.4089659,-4652955.93506065,4139393.14002251,100.58756638604427,1335600.91435342,-4652934.42580893,4139410.26358403,102.33279830799074,1335621.48153503,-4652912.5648212,4139428.08026776,104.07802956102933,1335641.08545279,-4652890.37873169,4139446.56836678,105.82326014431783,1335659.70222232,-4652867.8945707,4139465.70535617,107.56849005969525,1335677.30916195,-4652845.13973169,4139485.46792042,109.31371931234753,1335693.88482034,-4652822.14193792,4139505.83198188,111.05894791114406,1335709.40900257,-4652798.9292086,4139526.77273004,112.80417586771182,1335723.86279481,-4652775.52982487,4139548.26465179,114.54940319672824,1335737.22858734,-4652751.97229524,4139570.28156253,116.29462991641412,1335749.49009599,-4652728.2853209,4139592.796638,118.03985604742957,1335760.63238199,-4652704.49776076,4139615.78244704,119.78508161359969,1335770.64187018,-4652680.63859629,4139639.21098494,121.53030664152175,1335779.50636551,-4652656.73689616,4139663.05370763,123.27553115996125,1335787.21506798,-4652632.82178092,4139687.28156639,125.02075520111794,1335793.75858569,-4652608.92238742,4139711.86504329,126.76597879858491,1335799.12894639,-4652585.06783337,4139736.77418713,128.5112019882581,1335803.3196071,-4652561.28718186,4139761.97864994,130.25642480871102,1335806.32546215,-4652537.60940593,4139787.44772395,132.00164729948665,1335808.14284935,-4652514.0633533,4139813.15037899,133.746869502158,1335808.76955452,-4652490.67771119,4139839.05530032,135.49209145963323,1335808.20481409,-4652467.4809714,4139865.13092678,137.23731321593914,1335806.44931611,-4652444.50139558,4139891.34548922,138.98253481613938,1335803.5051994,-4652421.76698078,4139917.66704922,140.7277563061889,1335799.37605089,-4652399.3054254,4139944.06353802,142.4729777321918,1335794.06690132,-4652377.14409537,4139970.50279554,144.21819914111074,1335787.58421908,-4652355.30999087,4139996.95260963,145.22293343280762,1335783.32298762,-4652342.89918393,4140012.1716459,212.66752307694514,1335484.32291699,-4651513.76084887,4141033.28753812,214.41274449847333,1335477.16655719,-4651492.12168627,4141059.72386,216.15796590960963,1335471.17927914,-4651470.13966118,4141086.1679337,217.9031873570366,1335466.36837741,-4651447.84155533,4141112.58754121,219.64840888731123,1335462.73971337,-4651425.2545355,4141138.95049428,221.3936305465577,1335460.29770796,-4651402.40612053,4141165.22467373,223.13885238045987,1335459.04533642,-4651379.32414768,4141191.37806853,224.88407443361575,1335458.98412455,-4651356.03673881,4141217.37881478,226.6292967495683,1335460.11414695,-4651332.57226604,4141243.1952346,228.3745193707473,1335462.43402685,-4651308.95931723,4141268.79587466,230.1197423380636,1335465.94093785,-4651285.22666113,4141294.14954454,231.8649656905509,1335470.63060731,-4651261.40321237,4141319.2253547,233.61018946567492,1335476.49732161,-4651237.51799614,4141343.99275415,235.35541369857856,1335483.53393305,-4651213.60011293,4141368.42156763,237.1006384222619,1335491.73186862,-4651189.67870303,4141392.48203242,238.84586366726944,1335501.08114041,-4651165.782911,4141416.14483457,240.5910894618828,1335511.57035776,-4651141.94185021,4141439.38114461,242.33631583129136,1335523.18674118,-4651118.18456736,4141462.1626527,244.08154279826886,1335535.91613792,-4651094.54000705,4141484.46160309,245.8267703824531,1335549.74303916,-4651071.03697656,4141506.25082799,247.57199860042965,1335564.65059897,-4651047.70411076,4141527.50378058,249.3172274657809,1335580.62065477,-4651024.56983716,4141548.19456745,249.7763503365677,1335584.99585272,-4651018.52065041,4141553.54093112,385.4955428010253,1336888.82626293,-4649232.30192454,4143127.52430988,387.24077184289854,1336905.06951502,-4649209.21363035,4143148.05315285,388.986000233479,1336920.25518905,-4649185.91903814,4143169.15062284,390.73122798567965,1336934.36478359,-4649162.44652875,4143190.79101579,392.4764551150838,1336947.38110827,-4649138.82469979,4143212.94796619,394.221681640729,1336959.2883047,-4649115.08233082,4143235.5944792,395.9669075842885,1336970.07186579,-4649091.24834821,4143258.70296349,397.7121329706388,1336979.71865341,-4649067.35178998,4143282.24526492,399.4573578268719,1336988.21691443,-4649043.4217704,4143306.19270079,401.2025821831012,1336995.55629503,-4649019.48744448,4143330.51609483,402.94780607155735,1337001.7278533,-4648995.57797249,4143355.1858127,404.6930295269922,1337006.72407013,-4648971.72248443,4143380.17179813,404.87313296214234,1337007.17248642,-4648969.26500436,4143382.76696139,586.3486358183509,1337452.42912256,-4646492.7692099,4145998.55005355,587.2212473262443,1337454.27319752,-4646480.8808894,4146011.19338037,588.0938586576976,1337455.52404765,-4646469.05011205,4146023.9626627,588.9664698332253,1337456.18014895,-4646457.29129183,4146036.84234314,589.8390808738786,1337456.24070208,-4646445.61875504,4146049.81672977,590.7116918014071,1337455.70563326,-4646434.04672288,4146062.87001531,591.5843026382099,1337454.57559439,-4646422.58929407,4146075.98629633,592.4569134068915,1337452.85196225,-4646411.26042773,4146089.14959266,593.329524130675,1337450.53683681,-4646400.07392634,4146102.34386686,594.2021348328017,1337447.6330387,-4646389.04341892,4146115.55304372,595.07474553670545,1337444.14410575,-4646378.18234446,4146128.76102991,595.9473562658459,1337440.07428868,-4646367.50393549,4146141.95173353,596.8199670434151,1337435.42854595,-4646357.02120201,4146155.10908373,597.692577892527,1337430.21253768,-4646346.74691562,4146168.21705031,598.5651888357697,1337424.43261876,-4646336.69359396,4146181.25966324,599.4377998954933,1337418.09583114,-4646326.87348546,4146194.2210321,600.3104110932927,1337411.20989522,-4646317.29855441,4146207.08536546,601.1830224502773,1337403.78320045,-4646307.98046638,4146219.83699012,602.0556339866507,1337395.82479513,-4646298.93057404,4146232.46037019,602.9282457216323,1337387.34437533,-4646290.1599033,4146244.94012603,603.8008576736847,1337378.35227315,-4646281.67913986,4146257.26105297,604.6734698602522,1337368.85944408,-4646273.49861624,4146269.40813989,605.546082297431,1337358.87745368,-4646265.62829915,4146281.36658741,606.418695000033,1337348.41846345,-4646258.07777736,4146293.12182603,607.2913079819118,1337337.49521608,-4646250.85625003,4146304.6595338,608.163921255471,1337326.12101986,-4646243.97251548,4146315.9656538,609.0365348313117,1337314.30973249,-4646237.4349605,4146327.02641128,609.909148719018,1337302.07574421,-4646231.25155008,4146337.82833041,610.7817629264828,1337289.43396027,-4646225.42981777,4146348.35825072,611.6543774600032,1337276.39978271,-4646219.97685646,4146358.60334313,612.5269923243377,1337262.9890917,-4646214.89930975,4146368.55112559,612.9797350475983,1337255.88846612,-4646212.4149769,4146373.5910238,614.115545975761,1337273.82645994,-4646218.5123855,4146361.05776329,615.8607766890927,1337245.9243585,-4646209.52088052,4146380.00430622,617.6060080778152,1337217.35317569,-4646201.30951309,4146398.29656903,619.3512401400367,1337188.14772112,-4646193.88828751,4146415.91226544,621.0964728706058,1337158.34357713,-4646187.26624544,4146432.82993346,622.8417062609387,1337127.97705549,-4646181.45145484,4146449.02896154,624.5869402993321,1337097.08515315,-4646176.45100018,4146464.48961367,626.3321749710612,1337065.70550714,-4646172.27097376,4146479.19305345,628.0774102579635,1337033.87634873,-4646168.91646834,4146493.12136704,629.8226461392933,1337001.63645686,-4646166.39157088,4146506.25758493,631.5678825911564,1336969.02511088,-4646164.69935762,4146518.5857027,633.3131195870228,1336936.0820427,-4646163.84189028,4146530.09070044,635.0583570974941,1336902.84738838,-4646163.82021358,4146540.75856111,636.8035950910344,1336869.36163925,-4646164.63435394,4146550.57628757,638.5488335334194,1336835.66559254,-4646166.28331949,4146559.53191846,640.2940723883112,1336801.8003017,-4646168.76510123,4146567.61454272,642.0393116175965,1336767.80702638,-4646172.07667551,4146574.81431295,643.784551181021,1336733.72718216,-4646176.21400771,4146581.12245733,645.52979103693,1336699.60229008,-4646181.17205713,4146586.53129038,647.2750311420623,1336665.47392609,-4646186.94478317,4146591.03422228,649.0202714521783,1336631.38367033,-4646193.52515265,4146594.6257669,650.7655119218798,1336597.37305656,-4646200.90514843,4146597.3015485,652.510752504957,1336563.48352145,-4646209.07577912,4146599.05830706,654.2559931547476,1336529.75635421,-4646218.02709006,4146599.89390225,656.0012338243196,1336496.23264619,-4646227.74817547,4146599.80731601,657.7464744663976,1336462.95324087,-4646238.22719169,4146598.79865385,659.4917150341334,1336429.95868409,-4646249.45137165,4146596.86914466,661.2369554808902,1336397.28917463,-4646261.40704043,4146594.02113924,662.98219576056,1336364.98451526,-4646274.07963186,4146590.25810745,664.7274358280192,1336333.08406424,-4646287.45370634,4146585.58463395,666.4726756390246,1336301.62668735,-4646301.5129696,4146580.00641265,668.2179151507044,1336270.65071056,-4646316.24029259,4146573.53023974,669.9631543215146,1336240.19387333,-4646331.61773231,4146566.16400543,671.7083931118068,1336210.29328262,-4646347.6265537,4146557.91668432,673.4536314833931,1336180.9853677,-4646364.24725247,4146548.7983245,675.198869400565,1336152.30583574,-4646381.45957883,4146538.82003526,676.9441068294364,1336124.28962834,-4646399.24256219,4146527.99397361,678.6893437387953,1336096.97087892,-4646417.5745367,4146516.33332941,680.434580099789,1336070.38287117,-4646436.43316764,4146503.85230934,682.179815886373,1336044.55799847,-4646455.79547866,4146490.5661196,683.9250510749916,1336019.52772445,-4646475.63787973,4146476.49094732,685.6702856454249,1335995.32254464,-4646495.93619591,4146461.64394094,687.4155195802796,1335971.97194931,-4646516.6656968,4146446.0431892,689.1607528650311,1335949.50438756,-4646537.80112668,4146429.70769921,690.9059854887018,1335927.94723265,-4646559.31673523,4146412.65737323,692.6512174432555,1335907.32674864,-4646581.18630898,4146394.91298443,694.3964487239937,1335887.66805841,-4646603.38320319,4146376.49615159,696.1416793295448,1335868.99511303,-4646625.88037433,4146357.42931276,697.8869092618461,1335851.33066261,-4646648.65041304,4146337.73569793,699.6321385259016,1335834.69622854,-4646671.66557748,4146317.43930072,701.3773671302242,1335819.11207732,-4646694.89782721,4146296.56484914,703.1225950864336,1335804.59719582,-4646718.31885728,4146275.13777546,704.7909304804743,1335791.73781623,-4646740.85809959,4146254.16224107,822.0039238507488,1334923.44193438,-4648328.57627519,4144763.90958602,823.7491506214883,1334911.06525036,-4648352.27448643,4144741.46947821,825.4943768008197,1334899.80625999,-4648376.07662074,4144718.55573779,827.2396024121663,1334889.67868058,-4648399.95367885,4144695.1962816,828.984827481936,1334880.69485104,-4648423.87657022,4144671.41956952,830.7300520386889,1334872.86571678,-4648447.81614846,4144647.25456979,831.8452041604105,1334868.47231771,-4648463.10775,4144631.62446853,995.6882490628541,1334257.85418776,-4650708.40950617,4142324.29109808,997.433472851626,1334251.93378386,-4650732.300287,4142299.54184818,999.1786962161423,1334247.19017954,-4650756.1308492,4142274.48294786,1000.9239191938304,1334243.62915416,-4650779.87215888,4142249.14492753,1001.3115691460098,1334242.99918079,-4650785.1303148,4142243.48231718,1201.6599654988804,1333932.29970588,-4653500.20540007,4139312.96115992]}}]"
except (Exception, psycopg2.Error) as error:
print("Error while connecting to PostgreSQL", error)
finally:
# Close the connection
if connectionObject:
connectionObject.close()
app.run()
| 266.581818
| 12,929
| 0.827718
| 1,630
| 14,662
| 7.43865
| 0.897546
| 0.001979
| 0.003464
| 0.004124
| 0.003134
| 0.003134
| 0
| 0
| 0
| 0
| 0
| 0.727517
| 0.033829
| 14,662
| 55
| 12,930
| 266.581818
| 0.128406
| 0.073864
| 0
| 0
| 0
| 0.0625
| 0.87703
| 0.860127
| 0
| 0
| 0
| 0
| 0
| 1
| 0.0625
| false
| 0
| 0.125
| 0
| 0.25
| 0.0625
| 0
| 0
| 0
| null | 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 1
| 0
| 0
| 0
| 1
| 1
| 1
| 0
| 0
| 0
| 0
| 0
| 1
| 1
| null | 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
|
0
| 6
|
d273ab7aaa63fdb4d56fc5f96393a1fcef993aff
| 438
|
py
|
Python
|
project/mainapp/permissions.py
|
Gustutu/django-auth-project
|
587308f4afa9eea0b901ccbcd05a0c7348020e83
|
[
"Apache-2.0"
] | null | null | null |
project/mainapp/permissions.py
|
Gustutu/django-auth-project
|
587308f4afa9eea0b901ccbcd05a0c7348020e83
|
[
"Apache-2.0"
] | null | null | null |
project/mainapp/permissions.py
|
Gustutu/django-auth-project
|
587308f4afa9eea0b901ccbcd05a0c7348020e83
|
[
"Apache-2.0"
] | null | null | null |
from rest_framework import permissions
class GerantPermission(permissions.BasePermission):
message = 'not allowed.'
def has_permission(self, request, view):
return request.user.has_perm("mainapp.gerant_default_new")
class AgentPermission(permissions.BasePermission):
message = 'not allowed'
def has_permission(self, request, view):
return request.user.has_perm("mainapp.agent_default_new")
pass
| 24.333333
| 66
| 0.746575
| 50
| 438
| 6.36
| 0.54
| 0.157233
| 0.201258
| 0.220126
| 0.654088
| 0.654088
| 0.654088
| 0.654088
| 0.654088
| 0.654088
| 0
| 0
| 0.164384
| 438
| 17
| 67
| 25.764706
| 0.868852
| 0
| 0
| 0.2
| 0
| 0
| 0.16895
| 0.116438
| 0
| 0
| 0
| 0
| 0
| 1
| 0.2
| false
| 0.1
| 0.1
| 0.2
| 0.9
| 0
| 0
| 0
| 0
| null | 0
| 1
| 1
| 0
| 0
| 0
| 0
| 0
| 1
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| null | 0
| 0
| 0
| 0
| 0
| 0
| 0
| 1
| 0
| 1
| 1
| 0
|
0
| 6
|
967a97722e79cdc0eef42b8c3a7594d457dcec7c
| 263
|
py
|
Python
|
multilens/ext/db/commands.py
|
uesleicarvalhoo/Multilens
|
677cf00c07e9b4ce7a5d3efd7be04b6d13dd09b8
|
[
"MIT"
] | null | null | null |
multilens/ext/db/commands.py
|
uesleicarvalhoo/Multilens
|
677cf00c07e9b4ce7a5d3efd7be04b6d13dd09b8
|
[
"MIT"
] | null | null | null |
multilens/ext/db/commands.py
|
uesleicarvalhoo/Multilens
|
677cf00c07e9b4ce7a5d3efd7be04b6d13dd09b8
|
[
"MIT"
] | 1
|
2020-11-02T23:30:02.000Z
|
2020-11-02T23:30:02.000Z
|
from werkzeug.security import check_password_hash
from multilens.ext.db import db
from multilens.ext.db.models import User
def create_db():
"""Cria o banco de dados"""
db.create_all()
def drop_db():
"""Limpa o banco de dados"""
db.drop_all()
| 17.533333
| 49
| 0.69962
| 42
| 263
| 4.238095
| 0.52381
| 0.146067
| 0.179775
| 0.202247
| 0.168539
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0.186312
| 263
| 14
| 50
| 18.785714
| 0.831776
| 0.1673
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 1
| 0.285714
| true
| 0.142857
| 0.428571
| 0
| 0.714286
| 0
| 0
| 0
| 0
| null | 0
| 0
| 1
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| null | 0
| 0
| 0
| 0
| 0
| 1
| 1
| 1
| 1
| 0
| 1
| 0
|
0
| 6
|
967c6c264768cdc95dbab668b460607c9d6ce2b9
| 83
|
py
|
Python
|
codigo/Live102/app.py
|
cassiasamp/live-de-python
|
00b5e51793097544ba9b75c97a0d30e63970bf45
|
[
"MIT"
] | 572
|
2018-04-03T03:17:08.000Z
|
2022-03-31T19:05:32.000Z
|
codigo/Live102/app.py
|
cassiasamp/live-de-python
|
00b5e51793097544ba9b75c97a0d30e63970bf45
|
[
"MIT"
] | 176
|
2018-05-18T15:56:16.000Z
|
2022-03-28T20:39:07.000Z
|
codigo/Live102/app.py
|
cassiasamp/live-de-python
|
00b5e51793097544ba9b75c97a0d30e63970bf45
|
[
"MIT"
] | 140
|
2018-04-18T13:59:11.000Z
|
2022-03-29T00:43:49.000Z
|
def concats(x, y):
return x + y
def concatx(x, y):
return concats(x, y)
| 10.375
| 24
| 0.566265
| 15
| 83
| 3.133333
| 0.4
| 0.170213
| 0.382979
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0.289157
| 83
| 7
| 25
| 11.857143
| 0.79661
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 1
| 0.5
| false
| 0
| 0
| 0.5
| 1
| 0
| 1
| 0
| 0
| null | 0
| 1
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 1
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| null | 0
| 0
| 0
| 0
| 0
| 1
| 0
| 0
| 0
| 1
| 1
| 0
|
0
| 6
|
9685bd02b44d4aa7c0d6b14ff15141fd332a9014
| 45
|
py
|
Python
|
marklogic_client/__init__.py
|
HanKruiger/marklogic_client
|
689e5ba4b36edf2f9c5f2940d19ebcea22ff54c3
|
[
"MIT"
] | 1
|
2020-04-22T23:33:44.000Z
|
2020-04-22T23:33:44.000Z
|
marklogic_client/__init__.py
|
quangis/marklogic_client
|
689e5ba4b36edf2f9c5f2940d19ebcea22ff54c3
|
[
"MIT"
] | null | null | null |
marklogic_client/__init__.py
|
quangis/marklogic_client
|
689e5ba4b36edf2f9c5f2940d19ebcea22ff54c3
|
[
"MIT"
] | null | null | null |
from .marklogic_client import MarkLogicClient
| 45
| 45
| 0.911111
| 5
| 45
| 8
| 1
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0.066667
| 45
| 1
| 45
| 45
| 0.952381
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 1
| 0
| true
| 0
| 1
| 0
| 1
| 0
| 1
| 1
| 0
| null | 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 1
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| null | 0
| 0
| 0
| 0
| 0
| 0
| 1
| 0
| 1
| 0
| 1
| 0
|
0
| 6
|
7376832879a01c0faf5bd886347e1f770f4e8a6d
| 4,477
|
py
|
Python
|
tests/template_tests/test_library.py
|
jpmallarino/django
|
659d2421c7adbbcd205604002d521d82d6b0b465
|
[
"BSD-3-Clause",
"0BSD"
] | 16
|
2019-08-10T12:24:06.000Z
|
2020-05-21T09:11:14.000Z
|
tests/template_tests/test_library.py
|
jpmallarino/django
|
659d2421c7adbbcd205604002d521d82d6b0b465
|
[
"BSD-3-Clause",
"0BSD"
] | 12
|
2019-08-10T11:55:29.000Z
|
2020-05-21T04:46:30.000Z
|
tests/template_tests/test_library.py
|
jpmallarino/django
|
659d2421c7adbbcd205604002d521d82d6b0b465
|
[
"BSD-3-Clause",
"0BSD"
] | 3
|
2019-08-20T13:29:34.000Z
|
2020-01-30T22:05:10.000Z
|
import functools
from django.template import Library
from django.template.base import Node
from django.test import SimpleTestCase
class FilterRegistrationTests(SimpleTestCase):
def setUp(self):
self.library = Library()
def test_filter(self):
@self.library.filter
def func():
return ""
self.assertEqual(self.library.filters["func"], func)
def test_filter_parens(self):
@self.library.filter()
def func():
return ""
self.assertEqual(self.library.filters["func"], func)
def test_filter_name_arg(self):
@self.library.filter("name")
def func():
return ""
self.assertEqual(self.library.filters["name"], func)
def test_filter_name_kwarg(self):
@self.library.filter(name="name")
def func():
return ""
self.assertEqual(self.library.filters["name"], func)
def test_filter_call(self):
def func():
return ""
self.library.filter("name", func)
self.assertEqual(self.library.filters["name"], func)
def test_filter_invalid(self):
msg = "Unsupported arguments to Library.filter: (None, '')"
with self.assertRaisesMessage(ValueError, msg):
self.library.filter(None, "")
class InclusionTagRegistrationTests(SimpleTestCase):
def setUp(self):
self.library = Library()
def test_inclusion_tag(self):
@self.library.inclusion_tag("template.html")
def func():
return ""
self.assertIn("func", self.library.tags)
def test_inclusion_tag_name(self):
@self.library.inclusion_tag("template.html", name="name")
def func():
return ""
self.assertIn("name", self.library.tags)
def test_inclusion_tag_wrapped(self):
@self.library.inclusion_tag("template.html")
@functools.lru_cache(maxsize=32)
def func():
return ""
func_wrapped = self.library.tags["func"].__wrapped__
self.assertIs(func_wrapped, func)
self.assertTrue(hasattr(func_wrapped, "cache_info"))
class SimpleTagRegistrationTests(SimpleTestCase):
def setUp(self):
self.library = Library()
def test_simple_tag(self):
@self.library.simple_tag
def func():
return ""
self.assertIn("func", self.library.tags)
def test_simple_tag_parens(self):
@self.library.simple_tag()
def func():
return ""
self.assertIn("func", self.library.tags)
def test_simple_tag_name_kwarg(self):
@self.library.simple_tag(name="name")
def func():
return ""
self.assertIn("name", self.library.tags)
def test_simple_tag_invalid(self):
msg = "Invalid arguments provided to simple_tag"
with self.assertRaisesMessage(ValueError, msg):
self.library.simple_tag("invalid")
def test_simple_tag_wrapped(self):
@self.library.simple_tag
@functools.lru_cache(maxsize=32)
def func():
return ""
func_wrapped = self.library.tags["func"].__wrapped__
self.assertIs(func_wrapped, func)
self.assertTrue(hasattr(func_wrapped, "cache_info"))
class TagRegistrationTests(SimpleTestCase):
def setUp(self):
self.library = Library()
def test_tag(self):
@self.library.tag
def func(parser, token):
return Node()
self.assertEqual(self.library.tags["func"], func)
def test_tag_parens(self):
@self.library.tag()
def func(parser, token):
return Node()
self.assertEqual(self.library.tags["func"], func)
def test_tag_name_arg(self):
@self.library.tag("name")
def func(parser, token):
return Node()
self.assertEqual(self.library.tags["name"], func)
def test_tag_name_kwarg(self):
@self.library.tag(name="name")
def func(parser, token):
return Node()
self.assertEqual(self.library.tags["name"], func)
def test_tag_call(self):
def func(parser, token):
return Node()
self.library.tag("name", func)
self.assertEqual(self.library.tags["name"], func)
def test_tag_invalid(self):
msg = "Unsupported arguments to Library.tag: (None, '')"
with self.assertRaisesMessage(ValueError, msg):
self.library.tag(None, "")
| 26.96988
| 67
| 0.614697
| 504
| 4,477
| 5.309524
| 0.109127
| 0.168535
| 0.106502
| 0.063528
| 0.843049
| 0.786248
| 0.760837
| 0.641629
| 0.600523
| 0.52429
| 0
| 0.001212
| 0.262676
| 4,477
| 165
| 68
| 27.133333
| 0.809452
| 0
| 0
| 0.605042
| 0
| 0
| 0.068126
| 0
| 0
| 0
| 0
| 0
| 0.184874
| 1
| 0.344538
| false
| 0
| 0.033613
| 0.142857
| 0.554622
| 0
| 0
| 0
| 0
| null | 0
| 0
| 0
| 1
| 1
| 1
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| null | 0
| 0
| 0
| 0
| 0
| 1
| 0
| 0
| 0
| 1
| 1
| 0
|
0
| 6
|
737db5479eae82de2ec951ed335c69526686732d
| 125
|
py
|
Python
|
app/bayescmd/abc/__init__.py
|
Jignesh1996/bcmd-web
|
2444352ef235b162531c4995dbef3907b0d83719
|
[
"MIT"
] | 1
|
2018-07-16T15:39:41.000Z
|
2018-07-16T15:39:41.000Z
|
app/bayescmd/abc/__init__.py
|
Jignesh1996/bcmd-web
|
2444352ef235b162531c4995dbef3907b0d83719
|
[
"MIT"
] | 6
|
2018-07-16T15:55:25.000Z
|
2018-11-01T15:14:10.000Z
|
app/bayescmd/abc/__init__.py
|
Jignesh1996/bcmd-web
|
2444352ef235b162531c4995dbef3907b0d83719
|
[
"MIT"
] | 1
|
2018-07-16T15:34:54.000Z
|
2018-07-16T15:34:54.000Z
|
from .rejection import Rejection
from .distances import get_distance
from .data_import import import_actual_data, inputParse
| 31.25
| 55
| 0.864
| 17
| 125
| 6.117647
| 0.529412
| 0.230769
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0.104
| 125
| 3
| 56
| 41.666667
| 0.928571
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 1
| 0
| true
| 0
| 1
| 0
| 1
| 0
| 1
| 0
| 0
| null | 1
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 1
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| null | 0
| 0
| 0
| 0
| 0
| 0
| 1
| 0
| 1
| 0
| 1
| 0
|
0
| 6
|
73874b8f186e1e66a51769ba1ac53d9b0be5e087
| 163
|
py
|
Python
|
PwnTheBox/Base_re.py
|
Don2025/CTFwriteUp
|
41e0a5bf87a1a02dd1548e621853c145ff64cedb
|
[
"MIT"
] | 2
|
2022-03-20T02:27:59.000Z
|
2022-03-20T02:28:02.000Z
|
PwnTheBox/Base_re.py
|
Don2025/CTFwriteUp
|
41e0a5bf87a1a02dd1548e621853c145ff64cedb
|
[
"MIT"
] | null | null | null |
PwnTheBox/Base_re.py
|
Don2025/CTFwriteUp
|
41e0a5bf87a1a02dd1548e621853c145ff64cedb
|
[
"MIT"
] | null | null | null |
from base64 import *
flag = b64decode('ZmxhZ3tiNTljNjdiZjE5NmE0NzU4MTkxZTQyZjc2NjcwY2ViYX0=').decode('utf-8')
print(flag) # flag{b59c67bf196a4758191e42f76670ceba}
| 40.75
| 88
| 0.828221
| 13
| 163
| 10.384615
| 0.846154
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0.215686
| 0.06135
| 163
| 4
| 89
| 40.75
| 0.666667
| 0.233129
| 0
| 0
| 0
| 0
| 0.459677
| 0.419355
| 0
| 0
| 0
| 0
| 0
| 1
| 0
| false
| 0
| 0.333333
| 0
| 0.333333
| 0.333333
| 1
| 0
| 1
| null | 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 1
| 0
| 0
| 1
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 1
| null | 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 1
| 0
| 0
| 0
|
0
| 6
|
73f459be96b11f4ce2469d90d2b045ed5b07dbac
| 143
|
py
|
Python
|
config.py
|
anthonyattard/item-catalog
|
08885e8e98dc126311f45e0d810dbfc879cd1a06
|
[
"MIT"
] | null | null | null |
config.py
|
anthonyattard/item-catalog
|
08885e8e98dc126311f45e0d810dbfc879cd1a06
|
[
"MIT"
] | null | null | null |
config.py
|
anthonyattard/item-catalog
|
08885e8e98dc126311f45e0d810dbfc879cd1a06
|
[
"MIT"
] | null | null | null |
GOOGLE_CLIENT_ID = "163087330440-2dv41o1fh9hiqp476ate0c2tq4bcgo7n.apps.googleusercontent.com"
GOOGLE_CLIENT_SECRET = "7RQ1XLSYQR2Vi6aprkUJuu0g"
| 71.5
| 93
| 0.895105
| 12
| 143
| 10.333333
| 0.833333
| 0.193548
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0.210145
| 0.034965
| 143
| 2
| 94
| 71.5
| 0.688406
| 0
| 0
| 0
| 0
| 0
| 0.666667
| 0.666667
| 0
| 0
| 0
| 0
| 0
| 1
| 0
| false
| 0
| 0
| 0
| 0
| 0
| 1
| 0
| 1
| null | 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 1
| 0
| 0
| 1
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 1
| 1
| null | 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
|
0
| 6
|
fb435cb5f43f5c550f0371d91da54bd43a38ef84
| 134
|
py
|
Python
|
tikplay/utils/__init__.py
|
tietokilta-saato/tikplay
|
8061451c21f06bd07129a8a42543ea86b7518d4a
|
[
"MIT"
] | 2
|
2015-01-15T14:14:50.000Z
|
2015-10-23T05:37:34.000Z
|
tikplay/utils/__init__.py
|
tietokilta-saato/tikplay
|
8061451c21f06bd07129a8a42543ea86b7518d4a
|
[
"MIT"
] | 8
|
2015-01-12T10:27:27.000Z
|
2015-05-11T12:05:03.000Z
|
tikplay/utils/__init__.py
|
tietokilta-saato/tikplay
|
8061451c21f06bd07129a8a42543ea86b7518d4a
|
[
"MIT"
] | null | null | null |
def is_uri(uri):
return uri.find(":") != -1 and len(uri) > 3
def is_url(uri):
return uri.startswith(("http://", "https://"))
| 22.333333
| 50
| 0.567164
| 21
| 134
| 3.52381
| 0.619048
| 0.135135
| 0.324324
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0.018182
| 0.179104
| 134
| 6
| 50
| 22.333333
| 0.654545
| 0
| 0
| 0
| 0
| 0
| 0.118519
| 0
| 0
| 0
| 0
| 0
| 0
| 1
| 0.5
| false
| 0
| 0
| 0.5
| 1
| 0
| 1
| 0
| 0
| null | 0
| 1
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 1
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| null | 0
| 0
| 0
| 0
| 0
| 1
| 0
| 0
| 0
| 1
| 1
| 0
|
0
| 6
|
fb43a45eab1b6e6662246abe3f458eb22e45f409
| 65
|
py
|
Python
|
tests/basics/dict_get.py
|
learnforpractice/micropython-cpp
|
004bc8382f74899e7b876cc29bfa6a9cc976ba10
|
[
"MIT"
] | 13,648
|
2015-01-01T01:34:51.000Z
|
2022-03-31T16:19:53.000Z
|
tests/basics/dict_get.py
|
learnforpractice/micropython-cpp
|
004bc8382f74899e7b876cc29bfa6a9cc976ba10
|
[
"MIT"
] | 7,092
|
2015-01-01T07:59:11.000Z
|
2022-03-31T23:52:18.000Z
|
tests/basics/dict_get.py
|
learnforpractice/micropython-cpp
|
004bc8382f74899e7b876cc29bfa6a9cc976ba10
|
[
"MIT"
] | 4,942
|
2015-01-02T11:48:50.000Z
|
2022-03-31T19:57:10.000Z
|
for d in {}, {42:2}:
print(d.get(42))
print(d.get(42,2))
| 16.25
| 22
| 0.492308
| 14
| 65
| 2.285714
| 0.5
| 0.1875
| 0.5625
| 0.6875
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0.16
| 0.230769
| 65
| 3
| 23
| 21.666667
| 0.48
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 1
| 0
| false
| 0
| 0
| 0
| 0
| 0.666667
| 1
| 0
| 0
| null | 0
| 1
| 1
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 1
| 0
| 0
| 1
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| null | 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 1
|
0
| 6
|
fb7f74e8f76f05d5e772ff317795b10aab119852
| 148
|
py
|
Python
|
leo/test/unittest/at-path-test1.py
|
ATikhonov2/leo-editor
|
225aac990a9b2804aaa9dea29574d6e072e30474
|
[
"MIT"
] | 2
|
2020-01-19T18:11:05.000Z
|
2020-01-19T18:12:07.000Z
|
leo/test/unittest/at-path-test1.py
|
ATikhonov2/leo-editor
|
225aac990a9b2804aaa9dea29574d6e072e30474
|
[
"MIT"
] | 1
|
2020-06-19T02:28:25.000Z
|
2020-06-19T02:28:25.000Z
|
leo/test/unittest/at-path-test1.py
|
ATikhonov2/leo-editor
|
225aac990a9b2804aaa9dea29574d6e072e30474
|
[
"MIT"
] | null | null | null |
#@+leo-ver=5-thin
#@+node:ekr.20120228145505.4834: * @thin ../test/unittest/at-path-test1.py
#@@language python
# unittest/at-path-test1.py
#@-leo
| 24.666667
| 74
| 0.695946
| 23
| 148
| 4.478261
| 0.695652
| 0.194175
| 0.271845
| 0.368932
| 0.407767
| 0
| 0
| 0
| 0
| 0
| 0
| 0.153285
| 0.074324
| 148
| 5
| 75
| 29.6
| 0.59854
| 0.932432
| 0
| null | 0
| null | 0
| 0
| null | 0
| 0
| 0
| null | 1
| null | true
| 0
| 0
| null | null | null | 1
| 0
| 0
| null | 0
| 1
| 1
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 1
| 0
| 0
| 0
| 1
| 0
| 0
| 0
| 0
| 0
| 0
| null | 0
| 0
| 0
| 0
| 0
| 0
| 1
| 0
| 0
| 0
| 0
| 0
|
0
| 6
|
fbd7ea4e768fdaf98462cc0956906537b9481e95
| 263
|
py
|
Python
|
Python/libraries/datatypes-timex-expression/datatypes_timex_expression/timex_convert.py
|
ahmedabuamra/Recognizers-Text
|
31193d89d3532839742992a2755c1d8539c68116
|
[
"MIT"
] | 2
|
2017-08-22T11:21:19.000Z
|
2017-09-17T20:06:00.000Z
|
Python/libraries/datatypes-timex-expression/datatypes_timex_expression/timex_convert.py
|
ahmedabuamra/Recognizers-Text
|
31193d89d3532839742992a2755c1d8539c68116
|
[
"MIT"
] | 76
|
2018-11-09T18:19:44.000Z
|
2019-08-20T20:29:53.000Z
|
Python/libraries/datatypes-timex-expression/datatypes_timex_expression/timex_convert.py
|
ahmedabuamra/Recognizers-Text
|
31193d89d3532839742992a2755c1d8539c68116
|
[
"MIT"
] | 6
|
2017-05-04T17:24:59.000Z
|
2019-07-23T15:48:44.000Z
|
from .english import *
class TimexConvert:
@staticmethod
def convert_timex_to_string(timex):
return convert_timex_to_string(timex)
@staticmethod
def convert_timex_set_to_string(timex):
return convert_timex_set_to_string(timex)
| 20.230769
| 49
| 0.745247
| 33
| 263
| 5.515152
| 0.393939
| 0.263736
| 0.285714
| 0.296703
| 0.648352
| 0.510989
| 0
| 0
| 0
| 0
| 0
| 0
| 0.197719
| 263
| 12
| 50
| 21.916667
| 0.862559
| 0
| 0
| 0.25
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 1
| 0.25
| false
| 0
| 0.125
| 0.25
| 0.75
| 0
| 0
| 0
| 0
| null | 1
| 1
| 1
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| null | 0
| 0
| 0
| 0
| 0
| 1
| 0
| 0
| 0
| 1
| 1
| 0
|
0
| 6
|
836e8b995c1c7bbba5b64ce9a65cd441df2629c5
| 44
|
py
|
Python
|
python/fastscore/utils/__init__.py
|
modelop/fastscore-sdk
|
2206a4b9294cd83b6b8c2470193070bdc35a9061
|
[
"Apache-2.0"
] | 2
|
2018-06-05T19:14:30.000Z
|
2019-02-06T17:15:10.000Z
|
python/fastscore/utils/__init__.py
|
modelop/fastscore-sdk
|
2206a4b9294cd83b6b8c2470193070bdc35a9061
|
[
"Apache-2.0"
] | 2
|
2018-02-20T21:58:43.000Z
|
2018-10-07T10:10:54.000Z
|
python/fastscore/utils/__init__.py
|
modelop/fastscore-sdk
|
2206a4b9294cd83b6b8c2470193070bdc35a9061
|
[
"Apache-2.0"
] | 1
|
2017-12-29T20:38:06.000Z
|
2017-12-29T20:38:06.000Z
|
from .utils import *
from .secrets import *
| 14.666667
| 22
| 0.727273
| 6
| 44
| 5.333333
| 0.666667
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0.181818
| 44
| 2
| 23
| 22
| 0.888889
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 1
| 0
| true
| 0
| 1
| 0
| 1
| 0
| 1
| 1
| 0
| null | 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 1
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| null | 0
| 0
| 0
| 0
| 0
| 0
| 1
| 0
| 1
| 0
| 1
| 0
|
0
| 6
|
83d1d0f13a9624aa9566ae150eed6e38967db718
| 23
|
py
|
Python
|
utils/resume_training.py
|
dumpmemory/SPPR
|
0df749d000e50a64ae13c606072a902f19ecb251
|
[
"MIT"
] | 62
|
2021-08-01T09:32:32.000Z
|
2022-03-22T06:40:40.000Z
|
utils/resume_training.py
|
dumpmemory/SPPR
|
0df749d000e50a64ae13c606072a902f19ecb251
|
[
"MIT"
] | 3
|
2021-10-17T10:51:07.000Z
|
2022-02-05T12:44:39.000Z
|
utils/resume_training.py
|
dumpmemory/SPPR
|
0df749d000e50a64ae13c606072a902f19ecb251
|
[
"MIT"
] | 9
|
2021-08-02T03:22:10.000Z
|
2022-02-24T00:54:54.000Z
|
def resume():
pass
| 7.666667
| 13
| 0.565217
| 3
| 23
| 4.333333
| 1
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0.304348
| 23
| 2
| 14
| 11.5
| 0.8125
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 1
| 0.5
| true
| 0.5
| 0
| 0
| 0.5
| 0
| 1
| 1
| 0
| null | 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 1
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| null | 0
| 0
| 0
| 0
| 0
| 1
| 1
| 1
| 0
| 0
| 0
| 0
|
0
| 6
|
f7d938319c1237ab553b82c9722404ed7b114c1a
| 8,839
|
py
|
Python
|
traces/microbenchmark/micro_bm_gen.py
|
netx-repo/NetLock
|
b4f44efd7b01bca2ecd661a5c7876ada4d7af5fb
|
[
"Apache-2.0"
] | 12
|
2020-07-31T13:51:00.000Z
|
2022-01-02T08:03:19.000Z
|
traces/microbenchmark/micro_bm_gen.py
|
netx-repo/NetLock
|
b4f44efd7b01bca2ecd661a5c7876ada4d7af5fb
|
[
"Apache-2.0"
] | null | null | null |
traces/microbenchmark/micro_bm_gen.py
|
netx-repo/NetLock
|
b4f44efd7b01bca2ecd661a5c7876ada4d7af5fb
|
[
"Apache-2.0"
] | 2
|
2020-09-02T18:26:36.000Z
|
2021-04-21T06:14:11.000Z
|
import os,sys
import csv
lib_path = os.path.abspath(os.path.join('../../client'))
sys.path.append(lib_path)
from config import *
import random
from random import randint
class MicroBenchmark:
def __init__(self, lock_type = SHARED_LOCK, max_lock_id = 100000, server_number = 10, threads_per_server = 2):
self.lock_per_server = max_lock_id / server_number
if (lock_type == SHARED_LOCK):
self.lock_type = 1
elif (lock_type == EXCLUSIVE_LOCK):
self.lock_type = 2
self.max_lock_id = max_lock_id
self.server_number = server_number
self.threads_per_server = threads_per_server
#for i in range(1, server_number + 1):
def main():
micro_benchmark = MicroBenchmark(SHARED_LOCK, 120000, 12)
for i in range(1, micro_benchmark.server_number + 1):
with open('shared/micro_bm_s'+str(i)+'.csv', mode='w') as output_file:
csv_writer = csv.writer(output_file, delimiter=',', quotechar='"', quoting=csv.QUOTE_MINIMAL)
csv_writer.writerow(['** on machine #'+str(i)])
csv_writer.writerow(["** txn_id", "action", "target_lm_id", "target_obj_idx", "lock_type"])
for j in range(1, micro_benchmark.lock_per_server + 1):
txn_id = j % 1000
action = ACQUIRE_LOCK
target_lm_id = 2
#lock_id = (i-1) * micro_benchmark.lock_per_server + j
lock_id = i - 1
lock_type = micro_benchmark.lock_type
csv_writer.writerow([txn_id, action, target_lm_id, lock_id, lock_type])
## exclusive locks contention on client itself (between threads) hold by switch (2)
micro_benchmark = MicroBenchmark(EXCLUSIVE_LOCK, 54000, 12)
for i in range(1, micro_benchmark.server_number + 1):
with open('ex_old/micro_bm_x'+str(i)+'.csv', mode='w') as output_file:
csv_writer = csv.writer(output_file, delimiter=',', quotechar='"', quoting=csv.QUOTE_MINIMAL)
csv_writer.writerow(['** on machine #'+str(i)])
csv_writer.writerow(["** txn_id", "action", "target_lm_id", "target_obj_idx", "lock_type"])
for j in range(1, micro_benchmark.lock_per_server + 1):
txn_id = j % 1000
action = ACQUIRE_LOCK
target_lm_id = 2
lock_id = (i-1) * micro_benchmark.lock_per_server + j
lock_type = micro_benchmark.lock_type
csv_writer.writerow([txn_id, action, target_lm_id, lock_id, lock_type])
## exclusive locks contention on clients (not on threads) hold by switch (2)
micro_benchmark = MicroBenchmark(EXCLUSIVE_LOCK, 54000, 12)
for i in range(1, micro_benchmark.server_number + 1):
for l in range(1, 3):
with open('ex_old/micro_bm_x'+str(i)+"_lc"+str(l+5)+'.csv', mode='w') as output_file:
csv_writer = csv.writer(output_file, delimiter=',', quotechar='"', quoting=csv.QUOTE_MINIMAL)
csv_writer.writerow(['** on machine #'+str(i)+' contention_degree: 2'])
csv_writer.writerow(["** txn_id", "action", "target_lm_id", "target_obj_idx", "lock_type"])
for j in range((l-1) * micro_benchmark.lock_per_server + 1, l * micro_benchmark.lock_per_server + 1):
txn_id = j % 1000
action = ACQUIRE_LOCK
target_lm_id = 2
lock_id = ((i-1) * micro_benchmark.lock_per_server + j + 55000 - 1) % 55000 + 1
lock_type = micro_benchmark.lock_type
csv_writer.writerow([txn_id, action, target_lm_id, lock_id, lock_type])
## exclusive locks contention on clients (not on threads) can't hold by switch
for contention_degree in range(1,7):
micro_benchmark = MicroBenchmark(EXCLUSIVE_LOCK, 54000, 12)
for i in range(1, micro_benchmark.server_number + 1):
for l in range(1, 3):
with open('contention/queue_size_2/micro_bm_x'+str(i)+"_cd"+str(contention_degree)+"_lc"+str(l+5)+'.csv', mode='w') as output_file:
csv_writer = csv.writer(output_file, delimiter=',', quotechar='"', quoting=csv.QUOTE_MINIMAL)
csv_writer.writerow(['** on machine #'+str(i)+' contention_degree: '+str(contention_degree)])
csv_writer.writerow(["** txn_id", "action", "target_lm_id", "target_obj_idx", "lock_type"])
for j in range((l-1) * micro_benchmark.lock_per_server * contention_degree / micro_benchmark.threads_per_server + 1,
l * micro_benchmark.lock_per_server * contention_degree / micro_benchmark.threads_per_server + 1):
txn_id = j % 1000
action = ACQUIRE_LOCK
target_lm_id = 2
lock_id = ((i-1) * micro_benchmark.lock_per_server + j + 55000 - 1) % 55000 + 1
lock_type = micro_benchmark.lock_type
csv_writer.writerow([txn_id, action, target_lm_id, lock_id, lock_type])
return
## exclusive locks, test different contention (decide by number clients*threads, switch can hold)
client_num = 1200
# lock_nums = [1, 2, 3, 6, 10, 12, 20, 24, 30, 40, 50, 60, 70, 80, 90, 100, 120, 150, 200, 250, 300]
# lock_nums = [150, 200, 250, 300, 350]
lock_nums = []
server_num = 12
micro_benchmark = MicroBenchmark(EXCLUSIVE_LOCK, 55000, server_num, client_num / server_num)
for lk in lock_nums:
for i in range(1, micro_benchmark.server_number + 1):
for j in range(0, micro_benchmark.threads_per_server):
with open('contention/lk'+str(lk)+'/micro_bm_x'+str(i)+"_t"+str(j)+"_lk"+str(lk)+".csv", mode = 'w') as output_file:
csv_writer = csv.writer(output_file, delimiter=',', quotechar='"', quoting=csv.QUOTE_MINIMAL)
csv_writer.writerow(['** on machine #'+str(i)+' client: '+str(j)])
csv_writer.writerow(["** txn_id", "action", "target_lm_id", "target_obj_idx", "lock_type"])
for l in range(1200):
lock_id = randint(0, lk - 1)
txn_id = l % 1000
action = ACQUIRE_LOCK
target_lm_id = 2
lock_type = micro_benchmark.lock_type
csv_writer.writerow([txn_id, action, target_lm_id, lock_id, lock_type])
## exclusive locks, test different contention (decide by number of locks, switch can hold)
client_num = 24
# lock_nums = [1, 2, 3, 6, 10, 12, 20, 24, 30, 40, 50, 60, 70, 80, 90, 100, 120, 150, 200, 250, 300]
# lock_nums = [150, 200, 250, 300, 350]
# lock_nums = [2, 10, 100, 500, 1000, 1500, 2000, 2500, 3000, 3500, 4000, 4500, 5000, 5500, 6000, 8000, 10000]
lock_nums = [2, 100, 200, 300, 400, 500, 600, 700, 800, 900, 1000, 1500, 2000, 2500, 3000, 3500, 4000, 4500, 5000, 5500, 6000, 6500, 7000, 7500, 8000, 8500, 9000, 9500, 10000]
server_num = 12
micro_benchmark = MicroBenchmark(EXCLUSIVE_LOCK, 55000, server_num, client_num / server_num)
for lk in lock_nums:
for i in range(1, micro_benchmark.server_number + 1):
lk_list = range(lk)
random.shuffle(lk_list)
os.system("mkdir -p contention_shuffle; mkdir -p contention_shuffle/lk"+str(lk))
for j in range(0, micro_benchmark.threads_per_server):
## cache miss
shard_list = lk_list[j*lk / micro_benchmark.threads_per_server:(j+1)*lk / micro_benchmark.threads_per_server]
shard_list.sort()
with open('contention_shuffle/lk'+str(lk)+'/micro_bm_x'+str(i)+"_t"+str(j)+"_lk"+str(lk)+".csv", mode = 'w') as output_file:
csv_writer = csv.writer(output_file, delimiter=',', quotechar='"', quoting=csv.QUOTE_MINIMAL)
csv_writer.writerow(['** on machine #'+str(i)+' client: '+str(j)])
csv_writer.writerow(["** txn_id", "action", "target_lm_id", "target_obj_idx", "lock_type"])
for l in range(lk / micro_benchmark.threads_per_server):
# lock_id = j * lk / micro_benchmark.threads_per_server + lk_list[l + j * j * lk / micro_benchmark.threads_per_server]
lock_id = lk_list[l + j * lk / micro_benchmark.threads_per_server]
#lock_id = shard_list[l]
txn_id = l % 1000
action = ACQUIRE_LOCK
target_lm_id = 2
lock_type = micro_benchmark.lock_type
csv_writer.writerow([txn_id, action, target_lm_id, lock_id, lock_type])
if __name__ == '__main__':
main()
| 62.246479
| 179
| 0.597126
| 1,198
| 8,839
| 4.116861
| 0.131886
| 0.107867
| 0.062044
| 0.048662
| 0.810422
| 0.788321
| 0.781833
| 0.768451
| 0.742903
| 0.720397
| 0
| 0.07082
| 0.282724
| 8,839
| 142
| 180
| 62.246479
| 0.707098
| 0.117434
| 0
| 0.584746
| 0
| 0
| 0.093818
| 0.009767
| 0
| 0
| 0
| 0
| 0
| 1
| 0.016949
| false
| 0
| 0.042373
| 0
| 0.076271
| 0
| 0
| 0
| 0
| null | 0
| 0
| 0
| 1
| 1
| 1
| 1
| 1
| 1
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| null | 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
|
0
| 6
|
7906a8c3f5fdac8427b4722b6aa4f5168db10968
| 9,411
|
py
|
Python
|
climatespider/climatespider/spiders/AO_wugspider.py
|
burnman108/climateSpider
|
434ba25b6a30fe6d07231b7758cbc64d8243bf4c
|
[
"Apache-2.0"
] | null | null | null |
climatespider/climatespider/spiders/AO_wugspider.py
|
burnman108/climateSpider
|
434ba25b6a30fe6d07231b7758cbc64d8243bf4c
|
[
"Apache-2.0"
] | null | null | null |
climatespider/climatespider/spiders/AO_wugspider.py
|
burnman108/climateSpider
|
434ba25b6a30fe6d07231b7758cbc64d8243bf4c
|
[
"Apache-2.0"
] | null | null | null |
#-*- coding: utf-8 -*-
from scrapy.spiders import CrawlSpider, Rule
from scrapy.linkextractors import LinkExtractor
from climatespider.items import ClimatespiderItem
from scrapy.selector import Selector
from dateutil.parser import parse
import re
import datetime
from scrapy.exceptions import CloseSpider
def getyesterdaty():
today_date = datetime.date.today()
yesterday_date = today_date - datetime.timedelta(days=1)
return yesterday_date.strftime('%Y/%m/%d')
class wugSpider(CrawlSpider):
name = "WUGCrawlSpider_AO"
#today_date = datetime.now().strftime('%Y/%m/%d')
allowed_domains = ['www.wunderground.com']
start_urls = [
'https://www.wunderground.com/history/airport/ZBAA/{0}/DailyHistory.html'.format(getyesterdaty()),
'https://www.wunderground.com/history/station/54618/{0}/DailyHistory.html'.format(getyesterdaty()),
'https://www.wunderground.com/history/airport/ZBTJ/{0}/DailyHistory.html'.format(getyesterdaty()),
'https://www.wunderground.com/history/airport/ZBYN/{0}/DailyHistory.html'.format(getyesterdaty()),
'https://www.wunderground.com/history/airport/ZSSS/{0}/DailyHistory.html'.format(getyesterdaty()),
'https://www.wunderground.com/history/station/50888/{0}/DailyHistory.html'.format(getyesterdaty()),
'https://www.wunderground.com/history/station/50136/{0}/DailyHistory.html'.format(getyesterdaty()),
'https://www.wunderground.com/history/airport/ZYHB/{0}/DailyHistory.html'.format(getyesterdaty()),
'https://www.wunderground.com/history/station/50854/{0}/DailyHistory.html'.format(getyesterdaty()),
'https://www.wunderground.com/history/airport/ZSOF/{0}/DailyHistory.html'.format(getyesterdaty()),
'https://www.wunderground.com/history/airport/ZLXY/{0}/DailyHistory.html'.format(getyesterdaty()),
'https://www.wunderground.com/history/station/54602/{0}/DailyHistory.html'.format(getyesterdaty()),
'https://www.wunderground.com/history/airport/VMMC/{0}/DailyHistory.html'.format(getyesterdaty()),
'https://www.wunderground.com/history/station/54401/{0}/DailyHistory.html'.format(getyesterdaty()),
'https://www.wunderground.com/history/station/58506/{0}/DailyHistory.html'.format(getyesterdaty()),
'https://www.wunderground.com/history/airport/ZGHA/{0}/DailyHistory.html'.format(getyesterdaty()),
'https://www.wunderground.com/history/airport/ZSHC/{0}/DailyHistory.html'.format(getyesterdaty()),
'https://www.wunderground.com/history/airport/ZHHH/{0}/DailyHistory.html'.format(getyesterdaty()),
'https://www.wunderground.com/history/station/58606/{0}/DailyHistory.html'.format(getyesterdaty()),
'https://www.wunderground.com/history/airport/ZGGG/{0}/DailyHistory.html'.format(getyesterdaty()),
'https://www.wunderground.com/history/airport/ZGSZ/{0}/DailyHistory.html'.format(getyesterdaty()),
'https://www.wunderground.com/history/station/53798/{0}/DailyHistory.html'.format(getyesterdaty()),
'https://www.wunderground.com/history/airport/ZYTL/{0}/DailyHistory.html'.format(getyesterdaty()),
'https://www.wunderground.com/history/airport/ZUUU/{0}/DailyHistory.html'.format(getyesterdaty()),
'https://www.wunderground.com/history/station/50774/{0}/DailyHistory.html'.format(getyesterdaty()),
'https://www.wunderground.com/history/station/50949/{0}/DailyHistory.html'.format(getyesterdaty())
]
def parse(self, response):
sel = Selector(response)
indexlist = list(map(lambda x: x.replace(' ','').replace('.',''),sel.xpath('//table[@id="obsTable"]/thead/tr/th/text()').extract()))
date = re.match(r'.*(\d{4}\/\d{1,2}\/\d{1,2}).*', response.url).group(1)
datatable = sel.xpath('//tr[@class="no-metars"]')
# items = []
for each in datatable:
item = ClimatespiderItem()
item['area'] = re.match(r'.*history/(.*)/2\d{3}/.*', response.url).group(1)
# item['date'] = date
if len(indexlist) == 13:
item['the_date'] = date
item['the_time'] = parse(each.xpath('td[1]/text()').extract()[0]).strftime('%H:%M')
item['qx_Humidity'] = each.xpath('td[5]/text()').extract()[0]
item['qx_WindDir'] = each.xpath('td[8]/text()').extract()[0]
item['qx_Precip'] = each.xpath('td[11]/text()').extract()[0]
item['qx_Events'] = each.xpath('td[12]/text()').extract()[0].strip()
try:
item['qx_Condition'] = each.xpath('td[13]/text()').extract()[0]
except Exception as e:
item['qx_Condition'] = ''
try:
item['qx_Temp'] = each.xpath('td[2]/span/span[@class="wx-value"]/text()').extract()[0]
except Exception as e:
item['qx_Temp'] = each.xpath('td[2]/text()').extract()[0].strip().replace('-','')
try:
item['qx_WindChill_HeatIndex'] = each.xpath('td[3]/span/span[@class="wx-value"]/text()').extract()[0]
except Exception as e:
item['qx_WindChill_HeatIndex'] = each.xpath('td[3]/text()').extract()[0].strip().replace('-','')
try:
item['qx_DewPoint'] = each.xpath('td[4]/span/span[@class="wx-value"]/text()').extract()[0]
except Exception as e:
item['qx_DewPoint'] = each.xpath('td[4]/text()').extract()[0].strip().replace('-','')
try:
item['qx_Pressure'] = each.xpath('td[6]/span/span[@class="wx-value"]/text()').extract()[0]
except Exception as e:
item['qx_Pressure'] = each.xpath('td[6]/text()').extract()[0].strip().replace('-','')
try:
item['qx_Visibility'] = each.xpath('td[7]/span/span[@class="wx-value"]/text()').extract()[0]
except Exception as e:
item['qx_Visibility'] = each.xpath('td[7]/text()').extract()[0].strip().replace('-','')
try:
item['qx_WindSpeed'] = each.xpath('td[9]/span[1]/span[@class="wx-value"]/text()').extract()[0]
except Exception as e:
item['qx_WindSpeed'] = each.xpath('td[9]/text()').extract()[0].strip().replace('-','')
try:
item['qx_GustSpeed'] = each.xpath('td[10]/span[1]/span[@class="wx-value"]/text()').extract()[0]
except Exception as e:
item['qx_GustSpeed'] = each.xpath('td[10]/text()').extract()[0].strip().replace('-','')
yield item
else:
item['the_date'] = date
item['the_time'] = parse(each.xpath('td[1]/text()').extract()[0]).strftime('%H:%M')
item['qx_Humidity'] = each.xpath('td[4]/text()').extract()[0]
item['qx_WindDir'] = each.xpath('td[7]/text()').extract()[0]
item['qx_Precip'] = each.xpath('td[10]/text()').extract()[0]
item['qx_Events'] = each.xpath('td[11]/text()').extract()[0].strip()
try:
item['qx_Condition'] = each.xpath('td[12]/text()').extract()[0]
except Exception as e:
item['qx_Condition'] = ''
try:
item['qx_Temp'] = each.xpath('td[2]/span/span[@class="wx-value"]/text()').extract()[0]
except Exception as e:
item['qx_Temp'] = each.xpath('td[2]/text()').extract()[0].strip().replace('-','')
# try:
# item['WindChill_HeatIndex'] = each.xpath('td[3]/span/span[@class="wx-value"]/text()').extract()[0]
# except Exception as e:
# item['WindChill_HeatIndex'] = each.xpath('td[3]/text()').extract()[0].strip().replace('-', '')
try:
item['qx_DewPoint'] = each.xpath('td[3]/span/span[@class="wx-value"]/text()').extract()[0]
except Exception as e:
item['qx_DewPoint'] = each.xpath('td[3]/text()').extract()[0].strip().replace('-', '')
try:
item['qx_Pressure'] = each.xpath('td[5]/span/span[@class="wx-value"]/text()').extract()[0]
except Exception as e:
item['qx_Pressure'] = each.xpath('td[5]/text()').extract()[0].strip().replace('-', '')
try:
item['qx_Visibility'] = each.xpath('td[6]/span/span[@class="wx-value"]/text()').extract()[0]
except Exception as e:
item['qx_Visibility'] = each.xpath('td[6]/text()').extract()[0].strip().replace('-', '')
try:
item['qx_WindSpeed'] = each.xpath('td[8]/span[1]/span[@class="wx-value"]/text()').extract()[0]
except Exception as e:
item['qx_WindSpeed'] = each.xpath('td[8]/text()').extract()[0].strip().replace('-', '')
try:
item['qx_GustSpeed'] = each.xpath('td[9]/span[1]/span[@class="wx-value"]/text()').extract()[0]
except Exception as e:
item['qx_GustSpeed'] = each.xpath('td[9]/text()').extract()[0].strip().replace('-', '')
yield item
# for index in range(len(indexlist)):
| 66.274648
| 140
| 0.568165
| 1,087
| 9,411
| 4.869365
| 0.143514
| 0.085207
| 0.083129
| 0.112979
| 0.822218
| 0.815417
| 0.808426
| 0.795579
| 0.795201
| 0.750236
| 0
| 0.025459
| 0.223674
| 9,411
| 141
| 141
| 66.744681
| 0.699015
| 0.038891
| 0
| 0.330709
| 0
| 0
| 0.372883
| 0.078473
| 0
| 0
| 0
| 0
| 0
| 1
| 0.015748
| false
| 0
| 0.062992
| 0
| 0.11811
| 0
| 0
| 0
| 0
| null | 0
| 0
| 0
| 1
| 1
| 1
| 1
| 1
| 1
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| null | 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
|
0
| 6
|
790b14439046bd301a529a673057b56fe6681eb9
| 315
|
py
|
Python
|
sprint/core/parser/args.py
|
ii-Python/Sprint-v2
|
2579b7f9a36ac5c5ec541ca3dce6cf61357db948
|
[
"MIT"
] | null | null | null |
sprint/core/parser/args.py
|
ii-Python/Sprint-v2
|
2579b7f9a36ac5c5ec541ca3dce6cf61357db948
|
[
"MIT"
] | null | null | null |
sprint/core/parser/args.py
|
ii-Python/Sprint-v2
|
2579b7f9a36ac5c5ec541ca3dce6cf61357db948
|
[
"MIT"
] | null | null | null |
class Argument(object):
def __init__(self, argument = None, base: bool = False):
self.arg = argument
self.is_base = base
def __repr__(self):
return self.arg
def __str__(self):
return self.arg
def is_pipe(self):
return self.arg == ">>" or self.arg == "<<"
| 21
| 60
| 0.571429
| 40
| 315
| 4.15
| 0.425
| 0.210843
| 0.253012
| 0.307229
| 0.240964
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0.301587
| 315
| 14
| 61
| 22.5
| 0.754545
| 0
| 0
| 0.2
| 0
| 0
| 0.012698
| 0
| 0
| 0
| 0
| 0
| 0
| 1
| 0.4
| false
| 0
| 0
| 0.3
| 0.8
| 0
| 0
| 0
| 0
| null | 1
| 1
| 1
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| null | 0
| 0
| 0
| 0
| 0
| 1
| 0
| 0
| 0
| 1
| 1
| 0
|
0
| 6
|
7917eb82c91f982f3274c65a99d949a0b683cbbe
| 46
|
py
|
Python
|
src/django_secrecy/test.py
|
Cyxapic/django-secrecy
|
7f3fcd42afc1cc7c49dba92530c171e7ed2edac8
|
[
"MIT"
] | null | null | null |
src/django_secrecy/test.py
|
Cyxapic/django-secrecy
|
7f3fcd42afc1cc7c49dba92530c171e7ed2edac8
|
[
"MIT"
] | 1
|
2021-02-15T09:37:44.000Z
|
2021-02-15T09:37:44.000Z
|
src/django_secrecy/test.py
|
Cyxapic/django-secrecy
|
7f3fcd42afc1cc7c49dba92530c171e7ed2edac8
|
[
"MIT"
] | null | null | null |
import datetime
print(datetime.datetime.now())
| 23
| 30
| 0.826087
| 6
| 46
| 6.333333
| 0.666667
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0.043478
| 46
| 2
| 30
| 23
| 0.863636
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 1
| 0
| true
| 0
| 0.5
| 0
| 0.5
| 0.5
| 1
| 1
| 0
| null | 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 1
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| null | 0
| 0
| 0
| 0
| 0
| 0
| 1
| 0
| 1
| 0
| 0
| 1
|
0
| 6
|
f7095169f139557a45e67599ce006c31ba8e3471
| 157
|
py
|
Python
|
python/pip_package/__init__.py
|
kanishkg/lab
|
a9a3b5c38ad160ffd2e77a3af3e13c6e66eed457
|
[
"CC-BY-4.0"
] | 16
|
2019-02-27T22:37:25.000Z
|
2021-11-08T12:39:33.000Z
|
python/pip_package/__init__.py
|
kanishkg/lab
|
a9a3b5c38ad160ffd2e77a3af3e13c6e66eed457
|
[
"CC-BY-4.0"
] | null | null | null |
python/pip_package/__init__.py
|
kanishkg/lab
|
a9a3b5c38ad160ffd2e77a3af3e13c6e66eed457
|
[
"CC-BY-4.0"
] | 7
|
2019-05-28T06:26:26.000Z
|
2021-11-27T16:33:55.000Z
|
"""Loads deepmind_lab.so."""
import imp
import pkg_resources
imp.load_dynamic(__name__, pkg_resources.resource_filename(
__name__, 'deepmind_lab.so'))
| 19.625
| 59
| 0.77707
| 21
| 157
| 5.142857
| 0.619048
| 0.203704
| 0.240741
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0.101911
| 157
| 7
| 60
| 22.428571
| 0.765957
| 0.140127
| 0
| 0
| 0
| 0
| 0.116279
| 0
| 0
| 0
| 0
| 0
| 0
| 1
| 0
| true
| 0
| 0.5
| 0
| 0.5
| 0
| 1
| 0
| 0
| null | 1
| 1
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 1
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| null | 0
| 0
| 0
| 0
| 0
| 0
| 1
| 0
| 1
| 0
| 0
| 0
|
0
| 6
|
f70ea28bcf4185dc675728f2549fd2e9447346be
| 77,417
|
py
|
Python
|
Graphing_Summaries.py
|
GrantRoss-Tenki/Malawi-CQC-CSC-OSU-Work
|
a720e0451579945ba10eafdafe2e0d59a86d5cfb
|
[
"MIT"
] | null | null | null |
Graphing_Summaries.py
|
GrantRoss-Tenki/Malawi-CQC-CSC-OSU-Work
|
a720e0451579945ba10eafdafe2e0d59a86d5cfb
|
[
"MIT"
] | null | null | null |
Graphing_Summaries.py
|
GrantRoss-Tenki/Malawi-CQC-CSC-OSU-Work
|
a720e0451579945ba10eafdafe2e0d59a86d5cfb
|
[
"MIT"
] | null | null | null |
import matplotlib.pyplot as plt
import numpy as np
import pandas as pd
#from pylab import plot, show, xlim,figure,hold, ylim,legend, boxplot, setup, axes
import seaborn as sns
# Is this a personal or work computer
# Are you graphing for hood or no hood
Computer = 'personal' #or 'personal' or 'work'
Hood_or_no = 'no_hood' # 'no_hood' or 'hood'
#what household do you want to remove make sure it is in ascending order
# if there is nothing, then put a placeholder of 1045 or higher
Household_removal = [1045]
#Household_removal = Household_removal.sort(reverse=False)
Household_removal_NO_Hood_fuel_day_adult = [1045]
Household_removal_Hood_fuel_day_adult = [2020]
Household_removal_NO_Hood_PM = [1045]
Household_removal_Hood_PM = [2020]
pd.set_option('display.max_rows', 500)
pd.set_option('display.max_columns', 500)
pd.set_option('display.width', 1000)
if Hood_or_no == 'hood':
C_Place_holder = 2001
else:
C_Place_holder = 1001
if Computer == 'personal' and Hood_or_no == 'no_hood':
# 1N
datafile_path_day_1N ="C:/Users/gvros/Desktop/Oregon State Masters/Work/OSU, CSC, CQC Project files/1N/1N_Summary_Day_1_exact.csv"
Day_1N = pd.read_csv(datafile_path_day_1N, skiprows=2)
datafile_path_event_1N = "C:/Users/gvros/Desktop/Oregon State Masters/Work/OSU, CSC, CQC Project files/1N/1N_Summary_Event_1_exact.csv"
Event_1N = pd.read_csv(datafile_path_event_1N, skiprows=2)
# there is no second exact in phase 1N
#1N Survey
datafile_path_survey_1N = "C:/Users/gvros/Desktop/Oregon State Masters/Work/OSU, CSC, CQC Project files/1N/1N_1H_Survey_summary_.csv"
Filter_1n_survey = pd.read_csv(datafile_path_survey_1N, skiprows=0)
#print(Filter_1n_survey.iloc[0:40, :])
Survey_1N = Filter_1n_survey.iloc[0:40,:]
#24 hour Kitchen pm breakdown
data_file_path_24_PM_1N = "C:/Users/gvros/Desktop/Oregon State Masters/Work/OSU, CSC, CQC Project files/1N/1N_24_hour_Kitchen_PM.csv"
Kit_PM_1N_24hr = pd.read_csv(data_file_path_24_PM_1N, skiprows=0)
#24 hour Fuel Removal breakdown
data_file_path_24_Fuel_1N = "C:/Users/gvros/Desktop/Oregon State Masters/Work/OSU, CSC, CQC Project files/1N/1N_24_hour_Fuel_removal.csv"
Fuel_remove_1N_24hr = pd.read_csv(data_file_path_24_Fuel_1N, skiprows=0)
#2N
datafile_path_day_2N ="C:/Users/gvros/Desktop/Oregon State Masters/Work/OSU, CSC, CQC Project files/2N/2N_Summary_Day_1_exact.csv"
Day_2N = pd.read_csv(datafile_path_day_2N, skiprows=2)
datafile_path_event_2N_1 ="C:/Users/gvros/Desktop/Oregon State Masters/Work/OSU, CSC, CQC Project files/2N/2N_Summary_Event_1_exact.csv"
Event_2N_1 = pd.read_csv(datafile_path_event_2N_1, skiprows=2)
#2N second Exact
datafile_path_event_2N_2 ="C:/Users/gvros/Desktop/Oregon State Masters/Work/OSU, CSC, CQC Project files/2N/2N_Summary_Event_2_exact.csv"
Event_2N_2 = pd.read_csv(datafile_path_event_2N_2, skiprows=2)
#2N Survey
datafile_path_survey_2N = "C:/Users/gvros/Desktop/Oregon State Masters/Work/OSU, CSC, CQC Project files/2N/2N_Survey_summary_.csv"
Survey_2N = pd.read_csv(datafile_path_survey_2N, skiprows=0)
#24 hour Kitchen pm breakdown
data_file_path_24_PM_2N = "C:/Users/gvros/Desktop/Oregon State Masters/Work/OSU, CSC, CQC Project files/2N/2N_24_hour_Kitchen_PM.csv"
Kit_PM_2N_24hr = pd.read_csv(data_file_path_24_PM_2N, skiprows=0)
#24 hour Fuel Removal breakdown
data_file_path_24_Fuel_2N = "C:/Users/gvros/Desktop/Oregon State Masters/Work/OSU, CSC, CQC Project files/2N/2N_24_hour_Fuel_removal.csv"
Fuel_remove_2N_24hr = pd.read_csv(data_file_path_24_Fuel_2N, skiprows=0)
#3N
datafile_path_day_3N ="C:/Users/gvros/Desktop/Oregon State Masters/Work/OSU, CSC, CQC Project files/3N/3N_Summary_Day_1_exact.csv"
Day_3N = pd.read_csv(datafile_path_day_3N, skiprows=2)
datafile_path_event_3N_1 ="C:/Users/gvros/Desktop/Oregon State Masters/Work/OSU, CSC, CQC Project files/3N/3N_Summary_Event_1_exact.csv"
Event_3N_1 = pd.read_csv(datafile_path_event_3N_1, skiprows=2)
#3N second Exact
datafile_path_event_3N_2 ="C:/Users/gvros/Desktop/Oregon State Masters/Work/OSU, CSC, CQC Project files/3N/3N_Summary_Event_2_exact.csv"
Event_3N_2 = pd.read_csv(datafile_path_event_3N_2, skiprows=2)
#3N Survey
datafile_path_survey_3N = "C:/Users/gvros/Desktop/Oregon State Masters/Work/OSU, CSC, CQC Project files/3N/3N_Survey_summary_.csv"
Survey_3N = pd.read_csv(datafile_path_survey_3N, skiprows=0)
#24 hour Kitchen pm breakdown
data_file_path_24_PM_3N = "C:/Users/gvros/Desktop/Oregon State Masters/Work/OSU, CSC, CQC Project files/3N/3N_24_hour_Kitchen_PM.csv"
Kit_PM_3N_24hr = pd.read_csv(data_file_path_24_PM_3N, skiprows=0)
#24 hour Fuel Removal breakdown
data_file_path_24_Fuel_3N = "C:/Users/gvros/Desktop/Oregon State Masters/Work/OSU, CSC, CQC Project files/3N/3N_24_hour_Fuel_removal.csv"
Fuel_remove_3N_24hr = pd.read_csv(data_file_path_24_Fuel_3N, skiprows=0)
#4N
datafile_path_day_4N ="C:/Users/gvros/Desktop/Oregon State Masters/Work/OSU, CSC, CQC Project files/4N/4N_Summary_Day_1_exact.csv"
Day_4N = pd.read_csv(datafile_path_day_4N, skiprows=2)
datafile_path_event_4N_1 ="C:/Users/gvros/Desktop/Oregon State Masters/Work/OSU, CSC, CQC Project files/4N/4N_Summary_Event_1_exact.csv"
Event_4N_1 = pd.read_csv(datafile_path_event_4N_1, skiprows=2)
#4N second Exact
datafile_path_event_4N_2 ="C:/Users/gvros/Desktop/Oregon State Masters/Work/OSU, CSC, CQC Project files/4N/4N_Summary_Event_2_exact.csv"
Event_4N_2 = pd.read_csv(datafile_path_event_4N_2, skiprows=2)
#4N Survey
datafile_path_survey_4N = "C:/Users/gvros/Desktop/Oregon State Masters/Work/OSU, CSC, CQC Project files/4N/4N_Survey_summary_.csv"
Survey_4N = pd.read_csv(datafile_path_survey_4N, skiprows=0)
#24 hour Kitchen pm breakdown
data_file_path_24_PM_4N = "C:/Users/gvros/Desktop/Oregon State Masters/Work/OSU, CSC, CQC Project files/4N/4N_24_hour_Kitchen_PM.csv"
Kit_PM_4N_24hr = pd.read_csv(data_file_path_24_PM_4N, skiprows=0)
#24 hour Fuel Removal breakdown
data_file_path_24_Fuel_4N = "C:/Users/gvros/Desktop/Oregon State Masters/Work/OSU, CSC, CQC Project files/4N/4N_24_hour_Fuel_removal.csv"
Fuel_remove_4N_24hr = pd.read_csv(data_file_path_24_Fuel_4N, skiprows=0)
elif Computer == 'personal' and Hood_or_no == 'hood':
#1H
datafile_path_day_1H ="C:/Users/gvros/Desktop/Oregon State Masters/Work/OSU, CSC, CQC Project files/1H/1H_Summary_Day_1_exact.csv"
Day_1H = pd.read_csv(datafile_path_day_1H, skiprows=2)
datafile_path_event_1H ="C:/Users/gvros/Desktop/Oregon State Masters/Work/OSU, CSC, CQC Project files/1H/1H_Summary_Event_1_exact.csv"
Event_1H = pd.read_csv(datafile_path_event_1H, skiprows=2)
#there is no second exact in phase 1H
#1H Survey (row 40 or so afterward is Hood portion column 1 is houshold number)
datafile_path_survey_1H = "C:/Users/gvros/Desktop/Oregon State Masters/Work/OSU, CSC, CQC Project files/1N/1N_1H_Survey_summary_.csv"
Survey_1H = pd.read_csv(datafile_path_survey_1H, skiprows=40)
#24 hour Kitchen pm breakdown
data_file_path_24_PM_1H = "C:/Users/gvros/Desktop/Oregon State Masters/Work/OSU, CSC, CQC Project files/1H/1H_24_hour_Kitchen_PM.csv"
Kit_PM_1H_24hr = pd.read_csv(data_file_path_24_PM_1H, skiprows=0)
#24 hour Fuel Removal breakdown
data_file_path_24_fuel_1H = "C:/Users/gvros/Desktop/Oregon State Masters/Work/OSU, CSC, CQC Project files/1H/1H_24_hour_Fuel_removal.csv"
Fuel_remove_1H_24hr = pd.read_csv(data_file_path_24_fuel_1H, skiprows=0)
#2H
datafile_path_day_2H ="C:/Users/gvros/Desktop/Oregon State Masters/Work/OSU, CSC, CQC Project files/2H/2H_Summary_Day_1_exact.csv"
Day_2H = pd.read_csv(datafile_path_day_2H, skiprows=2)
datafile_path_event_2H_1 ="C:/Users/gvros/Desktop/Oregon State Masters/Work/OSU, CSC, CQC Project files/2H/2H_Summary_Event_1_exact.csv"
Event_2H_1 = pd.read_csv(datafile_path_event_2H_1, skiprows=2)
#2H second Exact
datafile_path_event_2H_2 ="C:/Users/gvros/Desktop/Oregon State Masters/Work/OSU, CSC, CQC Project files/2H/2H_Summary_Event_2_exact.csv"
Event_2H_2 = pd.read_csv(datafile_path_event_2H_2, skiprows=2)
#2H survey
datafile_path_survey_2H = "C:/Users/gvros/Desktop/Oregon State Masters/Work/OSU, CSC, CQC Project files/2H/2H_Survey_summary_.csv"
Survey_2H = pd.read_csv(datafile_path_survey_2H, skiprows=0)
#24 hour Kitchen pm breakdown
data_file_path_24_PM_2H = "C:/Users/gvros/Desktop/Oregon State Masters/Work/OSU, CSC, CQC Project files/2H/2H_24_hour_Kitchen_PM.csv"
Kit_PM_2H_24hr = pd.read_csv(data_file_path_24_PM_2H, skiprows=0)
#24 hour Fuel Removal breakdown
data_file_path_24_fuel_2H = "C:/Users/gvros/Desktop/Oregon State Masters/Work/OSU, CSC, CQC Project files/2H/2H_24_hour_Fuel_removal.csv"
Fuel_remove_2H_24hr = pd.read_csv(data_file_path_24_fuel_2H, skiprows=0)
#3H
datafile_path_day_3H ="C:/Users/gvros/Desktop/Oregon State Masters/Work/OSU, CSC, CQC Project files/3H/3H_Summary_Day_1_exact.csv"
Day_3H = pd.read_csv(datafile_path_day_3H, skiprows=2)
datafile_path_event_3N_1 ="C:/Users/gvros/Desktop/Oregon State Masters/Work/OSU, CSC, CQC Project files/3H/3H_Summary_Event_1_exact.csv"
Event_3H_1 = pd.read_csv(datafile_path_event_3N_1, skiprows=2)
#3H second Exact
datafile_path_event_3H_2 ="C:/Users/gvros/Desktop/Oregon State Masters/Work/OSU, CSC, CQC Project files/3H/3H_Summary_Event_2_exact.csv"
Event_3H_2 = pd.read_csv(datafile_path_event_3H_2, skiprows=2)
#3H survey
datafile_path_survey_3H = "C:/Users/gvros/Desktop/Oregon State Masters/Work/OSU, CSC, CQC Project files/3H/3H_Survey_summary_.csv"
Survey_3H = pd.read_csv(datafile_path_survey_3H, skiprows=0)
#24 hour Kitchen pm breakdown
data_file_path_24_PM_3H = "C:/Users/gvros/Desktop/Oregon State Masters/Work/OSU, CSC, CQC Project files/3H/3H_24_hour_Kitchen_PM.csv"
Kit_PM_3H_24hr = pd.read_csv(data_file_path_24_PM_3H, skiprows=0)
#24 hour Fuel Removal breakdown
data_file_path_24_fuel_3H = "C:/Users/gvros/Desktop/Oregon State Masters/Work/OSU, CSC, CQC Project files/3H/3H_24_hour_Fuel_removal.csv"
Fuel_remove_3H_24hr = pd.read_csv(data_file_path_24_fuel_3H, skiprows=0)
#work uses box information and not local data
elif Computer == 'work' and Hood_or_no == 'no_hood':
# 1N for box file system
datafile_path_day_1N = "C:/Users/rossgra/Box/OSU, CSC, CQC Project files/1N/1N_Summary_Day_1_exact.csv"
Day_1N = pd.read_csv(datafile_path_day_1N, skiprows=2)
datafile_path_event_1N ="C:/Users/rossgra/Box/OSU, CSC, CQC Project files/1N/1N_Summary_Event_1_exact.csv"
Event_1N = pd.read_csv(datafile_path_event_1N, skiprows=2)
# there is no second exact in phase 1N
#1N Survey
datafile_path_survey_1N = "C:/Users/rossgra/Box/OSU, CSC, CQC Project files/1N/1N_1H_Survey_summary_.csv"
Filter_1n_survey = pd.read_csv(datafile_path_survey_1N, skiprows=0)
#print(Filter_1n_survey.iloc[0:40, :])
Survey_1N = Filter_1n_survey.iloc[0:40,:]
#24 hour Kitchen pm breakdown
data_file_path_24_PM_1N = "C:/Users/rossgra/Box/OSU, CSC, CQC Project files/1N/1N_24_hour_Kitchen_PM.csv"
Kit_PM_1N_24hr = pd.read_csv(data_file_path_24_PM_1N, skiprows=0)
#24 hour Fuel Removal breakdown
data_file_path_24_Fuel_1N = "C:/Users/rossgra/Box/OSU, CSC, CQC Project files/1N/1N_24_hour_Fuel_removal.csv"
Fuel_remove_1N_24hr = pd.read_csv(data_file_path_24_Fuel_1N, skiprows=0)
#2N
datafile_path_day_2N ="C:/Users/rossgra/Box/OSU, CSC, CQC Project files/2N/2N_Summary_Day_1_exact.csv"
Day_2N = pd.read_csv(datafile_path_day_2N, skiprows=2)
datafile_path_event_2N_1 ="C:/Users/rossgra/Box/OSU, CSC, CQC Project files/2N/2N_Summary_Event_1_exact.csv"
Event_2N_1 = pd.read_csv(datafile_path_event_2N_1, skiprows=2)
#2N second Exact
datafile_path_event_2N_2 ="C:/Users/rossgra/Box/OSU, CSC, CQC Project files/2N/2N_Summary_Event_2_exact.csv"
Event_2N_2 = pd.read_csv(datafile_path_event_2N_2, skiprows=2)
#2N Survey
datafile_path_survey_2N = "C:/Users/rossgra/Box/OSU, CSC, CQC Project files/2N/2N_Survey_summary_.csv"
Survey_2N = pd.read_csv(datafile_path_survey_2N, skiprows=0)
#24 hour Kitchen pm breakdown
data_file_path_24_PM_2N = "C:/Users/rossgra/Box/OSU, CSC, CQC Project files/2N/2N_24_hour_Kitchen_PM.csv"
Kit_PM_2N_24hr = pd.read_csv(data_file_path_24_PM_2N, skiprows=0)
#24 hour Fuel Removal breakdown
data_file_path_24_Fuel_2N = "C:/Users/rossgra/Box/OSU, CSC, CQC Project files/2N/2N_24_hour_Fuel_removal.csv"
Fuel_remove_2N_24hr = pd.read_csv(data_file_path_24_Fuel_2N, skiprows=0)
#3N
datafile_path_day_3N ="C:/Users/rossgra/Box/OSU, CSC, CQC Project files/3N/3N_Summary_Day_1_exact.csv"
Day_3N = pd.read_csv(datafile_path_day_3N, skiprows=2)
datafile_path_event_3N_1 ="C:/Users/rossgra/Box/OSU, CSC, CQC Project files/3N/3N_Summary_Event_1_exact.csv"
Event_3N_1 = pd.read_csv(datafile_path_event_3N_1, skiprows=2)
#3N second Exact
datafile_path_event_3N_2 ="C:/Users/rossgra/Box/OSU, CSC, CQC Project files/3N/3N_Summary_Event_2_exact.csv"
Event_3N_2 = pd.read_csv(datafile_path_event_3N_2, skiprows=2)
#3N survey
datafile_path_survey_3N = "C:/Users/rossgra/Box/OSU, CSC, CQC Project files/3N/3N_Survey_summary_.csv"
Survey_3N = pd.read_csv(datafile_path_survey_3N, skiprows=0)
#24 hour Kitchen pm breakdown
data_file_path_24_PM_3N = "C:/Users/rossgra/Box/OSU, CSC, CQC Project files/3N/3N_24_hour_Kitchen_PM.csv"
Kit_PM_3N_24hr = pd.read_csv(data_file_path_24_PM_3N, skiprows=0)
#24 hour Fuel Removal breakdown
data_file_path_24_Fuel_3N = "C:/Users/rossgra/Box/OSU, CSC, CQC Project files/3N/3N_24_hour_Fuel_removal.csv"
Fuel_remove_3N_24hr = pd.read_csv(data_file_path_24_Fuel_3N, skiprows=0)
#4N
datafile_path_day_4N ="C:/Users/rossgra/Box/OSU, CSC, CQC Project files/4N/4N_Summary_Day_1_exact.csv"
Day_4N = pd.read_csv(datafile_path_day_4N, skiprows=2)
datafile_path_event_4N_1 ="C:/Users/rossgra/Box/OSU, CSC, CQC Project files/4N/4N_Summary_Event_1_exact.csv"
Event_4N_1 = pd.read_csv(datafile_path_event_4N_1, skiprows=2)
#4N second Exact
datafile_path_event_4N_2 ="C:/Users/rossgra/Box/OSU, CSC, CQC Project files/4N/4N_Summary_Event_2_exact.csv"
Event_4N_2 = pd.read_csv(datafile_path_event_4N_2, skiprows=2)
#4N Survey
datafile_path_survey_4N = "C:/Users/rossgra/Box/OSU, CSC, CQC Project files/4N/4N_Survey_summary_.csv"
Survey_4N = pd.read_csv(datafile_path_survey_4N, skiprows=0)
#24 hour Kitchen pm breakdown
data_file_path_24_PM_4N = "C:/Users/rossgra/Box/OSU, CSC, CQC Project files/4N/4N_24_hour_Kitchen_PM.csv"
Kit_PM_4N_24hr = pd.read_csv(data_file_path_24_PM_4N, skiprows=0)
#24 hour Fuel Removal breakdown
data_file_path_24_Fuel_4N = "C:/Users/rossgra/Box/OSU, CSC, CQC Project files/4N/4N_24_hour_Fuel_removal.csv"
Fuel_remove_4N_24hr = pd.read_csv(data_file_path_24_Fuel_4N, skiprows=0)
else:
#1H
datafile_path_day_1H ="C:/Users/rossgra/Box/OSU, CSC, CQC Project files/1H/1H_Summary_Day_1_exact.csv"
Day_1H = pd.read_csv(datafile_path_day_1H, skiprows=2)
datafile_path_event_1H ="C:/Users/rossgra/Box/OSU, CSC, CQC Project files/1H/1H_Summary_Event_1_exact.csv"
Event_1H = pd.read_csv(datafile_path_event_1H, skiprows=2)
#there is no second exact in phase 1H
#1H Survey (row 40 or so afterward is Hood portion column 1 is houshold number)
datafile_path_survey_1H = "C:/Users/rossgra/Box/OSU, CSC, CQC Project files/1N/1N_1H_Survey_summary_.csv"
Survey_1H = pd.read_csv(datafile_path_survey_1H, skiprows=40)
#24 hour Kitchen pm breakdown
data_file_path_24_PM_1H = "C:/Users/rossgra/Box/OSU, CSC, CQC Project files/1H/1H_24_hour_Kitchen_PM.csv"
Kit_PM_1H_24hr = pd.read_csv(data_file_path_24_PM_1H, skiprows=0)
#24 hour Fuel Removal breakdown
data_file_path_24_fuel_1H = "C:/Users/rossgra/Box/OSU, CSC, CQC Project files/1H/1H_24_hour_Fuel_removal.csv"
Fuel_remove_1H_24hr = pd.read_csv(data_file_path_24_fuel_1H, skiprows=0)
#2H
datafile_path_day_2H = "C:/Users/rossgra/Box/OSU, CSC, CQC Project files/2H/2H_Summary_Day_1_exact.csv"
Day_2H = pd.read_csv(datafile_path_day_2H, skiprows=2)
datafile_path_event_2H_1 ="C:/Users/rossgra/Box/OSU, CSC, CQC Project files/2H/2H_Summary_Event_1_exact.csv"
Event_2H_1 = pd.read_csv(datafile_path_event_2H_1, skiprows=2)
#2H second Exact
datafile_path_event_2H_2 ="C:/Users/rossgra/Box/OSU, CSC, CQC Project files/2H/2H_Summary_Event_2_exact.csv"
Event_2H_2 = pd.read_csv(datafile_path_event_2H_2, skiprows=2)
#2H survey
datafile_path_survey_2H = "C:/Users/rossgra/Box/OSU, CSC, CQC Project files/2H/2H_Survey_summary_.csv"
Survey_2H = pd.read_csv(datafile_path_survey_2H, skiprows=0)
#24 hour Kitchen pm breakdown
data_file_path_24_PM_2H = "C:/Users/rossgra/Box/OSU, CSC, CQC Project files/2H/2H_24_hour_Kitchen_PM.csv"
Kit_PM_2H_24hr = pd.read_csv(data_file_path_24_PM_2H, skiprows=0)
#24 hour Fuel Removal breakdown
data_file_path_24_fuel_2H = "C:/Users/rossgra/Box/OSU, CSC, CQC Project files/2H/2H_24_hour_Fuel_removal.csv"
Fuel_remove_2H_24hr = pd.read_csv(data_file_path_24_fuel_2H, skiprows=0)
#3H
datafile_path_day_3H = "C:/Users/rossgra/Box/OSU, CSC, CQC Project files/3H/3H_Summary_Day_1_exact.csv"
Day_3H = pd.read_csv(datafile_path_day_3H, skiprows=2)
datafile_path_event_3N_1 ="C:/Users/rossgra/Box/OSU, CSC, CQC Project files/3H/3H_Summary_Event_1_exact.csv"
Event_3H_1 = pd.read_csv(datafile_path_event_3N_1, skiprows=2)
#3H second Exact
datafile_path_event_3H_2 ="C:/Users/rossgra/Box/OSU, CSC, CQC Project files/3H/3H_Summary_Event_2_exact.csv"
Event_3H_2 = pd.read_csv(datafile_path_event_3H_2, skiprows=2)
#3H survey
datafile_path_survey_3H = "C:/Users/rossgra/Box/OSU, CSC, CQC Project files/3H/3H_Survey_summary_.csv"
Survey_3H = pd.read_csv(datafile_path_survey_3H, skiprows=0)
#24 hour Kitchen pm breakdown
data_file_path_24_PM_3H = "C:/Users/rossgra/Box/OSU, CSC, CQC Project files/3H/3H_24_hour_Kitchen_PM.csv"
Kit_PM_3H_24hr = pd.read_csv(data_file_path_24_PM_3H, skiprows=0)
#24 hour Fuel Removal breakdown
data_file_path_24_fuel_3H = "C:/Users/rossgra/Box/OSU, CSC, CQC Project files/3H/3H_24_hour_Fuel_removal.csv"
Fuel_remove_3H_24hr = pd.read_csv(data_file_path_24_fuel_3H, skiprows=0)
#time to start ploting fun things
#1st starting with the fuel per day per adult histogram and box plot
NO_hood_counter = np.arange(0,39)
hood_counter = np.arange(0,14)
#what household do you want to remove from the graphs (1046 is a dummy spacer)
print('---------------Fuel per Day per Adult No-Hood Phase---------------------')
if Hood_or_no == 'no_hood':
Fuel_per_day_per_adult_1N = []
f_d_a_1N = []
Fuel_per_day_per_adult_2N = []
f_d_a_2N = []
Fuel_per_day_per_adult_3N = []
f_d_a_3N = []
Fuel_per_day_per_adult_4N = []
f_d_a_4N =[]
count_t = 0
count_f = 0
for c in NO_hood_counter:
if c == (Household_removal[count_t] - C_Place_holder):
count_t = count_t + 1
if count_t == len(Household_removal):
count_t = 0
continue
if c == (Household_removal_NO_Hood_fuel_day_adult[count_f] - C_Place_holder):
count_f = count_f + 1
if count_f == len(Household_removal_NO_Hood_fuel_day_adult):
count_f = 0
continue
if Fuel_remove_1N_24hr.iloc[c,6]!= -1.00:
Fuel_per_day_per_adult_1N.append(Fuel_remove_1N_24hr.iloc[c,6]/Survey_1N.iloc[c,7])
f_d_a_1N.append(Day_1N.iloc[c,0])
if Fuel_remove_2N_24hr.iloc[c,6] != -1.00:
Fuel_per_day_per_adult_2N.append(Fuel_remove_2N_24hr.iloc[c,6] / Survey_2N.iloc[c, 7])
f_d_a_2N.append(Day_2N.iloc[c,0])
if Fuel_remove_3N_24hr.iloc[c,6] != -1.00:
Fuel_per_day_per_adult_3N.append(Fuel_remove_3N_24hr.iloc[c,6]/ Survey_3N.iloc[c, 7])
f_d_a_3N.append(Day_3N.iloc[c, 0])
if Fuel_remove_4N_24hr.iloc[c,6] != -1.00:
Fuel_per_day_per_adult_4N.append(Fuel_remove_4N_24hr.iloc[c,6] / Survey_4N.iloc[c, 7])
f_d_a_4N.append(Day_3N.iloc[c, 0])
# percentage Change of Fuel per day between the phases
Fuel_per_day_per_adult_2N_1N = []
f_d_a_2N_1N = []
Fuel_per_day_per_adult_3N_1N = []
f_d_a_3N_1N = []
Fuel_per_day_per_adult_4N_1N = []
f_d_a_4N_1N = []
Fuel_per_day_per_adult_3N_2N = []
f_d_a_3N_2N = []
Fuel_per_day_per_adult_4N_3N = []
f_d_a_4N_3N = []
Fuel_per_day_per_adult_4N_2N = []
f_d_a_4N_2N = []
count_t = 0
count_f = 0
for c in NO_hood_counter:
if c == (Household_removal[count_t] - C_Place_holder):
count_t = count_t + 1
if count_t == len(Household_removal):
count_t = 0
continue
if c == (Household_removal_NO_Hood_fuel_day_adult[count_f] - C_Place_holder):
count_f = count_f + 1
if count_f == len(Household_removal_NO_Hood_fuel_day_adult):
count_f = 0
continue
if (len(Fuel_per_day_per_adult_2N)-1) >= c and (len(Fuel_per_day_per_adult_1N)-1) >= c:
if Day_1N.iloc[c,13] > 0 and Day_2N.iloc[c,13] > 0 and Day_1N.iloc[c,0] == Day_2N.iloc[c,0]:
Fuel_per_day_per_adult_2N_1N.append(Fuel_per_day_per_adult_2N[c]/Fuel_per_day_per_adult_1N[c])
f_d_a_2N_1N.append(Day_1N.iloc[c,0])
if (len(Fuel_per_day_per_adult_3N)-1) >= c and (len(Fuel_per_day_per_adult_1N)-1) >= c:
if Day_3N.iloc[c,13] > 0 and Day_1N.iloc[c,13] > 0 and Day_3N.iloc[c,0] == Day_1N.iloc[c,0]:
Fuel_per_day_per_adult_3N_1N.append(Fuel_per_day_per_adult_3N[c]/Fuel_per_day_per_adult_1N[c])
f_d_a_3N_1N.append(Day_1N.iloc[c,0])
if (len(Fuel_per_day_per_adult_4N)-1) >= c and (len(Fuel_per_day_per_adult_1N)-1) >= c:
if Day_4N.iloc[c,13] > 0 and Day_1N.iloc[c,13] > 0 and Day_4N.iloc[c,0] == Day_1N.iloc[c,0]:
Fuel_per_day_per_adult_4N_1N.append(Fuel_per_day_per_adult_4N[c]/Fuel_per_day_per_adult_1N[c])
f_d_a_4N_1N.append(Day_1N.iloc[c,0])
if (len(Fuel_per_day_per_adult_3N)-1) >= c and (len(Fuel_per_day_per_adult_2N)-1) >= c:
if Day_3N.iloc[c,13] > 0 and Day_2N.iloc[c,13] > 0 and Day_3N.iloc[c,0] == Day_2N.iloc[c,0]:
Fuel_per_day_per_adult_3N_2N.append(Fuel_per_day_per_adult_3N[c]/Fuel_per_day_per_adult_2N[c])
f_d_a_3N_2N.append(Day_2N.iloc[c,0])
if (len(Fuel_per_day_per_adult_4N)-1) >= c and (len(Fuel_per_day_per_adult_3N)-1) >= c:
if Day_4N.iloc[c,13] > 0 and Day_3N.iloc[c,13] > 0 and Day_4N.iloc[c,0] == Day_3N.iloc[c,0]:
Fuel_per_day_per_adult_4N_3N.append(Fuel_per_day_per_adult_4N[c]/Fuel_per_day_per_adult_3N[c])
f_d_a_4N_3N.append(Day_3N.iloc[c,0])
if (len(Fuel_per_day_per_adult_4N)-1) >= c and (len(Fuel_per_day_per_adult_2N)-1) >= c:
if Day_4N.iloc[c,13] > 0 and Day_2N.iloc[c,13] > 0 and Day_4N.iloc[c,0] == Day_2N.iloc[c,0]:
Fuel_per_day_per_adult_4N_2N.append(Fuel_per_day_per_adult_4N[c]/Fuel_per_day_per_adult_2N[c])
f_d_a_4N_2N.append(Day_4N.iloc[c,0])
# now for box plotting for Fuel per day beteen Phases
#1N
sns.set(style="ticks")
f, (ax_box, ax_hist) = plt.subplots(2, sharex=True, gridspec_kw={"height_ratios": (0.15, 0.85)})
sns.boxplot(Fuel_per_day_per_adult_1N, ax=ax_box, color='b')
sns.distplot(Fuel_per_day_per_adult_1N, ax=ax_hist, color='b')
ax_box.set(yticks=[])
sns.despine(ax=ax_hist)
sns.despine(ax=ax_box, left=True)
plt.title('1N Fuel per Day per Adult')
plt.ylim(top=2)
plt.ylim(bottom = 0)
#2N
sns.set(style="ticks")
f, (ax_box, ax_hist) = plt.subplots(2, sharex=True, gridspec_kw={"height_ratios": (0.15, 0.85)})
sns.boxplot(Fuel_per_day_per_adult_2N, ax=ax_box, color='g')
sns.distplot(Fuel_per_day_per_adult_2N, ax=ax_hist, color='g')
ax_box.set(yticks=[])
sns.despine(ax=ax_hist)
sns.despine(ax=ax_box, left=True)
plt.title('2N Fuel per Day per Adult')
plt.ylim(top=2)
plt.ylim(bottom = 0)
#3N
sns.set(style="ticks")
f, (ax_box, ax_hist) = plt.subplots(2, sharex=True, gridspec_kw={"height_ratios": (0.15, 0.85)})
sns.boxplot(Fuel_per_day_per_adult_3N, ax=ax_box, color='r')
sns.distplot(Fuel_per_day_per_adult_3N, ax=ax_hist, color='r')
ax_box.set(yticks=[])
sns.despine(ax=ax_hist)
sns.despine(ax=ax_box, left=True)
plt.title('3N Fuel per Day per Adult')
plt.ylim(top=2)
plt.ylim(bottom = 0)
#4N
sns.set(style="ticks")
f, (ax_box, ax_hist) = plt.subplots(2, sharex=True, gridspec_kw={"height_ratios": (0.15, 0.85)})
sns.boxplot(Fuel_per_day_per_adult_4N, ax=ax_box, color='y')
sns.distplot(Fuel_per_day_per_adult_4N, ax=ax_hist, color='y')
ax_box.set(yticks=[])
sns.despine(ax=ax_hist)
sns.despine(ax=ax_box, left=True)
plt.title('4N Fuel per Day per Adult')
plt.ylim(top=2)
plt.ylim(bottom = 0)
#Plotting on the same graph
fig, ax = plt.subplots()
plt.title('No-Hood Fuel per Day per Adult')
#plt.hold(True)
#1N
quant_1_1N = np.percentile(Fuel_per_day_per_adult_1N, [25,50,75])
Top_lim_1_1N = quant_1_1N[2] + 1.5*(quant_1_1N[2] - quant_1_1N[0])
Low_lim_1_1N = quant_1_1N[0] - 1.5*(quant_1_1N[2] - quant_1_1N[0])
bp_1 = plt.boxplot(Fuel_per_day_per_adult_1N, positions = [1], widths = 0.6)
Fuel_D_A_1N_outlier = []
for v,a in enumerate(Fuel_per_day_per_adult_1N):
if a > Top_lim_1_1N or a < Low_lim_1_1N:
Fuel_D_A_1N_outlier.append(f_d_a_1N[v])
plt.text(1,a,f_d_a_1N[v])
plt.text(1,0.1,'1N',color='b')
#2N
quant_1_2N = np.percentile(Fuel_per_day_per_adult_2N, [25,50,75])
Top_lim_1_2N = quant_1_2N[2] + 1.5*(quant_1_2N[2] - quant_1_2N[0])
Low_lim_1_2N = quant_1_2N[0] - 1.5*(quant_1_2N[2] - quant_1_2N[0])
bp_1 = plt.boxplot(Fuel_per_day_per_adult_2N,positions = [2], widths = 0.6)
Fuel_D_A_2N_outlier = []
for v,a in enumerate(Fuel_per_day_per_adult_2N):
if a > Top_lim_1_2N or a < Low_lim_1_2N:
Fuel_D_A_2N_outlier.append(f_d_a_2N[v])
plt.text(2,a,f_d_a_2N[v])
plt.text(2,0.1,'2N', color= 'g')
#3N
quant_1_3N = np.percentile(Fuel_per_day_per_adult_3N, [25,50,75])
Top_lim_1_3N = quant_1_3N[2] + 1.5*(quant_1_3N[2] - quant_1_3N[0])
Low_lim_1_3N = quant_1_3N[0] - 1.5*(quant_1_3N[2] - quant_1_3N[0])
bp_1 = plt.boxplot(Fuel_per_day_per_adult_3N,positions = [3], widths = 0.6)
count = 0
Fuel_D_A_3N_outlier = []
for v,a in enumerate(Fuel_per_day_per_adult_3N):
if a > Top_lim_1_3N or a < Low_lim_1_3N:
Fuel_D_A_3N_outlier.append(f_d_a_3N[v])
count = count + 1
if count == 2:
plt.text(3,a,f_d_a_3N[v],ha='left',va='bottom')
elif count != 2:
plt.text(3,a,f_d_a_3N[v],ha='right',va='bottom')
plt.text(3,0.1,'3N', color='r')
#4N
quant_1_4N = np.percentile(Fuel_per_day_per_adult_4N, [25,50,75])
Top_lim_1_4N = quant_1_4N[2] + 1.5*(quant_1_4N[2] - quant_1_4N[0])
Low_lim_1_4N = quant_1_4N[0] - 1.5*(quant_1_4N[2] - quant_1_4N[0])
bp_1 = plt.boxplot(Fuel_per_day_per_adult_4N,positions = [4], widths = 0.6)
Fuel_D_A_4N_outlier = []
for v,a in enumerate(Fuel_per_day_per_adult_4N):
if a > Top_lim_1_4N or a < Low_lim_1_4N:
Fuel_D_A_4N_outlier.append(f_d_a_4N[v])
plt.text(4,a,f_d_a_4N[v])
plt.text(4,0.1,'4N', color='y')
plt.xlim(0,5)
plt.ylim(0,2.3)
print('Fuel/Day/Adult 1N had these values as outliers ', Fuel_D_A_1N_outlier)
print('Fuel/Day/Adult 2N had these values as outliers ', Fuel_D_A_2N_outlier)
print('Fuel/Day/Adult 3N had these values as outliers ', Fuel_D_A_3N_outlier)
print('Fuel/Day/Adult 4N had these values as outliers ', Fuel_D_A_4N_outlier)
plt.show()
# % change of fuel per day per adult between each phase
fig_2, ax2 = plt.subplots()
plt.title('% No_hood Change from Fuel per Day per Adult' )
#plt.hold(True)
#2N to 1N
quant_1_2N_1N = np.percentile(Fuel_per_day_per_adult_2N_1N, [25,50,75])
Top_lim_1_2N_1N = quant_1_2N_1N[2] + 1.5*(quant_1_2N_1N[2]-quant_1_2N_1N[0])
Low_lim_1_2N_1N = quant_1_2N_1N[0] - 1.5*(quant_1_2N_1N[2]-quant_1_2N_1N[0])
bp_1_1 = plt.boxplot(Fuel_per_day_per_adult_2N_1N, positions=[1], widths= 0.6)
Fuel_D_A_2N_1N_outlier = []
for v,a in enumerate(Fuel_per_day_per_adult_2N_1N):
if a > Top_lim_1_2N_1N or a < Low_lim_1_2N_1N:
Fuel_D_A_2N_1N_outlier.append(f_d_a_2N_1N[v])
plt.text(1, a, f_d_a_2N_1N[v])
plt.text(0.5, 0, '2N / 1N', color= 'g')
#3N to 1N
quant_1_3N_1N = np.percentile(Fuel_per_day_per_adult_3N_1N, [25,50,75])
Top_lim_1_3N_1N = quant_1_3N_1N[2] + 1.5*(quant_1_3N_1N[2]-quant_1_3N_1N[0])
Low_lim_1_3N_1N = quant_1_3N_1N[0] - 1.5*(quant_1_3N_1N[2]-quant_1_3N_1N[0])
bp_1_1 = plt.boxplot(Fuel_per_day_per_adult_3N_1N, positions=[2], widths= 0.6)
Fuel_D_A_3N_1N_outlier = []
for v,a in enumerate(Fuel_per_day_per_adult_3N_1N):
if a > Top_lim_1_3N_1N or a < Low_lim_1_3N_1N:
Fuel_D_A_3N_1N_outlier.append(f_d_a_3N_1N[v])
plt.text(2, a, f_d_a_3N_1N[v])
plt.text(1.5, 0, '3N / 1N', color= 'r')
#4N to 1N
quant_1_4N_1N = np.percentile(Fuel_per_day_per_adult_4N_1N, [25,50,75])
Top_lim_1_4N_1N = quant_1_4N_1N[2] + 1.5*(quant_1_4N_1N[2]-quant_1_4N_1N[0])
Low_lim_1_4N_1N = quant_1_4N_1N[0] - 1.5*(quant_1_4N_1N[2]-quant_1_4N_1N[0])
bp_1_1 = plt.boxplot(Fuel_per_day_per_adult_4N_1N, positions=[3], widths= 0.6)
Fuel_D_A_4N_1N_outlier = []
for v,a in enumerate(Fuel_per_day_per_adult_4N_1N):
if a > Top_lim_1_4N_1N or a < Low_lim_1_4N_1N:
Fuel_D_A_4N_1N_outlier.append(f_d_a_4N_1N[v])
plt.text(3, a, f_d_a_4N_1N[v])
plt.text(2.5, 0, '4N / 1N', color= 'y')
#3N to 2N
quant_1_3N_2N = np.percentile(Fuel_per_day_per_adult_3N_2N, [25,50,75])
Top_lim_1_3N_2N = quant_1_3N_2N[2] + 1.5*(quant_1_3N_2N[2]-quant_1_3N_2N[0])
Low_lim_1_3N_2N = quant_1_3N_2N[0] - 1.5*(quant_1_3N_2N[2]-quant_1_3N_2N[0])
bp_1_1 = plt.boxplot(Fuel_per_day_per_adult_3N_2N, positions=[4], widths= 0.6)
Fuel_D_A_3N_2N_outlier = []
for v,a in enumerate(Fuel_per_day_per_adult_3N_2N):
if a > Top_lim_1_3N_2N or a < Low_lim_1_3N_2N:
Fuel_D_A_3N_2N_outlier.append(f_d_a_3N_2N[v])
plt.text(4, a, f_d_a_3N_2N[v])
plt.text(3.5, 0, '3N / 2N', color= 'm')
#4N to 3N
quant_1_4N_3N = np.percentile(Fuel_per_day_per_adult_4N_3N, [25,50,75])
Top_lim_1_4N_3N = quant_1_4N_3N[2] + 1.5*(quant_1_4N_3N[2]-quant_1_4N_3N[0])
Low_lim_1_4N_3N = quant_1_4N_3N[0] - 1.5*(quant_1_4N_3N[2]-quant_1_4N_3N[0])
bp_1_1 = plt.boxplot(Fuel_per_day_per_adult_4N_3N, positions=[5], widths= 0.6)
Fuel_D_A_4N_3N_outlier = []
for v,a in enumerate(Fuel_per_day_per_adult_4N_3N):
if a > Top_lim_1_4N_3N or a < Low_lim_1_4N_3N:
Fuel_D_A_4N_3N_outlier.append(f_d_a_4N_3N[v])
plt.text(5, a, f_d_a_4N_3N[v])
plt.text(4.5, 0, '4N / 3N', color= 'k')
#4N to 2N
quant_1_4N_2N = np.percentile(Fuel_per_day_per_adult_4N_2N, [25,50,75])
Top_lim_1_4N_2N = quant_1_4N_2N[2] + 1.5*(quant_1_4N_2N[2]-quant_1_4N_2N[0])
Low_lim_1_4N_2N = quant_1_4N_2N[0] - 1.5*(quant_1_4N_2N[2]-quant_1_4N_2N[0])
bp_1_1 = plt.boxplot(Fuel_per_day_per_adult_4N_2N, positions=[6], widths= 0.6)
Fuel_D_A_4N_2N_outlier = []
for v,a in enumerate(Fuel_per_day_per_adult_4N_2N):
if a > Top_lim_1_4N_2N or a < Low_lim_1_4N_2N:
Fuel_D_A_4N_2N_outlier.append(f_d_a_4N_2N[v])
plt.text(6, a, f_d_a_4N_2N[v])
plt.text(5.5, 0, '4N / 2N', color= 'tab:orange')
plt.xlim(0,7)
plt.ylim(-0.5,4)
print('Fuel/Day/Adult 2N/1N had these values as outliers ', Fuel_D_A_2N_1N_outlier)
print('Fuel/Day/Adult 3N/1N had these values as outliers ', Fuel_D_A_3N_1N_outlier)
print('Fuel/Day/Adult 4N/1N had these values as outliers ', Fuel_D_A_4N_1N_outlier)
print('Fuel/Day/Adult 3N/2N had these values as outliers ', Fuel_D_A_3N_2N_outlier)
print('Fuel/Day/Adult 4N/3N had these values as outliers ', Fuel_D_A_4N_3N_outlier)
print('Fuel/Day/Adult 4N/2N had these values as outliers ', Fuel_D_A_4N_2N_outlier)
plt.show()
#adding averages to the tables
quant_1_1N = np.append(quant_1_1N, np.average(Fuel_per_day_per_adult_1N))
quant_1_2N = np.append(quant_1_2N, np.average(Fuel_per_day_per_adult_2N))
quant_1_3N = np.append(quant_1_3N, np.average(Fuel_per_day_per_adult_3N))
quant_1_4N = np.append(quant_1_4N, np.average(Fuel_per_day_per_adult_4N))
D_50_quant_phase_f_d_a = {'Percentile %': ['25','50','75', 'Avg'], '1N': quant_1_1N, '2N': quant_1_2N,'3N' : quant_1_3N,'4N': quant_1_4N}
F_D_A_50_phase_no_hood = pd.DataFrame(data=D_50_quant_phase_f_d_a, columns=['Percentile %','1N', '2N', '3N','4N'])
quant_1_2N_1N = np.append(quant_1_2N_1N , np.average(Fuel_per_day_per_adult_2N_1N))
quant_1_3N_1N = np.append(quant_1_3N_1N , np.average(Fuel_per_day_per_adult_3N_1N))
quant_1_4N_1N = np.append(quant_1_4N_1N , np.average(Fuel_per_day_per_adult_4N_1N))
quant_1_3N_2N = np.append(quant_1_3N_2N , np.average(Fuel_per_day_per_adult_3N_2N))
quant_1_4N_3N = np.append(quant_1_4N_3N , np.average(Fuel_per_day_per_adult_4N_3N))
quant_1_4N_2N = np.append(quant_1_4N_2N , np.average(Fuel_per_day_per_adult_4N_2N))
D_50_quant_percent_f_d_a ={'Percentile %': ['25','50','75', 'Avg'],'2N / 1N': quant_1_2N_1N,'3N / 1N': quant_1_3N_1N,'4N / 1N': quant_1_4N_1N,
'3N / 2N': quant_1_3N_2N,'4N / 3N': quant_1_4N_3N,'4N / 2N': quant_1_4N_2N}
F_D_A_50_percent_change_no_hood = pd.DataFrame(data=D_50_quant_percent_f_d_a, columns=['Percentile %','2N / 1N','3N / 1N', '4N / 1N'
,'3N / 2N','4N / 3N','4N / 2N'])
print(F_D_A_50_phase_no_hood)
print(F_D_A_50_percent_change_no_hood)
# add more
print ('-------------------Fuel per Day per Adult Hood Phase -------------------')
if Hood_or_no == 'hood':
Fuel_per_day_per_adult_1H = []
f_d_a_1H = []
Fuel_per_day_per_adult_2H = []
f_d_a_2H = []
Fuel_per_day_per_adult_3H = []
f_d_a_3H = []
count_t = 0
count_f = 0
for c in hood_counter:
if c == (Household_removal[count_t] - C_Place_holder):
count_t = count_t + 1
if count_t == len(Household_removal):
count_t = 0
continue
if c == (Household_removal_Hood_fuel_day_adult[count_f] - C_Place_holder):
count_f = count_f + 1
if count_f == len(Household_removal_Hood_fuel_day_adult):
count_f = 0
continue
if Fuel_remove_1H_24hr.iloc[c,6] != -1.00:
Fuel_per_day_per_adult_1H.append(Fuel_remove_1H_24hr.iloc[c,6]/Survey_1H.iloc[c,7])
f_d_a_1H.append(Day_1H.iloc[c,0])
if Fuel_remove_2H_24hr.iloc[c,6] != -1.00:
Fuel_per_day_per_adult_2H.append(Fuel_remove_2H_24hr.iloc[c,6] / Survey_2H.iloc[c, 7])
f_d_a_2H.append(Day_2H.iloc[c,0])
if Fuel_remove_3H_24hr.iloc[c,6] != -1.00:
Fuel_per_day_per_adult_3H.append(Fuel_remove_3H_24hr.iloc[c,6]/ Survey_3H.iloc[c, 7])
f_d_a_3H.append(Day_3H.iloc[c, 0])
# percentage Change of Fuel per day between the phases
Fuel_per_day_per_adult_2H_1H = []
f_d_a_2H_1H = []
Fuel_per_day_per_adult_3H_1H = []
f_d_a_3H_1H = []
Fuel_per_day_per_adult_3H_2H = []
f_d_a_3H_2H = []
count_t = 0
count_f = 0
for c in hood_counter:
if c == (Household_removal[count_t] - C_Place_holder):
count_t = count_t + 1
if count_t == len(Household_removal):
count_t = 0
continue
if c == (Household_removal_Hood_fuel_day_adult[count_f] - C_Place_holder):
count_f = count_f + 1
if count_f == len(Household_removal_Hood_fuel_day_adult):
count_f = 0
continue
if (len(Fuel_per_day_per_adult_2H)-1) >= c and (len(Fuel_per_day_per_adult_1H)-1) >= c:
if Day_1H.iloc[c,13] > 0 and Day_2H.iloc[c,13] > 0 and Day_1H.iloc[c,0] == Day_2H.iloc[c,0]:
Fuel_per_day_per_adult_2H_1H.append(Fuel_per_day_per_adult_2H[c]/Fuel_per_day_per_adult_1H[c])
f_d_a_2H_1H.append(Day_1H.iloc[c,0])
if (len(Fuel_per_day_per_adult_3H)-1) >= c and (len(Fuel_per_day_per_adult_1H)-1) >= c:
if Day_3H.iloc[c,13] > 0 and Day_1H.iloc[c,13] > 0 and Day_3H.iloc[c,0] == Day_1H.iloc[c,0]:
Fuel_per_day_per_adult_3H_1H.append(Fuel_per_day_per_adult_3H[c]/Fuel_per_day_per_adult_1H[c])
f_d_a_3H_1H.append(Day_1H.iloc[c,0])
if (len(Fuel_per_day_per_adult_3H)-1) >= c and (len(Fuel_per_day_per_adult_2H)-1) >= c:
if Day_3H.iloc[c,13] > 0 and Day_2H.iloc[c,13] > 0 and Day_3H.iloc[c,0] == Day_2H.iloc[c,0]:
Fuel_per_day_per_adult_3H_2H.append(Fuel_per_day_per_adult_3H[c]/Fuel_per_day_per_adult_2H[c])
f_d_a_3H_2H.append(Day_1H.iloc[c,0])
# now for plotting
#1H
sns.set(style="ticks")
f, (ax_box, ax_hist) = plt.subplots(2, sharex=True, gridspec_kw={"height_ratios": (0.15, 0.85)})
sns.boxplot(Fuel_per_day_per_adult_1H, ax=ax_box, color='b')
sns.distplot(Fuel_per_day_per_adult_1H, ax=ax_hist, color='b')
ax_box.set(yticks=[])
sns.despine(ax=ax_hist)
sns.despine(ax=ax_box, left=True)
plt.title('1H Fuel per Day per Adult')
plt.ylim(top=2)
plt.ylim(bottom = 0)
#2H
sns.set(style="ticks")
f, (ax_box, ax_hist) = plt.subplots(2, sharex=True, gridspec_kw={"height_ratios": (0.15, 0.85)})
sns.boxplot(Fuel_per_day_per_adult_2H, ax=ax_box, color='g')
sns.distplot(Fuel_per_day_per_adult_2H, ax=ax_hist, color='g')
ax_box.set(yticks=[])
sns.despine(ax=ax_hist)
sns.despine(ax=ax_box, left=True)
plt.title('2H Fuel per Day per Adult')
plt.ylim(top=2)
plt.ylim(bottom = 0)
#3H
sns.set(style="ticks")
f, (ax_box, ax_hist) = plt.subplots(2, sharex=True, gridspec_kw={"height_ratios": (0.15, 0.85)})
sns.boxplot(Fuel_per_day_per_adult_3H, ax=ax_box, color='r')
sns.distplot(Fuel_per_day_per_adult_3H, ax=ax_hist, color='r')
ax_box.set(yticks=[])
sns.despine(ax=ax_hist)
sns.despine(ax=ax_box, left=True)
plt.title('3H Fuel per Day per Adult')
plt.ylim(top=2)
plt.ylim(bottom = 0)
fig_2, ax_2 = plt.subplots()
plt.title('Hood Fuel per Day per Adult')
#plt.hold(True)
quant_1_1H = np.percentile(Fuel_per_day_per_adult_1H, [25,50,75])
Top_lim_1_1H = quant_1_1H[2] + 1.5*(quant_1_1H[2] - quant_1_1H[0])
Low_lim_1_1H = quant_1_1H[0] - 1.5*(quant_1_1H[2] - quant_1_1H[0])
bp_1 = plt.boxplot(Fuel_per_day_per_adult_1H, positions = [1], widths = 0.6)
Fuel_D_A_1H_outlier = []
for v,a in enumerate(Fuel_per_day_per_adult_1H):
if a > Top_lim_1_1H or a < Low_lim_1_1H:
Fuel_D_A_1H_outlier.append(f_d_a_1H[v])
plt.text(1,a,f_d_a_1H[v])
plt.text(1,0,'1H',color='b')
quant_1_2H = np.percentile(Fuel_per_day_per_adult_2H, [25,50,75])
Top_lim_1_2H = quant_1_2H[2] + 1.5*(quant_1_2H[2] - quant_1_2H[0])
Low_lim_1_2H = quant_1_2H[0] - 1.5*(quant_1_2H[2] - quant_1_2H[0])
bp_1 = plt.boxplot(Fuel_per_day_per_adult_2H,positions = [2], widths = 0.6)
count = 0
Fuel_D_A_2H_outlier = []
for v,a in enumerate(Fuel_per_day_per_adult_2H):
if a > Top_lim_1_2H or a < Low_lim_1_2H:
Fuel_D_A_2H_outlier.append(f_d_a_2H[v])
count = count + 1
if count == 1:
plt.text(2,a,f_d_a_2H[v],ha='left',va='bottom')
elif count !=1:
plt.text(2,a,f_d_a_2H[v],ha='right',va='bottom')
plt.text(2,0,'2H', color= 'g')
quant_1_3H = np.percentile(Fuel_per_day_per_adult_3H, [25,50,75])
Top_lim_1_3H = quant_1_3H[2] + 1.5*(quant_1_3H[2] - quant_1_3H[0])
Low_lim_1_3H = quant_1_3H[0] - 1.5*(quant_1_3H[2] - quant_1_3H[0])
bp_1 = plt.boxplot(Fuel_per_day_per_adult_3H,positions = [3], widths = 0.6)
count = 0
Fuel_D_A_3H_outlier = []
for v,a in enumerate(Fuel_per_day_per_adult_3H):
if a > Top_lim_1_3H or a < Low_lim_1_3H:
Fuel_D_A_3H_outlier.append(f_d_a_3H[v])
count = count + 1
if count == 3:
plt.text(3,a,f_d_a_3H[v],ha='left',va='bottom')
elif count != 1:
plt.text(3,a,f_d_a_3H[v],ha='right',va='bottom')
plt.text(3,0,'3H', color='r')
plt.xlim(-0,4)
plt.ylim(-0.25,2.5)
print('Fuel/Day/Adult 1H had these values as outliers ', Fuel_D_A_1H_outlier)
print('Fuel/Day/Adult 2H had these values as outliers ', Fuel_D_A_2H_outlier)
print('Fuel/Day/Adult 3H had these values as outliers ', Fuel_D_A_3H_outlier)
plt.show()
#% change of fuel perday per adult between each phase
fig_2, ax2 = plt.subplots()
plt.title('% No_hood Change from Fuel per Day per Adult' )
#plt.hold(True)
#2H to 1H
quant_1_2H_1H = np.percentile(Fuel_per_day_per_adult_2H_1H, [25,50,75])
Top_lim_1_2H_1H = quant_1_2H_1H[2] + 1.5*(quant_1_2H_1H[2]-quant_1_2H_1H[0])
Low_lim_1_2H_1H = quant_1_2H_1H[0] - 1.5*(quant_1_2H_1H[2]-quant_1_2H_1H[0])
bp_1_1 = plt.boxplot(Fuel_per_day_per_adult_2H_1H, positions=[1], widths= 0.6)
Fuel_D_A_2H_1H_outlier = []
for v,a in enumerate(Fuel_per_day_per_adult_2H_1H):
if a > Top_lim_1_2H_1H or a < Low_lim_1_2H_1H:
Fuel_D_A_2H_1H_outlier.append(f_d_a_2H_1H[v])
plt.text(1, a, f_d_a_2H_1H[v])
plt.text(0.75, -0.25, '2H / 1H', color= 'g')
#3H to 1H
quant_1_3H_1H = np.percentile(Fuel_per_day_per_adult_3H_1H, [25,50,75])
Top_lim_1_3H_1H = quant_1_3H_1H[2] + 1.5*(quant_1_3H_1H[2]-quant_1_3H_1H[0])
Low_lim_1_3H_1H = quant_1_3H_1H[0] - 1.5*(quant_1_3H_1H[2]-quant_1_3H_1H[0])
bp_1_1 = plt.boxplot(Fuel_per_day_per_adult_3H_1H, positions=[2], widths= 0.6)
Fuel_D_A_3H_1H_outlier = []
for v,a in enumerate(Fuel_per_day_per_adult_3H_1H):
if a > Top_lim_1_3H_1H or a < Low_lim_1_3H_1H:
Fuel_D_A_3H_1H_outlier.append(f_d_a_3H_1H[v])
plt.text(2, a, f_d_a_3H_1H[v])
plt.text(1.75, -0.25, '3H / 1H', color= 'r')
#3H to 2H
quant_1_3H_2H = np.percentile(Fuel_per_day_per_adult_3H_2H, [25,50,75])
Top_lim_1_3H_2H = quant_1_3H_2H[2] + 1.5*(quant_1_3H_2H[2]-quant_1_3H_2H[0])
Low_lim_1_3H_2H = quant_1_3H_2H[0] - 1.5*(quant_1_3H_2H[2]-quant_1_3H_2H[0])
bp_1_1 = plt.boxplot(Fuel_per_day_per_adult_3H_2H, positions=[3], widths= 0.6)
Fuel_D_A_3H_2H_outlier = []
for v,a in enumerate(Fuel_per_day_per_adult_3H_2H):
if a > Top_lim_1_3H_2H or a < Low_lim_1_3H_2H:
Fuel_D_A_3H_2H_outlier.append(f_d_a_3H_2H[v])
plt.text(3, a, f_d_a_3H_2H[v])
plt.text(2.75, -0.25, '2H / 1H', color= 'm')
plt.xlim(-0,4)
plt.ylim(-0.25,6)
print('Fuel/Day/Adult 2H/1H had these values as outliers ', Fuel_D_A_2H_1H_outlier)
print('Fuel/Day/Adult 3H/1H had these values as outliers ', Fuel_D_A_3H_1H_outlier)
print('Fuel/Day/Adult 3H/2H had these values as outliers ', Fuel_D_A_3H_2H_outlier)
plt.show()
quant_1_1H = np.append(quant_1_1H, np.average(Fuel_per_day_per_adult_1H))
quant_1_2H = np.append(quant_1_2H, np.average(Fuel_per_day_per_adult_2H))
quant_1_3H = np.append(quant_1_3H, np.average(Fuel_per_day_per_adult_3H))
D_50_quant_phase_f_d_a_hood = {'Percentile %': ['25','50','75', 'Avg'], '1H': quant_1_1H, '2H': quant_1_2H,'3H' : quant_1_3H}
F_D_A_50_phase_hood = pd.DataFrame(data=D_50_quant_phase_f_d_a_hood, columns=['Percentile %','1H', '2H','3H'] )
quant_1_2H_1H = np.append(quant_1_2H_1H , np.average(Fuel_per_day_per_adult_2H_1H))
quant_1_3H_1H = np.append(quant_1_3H_1H , np.average(Fuel_per_day_per_adult_3H_1H))
quant_1_3H_2H = np.append(quant_1_3H_2H , np.average(Fuel_per_day_per_adult_3H_2H))
D_50_quant_percent_f_d_a_hood ={'Percentile %': ['25','50','75', 'Avg'],'2H / 1H': quant_1_2H_1H,'3H / 1H': quant_1_3H_1H,'3H / 2H': quant_1_3H_2H}
F_D_A_50_percent_change_hood = pd.DataFrame(data=D_50_quant_percent_f_d_a_hood, columns=['Percentile %','2H / 1H','3H / 1H','3H / 2H'])
print(F_D_A_50_phase_hood)
print(F_D_A_50_percent_change_hood)
print('----------------------- Kitchen PM per Day -----------------------------')
if Hood_or_no == 'no_hood':
Kit_PM_per_day_1N = []
K_PM_D_1N = []
Kit_PM_per_day_2N = []
K_PM_D_2N = []
Kit_PM_per_day_3N = []
K_PM_D_3N = []
Kit_PM_per_day_4N = []
K_PM_D_4N = []
count_t = 0
count_pm = 0
for c in NO_hood_counter:
if c == (Household_removal[count_t] - C_Place_holder):
count_t = count_t + 1
if count_t == len(Household_removal):
count_t = 0
continue
if c == (Household_removal_NO_Hood_PM[count_pm] - C_Place_holder):
count_pm = count_pm + 1
if count_pm == len(Household_removal_NO_Hood_PM):
count_pm = 0
continue
# if Day_1N.iloc[c,7] != -1.00:
# Kit_PM_per_day_1N.append(Day_1N.iloc[c,7]/Day_1N.iloc[c,1])
# K_PM_D_1N.append(Day_1N.iloc[c,0])
if Kit_PM_1N_24hr.iloc[c,6] != -1.00:
Kit_PM_per_day_1N.append(Kit_PM_1N_24hr.iloc[c,6])
K_PM_D_1N.append(Kit_PM_1N_24hr.iloc[c, 0])
#if Day_2N.iloc[c, 7] != -1.00:
# Kit_PM_per_day_2N.append(Day_2N.iloc[c,7]/Day_2N.iloc[c,1])
# K_PM_D_2N.append(Day_2N.iloc[c,0])
if Kit_PM_2N_24hr.iloc[c, 6] != -1.00:
Kit_PM_per_day_2N.append(Kit_PM_2N_24hr.iloc[c, 6])
K_PM_D_2N.append(Kit_PM_2N_24hr.iloc[c, 0])
# if Day_3N.iloc[c, 7] != -1.00:
# Kit_PM_per_day_3N.append(Day_3N.iloc[c,7]/Day_3N.iloc[c,1])
# K_PM_D_3N.append(Day_3N.iloc[c, 0])
if Kit_PM_3N_24hr.iloc[c, 6] != -1.00:
Kit_PM_per_day_3N.append(Kit_PM_3N_24hr.iloc[c, 6])
K_PM_D_3N.append(Kit_PM_3N_24hr.iloc[c, 0])
# if Day_4N.iloc[c, 7] != -1.00:
# Kit_PM_per_day_4N.append(Day_4N.iloc[c,7]/Day_4N.iloc[c,1])
# K_PM_D_4N.append(Day_4N.iloc[c, 0])
if Kit_PM_4N_24hr.iloc[c, 6] != -1.00:
Kit_PM_per_day_4N.append(Kit_PM_4N_24hr.iloc[c, 6])
K_PM_D_4N.append(Kit_PM_4N_24hr.iloc[c, 0])
# percentages Between Phases of kitchen PM per day
Kit_per_day_2N_1N = []
K_PM_D_2N_1N = []
Kit_per_day_3N_1N = []
K_PM_D_3N_1N = []
Kit_per_day_4N_1N = []
K_PM_D_4N_1N = []
Kit_per_day_3N_2N = []
K_PM_D_3N_2N = []
Kit_per_day_4N_3N = []
K_PM_D_4N_3N = []
Kit_per_day_4N_2N = []
K_PM_D_4N_2N = []
count_t = 0
count_pm = 0
for c in NO_hood_counter:
if c == (Household_removal[count_t] - C_Place_holder):
count_t = count_t + 1
if count_t == len(Household_removal):
count_t = 0
continue
if c == (Household_removal_NO_Hood_PM[count_pm] - C_Place_holder):
count_pm = count_pm + 1
if count_pm == len(Household_removal_NO_Hood_PM):
count_pm = 0
continue
if (len(Kit_PM_per_day_2N)-1) >= c and (len(Kit_PM_per_day_1N)-1) >= c:
#if Day_1N.iloc[c,7] > 0 and Day_2N.iloc[c,7] > 0 and Day_1N.iloc[c,0] == Day_2N.iloc[c,0]:
if Kit_PM_1N_24hr.iloc[c,6] > 0 and Kit_PM_2N_24hr.iloc[c,6] > 0 and Kit_PM_1N_24hr.iloc[c,0] == Kit_PM_2N_24hr.iloc[c,0]:
Kit_per_day_2N_1N.append(Kit_PM_per_day_2N[c]/Kit_PM_per_day_1N[c])
K_PM_D_2N_1N.append(Day_1N.iloc[c,0])
if (len(Kit_PM_per_day_3N)-1) >= c and (len(Kit_PM_per_day_1N)-1) >= c:
#if Day_3N.iloc[c,7] > 0 and Day_1N.iloc[c,7] > 0 and Day_3N.iloc[c,0] == Day_1N.iloc[c,0]:
if Kit_PM_3N_24hr.iloc[c, 6] > 0 and Kit_PM_1N_24hr.iloc[c, 6] > 0 and Kit_PM_3N_24hr.iloc[c, 0] == \
Kit_PM_1N_24hr.iloc[c, 0]:
Kit_per_day_3N_1N.append(Kit_PM_per_day_3N[c]/Kit_PM_per_day_1N[c])
K_PM_D_3N_1N.append(Day_1N.iloc[c,0])
if (len(Kit_PM_per_day_4N)-1) >= c and (len(Kit_PM_per_day_1N)-1) >= c:
#if Day_4N.iloc[c,7] > 0 and Day_1N.iloc[c,7] > 0 and Day_4N.iloc[c,0] == Day_1N.iloc[c,0]:
if Kit_PM_4N_24hr.iloc[c, 6] > 0 and Kit_PM_1N_24hr.iloc[c, 6] > 0 and Kit_PM_4N_24hr.iloc[c, 0] == \
Kit_PM_1N_24hr.iloc[c, 0]:
Kit_per_day_4N_1N.append(Kit_PM_per_day_4N[c]/Kit_PM_per_day_1N[c])
K_PM_D_4N_1N.append(Day_1N.iloc[c,0])
if (len(Kit_PM_per_day_3N)-1) >= c and (len(Kit_PM_per_day_2N)-1) >= c:
#if Day_3N.iloc[c,7] > 0 and Day_2N.iloc[c,7] > 0 and Day_3N.iloc[c,0] == Day_2N.iloc[c,0]:
if Kit_PM_3N_24hr.iloc[c, 6] > 0 and Kit_PM_2N_24hr.iloc[c, 6] > 0 and Kit_PM_3N_24hr.iloc[c, 0] == \
Kit_PM_2N_24hr.iloc[c, 0]:
Kit_per_day_3N_2N.append(Kit_PM_per_day_3N[c]/Kit_PM_per_day_2N[c])
K_PM_D_3N_2N.append(Day_2N.iloc[c,0])
if (len(Kit_PM_per_day_4N)-1) >= c and (len(Kit_PM_per_day_3N)-1) >= c:
#if Day_4N.iloc[c,7] > 0 and Day_3N.iloc[c,7] > 0 and Day_4N.iloc[c,0] == Day_3N.iloc[c,0]:
if Kit_PM_4N_24hr.iloc[c, 6] > 0 and Kit_PM_3N_24hr.iloc[c, 6] > 0 and Kit_PM_3N_24hr.iloc[c, 0] == \
Kit_PM_4N_24hr.iloc[c, 0]:
Kit_per_day_4N_3N.append(Kit_PM_per_day_4N[c]/Kit_PM_per_day_3N[c])
K_PM_D_4N_3N.append(Day_3N.iloc[c,0])
if (len(Kit_PM_per_day_4N)-1) >= c and (len(Kit_PM_per_day_2N)-1) >= c:
#if Day_4N.iloc[c,7] > 0 and Day_2N.iloc[c,7] > 0 and Day_4N.iloc[c,0] == Day_2N.iloc[c,0]:
if Kit_PM_4N_24hr.iloc[c, 6] > 0 and Kit_PM_4N_24hr.iloc[c, 6] > 0 and Kit_PM_4N_24hr.iloc[c, 0] == \
Kit_PM_2N_24hr.iloc[c, 0]:
Kit_per_day_4N_2N.append(Kit_PM_per_day_4N[c]/Kit_PM_per_day_2N[c])
K_PM_D_4N_2N.append(Day_4N.iloc[c,0])
# now for box plotting for Kitchen PM per day percent changes
#2N to 1N
sns.set(style="ticks")
f, (ax_box, ax_hist) = plt.subplots(2, sharex=True, gridspec_kw={"height_ratios": (0.15, 0.85)})
sns.boxplot(Kit_per_day_2N_1N, ax=ax_box, color='g')
sns.distplot(Kit_per_day_2N_1N, ax=ax_hist, color='g')
ax_box.set(yticks=[])
sns.despine(ax=ax_hist)
sns.despine(ax=ax_box, left=True)
plt.title('% 2N/1N (Kitchen PM per Day)')
plt.ylim(top=2)
plt.ylim(bottom = 0)
#3N to 1N
sns.set(style="ticks")
f, (ax_box, ax_hist) = plt.subplots(2, sharex=True, gridspec_kw={"height_ratios": (0.15, 0.85)})
sns.boxplot(Kit_per_day_3N_1N, ax=ax_box, color='r')
sns.distplot(Kit_per_day_3N_1N, ax=ax_hist, color='r')
ax_box.set(yticks=[])
sns.despine(ax=ax_hist)
sns.despine(ax=ax_box, left=True)
plt.title('% 3N/1N (Kitchen PM per Day)')
plt.ylim(top=2)
plt.ylim(bottom = 0)
#4N to 1N
sns.set(style="ticks")
f, (ax_box, ax_hist) = plt.subplots(2, sharex=True, gridspec_kw={"height_ratios": (0.15, 0.85)})
sns.boxplot(Kit_per_day_4N_1N, ax=ax_box, color='y')
sns.distplot(Kit_per_day_4N_1N, ax=ax_hist, color='y')
ax_box.set(yticks=[])
sns.despine(ax=ax_hist)
sns.despine(ax=ax_box, left=True)
plt.title('% 4N/1N (Kitchen PM per Day)')
plt.ylim(top=2)
plt.ylim(bottom = 0)
#3N to 2N
sns.set(style="ticks")
f, (ax_box, ax_hist) = plt.subplots(2, sharex=True, gridspec_kw={"height_ratios": (0.15, 0.85)})
sns.boxplot(Kit_per_day_3N_2N, ax=ax_box, color='m')
sns.distplot(Kit_per_day_3N_2N, ax=ax_hist, color='m')
ax_box.set(yticks=[])
sns.despine(ax=ax_hist)
sns.despine(ax=ax_box, left=True)
plt.title('% 3N/2N (Kitchen PM per Day)')
plt.ylim(top=2)
plt.ylim(bottom = 0)
#4N to 3N
sns.set(style="ticks")
f, (ax_box, ax_hist) = plt.subplots(2, sharex=True, gridspec_kw={"height_ratios": (0.15, 0.85)})
sns.boxplot(Kit_per_day_4N_3N, ax=ax_box, color='k')
sns.distplot(Kit_per_day_4N_3N, ax=ax_hist, color='k')
ax_box.set(yticks=[])
sns.despine(ax=ax_hist)
sns.despine(ax=ax_box, left=True)
plt.title('% 4N/3N (Kitchen PM per Day)')
plt.ylim(top=2)
plt.ylim(bottom = 0)
#4N to 2N
sns.set(style="ticks")
f, (ax_box, ax_hist) = plt.subplots(2, sharex=True, gridspec_kw={"height_ratios": (0.15, 0.85)})
sns.boxplot(Kit_per_day_4N_2N, ax=ax_box, color='tab:orange')
sns.distplot(Kit_per_day_4N_2N, ax=ax_hist, color='tab:orange')
ax_box.set(yticks=[])
sns.despine(ax=ax_hist)
sns.despine(ax=ax_box, left=True)
plt.title('% 4N/2N (Kitchen PM per Day)')
plt.ylim(top=2)
plt.ylim(bottom = 0)
#Plotting on the same graph
fig, ax = plt.subplots()
plt.title('No-Hood Kitchen PM per day')
#plt.hold()
#1N
quant_1_1N = np.percentile(Kit_PM_per_day_1N, [25,50,75])
Top_lim_1_1N = quant_1_1N[2] + 1.5*(quant_1_1N[2] - quant_1_1N[0])
Low_lim_1_1N = quant_1_1N[0] - 1.5*(quant_1_1N[2] - quant_1_1N[0])
bp_1 = plt.boxplot(Kit_PM_per_day_1N, positions = [1], widths = 0.6)
kitchen_pm_1N_outlier = []
for v,a in enumerate(Kit_PM_per_day_1N):
if a > Top_lim_1_1N or a < Low_lim_1_1N:
kitchen_pm_1N_outlier.append(K_PM_D_1N[v])
plt.text(1,a,K_PM_D_1N[v])
plt.text(1,0.1,'1N',color='b')
#2N
quant_1_2N = np.percentile(Kit_PM_per_day_2N, [25,50,75])
Top_lim_1_2N = quant_1_2N[2] + 1.5*(quant_1_2N[2] - quant_1_2N[0])
Low_lim_1_2N = quant_1_2N[0] - 1.5*(quant_1_2N[2] - quant_1_2N[0])
bp_1 = plt.boxplot(Kit_PM_per_day_2N,positions = [2], widths = 0.6)
kitchen_pm_2N_outlier = []
for v,a in enumerate(Kit_PM_per_day_2N):
if a > Top_lim_1_2N or a < Low_lim_1_2N:
kitchen_pm_2N_outlier.append(K_PM_D_2N[v])
plt.text(2,a,K_PM_D_2N[v])
plt.text(2,0.1,'2N', color= 'g')
#3N
quant_1_3N = np.percentile(Kit_PM_per_day_3N, [25,50,75])
Top_lim_1_3N = quant_1_3N[2] + 1.5*(quant_1_3N[2] - quant_1_3N[0])
Low_lim_1_3N = quant_1_3N[0] - 1.5*(quant_1_3N[2] - quant_1_3N[0])
kitchen_pm_3N_outlier = []
bp_1 = plt.boxplot(Kit_PM_per_day_3N,positions = [3], widths = 0.6)
count = 0
for v,a in enumerate(Kit_PM_per_day_3N):
if a > Top_lim_1_3N or a < Low_lim_1_3N:
kitchen_pm_3N_outlier.append(K_PM_D_3N[v])
count = count + 1
if count == (3):
plt.text(3,a,K_PM_D_3N[v],ha='left', va='bottom')
if count == (1):
plt.text(3,a,K_PM_D_3N[v],ha='left', va='top')
else:
plt.text(3,a,K_PM_D_3N[v],ha='right', va='bottom')
plt.text(3,0.1,'3N', color='r')
#4N
quant_1_4N = np.percentile(Kit_PM_per_day_4N, [25,50,75])
Top_lim_1_4N = quant_1_4N[2] + 1.5*(quant_1_4N[2] - quant_1_4N[0])
Low_lim_1_4N = quant_1_4N[0] - 1.5*(quant_1_4N[2] - quant_1_4N[0])
bp_1 = plt.boxplot(Kit_PM_per_day_4N,positions = [4], widths = 0.6)
kitchen_pm_4N_outlier = []
for v,a in enumerate(Kit_PM_per_day_4N):
if a > Top_lim_1_4N or a < Low_lim_1_4N:
kitchen_pm_4N_outlier.append(K_PM_D_4N[v])
plt.text(4,a,K_PM_D_4N[v])
plt.text(4,0.1,'4N', color='y')
plt.xlim(0,5)
plt.ylim(0,1200)
print('Kitchen PM 1N had these values as outliers ', kitchen_pm_1N_outlier)
print('Kitchen PM 2N had these values as outliers ', kitchen_pm_2N_outlier)
print('Kitchen PM 3N had these values as outliers ', kitchen_pm_3N_outlier)
print('Kitchen PM 4N had these values as outliers ', kitchen_pm_4N_outlier)
plt.show()
# % change of PM per day
fig_2, ax2 = plt.subplots()
plt.title('% No_hood PM per Day Change' )
#plt.hold(True)
#2N to 1N
quant_1_2N_1N = np.percentile(Kit_per_day_2N_1N, [25,50,75])
Top_lim_1_2N_1N = quant_1_2N_1N[2] + 1.5*(quant_1_2N_1N[2]-quant_1_2N_1N[0])
Low_lim_1_2N_1N = quant_1_2N_1N[0] - 1.5*(quant_1_2N_1N[2]-quant_1_2N_1N[0])
bp_1_1 = plt.boxplot(Kit_per_day_2N_1N, positions=[1], widths= 0.6)
kitchen_pm_2N_1N_outlier = []
for v,a in enumerate(Kit_per_day_2N_1N):
if a > Top_lim_1_2N_1N or a < Low_lim_1_2N_1N:
kitchen_pm_2N_1N_outlier.append(K_PM_D_2N_1N[v])
plt.text(1, a, K_PM_D_2N_1N[v])
plt.text(0.5, -0.25, '2N / 1N', color= 'g')
#3N to 1N
quant_1_3N_1N = np.percentile(Kit_per_day_3N_1N, [25,50,75])
Top_lim_1_3N_1N = quant_1_3N_1N[2] + 1.5*(quant_1_3N_1N[2]-quant_1_3N_1N[0])
Low_lim_1_3N_1N = quant_1_3N_1N[0] - 1.5*(quant_1_3N_1N[2]-quant_1_3N_1N[0])
bp_1_1 = plt.boxplot(Kit_per_day_3N_1N, positions=[2], widths= 0.6)
kitchen_pm_3N_1N_outlier = []
for v,a in enumerate(Kit_per_day_3N_1N):
if a > Top_lim_1_3N_1N or a < Low_lim_1_3N_1N:
kitchen_pm_3N_1N_outlier.append(K_PM_D_3N_1N[v])
plt.text(2, a, K_PM_D_3N_1N[v])
plt.text(1.5, -0.25, '3N / 1N', color= 'r')
#4N to 1N
quant_1_4N_1N = np.percentile(Kit_per_day_4N_1N, [25,50,75])
Top_lim_1_4N_1N = quant_1_4N_1N[2] + 1.5*(quant_1_4N_1N[2]-quant_1_4N_1N[0])
Low_lim_1_4N_1N = quant_1_4N_1N[0] - 1.5*(quant_1_4N_1N[2]-quant_1_4N_1N[0])
bp_1_1 = plt.boxplot(Kit_per_day_4N_1N, positions=[3], widths= 0.6)
kitchen_pm_4N_1N_outlier = []
for v,a in enumerate(Kit_per_day_4N_1N):
if a > Top_lim_1_4N_1N or a < Low_lim_1_4N_1N:
kitchen_pm_4N_1N_outlier.append(K_PM_D_4N_1N[v])
plt.text(3, a, K_PM_D_4N_1N[v])
plt.text(2.5, -0.25, '4N / 1N', color= 'y')
#3N to 2N
quant_1_3N_2N = np.percentile(Kit_per_day_3N_2N, [25,50,75])
Top_lim_1_3N_2N = quant_1_3N_2N[2] + 1.5*(quant_1_3N_2N[2]-quant_1_3N_2N[0])
Low_lim_1_3N_2N = quant_1_3N_2N[0] - 1.5*(quant_1_3N_2N[2]-quant_1_3N_2N[0])
bp_1_1 = plt.boxplot(Kit_per_day_3N_2N, positions=[4], widths= 0.6)
kitchen_pm_3N_2N_outlier = []
for v,a in enumerate(Kit_per_day_3N_2N):
if a > Top_lim_1_3N_2N or a < Low_lim_1_3N_2N:
kitchen_pm_3N_2N_outlier.append(K_PM_D_3N_2N[v])
plt.text(4, a, K_PM_D_3N_2N[v])
plt.text(3.5, -0.25, '3N / 2N', color= 'm')
#4N to 3N
quant_1_4N_3N = np.percentile(Kit_per_day_4N_3N, [25,50,75])
Top_lim_1_4N_3N = quant_1_4N_3N[2] + 1.5*(quant_1_4N_3N[2]-quant_1_4N_3N[0])
Low_lim_1_4N_3N = quant_1_4N_3N[0] - 1.5*(quant_1_4N_3N[2]-quant_1_4N_3N[0])
bp_1_1 = plt.boxplot(Kit_per_day_4N_3N, positions=[5], widths= 0.6)
kitchen_pm_4N_3N_outlier = []
for v,a in enumerate(Kit_per_day_4N_3N):
if a > Top_lim_1_4N_3N or a < Low_lim_1_4N_3N:
kitchen_pm_4N_3N_outlier.append(K_PM_D_4N_3N[v])
plt.text(5, a, K_PM_D_4N_3N[v])
plt.text(4.5, -0.25, '4N / 3N', color= 'k')
#4N to 2N
quant_1_4N_2N = np.percentile(Kit_per_day_4N_2N, [25,50,75])
Top_lim_1_4N_2N = quant_1_4N_2N[2] + 1.5*(quant_1_4N_2N[2]-quant_1_4N_2N[0])
Low_lim_1_4N_2N = quant_1_4N_2N[0] - 1.5*(quant_1_4N_2N[2]-quant_1_4N_2N[0])
bp_1_1 = plt.boxplot(Kit_per_day_4N_2N, positions=[6], widths= 0.6)
kitchen_pm_4N_2N_outlier = []
for v,a in enumerate(Kit_per_day_4N_2N):
if a > Top_lim_1_4N_2N or a < Low_lim_1_4N_2N:
kitchen_pm_4N_2N_outlier.append(K_PM_D_4N_2N[v])
plt.text(6, a, K_PM_D_4N_2N[v])
plt.text(5.5, -0.25, '4N / 2N', color= 'tab:orange')
plt.xlim(0,7)
plt.ylim(-0.5,5)
print('Kitchen PM 2N/1N had these values as outliers ', kitchen_pm_2N_1N_outlier)
print('Kitchen PM 3N/1N had these values as outliers ', kitchen_pm_3N_1N_outlier)
print('Kitchen PM 4N/1N had these values as outliers ', kitchen_pm_4N_1N_outlier)
print('Kitchen PM 3N/2N had these values as outliers ', kitchen_pm_3N_2N_outlier)
print('Kitchen PM 4N/3N had these values as outliers ', kitchen_pm_4N_3N_outlier)
print('Kitchen PM 4N/2N had these values as outliers ', kitchen_pm_4N_2N_outlier)
plt.show()
#adding averages to the tables
quant_1_1N = np.append(quant_1_1N, np.average(Kit_PM_per_day_1N))
quant_1_2N = np.append(quant_1_2N, np.average(Kit_PM_per_day_2N))
quant_1_3N = np.append(quant_1_3N, np.average(Kit_PM_per_day_3N))
quant_1_4N = np.append(quant_1_4N, np.average(Kit_PM_per_day_4N))
D_50_quant_phase_PM_d = {'Percentile %': ['25','50','75', 'Avg'], '1N': quant_1_1N, '2N': quant_1_2N,'3N' : quant_1_3N,'4N': quant_1_4N}
PM_D_50_phase_no_hood = pd.DataFrame(data=D_50_quant_phase_PM_d,columns=['Percentile %','1N', '2N', '3N','4N'])
quant_1_2N_1N = np.append(quant_1_2N_1N , np.average(Kit_per_day_2N_1N))
quant_1_3N_1N = np.append(quant_1_3N_1N , np.average(Kit_per_day_3N_1N))
quant_1_4N_1N = np.append(quant_1_4N_1N , np.average(Kit_per_day_4N_1N))
quant_1_3N_2N = np.append(quant_1_3N_2N , np.average(Kit_per_day_3N_2N))
quant_1_4N_3N = np.append(quant_1_4N_3N , np.average(Kit_per_day_4N_3N))
quant_1_4N_2N = np.append(quant_1_4N_2N , np.average(Kit_per_day_4N_2N))
D_50_quant_percent_PM_d ={'Percentile %': ['25','50','75', 'Avg'],'2N / 1N': quant_1_2N_1N,'3N / 1N': quant_1_3N_1N,'4N / 1N': quant_1_4N_1N,
'3N / 2N': quant_1_3N_2N,'4N / 3N': quant_1_4N_3N,'4N / 2N': quant_1_4N_2N}
PM_D_50_percent_change_no_hood = pd.DataFrame(data=D_50_quant_percent_PM_d, columns=['Percentile %','2N / 1N','3N / 1N', '4N / 1N'
,'3N / 2N','4N / 3N','4N / 2N'])
print(PM_D_50_phase_no_hood)
print(PM_D_50_percent_change_no_hood)
# hood Pm per day
if Hood_or_no == 'hood':
Kit_PM_per_day_1H = []
K_PM_D_1H = []
Kit_PM_per_day_2H = []
K_PM_D_2H = []
Kit_PM_per_day_3H = []
K_PM_D_3H = []
count_t = 0
count_pm = 0
for c in hood_counter:
if c == (Household_removal[count_t] - C_Place_holder):
count_t = count_t + 1
if count_t == len(Household_removal):
count_t = 0
continue
if c == (Household_removal_Hood_PM[count_pm] - C_Place_holder):
count_pm = count_pm + 1
if count_pm == len(Household_removal_Hood_PM):
count_pm = 0
continue
# if Day_1H.iloc[c,7] != -1.00:
# Kit_PM_per_day_1H.append(Day_1H.iloc[c,7]/Day_1H.iloc[c,1])
# K_PM_D_1H.append(Day_1H.iloc[c,0])
if Kit_PM_1H_24hr.iloc[c, 6] != -1.00:
Kit_PM_per_day_1H.append(Kit_PM_1H_24hr.iloc[c,6])
K_PM_D_1H.append(Kit_PM_1H_24hr.iloc[c,0])
# if Day_2H.iloc[c, 7] != -1.00:
# Kit_PM_per_day_2H.append(Day_2H.iloc[c,7]/Day_2H.iloc[c,1])
# K_PM_D_2H.append(Day_2H.iloc[c,0])
if Kit_PM_2H_24hr.iloc[c, 6] != -1.00:
Kit_PM_per_day_2H.append(Kit_PM_2H_24hr.iloc[c,6])
K_PM_D_2H.append(Kit_PM_2H_24hr.iloc[c,0])
# if Day_3H.iloc[c, 7] != -1.00:
# Kit_PM_per_day_3H.append(Day_3H.iloc[c,7]/Day_3H.iloc[c,1])
# K_PM_D_3H.append(Day_3H.iloc[c, 0])
if Kit_PM_3H_24hr.iloc[c, 6] != -1.00:
Kit_PM_per_day_3H.append(Kit_PM_3H_24hr.iloc[c,6])
K_PM_D_3H.append(Kit_PM_3H_24hr.iloc[c,0])
# percentages Between Phases of kitchen PM per day
Kit_per_day_2H_1H = []
K_PM_D_2H_1H = []
Kit_per_day_3H_1H = []
K_PM_D_3H_1H = []
Kit_per_day_3H_2H = []
K_PM_D_3H_2H = []
count_t = 0
count_pm = 0
for c in NO_hood_counter:
if c == (Household_removal[count_t] - C_Place_holder):
count_t = count_t + 1
if count_t == len(Household_removal):
count_t = 0
continue
if c == (Household_removal_Hood_PM[count_pm] - C_Place_holder):
count_pm = count_pm + 1
if count_pm == len(Household_removal_Hood_PM):
count_pm = 0
continue
if (len(Kit_PM_per_day_2H)-1) >= c and (len(Kit_PM_per_day_1H)-1) >= c:
#if Day_1H.iloc[c,7] > 0 and Day_2H.iloc[c,7] > 0 and Day_1H.iloc[c,0] == Day_2H.iloc[c,0]:
if Kit_PM_1H_24hr.iloc[c, 6] > 0 and Kit_PM_2H_24hr.iloc[c, 6] > 0 and Kit_PM_1H_24hr.iloc[c, 0] == Kit_PM_2H_24hr.iloc[c, 0]:
Kit_per_day_2H_1H.append(Kit_PM_per_day_2H[c]/Kit_PM_per_day_1H[c])
K_PM_D_2H_1H.append(Day_1H.iloc[c,0])
if (len(Kit_PM_per_day_3H)-1) >= c and (len(Kit_PM_per_day_1H)-1) >= c:
#if Day_3H.iloc[c,7] > 0 and Day_1H.iloc[c,7] > 0 and Day_3H.iloc[c,0] == Day_1H.iloc[c,0]:
if Kit_PM_3H_24hr.iloc[c, 6] > 0 and Kit_PM_1H_24hr.iloc[c, 6] > 0 and Kit_PM_1H_24hr.iloc[c, 0] == \
Kit_PM_3H_24hr.iloc[c, 0]:
Kit_per_day_3H_1H.append(Kit_PM_per_day_3H[c]/Kit_PM_per_day_1H[c])
K_PM_D_3H_1H.append(Day_1H.iloc[c,0])
if (len(Kit_PM_per_day_3H)-1) >= c and (len(Kit_PM_per_day_2H)-1) >= c:
#if Day_3H.iloc[c,7] > 0 and Day_2H.iloc[c,7] > 0 and Day_3H.iloc[c,0] == Day_2H.iloc[c,0]:
if Kit_PM_3H_24hr.iloc[c, 6] > 0 and Kit_PM_2H_24hr.iloc[c, 6] > 0 and Kit_PM_3H_24hr.iloc[c, 0] == \
Kit_PM_2H_24hr.iloc[c, 0]:
Kit_per_day_3H_2H.append(Kit_PM_per_day_3H[c]/Kit_PM_per_day_2H[c])
K_PM_D_3H_2H.append(Day_2H.iloc[c,0])
# now for box plotting for Kitchen PM per day percent changes
#2H to 1H
sns.set(style="ticks")
f, (ax_box, ax_hist) = plt.subplots(2, sharex=True, gridspec_kw={"height_ratios": (0.15, 0.85)})
sns.boxplot(Kit_per_day_2H_1H, ax=ax_box, color='g')
sns.distplot(Kit_per_day_2H_1H, ax=ax_hist, color='g')
ax_box.set(yticks=[])
sns.despine(ax=ax_hist)
sns.despine(ax=ax_box, left=True)
plt.title('% 2H/1H (Kitchen PM per Day)')
plt.ylim(top=1.5)
plt.ylim(bottom = 0)
#3H to 1H
sns.set(style="ticks")
f, (ax_box, ax_hist) = plt.subplots(2, sharex=True, gridspec_kw={"height_ratios": (0.15, 0.85)})
sns.boxplot(Kit_per_day_3H_1H, ax=ax_box, color='r')
sns.distplot(Kit_per_day_3H_1H, ax=ax_hist, color='r')
ax_box.set(yticks=[])
sns.despine(ax=ax_hist)
sns.despine(ax=ax_box, left=True)
plt.title('% 3H/1H (Kitchen PM per Day)')
plt.ylim(top=2)
plt.ylim(bottom = 0)
#3H to 2H
sns.set(style="ticks")
f, (ax_box, ax_hist) = plt.subplots(2, sharex=True, gridspec_kw={"height_ratios": (0.15, 0.85)})
sns.boxplot(Kit_per_day_3H_2H, ax=ax_box, color='m')
sns.distplot(Kit_per_day_3H_2H, ax=ax_hist, color='m')
ax_box.set(yticks=[])
sns.despine(ax=ax_hist)
sns.despine(ax=ax_box, left=True)
plt.title('% 3H/2H (Kitchen PM per Day)')
plt.ylim(top=2)
plt.ylim(bottom = 0)
#Plotting on the same graph
fig, ax = plt.subplots()
plt.title('Hood Kitchen PM per day')
#1H
quant_1_1H = np.percentile(Kit_PM_per_day_1H, [25,50,75])
Top_lim_1_1H = quant_1_1H[2] + 1.5*(quant_1_1H[2] - quant_1_1H[0])
Low_lim_1_1H = quant_1_1H[0] - 1.5*(quant_1_1H[2] - quant_1_1H[0])
bp_1 = plt.boxplot(Kit_PM_per_day_1H, positions = [1], widths = 0.6)
kitchen_pm_1H_outlier = []
for v,a in enumerate(Kit_PM_per_day_1H):
if a > Top_lim_1_1H or a < Low_lim_1_1H:
kitchen_pm_1H_outlier.append(K_PM_D_1H[v])
plt.text(1,a,K_PM_D_1H[v])
plt.text(0.5,0.1,'1H',color='b')
#2N
quant_1_2H = np.percentile(Kit_PM_per_day_2H, [25,50,75])
Top_lim_1_2N = quant_1_2H[2] + 1.5*(quant_1_2H[2] - quant_1_2H[0])
Low_lim_1_2N = quant_1_2H[0] - 1.5*(quant_1_2H[2] - quant_1_2H[0])
bp_1 = plt.boxplot(Kit_PM_per_day_2H,positions = [2], widths = 0.6)
kitchen_pm_2H_outlier = []
for v,a in enumerate(Kit_PM_per_day_2H):
if a > Top_lim_1_2N or a < Low_lim_1_2N:
kitchen_pm_2H_outlier.append(K_PM_D_2H[v])
plt.text(2,a,K_PM_D_2H[v])
plt.text(1.5,0.1,'2H', color= 'g')
#3H
quant_1_3H = np.percentile(Kit_PM_per_day_3H, [25,50,75])
Top_lim_1_3N = quant_1_3H[2] + 1.5*(quant_1_3H[2] - quant_1_3H[0])
Low_lim_1_3N = quant_1_3H[0] - 1.5*(quant_1_3H[2] - quant_1_3H[0])
kitchen_3H_outlier = []
bp_1 = plt.boxplot(Kit_PM_per_day_3H,positions = [3], widths = 0.6)
count = 0
kitchen_pm_3H_outlier = []
for v,a in enumerate(Kit_PM_per_day_3H):
if a > Top_lim_1_3N or a < Low_lim_1_3N:
kitchen_pm_3H_outlier.append(K_PM_D_3H[v])
plt.text(3,a,K_PM_D_3H[v])
# kitchen_3N_outlier.append(K_PM_D_3N[v])
# count = count + 1
# if count == (3):
# plt.text(3,a,K_PM_D_3N[v],ha='left', va='bottom')
# if count == (1):
# plt.text(3,a,K_PM_D_3N[v],ha='left', va='top')
# else:
# plt.text(3,a,K_PM_D_3N[v],ha='right', va='bottom')
plt.text(2.5,0.1,'3H', color='r')
plt.xlim(0,4)
plt.ylim(0,1200)
print('Kitchen PM 1H had these values as outliers ', kitchen_pm_1H_outlier)
print('Kitchen PM 2H had these values as outliers ', kitchen_pm_2H_outlier)
print('Kitchen PM 3H had these values as outliers ', kitchen_pm_3H_outlier)
plt.show()
#print('3N had these values as outliers ' , kitchen_3N_outlier)
# % change of PM per day
fig_2, ax2 = plt.subplots()
plt.title('% hood PM per Day Change' )
#plt.hold(True)
#2H to 1H
quant_1_2H_1H = np.percentile(Kit_per_day_2H_1H, [25,50,75])
Top_lim_1_2N_1N = quant_1_2H_1H[2] + 1.5*(quant_1_2H_1H[2]-quant_1_2H_1H[0])
Low_lim_1_2N_1N = quant_1_2H_1H[0] - 1.5*(quant_1_2H_1H[2]-quant_1_2H_1H[0])
bp_1_1 = plt.boxplot(Kit_per_day_2H_1H, positions=[1], widths= 0.6)
kitchen_pm_2H_1H_outlier = []
for v,a in enumerate(Kit_per_day_2H_1H):
if a > Top_lim_1_2N_1N or a < Low_lim_1_2N_1N:
kitchen_pm_2H_1H_outlier.append(K_PM_D_2H_1H[v])
plt.text(1, a, K_PM_D_2H_1H[v])
plt.text(0.75, -0.25, '2H / 1H', color= 'g')
#3H to 1H
quant_1_3H_1H = np.percentile(Kit_per_day_3H_1H, [25,50,75])
Top_lim_1_3N_1N = quant_1_3H_1H[2] + 1.5*(quant_1_3H_1H[2]-quant_1_3H_1H[0])
Low_lim_1_3N_1N = quant_1_3H_1H[0] - 1.5*(quant_1_3H_1H[2]-quant_1_3H_1H[0])
bp_1_1 = plt.boxplot(Kit_per_day_3H_1H, positions=[2], widths= 0.6)
kitchen_pm_3H_1H_outlier = []
for v,a in enumerate(Kit_per_day_3H_1H):
if a > Top_lim_1_3N_1N or a < Low_lim_1_3N_1N:
kitchen_pm_3H_1H_outlier.append(K_PM_D_3H_1H[v])
plt.text(2, a, K_PM_D_3H_1H[v])
plt.text(1.75, -0.25, '3H / 1H', color= 'r')
#3H to 2H
quant_1_3H_2H = np.percentile(Kit_per_day_3H_2H, [25,50,75])
Top_lim_1_3N_2N = quant_1_3H_2H[2] + 1.5*(quant_1_3H_2H[2]-quant_1_3H_2H[0])
Low_lim_1_3N_2N = quant_1_3H_2H[0] - 1.5*(quant_1_3H_2H[2]-quant_1_3H_2H[0])
bp_1_1 = plt.boxplot(Kit_per_day_3H_2H, positions=[3], widths= 0.6)
kitchen_pm_3H_2H_outlier = []
for v,a in enumerate(Kit_per_day_3H_2H):
if a > Top_lim_1_3N_2N or a < Low_lim_1_3N_2N:
kitchen_pm_3H_2H_outlier.append(K_PM_D_3H_2H[v])
plt.text(3, a, K_PM_D_3H_2H[v])
plt.text(2.75, -0.25, '3H / 2H', color= 'm')
plt.xlim(0,4)
plt.ylim(-0.5,5)
print('Kitchen PM 2H/1H had these values as outliers ', kitchen_pm_2H_1H_outlier)
print('Kitchen PM 3H/1H had these values as outliers ', kitchen_pm_3H_1H_outlier)
print('Kitchen PM 3H/2H had these values as outliers ', kitchen_pm_3H_2H_outlier)
plt.show()
quant_1_1H = np.append(quant_1_1H, np.average(Kit_PM_per_day_1H))
quant_1_2H = np.append(quant_1_2H, np.average(Kit_PM_per_day_2H))
quant_1_3H = np.append(quant_1_3H, np.average(Kit_PM_per_day_3H))
D_50_quant_phase_PM_D_hood = {'Percentile %': ['25','50','75', 'Avg'], '1H': quant_1_1H, '2H': quant_1_2H,'3H' : quant_1_3H}
PM_D_50_phase_hood = pd.DataFrame(data=D_50_quant_phase_PM_D_hood, columns= ['Percentile %','1H','2H','3H' ])
quant_1_2H_1H = np.append(quant_1_2H_1H , np.average(Kit_per_day_2H_1H))
quant_1_3H_1H = np.append(quant_1_3H_1H , np.average(Kit_per_day_3H_1H))
quant_1_3H_2H = np.append(quant_1_3H_2H , np.average(Kit_per_day_3H_2H))
D_50_quant_percent_PM_D_hood ={'Percentile %': ['25','50','75', 'Avg'],'2H / 1H': quant_1_2H_1H,'3H / 1H': quant_1_3H_1H,'3H / 2H': quant_1_3H_2H}
PM_D_50_percent_change_hood = pd.DataFrame(data=D_50_quant_percent_PM_D_hood, columns=['Percentile %','2H / 1H','3H / 1H','3H / 2H'])
print(PM_D_50_phase_hood)
print(PM_D_50_percent_change_hood)
# when i am ready to transfer to a data frame and get the differences
#histograms for the comparison
if Hood_or_no == 'no_hood':
plt.title('Histogram of Fuel per 24 Hours per Person - No Hood' )
plt.hist([Fuel_per_day_per_adult_1N],
color=['b'], alpha=0.5, label='1N')
plt.hist([Fuel_per_day_per_adult_2N],
color=['g'], alpha=0.5, label='2N')
plt.hist([Fuel_per_day_per_adult_3N],
color=['r'], alpha=0.5, label='3N')
plt.hist([Fuel_per_day_per_adult_4N],
color=['y'], alpha=0.5, label='4N')
plt.legend(loc='upper right')
plt.show()
plt.title('Histogram of Kitchen PM 24 Hours - No Hood' )
plt.hist([Kit_PM_per_day_1N],
color=['b'], alpha=0.5, label='1N')
plt.hist([Kit_PM_per_day_2N],
color=['g'], alpha=0.5, label='2N')
plt.hist([Kit_PM_per_day_3N],
color=['r'], alpha=0.5, label='3N')
plt.hist([Kit_PM_per_day_4N],
color=['y'], alpha=0.5, label='4N')
plt.legend(loc='upper right')
plt.show()
if Hood_or_no == 'hood':
plt.title('Histogram of Fuel per 24 Hours per Person - Hood' )
plt.hist([Fuel_per_day_per_adult_1H],
color=['b'], alpha=0.5, label='1H')
plt.hist([Fuel_per_day_per_adult_2H],
color=['g'], alpha=0.5, label='2H')
plt.hist([Fuel_per_day_per_adult_3H],
color=['r'], alpha=0.5, label='3H')
plt.legend(loc='upper right')
plt.show()
plt.title('Histogram of Kitchen PM 24 Hours - Hood' )
plt.hist([Kit_PM_per_day_1H],
color=['b'], alpha=0.5, label='1H')
plt.hist([Kit_PM_per_day_2H],
color=['g'], alpha=0.5, label='2H')
plt.hist([Kit_PM_per_day_3H],
color=['r'], alpha=0.5, label='3H')
plt.legend(loc='upper right')
plt.show()
| 50.965767
| 152
| 0.657504
| 14,589
| 77,417
| 3.08712
| 0.018233
| 0.047427
| 0.037968
| 0.048492
| 0.973689
| 0.952107
| 0.900373
| 0.855788
| 0.782761
| 0.752076
| 0
| 0.085874
| 0.215418
| 77,417
| 1,518
| 153
| 50.999341
| 0.655614
| 0.070385
| 0
| 0.396552
| 0
| 0.068966
| 0.162539
| 0.072096
| 0
| 0
| 0
| 0
| 0
| 1
| 0
| false
| 0
| 0.003448
| 0
| 0.003448
| 0.037069
| 0
| 0
| 0
| null | 0
| 0
| 0
| 1
| 1
| 1
| 1
| 1
| 1
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| null | 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
|
0
| 6
|
f71e4ba69c62e1f2c427e125b8d3019de0eb2970
| 28
|
py
|
Python
|
try.py
|
zf-nobody/pyaudio_portaudio
|
8f703866e6b3d9aad30792fbd07fa63d504505f2
|
[
"MIT"
] | null | null | null |
try.py
|
zf-nobody/pyaudio_portaudio
|
8f703866e6b3d9aad30792fbd07fa63d504505f2
|
[
"MIT"
] | null | null | null |
try.py
|
zf-nobody/pyaudio_portaudio
|
8f703866e6b3d9aad30792fbd07fa63d504505f2
|
[
"MIT"
] | null | null | null |
print("I am having a try.")
| 14
| 27
| 0.642857
| 6
| 28
| 3
| 1
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0.178571
| 28
| 1
| 28
| 28
| 0.782609
| 0
| 0
| 0
| 0
| 0
| 0.642857
| 0
| 0
| 0
| 0
| 0
| 0
| 1
| 0
| true
| 0
| 0
| 0
| 0
| 1
| 1
| 1
| 0
| null | 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 1
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 1
| 0
| null | 0
| 0
| 0
| 0
| 0
| 0
| 1
| 0
| 0
| 0
| 0
| 1
|
0
| 6
|
f71fb01cbdb1f124478ac2b092b7ac4885231833
| 119
|
py
|
Python
|
examples/test_error.py
|
ak1ra24/pytest-md-report
|
9d861a9237176e9dd1e6872c197f5bb5985ee049
|
[
"MIT"
] | 9
|
2020-05-06T20:54:29.000Z
|
2022-03-27T04:11:38.000Z
|
examples/test_error.py
|
solisa986/pytest-md-report
|
a6cdeda92ef8f1ab64c346a86a085ce9e1585880
|
[
"MIT"
] | null | null | null |
examples/test_error.py
|
solisa986/pytest-md-report
|
a6cdeda92ef8f1ab64c346a86a085ce9e1585880
|
[
"MIT"
] | 3
|
2021-05-05T19:58:33.000Z
|
2021-08-12T07:14:52.000Z
|
def test_error(invalid_fixture):
pass
class Test:
def test_error(self, invalid_fixture):
assert True
| 14.875
| 42
| 0.697479
| 16
| 119
| 4.9375
| 0.625
| 0.177215
| 0.303797
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0.235294
| 119
| 7
| 43
| 17
| 0.868132
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0.2
| 1
| 0.4
| false
| 0.2
| 0
| 0
| 0.6
| 0
| 1
| 0
| 0
| null | 0
| 1
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 1
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| null | 0
| 0
| 0
| 0
| 0
| 1
| 0
| 1
| 0
| 0
| 1
| 0
|
0
| 6
|
f72f8af5b3ccf2010b8feadf774b09fd508c9661
| 32,775
|
py
|
Python
|
WhoopClient.py
|
lcintron/WhoopClient
|
46ccc6c3e3b98f4b6c82cf8938056d72a22bd6b6
|
[
"MIT"
] | null | null | null |
WhoopClient.py
|
lcintron/WhoopClient
|
46ccc6c3e3b98f4b6c82cf8938056d72a22bd6b6
|
[
"MIT"
] | null | null | null |
WhoopClient.py
|
lcintron/WhoopClient
|
46ccc6c3e3b98f4b6c82cf8938056d72a22bd6b6
|
[
"MIT"
] | null | null | null |
import requests
import pandas as pd
import numpy as np
import configparser
from datetime import datetime
from dateutil import relativedelta, parser, rrule
from dateutil.rrule import WEEKLY
class WhoopClient:
'''A class to allow a user to login and store their authorization code,
then perform pulls using the code in order to access different types of data'''
def __init__(self,
auth_code=None,
whoop_id=None,
current_datetime=datetime.utcnow()):
self.auth_code = auth_code
self.whoop_id = whoop_id
self.current_datetime = current_datetime
self.start_datetime = None
self.all_data = None
self.all_activities = None
self.sport_dict = None
self.all_sleep = None
self.all_sleep_events = None
def reset(self):
self.auth_code = None
self.whoop_id = None
self.current_datetime = datetime.utcnow()
self.start_datetime = None
self.all_data = None
self.all_activities = None
self.sport_dict = None
self.all_sleep = None
self.all_sleep_events = None
def pull_api(self, url, df=False):
auth_code = self.auth_code
headers = {'authorization': auth_code}
pull = requests.get(url, headers=headers)
if pull.status_code == 200 and len(pull.content) > 1:
if df:
d = pd.json_normalize(pull.json())
return d
else:
return pull.json()
else:
return "no response"
def pull_sleep_main(self, sleep_id):
athlete_id = self.whoop_id
sleep = self.pull_api(
'https://api-7.whoop.com/users/{}/sleeps/{}'.format(
athlete_id, sleep_id))
main_df = pd.json_normalize(sleep)
return main_df
def pull_sleep_events(self, sleep_id):
athlete_id = self.whoop_id
sleep = self.pull_api(
'https://api-7.whoop.com/users/{}/sleeps/{}'.format(
athlete_id, sleep_id))
events_df = pd.json_normalize(sleep['events'])
events_df['id'] = sleep_id
return events_df
def get_authorization(self, user_ini):
'''
Function to get the authorization token and user id.
This must be completed before a user can query the api
'''
config = configparser.ConfigParser()
config.read(user_ini)
username = config['whoop']['username']
password = config['whoop']['password']
headers = {
"username": username,
"password": password,
"grant_type": "password",
"issueRefresh": False
}
auth = requests.post("https://api-7.whoop.com/oauth/token",
json=headers)
if auth.status_code == 200:
content = auth.json()
user_id = content['user']['id']
token = content['access_token']
start_time = content['user']['profile']['createdAt']
self.whoop_id = user_id
self.auth_code = 'bearer ' + token
self.start_datetime = start_time
print("Whoop: Authentication successful")
else:
print(
"Authentication failed - please double check your credentials")
def get_keydata_all(self):
'''
This function returns a dataframe of WHOOP metrics for each day of WHOOP membership.
In the resulting dataframe, each day is a row and contains strain, recovery, and sleep information
'''
if self.start_datetime:
if self.all_data is not None:
## All data already pulled
return self.all_data
else:
start_date = parser.isoparse(
self.start_datetime).replace(tzinfo=None)
end_time = 'T23:59:59.999Z'
start_time = 'T00:00:00.000Z'
intervals = rrule.rrule(freq=WEEKLY,
interval=1,
until=self.current_datetime,
dtstart=start_date)
date_range = [[
d.strftime('%Y-%m-%d') + start_time,
(d +
relativedelta.relativedelta(weeks=1)).strftime('%Y-%m-%d')
+ end_time
] for d in intervals]
all_data = pd.DataFrame()
for dates in date_range:
cycle_url = 'https://api-7.whoop.com/users/{}/cycles?end={}&start={}'.format(
self.whoop_id, dates[1], dates[0])
data = self.pull_api(cycle_url, df=True)
all_data = pd.concat([all_data, data])
all_data.reset_index(drop=True, inplace=True)
## fixing the day column so it's not a list
all_data['days'] = all_data['days'].map(lambda d: d[0])
all_data.rename(columns={"days": 'day'}, inplace=True)
## Putting all time into minutes instead of milliseconds
sleep_cols = [
'qualityDuration', 'needBreakdown.baseline',
'needBreakdown.debt', 'needBreakdown.naps',
'needBreakdown.strain', 'needBreakdown.total'
]
for sleep_col in sleep_cols:
all_data['sleep.' + sleep_col] = all_data[
'sleep.' + sleep_col].astype(float).apply(
lambda x: np.nan if np.isnan(x) else x / 60000)
## Making nap variable
all_data['nap_duration'] = all_data['sleep.naps'].apply(
lambda x: x[0]['qualityDuration'] / 60000
if len(x) == 1 else (sum([
y['qualityDuration'] for y in x
if y['qualityDuration'] is not None
]) / 60000 if len(x) > 1 else 0))
all_data.drop(['sleep.naps'], axis=1, inplace=True)
## dropping duplicates subsetting because of list columns
all_data.drop_duplicates(subset=['day', 'sleep.id'],
inplace=True)
self.all_data = all_data
return all_data
else:
print("Please run the authorization function first")
def get_activities_all(self):
'''
Activity data is pulled through the get_keydata functions so if the data pull is present, this function
just transforms the activity column into a dataframe of activities, where each activity is a row.
If it has not been pulled, this function runs the key data function then returns the activity dataframe'''
if self.sport_dict:
sport_dict = self.sport_dict
else:
sports = self.pull_api('https://api-7.whoop.com/sports')
sport_dict = {sport['id']: sport['name'] for sport in sports}
self.sport_dict = self.sport_dict
if self.start_datetime:
## process activity data
if self.all_data is not None:
## use existing
data = self.all_data
else:
## pull all data to process activities
data = self.get_keydata_all()
## now process activities data
act_data = pd.json_normalize(
data[data['strain.workouts'].apply(len) > 0]
['strain.workouts'].apply(lambda x: x[0]))
act_data[['during.upper', 'during.lower'
]] = act_data[['during.upper',
'during.lower']].apply(pd.to_datetime)
act_data['total_minutes'] = act_data.apply(
lambda x:
(x['during.upper'] - x['during.lower']).total_seconds() / 60.0,
axis=1)
for z in range(0, 6):
act_data['zone{}_minutes'.format(
z + 1)] = act_data['zones'].apply(lambda x: x[z] / 60000.)
act_data['sport_name'] = act_data.sportId.apply(
lambda x: sport_dict[x])
act_data['day'] = act_data['during.lower'].dt.strftime('%Y-%m-%d')
act_data.drop(['zones', 'during.bounds'], axis=1, inplace=True)
act_data.drop_duplicates(inplace=True)
self.all_activities = act_data
return act_data
else:
print("Whoop: Please run the authorization function first")
def get_sleep_all(self):
'''
This function returns all sleep metrics in a data frame, for the duration of user's WHOOP membership.
Each row in the data frame represents one night of sleep
'''
if self.auth_code:
if self.all_data is not None:
## use existing
data = self.all_data
else:
## pull timeframe data
data = self.get_keydata_all()
## getting all the sleep ids
if self.all_sleep is not None:
## All sleep data already pulled
return self.all_sleep
else:
sleep_ids = data['sleep.id'].values.tolist()
sleep_list = [int(x) for x in sleep_ids if pd.isna(x) == False]
all_sleep = pd.DataFrame()
for s in sleep_list:
m = self.pull_sleep_main(s)
all_sleep = pd.concat([all_sleep, m])
## Cleaning sleep data
sleep_update = [
'qualityDuration', 'latency', 'debtPre', 'debtPost',
'needFromStrain', 'sleepNeed', 'habitualSleepNeed',
'timeInBed', 'lightSleepDuration', 'slowWaveSleepDuration',
'remSleepDuration', 'wakeDuration', 'arousalTime',
'noDataDuration', 'creditFromNaps', 'projectedSleep'
]
for col in sleep_update:
all_sleep[col] = all_sleep[col].astype(float).apply(
lambda x: np.nan if np.isnan(x) else x / 60000)
all_sleep.drop(['during.bounds'], axis=1, inplace=True)
self.all_sleep = all_sleep.copy(deep=True)
all_sleep.drop(['events'], axis=1, inplace=True)
return all_sleep
else:
print("Whoop: Please run the authorization function first")
def get_sleep_events_all(self):
'''
This function returns all sleep events in a data frame, for the duration of user's WHOOP membership.
Each row in the data frame represents an individual sleep event within an individual night of sleep.
Sleep events can be joined against the sleep or main datasets by sleep id.
All sleep times are returned in minutes.
'''
if self.auth_code:
if self.all_data is not None:
## use existing
data = self.all_data
else:
## pull timeframe data
data = self.get_keydata_all()
## getting all the sleep ids
if self.all_sleep_events is not None:
## All sleep data already pulled
return self.all_sleep_events
else:
if self.all_sleep is not None:
sleep_events = self.all_sleep[['activityId', 'events']]
all_sleep_events = pd.concat([
pd.concat([
pd.json_normalize(events),
pd.DataFrame({'id': len(events) * [sleep]})
],
axis=1) for events, sleep in
zip(sleep_events['events'], sleep_events['activityId'])
])
else:
sleep_ids = data['sleep.id'].values.tolist()
sleep_list = [
int(x) for x in sleep_ids if pd.isna(x) == False
]
all_sleep_events = pd.DataFrame()
for s in sleep_list:
events = self.pull_sleep_events(s)
all_sleep_events = pd.concat(
[all_sleep_events, events])
## Cleaning sleep events data
all_sleep_events['during.lower'] = pd.to_datetime(
all_sleep_events['during.lower'])
all_sleep_events['during.upper'] = pd.to_datetime(
all_sleep_events['during.upper'])
all_sleep_events.drop(['during.bounds'], axis=1, inplace=True)
all_sleep_events['total_minutes'] = all_sleep_events.apply(
lambda x: (x['during.upper'] - x['during.lower']
).total_seconds() / 60.0,
axis=1)
self.all_sleep_events = all_sleep_events
return all_sleep_events
else:
print("Whoop: Please run the authorization function first")
#returnTYpe = df, json
def get_hr_all(self, returnType=None):
'''
This function will pull every heart rate measurement recorded for the life of WHOOP membership.
The default return for this function is a list of lists, where each "row" contains the date, time, and hr value.
The measurements are spaced out every ~6 seconds on average.
To return a dataframe, set df=True. This will take a bit longer, but will return a data frame.
NOTE: This api pull takes about 6 seconds per week of data ... or 1 minutes for 10 weeks of data,
so be careful when you pull, it may take a while.
'''
if self.start_datetime:
athlete_id = self.whoop_id
start_date = parser.isoparse(
self.start_datetime).replace(tzinfo=None)
end_time = 'T23:59:59.999Z'
start_time = 'T00:00:00.000Z'
intervals = rrule.rrule(freq=WEEKLY,
interval=1,
until=self.current_datetime,
dtstart=start_date)
date_range = [[
d.strftime('%Y-%m-%d') + start_time,
(d + relativedelta.relativedelta(weeks=1)).strftime('%Y-%m-%d')
+ end_time
] for d in intervals]
hr_list = []
for dates in date_range:
start = dates[0]
end = dates[1]
ul = '''https://api-7.whoop.com/users/{}/metrics/heart_rate?end={}&order=t&start={}&step=6'''.format(
athlete_id, end, start)
hr_vals = self.pull_api(ul)['values']
hr_values = [[
datetime.utcfromtimestamp(h['time'] / 1e3).date(),
datetime.utcfromtimestamp(h['time'] / 1e3).time(),
h['data']
] for h in hr_vals]
hr_list.extend(hr_values)
if returnType == "df":
hr_df = pd.DataFrame(hr_list)
hr_df.columns = ['date', 'time', 'hr']
return hr_df
elif returnType == "json":
hr_json = [{
'datetime': str(h[0]) + 'T' + str(h[1]),
'hr': h[2]
} for h in hr_list]
return hr_json
else:
return hr_list
else:
print("Please run the authorization function first")
def get_keydata_timeframe(self,
start,
end=datetime.strftime(datetime.utcnow(),
"%Y-%m-%d")):
'''
This function returns a dataframe of WHOOP metrics for each day in a specified time period.
To use this function, provide a start and end date in string format as follows "YYYY-MM-DD".
If no end date is specified, it will default to today's date.
In the resulting dataframe, each day is a row and contains strain, recovery, and sleep information
'''
st = datetime.strptime(start, '%Y-%m-%d')
e = datetime.strptime(end, '%Y-%m-%d')
if st > e:
if e > datetime.today():
print("Please enter an end date earlier than tomorrow")
else:
print(
"Please enter a start date that is earlier than your end date"
)
else:
if self.auth_code:
end_time = 'T23:59:59.999Z'
start_time = 'T00:00:00.000Z'
intervals = rrule.rrule(freq=WEEKLY,
interval=1,
until=e,
dtstart=st)
date_range = [[
d.strftime('%Y-%m-%d') + start_time,
(d +
relativedelta.relativedelta(weeks=1)).strftime('%Y-%m-%d')
+ end_time
] for d in intervals if d <= e]
time_data = pd.DataFrame()
for dates in date_range:
cycle_url = 'https://api-7.whoop.com/users/{}/cycles?end={}&start={}'.format(
self.whoop_id, dates[1], dates[0])
data = self.pull_api(cycle_url, df=True)
time_data = pd.concat([time_data, data])
time_data.reset_index(drop=True, inplace=True)
## fixing the day column so it's not a list
time_data['days'] = time_data['days'].map(lambda d: d[0])
time_data.rename(columns={"days": 'day'}, inplace=True)
## Putting all time into minutes instead of milliseconds
sleep_cols = [
'qualityDuration', 'needBreakdown.baseline',
'needBreakdown.debt', 'needBreakdown.naps',
'needBreakdown.strain', 'needBreakdown.total'
]
for sleep_col in sleep_cols:
time_data['sleep.' + sleep_col] = time_data[
'sleep.' + sleep_col].astype(float).apply(
lambda x: np.nan if np.isnan(x) else x / 60000)
## Making nap variable
time_data['nap_duration'] = time_data['sleep.naps'].apply(
lambda x: x[0]['qualityDuration'] / 60000
if len(x) == 1 else (sum([
y['qualityDuration'] for y in x
if y['qualityDuration'] is not None
]) / 60000 if len(x) > 1 else 0))
time_data.drop(['sleep.naps'], axis=1, inplace=True)
## removing duplicates
time_data.drop_duplicates(subset=['day', 'sleep.id'],
inplace=True)
return time_data
else:
print("Whoop: Please run the authorization function first")
def get_activities_timeframe(self,
start,
end=datetime.strftime(datetime.utcnow(),
"%Y-%m-%d")):
'''
Activity data is pulled through the get_keydata functions so if the data pull is present, this function
just transforms the activity column into a dataframe of activities, where each activity is a row.
If it has not been pulled, this function runs the key data function then returns the activity dataframe
If no end date is specified, it will default to today's date.
'''
st = datetime.strptime(start, '%Y-%m-%d')
e = datetime.strptime(end, '%Y-%m-%d')
if st > e:
if e > datetime.today():
print("Please enter an end date earlier than tomorrow")
else:
print(
"Please enter a start date that is earlier than your end date"
)
else:
if self.auth_code:
if self.sport_dict:
sport_dict = self.sport_dict
else:
sports = self.pull_api('https://api-7.whoop.com/sports')
sport_dict = {
sport['id']: sport['name']
for sport in sports
}
self.sport_dict = self.sport_dict
## process activity data
if self.all_data is not None:
## use existing
data = self.all_data
data = data[(data.day >= start)
& (data.day <= end)].copy(deep=True)
else:
## pull timeframe data
data = self.get_keydata_timeframe(start, end)
## now process activities data
act_data = pd.json_normalize(
data[data['strain.workouts'].apply(len) > 0]
['strain.workouts'].apply(lambda x: x[0]))
act_data[['during.upper', 'during.lower'
]] = act_data[['during.upper',
'during.lower']].apply(pd.to_datetime)
act_data['total_minutes'] = act_data.apply(
lambda x: (x['during.upper'] - x['during.lower']
).total_seconds() / 60.0,
axis=1)
for z in range(0, 6):
act_data['zone{}_minutes'.format(
z +
1)] = act_data['zones'].apply(lambda x: x[z] / 60000.)
act_data['sport_name'] = act_data.sportId.apply(
lambda x: sport_dict[x])
act_data['day'] = act_data['during.lower'].dt.strftime(
'%Y-%m-%d')
act_data.drop(['zones', 'during.bounds'], axis=1, inplace=True)
act_data.drop_duplicates(inplace=True)
self.all_activities = act_data
return act_data
else:
print("Whoop: Please run the authorization function first")
def get_sleep_timeframe(self,
start,
end=datetime.strftime(datetime.utcnow(),
"%Y-%m-%d")):
'''
This function returns sleep metrics in a data frame, for timeframe specified by the user.
Each row in the data frame represents one night of sleep.
If no end date is specified, it will default to today's date.
All sleep times are returned in minutes.
'''
st = datetime.strptime(start, '%Y-%m-%d')
e = datetime.strptime(end, '%Y-%m-%d')
if st > e:
if e > datetime.today():
print("Whoop: Please enter an end date earlier than tomorrow")
else:
print(
"Whoop: Please enter a start date that is earlier than your end date"
)
else:
if self.auth_code:
if self.all_data is not None:
## use existing
data = self.all_data
data = data[(data.day >= start)
& (data.day <= end)].copy(deep=True)
else:
## pull timeframe data
data = self.get_keydata_timeframe(start, end)
## getting all the sleep ids
sleep_ids = data['sleep.id'].values.tolist()
sleep_list = [int(x) for x in sleep_ids if pd.isna(x) == False]
if self.all_sleep is not None:
## All sleep data already pulled so just filter
all_sleep = self.all_sleep
time_sleep = all_sleep[all_sleep.activityId.isin(
sleep_list)]
return time_sleep
else:
time_sleep = pd.DataFrame()
for s in sleep_list:
m = self.pull_sleep_main(s)
time_sleep = pd.concat([time_sleep, m])
## Cleaning sleep data
sleep_update = [
'qualityDuration', 'latency', 'debtPre', 'debtPost',
'needFromStrain', 'sleepNeed', 'habitualSleepNeed',
'timeInBed', 'lightSleepDuration',
'slowWaveSleepDuration', 'remSleepDuration',
'wakeDuration', 'arousalTime', 'noDataDuration',
'creditFromNaps', 'projectedSleep'
]
for col in sleep_update:
time_sleep[col] = time_sleep[col].astype(float).apply(
lambda x: np.nan if np.isnan(x) else x / 60000)
time_sleep.drop(['during.bounds', 'events'],
axis=1,
inplace=True)
return time_sleep
else:
print("Whoop: Please run the authorization function first")
def get_sleep_events_timeframe(self,
start,
end=datetime.strftime(
datetime.utcnow(), "%Y-%m-%d")):
'''
This function returns sleep events in a data frame, for the time frame specified by the user.
Each row in the data frame represents an individual sleep event within an individual night of sleep.
Sleep events can be joined against the sleep or main datasets by sleep id.
If no end date is specified, it will default to today's date.
'''
st = datetime.strptime(start, '%Y-%m-%d')
e = datetime.strptime(end, '%Y-%m-%d')
if st > e:
if e > datetime.today():
print("Whoop: Please enter an end date earlier than tomorrow")
else:
print(
"Whoop: Please enter a start date that is earlier than your end date"
)
else:
if self.auth_code:
if self.all_data is not None:
## use existing
data = self.all_data
data = data[(data.day >= start)
& (data.day <= end)].copy(deep=True)
else:
## pull timeframe data
data = self.get_keydata_timeframe(start, end)
## getting all the sleep ids
sleep_ids = data['sleep.id'].values.tolist()
sleep_list = [int(x) for x in sleep_ids if pd.isna(x) == False]
if self.all_sleep_events is not None:
## All sleep data already pulled so just filter
all_sleep_events = self.all_sleep_events
time_sleep_events = all_sleep_events[
all_sleep_events.id.isin(sleep_list)]
return time_sleep_events
else:
if self.all_sleep is not None:
sleep_events = self.all_sleep[['activityId', 'events']]
time_sleep = sleep_events[sleep_events.id.isin(
sleep_list)]
time_sleep_events = pd.concat([
pd.concat([
pd.json_normalize(events),
pd.DataFrame({'id': len(events) * [sleep]})
],
axis=1) for events, sleep in
zip(time_sleep['events'], time_sleep['activityId'])
])
else:
time_sleep_events = pd.DataFrame()
for s in sleep_list:
events = self.pull_sleep_events(s)
time_sleep_events = pd.concat(
[time_sleep_events, events])
## Cleaning sleep events data
time_sleep_events['during.lower'] = pd.to_datetime(
time_sleep_events['during.lower'])
time_sleep_events['during.upper'] = pd.to_datetime(
time_sleep_events['during.upper'])
time_sleep_events.drop(['during.bounds'],
axis=1,
inplace=True)
time_sleep_events[
'total_minutes'] = time_sleep_events.apply(
lambda x: (x['during.upper'] - x['during.lower']
).total_seconds() / 60.0,
axis=1)
return time_sleep_events
else:
print("Whoop: Please run the authorization function first")
def get_hr_timeframe(self,
start,
end=datetime.strftime(datetime.utcnow(), "%Y-%m-%d"),
returnType=None):
'''
This function will pull every heart rate measurement recorded, for the time frame specified by the user.
The default return for this function is a list of lists, where each "row" contains the date, time, and hr value.
The measurements are spaced out every ~6 seconds on average.
To return a dataframe, set df=True. This will take a bit longer, but will return a data frame.
If no end date is specified, it will default to today's date.
NOTE: This api pull takes about 6 seconds per week of data ... or 1 minutes for 10 weeks of data,
so be careful when you pull, it may take a while.
'''
st = datetime.strptime(start, '%Y-%m-%d')
e = datetime.strptime(end, '%Y-%m-%d')
if st > e:
if e > datetime.today():
print("Whoop: Please enter an end date earlier than tomorrow")
else:
print(
"Whoop: Please enter a start date that is earlier than your end date"
)
else:
if self.start_datetime:
athlete_id = self.whoop_id
start_date = parser.isoparse(
self.start_datetime).replace(tzinfo=None)
end_time = 'T23:59:59.999Z'
start_time = 'T00:00:00.000Z'
## using the st and e since it needs the datetime formatted date
intervals = rrule.rrule(freq=WEEKLY,
interval=1,
until=e,
dtstart=st)
date_range = [[
d.strftime('%Y-%m-%d') + start_time,
(d +
relativedelta.relativedelta(weeks=1)).strftime('%Y-%m-%d')
+ end_time
] for d in intervals]
hr_list = []
for dates in date_range:
start = dates[0]
end = dates[1]
ul = '''https://api-7.whoop.com/users/{}/metrics/heart_rate?end={}&order=t&start={}&step=6'''.format(
athlete_id, end, start)
hr_vals = self.pull_api(ul)['values']
hr_values = [[
str(datetime.utcfromtimestamp(h['time'] / 1e3).date()),
str(datetime.utcfromtimestamp(h['time'] / 1e3).time()),
h['data']
] for h in hr_vals]
hr_list.extend(hr_values)
if returnType == "df":
hr_df = pd.DataFrame(hr_list)
hr_df.columns = ['date', 'time', 'hr']
return hr_df
elif returnType == "json":
hr_json = [{
'datetime': str(h[0]) + 'T' + str(h[1]),
'hr': h[2]
} for h in hr_list]
return hr_json
else:
return hr_list
else:
print("Whoop: Please run the authorization function first")
| 43.993289
| 121
| 0.49251
| 3,562
| 32,775
| 4.399495
| 0.098259
| 0.039308
| 0.004786
| 0.014039
| 0.850041
| 0.829366
| 0.810287
| 0.77519
| 0.766448
| 0.751196
| 0
| 0.01183
| 0.414523
| 32,775
| 744
| 122
| 44.052419
| 0.804836
| 0.143402
| 0
| 0.685613
| 0
| 0.003552
| 0.135307
| 0.003128
| 0
| 0
| 0
| 0
| 0
| 1
| 0.028419
| false
| 0.005329
| 0.012433
| 0
| 0.085258
| 0.039076
| 0
| 0
| 0
| null | 0
| 0
| 0
| 1
| 1
| 1
| 1
| 1
| 1
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| null | 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
|
0
| 6
|
f7422731979ad4853b3ed8984d505258dff7f132
| 24,927
|
py
|
Python
|
pybind/nos/v7_0_1b/interface/port_channel/ip/__init__.py
|
shivharis/pybind
|
4e1c6d54b9fd722ccec25546ba2413d79ce337e6
|
[
"Apache-2.0"
] | null | null | null |
pybind/nos/v7_0_1b/interface/port_channel/ip/__init__.py
|
shivharis/pybind
|
4e1c6d54b9fd722ccec25546ba2413d79ce337e6
|
[
"Apache-2.0"
] | null | null | null |
pybind/nos/v7_0_1b/interface/port_channel/ip/__init__.py
|
shivharis/pybind
|
4e1c6d54b9fd722ccec25546ba2413d79ce337e6
|
[
"Apache-2.0"
] | null | null | null |
from operator import attrgetter
import pyangbind.lib.xpathhelper as xpathhelper
from pyangbind.lib.yangtypes import RestrictedPrecisionDecimalType, RestrictedClassType, TypedListType
from pyangbind.lib.yangtypes import YANGBool, YANGListType, YANGDynClass, ReferenceType
from pyangbind.lib.base import PybindBase
from decimal import Decimal
from bitarray import bitarray
import __builtin__
import ip_config
import arp
import interface_po_dhcp_conf
import icmp
import igmp_po_intf_cfg
import interface_PO_ospf_conf
import pim_intf_po_cont
class ip(PybindBase):
"""
This class was auto-generated by the PythonClass plugin for PYANG
from YANG module brocade-interface - based on the path /interface/port-channel/ip. Each member element of
the container is represented as a class variable - with a specific
YANG type.
YANG Description: The IP configurations for an interface.
"""
__slots__ = ('_pybind_generated_by', '_path_helper', '_yang_name', '_rest_name', '_extmethods', '__ip_config','__arp','__interface_po_dhcp_conf','__icmp','__igmp_po_intf_cfg','__interface_PO_ospf_conf','__pim_intf_po_cont',)
_yang_name = 'ip'
_rest_name = 'ip'
_pybind_generated_by = 'container'
def __init__(self, *args, **kwargs):
path_helper_ = kwargs.pop("path_helper", None)
if path_helper_ is False:
self._path_helper = False
elif path_helper_ is not None and isinstance(path_helper_, xpathhelper.YANGPathHelper):
self._path_helper = path_helper_
elif hasattr(self, "_parent"):
path_helper_ = getattr(self._parent, "_path_helper", False)
self._path_helper = path_helper_
else:
self._path_helper = False
extmethods = kwargs.pop("extmethods", None)
if extmethods is False:
self._extmethods = False
elif extmethods is not None and isinstance(extmethods, dict):
self._extmethods = extmethods
elif hasattr(self, "_parent"):
extmethods = getattr(self._parent, "_extmethods", None)
self._extmethods = extmethods
else:
self._extmethods = False
self.__arp = YANGDynClass(base=arp.arp, is_container='container', presence=False, yang_name="arp", rest_name="arp", parent=self, path_helper=self._path_helper, extmethods=self._extmethods, register_paths=True, extensions={u'tailf-common': {u'info': u'Configure ARP', u'cli-incomplete-no': None}}, namespace='urn:brocade.com:mgmt:brocade-dai', defining_module='brocade-dai', yang_type='container', is_config=True)
self.__igmp_po_intf_cfg = YANGDynClass(base=igmp_po_intf_cfg.igmp_po_intf_cfg, is_container='container', presence=False, yang_name="igmp-po-intf-cfg", rest_name="", parent=self, path_helper=self._path_helper, extmethods=self._extmethods, register_paths=True, extensions={u'tailf-common': {u'cli-drop-node-name': None, u'callpoint': u'IgmpPo', u'sort-priority': u'122'}}, namespace='urn:brocade.com:mgmt:brocade-igmp', defining_module='brocade-igmp', yang_type='container', is_config=True)
self.__interface_po_dhcp_conf = YANGDynClass(base=interface_po_dhcp_conf.interface_po_dhcp_conf, is_container='container', presence=False, yang_name="interface-po-dhcp-conf", rest_name="", parent=self, path_helper=self._path_helper, extmethods=self._extmethods, register_paths=True, extensions={u'tailf-common': {u'cli-drop-node-name': None}}, namespace='urn:brocade.com:mgmt:brocade-dhcp', defining_module='brocade-dhcp', yang_type='container', is_config=True)
self.__pim_intf_po_cont = YANGDynClass(base=pim_intf_po_cont.pim_intf_po_cont, is_container='container', presence=False, yang_name="pim-intf-po-cont", rest_name="", parent=self, path_helper=self._path_helper, extmethods=self._extmethods, register_paths=True, extensions={u'tailf-common': {u'cli-drop-node-name': None, u'callpoint': u'PimPoIntfCallpoint', u'sort-priority': u'121'}}, namespace='urn:brocade.com:mgmt:brocade-pim', defining_module='brocade-pim', yang_type='container', is_config=True)
self.__interface_PO_ospf_conf = YANGDynClass(base=interface_PO_ospf_conf.interface_PO_ospf_conf, is_container='container', presence=False, yang_name="interface-PO-ospf-conf", rest_name="", parent=self, path_helper=self._path_helper, extmethods=self._extmethods, register_paths=True, extensions={u'tailf-common': {u'cli-drop-node-name': None, u'callpoint': u'OSPFPoInterfaceCallPoint'}}, namespace='urn:brocade.com:mgmt:brocade-ospf', defining_module='brocade-ospf', yang_type='container', is_config=True)
self.__ip_config = YANGDynClass(base=ip_config.ip_config, is_container='container', presence=False, yang_name="ip-config", rest_name="", parent=self, path_helper=self._path_helper, extmethods=self._extmethods, register_paths=True, extensions={u'tailf-common': {u'cli-drop-node-name': None, u'callpoint': u'intf-po-ip-cfg-cp', u'sort-priority': u'RUNNCFG_INTERFACE_LEVEL_IP_CONFIG'}}, namespace='urn:brocade.com:mgmt:brocade-ip-config', defining_module='brocade-ip-config', yang_type='container', is_config=True)
self.__icmp = YANGDynClass(base=icmp.icmp, is_container='container', presence=False, yang_name="icmp", rest_name="icmp", parent=self, path_helper=self._path_helper, extmethods=self._extmethods, register_paths=True, extensions={u'tailf-common': {u'info': u'Internet Control Message Protocol(ICMP)', u'sort-priority': u'117', u'display-when': u'/vcsmode/vcs-mode = "true"', u'cli-incomplete-no': None, u'callpoint': u'IcmpPoIntfConfigCallpoint'}}, namespace='urn:brocade.com:mgmt:brocade-icmp', defining_module='brocade-icmp', yang_type='container', is_config=True)
load = kwargs.pop("load", None)
if args:
if len(args) > 1:
raise TypeError("cannot create a YANG container with >1 argument")
all_attr = True
for e in self._pyangbind_elements:
if not hasattr(args[0], e):
all_attr = False
break
if not all_attr:
raise ValueError("Supplied object did not have the correct attributes")
for e in self._pyangbind_elements:
nobj = getattr(args[0], e)
if nobj._changed() is False:
continue
setmethod = getattr(self, "_set_%s" % e)
if load is None:
setmethod(getattr(args[0], e))
else:
setmethod(getattr(args[0], e), load=load)
def _path(self):
if hasattr(self, "_parent"):
return self._parent._path()+[self._yang_name]
else:
return [u'interface', u'port-channel', u'ip']
def _rest_path(self):
if hasattr(self, "_parent"):
if self._rest_name:
return self._parent._rest_path()+[self._rest_name]
else:
return self._parent._rest_path()
else:
return [u'interface', u'Port-channel', u'ip']
def _get_ip_config(self):
"""
Getter method for ip_config, mapped from YANG variable /interface/port_channel/ip/ip_config (container)
"""
return self.__ip_config
def _set_ip_config(self, v, load=False):
"""
Setter method for ip_config, mapped from YANG variable /interface/port_channel/ip/ip_config (container)
If this variable is read-only (config: false) in the
source YANG file, then _set_ip_config is considered as a private
method. Backends looking to populate this variable should
do so via calling thisObj._set_ip_config() directly.
"""
if hasattr(v, "_utype"):
v = v._utype(v)
try:
t = YANGDynClass(v,base=ip_config.ip_config, is_container='container', presence=False, yang_name="ip-config", rest_name="", parent=self, path_helper=self._path_helper, extmethods=self._extmethods, register_paths=True, extensions={u'tailf-common': {u'cli-drop-node-name': None, u'callpoint': u'intf-po-ip-cfg-cp', u'sort-priority': u'RUNNCFG_INTERFACE_LEVEL_IP_CONFIG'}}, namespace='urn:brocade.com:mgmt:brocade-ip-config', defining_module='brocade-ip-config', yang_type='container', is_config=True)
except (TypeError, ValueError):
raise ValueError({
'error-string': """ip_config must be of a type compatible with container""",
'defined-type': "container",
'generated-type': """YANGDynClass(base=ip_config.ip_config, is_container='container', presence=False, yang_name="ip-config", rest_name="", parent=self, path_helper=self._path_helper, extmethods=self._extmethods, register_paths=True, extensions={u'tailf-common': {u'cli-drop-node-name': None, u'callpoint': u'intf-po-ip-cfg-cp', u'sort-priority': u'RUNNCFG_INTERFACE_LEVEL_IP_CONFIG'}}, namespace='urn:brocade.com:mgmt:brocade-ip-config', defining_module='brocade-ip-config', yang_type='container', is_config=True)""",
})
self.__ip_config = t
if hasattr(self, '_set'):
self._set()
def _unset_ip_config(self):
self.__ip_config = YANGDynClass(base=ip_config.ip_config, is_container='container', presence=False, yang_name="ip-config", rest_name="", parent=self, path_helper=self._path_helper, extmethods=self._extmethods, register_paths=True, extensions={u'tailf-common': {u'cli-drop-node-name': None, u'callpoint': u'intf-po-ip-cfg-cp', u'sort-priority': u'RUNNCFG_INTERFACE_LEVEL_IP_CONFIG'}}, namespace='urn:brocade.com:mgmt:brocade-ip-config', defining_module='brocade-ip-config', yang_type='container', is_config=True)
def _get_arp(self):
"""
Getter method for arp, mapped from YANG variable /interface/port_channel/ip/arp (container)
"""
return self.__arp
def _set_arp(self, v, load=False):
"""
Setter method for arp, mapped from YANG variable /interface/port_channel/ip/arp (container)
If this variable is read-only (config: false) in the
source YANG file, then _set_arp is considered as a private
method. Backends looking to populate this variable should
do so via calling thisObj._set_arp() directly.
"""
if hasattr(v, "_utype"):
v = v._utype(v)
try:
t = YANGDynClass(v,base=arp.arp, is_container='container', presence=False, yang_name="arp", rest_name="arp", parent=self, path_helper=self._path_helper, extmethods=self._extmethods, register_paths=True, extensions={u'tailf-common': {u'info': u'Configure ARP', u'cli-incomplete-no': None}}, namespace='urn:brocade.com:mgmt:brocade-dai', defining_module='brocade-dai', yang_type='container', is_config=True)
except (TypeError, ValueError):
raise ValueError({
'error-string': """arp must be of a type compatible with container""",
'defined-type': "container",
'generated-type': """YANGDynClass(base=arp.arp, is_container='container', presence=False, yang_name="arp", rest_name="arp", parent=self, path_helper=self._path_helper, extmethods=self._extmethods, register_paths=True, extensions={u'tailf-common': {u'info': u'Configure ARP', u'cli-incomplete-no': None}}, namespace='urn:brocade.com:mgmt:brocade-dai', defining_module='brocade-dai', yang_type='container', is_config=True)""",
})
self.__arp = t
if hasattr(self, '_set'):
self._set()
def _unset_arp(self):
self.__arp = YANGDynClass(base=arp.arp, is_container='container', presence=False, yang_name="arp", rest_name="arp", parent=self, path_helper=self._path_helper, extmethods=self._extmethods, register_paths=True, extensions={u'tailf-common': {u'info': u'Configure ARP', u'cli-incomplete-no': None}}, namespace='urn:brocade.com:mgmt:brocade-dai', defining_module='brocade-dai', yang_type='container', is_config=True)
def _get_interface_po_dhcp_conf(self):
"""
Getter method for interface_po_dhcp_conf, mapped from YANG variable /interface/port_channel/ip/interface_po_dhcp_conf (container)
"""
return self.__interface_po_dhcp_conf
def _set_interface_po_dhcp_conf(self, v, load=False):
"""
Setter method for interface_po_dhcp_conf, mapped from YANG variable /interface/port_channel/ip/interface_po_dhcp_conf (container)
If this variable is read-only (config: false) in the
source YANG file, then _set_interface_po_dhcp_conf is considered as a private
method. Backends looking to populate this variable should
do so via calling thisObj._set_interface_po_dhcp_conf() directly.
"""
if hasattr(v, "_utype"):
v = v._utype(v)
try:
t = YANGDynClass(v,base=interface_po_dhcp_conf.interface_po_dhcp_conf, is_container='container', presence=False, yang_name="interface-po-dhcp-conf", rest_name="", parent=self, path_helper=self._path_helper, extmethods=self._extmethods, register_paths=True, extensions={u'tailf-common': {u'cli-drop-node-name': None}}, namespace='urn:brocade.com:mgmt:brocade-dhcp', defining_module='brocade-dhcp', yang_type='container', is_config=True)
except (TypeError, ValueError):
raise ValueError({
'error-string': """interface_po_dhcp_conf must be of a type compatible with container""",
'defined-type': "container",
'generated-type': """YANGDynClass(base=interface_po_dhcp_conf.interface_po_dhcp_conf, is_container='container', presence=False, yang_name="interface-po-dhcp-conf", rest_name="", parent=self, path_helper=self._path_helper, extmethods=self._extmethods, register_paths=True, extensions={u'tailf-common': {u'cli-drop-node-name': None}}, namespace='urn:brocade.com:mgmt:brocade-dhcp', defining_module='brocade-dhcp', yang_type='container', is_config=True)""",
})
self.__interface_po_dhcp_conf = t
if hasattr(self, '_set'):
self._set()
def _unset_interface_po_dhcp_conf(self):
self.__interface_po_dhcp_conf = YANGDynClass(base=interface_po_dhcp_conf.interface_po_dhcp_conf, is_container='container', presence=False, yang_name="interface-po-dhcp-conf", rest_name="", parent=self, path_helper=self._path_helper, extmethods=self._extmethods, register_paths=True, extensions={u'tailf-common': {u'cli-drop-node-name': None}}, namespace='urn:brocade.com:mgmt:brocade-dhcp', defining_module='brocade-dhcp', yang_type='container', is_config=True)
def _get_icmp(self):
"""
Getter method for icmp, mapped from YANG variable /interface/port_channel/ip/icmp (container)
"""
return self.__icmp
def _set_icmp(self, v, load=False):
"""
Setter method for icmp, mapped from YANG variable /interface/port_channel/ip/icmp (container)
If this variable is read-only (config: false) in the
source YANG file, then _set_icmp is considered as a private
method. Backends looking to populate this variable should
do so via calling thisObj._set_icmp() directly.
"""
if hasattr(v, "_utype"):
v = v._utype(v)
try:
t = YANGDynClass(v,base=icmp.icmp, is_container='container', presence=False, yang_name="icmp", rest_name="icmp", parent=self, path_helper=self._path_helper, extmethods=self._extmethods, register_paths=True, extensions={u'tailf-common': {u'info': u'Internet Control Message Protocol(ICMP)', u'sort-priority': u'117', u'display-when': u'/vcsmode/vcs-mode = "true"', u'cli-incomplete-no': None, u'callpoint': u'IcmpPoIntfConfigCallpoint'}}, namespace='urn:brocade.com:mgmt:brocade-icmp', defining_module='brocade-icmp', yang_type='container', is_config=True)
except (TypeError, ValueError):
raise ValueError({
'error-string': """icmp must be of a type compatible with container""",
'defined-type': "container",
'generated-type': """YANGDynClass(base=icmp.icmp, is_container='container', presence=False, yang_name="icmp", rest_name="icmp", parent=self, path_helper=self._path_helper, extmethods=self._extmethods, register_paths=True, extensions={u'tailf-common': {u'info': u'Internet Control Message Protocol(ICMP)', u'sort-priority': u'117', u'display-when': u'/vcsmode/vcs-mode = "true"', u'cli-incomplete-no': None, u'callpoint': u'IcmpPoIntfConfigCallpoint'}}, namespace='urn:brocade.com:mgmt:brocade-icmp', defining_module='brocade-icmp', yang_type='container', is_config=True)""",
})
self.__icmp = t
if hasattr(self, '_set'):
self._set()
def _unset_icmp(self):
self.__icmp = YANGDynClass(base=icmp.icmp, is_container='container', presence=False, yang_name="icmp", rest_name="icmp", parent=self, path_helper=self._path_helper, extmethods=self._extmethods, register_paths=True, extensions={u'tailf-common': {u'info': u'Internet Control Message Protocol(ICMP)', u'sort-priority': u'117', u'display-when': u'/vcsmode/vcs-mode = "true"', u'cli-incomplete-no': None, u'callpoint': u'IcmpPoIntfConfigCallpoint'}}, namespace='urn:brocade.com:mgmt:brocade-icmp', defining_module='brocade-icmp', yang_type='container', is_config=True)
def _get_igmp_po_intf_cfg(self):
"""
Getter method for igmp_po_intf_cfg, mapped from YANG variable /interface/port_channel/ip/igmp_po_intf_cfg (container)
"""
return self.__igmp_po_intf_cfg
def _set_igmp_po_intf_cfg(self, v, load=False):
"""
Setter method for igmp_po_intf_cfg, mapped from YANG variable /interface/port_channel/ip/igmp_po_intf_cfg (container)
If this variable is read-only (config: false) in the
source YANG file, then _set_igmp_po_intf_cfg is considered as a private
method. Backends looking to populate this variable should
do so via calling thisObj._set_igmp_po_intf_cfg() directly.
"""
if hasattr(v, "_utype"):
v = v._utype(v)
try:
t = YANGDynClass(v,base=igmp_po_intf_cfg.igmp_po_intf_cfg, is_container='container', presence=False, yang_name="igmp-po-intf-cfg", rest_name="", parent=self, path_helper=self._path_helper, extmethods=self._extmethods, register_paths=True, extensions={u'tailf-common': {u'cli-drop-node-name': None, u'callpoint': u'IgmpPo', u'sort-priority': u'122'}}, namespace='urn:brocade.com:mgmt:brocade-igmp', defining_module='brocade-igmp', yang_type='container', is_config=True)
except (TypeError, ValueError):
raise ValueError({
'error-string': """igmp_po_intf_cfg must be of a type compatible with container""",
'defined-type': "container",
'generated-type': """YANGDynClass(base=igmp_po_intf_cfg.igmp_po_intf_cfg, is_container='container', presence=False, yang_name="igmp-po-intf-cfg", rest_name="", parent=self, path_helper=self._path_helper, extmethods=self._extmethods, register_paths=True, extensions={u'tailf-common': {u'cli-drop-node-name': None, u'callpoint': u'IgmpPo', u'sort-priority': u'122'}}, namespace='urn:brocade.com:mgmt:brocade-igmp', defining_module='brocade-igmp', yang_type='container', is_config=True)""",
})
self.__igmp_po_intf_cfg = t
if hasattr(self, '_set'):
self._set()
def _unset_igmp_po_intf_cfg(self):
self.__igmp_po_intf_cfg = YANGDynClass(base=igmp_po_intf_cfg.igmp_po_intf_cfg, is_container='container', presence=False, yang_name="igmp-po-intf-cfg", rest_name="", parent=self, path_helper=self._path_helper, extmethods=self._extmethods, register_paths=True, extensions={u'tailf-common': {u'cli-drop-node-name': None, u'callpoint': u'IgmpPo', u'sort-priority': u'122'}}, namespace='urn:brocade.com:mgmt:brocade-igmp', defining_module='brocade-igmp', yang_type='container', is_config=True)
def _get_interface_PO_ospf_conf(self):
"""
Getter method for interface_PO_ospf_conf, mapped from YANG variable /interface/port_channel/ip/interface_PO_ospf_conf (container)
"""
return self.__interface_PO_ospf_conf
def _set_interface_PO_ospf_conf(self, v, load=False):
"""
Setter method for interface_PO_ospf_conf, mapped from YANG variable /interface/port_channel/ip/interface_PO_ospf_conf (container)
If this variable is read-only (config: false) in the
source YANG file, then _set_interface_PO_ospf_conf is considered as a private
method. Backends looking to populate this variable should
do so via calling thisObj._set_interface_PO_ospf_conf() directly.
"""
if hasattr(v, "_utype"):
v = v._utype(v)
try:
t = YANGDynClass(v,base=interface_PO_ospf_conf.interface_PO_ospf_conf, is_container='container', presence=False, yang_name="interface-PO-ospf-conf", rest_name="", parent=self, path_helper=self._path_helper, extmethods=self._extmethods, register_paths=True, extensions={u'tailf-common': {u'cli-drop-node-name': None, u'callpoint': u'OSPFPoInterfaceCallPoint'}}, namespace='urn:brocade.com:mgmt:brocade-ospf', defining_module='brocade-ospf', yang_type='container', is_config=True)
except (TypeError, ValueError):
raise ValueError({
'error-string': """interface_PO_ospf_conf must be of a type compatible with container""",
'defined-type': "container",
'generated-type': """YANGDynClass(base=interface_PO_ospf_conf.interface_PO_ospf_conf, is_container='container', presence=False, yang_name="interface-PO-ospf-conf", rest_name="", parent=self, path_helper=self._path_helper, extmethods=self._extmethods, register_paths=True, extensions={u'tailf-common': {u'cli-drop-node-name': None, u'callpoint': u'OSPFPoInterfaceCallPoint'}}, namespace='urn:brocade.com:mgmt:brocade-ospf', defining_module='brocade-ospf', yang_type='container', is_config=True)""",
})
self.__interface_PO_ospf_conf = t
if hasattr(self, '_set'):
self._set()
def _unset_interface_PO_ospf_conf(self):
self.__interface_PO_ospf_conf = YANGDynClass(base=interface_PO_ospf_conf.interface_PO_ospf_conf, is_container='container', presence=False, yang_name="interface-PO-ospf-conf", rest_name="", parent=self, path_helper=self._path_helper, extmethods=self._extmethods, register_paths=True, extensions={u'tailf-common': {u'cli-drop-node-name': None, u'callpoint': u'OSPFPoInterfaceCallPoint'}}, namespace='urn:brocade.com:mgmt:brocade-ospf', defining_module='brocade-ospf', yang_type='container', is_config=True)
def _get_pim_intf_po_cont(self):
"""
Getter method for pim_intf_po_cont, mapped from YANG variable /interface/port_channel/ip/pim_intf_po_cont (container)
"""
return self.__pim_intf_po_cont
def _set_pim_intf_po_cont(self, v, load=False):
"""
Setter method for pim_intf_po_cont, mapped from YANG variable /interface/port_channel/ip/pim_intf_po_cont (container)
If this variable is read-only (config: false) in the
source YANG file, then _set_pim_intf_po_cont is considered as a private
method. Backends looking to populate this variable should
do so via calling thisObj._set_pim_intf_po_cont() directly.
"""
if hasattr(v, "_utype"):
v = v._utype(v)
try:
t = YANGDynClass(v,base=pim_intf_po_cont.pim_intf_po_cont, is_container='container', presence=False, yang_name="pim-intf-po-cont", rest_name="", parent=self, path_helper=self._path_helper, extmethods=self._extmethods, register_paths=True, extensions={u'tailf-common': {u'cli-drop-node-name': None, u'callpoint': u'PimPoIntfCallpoint', u'sort-priority': u'121'}}, namespace='urn:brocade.com:mgmt:brocade-pim', defining_module='brocade-pim', yang_type='container', is_config=True)
except (TypeError, ValueError):
raise ValueError({
'error-string': """pim_intf_po_cont must be of a type compatible with container""",
'defined-type': "container",
'generated-type': """YANGDynClass(base=pim_intf_po_cont.pim_intf_po_cont, is_container='container', presence=False, yang_name="pim-intf-po-cont", rest_name="", parent=self, path_helper=self._path_helper, extmethods=self._extmethods, register_paths=True, extensions={u'tailf-common': {u'cli-drop-node-name': None, u'callpoint': u'PimPoIntfCallpoint', u'sort-priority': u'121'}}, namespace='urn:brocade.com:mgmt:brocade-pim', defining_module='brocade-pim', yang_type='container', is_config=True)""",
})
self.__pim_intf_po_cont = t
if hasattr(self, '_set'):
self._set()
def _unset_pim_intf_po_cont(self):
self.__pim_intf_po_cont = YANGDynClass(base=pim_intf_po_cont.pim_intf_po_cont, is_container='container', presence=False, yang_name="pim-intf-po-cont", rest_name="", parent=self, path_helper=self._path_helper, extmethods=self._extmethods, register_paths=True, extensions={u'tailf-common': {u'cli-drop-node-name': None, u'callpoint': u'PimPoIntfCallpoint', u'sort-priority': u'121'}}, namespace='urn:brocade.com:mgmt:brocade-pim', defining_module='brocade-pim', yang_type='container', is_config=True)
ip_config = __builtin__.property(_get_ip_config, _set_ip_config)
arp = __builtin__.property(_get_arp, _set_arp)
interface_po_dhcp_conf = __builtin__.property(_get_interface_po_dhcp_conf, _set_interface_po_dhcp_conf)
icmp = __builtin__.property(_get_icmp, _set_icmp)
igmp_po_intf_cfg = __builtin__.property(_get_igmp_po_intf_cfg, _set_igmp_po_intf_cfg)
interface_PO_ospf_conf = __builtin__.property(_get_interface_PO_ospf_conf, _set_interface_PO_ospf_conf)
pim_intf_po_cont = __builtin__.property(_get_pim_intf_po_cont, _set_pim_intf_po_cont)
_pyangbind_elements = {'ip_config': ip_config, 'arp': arp, 'interface_po_dhcp_conf': interface_po_dhcp_conf, 'icmp': icmp, 'igmp_po_intf_cfg': igmp_po_intf_cfg, 'interface_PO_ospf_conf': interface_PO_ospf_conf, 'pim_intf_po_cont': pim_intf_po_cont, }
| 72.885965
| 584
| 0.741565
| 3,576
| 24,927
| 4.880313
| 0.056488
| 0.04011
| 0.048132
| 0.035927
| 0.883509
| 0.843055
| 0.830908
| 0.823573
| 0.80816
| 0.798533
| 0
| 0.001923
| 0.123641
| 24,927
| 341
| 585
| 73.099707
| 0.796979
| 0.142055
| 0
| 0.451163
| 0
| 0.032558
| 0.37156
| 0.164726
| 0
| 0
| 0
| 0
| 0
| 1
| 0.111628
| false
| 0
| 0.069767
| 0
| 0.297674
| 0
| 0
| 0
| 0
| null | 0
| 0
| 0
| 1
| 1
| 1
| 1
| 1
| 1
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| null | 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
|
0
| 6
|
f7674b5ae471a8633ed272cff20d4b73ad8b36b6
| 23
|
py
|
Python
|
exoatlas/telescopes/__init__.py
|
zkbt/exopop
|
5e8b9d391fe9e2d39c623d7ccd7eca8fd0f0f3f8
|
[
"MIT"
] | 4
|
2020-06-24T16:38:27.000Z
|
2022-01-23T01:57:19.000Z
|
exoatlas/telescopes/__init__.py
|
zkbt/exopop
|
5e8b9d391fe9e2d39c623d7ccd7eca8fd0f0f3f8
|
[
"MIT"
] | 4
|
2018-09-20T23:12:30.000Z
|
2019-05-15T15:31:58.000Z
|
exoatlas/telescopes/__init__.py
|
zkbt/exopop
|
5e8b9d391fe9e2d39c623d7ccd7eca8fd0f0f3f8
|
[
"MIT"
] | null | null | null |
from .buckets import *
| 11.5
| 22
| 0.73913
| 3
| 23
| 5.666667
| 1
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0.173913
| 23
| 1
| 23
| 23
| 0.894737
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 1
| 0
| true
| 0
| 1
| 0
| 1
| 0
| 1
| 1
| 0
| null | 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 1
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| null | 0
| 0
| 0
| 0
| 0
| 0
| 1
| 0
| 1
| 0
| 1
| 0
|
0
| 6
|
e3914d855698b3d924403a03e74e44abdbacb0b7
| 24
|
py
|
Python
|
lefi/ws/__init__.py
|
Shom770/Lefi
|
7d9d45a8356605d82e2b7247715db4992d21c377
|
[
"MIT"
] | null | null | null |
lefi/ws/__init__.py
|
Shom770/Lefi
|
7d9d45a8356605d82e2b7247715db4992d21c377
|
[
"MIT"
] | null | null | null |
lefi/ws/__init__.py
|
Shom770/Lefi
|
7d9d45a8356605d82e2b7247715db4992d21c377
|
[
"MIT"
] | null | null | null |
from .wsclient import *
| 12
| 23
| 0.75
| 3
| 24
| 6
| 1
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0.166667
| 24
| 1
| 24
| 24
| 0.9
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 1
| 0
| true
| 0
| 1
| 0
| 1
| 0
| 1
| 1
| 0
| null | 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 1
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| null | 0
| 0
| 0
| 0
| 0
| 0
| 1
| 0
| 1
| 0
| 1
| 0
|
0
| 6
|
e3dca70c836598a47c545d259722eb2d727b88cc
| 7,567
|
py
|
Python
|
picbackend/tests/views/v2/patient_assist_scheduler_views_tests.py
|
bbcawodu/careadvisors-backend
|
5ebd3c0fc189b2486cea92b2a13c0bd8a0ee3838
|
[
"MIT"
] | null | null | null |
picbackend/tests/views/v2/patient_assist_scheduler_views_tests.py
|
bbcawodu/careadvisors-backend
|
5ebd3c0fc189b2486cea92b2a13c0bd8a0ee3838
|
[
"MIT"
] | null | null | null |
picbackend/tests/views/v2/patient_assist_scheduler_views_tests.py
|
bbcawodu/careadvisors-backend
|
5ebd3c0fc189b2486cea92b2a13c0bd8a0ee3838
|
[
"MIT"
] | null | null | null |
"""
Defines tests for version 1 of the patient assist consumer appointment scheduler API for the picbackend app
"""
from django.test import TestCase
from .base_v2_api_tests import BaseV2RqstTests
import json
class PatientAssistSchedulerAPITests(TestCase, BaseV2RqstTests):
def setUp(self):
self.base_url += "patient_assist_apt_mgr/"
def test_view_next_available_navigator_appointments(self):
post_data = {"Preferred Times": [],}
post_json = json.dumps(post_data)
response = self.client_object.post(self.base_url, post_json, content_type="application/json")
response_json = response.content.decode('utf-8')
response_data = json.loads(response_json)
# Test for valid decoded json data from response body
self.assertIsNotNone(response_data)
# Test decoded JSON data for correct API version
self.assertEqual(response_data["Status"]["Version"], 2.0)
status_data = response_data["Status"]
# Test decoded JSON data for "Status" key
self.assertIsNotNone(status_data)
# Test decoded JSON data for non empty "Next Available Appointments" data
next_available_appointment_data = response_data["Data"]["Next Available Appointments"]
self.assertNotEqual(len(next_available_appointment_data), 0)
preferred_appointments_data = response_data["Data"]["Preferred Appointments"]
# Test that length of "Preferred Appointments" in decoded JSON data is equal to length of request
# "Preferred Times" list
self.assertEqual(len(preferred_appointments_data), len(post_data["Preferred Times"]))
# Test decoded JSON data for empty "Preferred Appointments" data
self.assertEqual(len(preferred_appointments_data), 0)
self.assertNotIn("Errors", status_data)
self.assertEqual(status_data["Error Code"], 0)
self.assertIn("Data", response_data)
self.assertNotEqual(len(response_data["Data"]), 0)
# def test_view_preferred_navigator_appointments(self):
# post_data = {"Preferred Times": ["2018-01-04T20:00:00"],}
# post_json = json.dumps(post_data)
# response = self.client_object.post(self.base_url, post_json, content_type="application/json")
# response_json = response.content.decode('utf-8')
# response_data = json.loads(response_json)
#
# # Test for valid decoded json data from response body
# self.assertIsNotNone(response_data)
#
# # Test decoded JSON data for correct API version
# self.assertEqual(response_data["Status"]["Version"], 2.0)
#
# status_data = response_data["Status"]
#
# # Test decoded JSON data for "Status" key
# self.assertIsNotNone(status_data)
#
# # Test decoded JSON data for non empty "Next Available Appointments" data
# next_available_appointment_data = response_data["Data"]["Next Available Appointments"]
# self.assertEqual(len(next_available_appointment_data), 0)
#
# preferred_appointments_data = response_data["Data"]["Preferred Appointments"]
#
# # Test that length of "Preferred Appointments" in decoded JSON data is equal to length of request
# # "Preferred Times" list
# self.assertEqual(len(preferred_appointments_data), len(post_data["Preferred Times"]))
#
# # Test decoded JSON data for non empty preferred appointment
# self.assertNotEqual(len(preferred_appointments_data[0]), 0)
#
# self.assertNotIn("Errors", status_data)
# self.assertEqual(status_data["Error Code"], 0)
# self.assertIn("Data", response_data)
# self.assertNotEqual(len(response_data["Data"]), 0)
def test_add_consumer_apt_with_nav(self):
post_data = {"navigator_id": 1,
"Appointment Date and Time": '2019-03-08T16:00:00',
"Consumer Info": {
"first_name": "calkfndy",
"middle_name": "ljhvjhgjhgjhgoli",
"last_name": "pophgfthcdfgcgh",
"email": "[email protected]",
"phone": "2813308004",
"household_size": 11,
"plan": "String (Can be empty)",
"preferred_language": "English",
"address_line_1": "6540 N Glenwood",
"address_line_2": "",
"city": "",
"state_province": "",
"zipcode": ""
}
}
post_json = json.dumps(post_data)
response = self.client_object.put(self.base_url, post_json, content_type="application/json")
response_json = response.content.decode('utf-8')
response_data = json.loads(response_json)
# Test for valid decoded json data from response body
self.assertIsNotNone(response_data)
# Test decoded JSON data for correct API version
self.assertEqual(response_data["Status"]["Version"], 2.0)
status_data = response_data["Status"]
# Test decoded JSON data for "Status" key
self.assertIsNotNone(status_data)
self.assertNotIn("Errors", status_data)
self.assertEqual(status_data["Error Code"], 0)
self.assertIn("Data", response_data)
self.assertNotEqual(len(response_data["Data"]), 0)
def test_view_navigators_scheduled_appointments(self):
self.base_url += "?nav_id=1"
response = self.client_object.get(self.base_url)
response_json = response.content.decode('utf-8')
response_data = json.loads(response_json)
# Test for valid decoded json data from response body
self.assertIsNotNone(response_data)
# Test decoded JSON data for correct API version
self.assertEqual(response_data["Status"]["Version"], 2.0)
status_data = response_data["Status"]
# Test decoded JSON data for "Status" key
self.assertIsNotNone(status_data)
self.assertNotIn("Errors", status_data)
self.assertEqual(status_data["Error Code"], 0)
self.assertIn("Data", response_data)
self.assertNotEqual(len(response_data["Data"]), 0)
def test_delete_consumer_apt_with_nav(self):
post_data = {"Navigator ID": 1,
"Appointment Date and Time": '2019-03-08T16:00:00',
}
post_json = json.dumps(post_data)
response = self.client_object.delete(self.base_url, post_json, content_type="application/json")
response_json = response.content.decode('utf-8')
response_data = json.loads(response_json)
# Test for valid decoded json data from response body
self.assertIsNotNone(response_data)
# Test decoded JSON data for correct API version
self.assertEqual(response_data["Status"]["Version"], 2.0)
status_data = response_data["Status"]
# Test decoded JSON data for "Status" key
self.assertIsNotNone(status_data)
self.assertNotIn("Errors", status_data)
self.assertEqual(status_data["Error Code"], 0)
self.assertIn("Data", response_data)
self.assertNotEqual(len(response_data["Data"]), 0)
| 43.24
| 107
| 0.624158
| 836
| 7,567
| 5.454545
| 0.155502
| 0.089474
| 0.069079
| 0.058333
| 0.834868
| 0.828509
| 0.819079
| 0.796711
| 0.796711
| 0.796711
| 0
| 0.018079
| 0.276331
| 7,567
| 174
| 108
| 43.488506
| 0.814646
| 0.324435
| 0
| 0.529412
| 0
| 0
| 0.144442
| 0.009312
| 0
| 0
| 0
| 0
| 0.364706
| 1
| 0.058824
| false
| 0
| 0.035294
| 0
| 0.105882
| 0
| 0
| 0
| 0
| null | 0
| 0
| 0
| 1
| 1
| 1
| 1
| 1
| 1
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| null | 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
|
0
| 6
|
e3ec1d204bfbbc9358ffefb99b135fd36c283e17
| 28
|
py
|
Python
|
ot/externals/funcsigs.py
|
SpaceLearner/torch_ot
|
7663d0e2f66891f6019db870760e6f27bc76a437
|
[
"MIT"
] | 5
|
2020-12-02T12:19:44.000Z
|
2021-07-13T12:22:56.000Z
|
ot/externals/funcsigs.py
|
SpaceLearner/torch_ot
|
7663d0e2f66891f6019db870760e6f27bc76a437
|
[
"MIT"
] | 1
|
2021-04-25T15:53:24.000Z
|
2021-04-25T15:53:24.000Z
|
ot/externals/funcsigs.py
|
SpaceLearner/torch_ot
|
7663d0e2f66891f6019db870760e6f27bc76a437
|
[
"MIT"
] | 1
|
2021-06-03T17:07:39.000Z
|
2021-06-03T17:07:39.000Z
|
def signature():
pass
| 5.6
| 16
| 0.571429
| 3
| 28
| 5.333333
| 1
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0.321429
| 28
| 5
| 17
| 5.6
| 0.842105
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 1
| 0.5
| true
| 0.5
| 0
| 0
| 0.5
| 0
| 1
| 1
| 0
| null | 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 1
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| null | 0
| 0
| 0
| 0
| 0
| 1
| 1
| 1
| 0
| 0
| 0
| 0
|
0
| 6
|
581cdbc479610ad23dcf3a0ee0ade69338ba0253
| 30
|
py
|
Python
|
src/SpoutGL/enums.py
|
worosom/Python-SpoutGL
|
7ec5f2b992c3512104960136db74b7d956e0b5a7
|
[
"BSD-3-Clause"
] | 5
|
2021-12-30T15:03:52.000Z
|
2022-03-08T14:34:39.000Z
|
src/SpoutGL/enums.py
|
worosom/Python-SpoutGL
|
7ec5f2b992c3512104960136db74b7d956e0b5a7
|
[
"BSD-3-Clause"
] | 1
|
2021-12-08T01:41:17.000Z
|
2021-12-08T01:41:17.000Z
|
src/SpoutGL/enums.py
|
worosom/Python-SpoutGL
|
7ec5f2b992c3512104960136db74b7d956e0b5a7
|
[
"BSD-3-Clause"
] | 1
|
2021-11-24T23:12:49.000Z
|
2021-11-24T23:12:49.000Z
|
from ._spoutgl.enums import *
| 15
| 29
| 0.766667
| 4
| 30
| 5.5
| 1
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0.133333
| 30
| 1
| 30
| 30
| 0.846154
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 1
| 0
| true
| 0
| 1
| 0
| 1
| 0
| 1
| 1
| 0
| null | 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 1
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| null | 0
| 0
| 0
| 0
| 0
| 0
| 1
| 0
| 1
| 0
| 1
| 0
|
0
| 6
|
584d87b17e8c9da02266a10ac00245f5c3efc14c
| 2,502
|
py
|
Python
|
userbot/plugins/pro_nub.py
|
RiderFA/Dark_Userbot
|
480df539bfeae994d59649a54d2478ed24b445bb
|
[
"MIT"
] | null | null | null |
userbot/plugins/pro_nub.py
|
RiderFA/Dark_Userbot
|
480df539bfeae994d59649a54d2478ed24b445bb
|
[
"MIT"
] | null | null | null |
userbot/plugins/pro_nub.py
|
RiderFA/Dark_Userbot
|
480df539bfeae994d59649a54d2478ed24b445bb
|
[
"MIT"
] | null | null | null |
import asyncio
from mafiabot.utils import admin_cmd, sudo_cmd, edit_or_reply
@bot.on(admin_cmd(pattern="unoob$", outgoing=True))
@bot.on(sudo_cmd(pattern="unoob$", allow_sudo=True))
async def _(event):
if event.fwd_from:
return
animation_interval = 0.5
animation_ttl = range(0, 9)
await edit_or_reply(event, "You Noob")
animation_chars = [
"EvErYbOdY",
"iZ",
"BiGGeSt",
"NoOoB",
"uNtiL",
"YoU",
"aRriVe",
"😈",
"EvErYbOdY iZ BiGGeSt NoOoB uNtiL YoU aRriVe 😈",
]
for i in animation_ttl:
await event.edit(animation_chars[i % 9])
await asyncio.sleep(animation_interval)
@bot.on(admin_cmd(pattern="menoob$", outgoing=True))
@bot.on(sudo_cmd(pattern="menoob$", allow_sudo=True))
async def _(event):
if event.fwd_from:
return
animation_interval = 0.5
animation_ttl = range(0, 9)
await edit_or_reply(event, "Me Noob")
animation_chars = [
"EvErYbOdY",
"iZ",
"BiGGeSt",
"NoOoB",
"uNtiL",
"i",
"aRriVe",
"😈",
"EvErYbOdY iZ BiGGeSt NoOoB uNtiL i aRriVe 😈",
]
for i in animation_ttl:
await event.edit(animation_chars[i % 9])
await asyncio.sleep(animation_interval)
@bot.on(admin_cmd(pattern="uproo$", outgoing=True))
@bot.on(sudo_cmd(pattern="uproo$", allow_sudo=True))
async def _(event):
if event.fwd_from:
return
animation_interval = 0.5
animation_ttl = range(0, 8)
await edit_or_reply(event, "You Pro")
animation_chars = [
"EvErYbOdY",
"iZ",
"PeRu",
"uNtiL",
"YoU",
"aRriVe",
"😈",
"EvErYbOdY iZ PeRu uNtiL YoU aRriVe 😈",
]
for i in animation_ttl:
await event.edit(animation_chars[i % 8])
await asyncio.sleep(animation_interval)
@bot.on(admin_cmd(pattern="mepro$", outgoing=True))
@bot.on(sudo_cmd(pattern="mepro$", allow_sudo=True))
async def _(event):
if event.fwd_from:
return
animation_interval = 0.5
animation_ttl = range(0, 8)
await edit_or_reply(event, "Me Pro")
animation_chars = [
"EvErYbOdY",
"iZ",
"PeRu",
"uNtiL",
"i",
"aRriVe",
"😈",
"EvErYbOdY iZ PeRu uNtiL i aRriVe 😈",
]
for i in animation_ttl:
await event.edit(animation_chars[i % 8])
await asyncio.sleep(animation_interval)
| 19.246154
| 61
| 0.578737
| 313
| 2,502
| 4.472843
| 0.169329
| 0.028571
| 0.039286
| 0.037143
| 0.925714
| 0.911429
| 0.904286
| 0.728571
| 0.617143
| 0.617143
| 0
| 0.01128
| 0.291367
| 2,502
| 129
| 62
| 19.395349
| 0.77383
| 0
| 0
| 0.75
| 0
| 0
| 0.147141
| 0
| 0
| 0
| 0
| 0
| 0
| 1
| 0
| false
| 0
| 0.022727
| 0
| 0.068182
| 0
| 0
| 0
| 0
| null | 0
| 0
| 0
| 1
| 1
| 1
| 1
| 0
| 1
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 1
| 0
| 0
| 0
| 0
| null | 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
|
0
| 6
|
5873813e4c26db04e5d2f063dc53058c984fa54d
| 160
|
py
|
Python
|
relief/admin.py
|
shivkiyer/covid-sahyog
|
bf88c800abd61d4f203f7e6bb46315dee6d08dac
|
[
"MIT"
] | 1
|
2021-05-13T16:17:47.000Z
|
2021-05-13T16:17:47.000Z
|
relief/admin.py
|
shivkiyer/covid-sahyog
|
bf88c800abd61d4f203f7e6bb46315dee6d08dac
|
[
"MIT"
] | null | null | null |
relief/admin.py
|
shivkiyer/covid-sahyog
|
bf88c800abd61d4f203f7e6bb46315dee6d08dac
|
[
"MIT"
] | 2
|
2021-05-12T05:10:38.000Z
|
2021-05-12T05:12:20.000Z
|
from django.contrib import admin
from . import models
# Register your models here.
admin.site.register(models.State)
admin.site.register(models.RequestHelp)
| 17.777778
| 39
| 0.8
| 22
| 160
| 5.818182
| 0.545455
| 0.140625
| 0.265625
| 0.359375
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0.1125
| 160
| 8
| 40
| 20
| 0.901408
| 0.1625
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 1
| 0
| true
| 0
| 0.5
| 0
| 0.5
| 0
| 1
| 0
| 0
| null | 0
| 1
| 1
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 1
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| null | 0
| 0
| 0
| 0
| 0
| 0
| 1
| 0
| 1
| 0
| 0
| 0
|
0
| 6
|
547b73092b407d97f139e226a0409bb1028d7e55
| 274
|
py
|
Python
|
django_query_profiler/django/db/backends/postgresql/base.py
|
sonej/django-query-profiler
|
4afe3694ded26d7ba0b435f5666e990b668d85b5
|
[
"BSD-3-Clause"
] | 97
|
2020-03-03T01:20:35.000Z
|
2022-03-23T14:06:09.000Z
|
django_query_profiler/django/db/backends/postgresql/base.py
|
sonej/django-query-profiler
|
4afe3694ded26d7ba0b435f5666e990b668d85b5
|
[
"BSD-3-Clause"
] | 24
|
2020-03-06T17:35:08.000Z
|
2022-02-09T20:06:05.000Z
|
django_query_profiler/django/db/backends/postgresql/base.py
|
sonej/django-query-profiler
|
4afe3694ded26d7ba0b435f5666e990b668d85b5
|
[
"BSD-3-Clause"
] | 9
|
2020-03-22T18:17:09.000Z
|
2022-01-31T18:59:11.000Z
|
import django.db.backends.postgresql.base as postgresql_base
from django_query_profiler.django.db.backends.database_wrapper_mixin import QueryProfilerDatabaseWrapperMixin
class DatabaseWrapper(postgresql_base.DatabaseWrapper, QueryProfilerDatabaseWrapperMixin):
pass
| 34.25
| 109
| 0.883212
| 28
| 274
| 8.428571
| 0.607143
| 0.177966
| 0.135593
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0.069343
| 274
| 7
| 110
| 39.142857
| 0.92549
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 1
| 0
| true
| 0.25
| 0.5
| 0
| 0.75
| 0
| 1
| 0
| 0
| null | 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 1
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| null | 0
| 0
| 0
| 0
| 0
| 0
| 1
| 1
| 1
| 0
| 1
| 0
|
0
| 6
|
548541e74101893456f355f1dfc70167f7f88750
| 13,311
|
py
|
Python
|
nemo/collections/nlp/data/glue_benchmark/data_processors.py
|
eesungkim/NeMo
|
461a8668bd713af11c98b68a75866dccb2df175d
|
[
"Apache-2.0"
] | null | null | null |
nemo/collections/nlp/data/glue_benchmark/data_processors.py
|
eesungkim/NeMo
|
461a8668bd713af11c98b68a75866dccb2df175d
|
[
"Apache-2.0"
] | null | null | null |
nemo/collections/nlp/data/glue_benchmark/data_processors.py
|
eesungkim/NeMo
|
461a8668bd713af11c98b68a75866dccb2df175d
|
[
"Apache-2.0"
] | null | null | null |
# Copyright 2018 The Google AI Language Team Authors and
# The HuggingFace Inc. team.
# Copyright (c) 2020, NVIDIA CORPORATION. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import os
from nemo.collections.nlp.data.data_utils.data_preprocessing import DataProcessor
from nemo.utils import logging
__all__ = [
'ColaProcessor',
'MnliProcessor',
'MnliMismatchedProcessor',
'MrpcProcessor',
'Sst2Processor',
'StsbProcessor',
'QqpProcessor',
'QnliProcessor',
'RteProcessor',
'WnliProcessor',
]
class MrpcProcessor(DataProcessor):
"""Processor for the MRPC data set (GLUE version)."""
def get_train_examples(self, data_dir):
"""See base class."""
logging.info(f'LOOKING AT {os.path.join(data_dir, "train.tsv")}')
return self._create_examples(self._read_tsv(os.path.join(data_dir, "train.tsv")), "train")
def get_dev_examples(self, data_dir):
"""See base class."""
return self._create_examples(self._read_tsv(os.path.join(data_dir, "dev.tsv")), "dev")
def get_labels(self):
"""See base class."""
return ["0", "1"]
def _create_examples(self, lines, set_type):
"""Creates examples for the training and dev sets."""
examples = []
for (i, line) in enumerate(lines):
if i == 0:
continue
guid = "%s-%s" % (set_type, i)
text_a = line[3]
text_b = line[4]
label = line[0]
examples.append(InputExample(guid=guid, text_a=text_a, text_b=text_b, label=label))
return examples
def get_t5_prompted_query(self, text_a, text_b):
return f"mrpc sentence1: {text_a} sentence2: {text_b}"
def label2string(self, label):
return "equivalent" if label == "1" else "not equivalent"
class MnliProcessor(DataProcessor):
"""Processor for the MultiNLI data set (GLUE version)."""
def get_train_examples(self, data_dir):
"""See base class."""
return self._create_examples(self._read_tsv(os.path.join(data_dir, "train.tsv")), "train")
def get_dev_examples(self, data_dir):
"""See base class."""
return self._create_examples(self._read_tsv(os.path.join(data_dir, "dev_matched.tsv")), "dev_matched")
def get_labels(self):
"""See base class."""
return ["contradiction", "entailment", "neutral"]
def _create_examples(self, lines, set_type):
"""Creates examples for the training and dev sets."""
examples = []
for (i, line) in enumerate(lines):
if i == 0:
continue
guid = "%s-%s" % (set_type, line[0])
text_a = line[8]
text_b = line[9]
label = line[-1]
examples.append(InputExample(guid=guid, text_a=text_a, text_b=text_b, label=label))
return examples
def get_t5_prompted_query(self, text_a, text_b):
return f"mnli hypothesis: {text_a} premise: {text_b}"
def label2string(self, label):
return label
class MnliMismatchedProcessor(MnliProcessor):
"""Processor for the MultiNLI Mismatched data set (GLUE version)."""
def get_dev_examples(self, data_dir):
"""See base class."""
return self._create_examples(self._read_tsv(os.path.join(data_dir, "dev_mismatched.tsv")), "dev_matched")
class ColaProcessor(DataProcessor):
"""Processor for the CoLA data set (GLUE version)."""
def get_train_examples(self, data_dir):
"""See base class."""
return self._create_examples(self._read_tsv(os.path.join(data_dir, "train.tsv")), "train")
def get_dev_examples(self, data_dir):
"""See base class."""
return self._create_examples(self._read_tsv(os.path.join(data_dir, "dev.tsv")), "dev")
def get_labels(self):
"""See base class."""
return ["0", "1"]
def _create_examples(self, lines, set_type):
"""Creates examples for the training and dev sets."""
examples = []
for (i, line) in enumerate(lines):
guid = "%s-%s" % (set_type, i)
text_a = line[3]
label = line[1]
examples.append(InputExample(guid=guid, text_a=text_a, text_b=None, label=label))
return examples
def get_t5_prompted_query(self, text_a, text_b):
assert text_b is None
return f"cola sentence: {text_a}"
def label2string(self, label):
return "acceptable" if label == "1" else "not acceptable"
class Sst2Processor(DataProcessor):
"""Processor for the SST-2 data set (GLUE version)."""
def get_train_examples(self, data_dir):
"""See base class."""
return self._create_examples(self._read_tsv(os.path.join(data_dir, "train.tsv")), "train")
def get_dev_examples(self, data_dir):
"""See base class."""
return self._create_examples(self._read_tsv(os.path.join(data_dir, "dev.tsv")), "dev")
def get_labels(self):
"""See base class."""
return ["0", "1"]
def _create_examples(self, lines, set_type):
"""Creates examples for the training and dev sets."""
examples = []
for (i, line) in enumerate(lines):
if i == 0:
continue
guid = "%s-%s" % (set_type, i)
text_a = line[0]
label = line[1]
examples.append(InputExample(guid=guid, text_a=text_a, text_b=None, label=label))
return examples
def get_t5_prompted_query(self, text_a, text_b):
assert text_b is None
return f"sst2 sentence: {text_a}"
def label2string(self, label):
return "positive" if label == "1" else "negative"
class StsbProcessor(DataProcessor):
"""Processor for the STS-B data set (GLUE version)."""
def get_train_examples(self, data_dir):
"""See base class."""
return self._create_examples(self._read_tsv(os.path.join(data_dir, "train.tsv")), "train")
def get_dev_examples(self, data_dir):
"""See base class."""
return self._create_examples(self._read_tsv(os.path.join(data_dir, "dev.tsv")), "dev")
def get_labels(self):
"""See base class."""
return [None]
def _create_examples(self, lines, set_type):
"""Creates examples for the training and dev sets."""
examples = []
for (i, line) in enumerate(lines):
if i == 0:
continue
guid = "%s-%s" % (set_type, line[0])
text_a = line[7]
text_b = line[8]
label = line[-1]
examples.append(InputExample(guid=guid, text_a=text_a, text_b=text_b, label=label))
return examples
def get_t5_prompted_query(self, text_a, text_b):
return f"stsb sentence1: {text_a} sentence2: {text_b}"
def label2string(self, label):
return '%.1f' % float(label)
class QqpProcessor(DataProcessor):
"""Processor for the QQP data set (GLUE version)."""
def get_train_examples(self, data_dir):
"""See base class."""
return self._create_examples(self._read_tsv(os.path.join(data_dir, "train.tsv")), "train")
def get_dev_examples(self, data_dir):
"""See base class."""
return self._create_examples(self._read_tsv(os.path.join(data_dir, "dev.tsv")), "dev")
def get_labels(self):
"""See base class."""
return ["0", "1"]
def _create_examples(self, lines, set_type):
"""Creates examples for the training and dev sets."""
examples = []
for (i, line) in enumerate(lines):
if i == 0:
continue
guid = "%s-%s" % (set_type, line[0])
try:
text_a = line[3]
text_b = line[4]
label = line[5]
except IndexError:
continue
examples.append(InputExample(guid=guid, text_a=text_a, text_b=text_b, label=label))
return examples
def get_t5_prompted_query(self, text_a, text_b):
return f"qqp question1: {text_a} question2: {text_b}"
def label2string(self, label):
return "duplicate" if label == "1" else "not_duplicate"
class QnliProcessor(DataProcessor):
"""Processor for the QNLI data set (GLUE version)."""
def get_train_examples(self, data_dir):
"""See base class."""
return self._create_examples(self._read_tsv(os.path.join(data_dir, "train.tsv")), "train")
def get_dev_examples(self, data_dir):
"""See base class."""
return self._create_examples(self._read_tsv(os.path.join(data_dir, "dev.tsv")), "dev")
def get_labels(self):
"""See base class."""
return ["entailment", "not_entailment"]
def _create_examples(self, lines, set_type):
"""Creates examples for the training and dev sets."""
examples = []
for (i, line) in enumerate(lines):
if i == 0:
continue
guid = "%s-%s" % (set_type, line[0])
text_a = line[1]
text_b = line[2]
label = line[-1]
examples.append(InputExample(guid=guid, text_a=text_a, text_b=text_b, label=label))
return examples
def get_t5_prompted_query(self, text_a, text_b):
return f"qnli question: {text_a} sentence: {text_b}"
def label2string(self, label):
return label
class RteProcessor(DataProcessor):
"""Processor for the RTE data set (GLUE version)."""
def get_train_examples(self, data_dir):
"""See base class."""
return self._create_examples(self._read_tsv(os.path.join(data_dir, "train.tsv")), "train")
def get_dev_examples(self, data_dir):
"""See base class."""
return self._create_examples(self._read_tsv(os.path.join(data_dir, "dev.tsv")), "dev")
def get_labels(self):
"""See base class."""
return ["entailment", "not_entailment"]
def _create_examples(self, lines, set_type):
"""Creates examples for the training and dev sets."""
examples = []
for (i, line) in enumerate(lines):
if i == 0:
continue
guid = "%s-%s" % (set_type, line[0])
text_a = line[1]
text_b = line[2]
label = line[-1]
examples.append(InputExample(guid=guid, text_a=text_a, text_b=text_b, label=label))
return examples
def get_t5_prompted_query(self, text_a, text_b):
return f"rte sentence1: {text_a} sentence2: {text_b}"
def label2string(self, label):
return label
class WnliProcessor(DataProcessor):
"""Processor for the WNLI data set (GLUE version)."""
def get_train_examples(self, data_dir):
"""See base class."""
return self._create_examples(self._read_tsv(os.path.join(data_dir, "train.tsv")), "train")
def get_dev_examples(self, data_dir):
"""See base class."""
return self._create_examples(self._read_tsv(os.path.join(data_dir, "dev.tsv")), "dev")
def get_labels(self):
"""See base class."""
return ["0", "1"]
def _create_examples(self, lines, set_type):
"""Creates examples for the training and dev sets."""
examples = []
for (i, line) in enumerate(lines):
if i == 0:
continue
guid = "%s-%s" % (set_type, line[0])
text_a = line[1]
text_b = line[2]
label = line[-1]
examples.append(InputExample(guid=guid, text_a=text_a, text_b=text_b, label=label))
return examples
def get_t5_prompted_query(self, text_a, text_b):
raise NotImplementedError("NeMo-Megatron T5 does not support WNLI at the moment.")
def label2string(self, label):
raise NotImplementedError("NeMo-Megatron T5 does not support WNLI at the moment.")
class InputExample(object):
"""A single training/test example for simple sequence classification.
Args:
guid: Unique id for the example.
text_a: The untokenized text of the first sequence.
For single sequence tasks, only this sequence must be specified.
text_b: The untokenized text of the second
sequence. Only must be specified for sequence pair tasks.
label:The label of the example. This should be
specified for train and dev examples, but not for test examples.
"""
def __init__(self, guid: int, text_a: str, text_b: str = None, label: str = None):
"""Constructs a InputExample."""
self.guid = guid
self.text_a = text_a
self.text_b = text_b
self.label = label
def __repr__(self):
return (
f"InputExample(guid='{self.guid}', text_a='{self.text_a}', text_b='{self.text_b}', label='{self.label}')"
)
| 34.574026
| 117
| 0.615581
| 1,766
| 13,311
| 4.446206
| 0.121178
| 0.031839
| 0.03324
| 0.061895
| 0.722618
| 0.709246
| 0.706954
| 0.699312
| 0.68403
| 0.671294
| 0
| 0.009916
| 0.257531
| 13,311
| 384
| 118
| 34.664063
| 0.78458
| 0.190594
| 0
| 0.72807
| 0
| 0.004386
| 0.113296
| 0.01384
| 0
| 0
| 0
| 0
| 0.008772
| 1
| 0.25
| false
| 0
| 0.013158
| 0.065789
| 0.548246
| 0
| 0
| 0
| 0
| null | 0
| 0
| 0
| 0
| 1
| 1
| 0
| 0
| 1
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 1
| 0
| 0
| 0
| 0
| null | 0
| 0
| 0
| 0
| 0
| 1
| 0
| 0
| 0
| 0
| 1
| 0
|
0
| 6
|
54ba5fbcf6c70c01a1e3b29e3bce63a001137f53
| 7,249
|
py
|
Python
|
tests/test_destination_weather_api.py
|
baffolobill/HerePy
|
c6655e9dfde7a5888cc231d7f9f9e8a888f54dcd
|
[
"MIT"
] | null | null | null |
tests/test_destination_weather_api.py
|
baffolobill/HerePy
|
c6655e9dfde7a5888cc231d7f9f9e8a888f54dcd
|
[
"MIT"
] | null | null | null |
tests/test_destination_weather_api.py
|
baffolobill/HerePy
|
c6655e9dfde7a5888cc231d7f9f9e8a888f54dcd
|
[
"MIT"
] | null | null | null |
#!/usr/bin/env python
import os
import time
import unittest
import json
import responses
import herepy
from herepy.here_enum import WeatherProductType
class DestinationWeatherApiTest(unittest.TestCase):
def setUp(self):
api = herepy.DestinationWeatherApi('app_id', 'app_code')
self._api = api
def test_initiation(self):
self.assertIsInstance(self._api, herepy.DestinationWeatherApi)
self.assertEqual(self._api._app_id, 'app_id')
self.assertEqual(self._api._app_code, 'app_code')
self.assertEqual(self._api._base_url, 'https://weather.api.here.com/weather/1.0/report.json')
@responses.activate
def test_invalid_request_is_thrown(self):
with open('testdata/models/destination_weather_error_invalid_request.json', 'r') as f:
expectedResponse = f.read()
responses.add(responses.GET, 'https://weather.api.here.com/weather/1.0/report.json',
expectedResponse, status=200)
product = herepy.WeatherProductType.forecast_7days
name = "Berlin"
with self.assertRaises(herepy.InvalidRequestError):
self._api.weather_for_location_name(name, product)
@responses.activate
def test_unauthorized_is_thrown(self):
with open('testdata/models/destination_weather_error_unauthorized.json', 'r') as f:
expectedResponse = f.read()
responses.add(responses.GET, 'https://weather.api.here.com/weather/1.0/report.json',
expectedResponse, status=200)
product = herepy.WeatherProductType.forecast_7days
name = "Berlin"
with self.assertRaises(herepy.UnauthorizedError):
self._api.weather_for_location_name(name, product)
@responses.activate
def test_weather_for_location_name(self):
with open('testdata/models/destination_weather_forecasts.json', 'r') as f:
expectedResponse = f.read()
responses.add(responses.GET, 'https://weather.api.here.com/weather/1.0/report.json',
expectedResponse, status=200)
product = herepy.WeatherProductType.forecast_7days
name = "Berlin"
response = self._api.weather_for_location_name(name, product)
self.assertTrue(response)
self.assertIsInstance(response, herepy.DestinationWeatherResponse)
@responses.activate
def test_weather_for_coordinates(self):
with open('testdata/models/destination_weather_forecasts.json', 'r') as f:
expectedResponse = f.read()
responses.add(responses.GET, 'https://weather.api.here.com/weather/1.0/report.json',
expectedResponse, status=200)
product = herepy.WeatherProductType.forecast_7days
latitude = 52.51784
longitude = 13.38736
response = self._api.weather_for_coordinates(latitude, longitude, product)
self.assertTrue(response)
self.assertIsInstance(response, herepy.DestinationWeatherResponse)
@responses.activate
def test_weather_for_zip_code(self):
with open('testdata/models/destination_weather_forecasts.json', 'r') as f:
expectedResponse = f.read()
responses.add(responses.GET, 'https://weather.api.here.com/weather/1.0/report.json',
expectedResponse, status=200)
product = herepy.WeatherProductType.forecast_7days
zip_code = "10025"
response = self._api.weather_for_zip_code(zip_code, product)
self.assertTrue(response)
self.assertIsInstance(response, herepy.DestinationWeatherResponse)
@responses.activate
def test_weather_product_type_alerts(self):
with open('testdata/models/destination_weather_alerts.json', 'r') as f:
expectedResponse = f.read()
responses.add(responses.GET, 'https://weather.api.here.com/weather/1.0/report.json',
expectedResponse, status=200)
product = herepy.WeatherProductType.alerts
zip_code = "10025"
response = self._api.weather_for_zip_code(zip_code, product)
self.assertTrue(response)
self.assertIsInstance(response, herepy.DestinationWeatherResponse)
@responses.activate
def test_weather_product_type_forecast_7days(self):
with open('testdata/models/destination_weather_forecasts.json', 'r') as f:
expectedResponse = f.read()
responses.add(responses.GET, 'https://weather.api.here.com/weather/1.0/report.json',
expectedResponse, status=200)
product = herepy.WeatherProductType.forecast_7days
zip_code = "10025"
response = self._api.weather_for_zip_code(zip_code, product)
self.assertTrue(response)
self.assertIsInstance(response, herepy.DestinationWeatherResponse)
@responses.activate
def test_weather_product_type_forecast_7days_simple(self):
with open('testdata/models/destination_weather_forecasts_simple.json', 'r') as f:
expectedResponse = f.read()
responses.add(responses.GET, 'https://weather.api.here.com/weather/1.0/report.json',
expectedResponse, status=200)
product = herepy.WeatherProductType.forecast_7days_simple
zip_code = "10025"
response = self._api.weather_for_zip_code(zip_code, product)
self.assertTrue(response)
self.assertIsInstance(response, herepy.DestinationWeatherResponse)
@responses.activate
def test_weather_product_type_forecast_astronomy(self):
with open('testdata/models/destination_weather_forecasts_astronomy.json', 'r') as f:
expectedResponse = f.read()
responses.add(responses.GET, 'https://weather.api.here.com/weather/1.0/report.json',
expectedResponse, status=200)
product = herepy.WeatherProductType.forecast_astronomy
zip_code = "10025"
response = self._api.weather_for_zip_code(zip_code, product)
self.assertTrue(response)
self.assertIsInstance(response, herepy.DestinationWeatherResponse)
@responses.activate
def test_weather_product_type_forecast_hourly(self):
with open('testdata/models/destination_weather_forecasts_hourly.json', 'r') as f:
expectedResponse = f.read()
responses.add(responses.GET, 'https://weather.api.here.com/weather/1.0/report.json',
expectedResponse, status=200)
product = herepy.WeatherProductType.forecast_hourly
zip_code = "10025"
response = self._api.weather_for_zip_code(zip_code, product)
self.assertTrue(response)
self.assertIsInstance(response, herepy.DestinationWeatherResponse)
@responses.activate
def test_weather_product_type_nws_alerts(self):
with open('testdata/models/destination_weather_forecasts_nsw_alerts.json', 'r') as f:
expectedResponse = f.read()
responses.add(responses.GET, 'https://weather.api.here.com/weather/1.0/report.json',
expectedResponse, status=200)
product = herepy.WeatherProductType.nws_alerts
zip_code = "10025"
response = self._api.weather_for_zip_code(zip_code, product)
self.assertTrue(response)
self.assertIsInstance(response, herepy.DestinationWeatherResponse)
| 47.379085
| 101
| 0.698855
| 807
| 7,249
| 6.075589
| 0.110285
| 0.031409
| 0.036712
| 0.046502
| 0.871303
| 0.854375
| 0.852335
| 0.852335
| 0.790944
| 0.790944
| 0
| 0.019831
| 0.200028
| 7,249
| 152
| 102
| 47.690789
| 0.82566
| 0.002759
| 0
| 0.669118
| 0
| 0
| 0.182485
| 0.083426
| 0
| 0
| 0
| 0
| 0.176471
| 1
| 0.095588
| false
| 0
| 0.051471
| 0
| 0.154412
| 0
| 0
| 0
| 0
| null | 0
| 0
| 0
| 1
| 1
| 1
| 1
| 1
| 1
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| null | 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
|
0
| 6
|
b725bd81ce5b2689bff2fdc3737040d564303e20
| 392
|
py
|
Python
|
mango/dataset.py
|
gabrielelanaro/mango-ml
|
59b6063c72aef084f632aed7d0a0d19b6b86deb9
|
[
"MIT"
] | null | null | null |
mango/dataset.py
|
gabrielelanaro/mango-ml
|
59b6063c72aef084f632aed7d0a0d19b6b86deb9
|
[
"MIT"
] | 2
|
2018-04-20T23:54:43.000Z
|
2018-04-30T13:40:49.000Z
|
mango/dataset.py
|
gabrielelanaro/mango
|
59b6063c72aef084f632aed7d0a0d19b6b86deb9
|
[
"MIT"
] | null | null | null |
from .base import Parameterized
class Dataset(Parameterized):
pass
class SplitDataset(Dataset):
def build(self):
raise NotImplementedError()
def train(self):
raise NotImplementedError()
def test(self):
raise NotImplementedError()
def transform_train(self, data):
return data
def transform_test(self, data):
return data
| 16.333333
| 36
| 0.658163
| 40
| 392
| 6.4
| 0.45
| 0.105469
| 0.328125
| 0.363281
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0.265306
| 392
| 23
| 37
| 17.043478
| 0.888889
| 0
| 0
| 0.357143
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 1
| 0.357143
| false
| 0.071429
| 0.071429
| 0.142857
| 0.714286
| 0
| 0
| 0
| 0
| null | 0
| 1
| 1
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| null | 0
| 0
| 0
| 0
| 0
| 1
| 0
| 1
| 0
| 1
| 1
| 0
|
0
| 6
|
3f9462f3fdabe76952310e8cfd579e89d18c8175
| 69
|
py
|
Python
|
pyp3d/v18446497929133817856/__init__.py
|
pengdi-cabr/pyp3d
|
3b5981257838a60837b38106dc39d66bbad38767
|
[
"MIT"
] | 22
|
2021-11-16T05:54:05.000Z
|
2021-12-03T12:16:46.000Z
|
pyp3d/v18446497929133817856/__init__.py
|
pengdi-cabr/pyp3d
|
3b5981257838a60837b38106dc39d66bbad38767
|
[
"MIT"
] | null | null | null |
pyp3d/v18446497929133817856/__init__.py
|
pengdi-cabr/pyp3d
|
3b5981257838a60837b38106dc39d66bbad38767
|
[
"MIT"
] | 4
|
2021-12-01T07:38:07.000Z
|
2022-01-18T13:01:54.000Z
|
from .p3d_type import *
from .dll import *
from .component import *
| 23
| 24
| 0.724638
| 10
| 69
| 4.9
| 0.6
| 0.408163
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0.017857
| 0.188406
| 69
| 3
| 25
| 23
| 0.857143
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 1
| 0
| true
| 0
| 1
| 0
| 1
| 0
| 1
| 0
| 0
| null | 1
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 1
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| null | 0
| 0
| 0
| 0
| 0
| 0
| 1
| 0
| 1
| 0
| 1
| 0
|
0
| 6
|
3f97202e28b20e2c3d5549504429400b9b7cc98a
| 124
|
py
|
Python
|
genelang/bricks/OP1L.py
|
GabrielAmare/Genelang
|
af5294e900d2f79ff54375f9759c156a4b5a098a
|
[
"MIT"
] | null | null | null |
genelang/bricks/OP1L.py
|
GabrielAmare/Genelang
|
af5294e900d2f79ff54375f9759c156a4b5a098a
|
[
"MIT"
] | null | null | null |
genelang/bricks/OP1L.py
|
GabrielAmare/Genelang
|
af5294e900d2f79ff54375f9759c156a4b5a098a
|
[
"MIT"
] | null | null | null |
from .OP1 import OP1
class OP1L(OP1):
def __str__(self):
return f"{str(self.symbols[0])}{str(self.items[0])}"
| 17.714286
| 60
| 0.620968
| 20
| 124
| 3.65
| 0.65
| 0.287671
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0.06
| 0.193548
| 124
| 6
| 61
| 20.666667
| 0.67
| 0
| 0
| 0
| 0
| 0
| 0.33871
| 0.33871
| 0
| 0
| 0
| 0
| 0
| 1
| 0.25
| false
| 0
| 0.25
| 0.25
| 1
| 0
| 1
| 0
| 0
| null | 1
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 1
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| null | 0
| 0
| 0
| 0
| 0
| 1
| 0
| 0
| 0
| 1
| 1
| 0
|
0
| 6
|
3fa1adbd8cd0d6fb05904c87f6eb8483be04ef57
| 10,545
|
py
|
Python
|
dao/test_moonstream.py
|
bugout-dev/dao
|
d6e089d32ecd54a5bfd3b31f98e582528b201f15
|
[
"Apache-2.0"
] | 9
|
2021-12-18T16:48:36.000Z
|
2022-02-15T17:54:07.000Z
|
dao/test_moonstream.py
|
bugout-dev/dao
|
d6e089d32ecd54a5bfd3b31f98e582528b201f15
|
[
"Apache-2.0"
] | 20
|
2021-12-16T13:47:42.000Z
|
2022-03-17T17:39:49.000Z
|
dao/test_moonstream.py
|
bugout-dev/dao
|
d6e089d32ecd54a5bfd3b31f98e582528b201f15
|
[
"Apache-2.0"
] | null | null | null |
import unittest
from brownie import accounts
import brownie
from . import ERC20Facet, ERC20Initializer
from .core import ZERO_ADDRESS, facet_cut
from .test_core import MoonstreamDAOSingleContractTestCase, MoonstreamTokenTestCase
class TestDeployment(MoonstreamDAOSingleContractTestCase):
def test_add_and_replace(self):
initializer = ERC20Initializer.ERC20Initializer(None)
initializer.deploy({"from": accounts[0]})
erc20_facet = ERC20Facet.ERC20Facet(None)
erc20_facet.deploy({"from": accounts[0]})
diamond_address = self.contracts["Diamond"]
facet_cut(
diamond_address,
"ERC20Facet",
erc20_facet.address,
"add",
{"from": accounts[0]},
initializer.address,
initializer_params=["Moonstream DAO", "MNSTR"],
)
diamond_erc20 = ERC20Facet.ERC20Facet(diamond_address)
name = diamond_erc20.name()
expected_name = "Moonstream DAO"
self.assertEqual(name, expected_name)
symbol = diamond_erc20.symbol()
expected_symbol = "MNSTR"
self.assertEqual(symbol, expected_symbol)
decimals = diamond_erc20.decimals()
expected_decimals = 18
self.assertEqual(decimals, expected_decimals)
new_erc20_facet = ERC20Facet.ERC20Facet(None)
new_erc20_facet.deploy({"from": accounts[0]})
facet_cut(
diamond_address,
"ERC20Facet",
new_erc20_facet.address,
"replace",
{"from": accounts[0]},
initializer.address,
initializer_params=["ROFL", "LOL"],
)
name = diamond_erc20.name()
expected_name = "ROFL"
self.assertEqual(name, expected_name)
symbol = diamond_erc20.symbol()
expected_symbol = "LOL"
self.assertEqual(symbol, expected_symbol)
class TestRemoveFacet(MoonstreamDAOSingleContractTestCase):
def test_remove_facet(self):
initializer = ERC20Initializer.ERC20Initializer(None)
initializer.deploy({"from": accounts[0]})
erc20_facet = ERC20Facet.ERC20Facet(None)
erc20_facet.deploy({"from": accounts[0]})
diamond_address = self.contracts["Diamond"]
facet_cut(
diamond_address,
"ERC20Facet",
erc20_facet.address,
"add",
{"from": accounts[0]},
initializer.address,
initializer_params=["Moonstream DAO", "MNSTR"],
)
diamond_erc20 = ERC20Facet.ERC20Facet(diamond_address)
name = diamond_erc20.name()
expected_name = "Moonstream DAO"
self.assertEqual(name, expected_name)
symbol = diamond_erc20.symbol()
expected_symbol = "MNSTR"
self.assertEqual(symbol, expected_symbol)
decimals = diamond_erc20.decimals()
expected_decimals = 18
self.assertEqual(decimals, expected_decimals)
facet_cut(
diamond_address,
"ERC20Facet",
ZERO_ADDRESS,
"remove",
{"from": accounts[0]},
)
with self.assertRaises(Exception):
name = diamond_erc20.name()
with self.assertRaises(Exception):
symbol = diamond_erc20.symbol()
class TestERC20(MoonstreamTokenTestCase):
def test_mint_fails_if_not_controller(self):
diamond_address = self.contracts["Diamond"]
diamond = ERC20Facet.ERC20Facet(diamond_address)
with self.assertRaises(Exception):
diamond.mint(accounts[1].address, 1000, {"from": accounts[1]})
def test_mint_to_another_address(self):
diamond_address = self.contracts["Diamond"]
diamond = ERC20Facet.ERC20Facet(diamond_address)
initial_balance = diamond.balance_of(accounts[1].address)
diamond.mint(accounts[1].address, 1000, {"from": accounts[0]})
final_balance = diamond.balance_of(accounts[1].address)
self.assertEqual(final_balance, initial_balance + 1000)
def test_transfer(self):
diamond_address = self.contracts["Diamond"]
diamond = ERC20Facet.ERC20Facet(diamond_address)
diamond.mint(accounts[1].address, 1000, {"from": accounts[0]})
initial_sender_balance = diamond.balance_of(accounts[1].address)
initial_receiver_balance = diamond.balance_of(accounts[2].address)
diamond.transfer(accounts[2].address, 500, {"from": accounts[1]})
final_sender_balance = diamond.balance_of(accounts[1].address)
final_receiver_balance = diamond.balance_of(accounts[2].address)
self.assertEqual(final_sender_balance, initial_sender_balance - 500)
self.assertEqual(final_receiver_balance, initial_receiver_balance + 500)
def test_transfer_insufficient_balance(self):
diamond_address = self.contracts["Diamond"]
diamond = ERC20Facet.ERC20Facet(diamond_address)
initial_sender_balance = diamond.balance_of(accounts[1].address)
initial_receiver_balance = diamond.balance_of(accounts[2].address)
with self.assertRaises(Exception):
diamond.transfer(
accounts[2].address, initial_sender_balance + 1, {"from": accounts[1]}
)
final_sender_balance = diamond.balance_of(accounts[1].address)
final_receiver_balance = diamond.balance_of(accounts[2].address)
self.assertEqual(final_sender_balance, initial_sender_balance)
self.assertEqual(final_receiver_balance, initial_receiver_balance)
def test_transfer_from_with_approval(self):
diamond_address = self.contracts["Diamond"]
diamond = ERC20Facet.ERC20Facet(diamond_address)
diamond.mint(accounts[1].address, 1000, {"from": accounts[0]})
initial_sender_balance = diamond.balance_of(accounts[1].address)
initial_receiver_balance = diamond.balance_of(accounts[2].address)
diamond.approve(accounts[2].address, 500, {"from": accounts[1]})
diamond.transfer_from(
accounts[1].address, accounts[2].address, 500, {"from": accounts[2]}
)
final_sender_balance = diamond.balance_of(accounts[1].address)
final_receiver_balance = diamond.balance_of(accounts[2].address)
self.assertEqual(final_sender_balance, initial_sender_balance - 500)
self.assertEqual(final_receiver_balance, initial_receiver_balance + 500)
def test_transfer_with_approval_insufficient_balance(self):
diamond_address = self.contracts["Diamond"]
diamond = ERC20Facet.ERC20Facet(diamond_address)
initial_sender_balance = diamond.balance_of(accounts[1].address)
initial_receiver_balance = diamond.balance_of(accounts[2].address)
diamond.approve(
accounts[2].address, initial_sender_balance + 1, {"from": accounts[1]}
)
with self.assertRaises(Exception):
diamond.transfer_from(
accounts[1].address,
accounts[2].address,
initial_sender_balance + 1,
{"from": accounts[2]},
)
final_sender_balance = diamond.balance_of(accounts[1].address)
final_receiver_balance = diamond.balance_of(accounts[2].address)
self.assertEqual(final_sender_balance, initial_sender_balance)
self.assertEqual(final_receiver_balance, initial_receiver_balance)
def test_transfer_from_with_approval_insufficient_allowance_sufficient_balance(
self,
):
diamond_address = self.contracts["Diamond"]
diamond = ERC20Facet.ERC20Facet(diamond_address)
diamond.mint(accounts[1].address, 1000, {"from": accounts[0]})
diamond.approve(accounts[2].address, 500, {"from": accounts[1]})
initial_sender_balance = diamond.balance_of(accounts[1].address)
initial_receiver_balance = diamond.balance_of(accounts[2].address)
with self.assertRaises(Exception):
diamond.transfer_from(
accounts[1].address,
accounts[2].address,
501,
{"from": accounts[2]},
)
final_sender_balance = diamond.balance_of(accounts[1].address)
final_receiver_balance = diamond.balance_of(accounts[2].address)
self.assertEqual(final_sender_balance, initial_sender_balance)
self.assertEqual(final_receiver_balance, initial_receiver_balance)
def test_not_burnable(self):
diamond_address = self.contracts["Diamond"]
diamond = ERC20Facet.ERC20Facet(diamond_address)
diamond.mint(accounts[1].address, 1000, {"from": accounts[0]})
with self.assertRaises(Exception):
diamond.transfer(brownie.ZERO_ADDRESS, 500, {"from": accounts[1]})
def test_approve_and_allowance(self):
diamond_address = self.contracts["Diamond"]
diamond = ERC20Facet.ERC20Facet(diamond_address)
diamond.approve(accounts[2].address, 500, {"from": accounts[1]})
allowance = diamond.allowance(accounts[1].address, accounts[2].address)
self.assertEqual(allowance, 500)
def test_increase_allowance(self):
diamond_address = self.contracts["Diamond"]
diamond = ERC20Facet.ERC20Facet(diamond_address)
initial_allowance = diamond.allowance(accounts[1].address, accounts[2].address)
diamond.increase_allowance(accounts[2].address, 500, {"from": accounts[1]})
final_allowance = diamond.allowance(accounts[1].address, accounts[2].address)
self.assertEqual(final_allowance, initial_allowance + 500)
def test_decrease_allowance(self):
diamond_address = self.contracts["Diamond"]
diamond = ERC20Facet.ERC20Facet(diamond_address)
initial_allowance = diamond.allowance(accounts[1].address, accounts[2].address)
diamond.decrease_allowance(accounts[2].address, 500, {"from": accounts[1]})
final_allowance = diamond.allowance(accounts[1].address, accounts[2].address)
self.assertEqual(final_allowance, initial_allowance - 500)
def test_mint_total_supply(self):
diamond_address = self.contracts["Diamond"]
diamond = ERC20Facet.ERC20Facet(diamond_address)
initial_total_supply = diamond.total_supply()
diamond.mint(accounts[1].address, 1000, {"from": accounts[0]})
final_total_supply = diamond.total_supply()
self.assertEqual(final_total_supply, initial_total_supply + 1000)
if __name__ == "__main__":
unittest.main()
| 37.393617
| 87
| 0.671693
| 1,094
| 10,545
| 6.223949
| 0.071298
| 0.048906
| 0.063445
| 0.074313
| 0.875459
| 0.840652
| 0.824791
| 0.796886
| 0.787781
| 0.770451
| 0
| 0.0372
| 0.225036
| 10,545
| 281
| 88
| 37.52669
| 0.796011
| 0
| 0
| 0.691943
| 0
| 0
| 0.034803
| 0
| 0
| 0
| 0
| 0
| 0.14218
| 1
| 0.066351
| false
| 0
| 0.028436
| 0
| 0.109005
| 0
| 0
| 0
| 0
| null | 0
| 0
| 0
| 1
| 1
| 1
| 1
| 1
| 1
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| null | 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
|
0
| 6
|
3fa299b6ba4753a9546e85b5fbe0cce1ed5357d0
| 215
|
py
|
Python
|
pmtour/models/__init__.py
|
sunoru/pokemon_tournament
|
920bc980c7021a433c46e30c248de1d9ba90871a
|
[
"MIT"
] | 3
|
2016-12-05T03:33:44.000Z
|
2019-11-06T18:05:28.000Z
|
pmtour/models/__init__.py
|
sunoru/pokemon_tournament
|
920bc980c7021a433c46e30c248de1d9ba90871a
|
[
"MIT"
] | 2
|
2016-01-02T15:09:07.000Z
|
2021-07-15T23:02:48.000Z
|
pmtour/models/__init__.py
|
sunoru/pokemon_tournament
|
920bc980c7021a433c46e30c248de1d9ba90871a
|
[
"MIT"
] | null | null | null |
# coding=utf-8
from pmtour.models.bases import BaseModel
from pmtour.models.tournament import Tournament
from pmtour.models.player import Player
from pmtour.models.turn import Turn
from pmtour.models.log import Log
| 30.714286
| 47
| 0.837209
| 33
| 215
| 5.454545
| 0.393939
| 0.277778
| 0.444444
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0.005181
| 0.102326
| 215
| 6
| 48
| 35.833333
| 0.927461
| 0.055814
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 1
| 0
| true
| 0
| 1
| 0
| 1
| 0
| 0
| 0
| 0
| null | 1
| 1
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 1
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| null | 0
| 0
| 0
| 0
| 0
| 0
| 1
| 0
| 1
| 0
| 1
| 0
|
0
| 6
|
3fc8078d753a0c0513e6c6366aef79f54a70b9c5
| 4,831
|
py
|
Python
|
draw.py
|
djrrb/drawbotlab
|
663da0beb43a4638458a92e7b43a2235585ef1b7
|
[
"MIT"
] | 29
|
2015-06-21T09:50:44.000Z
|
2021-11-03T10:04:42.000Z
|
draw.py
|
djrrb/drawbotlab
|
663da0beb43a4638458a92e7b43a2235585ef1b7
|
[
"MIT"
] | 1
|
2020-04-23T14:43:13.000Z
|
2020-05-06T20:24:06.000Z
|
draw.py
|
djrrb/drawbotlab
|
663da0beb43a4638458a92e7b43a2235585ef1b7
|
[
"MIT"
] | 4
|
2015-08-24T21:07:54.000Z
|
2019-10-11T19:22:28.000Z
|
import drawBot
def imageBox(im, box, fit="fill", clip=False, center=None, alpha=1):
"""
Draw an image object in a given rectangle.
"""
# if given a string, make an image object
if isinstance(im, str):
im = ImageObject(im)
boxX, boxY, boxW, boxH = box
# get the image dimensions
imW, imH = im.size()
imX, imY = boxX, boxY
# if a center is not provided, use the center of the image
if center is None:
center = imW/2, imH/2
# get the relative scale of image to box in both directions
fitScaleX = boxW/imW
fitScaleY = boxH/imH
# make the transformations
with savedState():
translate(boxX, boxY)
# if fit is "cover", make a clipping path
if clip or (fit == "cover" and clip is None):
b = BezierPath()
b.rect(0, 0, boxW, boxH)
clipPath(b)
# use the center of the box as a starting point
offsetX = boxW/2
offsetY = boxH/2
# the scale we will actually use
scaleX = 1
scaleY = 1
# if fit is "cover", use the maximum fit
if fit == 'cover':
scaleX = scaleY = max(fitScaleX, fitScaleY)
# if fit is "contain", use the minimum fit
elif fit == "contain":
scaleX = scaleY = min(fitScaleX, fitScaleY)
elif fit == "scale-down":
contain = min(fitScaleX, fitScaleY)
scaleX = scaleY = min(contain, 1)
# if fit is "none", do nothing
elif fit == "none":
pass
else:
# by default, fit in both directions
scaleX = fitScaleX
scaleY = fitScaleY
# move to the center
translate(offsetX, offsetY)
# scale depending on fit
scale(scaleX, scaleY)
# draw the image centered on the center point
image(im, (-center[0], -center[1]), alpha=alpha)
# draw the center point
DEBUG = False
if DEBUG:
with savedState():
fill(0, 1, 0)
oval(boxX+offsetX-5, boxY+offsetY-5, 10, 10)
def pathBox(path, box, fit="fill", clip=False, center=None):
"""
Draw a BezierPath in a given rectangle.
"""
boxX, boxY, boxW, boxH = box
# get the image dimensions
xMin, yMin, xMax, yMax = path.bounds()
imW = xMax - xMin
imH = yMax - yMin
imX, imY = xMin, yMin
# if a center is not provided, use the center of the image
if center is None:
center = imW/2, imH/2
# get the relative scale of image to box in both directions
fitScaleX = boxW/imW
fitScaleY = boxH/imH
# make the transormations
with savedState():
translate(boxX, boxY)
# if fit is "cover", make a clipping path
if clip:
b = BezierPath()
b.rect(0, 0, boxW, boxH)
clipPath(b)
# use the center of the box as a starting point
offsetX = boxW/2
offsetY = boxH/2
# the scale we will actually use
scaleX = 1
scaleY = 1
# if fit is "cover", use the maximum fit
if fit == 'cover':
scaleX = scaleY = max(fitScaleX, fitScaleY)
# if fit is "contain", use the minimum fit
elif fit == "contain":
scaleX = scaleY = min(fitScaleX, fitScaleY)
elif fit == "scale-down":
contain = min(fitScaleX, fitScaleY)
scaleX = scaleY = min(contain, 1)
# if fit is "none", do nothing
elif fit == "none":
pass
else:
# by default, fit in both directions
scaleX = fitScaleX
scaleY = fitScaleY
# move to the center
translate(offsetX, offsetY)
# scale depending on fit
scale(scaleX, scaleY)
# draw the image centered on the center point
translate(-imX-center[0], -imY-center[1])
drawPath(path)
DEBUG = False
if DEBUG:
with savedState():
fill(0, 1, 0)
oval(boxX+offsetX-5, boxY+offsetY-5, 10, 10)
if __name__ == "__main__":
path = "image.png"
for fit in ['fill', 'contain', 'scale-down', 'cover', 'none']:
newPage(1000, 500)
r = (200, 125, 200, 200)
im = ImageObject(path)
imageBox(im, r, fit=fit)
with savedState():
fill(None)
stroke(1, 0, 0)
strokeWidth(2)
rect(*r)
r = (600, 125, 200, 200)
fs = FormattedString('a', fontSize=800, font='Condor Variable')
b = BezierPath()
b.text(fs)
fill(0, 1, 0)
pathBox(b, r, fit=fit)
with savedState():
fill(None)
stroke(1, 0, 0)
strokeWidth(2)
rect(*r)
fontSize(30)
fill(0)
text(fit, (width()/2, 380), align="center")
| 32.206667
| 71
| 0.540054
| 615
| 4,831
| 4.229268
| 0.213008
| 0.019223
| 0.02153
| 0.02153
| 0.748943
| 0.748943
| 0.748943
| 0.726644
| 0.726644
| 0.695886
| 0
| 0.03001
| 0.358518
| 4,831
| 149
| 72
| 32.422819
| 0.809293
| 0.2426
| 0
| 0.722222
| 0
| 0
| 0.037233
| 0
| 0
| 0
| 0
| 0
| 0
| 1
| 0.018519
| false
| 0.018519
| 0.009259
| 0
| 0.027778
| 0
| 0
| 0
| 0
| null | 0
| 0
| 0
| 0
| 1
| 1
| 1
| 1
| 1
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 1
| 0
| 0
| 0
| 0
| null | 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
|
0
| 6
|
3fef6d039ba9dd91b0787681f055ebdc2726034f
| 258
|
py
|
Python
|
ramda/split_at_test.py
|
jakobkolb/ramda.py
|
982b2172f4bb95b9a5b09eff8077362d6f2f0920
|
[
"MIT"
] | 56
|
2018-08-06T08:44:58.000Z
|
2022-03-17T09:49:03.000Z
|
ramda/split_at_test.py
|
jakobkolb/ramda.py
|
982b2172f4bb95b9a5b09eff8077362d6f2f0920
|
[
"MIT"
] | 28
|
2019-06-17T11:09:52.000Z
|
2022-02-18T16:59:21.000Z
|
ramda/split_at_test.py
|
jakobkolb/ramda.py
|
982b2172f4bb95b9a5b09eff8077362d6f2f0920
|
[
"MIT"
] | 5
|
2019-09-18T09:24:38.000Z
|
2021-07-21T08:40:23.000Z
|
from ramda import *
from ramda.private.asserts import *
def split_at_test():
assert_equal(split_at(1, [1, 2, 3]), [[1], [2, 3]])
assert_equal(split_at(5, "hello world"), ["hello", " world"])
assert_equal(split_at(-1, "foobar"), ["fooba", "r"])
| 28.666667
| 65
| 0.624031
| 40
| 258
| 3.825
| 0.5
| 0.183007
| 0.313725
| 0.352941
| 0.248366
| 0
| 0
| 0
| 0
| 0
| 0
| 0.041475
| 0.158915
| 258
| 8
| 66
| 32.25
| 0.663594
| 0
| 0
| 0
| 0
| 0
| 0.131783
| 0
| 0
| 0
| 0
| 0
| 0.666667
| 1
| 0.166667
| true
| 0
| 0.333333
| 0
| 0.5
| 0
| 0
| 0
| 0
| null | 0
| 1
| 1
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 1
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| null | 0
| 0
| 0
| 1
| 0
| 0
| 1
| 0
| 1
| 0
| 0
| 0
|
0
| 6
|
b7559cd3a85f88f92fae65af87cfa9053eb9fc0b
| 79
|
py
|
Python
|
source/main.py
|
ItsSeaJay/jinja-generator
|
c2f36ad796ec1cf88e8d08a4a1469c251530415e
|
[
"MIT"
] | null | null | null |
source/main.py
|
ItsSeaJay/jinja-generator
|
c2f36ad796ec1cf88e8d08a4a1469c251530415e
|
[
"MIT"
] | null | null | null |
source/main.py
|
ItsSeaJay/jinja-generator
|
c2f36ad796ec1cf88e8d08a4a1469c251530415e
|
[
"MIT"
] | null | null | null |
from generator import Generator
generator = Generator()
generator.generate()
| 13.166667
| 31
| 0.797468
| 8
| 79
| 7.875
| 0.5
| 0.857143
| 0.857143
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0.126582
| 79
| 5
| 32
| 15.8
| 0.913043
| 0
| 0
| 0
| 1
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 1
| 0
| false
| 0
| 0.333333
| 0
| 0.333333
| 0
| 1
| 0
| 0
| null | 1
| 1
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 1
| 0
| 0
| 0
| 0
| 0
| 0
| 1
| 0
| 0
| 0
| null | 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 1
| 0
| 0
| 0
|
0
| 6
|
b7a9725ea9a914b488c3fc9b7be6c9da5106d89e
| 135
|
py
|
Python
|
audtorch/__init__.py
|
hagenw/audtorch
|
d82ae7f7f8c7edb7b7180b83442224e9a68483bd
|
[
"MIT"
] | 81
|
2019-05-22T16:39:46.000Z
|
2022-03-01T04:11:38.000Z
|
audtorch/__init__.py
|
hagenw/audtorch
|
d82ae7f7f8c7edb7b7180b83442224e9a68483bd
|
[
"MIT"
] | 33
|
2019-05-24T09:04:06.000Z
|
2021-12-06T12:11:56.000Z
|
audtorch/__init__.py
|
hagenw/audtorch
|
d82ae7f7f8c7edb7b7180b83442224e9a68483bd
|
[
"MIT"
] | 12
|
2019-05-23T09:48:15.000Z
|
2021-04-02T16:12:47.000Z
|
from . import collate
from . import datasets
from . import metrics
from . import samplers
from . import transforms
from . import utils
| 19.285714
| 24
| 0.777778
| 18
| 135
| 5.833333
| 0.444444
| 0.571429
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0.177778
| 135
| 6
| 25
| 22.5
| 0.945946
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 1
| 0
| true
| 0
| 1
| 0
| 1
| 0
| 1
| 0
| 0
| null | 1
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 1
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| null | 0
| 0
| 0
| 0
| 0
| 0
| 1
| 0
| 1
| 0
| 1
| 0
|
0
| 6
|
b7cac8d060c77710990c340129d9d3f04e74daf0
| 1,300
|
py
|
Python
|
tests/test_units.py
|
csdms/bmi-tester
|
1bece69ecda922d047fc1df5dc1c562c97b4354b
|
[
"MIT"
] | null | null | null |
tests/test_units.py
|
csdms/bmi-tester
|
1bece69ecda922d047fc1df5dc1c562c97b4354b
|
[
"MIT"
] | 4
|
2016-10-06T03:52:04.000Z
|
2020-09-10T16:44:38.000Z
|
tests/test_units.py
|
csdms/bmi-tester
|
1bece69ecda922d047fc1df5dc1c562c97b4354b
|
[
"MIT"
] | 2
|
2016-09-19T17:32:20.000Z
|
2020-09-24T17:16:16.000Z
|
from bmi_tester.api import (
check_unit_is_dimensionless,
check_unit_is_time,
check_unit_is_valid,
)
def test_check_valid_units():
assert check_unit_is_valid("m")
assert check_unit_is_valid("m / s")
assert check_unit_is_valid("m s-1")
assert check_unit_is_valid("N m")
assert check_unit_is_valid("N.m")
assert check_unit_is_valid("m^2")
assert check_unit_is_valid("m2")
assert check_unit_is_valid("")
assert check_unit_is_valid("1")
def test_check_invalid_units():
assert not check_unit_is_valid("foo")
assert not check_unit_is_valid("m ** 2")
assert not check_unit_is_valid("-")
def test_dimensionless_units():
assert check_unit_is_dimensionless("")
assert check_unit_is_dimensionless("1")
assert not check_unit_is_dimensionless("m")
# assert not check_unit_is_dimensionless("-")
def test_time_units():
assert check_unit_is_time("s")
assert check_unit_is_time("d")
assert check_unit_is_time("yr")
assert check_unit_is_time("seconds since 1970-01-01")
assert check_unit_is_time("seconds since 1970-01-01 00:00:00 UTC")
assert check_unit_is_time("days since 1970-01-01 00:00:00 UTC")
assert check_unit_is_time("years since 1970-01-01 00:00:00 UTC")
assert not check_unit_is_time("m")
| 30.232558
| 70
| 0.734615
| 216
| 1,300
| 3.99537
| 0.157407
| 0.281576
| 0.344148
| 0.354577
| 0.831981
| 0.585168
| 0.387022
| 0.293163
| 0.293163
| 0.260718
| 0
| 0.051282
| 0.16
| 1,300
| 42
| 71
| 30.952381
| 0.739011
| 0.033077
| 0
| 0
| 0
| 0
| 0.135458
| 0
| 0
| 0
| 0
| 0
| 0.71875
| 1
| 0.125
| true
| 0
| 0.03125
| 0
| 0.15625
| 0
| 0
| 0
| 0
| null | 1
| 1
| 1
| 1
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| null | 0
| 0
| 0
| 1
| 0
| 0
| 1
| 0
| 0
| 0
| 0
| 0
|
0
| 6
|
4d24de4443a3932232514d09ca335e5c9a2a21ee
| 34
|
py
|
Python
|
src/archiver/__init__.py
|
StarovoitovNik/archivator
|
f7b306e270e327f0a122faed159c569ee519e10a
|
[
"MIT"
] | null | null | null |
src/archiver/__init__.py
|
StarovoitovNik/archivator
|
f7b306e270e327f0a122faed159c569ee519e10a
|
[
"MIT"
] | null | null | null |
src/archiver/__init__.py
|
StarovoitovNik/archivator
|
f7b306e270e327f0a122faed159c569ee519e10a
|
[
"MIT"
] | null | null | null |
from src.archiver.arciv import arc
| 34
| 34
| 0.852941
| 6
| 34
| 4.833333
| 1
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0.088235
| 34
| 1
| 34
| 34
| 0.935484
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 1
| 0
| true
| 0
| 1
| 0
| 1
| 0
| 1
| 1
| 0
| null | 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 1
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| null | 0
| 0
| 0
| 0
| 0
| 0
| 1
| 0
| 1
| 0
| 1
| 0
|
0
| 6
|
4d363f98ea895722ae26b1531e8c2ef8e5293e2f
| 244
|
py
|
Python
|
lib/JumpScale/baselib/serializers/SerializerDict.py
|
rudecs/jumpscale_core7
|
30c03f26f1cdad3edbb9d79d50fbada8acc974f5
|
[
"Apache-2.0"
] | 1
|
2015-10-26T10:38:13.000Z
|
2015-10-26T10:38:13.000Z
|
lib/JumpScale/baselib/serializers/SerializerDict.py
|
rudecs/jumpscale_core7
|
30c03f26f1cdad3edbb9d79d50fbada8acc974f5
|
[
"Apache-2.0"
] | 4
|
2016-08-25T12:08:39.000Z
|
2018-04-12T12:36:01.000Z
|
lib/JumpScale/baselib/serializers/SerializerDict.py
|
rudecs/jumpscale_core7
|
30c03f26f1cdad3edbb9d79d50fbada8acc974f5
|
[
"Apache-2.0"
] | 3
|
2016-03-08T07:49:34.000Z
|
2018-10-19T13:56:43.000Z
|
import blosc
class SerializerDict(object):
def dumps(self,obj):
# from IPython import embed
# print "DEBUG NOW dict serializer"
# embed()
##TODO
pass
def loads(self,s):
return s
| 18.769231
| 43
| 0.545082
| 27
| 244
| 4.925926
| 0.814815
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0.372951
| 244
| 13
| 44
| 18.769231
| 0.869281
| 0.290984
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0.076923
| 0
| 1
| 0.333333
| false
| 0.166667
| 0.166667
| 0.166667
| 0.833333
| 0
| 1
| 0
| 0
| null | 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| null | 0
| 0
| 1
| 0
| 0
| 1
| 0
| 1
| 0
| 1
| 1
| 0
|
0
| 6
|
4d47dff9146088a33f8b61bbd687baf53210b85b
| 120
|
py
|
Python
|
tests/test_version.py
|
andrewmilligan/fec-filing-iterator
|
7ac2da9561ea9f346f316dffc72c1a42b2c914eb
|
[
"0BSD"
] | null | null | null |
tests/test_version.py
|
andrewmilligan/fec-filing-iterator
|
7ac2da9561ea9f346f316dffc72c1a42b2c914eb
|
[
"0BSD"
] | null | null | null |
tests/test_version.py
|
andrewmilligan/fec-filing-iterator
|
7ac2da9561ea9f346f316dffc72c1a42b2c914eb
|
[
"0BSD"
] | null | null | null |
from fec_filing_iterator import _version as version
def test_version():
assert len(version.__version_info__) == 3
| 20
| 51
| 0.783333
| 17
| 120
| 5
| 0.764706
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0.009804
| 0.15
| 120
| 5
| 52
| 24
| 0.823529
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0.333333
| 1
| 0.333333
| true
| 0
| 0.333333
| 0
| 0.666667
| 0
| 1
| 0
| 0
| null | 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 1
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| null | 0
| 0
| 0
| 0
| 0
| 1
| 1
| 0
| 1
| 0
| 1
| 0
|
0
| 6
|
4d802c5be4c55e7abd73ca411d27649e2f9fdbb9
| 123
|
py
|
Python
|
python/fastquant/__init__.py
|
rafmacalaba/fastquant
|
b3436c8737a4ab1b5d555f7cd34fba9c406cad0a
|
[
"MIT"
] | 3
|
2021-03-28T07:55:46.000Z
|
2021-03-29T04:52:12.000Z
|
python/fastquant/__init__.py
|
rafmacalaba/fastquant
|
b3436c8737a4ab1b5d555f7cd34fba9c406cad0a
|
[
"MIT"
] | null | null | null |
python/fastquant/__init__.py
|
rafmacalaba/fastquant
|
b3436c8737a4ab1b5d555f7cd34fba9c406cad0a
|
[
"MIT"
] | null | null | null |
from .fastquant import *
from .disclosures import *
from .strategies import *
from .network import *
from .config import *
| 20.5
| 26
| 0.756098
| 15
| 123
| 6.2
| 0.466667
| 0.430108
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0.162602
| 123
| 5
| 27
| 24.6
| 0.902913
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 1
| 0
| true
| 0
| 1
| 0
| 1
| 0
| 1
| 0
| 0
| null | 1
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 1
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| null | 0
| 0
| 0
| 0
| 0
| 0
| 1
| 0
| 1
| 0
| 1
| 0
|
0
| 6
|
4dfb60e3d6a308fdcaaa78bb3395cf04f3b6592a
| 229
|
py
|
Python
|
Unimodal/Eval/__init__.py
|
hasamkhalid/FakeAVCeleb
|
0d8d22a44e1750dd2885c5741d7b0a7796304a99
|
[
"MIT"
] | 9
|
2021-09-20T02:07:38.000Z
|
2022-01-03T07:54:01.000Z
|
Unimodal/Eval/__init__.py
|
alsgkals2/FakeAVCeleb
|
0d8d22a44e1750dd2885c5741d7b0a7796304a99
|
[
"MIT"
] | null | null | null |
Unimodal/Eval/__init__.py
|
alsgkals2/FakeAVCeleb
|
0d8d22a44e1750dd2885c5741d7b0a7796304a99
|
[
"MIT"
] | 4
|
2021-09-12T09:30:42.000Z
|
2021-12-30T10:34:01.000Z
|
__all__ = ['Eval_MesoInceptionNet','Eval_MesoNet','Eval_Xception','Eval_F3Net','Eval_EfficientB0','Eval_VGG16']#TO BE MODIFIED WITH BOTTOM TEXT
# __all__ = ['Eval_MesoInceptionNet','Eval_MesoNet','Eval_Headpose','Eval_Xception']
| 76.333333
| 143
| 0.790393
| 28
| 229
| 5.821429
| 0.535714
| 0.08589
| 0.282209
| 0.331288
| 0.466258
| 0.466258
| 0
| 0
| 0
| 0
| 0
| 0.018433
| 0.052402
| 229
| 2
| 144
| 114.5
| 0.732719
| 0.497817
| 0
| 0
| 0
| 0
| 0.725664
| 0.185841
| 0
| 0
| 0
| 0
| 0
| 1
| 0
| false
| 0
| 0
| 0
| 0
| 0
| 1
| 0
| 0
| null | 0
| 1
| 1
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 1
| 0
| 1
| 0
| 0
| 0
| 0
| 0
| 0
| 1
| 0
| null | 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
|
0
| 6
|
12eb664861eba4fea78f79aea4baf5b96c2059d1
| 39
|
py
|
Python
|
CSGM/__init__.py
|
PSCLab-ASU/OpenICS
|
e8f639f9278ce88c98f14daf026a56395cb64ca9
|
[
"CC0-1.0"
] | 13
|
2021-03-03T13:13:34.000Z
|
2022-01-13T12:02:59.000Z
|
LDAMP/__init__.py
|
PSCLab-ASU/OpenICS
|
e8f639f9278ce88c98f14daf026a56395cb64ca9
|
[
"CC0-1.0"
] | null | null | null |
LDAMP/__init__.py
|
PSCLab-ASU/OpenICS
|
e8f639f9278ce88c98f14daf026a56395cb64ca9
|
[
"CC0-1.0"
] | 2
|
2021-03-04T12:16:27.000Z
|
2021-05-09T03:07:44.000Z
|
from . import *
from .main import main
| 13
| 22
| 0.717949
| 6
| 39
| 4.666667
| 0.5
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0.205128
| 39
| 2
| 23
| 19.5
| 0.903226
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 1
| 0
| true
| 0
| 1
| 0
| 1
| 0
| 1
| 1
| 0
| null | 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 1
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| null | 0
| 0
| 0
| 0
| 0
| 0
| 1
| 0
| 1
| 0
| 1
| 0
|
0
| 6
|
420355a8e34070fe81b798bae1fee36abf381b35
| 56,717
|
py
|
Python
|
ee/clickhouse/queries/funnels/test/test_funnel_correlation.py
|
rightlyip/posthog
|
c00ad7a2b02df68930ca332675fc04ce4ed83a60
|
[
"MIT"
] | null | null | null |
ee/clickhouse/queries/funnels/test/test_funnel_correlation.py
|
rightlyip/posthog
|
c00ad7a2b02df68930ca332675fc04ce4ed83a60
|
[
"MIT"
] | null | null | null |
ee/clickhouse/queries/funnels/test/test_funnel_correlation.py
|
rightlyip/posthog
|
c00ad7a2b02df68930ca332675fc04ce4ed83a60
|
[
"MIT"
] | null | null | null |
import unittest
from typing import List
from uuid import uuid4
from rest_framework.exceptions import ValidationError
from ee.clickhouse.models.event import create_event
from ee.clickhouse.models.group import create_group
from ee.clickhouse.queries.funnels.funnel_correlation import EventContingencyTable, EventStats, FunnelCorrelation
from ee.clickhouse.queries.funnels.funnel_correlation_persons import FunnelCorrelationPersons
from ee.clickhouse.util import ClickhouseTestMixin, snapshot_clickhouse_queries
from posthog.constants import INSIGHT_FUNNELS
from posthog.models.element import Element
from posthog.models.filters import Filter
from posthog.models.group_type_mapping import GroupTypeMapping
from posthog.models.person import Person
from posthog.models.property import Property
from posthog.test.base import APIBaseTest, test_with_materialized_columns
def _create_person(**kwargs):
person = Person.objects.create(**kwargs)
return Person(id=person.uuid, uuid=person.uuid)
def _create_event(**kwargs):
kwargs.update({"event_uuid": uuid4()})
create_event(**kwargs)
class TestClickhouseFunnelCorrelation(ClickhouseTestMixin, APIBaseTest):
maxDiff = None
def _get_people_for_event(self, filter: Filter, event_name: str, properties=None, success=True):
person_filter = filter.with_data(
{
"funnel_correlation_person_entity": {"id": event_name, "type": "events", "properties": properties},
"funnel_correlation_person_converted": "TrUe" if success else "falSE",
}
)
results, _ = FunnelCorrelationPersons(person_filter, self.team).run()
return [row["uuid"] for row in results]
def _get_people_for_property(self, filter: Filter, property_values: list, success=True):
person_filter = filter.with_data(
{
"funnel_correlation_property_values": [
{"key": prop, "value": value, "type": "person"} for prop, value in property_values
],
"funnel_correlation_person_converted": "TrUe" if success else "falSE",
}
)
results, _ = FunnelCorrelationPersons(person_filter, self.team).run()
return [row["uuid"] for row in results]
def test_basic_funnel_correlation_with_events(self):
filters = {
"events": [
{"id": "user signed up", "type": "events", "order": 0},
{"id": "paid", "type": "events", "order": 1},
],
"insight": INSIGHT_FUNNELS,
"date_from": "2020-01-01",
"date_to": "2020-01-14",
"funnel_correlation_type": "events",
}
filter = Filter(data=filters)
correlation = FunnelCorrelation(filter, self.team)
for i in range(10):
_create_person(distinct_ids=[f"user_{i}"], team_id=self.team.pk)
_create_event(
team=self.team, event="user signed up", distinct_id=f"user_{i}", timestamp="2020-01-02T14:00:00Z",
)
if i % 2 == 0:
_create_event(
team=self.team,
event="positively_related",
distinct_id=f"user_{i}",
timestamp="2020-01-03T14:00:00Z",
)
_create_event(
team=self.team, event="paid", distinct_id=f"user_{i}", timestamp="2020-01-04T14:00:00Z",
)
for i in range(10, 20):
_create_person(distinct_ids=[f"user_{i}"], team_id=self.team.pk)
_create_event(
team=self.team, event="user signed up", distinct_id=f"user_{i}", timestamp="2020-01-02T14:00:00Z",
)
if i % 2 == 0:
_create_event(
team=self.team,
event="negatively_related",
distinct_id=f"user_{i}",
timestamp="2020-01-03T14:00:00Z",
)
result = correlation._run()[0]
odds_ratios = [item.pop("odds_ratio") for item in result] # type: ignore
expected_odds_ratios = [11, 1 / 11]
for odds, expected_odds in zip(odds_ratios, expected_odds_ratios):
self.assertAlmostEqual(odds, expected_odds)
self.assertEqual(
result,
[
{
"event": "positively_related",
"success_count": 5,
"failure_count": 0,
# "odds_ratio": 11.0,
"correlation_type": "success",
},
{
"event": "negatively_related",
"success_count": 0,
"failure_count": 5,
# "odds_ratio": 1 / 11,
"correlation_type": "failure",
},
],
)
self.assertEqual(len(self._get_people_for_event(filter, "positively_related")), 5)
self.assertEqual(len(self._get_people_for_event(filter, "positively_related", success=False)), 0)
self.assertEqual(len(self._get_people_for_event(filter, "negatively_related", success=False)), 5)
self.assertEqual(len(self._get_people_for_event(filter, "negatively_related")), 0)
# Now exclude positively_related
filter = filter.with_data({"funnel_correlation_exclude_event_names": ["positively_related"]})
correlation = FunnelCorrelation(filter, self.team)
result = correlation._run()[0]
odds_ratio = result[0].pop("odds_ratio") # type: ignore
expected_odds_ratio = 1 / 11
self.assertAlmostEqual(odds_ratio, expected_odds_ratio)
self.assertEqual(
result,
[
{
"event": "negatively_related",
"success_count": 0,
"failure_count": 5,
# "odds_ratio": 1 / 11,
"correlation_type": "failure",
},
],
)
# Getting specific people isn't affected by exclude_events
self.assertEqual(len(self._get_people_for_event(filter, "positively_related")), 5)
self.assertEqual(len(self._get_people_for_event(filter, "positively_related", success=False)), 0)
self.assertEqual(len(self._get_people_for_event(filter, "negatively_related", success=False)), 5)
self.assertEqual(len(self._get_people_for_event(filter, "negatively_related")), 0)
@snapshot_clickhouse_queries
def test_funnel_correlation_with_events_and_groups(self):
GroupTypeMapping.objects.create(team=self.team, group_type="organization", group_type_index=0)
create_group(team_id=self.team.pk, group_type_index=0, group_key="org:5", properties={"industry": "finance"})
create_group(team_id=self.team.pk, group_type_index=0, group_key="org:7", properties={"industry": "finance"})
for i in range(10, 20):
_create_person(distinct_ids=[f"user_{i}"], team_id=self.team.pk)
_create_event(
team=self.team,
event="user signed up",
distinct_id=f"user_{i}",
timestamp="2020-01-02T14:00:00Z",
properties={"$group_0": f"org:{i}"},
)
if i % 2 == 0:
_create_event(
team=self.team,
event="positively_related",
distinct_id=f"user_{i}",
timestamp="2020-01-03T14:00:00Z",
properties={"$group_0": f"org:{i}"},
)
# this event shouldn't show up when dealing with groups
_create_event(
team=self.team,
event="positively_related_without_group",
distinct_id=f"user_{i}",
timestamp="2020-01-03T14:00:00Z",
)
_create_event(
team=self.team,
event="paid",
distinct_id=f"user_{i}",
timestamp="2020-01-04T14:00:00Z",
properties={"$group_0": f"org:{i}"},
)
# one fail group
_create_person(distinct_ids=[f"user_fail"], team_id=self.team.pk)
_create_event(
team=self.team,
event="user signed up",
distinct_id=f"user_fail",
timestamp="2020-01-02T14:00:00Z",
properties={"$group_0": f"org:5"},
)
_create_event(
team=self.team,
event="negatively_related",
distinct_id=f"user_{i}",
timestamp="2020-01-03T14:00:00Z",
properties={"$group_0": f"org:5"},
)
# one success group with same filter property
_create_person(distinct_ids=[f"user_succ"], team_id=self.team.pk)
_create_event(
team=self.team,
event="user signed up",
distinct_id=f"user_succ",
timestamp="2020-01-02T14:00:00Z",
properties={"$group_0": f"org:7"},
)
_create_event(
team=self.team,
event="negatively_related",
distinct_id=f"user_{i}",
timestamp="2020-01-03T14:00:00Z",
properties={"$group_0": f"org:7"},
)
_create_event(
team=self.team,
event="paid",
distinct_id=f"user_succ",
timestamp="2020-01-04T14:00:00Z",
properties={"$group_0": f"org:7"},
)
filters = {
"events": [
{"id": "user signed up", "type": "events", "order": 0},
{"id": "paid", "type": "events", "order": 1},
],
"insight": INSIGHT_FUNNELS,
"date_from": "2020-01-01",
"date_to": "2020-01-14",
"funnel_correlation_type": "events",
"aggregation_group_type_index": 0,
}
filter = Filter(data=filters)
result = FunnelCorrelation(filter, self.team)._run()[0]
odds_ratios = [item.pop("odds_ratio") for item in result] # type: ignore
expected_odds_ratios = [12 / 7, 1 / 11]
for odds, expected_odds in zip(odds_ratios, expected_odds_ratios):
self.assertAlmostEqual(odds, expected_odds)
self.assertEqual(
result,
[
{
"event": "positively_related",
"success_count": 5,
"failure_count": 0,
# "odds_ratio": 12/7,
"correlation_type": "success",
},
{
"event": "negatively_related",
"success_count": 1,
"failure_count": 1,
# "odds_ratio": 1 / 11,
"correlation_type": "failure",
},
],
)
# Now exclude all groups in positive
filter = filter.with_data(
{"properties": [{"key": "industry", "value": "finance", "type": "group", "group_type_index": 0}],}
)
result = FunnelCorrelation(filter, self.team)._run()[0]
odds_ratio = result[0].pop("odds_ratio") # type: ignore
expected_odds_ratio = 1
# success total and failure totals remove other groups too
self.assertAlmostEqual(odds_ratio, expected_odds_ratio)
self.assertEqual(
result,
[
{
"event": "negatively_related",
"success_count": 1,
"failure_count": 1,
# "odds_ratio": 1,
"correlation_type": "failure",
},
],
)
@test_with_materialized_columns(event_properties=[], person_properties=["$browser"])
@snapshot_clickhouse_queries
def test_basic_funnel_correlation_with_properties(self):
filters = {
"events": [
{"id": "user signed up", "type": "events", "order": 0},
{"id": "paid", "type": "events", "order": 1},
],
"insight": INSIGHT_FUNNELS,
"date_from": "2020-01-01",
"date_to": "2020-01-14",
"funnel_correlation_type": "properties",
"funnel_correlation_names": ["$browser"],
}
filter = Filter(data=filters)
correlation = FunnelCorrelation(filter, self.team)
for i in range(10):
_create_person(distinct_ids=[f"user_{i}"], team_id=self.team.pk, properties={"$browser": "Positive"})
_create_event(
team=self.team, event="user signed up", distinct_id=f"user_{i}", timestamp="2020-01-02T14:00:00Z",
)
_create_event(
team=self.team, event="paid", distinct_id=f"user_{i}", timestamp="2020-01-04T14:00:00Z",
)
for i in range(10, 20):
_create_person(distinct_ids=[f"user_{i}"], team_id=self.team.pk, properties={"$browser": "Negative"})
_create_event(
team=self.team, event="user signed up", distinct_id=f"user_{i}", timestamp="2020-01-02T14:00:00Z",
)
if i % 2 == 0:
_create_event(
team=self.team,
event="negatively_related",
distinct_id=f"user_{i}",
timestamp="2020-01-03T14:00:00Z",
)
# One Positive with failure
_create_person(distinct_ids=[f"user_fail"], team_id=self.team.pk, properties={"$browser": "Positive"})
_create_event(
team=self.team, event="user signed up", distinct_id=f"user_fail", timestamp="2020-01-02T14:00:00Z",
)
# One Negative with success
_create_person(distinct_ids=[f"user_succ"], team_id=self.team.pk, properties={"$browser": "Negative"})
_create_event(
team=self.team, event="user signed up", distinct_id=f"user_succ", timestamp="2020-01-02T14:00:00Z",
)
_create_event(
team=self.team, event="paid", distinct_id=f"user_succ", timestamp="2020-01-04T14:00:00Z",
)
result = correlation._run()[0]
odds_ratios = [item.pop("odds_ratio") for item in result] # type: ignore
# Success Total = 11, Failure Total = 11
#
# Browser::Positive
# Success: 10
# Failure: 1
# Browser::Negative
# Success: 1
# Failure: 10
prior_count = 1
expected_odds_ratios = [
((10 + prior_count) / (1 + prior_count)) * ((11 - 1 + prior_count) / (11 - 10 + prior_count)),
((1 + prior_count) / (10 + prior_count)) * ((11 - 10 + prior_count) / (11 - 1 + prior_count)),
]
for odds, expected_odds in zip(odds_ratios, expected_odds_ratios):
self.assertAlmostEqual(odds, expected_odds)
self.assertEqual(
result,
[
{
"event": "$browser::Positive",
"success_count": 10,
"failure_count": 1,
# "odds_ratio": 121/4,
"correlation_type": "success",
},
{
"event": "$browser::Negative",
"success_count": 1,
"failure_count": 10,
# "odds_ratio": 4/121,
"correlation_type": "failure",
},
],
)
self.assertEqual(len(self._get_people_for_property(filter, [("$browser", "Positive")])), 10)
self.assertEqual(len(self._get_people_for_property(filter, [("$browser", "Positive")], False)), 1)
self.assertEqual(len(self._get_people_for_property(filter, [("$browser", "Negative")])), 1)
self.assertEqual(len(self._get_people_for_property(filter, [("$browser", "Negative")], False)), 10)
@test_with_materialized_columns(event_properties=[], person_properties=["$browser"])
@snapshot_clickhouse_queries
def test_funnel_correlation_with_properties_and_groups(self):
GroupTypeMapping.objects.create(team=self.team, group_type="organization", group_type_index=0)
for i in range(10):
create_group(
team_id=self.team.pk, group_type_index=0, group_key=f"org:{i}", properties={"industry": "positive"}
)
_create_person(distinct_ids=[f"user_{i}"], team_id=self.team.pk, properties={"$browser": "Positive"})
_create_event(
team=self.team,
event="user signed up",
distinct_id=f"user_{i}",
timestamp="2020-01-02T14:00:00Z",
properties={"$group_0": f"org:{i}"},
)
_create_event(
team=self.team,
event="paid",
distinct_id=f"user_{i}",
timestamp="2020-01-04T14:00:00Z",
properties={"$group_0": f"org:{i}"},
)
for i in range(10, 20):
create_group(
team_id=self.team.pk, group_type_index=0, group_key=f"org:{i}", properties={"industry": "negative"}
)
_create_person(distinct_ids=[f"user_{i}"], team_id=self.team.pk, properties={"$browser": "Negative"})
_create_event(
team=self.team,
event="user signed up",
distinct_id=f"user_{i}",
timestamp="2020-01-02T14:00:00Z",
properties={"$group_0": f"org:{i}"},
)
if i % 2 == 0:
_create_event(
team=self.team,
event="negatively_related",
distinct_id=f"user_{i}",
timestamp="2020-01-03T14:00:00Z",
properties={"$group_0": f"org:{i}"},
)
# One Positive with failure
create_group(
team_id=self.team.pk, group_type_index=0, group_key=f"org:fail", properties={"industry": "positive"}
)
_create_person(distinct_ids=[f"user_fail"], team_id=self.team.pk, properties={"$browser": "Positive"})
_create_event(
team=self.team,
event="user signed up",
distinct_id=f"user_fail",
timestamp="2020-01-02T14:00:00Z",
properties={"$group_0": f"org:fail"},
)
# One Negative with success
create_group(
team_id=self.team.pk, group_type_index=0, group_key=f"org:succ", properties={"industry": "negative"}
)
_create_person(distinct_ids=[f"user_succ"], team_id=self.team.pk, properties={"$browser": "Negative"})
_create_event(
team=self.team,
event="user signed up",
distinct_id=f"user_succ",
timestamp="2020-01-02T14:00:00Z",
properties={"$group_0": f"org:succ"},
)
_create_event(
team=self.team,
event="paid",
distinct_id=f"user_succ",
timestamp="2020-01-04T14:00:00Z",
properties={"$group_0": f"org:succ"},
)
filters = {
"events": [
{"id": "user signed up", "type": "events", "order": 0},
{"id": "paid", "type": "events", "order": 1},
],
"insight": INSIGHT_FUNNELS,
"date_from": "2020-01-01",
"date_to": "2020-01-14",
"funnel_correlation_type": "properties",
"funnel_correlation_names": ["industry"],
"aggregation_group_type_index": 0,
}
filter = Filter(data=filters)
correlation = FunnelCorrelation(filter, self.team)
result = correlation._run()[0]
odds_ratios = [item.pop("odds_ratio") for item in result] # type: ignore
# Success Total = 11, Failure Total = 11
#
# Industry::Positive
# Success: 10
# Failure: 1
# Industry::Negative
# Success: 1
# Failure: 10
prior_count = 1
expected_odds_ratios = [
((10 + prior_count) / (1 + prior_count)) * ((11 - 1 + prior_count) / (11 - 10 + prior_count)),
((1 + prior_count) / (10 + prior_count)) * ((11 - 10 + prior_count) / (11 - 1 + prior_count)),
]
for odds, expected_odds in zip(odds_ratios, expected_odds_ratios):
self.assertAlmostEqual(odds, expected_odds)
self.assertEqual(
result,
[
{
"event": "industry::positive",
"success_count": 10,
"failure_count": 1,
# "odds_ratio": 121/4,
"correlation_type": "success",
},
{
"event": "industry::negative",
"success_count": 1,
"failure_count": 10,
# "odds_ratio": 4/121,
"correlation_type": "failure",
},
],
)
# test with `$all` as property
# _run property correlation with filter on all properties
filter = filter.with_data({"funnel_correlation_names": ["$all"]})
correlation = FunnelCorrelation(filter, self.team)
new_result = correlation._run()[0]
odds_ratios = [item.pop("odds_ratio") for item in new_result] # type: ignore
for odds, expected_odds in zip(odds_ratios, expected_odds_ratios):
self.assertAlmostEqual(odds, expected_odds)
self.assertEqual(new_result, result)
def test_no_divide_by_zero_errors(self):
filters = {
"events": [
{"id": "user signed up", "type": "events", "order": 0},
{"id": "paid", "type": "events", "order": 1},
],
"insight": INSIGHT_FUNNELS,
"date_from": "2020-01-01",
"date_to": "2020-01-14",
}
filter = Filter(data=filters)
correlation = FunnelCorrelation(filter, self.team)
for i in range(2):
_create_person(distinct_ids=[f"user_{i}"], team_id=self.team.pk, properties={"$browser": "Positive"})
_create_event(
team=self.team, event="user signed up", distinct_id=f"user_{i}", timestamp="2020-01-02T14:00:00Z",
)
# failure count for this event is 0
_create_event(
team=self.team, event="positive", distinct_id=f"user_{i}", timestamp="2020-01-03T14:00:00Z",
)
_create_event(
team=self.team, event="paid", distinct_id=f"user_{i}", timestamp="2020-01-04T14:00:00Z",
)
for i in range(2, 4):
_create_person(distinct_ids=[f"user_{i}"], team_id=self.team.pk, properties={"$browser": "Negative"})
_create_event(
team=self.team, event="user signed up", distinct_id=f"user_{i}", timestamp="2020-01-02T14:00:00Z",
)
if i % 2 == 0:
# success count for this event is 0
_create_event(
team=self.team,
event="negatively_related",
distinct_id=f"user_{i}",
timestamp="2020-01-03T14:00:00Z",
)
results = correlation._run()
self.assertFalse(results[1])
result = results[0]
odds_ratios = [item.pop("odds_ratio") for item in result] # type: ignore
expected_odds_ratios = [9, 1 / 3]
for odds, expected_odds in zip(odds_ratios, expected_odds_ratios):
self.assertAlmostEqual(odds, expected_odds)
self.assertEqual(
result,
[
{
"event": "positive",
"success_count": 2,
"failure_count": 0,
# "odds_ratio": 9.0,
"correlation_type": "success",
},
{
"event": "negatively_related",
"success_count": 0,
"failure_count": 1,
# "odds_ratio": 1 / 3,
"correlation_type": "failure",
},
],
)
def test_correlation_with_properties_raises_validation_error(self):
filters = {
"events": [
{"id": "user signed up", "type": "events", "order": 0},
{"id": "paid", "type": "events", "order": 1},
],
"insight": INSIGHT_FUNNELS,
"date_from": "2020-01-01",
"date_to": "2020-01-14",
"funnel_correlation_type": "properties",
# "funnel_correlation_names": ["$browser"], missing value
}
filter = Filter(data=filters)
correlation = FunnelCorrelation(filter, self.team)
_create_person(distinct_ids=[f"user_1"], team_id=self.team.pk, properties={"$browser": "Positive"})
_create_event(
team=self.team, event="user signed up", distinct_id=f"user_1", timestamp="2020-01-02T14:00:00Z",
)
_create_event(
team=self.team, event="rick", distinct_id=f"user_1", timestamp="2020-01-03T14:00:00Z",
)
_create_event(
team=self.team, event="paid", distinct_id=f"user_1", timestamp="2020-01-04T14:00:00Z",
)
with self.assertRaises(ValidationError):
correlation._run()
filter = filter.with_data({"funnel_correlation_type": "event_with_properties"})
# missing "funnel_correlation_event_names": ["rick"],
with self.assertRaises(ValidationError):
FunnelCorrelation(filter, self.team)._run()
@test_with_materialized_columns(event_properties=[], person_properties=["$browser"], verify_no_jsonextract=False)
def test_correlation_with_multiple_properties(self):
filters = {
"events": [
{"id": "user signed up", "type": "events", "order": 0},
{"id": "paid", "type": "events", "order": 1},
],
"insight": INSIGHT_FUNNELS,
"date_from": "2020-01-01",
"date_to": "2020-01-14",
"funnel_correlation_type": "properties",
"funnel_correlation_names": ["$browser", "$nice"],
}
filter = Filter(data=filters)
correlation = FunnelCorrelation(filter, self.team)
# 5 successful people with both properties
for i in range(5):
_create_person(
distinct_ids=[f"user_{i}"], team_id=self.team.pk, properties={"$browser": "Positive", "$nice": "very"}
)
_create_event(
team=self.team, event="user signed up", distinct_id=f"user_{i}", timestamp="2020-01-02T14:00:00Z",
)
_create_event(
team=self.team, event="paid", distinct_id=f"user_{i}", timestamp="2020-01-04T14:00:00Z",
)
# 10 successful people with some different properties
for i in range(5, 15):
_create_person(
distinct_ids=[f"user_{i}"], team_id=self.team.pk, properties={"$browser": "Positive", "$nice": "not"}
)
_create_event(
team=self.team, event="user signed up", distinct_id=f"user_{i}", timestamp="2020-01-02T14:00:00Z",
)
_create_event(
team=self.team, event="paid", distinct_id=f"user_{i}", timestamp="2020-01-04T14:00:00Z",
)
# 5 Unsuccessful people with some common properties
for i in range(15, 20):
_create_person(
distinct_ids=[f"user_{i}"], team_id=self.team.pk, properties={"$browser": "Negative", "$nice": "smh"}
)
_create_event(
team=self.team, event="user signed up", distinct_id=f"user_{i}", timestamp="2020-01-02T14:00:00Z",
)
# One Positive with failure, no $nice property
_create_person(distinct_ids=[f"user_fail"], team_id=self.team.pk, properties={"$browser": "Positive"})
_create_event(
team=self.team, event="user signed up", distinct_id=f"user_fail", timestamp="2020-01-02T14:00:00Z",
)
# One Negative with success, no $nice property
_create_person(distinct_ids=[f"user_succ"], team_id=self.team.pk, properties={"$browser": "Negative"})
_create_event(
team=self.team, event="user signed up", distinct_id=f"user_succ", timestamp="2020-01-02T14:00:00Z",
)
_create_event(
team=self.team, event="paid", distinct_id=f"user_succ", timestamp="2020-01-04T14:00:00Z",
)
result = correlation._run()[0]
# Success Total = 5 + 10 + 1 = 16
# Failure Total = 5 + 1 = 6
# Add 1 for priors
odds_ratios = [item.pop("odds_ratio") for item in result] # type: ignore
expected_odds_ratios = [
(16 / 2) * ((7 - 1) / (17 - 15)),
(11 / 1) * ((7 - 0) / (17 - 10)),
(6 / 1) * ((7 - 0) / (17 - 5)),
(1 / 6) * ((7 - 5) / (17 - 0)),
(2 / 6) * ((7 - 5) / (17 - 1)),
(2 / 2) * ((7 - 1) / (17 - 1)),
]
# (success + 1) / (failure + 1)
for odds, expected_odds in zip(odds_ratios, expected_odds_ratios):
self.assertAlmostEqual(odds, expected_odds)
expected_result = [
{
"event": "$browser::Positive",
"success_count": 15,
"failure_count": 1,
# "odds_ratio": 24,
"correlation_type": "success",
},
{
"event": "$nice::not",
"success_count": 10,
"failure_count": 0,
# "odds_ratio": 11,
"correlation_type": "success",
},
{
"event": "$nice::very",
"success_count": 5,
"failure_count": 0,
# "odds_ratio": 3.5,
"correlation_type": "success",
},
{
"event": "$nice::smh",
"success_count": 0,
"failure_count": 5,
# "odds_ratio": 0.0196078431372549,
"correlation_type": "failure",
},
{
"event": "$browser::Negative",
"success_count": 1,
"failure_count": 5,
# "odds_ratio": 0.041666666666666664,
"correlation_type": "failure",
},
{
"event": "$nice::",
"success_count": 1,
"failure_count": 1,
# "odds_ratio": 0.375,
"correlation_type": "failure",
},
]
self.assertEqual(result, expected_result)
# _run property correlation with filter on all properties
filter = filter.with_data({"funnel_correlation_names": ["$all"]})
correlation = FunnelCorrelation(filter, self.team)
new_result = correlation._run()[0]
odds_ratios = [item.pop("odds_ratio") for item in new_result] # type: ignore
new_expected_odds_ratios = expected_odds_ratios[:-1]
new_expected_result = expected_result[:-1]
# When querying all properties, we don't consider properties that don't exist for part of the data
# since users aren't explicitly asking for that property. Thus,
# We discard $nice:: because it's an empty result set
for odds, expected_odds in zip(odds_ratios, new_expected_odds_ratios):
self.assertAlmostEqual(odds, expected_odds)
self.assertEqual(new_result, new_expected_result)
filter = filter.with_data({"funnel_correlation_exclude_names": ["$browser"]})
# search for $all but exclude $browser
correlation = FunnelCorrelation(filter, self.team)
new_result = correlation._run()[0]
odds_ratios = [item.pop("odds_ratio") for item in new_result] # type: ignore
new_expected_odds_ratios = expected_odds_ratios[1:4] # choosing the $nice property values
new_expected_result = expected_result[1:4]
for odds, expected_odds in zip(odds_ratios, new_expected_odds_ratios):
self.assertAlmostEqual(odds, expected_odds)
self.assertEqual(new_result, new_expected_result)
self.assertEqual(len(self._get_people_for_property(filter, [("$nice", "not")])), 10)
self.assertEqual(len(self._get_people_for_property(filter, [("$nice", "")], False)), 1)
self.assertEqual(len(self._get_people_for_property(filter, [("$nice", "very")])), 5)
def test_discarding_insignificant_events(self):
filters = {
"events": [
{"id": "user signed up", "type": "events", "order": 0},
{"id": "paid", "type": "events", "order": 1},
],
"insight": INSIGHT_FUNNELS,
"date_from": "2020-01-01",
"date_to": "2020-01-14",
"funnel_correlation_type": "events",
}
filter = Filter(data=filters)
correlation = FunnelCorrelation(filter, self.team)
for i in range(10):
_create_person(distinct_ids=[f"user_{i}"], team_id=self.team.pk)
_create_event(
team=self.team, event="user signed up", distinct_id=f"user_{i}", timestamp="2020-01-02T14:00:00Z",
)
if i % 2 == 0:
_create_event(
team=self.team,
event="positively_related",
distinct_id=f"user_{i}",
timestamp="2020-01-03T14:00:00Z",
)
if i % 10 == 0:
_create_event(
team=self.team,
event="low_sig_positively_related",
distinct_id=f"user_{i}",
timestamp="2020-01-03T14:20:00Z",
)
_create_event(
team=self.team, event="paid", distinct_id=f"user_{i}", timestamp="2020-01-04T14:00:00Z",
)
for i in range(10, 20):
_create_person(distinct_ids=[f"user_{i}"], team_id=self.team.pk)
_create_event(
team=self.team, event="user signed up", distinct_id=f"user_{i}", timestamp="2020-01-02T14:00:00Z",
)
if i % 2 == 0:
_create_event(
team=self.team,
event="negatively_related",
distinct_id=f"user_{i}",
timestamp="2020-01-03T14:00:00Z",
)
if i % 5 == 0:
_create_event(
team=self.team,
event="low_sig_negatively_related",
distinct_id=f"user_{i}",
timestamp="2020-01-03T14:00:00Z",
)
# Total 10 positive, 10 negative
# low sig count = 1 and 2, high sig count >= 5
# Thus, to discard the low sig count, % needs to be >= 10%, or count >= 2
# Discard both due to %
FunnelCorrelation.MIN_PERSON_PERCENTAGE = 0.11
FunnelCorrelation.MIN_PERSON_COUNT = 25
result = correlation._run()[0]
self.assertEqual(len(result), 2)
def test_events_within_conversion_window_for_correlation(self):
filters = {
"events": [
{"id": "user signed up", "type": "events", "order": 0},
{"id": "paid", "type": "events", "order": 1},
],
"insight": INSIGHT_FUNNELS,
"funnel_window_interval": "10",
"funnel_window_interval_unit": "minute",
"date_from": "2020-01-01",
"date_to": "2020-01-14",
"funnel_correlation_type": "events",
}
filter = Filter(data=filters)
correlation = FunnelCorrelation(filter, self.team)
_create_person(distinct_ids=["user_successful"], team_id=self.team.pk)
_create_event(
team=self.team, event="user signed up", distinct_id="user_successful", timestamp="2020-01-02T14:00:00Z",
)
_create_event(
team=self.team, event="positively_related", distinct_id="user_successful", timestamp="2020-01-02T14:02:00Z",
)
_create_event(
team=self.team, event="paid", distinct_id="user_successful", timestamp="2020-01-02T14:06:00Z",
)
_create_person(distinct_ids=["user_dropoff"], team_id=self.team.pk)
_create_event(
team=self.team, event="user signed up", distinct_id="user_dropoff", timestamp="2020-01-02T14:00:00Z",
)
_create_event(
team=self.team,
event="NOT_negatively_related",
distinct_id="user_dropoff",
timestamp="2020-01-02T14:15:00Z", # event happened outside conversion window
)
result = correlation._run()[0]
odds_ratios = [item.pop("odds_ratio") for item in result] # type: ignore
expected_odds_ratios = [4]
for odds, expected_odds in zip(odds_ratios, expected_odds_ratios):
self.assertAlmostEqual(odds, expected_odds)
self.assertEqual(
result,
[
{
"event": "positively_related",
"success_count": 1,
"failure_count": 0,
# "odds_ratio": 4.0,
"correlation_type": "success",
},
],
)
@test_with_materialized_columns(["blah", "signup_source"], verify_no_jsonextract=False)
def test_funnel_correlation_with_event_properties(self):
filters = {
"events": [
{"id": "user signed up", "type": "events", "order": 0},
{"id": "paid", "type": "events", "order": 1},
],
"insight": INSIGHT_FUNNELS,
"date_from": "2020-01-01",
"date_to": "2020-01-14",
"funnel_correlation_type": "event_with_properties",
"funnel_correlation_event_names": ["positively_related", "negatively_related"],
}
filter = Filter(data=filters)
correlation = FunnelCorrelation(filter, self.team)
for i in range(10):
_create_person(distinct_ids=[f"user_{i}"], team_id=self.team.pk)
_create_event(
team=self.team, event="user signed up", distinct_id=f"user_{i}", timestamp="2020-01-02T14:00:00Z",
)
if i % 2 == 0:
_create_event(
team=self.team,
event="positively_related",
distinct_id=f"user_{i}",
timestamp="2020-01-03T14:00:00Z",
properties={"signup_source": "facebook" if i % 4 == 0 else "email", "blah": "value_bleh"},
)
# source: email occurs only twice, so would be discarded from result set
_create_event(
team=self.team, event="paid", distinct_id=f"user_{i}", timestamp="2020-01-04T14:00:00Z",
)
for i in range(10, 20):
_create_person(distinct_ids=[f"user_{i}"], team_id=self.team.pk)
_create_event(
team=self.team, event="user signed up", distinct_id=f"user_{i}", timestamp="2020-01-02T14:00:00Z",
)
if i % 2 == 0:
_create_event(
team=self.team,
event="negatively_related",
distinct_id=f"user_{i}",
timestamp="2020-01-03T14:00:00Z",
properties={"signup_source": "shazam" if i % 6 == 0 else "email"},
)
# source: shazam occurs only once, so would be discarded from result set
result = correlation._run()[0]
odds_ratios = [item.pop("odds_ratio") for item in result] # type: ignore
expected_odds_ratios = [11, 5.5, 2 / 11]
for odds, expected_odds in zip(odds_ratios, expected_odds_ratios):
self.assertAlmostEqual(odds, expected_odds)
self.assertEqual(
result,
[
{
"event": "positively_related::blah::value_bleh",
"success_count": 5,
"failure_count": 0,
# "odds_ratio": 11.0,
"correlation_type": "success",
},
{
"event": "positively_related::signup_source::facebook",
"success_count": 3,
"failure_count": 0,
# "odds_ratio": 5.5,
"correlation_type": "success",
},
{
"event": "negatively_related::signup_source::email",
"success_count": 0,
"failure_count": 3,
# "odds_ratio": 0.18181818181818182,
"correlation_type": "failure",
},
],
)
self.assertEqual(len(self._get_people_for_event(filter, "positively_related", {"blah": "value_bleh"})), 5)
self.assertEqual(
len(self._get_people_for_event(filter, "positively_related", {"signup_source": "facebook"})), 3
)
self.assertEqual(
len(self._get_people_for_event(filter, "positively_related", {"signup_source": "facebook"}, False)), 0
)
self.assertEqual(
len(self._get_people_for_event(filter, "negatively_related", {"signup_source": "email"}, False)), 3
)
@test_with_materialized_columns(["blah", "signup_source"], verify_no_jsonextract=False)
@snapshot_clickhouse_queries
def test_funnel_correlation_with_event_properties_and_groups(self):
# same test as test_funnel_correlation_with_event_properties but with events attached to groups
GroupTypeMapping.objects.create(team=self.team, group_type="organization", group_type_index=1)
for i in range(10):
create_group(
team_id=self.team.pk, group_type_index=1, group_key=f"org:{i}", properties={"industry": "positive"}
)
_create_person(distinct_ids=[f"user_{i}"], team_id=self.team.pk)
_create_event(
team=self.team,
event="user signed up",
distinct_id=f"user_{i}",
timestamp="2020-01-02T14:00:00Z",
properties={"$group_1": f"org:{i}"},
)
if i % 2 == 0:
_create_event(
team=self.team,
event="positively_related",
distinct_id=f"user_{i}",
timestamp="2020-01-03T14:00:00Z",
properties={
"signup_source": "facebook" if i % 4 == 0 else "email",
"blah": "value_bleh",
"$group_1": f"org:{i}",
},
)
# source: email occurs only twice, so would be discarded from result set
_create_event(
team=self.team,
event="paid",
distinct_id=f"user_{i}",
timestamp="2020-01-04T14:00:00Z",
properties={"$group_1": f"org:{i}"},
)
for i in range(10, 20):
create_group(
team_id=self.team.pk, group_type_index=1, group_key=f"org:{i}", properties={"industry": "positive"}
)
_create_person(distinct_ids=[f"user_{i}"], team_id=self.team.pk)
_create_event(
team=self.team,
event="user signed up",
distinct_id=f"user_{i}",
timestamp="2020-01-02T14:00:00Z",
properties={"$group_1": f"org:{i}"},
)
if i % 2 == 0:
_create_event(
team=self.team,
event="negatively_related",
distinct_id=f"user_{i}",
timestamp="2020-01-03T14:00:00Z",
properties={"signup_source": "shazam" if i % 6 == 0 else "email", "$group_1": f"org:{i}"},
)
# source: shazam occurs only once, so would be discarded from result set
filters = {
"events": [
{"id": "user signed up", "type": "events", "order": 0},
{"id": "paid", "type": "events", "order": 1},
],
"insight": INSIGHT_FUNNELS,
"date_from": "2020-01-01",
"date_to": "2020-01-14",
"aggregation_group_type_index": 1,
"funnel_correlation_type": "event_with_properties",
"funnel_correlation_event_names": ["positively_related", "negatively_related"],
}
filter = Filter(data=filters)
correlation = FunnelCorrelation(filter, self.team)
result = correlation._run()[0]
odds_ratios = [item.pop("odds_ratio") for item in result] # type: ignore
expected_odds_ratios = [11, 5.5, 2 / 11]
for odds, expected_odds in zip(odds_ratios, expected_odds_ratios):
self.assertAlmostEqual(odds, expected_odds)
self.assertEqual(
result,
[
{
"event": "positively_related::blah::value_bleh",
"success_count": 5,
"failure_count": 0,
# "odds_ratio": 11.0,
"correlation_type": "success",
},
{
"event": "positively_related::signup_source::facebook",
"success_count": 3,
"failure_count": 0,
# "odds_ratio": 5.5,
"correlation_type": "success",
},
{
"event": "negatively_related::signup_source::email",
"success_count": 0,
"failure_count": 3,
# "odds_ratio": 0.18181818181818182,
"correlation_type": "failure",
},
],
)
def test_funnel_correlation_with_event_properties_exclusions(self):
filters = {
"events": [
{"id": "user signed up", "type": "events", "order": 0},
{"id": "paid", "type": "events", "order": 1},
],
"insight": INSIGHT_FUNNELS,
"date_from": "2020-01-01",
"date_to": "2020-01-14",
"funnel_correlation_type": "event_with_properties",
"funnel_correlation_event_names": ["positively_related"],
"funnel_correlation_event_exclude_property_names": ["signup_source"],
}
filter = Filter(data=filters)
correlation = FunnelCorrelation(filter, self.team)
# Need more than 2 events to get a correlation
for i in range(3):
_create_person(distinct_ids=[f"user_{i}"], team_id=self.team.pk)
_create_event(
team=self.team, event="user signed up", distinct_id=f"user_{i}", timestamp="2020-01-02T14:00:00Z",
)
_create_event(
team=self.team,
event="positively_related",
distinct_id=f"user_{i}",
timestamp="2020-01-03T14:00:00Z",
properties={"signup_source": "facebook", "blah": "value_bleh"},
)
_create_event(
team=self.team, event="paid", distinct_id=f"user_{i}", timestamp="2020-01-04T14:00:00Z",
)
# Atleast one person that fails, to ensure we get results
_create_person(distinct_ids=[f"user_fail"], team_id=self.team.pk)
_create_event(
team=self.team, event="user signed up", distinct_id=f"user_fail", timestamp="2020-01-02T14:00:00Z",
)
result = correlation._run()[0]
self.assertEqual(
result,
[
{
"event": "positively_related::blah::value_bleh",
"success_count": 3,
"failure_count": 0,
"odds_ratio": 8,
"correlation_type": "success",
},
# missing signup_source, as expected
],
)
self.assertEqual(len(self._get_people_for_event(filter, "positively_related", {"blah": "value_bleh"})), 3)
# If you search for persons with a specific property, even if excluded earlier, you should get them
self.assertEqual(
len(self._get_people_for_event(filter, "positively_related", {"signup_source": "facebook"})), 3
)
@test_with_materialized_columns(["$event_type", "signup_source"])
def test_funnel_correlation_with_event_properties_autocapture(self):
filters = {
"events": [
{"id": "user signed up", "type": "events", "order": 0},
{"id": "paid", "type": "events", "order": 1},
],
"insight": INSIGHT_FUNNELS,
"date_from": "2020-01-01",
"date_to": "2020-01-14",
"funnel_correlation_type": "event_with_properties",
"funnel_correlation_event_names": ["$autocapture"],
}
filter = Filter(data=filters)
correlation = FunnelCorrelation(filter, self.team)
# Need a minimum of 3 hits to get a correlation result
for i in range(6):
_create_person(distinct_ids=[f"user_{i}"], team_id=self.team.pk)
_create_event(
team=self.team, event="user signed up", distinct_id=f"user_{i}", timestamp="2020-01-02T14:00:00Z",
)
_create_event(
team=self.team,
event="$autocapture",
distinct_id=f"user_{i}",
elements=[Element(nth_of_type=1, nth_child=0, tag_name="a", href="/movie")],
timestamp="2020-01-03T14:00:00Z",
properties={"signup_source": "email", "$event_type": "click"},
)
# Test two different types of autocapture elements, with different counts, so we can accurately test results
if i % 2 == 0:
_create_event(
team=self.team,
event="$autocapture",
distinct_id=f"user_{i}",
elements=[Element(nth_of_type=1, nth_child=0, tag_name="button", text="Pay $10")],
timestamp="2020-01-03T14:00:00Z",
properties={"signup_source": "facebook", "$event_type": "submit"},
)
_create_event(
team=self.team, event="paid", distinct_id=f"user_{i}", timestamp="2020-01-04T14:00:00Z",
)
# Atleast one person that fails, to ensure we get results
_create_person(distinct_ids=[f"user_fail"], team_id=self.team.pk)
_create_event(
team=self.team, event="user signed up", distinct_id=f"user_fail", timestamp="2020-01-02T14:00:00Z",
)
result = correlation._run()[0]
# $autocapture results only return elements chain
self.assertEqual(
result,
[
{
"event": '$autocapture::elements_chain::click__~~__a:href="/movie"nth-child="0"nth-of-type="1"',
"success_count": 6,
"failure_count": 0,
"odds_ratio": 14.0,
"correlation_type": "success",
},
{
"event": '$autocapture::elements_chain::submit__~~__button:nth-child="0"nth-of-type="1"text="Pay $10"',
"success_count": 3,
"failure_count": 0,
"odds_ratio": 2.0,
"correlation_type": "success",
},
],
)
self.assertEqual(len(self._get_people_for_event(filter, "$autocapture", {"signup_source": "facebook"})), 3)
self.assertEqual(len(self._get_people_for_event(filter, "$autocapture", {"$event_type": "click"})), 6)
self.assertEqual(
len(
self._get_people_for_event(
filter,
"$autocapture",
[
{"key": "tag_name", "operator": "exact", "type": "element", "value": "button"},
{"key": "text", "operator": "exact", "type": "element", "value": "Pay $10"},
],
)
),
3,
)
self.assertEqual(
len(
self._get_people_for_event(
filter,
"$autocapture",
[
{"key": "tag_name", "operator": "exact", "type": "element", "value": "a"},
{"key": "href", "operator": "exact", "type": "element", "value": "/movie"},
],
)
),
6,
)
class TestCorrelationFunctions(unittest.TestCase):
def test_are_results_insignificant(self):
# Same setup as above test: test_discarding_insignificant_events
contingency_tables = [
EventContingencyTable(
event="negatively_related",
visited=EventStats(success_count=0, failure_count=5),
success_total=10,
failure_total=10,
),
EventContingencyTable(
event="positively_related",
visited=EventStats(success_count=5, failure_count=0),
success_total=10,
failure_total=10,
),
EventContingencyTable(
event="low_sig_negatively_related",
visited=EventStats(success_count=0, failure_count=2),
success_total=10,
failure_total=10,
),
EventContingencyTable(
event="low_sig_positively_related",
visited=EventStats(success_count=1, failure_count=0),
success_total=10,
failure_total=10,
),
]
# Discard both low_sig due to %
FunnelCorrelation.MIN_PERSON_PERCENTAGE = 0.11
FunnelCorrelation.MIN_PERSON_COUNT = 25
result = [
1
for contingency_table in contingency_tables
if not FunnelCorrelation.are_results_insignificant(contingency_table)
]
self.assertEqual(len(result), 2)
# Discard one low_sig due to %
FunnelCorrelation.MIN_PERSON_PERCENTAGE = 0.051
FunnelCorrelation.MIN_PERSON_COUNT = 25
result = [
1
for contingency_table in contingency_tables
if not FunnelCorrelation.are_results_insignificant(contingency_table)
]
self.assertEqual(len(result), 3)
# Discard both due to count
FunnelCorrelation.MIN_PERSON_PERCENTAGE = 0.5
FunnelCorrelation.MIN_PERSON_COUNT = 3
result = [
1
for contingency_table in contingency_tables
if not FunnelCorrelation.are_results_insignificant(contingency_table)
]
self.assertEqual(len(result), 2)
# Discard one due to count
FunnelCorrelation.MIN_PERSON_PERCENTAGE = 0.5
FunnelCorrelation.MIN_PERSON_COUNT = 2
result = [
1
for contingency_table in contingency_tables
if not FunnelCorrelation.are_results_insignificant(contingency_table)
]
self.assertEqual(len(result), 3)
# Discard everything due to %
FunnelCorrelation.MIN_PERSON_PERCENTAGE = 0.5
FunnelCorrelation.MIN_PERSON_COUNT = 100
result = [
1
for contingency_table in contingency_tables
if not FunnelCorrelation.are_results_insignificant(contingency_table)
]
self.assertEqual(len(result), 0)
# Discard everything due to count
FunnelCorrelation.MIN_PERSON_PERCENTAGE = 0.5
FunnelCorrelation.MIN_PERSON_COUNT = 6
result = [
1
for contingency_table in contingency_tables
if not FunnelCorrelation.are_results_insignificant(contingency_table)
]
self.assertEqual(len(result), 0)
| 39.662238
| 123
| 0.530441
| 5,938
| 56,717
| 4.82351
| 0.054227
| 0.039103
| 0.032679
| 0.049752
| 0.861113
| 0.840025
| 0.818937
| 0.805461
| 0.780742
| 0.754766
| 0
| 0.051861
| 0.343848
| 56,717
| 1,429
| 124
| 39.689993
| 0.717775
| 0.064249
| 0
| 0.667521
| 0
| 0.001709
| 0.197489
| 0.030816
| 0
| 0
| 0
| 0
| 0.055556
| 1
| 0.015385
| false
| 0
| 0.013675
| 0
| 0.034188
| 0
| 0
| 0
| 0
| null | 0
| 0
| 0
| 1
| 1
| 1
| 1
| 1
| 1
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| null | 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
|
0
| 6
|
42216e3109924961c75fd036232e1bdfd3fffa75
| 241
|
py
|
Python
|
RecoVertex/BeamSpotProducer/python/BeamSpotNominalCollision_IntDB_cff.py
|
ckamtsikis/cmssw
|
ea19fe642bb7537cbf58451dcf73aa5fd1b66250
|
[
"Apache-2.0"
] | 852
|
2015-01-11T21:03:51.000Z
|
2022-03-25T21:14:00.000Z
|
RecoVertex/BeamSpotProducer/python/BeamSpotNominalCollision_IntDB_cff.py
|
ckamtsikis/cmssw
|
ea19fe642bb7537cbf58451dcf73aa5fd1b66250
|
[
"Apache-2.0"
] | 30,371
|
2015-01-02T00:14:40.000Z
|
2022-03-31T23:26:05.000Z
|
RecoVertex/BeamSpotProducer/python/BeamSpotNominalCollision_IntDB_cff.py
|
ckamtsikis/cmssw
|
ea19fe642bb7537cbf58451dcf73aa5fd1b66250
|
[
"Apache-2.0"
] | 3,240
|
2015-01-02T05:53:18.000Z
|
2022-03-31T17:24:21.000Z
|
import FWCore.ParameterSet.Config as cms
from RecoVertex.BeamSpotProducer.BeamSpotNominalCollision_cfi import *
BeamSpotNominal.connect = 'frontier://cms_conditions_data/CMS_COND_20X_BEAMSPOT' ##cms_conditions_data/CMS_COND_20X_BEAMSPOT"
| 34.428571
| 125
| 0.86722
| 29
| 241
| 6.827586
| 0.655172
| 0.131313
| 0.171717
| 0.20202
| 0.353535
| 0.353535
| 0.353535
| 0
| 0
| 0
| 0
| 0.017699
| 0.062241
| 241
| 6
| 126
| 40.166667
| 0.858407
| 0.174274
| 0
| 0
| 0
| 0
| 0.266667
| 0.266667
| 0
| 0
| 0
| 0
| 0
| 1
| 0
| true
| 0
| 0.666667
| 0
| 0.666667
| 0
| 1
| 0
| 0
| null | 0
| 0
| 1
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 1
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| null | 0
| 0
| 0
| 0
| 0
| 0
| 1
| 0
| 1
| 0
| 1
| 0
|
0
| 6
|
423cfe0d6b5dd54f8f80ae0720cd6a5f989f59bc
| 224
|
py
|
Python
|
holobot/extensions/moderation/reactive/__init__.py
|
rexor12/holobot
|
89b7b416403d13ccfeee117ef942426b08d3651d
|
[
"MIT"
] | 1
|
2021-05-24T00:17:46.000Z
|
2021-05-24T00:17:46.000Z
|
holobot/extensions/moderation/reactive/__init__.py
|
rexor12/holobot
|
89b7b416403d13ccfeee117ef942426b08d3651d
|
[
"MIT"
] | 41
|
2021-03-24T22:50:09.000Z
|
2021-12-17T12:15:13.000Z
|
holobot/extensions/moderation/reactive/__init__.py
|
rexor12/holobot
|
89b7b416403d13ccfeee117ef942426b08d3651d
|
[
"MIT"
] | null | null | null |
from .log_on_moderation_command_used import LogOnModerationCommandUsed
from .log_on_moderation_menu_item_used import LogOnModerationMenuItemUsed
from .punish_on_enough_warns_accumulated import PunishOnEnoughWarnsAccumulated
| 56
| 78
| 0.933036
| 25
| 224
| 7.84
| 0.64
| 0.071429
| 0.091837
| 0.193878
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0.053571
| 224
| 3
| 79
| 74.666667
| 0.924528
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 1
| 0
| true
| 0
| 1
| 0
| 1
| 0
| 1
| 0
| 0
| null | 0
| 0
| 1
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 1
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| null | 0
| 0
| 0
| 0
| 0
| 0
| 1
| 0
| 1
| 0
| 1
| 0
|
0
| 6
|
4289367c645608f84ff4da465338d39173dda85c
| 142
|
py
|
Python
|
plugins/jinja2/date.py
|
Saevon/saevon.github.io
|
65609f9902740d6b873e4b5c5e8c295c9a0b62cb
|
[
"MIT"
] | null | null | null |
plugins/jinja2/date.py
|
Saevon/saevon.github.io
|
65609f9902740d6b873e4b5c5e8c295c9a0b62cb
|
[
"MIT"
] | null | null | null |
plugins/jinja2/date.py
|
Saevon/saevon.github.io
|
65609f9902740d6b873e4b5c5e8c295c9a0b62cb
|
[
"MIT"
] | null | null | null |
#!/usr/bin/python
# -*- coding: UTF-8 -*-
from __future__ import unicode_literals
def date_to_xmlschema(date):
return date.isoformat()
| 15.777778
| 39
| 0.711268
| 19
| 142
| 4.947368
| 0.894737
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0.008264
| 0.147887
| 142
| 8
| 40
| 17.75
| 0.768595
| 0.267606
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 1
| 0.333333
| false
| 0
| 0.333333
| 0.333333
| 1
| 0
| 1
| 0
| 0
| null | 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 1
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| null | 0
| 0
| 0
| 0
| 0
| 1
| 0
| 0
| 1
| 1
| 1
| 0
|
0
| 6
|
429c9ed0be93699a5978fdb2eeec5435608be410
| 22
|
py
|
Python
|
dashboard/influxs/__init__.py
|
mr2cef/open_data_tyrol
|
87ff1d8e00b65c26995c9ed3fa69be1a8698746c
|
[
"MIT"
] | 1
|
2021-08-20T18:17:41.000Z
|
2021-08-20T18:17:41.000Z
|
dashboard/influxs/__init__.py
|
mr2cef/open_data_tyrol
|
87ff1d8e00b65c26995c9ed3fa69be1a8698746c
|
[
"MIT"
] | null | null | null |
dashboard/influxs/__init__.py
|
mr2cef/open_data_tyrol
|
87ff1d8e00b65c26995c9ed3fa69be1a8698746c
|
[
"MIT"
] | null | null | null |
from ._influx import *
| 22
| 22
| 0.772727
| 3
| 22
| 5.333333
| 1
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0.136364
| 22
| 1
| 22
| 22
| 0.842105
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 1
| 0
| true
| 0
| 1
| 0
| 1
| 0
| 1
| 1
| 0
| null | 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 1
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| null | 0
| 0
| 0
| 0
| 0
| 0
| 1
| 0
| 1
| 0
| 1
| 0
|
0
| 6
|
42a764e5d0d39f5967ebdc4e38d7dcdb6db5fad4
| 67
|
py
|
Python
|
Python/imports/test.py
|
elaelheni/INF5190-H22
|
51f29399fd865b6a8de7dc65865fd1a99b9e5664
|
[
"Apache-2.0"
] | 2
|
2022-02-14T21:19:01.000Z
|
2022-03-25T04:32:18.000Z
|
Python/imports/test.py
|
elaelheni/INF5190-H22
|
51f29399fd865b6a8de7dc65865fd1a99b9e5664
|
[
"Apache-2.0"
] | null | null | null |
Python/imports/test.py
|
elaelheni/INF5190-H22
|
51f29399fd865b6a8de7dc65865fd1a99b9e5664
|
[
"Apache-2.0"
] | 3
|
2022-02-20T16:34:09.000Z
|
2022-03-23T01:55:13.000Z
|
def test():
print("je teste des trucs")
test()
print(__name__)
| 13.4
| 31
| 0.656716
| 10
| 67
| 4
| 0.8
| 0.45
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0.179104
| 67
| 5
| 32
| 13.4
| 0.727273
| 0
| 0
| 0
| 0
| 0
| 0.264706
| 0
| 0
| 0
| 0
| 0
| 0
| 1
| 0.25
| true
| 0
| 0
| 0
| 0.25
| 0.5
| 1
| 0
| 0
| null | 1
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 1
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| null | 0
| 0
| 0
| 0
| 0
| 1
| 1
| 0
| 0
| 0
| 0
| 1
|
0
| 6
|
35ebe747c5dfe75209f7d1cb306d0f4ceb925048
| 27
|
py
|
Python
|
src/euler_python_package/euler_python/medium/p417.py
|
wilsonify/euler
|
5214b776175e6d76a7c6d8915d0e062d189d9b79
|
[
"MIT"
] | null | null | null |
src/euler_python_package/euler_python/medium/p417.py
|
wilsonify/euler
|
5214b776175e6d76a7c6d8915d0e062d189d9b79
|
[
"MIT"
] | null | null | null |
src/euler_python_package/euler_python/medium/p417.py
|
wilsonify/euler
|
5214b776175e6d76a7c6d8915d0e062d189d9b79
|
[
"MIT"
] | null | null | null |
def problem417():
pass
| 9
| 17
| 0.62963
| 3
| 27
| 5.666667
| 1
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0.15
| 0.259259
| 27
| 2
| 18
| 13.5
| 0.7
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 1
| 0.5
| true
| 0.5
| 0
| 0
| 0.5
| 0
| 1
| 1
| 0
| null | 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 1
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| null | 0
| 0
| 0
| 0
| 0
| 1
| 1
| 1
| 0
| 0
| 0
| 0
|
0
| 6
|
35f46cd5096216a052cdf792b0f06bfef3f9d55c
| 86
|
py
|
Python
|
hypergeo/utils/__init__.py
|
jsleb333/hypergeometric_tail_inversion
|
7141d2bfec97f8d2e162a389531f01ce6e931b7c
|
[
"MIT"
] | null | null | null |
hypergeo/utils/__init__.py
|
jsleb333/hypergeometric_tail_inversion
|
7141d2bfec97f8d2e162a389531f01ce6e931b7c
|
[
"MIT"
] | null | null | null |
hypergeo/utils/__init__.py
|
jsleb333/hypergeometric_tail_inversion
|
7141d2bfec97f8d2e162a389531f01ce6e931b7c
|
[
"MIT"
] | null | null | null |
from hypergeo.utils.utils import *
from hypergeo.utils.func_to_cmd import func_to_cmd
| 28.666667
| 50
| 0.848837
| 15
| 86
| 4.6
| 0.466667
| 0.347826
| 0.492754
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0.093023
| 86
| 2
| 51
| 43
| 0.884615
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 1
| 0
| true
| 0
| 1
| 0
| 1
| 0
| 1
| 0
| 0
| null | 1
| 1
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 1
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| null | 0
| 0
| 0
| 0
| 0
| 0
| 1
| 0
| 1
| 0
| 0
| 0
|
0
| 6
|
c40628b13a0f5a436b98498b7e662b20f50df183
| 30
|
py
|
Python
|
strym/multimode/__init__.py
|
jmscslgroup/canviz
|
27a43277b4f8b265d2fd9961cade26fbf0415a45
|
[
"Unlicense"
] | 7
|
2020-02-13T06:44:11.000Z
|
2022-01-31T00:43:55.000Z
|
strym/multimode/__init__.py
|
jmscslgroup/canviz
|
27a43277b4f8b265d2fd9961cade26fbf0415a45
|
[
"Unlicense"
] | 27
|
2020-03-31T23:11:29.000Z
|
2022-03-30T00:09:19.000Z
|
strym/multimode/__init__.py
|
jmscslgroup/canviz
|
27a43277b4f8b265d2fd9961cade26fbf0415a45
|
[
"Unlicense"
] | 6
|
2020-03-11T18:19:31.000Z
|
2022-01-24T23:13:43.000Z
|
from .platoons import platoons
| 30
| 30
| 0.866667
| 4
| 30
| 6.5
| 0.75
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0.1
| 30
| 1
| 30
| 30
| 0.962963
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 1
| 0
| true
| 0
| 1
| 0
| 1
| 0
| 1
| 1
| 0
| null | 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 1
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| null | 0
| 0
| 0
| 0
| 0
| 0
| 1
| 0
| 1
| 0
| 1
| 0
|
0
| 6
|
c4126b19471973090ef62013fc115832e9e22228
| 19,988
|
py
|
Python
|
src/.ipynb_checkpoints/losses-checkpoint.py
|
pherrusa7/Traffic4cast_NeurIPS_2019
|
a5f1ce2bdbf116d29bd6b7810e164f895a30997e
|
[
"Apache-2.0"
] | 2
|
2020-07-26T20:55:42.000Z
|
2020-07-28T22:35:22.000Z
|
src/losses.py
|
pherrusa7/Traffic4cast_NeurIPS_2019
|
a5f1ce2bdbf116d29bd6b7810e164f895a30997e
|
[
"Apache-2.0"
] | 1
|
2021-09-14T07:15:36.000Z
|
2021-09-14T07:15:36.000Z
|
src/.ipynb_checkpoints/losses-checkpoint.py
|
pherrusa7/Traffic4cast_NeurIPS_2019
|
a5f1ce2bdbf116d29bd6b7810e164f895a30997e
|
[
"Apache-2.0"
] | 1
|
2020-05-28T08:26:06.000Z
|
2020-05-28T08:26:06.000Z
|
import os
from keras import models, activations, losses, optimizers
from keras import backend as K
import numpy as np
from src.data import get_generators, format_bytes, data_postprocess, data_preprocess, exchange_HEADING, vec2tensor
from src.data import write_data, create_directory_structure, data_2_submission_format
EXTRA_DATA_MODEL, EXTRA_DATA_MODELwIN, RAEwSCwWSwINwCLF = "RAE_w_SC_WS", "RAE_w_SC_WS_wIN", "RAEwSCwWSwINwCLF"
###################################################### LOSS DEFINITIONS
def softmax_axis(axis=2):
""" axis=2 refers to dim=5 in tensor [None, 3, 5, 495, 436] """
def soft(x):
return activations.softmax(x, axis=axis)
return soft
def cross_entropy_with_axis(axis_softmax=2):
def ce_axis(y_true, y_pred):
return K.categorical_crossentropy(y_true, y_pred, axis=axis_softmax)
return ce_axis
def get_recurrent_embedding_loss(y_true_z, y_pred_z, loss_weights):
def r_emb_loss(y_true, y_pred):
""" Embedding loss """
return loss_weights['predicted_emb']*losses.mean_squared_error(y_true_z, y_pred_z)
return r_emb_loss
def loss_with_latent_term(y_true_z, y_pred_z, loss_weights={'predicted_frames':1., 'predicted_emb':1.}):
""" returns a loss function that takes into account 2 terms:
1. predicted vs. true loss
2. latent space manifold
input:
y_true_z : latent representation of future frames
y_pred_z : latent prediction of current frames into the future
"""
def seq2seq_recurrent_loss(y_true, y_pred):
# Reconstruction loss
predicted_frames_loss = losses.mean_squared_error(y_true, y_pred)
# Embedding loss
predicted_emb_loss = losses.mean_squared_error(y_true_z, y_pred_z)
print('y_true:', y_true.shape, 'y_pred:', y_pred.shape)
print('y_true_z:', y_true_z.shape, 'y_pred_z:', y_pred_z.shape)
print('predicted_frames_loss:', predicted_frames_loss.shape, 'predicted_emb_loss:', predicted_emb_loss.shape)
return loss_weights['predicted_frames']*predicted_frames_loss #+ loss_weights['predicted_emb']*predicted_emb_loss
return seq2seq_recurrent_loss
def loss_with_latent_term_2(y_true_z, y_pred_z, loss_weights):
""" returns a loss function that takes into account 2 terms:
1. predicted vs. true loss
2. latent space manifold
input:
y_true_z : latent representation of future frames
y_pred_z : latent prediction of current frames into the future
"""
def seq2seq_recurrent_loss(y_true, y_pred):
# Reconstruction loss
predicted_frames_loss = K.mean(losses.mean_squared_error(y_true, y_pred))
# Embedding loss
predicted_emb_loss = K.mean(losses.mean_squared_error(y_true_z, y_pred_z))
return loss_weights['predicted_frames']*predicted_frames_loss + loss_weights['predicted_emb']*predicted_emb_loss
return seq2seq_recurrent_loss
###################################################### METRIC DEFINITIONS
def MSE(x, y):
""" MSE pixel-wise, preserving time-slots and channels
input shape example: (48, 3, 3, 495, 436), first 3 is the number of time-slots, last three is the number of channels
output shape example: (3, 3)
"""
return np.mean((x-y)**2, axis=(0, -1, -2))
def add_info(mse):
mean = np.vstack((np.asarray([[' Speed ', ' Volume ', ' Heading ']]), mse.mean(axis=0)))
mean = np.hstack((np.asarray([[' ', ' 5 minutes', '10 minutes', '15 minutes']]).T, mean))
return mean
def print_eval(city, mse, mse_server, log_path):
print('city:', city, 'shape:', mse.shape)
print('mean mse:', mse.mean())
print(add_info(mse))
print('-----------------------------')
print('mean mse like submission:', mse_server.mean())
print(add_info(mse_server))
# save all info as .npy
np.save(log_path + city+'_mse_val.npy', mse)
np.save(log_path + city+'_mse_server_val.npy', mse_server)
# save mean by days info as csv for easy access
np.savetxt(log_path + city+'_mse_val.csv', add_info(mse), delimiter=",", fmt='%s')
np.savetxt(log_path + city+'_mse_server_val.csv', add_info(mse_server), delimiter=",", fmt='%s')
def save_y_hat(y, y_hat):
np.save('/home/pherruzo/projects/nips_traffic/models/y', y)
np.save('/home/pherruzo/projects/nips_traffic/models/y_hat', y_hat)
def model_evaluate(dataset, model, log_path, city, model_type, mask_path='/home/pherruzo/projects/nips_traffic/models/'):
# Use a mask to make zero areas where no road pass-through
binary_mask = np.moveaxis(np.load(mask_path+city+'_mask.npy'), -1, -3) # channels first
binary_mask = np.expand_dims(np.expand_dims(binary_mask, axis=0), axis=0) # create dimension for samples and time-slots
city_days_mse, city_days_mse_server = [], []
city_days_mse_server_clf, heading_acc, heading_acc_clf = [], [], []
total_batches = len(dataset)
conv_and_clf, exchange_heading_for_last_seen_heading = "ConvLSTM+Clf", False
clf_as_heading = False
for i, sample in enumerate(dataset):
print("Evaluating time-bin/time-slot batch {}/{}".format(i+1, total_batches))
######## load data
if model_type in ["ConvLSTM", "ConvLSTM+Clf"]:
x, y, sample_weights = sample[0], sample[1]['convlstm_3'], sample[2]
elif model_type in [EXTRA_DATA_MODEL, EXTRA_DATA_MODELwIN ]:#=='RAE_w_SC_WS':
x, y, sample_weights = sample[0], sample[1]['Concat_predicted_frames'], sample[2]
x['future_frames'] = x['prev_frames'][:, -3:] # take the last three
elif model_type in [RAEwSCwWSwINwCLF]:
x, y, sample_weights = sample[0], sample[1], sample[2]
x['future_frames'] = x['prev_frames'][:, -3:] # take the last three
y_clf = y['softmax_clf']
y = y['Concat_predicted_frames']
clf_as_heading = True
else:
x, y, sample_weights = sample[0]['prev_frames'], sample[1]['Concat_predicted_frames'], sample[2]
# extra data depending on model
if model_type == conv_and_clf: #ConvLSTM
y_clf = sample[1]['softmax_clf']
clf_as_heading = True
######## predict and compute mse
if model_type == conv_and_clf: #ConvLSTM
y_hat, y_hat_clf = model.predict(x)
elif model_type == 'RAE_w_SC':
y_hat = model.predict([x, x])
# put in the same shape as all models
y_hat = np.transpose(y_hat, (0, 1, 4, 2, 3))
y = np.transpose(y, (0, 1, 4, 2, 3))
elif model_type in [EXTRA_DATA_MODEL, EXTRA_DATA_MODELwIN ]:#=='RAE_w_SC_WS':
y_hat = model.predict(x)
# put in the same shape as all models (sadly it means channel first)
y_hat = np.transpose(y_hat, (0, 1, 4, 2, 3))
y = np.transpose(y, (0, 1, 4, 2, 3))
elif model_type in [RAEwSCwWSwINwCLF]:
y_hat, y_hat_clf = model.predict(x)
# put in the same shape as all models (sadly it means channel first)
y_hat = np.transpose(y_hat, (0, 1, 4, 2, 3))
y = np.transpose(y, (0, 1, 4, 2, 3))
else:
y_hat = model.predict(x)
if exchange_heading_for_last_seen_heading:
# from the last frame in the sequence, get heading
heading_last_frame = x[:, -1, -1]
heading_last_frame = np.moveaxis(np.array([heading_last_frame, heading_last_frame, heading_last_frame]), 0, 1)
# assign it as the heading for all predicted frames
y_hat[:, :, -1] = heading_last_frame
mse = MSE(y_hat, y)
city_days_mse.append(mse)
###################### imitate evaluation in server to compute mse
# 1. save output in range 0, 255 (integer)
y_hat = data_postprocess(y_hat, binary_mask)
#save_y_hat(y, y_hat)
# 1. load input and rescale to 0, 1 (float)
y_hat = data_preprocess(y_hat)
mse = MSE(y_hat, y)
city_days_mse_server.append(mse)
# compute acc for the heading channel
heading_acc.append((np.sum(y[:,:,-1]==y_hat[:,:,-1]))/y[:,:,-1].size)
# print("Acc y_hat:", np.sum(y[:,:,-1]==y_hat[:,:,-1])/y[:,:,-1].size, "rmse:", np.mean((y[:,:,-1]-y_hat[:,:,-1])**2), mse.mean())
###################### compute mse with clf
if clf_as_heading: #ConvLSTM
# transform HEADING vector to image and exchange HEADING dimension
y_hat_clf = vec2tensor(y_hat_clf)
y_hat_clf = exchange_HEADING(y_hat.copy(), y_hat_clf)
mse = MSE(y_hat_clf, y)
city_days_mse_server_clf.append(mse)
# compute acc for the heading channel
heading_acc_clf.append((np.sum(y[:,:,-1]==y_hat_clf[:,:,-1]))/y_hat_clf[:,:,-1].size)
# print("Acc y_hat_clf:", np.sum(y[:,:,-1]==y_hat_clf[:,:,-1])/y_hat_clf[:,:,-1].size, "rmse:", np.mean((y[:,:,-1]-y_hat_clf[:,:,-1])**2), mse.mean())
# return y_hat, y_hat_clf, x, y, y_clf
# convert arrays to numpy
city_days_mse, city_days_mse_server = np.asarray(city_days_mse), np.asarray(city_days_mse_server)
print_eval(city, city_days_mse, city_days_mse_server, log_path)
if clf_as_heading:
city_days_mse_server_clf = np.asarray(city_days_mse_server_clf)
print('-----------------------------')
print('mean mse with HEADING as clf:', city_days_mse_server_clf.mean())
print(add_info(city_days_mse_server_clf))
print("=========") # we compute average of average since all batches have the same number of samples (mb except the last one)
print("Acc y_hat in HEADING:", np.asarray(heading_acc).mean())
if clf_as_heading:
print("Acc y_hat_clf in HEADING:", np.asarray(heading_acc_clf).mean())
###################################################### OUTPUT FILES GENERATION
def write_submission_files(dataset, model, output_path, city, model_type, mask_path='/home/pherruzo/projects/nips_traffic/models/'):
create_directory_structure(output_path, city)
# Use a mask to make zero areas where no road pass-through
binary_mask = np.moveaxis(np.load(mask_path+city+'_mask.npy'), -1, -3) # channels first
binary_mask = np.expand_dims(np.expand_dims(binary_mask, axis=0), axis=0) # create dimension for samples and time-slots
# params
total_batches = len(dataset)
conv_and_clf, exchange_heading_for_last_seen_heading, use_clf_as_heading = "ConvLSTM+Clf", False, False
for i, sample in enumerate(dataset):
# get name of the file and data
f = sample[1]
sample = sample[0]
# 1. load data
if model_type in ["ConvLSTM", "ConvLSTM+Clf"]:
x, y, sample_weights = sample[0], sample[1]['convlstm_3'], sample[2]
elif model_type in [EXTRA_DATA_MODEL, EXTRA_DATA_MODELwIN ]:#=='RAE_w_SC_WS':
x, y, sample_weights = sample[0], sample[1]['Concat_predicted_frames'], sample[2]
x['future_frames'] = x['prev_frames'][:, -3:] # take the last three
elif model_type in [RAEwSCwWSwINwCLF]:
x, y, sample_weights = sample[0], sample[1], sample[2]
x['future_frames'] = x['prev_frames'][:, -3:] # take the last three
y_clf = y['softmax_clf']
y = y['Concat_predicted_frames']
clf_as_heading = True
else:
x, y, sample_weights = sample[0]['prev_frames'], sample[1]['Concat_predicted_frames'], sample[2]
# extra data depending on model
if model_type == conv_and_clf: #ConvLSTM
y_clf = sample[1]['softmax_clf']
clf_as_heading = True
# 2. predict and compute mse
if model_type == conv_and_clf: #ConvLSTM
y_hat, y_hat_clf = model.predict(x)
elif model_type == 'RAE_w_SC':
y_hat = model.predict([x, x])
# put in the same shape as all models
y_hat = np.transpose(y_hat, (0, 1, 4, 2, 3))
y = np.transpose(y, (0, 1, 4, 2, 3))
elif model_type in [EXTRA_DATA_MODEL, EXTRA_DATA_MODELwIN ]:#=='RAE_w_SC_WS':
y_hat = model.predict(x)
# put in the same shape as all models (sadly it means channel first)
y_hat = np.transpose(y_hat, (0, 1, 4, 2, 3))
y = np.transpose(y, (0, 1, 4, 2, 3))
elif model_type in [RAEwSCwWSwINwCLF]:
y_hat, y_hat_clf = model.predict(x)
# put in the same shape as all models (sadly it means channel first)
y_hat = np.transpose(y_hat, (0, 1, 4, 2, 3))
y = np.transpose(y, (0, 1, 4, 2, 3))
else:
y_hat = model.predict(x)
###################### different heading predictions
if exchange_heading_for_last_seen_heading:
# from the last frame in the sequence, get heading
heading_last_frame = x[:, -1, -1]
heading_last_frame = np.moveaxis(np.array([heading_last_frame, heading_last_frame, heading_last_frame]), 0, 1)
# assign it as the heading for all predicted frames
y_hat[:, :, -1] = heading_last_frame
print("Using last known heading for prediction")
if use_clf_as_heading: #ConvLSTM
# transform HEADING vector to image and exchange HEADING dimension
y_hat_clf = vec2tensor(y_hat_clf)
y_hat = exchange_HEADING(y_hat.copy(), y_hat_clf)
print("Using clf as heading")
# 3. transform data into submission format
y_hat = data_2_submission_format(y_hat, binary_mask)
# 4. generate output file path
outfile = os.path.join(output_path, city, city+'_test', f.split('/')[-1])
write_data(y_hat, outfile)
print("City:{}, just wrote file {}/{}: {}".format(city, i+1, total_batches, outfile))
def write_submission_files_bu(dataset, model, output_path, city, model_type, mask_path='/home/pherruzo/projects/nips_traffic/models/'):
create_directory_structure(output_path, city)
# Use a mask to make zero areas where no road pass-through
binary_mask = np.moveaxis(np.load(mask_path+city+'_mask.npy'), -1, -3) # channels first
binary_mask = np.expand_dims(np.expand_dims(binary_mask, axis=0), axis=0) # create dimension for samples and time-slots
# params
total_batches = len(dataset)
conv_and_clf, exchange_heading_for_last_seen_heading, use_clf_as_heading = "ConvLSTM+Clf", False, False
for i, sample in enumerate(dataset):
# get name of the file and data
f = sample[1]
sample = sample[0]
# 1. load data
if model_type in ["ConvLSTM", "ConvLSTM+Clf"]:
x, y, sample_weights = sample[0], sample[1]['convlstm_3'], sample[2]
elif model_type in [EXTRA_DATA_MODEL, EXTRA_DATA_MODELwIN ]:#=='RAE_w_SC_WS':
x, y, sample_weights = sample[0], sample[1]['Concat_predicted_frames'], sample[2]
x['future_frames'] = x['prev_frames'][:, -3:] # take the last three
else:
x, y, sample_weights = sample[0]['prev_frames'], sample[1]['Concat_predicted_frames'], sample[2]
# extra data depending on model
if model_type == conv_and_clf: #ConvLSTM
y_clf = sample[1]['softmax_clf']
# 2. predict and compute mse
if model_type == conv_and_clf: #ConvLSTM
y_hat, y_hat_clf = model.predict(x)
elif model_type == 'RAE_w_SC':
y_hat = model.predict([x, x])
# put in the same shape as all models
y_hat = np.transpose(y_hat, (0, 1, 4, 2, 3))
y = np.transpose(y, (0, 1, 4, 2, 3))
elif model_type in [EXTRA_DATA_MODEL, EXTRA_DATA_MODELwIN ]:#=='RAE_w_SC_WS':
y_hat = model.predict(x)
# put in the same shape as all models (sadly it means channel first)
y_hat = np.transpose(y_hat, (0, 1, 4, 2, 3))
y = np.transpose(y, (0, 1, 4, 2, 3))
else:
y_hat = model.predict(x)
###################### different heading predictions
if exchange_heading_for_last_seen_heading:
# from the last frame in the sequence, get heading
heading_last_frame = x[:, -1, -1]
heading_last_frame = np.moveaxis(np.array([heading_last_frame, heading_last_frame, heading_last_frame]), 0, 1)
# assign it as the heading for all predicted frames
y_hat[:, :, -1] = heading_last_frame
print("Using last known heading for prediction")
if use_clf_as_heading: #ConvLSTM
# transform HEADING vector to image and exchange HEADING dimension
y_hat_clf = vec2tensor(y_hat_clf)
y_hat = exchange_HEADING(y_hat.copy(), y_hat_clf)
print("Using clf as heading")
# 3. transform data into submission format
y_hat = data_2_submission_format(y_hat, binary_mask)
# 4. generate output file path
outfile = os.path.join(output_path, city, city+'_test', f.split('/')[-1])
write_data(y_hat, outfile)
print("City:{}, just wrote file {}/{}: {}".format(city, i+1, total_batches, outfile))
def write_submission_files_backup(dataset, model, output_path, city, model_type, mask_path='/home/pherruzo/projects/nips_traffic/models/'):
create_directory_structure(output_path, city)
# Use a mask to make zero areas where no road pass-through
binary_mask = np.moveaxis(np.load(mask_path+city+'_mask.npy'), -1, -3) # channels first
binary_mask = np.expand_dims(np.expand_dims(binary_mask, axis=0), axis=0) # create dimension for samples and time-slots
# params
total_batches = len(dataset)
conv_and_clf, exchange_heading_for_last_seen_heading, use_clf_as_heading = "ConvLSTM+Clf", False, False
for i, sample in enumerate(dataset):
# get name of the file and data
f = sample[1]
sample = sample[0]
# 1. load data
x, y, sample_weights = sample[0], sample[1]['convlstm_3'], sample[2]
if model_type == conv_and_clf:
y_clf = sample[1]['softmax_clf']
# 2. predict
if model_type == conv_and_clf: #ConvLSTM
y_hat, y_hat_clf = model.predict(x)
else:
y_hat = model.predict(x)
###################### different heading predictions
if exchange_heading_for_last_seen_heading:
# from the last frame in the sequence, get heading
heading_last_frame = x[:, -1, -1]
heading_last_frame = np.moveaxis(np.array([heading_last_frame, heading_last_frame, heading_last_frame]), 0, 1)
# assign it as the heading for all predicted frames
y_hat[:, :, -1] = heading_last_frame
print("Using last known heading for prediction")
if use_clf_as_heading: #ConvLSTM
# transform HEADING vector to image and exchange HEADING dimension
y_hat_clf = vec2tensor(y_hat_clf)
y_hat = exchange_HEADING(y_hat.copy(), y_hat_clf)
print("Using clf as heading")
# 3. transform data into submission format
y_hat = data_2_submission_format(y_hat, binary_mask)
# 4. generate output file path
outfile = os.path.join(output_path, city, city+'_test', f.split('/')[-1])
write_data(y_hat, outfile)
print("City:{}, just wrote file {}/{}: {}".format(city, i+1, total_batches, outfile))
| 45.844037
| 162
| 0.611817
| 2,831
| 19,988
| 4.054398
| 0.091134
| 0.034152
| 0.017076
| 0.005576
| 0.825666
| 0.807284
| 0.770692
| 0.759453
| 0.744468
| 0.733142
| 0
| 0.01842
| 0.258505
| 19,988
| 436
| 163
| 45.844037
| 0.756022
| 0.210126
| 0
| 0.7
| 0
| 0
| 0.114673
| 0.035012
| 0
| 0
| 0
| 0
| 0
| 1
| 0.072
| false
| 0
| 0.024
| 0.008
| 0.144
| 0.108
| 0
| 0
| 0
| null | 0
| 0
| 0
| 1
| 1
| 1
| 1
| 1
| 1
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| null | 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
|
0
| 6
|
c41d7085147719fade92e11c3f455536f228184e
| 35
|
py
|
Python
|
granite/__init__.py
|
raplonu/granite
|
b11c3ff89c983d35bcd8fa793ffb704e6f2d38ab
|
[
"MIT"
] | null | null | null |
granite/__init__.py
|
raplonu/granite
|
b11c3ff89c983d35bcd8fa793ffb704e6f2d38ab
|
[
"MIT"
] | null | null | null |
granite/__init__.py
|
raplonu/granite
|
b11c3ff89c983d35bcd8fa793ffb704e6f2d38ab
|
[
"MIT"
] | null | null | null |
from .command.app import GraniteApp
| 35
| 35
| 0.857143
| 5
| 35
| 6
| 1
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0.085714
| 35
| 1
| 35
| 35
| 0.9375
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 1
| 0
| true
| 0
| 1
| 0
| 1
| 0
| 1
| 1
| 0
| null | 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 1
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| null | 0
| 0
| 0
| 0
| 0
| 0
| 1
| 0
| 1
| 0
| 1
| 0
|
0
| 6
|
c422e9b2334907d07b27bc1aff950ef656b95adf
| 1,488
|
py
|
Python
|
coral/analysis/_sequencing/substitution_matrices/dna.py
|
klavinslab/coral
|
17f59591211562a59a051f474cd6cecba4829df9
|
[
"MIT"
] | 34
|
2015-12-26T22:13:51.000Z
|
2021-11-17T11:46:37.000Z
|
coral/analysis/_sequencing/substitution_matrices/dna.py
|
klavinslab/coral
|
17f59591211562a59a051f474cd6cecba4829df9
|
[
"MIT"
] | 13
|
2015-09-11T23:27:51.000Z
|
2018-06-25T20:44:28.000Z
|
coral/analysis/_sequencing/substitution_matrices/dna.py
|
klavinslab/coral
|
17f59591211562a59a051f474cd6cecba4829df9
|
[
"MIT"
] | 14
|
2015-10-08T17:08:48.000Z
|
2022-02-22T04:25:54.000Z
|
import numpy as np
from .substitution_matrix import SubstitutionMatrix
DNA = SubstitutionMatrix(
np.array([[5, -4, -4, -4, -4, 1, 1, -4, -4, 1, -4, -1, -1, -1, -2, -4],
[-4, 5, -4, -4, -4, 1, -4, 1, 1, -4, -1, -4, -1, -1, -2, 5],
[-4, -4, 5, -4, 1, -4, 1, -4, 1, -4, -1, -1, -4, -1, -2, -4],
[-4, -4, -4, 5, 1, -4, -4, 1, -4, 1, -1, -1, -1, -4, -2, -4],
[-4, -4, 1, 1, -1, -4, -2, -2, -2, -2, -1, -1, -3, -3, -1,
-4],
[1, 1, -4, -4, -4, -1, -2, -2, -2, -2, -3, -3, -1, -1, -1, 1],
[1, -4, 1, -4, -2, -2, -1, -4, -2, -2, -3, -1, -3, -1, -1,
-4],
[-4, 1, -4, 1, -2, -2, -4, -1, -2, -2, -1, -3, -1, -3, -1, 1],
[-4, 1, 1, -4, -2, -2, -2, -2, -1, -4, -1, -3, -3, -1, -1, 1],
[1, -4, -4, 1, -2, -2, -2, -2, -4, -1, -3, -1, -1, -3, -1,
-4],
[-4, -1, -1, -1, -1, -3, -3, -1, -1, -3, -1, -2, -2, -2, -1,
-1],
[-1, -4, -1, -1, -1, -3, -1, -3, -3, -1, -2, -1, -2, -2, -1,
-4],
[-1, -1, -4, -1, -3, -1, -3, -1, -3, -1, -2, -2, -1, -2, -1,
-1],
[-1, -1, -1, -4, -3, -1, -1, -3, -1, -3, -2, -2, -2, -1, -1,
-1],
[-2, -2, -2, -2, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1,
-2],
[-4, 5, -4, -4, -4, 1, -4, 1, 1, -4, -1, -4, -1, -1, -2, 5]]),
'ATGCSWRYKMBVHDNU')
| 48
| 76
| 0.24328
| 270
| 1,488
| 1.337037
| 0.059259
| 0.288089
| 0.216066
| 0.166205
| 0.626039
| 0.445983
| 0.288089
| 0.207756
| 0.119114
| 0.119114
| 0
| 0.290909
| 0.408602
| 1,488
| 30
| 77
| 49.6
| 0.119318
| 0
| 0
| 0.25
| 0
| 0
| 0.010753
| 0
| 0
| 0
| 0
| 0
| 0
| 1
| 0
| false
| 0
| 0.071429
| 0
| 0.071429
| 0
| 0
| 0
| 1
| null | 1
| 1
| 1
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 1
| 0
| 0
| 0
| 0
| 0
| 1
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| null | 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
|
0
| 6
|
c46bddfafb7753a9a01d00486f81d80e617bd60d
| 250
|
py
|
Python
|
resolwe/test_helpers/management/__init__.py
|
plojyon/resolwe
|
1bee6f0860fdd087534adf1680e9350d79ab97cf
|
[
"Apache-2.0"
] | 27
|
2015-12-07T18:29:12.000Z
|
2022-03-16T08:01:47.000Z
|
resolwe/test_helpers/management/__init__.py
|
plojyon/resolwe
|
1bee6f0860fdd087534adf1680e9350d79ab97cf
|
[
"Apache-2.0"
] | 681
|
2015-12-01T11:52:24.000Z
|
2022-03-21T07:43:37.000Z
|
resolwe/test_helpers/management/__init__.py
|
plojyon/resolwe
|
1bee6f0860fdd087534adf1680e9350d79ab97cf
|
[
"Apache-2.0"
] | 28
|
2015-12-01T08:32:57.000Z
|
2021-12-14T00:04:16.000Z
|
""".. Ignore pydocstyle D400.
============
Test Helpers
============
.. automodule:: resolwe.test_helpers.management.commands.list_process_tags
:members:
.. automodule:: resolwe.test_helpers.management.commands.show_profile
:members:
"""
| 17.857143
| 74
| 0.672
| 24
| 250
| 6.791667
| 0.625
| 0.202454
| 0.257669
| 0.343558
| 0.564417
| 0.564417
| 0
| 0
| 0
| 0
| 0
| 0.013575
| 0.116
| 250
| 13
| 75
| 19.230769
| 0.723982
| 0.964
| 0
| null | 0
| null | 0
| 0
| null | 0
| 0
| 0
| null | 1
| null | true
| 0
| 0
| null | null | null | 1
| 0
| 0
| null | 1
| 1
| 1
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 1
| 0
| 0
| 0
| 0
| 0
| 0
| null | 0
| 0
| 0
| 0
| 0
| 0
| 1
| 0
| 0
| 0
| 0
| 0
|
0
| 6
|
c46c0b700f9aa3729b8df02c5eb0572cfe2e80f2
| 109
|
py
|
Python
|
test/__init__.py
|
Lewis-Trowbridge/Go-To-Sleep-Revengeance
|
2036381f86d482efdd944b30a1e065410f59fa0d
|
[
"MIT"
] | null | null | null |
test/__init__.py
|
Lewis-Trowbridge/Go-To-Sleep-Revengeance
|
2036381f86d482efdd944b30a1e065410f59fa0d
|
[
"MIT"
] | 5
|
2021-11-11T07:18:37.000Z
|
2022-03-21T07:21:43.000Z
|
test/__init__.py
|
Lewis-Trowbridge/Go-To-Sleep-Revengeance
|
2036381f86d482efdd944b30a1e065410f59fa0d
|
[
"MIT"
] | 1
|
2020-05-30T11:33:56.000Z
|
2020-05-30T11:33:56.000Z
|
from .test_argparser import TestArgParser
from .test_times import TestTimes
from .test_pings import TestPings
| 36.333333
| 41
| 0.87156
| 15
| 109
| 6.133333
| 0.6
| 0.26087
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0.100917
| 109
| 3
| 42
| 36.333333
| 0.938776
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 1
| 0
| true
| 0
| 1
| 0
| 1
| 0
| 1
| 0
| 0
| null | 1
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 1
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| null | 0
| 0
| 0
| 0
| 0
| 0
| 1
| 0
| 1
| 0
| 1
| 0
|
0
| 6
|
675ad6a9d14625f6f8a8acace85e87476d1ae9c6
| 196
|
py
|
Python
|
src/autotrainer/autotrainer/blob/models/labelled_blob.py
|
JasonTheDeveloper/Custom-Vision-Autotrainer
|
9a4cc786f116dccce747e47c1a804b03e8b52cc6
|
[
"MIT"
] | 10
|
2019-05-21T04:10:11.000Z
|
2021-12-15T05:47:11.000Z
|
src/autotrainer/autotrainer/blob/models/labelled_blob.py
|
JasonTheDeveloper/Custom-Vision-Autotrainer
|
9a4cc786f116dccce747e47c1a804b03e8b52cc6
|
[
"MIT"
] | 12
|
2019-02-24T21:51:06.000Z
|
2019-03-30T04:00:17.000Z
|
src/autotrainer/autotrainer/blob/models/labelled_blob.py
|
xtellurian/Custom-Vision-Autotrainer
|
6ede6d8d1dd4dc7fd4ffba8bfe0b19d2ce0569fe
|
[
"MIT"
] | 7
|
2019-11-06T21:01:59.000Z
|
2021-09-13T12:50:55.000Z
|
class LabelledBlob:
download_url: str
labels: [str]
def __init__(self, download_url: str, labels: [str]):
self.download_url = download_url
self.labels = labels
| 24.5
| 58
| 0.632653
| 23
| 196
| 5.043478
| 0.391304
| 0.37931
| 0.241379
| 0.344828
| 0.396552
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0.27551
| 196
| 8
| 59
| 24.5
| 0.816901
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 1
| 0.166667
| false
| 0
| 0
| 0
| 0.666667
| 0
| 1
| 0
| 0
| null | 1
| 1
| 1
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 1
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| null | 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 1
| 0
|
0
| 6
|
67615efa8586bd37b9c8d68f9af855e12503679d
| 38
|
py
|
Python
|
src/textacy/spacier/__init__.py
|
techthiyanes/textacy
|
c7a5e1f881a3df63a89991accefcbd375ede5353
|
[
"Apache-2.0"
] | null | null | null |
src/textacy/spacier/__init__.py
|
techthiyanes/textacy
|
c7a5e1f881a3df63a89991accefcbd375ede5353
|
[
"Apache-2.0"
] | null | null | null |
src/textacy/spacier/__init__.py
|
techthiyanes/textacy
|
c7a5e1f881a3df63a89991accefcbd375ede5353
|
[
"Apache-2.0"
] | null | null | null |
from . import core, extensions, utils
| 19
| 37
| 0.763158
| 5
| 38
| 5.8
| 1
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0.157895
| 38
| 1
| 38
| 38
| 0.90625
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 1
| 0
| true
| 0
| 1
| 0
| 1
| 0
| 1
| 1
| 0
| null | 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 1
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| null | 0
| 0
| 0
| 0
| 0
| 0
| 1
| 0
| 1
| 0
| 1
| 0
|
0
| 6
|
679013889346666d300db89f7ed47ec9c905bf6c
| 47
|
py
|
Python
|
app/routers/__init__.py
|
Simple2B/ClipWeb
|
12861c14433ef655ae3a1156dace4a6ab91bf367
|
[
"MIT"
] | null | null | null |
app/routers/__init__.py
|
Simple2B/ClipWeb
|
12861c14433ef655ae3a1156dace4a6ab91bf367
|
[
"MIT"
] | null | null | null |
app/routers/__init__.py
|
Simple2B/ClipWeb
|
12861c14433ef655ae3a1156dace4a6ab91bf367
|
[
"MIT"
] | null | null | null |
# flake8: noqa F401
from .visit import router
| 11.75
| 25
| 0.744681
| 7
| 47
| 5
| 1
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0.105263
| 0.191489
| 47
| 3
| 26
| 15.666667
| 0.815789
| 0.361702
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 1
| 0
| true
| 0
| 1
| 0
| 1
| 0
| 1
| 1
| 0
| null | 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 1
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| null | 0
| 0
| 0
| 0
| 0
| 0
| 1
| 0
| 1
| 0
| 1
| 0
|
0
| 6
|
679a81f7b0ce929da5b8fb45d0f265ce213539ee
| 2,640
|
py
|
Python
|
epytope/Data/pssms/smm/mat/B_58_01_11.py
|
christopher-mohr/epytope
|
8ac9fe52c0b263bdb03235a5a6dffcb72012a4fd
|
[
"BSD-3-Clause"
] | 7
|
2021-02-01T18:11:28.000Z
|
2022-01-31T19:14:07.000Z
|
epytope/Data/pssms/smm/mat/B_58_01_11.py
|
christopher-mohr/epytope
|
8ac9fe52c0b263bdb03235a5a6dffcb72012a4fd
|
[
"BSD-3-Clause"
] | 22
|
2021-01-02T15:25:23.000Z
|
2022-03-14T11:32:53.000Z
|
epytope/Data/pssms/smm/mat/B_58_01_11.py
|
christopher-mohr/epytope
|
8ac9fe52c0b263bdb03235a5a6dffcb72012a4fd
|
[
"BSD-3-Clause"
] | 4
|
2021-05-28T08:50:38.000Z
|
2022-03-14T11:45:32.000Z
|
B_58_01_11 = {0: {'A': 0.0, 'C': 0.0, 'E': 0.0, 'D': 0.0, 'G': 0.0, 'F': 0.0, 'I': -0.0, 'H': 0.0, 'K': -0.0, 'M': 0.0, 'L': -0.0, 'N': 0.0, 'Q': -0.0, 'P': 0.0, 'S': 0.0, 'R': 0.0, 'T': 0.0, 'W': 0.0, 'V': 0.0, 'Y': 0.0}, 1: {'A': -0.089, 'C': -0.068, 'E': 0.266, 'D': -0.059, 'G': 0.0, 'F': 0.158, 'I': 0.028, 'H': 0.0, 'K': 0.0, 'M': 0.006, 'L': -0.043, 'N': 0.0, 'Q': 0.078, 'P': 0.011, 'S': -0.631, 'R': 0.184, 'T': -0.024, 'W': 0.0, 'V': 0.149, 'Y': 0.034}, 2: {'A': 0.075, 'C': 0.008, 'E': 0.0, 'D': -0.095, 'G': 0.026, 'F': -0.209, 'I': -0.159, 'H': 0.0, 'K': 0.058, 'M': 0.0, 'L': 0.003, 'N': -0.033, 'Q': 0.125, 'P': 0.026, 'S': 0.161, 'R': 0.01, 'T': -0.07, 'W': 0.0, 'V': 0.096, 'Y': -0.022}, 3: {'A': 0.038, 'C': 0.024, 'E': -0.004, 'D': 0.028, 'G': 0.002, 'F': -0.069, 'I': 0.0, 'H': 0.0, 'K': 0.0, 'M': 0.0, 'L': -0.01, 'N': 0.0, 'Q': 0.0, 'P': -0.012, 'S': -0.075, 'R': 0.015, 'T': -0.003, 'W': 0.03, 'V': 0.019, 'Y': 0.017}, 4: {'A': 0.003, 'C': 0.008, 'E': 0.001, 'D': -0.058, 'G': -0.018, 'F': -0.013, 'I': 0.076, 'H': 0.0, 'K': 0.039, 'M': 0.0, 'L': 0.031, 'N': -0.184, 'Q': 0.014, 'P': 0.011, 'S': 0.079, 'R': 0.0, 'T': 0.0, 'W': 0.0, 'V': 0.005, 'Y': 0.004}, 5: {'A': 0.013, 'C': 0.004, 'E': -0.015, 'D': 0.004, 'G': 0.0, 'F': 0.014, 'I': 0.004, 'H': 0.001, 'K': -0.013, 'M': 0.005, 'L': -0.006, 'N': 0.0, 'Q': 0.025, 'P': -0.009, 'S': 0.006, 'R': -0.005, 'T': -0.027, 'W': 0.0, 'V': 0.0, 'Y': 0.0}, 6: {'A': -0.014, 'C': 0.004, 'E': 0.017, 'D': 0.015, 'G': -0.004, 'F': -0.008, 'I': 0.012, 'H': 0.0, 'K': 0.0, 'M': 0.0, 'L': -0.002, 'N': 0.011, 'Q': -0.009, 'P': 0.002, 'S': 0.018, 'R': 0.0, 'T': 0.003, 'W': 0.016, 'V': -0.025, 'Y': -0.037}, 7: {'A': -0.931, 'C': 0.0, 'E': 0.0, 'D': 0.0, 'G': 0.235, 'F': 0.01, 'I': -0.603, 'H': 0.424, 'K': -0.119, 'M': 0.0, 'L': -0.201, 'N': 0.045, 'Q': 0.028, 'P': -0.09, 'S': 0.184, 'R': -0.24, 'T': 0.56, 'W': 0.108, 'V': 0.48, 'Y': 0.11}, 8: {'A': 0.269, 'C': 0.126, 'E': 0.088, 'D': -0.124, 'G': -0.266, 'F': -0.108, 'I': 0.087, 'H': 0.0, 'K': 0.385, 'M': 0.0, 'L': -0.04, 'N': 0.025, 'Q': 0.044, 'P': -0.161, 'S': 0.053, 'R': -0.106, 'T': -0.514, 'W': 0.131, 'V': 0.041, 'Y': 0.071}, 9: {'A': 0.282, 'C': 0.0, 'E': 0.103, 'D': 0.0, 'G': 0.199, 'F': 0.126, 'I': 0.175, 'H': -0.117, 'K': 0.059, 'M': -0.468, 'L': -0.716, 'N': 0.467, 'Q': -0.289, 'P': 0.184, 'S': 0.0, 'R': 0.126, 'T': 0.033, 'W': -0.201, 'V': 0.018, 'Y': 0.019}, 10: {'A': 0.0, 'C': 0.0, 'E': 0.0, 'D': 0.0, 'G': 0.0, 'F': -0.421, 'I': 0.125, 'H': 0.0, 'K': 0.866, 'M': 0.0, 'L': 0.322, 'N': 0.0, 'Q': 0.0, 'P': 0.0, 'S': 0.0, 'R': 0.131, 'T': 0.067, 'W': -1.77, 'V': 0.627, 'Y': 0.052}, -1: {'con': 4.04406}}
| 2,640
| 2,640
| 0.37197
| 679
| 2,640
| 1.441826
| 0.192931
| 0.14096
| 0.024515
| 0.032686
| 0.319714
| 0.164454
| 0.164454
| 0.164454
| 0.14811
| 0.134831
| 0
| 0.345538
| 0.172348
| 2,640
| 1
| 2,640
| 2,640
| 0.102517
| 0
| 0
| 0
| 0
| 0
| 0.084438
| 0
| 0
| 0
| 0
| 0
| 0
| 1
| 0
| false
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 1
| null | 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 1
| 0
| 0
| 1
| 1
| 1
| 1
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| null | 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
|
0
| 6
|
67b6868e1c6c689968fa7dcf62931438ee1b85de
| 96
|
py
|
Python
|
src/ostorlab/cli/scan/stop/__init__.py
|
bbhunter/ostorlab
|
968fe4e5b927c0cd159594c13b73f95b71150154
|
[
"Apache-2.0"
] | 113
|
2022-02-21T09:30:14.000Z
|
2022-03-31T21:54:26.000Z
|
src/ostorlab/cli/scan/stop/__init__.py
|
bbhunter/ostorlab
|
968fe4e5b927c0cd159594c13b73f95b71150154
|
[
"Apache-2.0"
] | 2
|
2022-02-25T10:56:55.000Z
|
2022-03-24T13:08:06.000Z
|
src/ostorlab/cli/scan/stop/__init__.py
|
bbhunter/ostorlab
|
968fe4e5b927c0cd159594c13b73f95b71150154
|
[
"Apache-2.0"
] | 20
|
2022-02-28T14:25:04.000Z
|
2022-03-30T23:01:11.000Z
|
"""Module for sub-command of the command scan: stop."""
from ostorlab.cli.scan.stop import stop
| 32
| 55
| 0.75
| 16
| 96
| 4.5
| 0.75
| 0.222222
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0.125
| 96
| 2
| 56
| 48
| 0.857143
| 0.510417
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 1
| 0
| true
| 0
| 1
| 0
| 1
| 0
| 1
| 0
| 0
| null | 1
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 1
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| null | 0
| 0
| 0
| 0
| 0
| 0
| 1
| 0
| 1
| 0
| 1
| 0
|
0
| 6
|
e1e30ef4204bf5134a64ed6a6086498c57c92073
| 12,330
|
py
|
Python
|
model.py
|
styler00dollar/Colab-CSA-pytorch
|
5e569581bc3d1870f0a9fe40fdb8254627fac184
|
[
"MIT"
] | 29
|
2019-08-15T12:12:46.000Z
|
2022-02-20T11:30:25.000Z
|
model.py
|
styler00dollar/Colab-CSA-pytorch
|
5e569581bc3d1870f0a9fe40fdb8254627fac184
|
[
"MIT"
] | 3
|
2019-10-15T06:48:34.000Z
|
2020-12-17T11:26:58.000Z
|
model.py
|
styler00dollar/Colab-CSA-pytorch
|
5e569581bc3d1870f0a9fe40fdb8254627fac184
|
[
"MIT"
] | 8
|
2019-09-09T06:18:03.000Z
|
2020-10-21T07:16:38.000Z
|
import torch
from torch import nn
import torch.nn.functional as F
def get_norm(name, out_channels):
if name == 'batch':
norm = nn.BatchNorm2d(out_channels)
elif name == 'instance':
norm = nn.InstanceNorm2d(out_channels)
else:
norm = None
return norm
def get_act(name):
if name == 'relu':
activation = nn.ReLU(inplace=True)
elif name == 'elu':
activation == nn.ELU(inplace=True)
elif name == 'leaky_relu':
activation = nn.LeakyReLU(negative_slope=0.2, inplace=True)
elif name == 'tanh':
activation = nn.Tanh()
elif name == 'sigmoid':
activation = nn.Sigmoid()
else:
activation = None
return activation
class CoarseEncodeBlock(nn.Module):
def __init__(self, in_channels, out_channels, kernel_size, stride,
normalization=None, activation=None):
super().__init__()
layers = []
if activation:
layers.append(get_act(activation))
layers.append(
nn.Conv2d(in_channels, out_channels, kernel_size, stride, padding=1))
if normalization:
layers.append(get_norm(normalization, out_channels))
self.encode = nn.Sequential(*layers)
def forward(self, x):
return self.encode(x)
class CoarseDecodeBlock(nn.Module):
def __init__(self, in_channels, out_channels, kernel_size, stride,
normalization=None, activation=None):
super().__init__()
layers = []
if activation:
layers.append(get_act(activation))
layers.append(
nn.ConvTranspose2d(in_channels, out_channels, kernel_size, stride, padding=1))
if normalization:
layers.append(get_norm(normalization, out_channels))
self.decode = nn.Sequential(*layers)
def forward(self, x):
return self.decode(x)
class CoarseNet(nn.Module):
def __init__(self, c_img=3,
norm='instance', act_en='leaky_relu', act_de='relu'):
super().__init__()
cnum = 64
self.en_1 = nn.Conv2d(c_img, cnum, 4, 2, padding=1)
self.en_2 = CoarseEncodeBlock(cnum, cnum*2, 4, 2, normalization=norm, activation=act_en)
self.en_3 = CoarseEncodeBlock(cnum*2, cnum*4, 4, 2, normalization=norm, activation=act_en)
self.en_4 = CoarseEncodeBlock(cnum*4, cnum*8, 4, 2, normalization=norm, activation=act_en)
self.en_5 = CoarseEncodeBlock(cnum*8, cnum*8, 4, 2, normalization=norm, activation=act_en)
self.en_6 = CoarseEncodeBlock(cnum*8, cnum*8, 4, 2, normalization=norm, activation=act_en)
self.en_7 = CoarseEncodeBlock(cnum*8, cnum*8, 4, 2, normalization=norm, activation=act_en)
self.en_8 = CoarseEncodeBlock(cnum*8, cnum*8, 4, 2, activation=act_en)
self.de_8 = CoarseDecodeBlock(cnum*8, cnum*8, 4, 2, normalization=norm, activation=act_de)
self.de_7 = CoarseDecodeBlock(cnum*8*2, cnum*8, 4, 2, normalization=norm, activation=act_de)
self.de_6 = CoarseDecodeBlock(cnum*8*2, cnum*8, 4, 2, normalization=norm, activation=act_de)
self.de_5 = CoarseDecodeBlock(cnum*8*2, cnum*8, 4, 2, normalization=norm, activation=act_de)
self.de_4 = CoarseDecodeBlock(cnum*8*2, cnum*4, 4, 2, normalization=norm, activation=act_de)
self.de_3 = CoarseDecodeBlock(cnum*4*2, cnum*2, 4, 2, normalization=norm, activation=act_de)
self.de_2 = CoarseDecodeBlock(cnum*2*2, cnum, 4, 2, normalization=norm, activation=act_de)
self.de_1 = nn.Sequential(
get_act(act_de),
nn.ConvTranspose2d(cnum*2, c_img, 4, 2, padding=1),
get_act('tanh'))
def forward(self, x):
out_1 = self.en_1(x)
out_2 = self.en_2(out_1)
out_3 = self.en_3(out_2)
out_4 = self.en_4(out_3)
out_5 = self.en_5(out_4)
out_6 = self.en_6(out_5)
out_7 = self.en_7(out_6)
out_8 = self.en_8(out_7)
dout_8 = self.de_8(out_8)
dout_8_out_7 = torch.cat([dout_8, out_7], 1)
dout_7 = self.de_7(dout_8_out_7)
dout_7_out_6 = torch.cat([dout_7, out_6], 1)
dout_6 = self.de_6(dout_7_out_6)
dout_6_out_5 = torch.cat([dout_6, out_5], 1)
dout_5 = self.de_5(dout_6_out_5)
dout_5_out_4 = torch.cat([dout_5, out_4], 1)
dout_4 = self.de_4(dout_5_out_4)
dout_4_out_3 = torch.cat([dout_4, out_3], 1)
dout_3 = self.de_3(dout_4_out_3)
dout_3_out_2 = torch.cat([dout_3, out_2], 1)
dout_2 = self.de_2(dout_3_out_2)
dout_2_out_1 = torch.cat([dout_2, out_1], 1)
dout_1 = self.de_1(dout_2_out_1)
return dout_1
class RefineEncodeBlock(nn.Module):
def __init__(self, in_channels, out_channels,
normalization=None, activation=None):
super().__init__()
layers = []
if activation:
layers.append(get_act(activation))
layers.append(
nn.Conv2d(in_channels, in_channels, 4, 2, dilation=2, padding=3))
if normalization:
layers.append(get_norm(normalization, out_channels))
if activation:
layers.append(get_act(activation))
layers.append(
nn.Conv2d(in_channels, out_channels, 3, 1, padding=1))
if normalization:
layers.append(get_norm(normalization, out_channels))
self.encode = nn.Sequential(*layers)
def forward(self, x):
return self.encode(x)
class RefineDecodeBlock(nn.Module):
def __init__(self, in_channels, out_channels,
normalization=None, activation=None):
super().__init__()
layers = []
if activation:
layers.append(get_act(activation))
layers.append(
nn.ConvTranspose2d(in_channels, out_channels, 3, 1, padding=1))
if normalization:
layers.append(get_norm(normalization, out_channels))
if activation:
layers.append(get_act(activation))
layers.append(
nn.ConvTranspose2d(out_channels, out_channels, 4, 2, padding=1))
if normalization:
layers.append(get_norm(normalization, out_channels))
self.decode = nn.Sequential(*layers)
def forward(self, x):
return self.decode(x)
class RefineNet(nn.Module):
def __init__(self, c_img=3,
norm='instance', act_en='leaky_relu', act_de='relu'):
super().__init__()
c_in = c_img + c_img
cnum = 64
self.en_1 = nn.Conv2d(c_in, cnum, 3, 1, padding=1)
self.en_2 = RefineEncodeBlock(cnum, cnum*2, normalization=norm, activation=act_en)
self.en_3 = RefineEncodeBlock(cnum*2, cnum*4, normalization=norm, activation=act_en)
self.en_4 = RefineEncodeBlock(cnum*4, cnum*8, normalization=norm, activation=act_en)
self.en_5 = RefineEncodeBlock(cnum*8, cnum*8, normalization=norm, activation=act_en)
self.en_6 = RefineEncodeBlock(cnum*8, cnum*8, normalization=norm, activation=act_en)
self.en_7 = RefineEncodeBlock(cnum*8, cnum*8, normalization=norm, activation=act_en)
self.en_8 = RefineEncodeBlock(cnum*8, cnum*8, normalization=norm, activation=act_en)
self.en_9 = nn.Sequential(
get_act(act_en),
nn.Conv2d(cnum*8, cnum*8, 4, 2, padding=1))
self.de_9 = nn.Sequential(
get_act(act_de),
nn.ConvTranspose2d(cnum*8, cnum*8, 4, 2, padding=1),
get_norm(norm, cnum*8))
self.de_8 = RefineDecodeBlock(cnum*8*2, cnum*8, normalization=norm, activation=act_de)
self.de_7 = RefineDecodeBlock(cnum*8*2, cnum*8, normalization=norm, activation=act_de)
self.de_6 = RefineDecodeBlock(cnum*8*2, cnum*8, normalization=norm, activation=act_de)
self.de_5 = RefineDecodeBlock(cnum*8*2, cnum*8, normalization=norm, activation=act_de)
self.de_4 = RefineDecodeBlock(cnum*8*2, cnum*4, normalization=norm, activation=act_de)
self.de_3 = RefineDecodeBlock(cnum*4*2, cnum*2, normalization=norm, activation=act_de)
self.de_2 = RefineDecodeBlock(cnum*2*2, cnum, normalization=norm, activation=act_de)
self.de_1 = nn.Sequential(
get_act(act_de),
nn.ConvTranspose2d(cnum*2, c_img, 3, 1, padding=1))
def forward(self, x1, x2):
x = torch.cat([x1, x2], 1)
out_1 = self.en_1(x)
out_2 = self.en_2(out_1)
out_3 = self.en_3(out_2)
out_4 = self.en_4(out_3)
out_5 = self.en_5(out_4)
out_6 = self.en_6(out_5)
out_7 = self.en_7(out_6)
out_8 = self.en_8(out_7)
out_9 = self.en_9(out_8)
dout_9 = self.de_9(out_9)
dout_9_out_8 = torch.cat([dout_9, out_8], 1)
dout_8 = self.de_8(dout_9_out_8)
dout_8_out_7 = torch.cat([dout_8, out_7], 1)
dout_7 = self.de_7(dout_8_out_7)
dout_7_out_6 = torch.cat([dout_7, out_6], 1)
dout_6 = self.de_6(dout_7_out_6)
dout_6_out_5 = torch.cat([dout_6, out_5], 1)
dout_5 = self.de_5(dout_6_out_5)
dout_5_out_4 = torch.cat([dout_5, out_4], 1)
dout_4 = self.de_4(dout_5_out_4)
dout_4_out_3 = torch.cat([dout_4, out_3], 1)
dout_3 = self.de_3(dout_4_out_3)
dout_3_out_2 = torch.cat([dout_3, out_2], 1)
dout_2 = self.de_2(dout_3_out_2)
dout_2_out_1 = torch.cat([dout_2, out_1], 1)
dout_1 = self.de_1(dout_2_out_1)
return dout_1, out_4, dout_5
class CSA(nn.Module):
def __init__(self):
super().__init__()
def forward(self, x, mask):
return x
class InpaintNet(nn.Module):
def __init__(self):
super().__init__()
self.coarse = CoarseNet()
self.refine = RefineNet()
def forward(self, image, mask):
out_c = self.coarse(image)
out_c = image * (1. - mask) + out_c * mask
out_r, csa, csa_d = self.refine(out_c, image)
out_r = image * (1. - mask) + out_r * mask
return out_c, out_r, csa, csa_d
class PatchDiscriminator(nn.Module):
def __init__(self, c_img=3,
norm='instance', act='leaky_relu'):
super().__init__()
c_in = c_img + c_img
cnum = 64
self.discriminator = nn.Sequential(
nn.Conv2d(c_in, cnum, 4, 2, 1),
get_act(act),
nn.Conv2d(cnum, cnum*2, 4, 2, 1),
get_norm(norm, cnum*2),
get_act(act),
nn.Conv2d(cnum*2, cnum*4, 4, 2, 1),
get_norm(norm, cnum*4),
get_act(act),
nn.Conv2d(cnum*4, cnum*8, 4, 1, 1),
get_norm(norm, cnum*8),
get_act(act),
nn.Conv2d(cnum*8, 1, 4, 1, 1))
def forward(self, x1, x2):
x = torch.cat([x1, x2], 1)
return self.discriminator(x)
class FeaturePatchDiscriminator(nn.Module):
def __init__(self, c_img=3,
norm='instance', act='leaky_relu'):
super().__init__()
c_in = c_img + c_img
cnum = 64
self.discriminator = nn.Sequential(
# VGG-16 up to 3rd pooling
nn.Conv2d(c_in, cnum, kernel_size=3, padding=1),
nn.ReLU(inplace=True),
nn.Conv2d(cnum, cnum, kernel_size=3, padding=1),
nn.ReLU(inplace=True),
nn.MaxPool2d(kernel_size=2, stride=2),
nn.Conv2d(cnum, cnum*2, kernel_size=3, padding=1),
nn.ReLU(inplace=True),
nn.Conv2d(cnum*2, cnum*2, kernel_size=3, padding=1),
nn.ReLU(inplace=True),
nn.MaxPool2d(kernel_size=2, stride=2),
nn.Conv2d(cnum*2, cnum*4, kernel_size=3, padding=1),
nn.ReLU(inplace=True),
nn.Conv2d(cnum*4, cnum*4, kernel_size=3, padding=1),
nn.ReLU(inplace=True),
nn.Conv2d(cnum*4, cnum*4, kernel_size=3, padding=1),
nn.ReLU(inplace=True),
nn.MaxPool2d(kernel_size=2, stride=2),
# Discriminator
nn.Conv2d(cnum*4, cnum*8, 4, 2, 1),
get_act(act),
nn.Conv2d(cnum*8, cnum*8, 4, 1, 1),
get_norm(norm, cnum*8),
get_act(act),
nn.Conv2d(cnum*8, cnum*8, 4, 1, 1))
def forward(self, x1, x2):
x = torch.cat([x1, x2], 1)
return self.discriminator(x)
| 36.158358
| 100
| 0.605515
| 1,805
| 12,330
| 3.877008
| 0.054848
| 0.035724
| 0.104173
| 0.115747
| 0.823092
| 0.795513
| 0.782223
| 0.757645
| 0.732495
| 0.679623
| 0
| 0.055124
| 0.268775
| 12,330
| 340
| 101
| 36.264706
| 0.721051
| 0.003082
| 0
| 0.59707
| 0
| 0
| 0.010172
| 0
| 0
| 0
| 0
| 0
| 0
| 1
| 0.080586
| false
| 0
| 0.010989
| 0.018315
| 0.172161
| 0
| 0
| 0
| 0
| null | 0
| 0
| 0
| 1
| 1
| 1
| 1
| 1
| 1
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| null | 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
|
0
| 6
|
e1e31b82c2570c9a0de317ff102a5ecd7e7ac2b0
| 22,354
|
py
|
Python
|
webapp/tests/forms/steps/lotse/test_personal_data_steps.py
|
digitalservice4germany/steuerlotse
|
ef3e094e4d7d4768431a50ac4be60672cd03221d
|
[
"MIT"
] | 20
|
2021-07-02T07:49:08.000Z
|
2022-03-18T22:26:10.000Z
|
webapp/tests/forms/steps/lotse/test_personal_data_steps.py
|
digitalservice4germany/steuerlotse
|
ef3e094e4d7d4768431a50ac4be60672cd03221d
|
[
"MIT"
] | 555
|
2021-06-28T15:35:15.000Z
|
2022-03-31T11:51:55.000Z
|
webapp/tests/forms/steps/lotse/test_personal_data_steps.py
|
digitalservice4germany/steuerlotse
|
ef3e094e4d7d4768431a50ac4be60672cd03221d
|
[
"MIT"
] | 1
|
2021-07-04T20:34:12.000Z
|
2021-07-04T20:34:12.000Z
|
import datetime
from unittest.mock import patch, MagicMock
import pytest
from flask.sessions import SecureCookieSession
from flask_babel import ngettext, _
from pydantic import ValidationError
from werkzeug.datastructures import MultiDict, ImmutableMultiDict
from app.forms.steps.lotse.personal_data import StepSteuernummer, StepPersonA, StepPersonB, ShowPersonBPrecondition, \
StepTelephoneNumber
from app.forms.flows.lotse_step_chooser import _LOTSE_DATA_KEY, LotseStepChooser
from tests.elster_client.mock_erica import MockErica
from tests.utils import create_session_form_data
class SummaryStep:
pass
def new_step_with_bufa_choices(form_data):
step = LotseStepChooser().get_correct_step(
StepSteuernummer.name, True, ImmutableMultiDict(form_data))
return step
@pytest.mark.usefixtures('test_request_context')
class TestStepSteuernummer:
def test_if_steuernummer_exists_and_hessen_and_tax_number_10_digits_then_fail_validation(self):
data = MultiDict({'steuernummer_exists': 'yes',
'bundesland': 'HE',
'steuernummer': '9811310010', })
form = new_step_with_bufa_choices(form_data=data).render_info.form
assert form.validate() is False
def test_if_steuernummer_exists_missing_then_fail_validation(self):
data = MultiDict({'bundesland': 'BY',
'steuernummer': '19811310010', })
form = new_step_with_bufa_choices(form_data=data).render_info.form
assert form.validate() is False
def test_if_steuernummer_exists_and_bundesland_missing_then_fail_validation(self):
data = MultiDict({'steuernummer_exists': 'yes',
'steuernummer': '19811310010', })
form = new_step_with_bufa_choices(form_data=data).render_info.form
assert form.validate() is False
def test_if_steuernummer_exists_and_steuernummer_missing_then_fail_validation(self):
data = MultiDict({'steuernummer_exists': 'yes',
'bundesland': 'BY', })
form = new_step_with_bufa_choices(form_data=data).render_info.form
assert form.validate() is False
def test_if_steuernummer_exists_and_nothing_is_missing_then_succeed_validation(self):
data = MultiDict({'steuernummer_exists': 'yes',
'bundesland': 'BY',
'steuernummer': '19811310010', })
form = new_step_with_bufa_choices(form_data=data).render_info.form
assert form.validate() is True
def test_if_no_steuernummer_and_bundesland_missing_then_fail_validation(self):
data = MultiDict({'steuernummer_exists': 'no',
'bufa_nr': '9201',
'request_new_tax_number': 'y', })
form = new_step_with_bufa_choices(form_data=data).render_info.form
assert form.validate() is False
def test_if_no_steuernummer_and_bufa_nr_missing_then_fail_validation(self):
data = MultiDict({'steuernummer_exists': 'no',
'bundesland': 'BY',
'request_new_tax_number': 'y', })
form = new_step_with_bufa_choices(form_data=data).render_info.form
assert form.validate() is False
def test_if_no_steuernummer_and_request_new_tax_number_missing_then_fail_validation(self):
data = MultiDict({'steuernummer_exists': 'no',
'bundesland': 'BY',
'bufa_nr': '9201', })
form = new_step_with_bufa_choices(form_data=data).render_info.form
assert form.validate() is False
def test_if_no_steuernummer_and_nothing_is_missing_then_succeed_validation(self):
data = MultiDict({'steuernummer_exists': 'no',
'bundesland': 'BY',
'bufa_nr': '9201',
'request_new_tax_number': 'y', })
form = new_step_with_bufa_choices(form_data=data).render_info.form
assert form.validate() is True
def test_if_multiple_users_then_show_multiple_text(self, app):
session_data = {
'familienstand': 'married',
'familienstand_date': datetime.date(2000, 1, 31),
'familienstand_married_lived_separated': 'no',
'familienstand_confirm_zusammenveranlagung': True,
}
expected_number_of_users = 2
expected_steuernummer_exists_label = ngettext('form.lotse.steuernummer_exists',
'form.lotse.steuernummer_exists',
num=expected_number_of_users)
expected_request_new_tax_number_label = ngettext('form.lotse.steuernummer.request_new_tax_number',
'form.lotse.steuernummer.request_new_tax_number',
num=expected_number_of_users)
with app.test_request_context(method='GET') as req:
req.session = SecureCookieSession(
{_LOTSE_DATA_KEY: create_session_form_data(session_data)})
step = LotseStepChooser(endpoint='lotse').get_correct_step(StepSteuernummer.name, False,
ImmutableMultiDict({}))
step._pre_handle()
assert expected_steuernummer_exists_label == step.render_info.form.steuernummer_exists.label.text
assert expected_request_new_tax_number_label == step.render_info.form.request_new_tax_number.label.text
def test_if_single_user_then_show_single_text(self, app):
session_data = {
'familienstand': 'single',
}
expected_number_of_users = 1
expected_steuernummer_exists_label = ngettext('form.lotse.steuernummer_exists',
'form.lotse.steuernummer_exists',
num=expected_number_of_users)
expected_request_new_tax_number_label = ngettext('form.lotse.steuernummer.request_new_tax_number',
'form.lotse.steuernummer.request_new_tax_number',
num=expected_number_of_users)
with app.test_request_context(method='GET') as req:
req.session = SecureCookieSession(
{_LOTSE_DATA_KEY: create_session_form_data(session_data)})
step = LotseStepChooser(endpoint='lotse').get_correct_step(StepSteuernummer.name, False,
ImmutableMultiDict({}))
step._pre_handle()
assert expected_steuernummer_exists_label == step.render_info.form.steuernummer_exists.label.text
assert expected_request_new_tax_number_label == step.render_info.form.request_new_tax_number.label.text
class TestStepSteuernummerInputFormInit:
def test_if_init_called_then_set_tax_offices_attribute_correctly(self):
expected_tax_offices = [
{"state_abbreviation": "vu",
"name": "Vulcan",
"tax_offices": [{"name": "Finanzamt Ni'Var", "bufa_nr": "2801"}]
},
{"state_abbreviation": "tr",
"name": "Terra",
"tax_offices": [{"name": "Finanzamt Klingon Arbeitnehmerbereich (101)", "bufa_nr": "9101"},
{"name": "Finanzamt Klingon Arbeitgeberbereich (102)", "bufa_nr": "9102"}]
}
]
with patch('app.forms.steps.lotse.personal_data.request_tax_offices', MagicMock(return_value=expected_tax_offices)):
created_form = StepSteuernummer.InputForm()
assert created_form.tax_offices == expected_tax_offices
def test_if_init_called_then_set_bufa_nr_choices_correctly(self):
tax_offices = [
{"state_abbreviation": "vu",
"name": "Vulcan",
"tax_offices": [{"name": "Finanzamt Ni'Var", "bufa_nr": "2801"}]
},
{"state_abbreviation": "tr",
"name": "Terra",
"tax_offices": [{"name": "Finanzamt Klingon Arbeitnehmerbereich (101)", "bufa_nr": "9101"},
{"name": "Finanzamt Klingon Arbeitgeberbereich (102)", "bufa_nr": "9102"}]
}
]
with patch('app.forms.steps.lotse.personal_data.request_tax_offices', MagicMock(return_value=tax_offices)):
created_form = StepSteuernummer.InputForm()
assert created_form.bufa_nr.choices == [("2801", "Finanzamt Ni'Var"),
("9101", "Finanzamt Klingon Arbeitnehmerbereich (101)"),
("9102", "Finanzamt Klingon Arbeitgeberbereich (102)")
]
class TestStepSteuernummerValidate:
@pytest.mark.usefixtures("test_request_context")
def test_if_erica_returns_invalid_tax_number_then_flash_error(self, app):
MockErica.tax_number_is_invalid = True
bundesland_abbreviation = 'BY'
steuernummer = '19811310010'
input_data = {'steuernummer_exists': 'yes',
'bundesland': bundesland_abbreviation, 'steuernummer': steuernummer}
try:
with patch('app.forms.steps.lotse.personal_data.flash') as mock_flash:
StepSteuernummer.prepare_render_info(
stored_data={}, input_data=ImmutableMultiDict(input_data), should_update_data=True)
finally:
MockErica.tax_number_is_invalid = False
mock_flash.assert_called_once_with(
_('form.lotse.tax-number.invalid-tax-number-error'), 'warn')
@pytest.mark.usefixtures("test_request_context")
def test_if_valid_number_given_then_flash_no_error(self, app):
bundesland_abbreviation = 'BY'
steuernummer = '19811310010'
input_data = {'steuernummer_exists': 'yes',
'bundesland': bundesland_abbreviation, 'steuernummer': steuernummer}
with patch('app.forms.steps.lotse.personal_data.flash') as mock_flash:
StepSteuernummer.prepare_render_info(
stored_data={}, input_data=ImmutableMultiDict(input_data), should_update_data=True)
mock_flash.assert_not_called()
@pytest.mark.usefixtures("test_request_context")
def test_if_invalid_number_given_then_flash_error(self, app):
bundesland_abbreviation = 'BY'
steuernummer = '11111111111'
input_data = {'steuernummer_exists': 'yes',
'bundesland': bundesland_abbreviation, 'steuernummer': steuernummer}
with patch('app.forms.steps.lotse.personal_data.flash') as mock_flash:
StepSteuernummer.prepare_render_info(
stored_data={}, input_data=ImmutableMultiDict(input_data), should_update_data=True)
mock_flash.assert_called_once_with(
_('form.lotse.tax-number.invalid-tax-number-error'), 'warn')
@pytest.mark.usefixtures("test_request_context")
def test_if_no_number_given_then_flash_no_error(self, app):
bundesland_abbreviation = 'BY'
steuernummer = ''
input_data = {'steuernummer_exists': 'yes',
'bundesland': bundesland_abbreviation, 'steuernummer': steuernummer}
with patch('app.forms.steps.lotse.personal_data.flash') as mock_flash:
StepSteuernummer.prepare_render_info(
stored_data={}, input_data=ImmutableMultiDict(input_data), should_update_data=True)
mock_flash.assert_not_called()
@pytest.mark.usefixtures("test_request_context")
def test_if_no_bundesland_given_then_flash_no_error(self, app):
bundesland_abbreviation = ''
steuernummer = '11111111111'
input_data = {'steuernummer_exists': 'yes',
'bundesland': bundesland_abbreviation, 'steuernummer': steuernummer}
with patch('app.forms.steps.lotse.personal_data.flash') as mock_flash:
StepSteuernummer.prepare_render_info(
stored_data={}, input_data=ImmutableMultiDict(input_data), should_update_data=True)
mock_flash.assert_not_called()
class TestStepPersonATexts:
def test_if_multiple_users_then_show_multiple_text(self, app):
session_data = {
'familienstand': 'married',
'familienstand_date': datetime.date(2000, 1, 31),
'familienstand_married_lived_separated': 'no',
'familienstand_confirm_zusammenveranlagung': True,
}
expected_number_of_users = 2
expected_step_title = ngettext('form.lotse.person-a-title', 'form.lotse.person-a-title',
num=expected_number_of_users)
expected_step_intro = _(
'form.lotse.person-a-intro') if expected_number_of_users > 1 else None
with app.test_request_context(method='GET') as req:
req.session = SecureCookieSession(
{_LOTSE_DATA_KEY: create_session_form_data(session_data)})
step = LotseStepChooser(endpoint='lotse').get_correct_step(StepPersonA.name, False,
ImmutableMultiDict({}))
step._pre_handle()
assert step.render_info.step_title == expected_step_title
assert step.render_info.step_intro == expected_step_intro
def test_if_single_user_then_show_single_text(self, app):
session_data = {
'familienstand': 'single',
}
expected_number_of_users = 1
expected_step_title = ngettext('form.lotse.person-a-title', 'form.lotse.person-a-title',
num=expected_number_of_users)
expected_step_intro = _(
'form.lotse.person-a-intro') if expected_number_of_users > 1 else None
with app.test_request_context(method='GET') as req:
req.session = SecureCookieSession(
{_LOTSE_DATA_KEY: create_session_form_data(session_data)})
step = LotseStepChooser(endpoint='lotse').get_correct_step(StepPersonA.name, False,
ImmutableMultiDict({}))
step._pre_handle()
assert step.render_info.step_title == expected_step_title
assert step.render_info.step_intro == expected_step_intro
class TestStepPersonAGetLabel:
def test_if_single_user_then_return_single_text(self):
session_data = {
'familienstand': 'single',
}
expected_label = ngettext(
'form.lotse.step_person_a.label', 'form.lotse.step_person_a.label', num=1)
returned_label = StepPersonA.get_label(session_data)
assert returned_label == expected_label
def test_if_multiple_users_then_return_multiple_text(self):
session_data = {
'familienstand': 'married',
'familienstand_date': datetime.date(2000, 1, 31),
'familienstand_married_lived_separated': 'no',
'familienstand_confirm_zusammenveranlagung': True,
}
expected_label = ngettext(
'form.lotse.step_person_a.label', 'form.lotse.step_person_a.label', num=2)
returned_label = StepPersonA.get_label(session_data)
assert returned_label == expected_label
def new_person_a_step(form_data):
return LotseStepChooser().get_correct_step(StepPersonA.name, True, ImmutableMultiDict(form_data))
@pytest.mark.usefixtures('test_request_context')
class TestPersonAValidation:
@pytest.fixture()
def valid_form_data(self):
return {'person_a_idnr': '04452397687', 'person_a_first_name': 'Hermine',
'person_a_last_name': 'Granger', 'person_a_dob': ['01', '01', '1985'],
'person_a_street': 'Hogwartsstraße', 'person_a_street_number': '7',
'person_a_plz': '12345', 'person_a_town': 'Hogsmeade',
'person_a_religion': 'none'}
def test_if_plz_starts_with_zero_then_succ_validation(self, valid_form_data):
data = MultiDict({**valid_form_data, ** {'person_a_plz': '01234'}})
form = new_person_a_step(form_data=data).render_info.form
assert form.validate() is True
def test_if_plz_has_5_digits_then_succ_validation(self, valid_form_data):
data = MultiDict({**valid_form_data, **{'person_a_plz': '12345'}})
form = new_person_a_step(form_data=data).render_info.form
assert form.validate() is True
def test_if_plz_has_too_little_digits_then_fail_validation(self, valid_form_data):
data = MultiDict({**valid_form_data, **{'person_a_plz': '1234'}})
form = new_person_a_step(form_data=data).render_info.form
assert form.validate() is False
def test_if_plz_has_too_many_digits_then_fail_validation(self, valid_form_data):
data = MultiDict({**valid_form_data, **{'person_a_plz': '123456'}})
form = new_person_a_step(form_data=data).render_info.form
assert form.validate() is False
def new_person_b_step(form_data):
return LotseStepChooser().get_correct_step(StepPersonB.name, True, ImmutableMultiDict(form_data))
class TestShowPersonBPrecondition:
def test_if_show_person_b_false_then_raise_validation_error(self):
with patch('app.model.form_data.JointTaxesModel.show_person_b', return_value=False), \
pytest.raises(ValidationError):
ShowPersonBPrecondition.parse_obj({'familienstand': 'single'})
def test_if_show_person_b_true_then_do_not_raise_validation_error(self):
with patch('app.model.form_data.JointTaxesModel.show_person_b', return_value=True):
ShowPersonBPrecondition.parse_obj({'familienstand': 'single'})
class TestPersonBValidation:
valid_stored_data = {'familienstand': 'married', 'familienstand_date': datetime.date(2000, 1, 31),
'familienstand_married_lived_separated': 'no',
'familienstand_confirm_zusammenveranlagung': True}
@pytest.fixture()
def valid_form_data(self):
return {'person_b_idnr': '04452397687', 'person_b_first_name': 'Hermine',
'person_b_last_name': 'Granger', 'person_b_dob': ['01', '01', '1985'],
'person_b_same_address': 'yes', 'person_b_religion': 'none'}
def test_if_plz_starts_with_zero_then_succ_validation(self, valid_form_data, new_test_request_context):
data = MultiDict({**valid_form_data, ** {'person_b_plz': '01234'}})
with new_test_request_context(stored_data=self.valid_stored_data, form_data=data):
form = new_person_b_step(form_data=data).render_info.form
assert form.validate() is True
def test_if_plz_has_5_digits_then_succ_validation(self, valid_form_data, new_test_request_context):
data = MultiDict({**valid_form_data, **{'person_b_plz': '12345'}})
with new_test_request_context(stored_data=self.valid_stored_data, form_data=data):
form = new_person_b_step(form_data=data).render_info.form
assert form.validate() is True
def test_if_plz_has_too_little_digits_then_fail_validation(self, valid_form_data, new_test_request_context):
data = MultiDict({**valid_form_data, **{'person_b_plz': '1234'}})
with new_test_request_context(stored_data=self.valid_stored_data, form_data=data):
form = new_person_b_step(form_data=data).render_info.form
assert form.validate() is False
def test_if_plz_has_too_many_digits_then_fail_validation(self, valid_form_data, new_test_request_context):
data = MultiDict({**valid_form_data, **{'person_b_plz': '123456'}})
with new_test_request_context(stored_data=self.valid_stored_data, form_data=data):
form = new_person_b_step(form_data=data).render_info.form
assert form.validate() is False
def test_if_same_address_yes_then_validation_succ_without_address(self, valid_form_data, new_test_request_context):
data = MultiDict(
{**valid_form_data, **{'person_b_same_address': 'yes'}})
with new_test_request_context(stored_data=self.valid_stored_data, form_data=data):
form = new_person_b_step(form_data=data).render_info.form
assert form.validate() is True
def test_if_same_address_no_and_no_address_set_then_fail_validation(self, valid_form_data, new_test_request_context):
data = MultiDict(
{**valid_form_data, **{'person_b_same_address': 'no'}})
with new_test_request_context(stored_data=self.valid_stored_data, form_data=data):
form = new_person_b_step(form_data=data).render_info.form
assert form.validate() is False
def test_if_same_address_no_and_address_set_then_succ_validation(self, valid_form_data, new_test_request_context):
data = MultiDict({**valid_form_data, **{'person_b_same_address': 'no', 'person_b_street': 'Diagon Alley',
'person_b_street_number': '7', 'person_b_plz': '12345',
'person_b_town': 'Hogsmeade'}})
with new_test_request_context(stored_data=self.valid_stored_data, form_data=data):
form = new_person_b_step(form_data=data).render_info.form
assert form.validate() is True
class TestTelephoneNumberValidation:
def test_if_number_max_25_chars_then_succ_validation(self, new_test_request_context):
data = MultiDict({'telephone_number': 'Lorem ipsum dolor sit ame'})
with new_test_request_context(form_data=data):
step = LotseStepChooser().get_correct_step(
StepTelephoneNumber.name, True, ImmutableMultiDict(data))
form = step.render_info.form
assert form.validate() is True
def test_if_number_over_25_chars_then_succ_validation(self, new_test_request_context):
data = MultiDict({'telephone_number': 'Lorem ipsum dolor sit amet'})
with new_test_request_context(stored_data=data):
step = LotseStepChooser().get_correct_step(
StepTelephoneNumber.name, True, ImmutableMultiDict(data))
form = step.render_info.form
assert form.validate() is False
| 50.121076
| 124
| 0.660106
| 2,517
| 22,354
| 5.436234
| 0.092571
| 0.038003
| 0.024337
| 0.032157
| 0.877001
| 0.844698
| 0.829058
| 0.807133
| 0.799752
| 0.776438
| 0
| 0.016997
| 0.244654
| 22,354
| 445
| 125
| 50.233708
| 0.793367
| 0
| 0
| 0.649171
| 0
| 0
| 0.171737
| 0.070905
| 0
| 0
| 0
| 0
| 0.107735
| 1
| 0.116022
| false
| 0.002762
| 0.030387
| 0.01105
| 0.190608
| 0
| 0
| 0
| 0
| null | 0
| 0
| 0
| 1
| 1
| 1
| 1
| 1
| 1
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| null | 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
|
0
| 6
|
c030db2f16cdd4bcaa3a9f65d5924b17bc16d280
| 12,882
|
py
|
Python
|
auto/wpt_interface_test/case_suite/reprieve_loan.py
|
Strugglingrookie/oldboy2
|
8ed6723cab1f54f2ff8ea0947c6f982aef7e1b47
|
[
"Apache-2.0"
] | 1
|
2021-06-15T07:01:23.000Z
|
2021-06-15T07:01:23.000Z
|
auto/wpt_interface_test/case_suite/reprieve_loan.py
|
Strugglingrookie/oldboy2
|
8ed6723cab1f54f2ff8ea0947c6f982aef7e1b47
|
[
"Apache-2.0"
] | 3
|
2020-02-13T14:35:36.000Z
|
2021-06-10T21:27:14.000Z
|
auto/wpt_interface_test/case_suite/reprieve_loan.py
|
Strugglingrookie/oldboy2
|
8ed6723cab1f54f2ff8ea0947c6f982aef7e1b47
|
[
"Apache-2.0"
] | 1
|
2020-04-09T02:13:12.000Z
|
2020-04-09T02:13:12.000Z
|
#!/usr/bin/python3
# -*- coding: utf-8 -*-
# @Time : 2019/8/30 8:23
# @Author : TangYong
# @Email : [email protected]
# @File : reprieve_loan.py
# @Software: PyCharm
import sys
import requests
import unittest
from settings import config
from fun import public
from fun import fatp_db_server
class ReprieveLoan(unittest.TestCase):
''' 暂缓放款 '''
def test_get_send_info(self):
''' 批量获取发标信息'''
# 未记账/未暂缓状态数据
putout_status = {
'defer_pay_status': '0',
'put_out_status': '0'
}
fatp = fatp_db_server.ApplyToContractRepository()
query_result = fatp.handel_query(('t2.apply_serial_no'),**putout_status)
if query_result is None:
public.log_record('当前查询条件【%s】下未存在有效数据'%putout_status, sys._getframe().f_lineno, query_result)
return None
public.log_record('当前查询条件【%s】下查询结果数据' % putout_status, sys._getframe().f_lineno, query_result)
#获取记账状态下的apply_id
apply_id = query_result['apply_serial_no']
#批量获取发标信息请求数据
send_info_req_data = {
'applyIdList':[apply_id]
}
public.log_record('批量获取发标信息请求数据' , sys._getframe().f_lineno, send_info_req_data)
send_info_res_data = requests.post(
url=config.wk_send_info_default_url,
json=send_info_req_data
)
if send_info_res_data.json()['code']:
public.log_record('批量获取发标信息响应数据', sys._getframe().f_lineno, send_info_res_data.text)
self.assertEqual(send_info_res_data.json()['code'],'000000')
else:
public.log_record('批量获取发标信息失败响应数据', sys._getframe().f_lineno, send_info_res_data.text)
def test_add_reprieve(self):
''' 添加暂缓'''
# # 未记账/未暂缓状态数据
putout_status = {
'defer_pay_status':'0',
'put_out_status':'0'
}
fatp = fatp_db_server.LoadApplyRepository()
query_result = fatp.handel_query('1',('serial_no'),**putout_status)
if query_result is None:
public.log_record('当前查询条件【%s】下未存在有效数据' % putout_status, sys._getframe().f_lineno, query_result)
return None
public.log_record('当前查询条件【%s】下查询结果数据' % putout_status, sys._getframe().f_lineno, query_result)
# 获取记账状态下的借据编号
serial_no = query_result['serial_no']
# 新增暂缓请求数据
add_reprieve_req_data = {
'loanNo': serial_no,
'type':'0'
}
public.log_record('新增暂缓请求数据', sys._getframe().f_lineno, add_reprieve_req_data)
add_reprieve_res_data = requests.post(
url=config.fatp_notify_default_url,
json=add_reprieve_req_data
)
if add_reprieve_res_data.json():
public.log_record('新增暂缓响应数据', sys._getframe().f_lineno, add_reprieve_res_data.text)
#检测资金数据库中暂缓状态是否为0(未暂缓)
reprieve_status = fatp.handel_query('1',('defer_pay_status'),**{'serial_no':serial_no})
public.log_record('检测资金数据库中暂缓状态是否为0(未暂缓)', sys._getframe().f_lineno,reprieve_status['defer_pay_status'])
self.assertEqual(str(reprieve_status['defer_pay_status']),'0')
else:
public.log_record('新增暂缓失败响应数据', sys._getframe().f_lineno, add_reprieve_res_data.text)
def test_submit_reprieve(self):
''' 提交暂缓'''
# # 未记账/未暂缓状态数据
putout_status = {
'defer_pay_status': '0',
'put_out_status': '0'
}
fatp = fatp_db_server.LoadApplyRepository()
query_result = fatp.handel_query('1', ('serial_no'), **putout_status)
if query_result is None:
public.log_record('当前查询条件【%s】下未存在有效数据' % putout_status, sys._getframe().f_lineno, query_result)
return None
public.log_record('当前查询条件【%s】下查询结果数据' % putout_status, sys._getframe().f_lineno, query_result)
# 获取记账状态下的借据编号
serial_no = query_result['serial_no']
# 提交暂缓请求数据
submit_reprieve_req_data = {
'loanNo': serial_no,
'type': '1'
}
public.log_record('提交暂缓请求数据', sys._getframe().f_lineno, submit_reprieve_req_data)
submit_reprieve_res_data = requests.post(
url=config.fatp_notify_default_url,
json=submit_reprieve_req_data
)
if submit_reprieve_res_data.json():
public.log_record('提交暂缓响应数据', sys._getframe().f_lineno, submit_reprieve_res_data.text)
# 检测资金数据库中暂缓状态是否为0(已暂缓)
reprieve_status = fatp.handel_query('1', ('defer_pay_status'), **{'serial_no': serial_no})
public.log_record('检测资金数据库中暂缓状态是否为1(已暂缓)', sys._getframe().f_lineno, reprieve_status['defer_pay_status'])
self.assertEqual(str(reprieve_status['defer_pay_status']), '1')
else:
public.log_record('提交暂缓失败响应数据', sys._getframe().f_lineno, submit_reprieve_res_data.text)
def test_cancel_reprieve(self):
''' 取消暂缓'''
# 未记账/已暂缓状态数据
putout_status = {
'defer_pay_status': '1',
'put_out_status': '0'
}
fatp = fatp_db_server.LoadApplyRepository()
query_result = fatp.handel_query( ('t1.serial_no'), **putout_status)
if query_result is None:
public.log_record('当前查询条件【%s】下未存在有效数据' % putout_status, sys._getframe().f_lineno, query_result)
return None
public.log_record('当前查询条件【%s】下查询结果数据' % putout_status, sys._getframe().f_lineno, query_result)
# 获取借据编号
serial_no = query_result['serial_no']
# 取消暂缓请求数据
cancel_reprieve_req_data = {
'loanNo': serial_no,
'type': '0'
}
public.log_record('取消暂缓请求数据', sys._getframe().f_lineno, cancel_reprieve_req_data)
cancel_reprieve_res_data = requests.post(
url=config.fatp_notify_default_url,
json=cancel_reprieve_req_data
)
if cancel_reprieve_res_data.json():
public.log_record('取消暂缓请响应数据', sys._getframe().f_lineno, cancel_reprieve_res_data.text)
# 检测资金数据库中暂缓状态是否为0(未暂缓)
reprieve_status = fatp.handel_query('1', ('defer_pay_status'), **{'serial_no': serial_no})
public.log_record('检测资金数据库中暂缓状态是否为0(未暂缓)', sys._getframe().f_lineno, reprieve_status['defer_pay_status'])
self.assertEqual(str(reprieve_status['defer_pay_status']), '0')
else:
public.log_record('取消暂缓失败响应数据', sys._getframe().f_lineno, cancel_reprieve_res_data.text)
def test_stop_apply(self):
''' 终止申请'''
# 未记账/未暂缓状态数据
putout_status = {
'defer_pay_status': '0',
'put_out_status': '0'
}
fatp = fatp_db_server.LoadApplyRepository()
query_result = fatp.handel_query('1', ('serial_no'), **putout_status)
if query_result is None:
public.log_record('当前查询条件【%s】下未存在有效数据' % putout_status, sys._getframe().f_lineno, query_result)
return None
public.log_record('当前查询条件【%s】下查询结果数据' % putout_status, sys._getframe().f_lineno, query_result)
# 获取借据编号
serial_no = query_result['serial_no']
# 终止申请请求数据
stop_apply_req_data = {
'loanNo': serial_no,
'type': '1'
}
public.log_record('终止申请请求数据', sys._getframe().f_lineno, stop_apply_req_data)
stop_apply_res_data = requests.post(
url=config.fatp_notify_default_url,
json=stop_apply_req_data
)
if stop_apply_res_data.json():
public.log_record('终止申请响应数据', sys._getframe().f_lineno, stop_apply_res_data.text)
# 检测资金数据库中暂缓状态是否为1(已暂缓)
reprieve_status = fatp.handel_query('1', ('defer_pay_status'), **{'serial_no': serial_no})
public.log_record('检测资金数据库中暂缓状态是否为1(已暂缓)', sys._getframe().f_lineno, reprieve_status['defer_pay_status'])
self.assertEqual(str(reprieve_status['defer_pay_status']), '1')
else:
public.log_record('终止申请失败响应数据', sys._getframe().f_lineno, stop_apply_res_data.text)
def test_cancel_stop_apply(self):
''' 取消终止申请'''
# 未记账/未暂缓状态数据
putout_status = {
'defer_pay_status': '1',
'put_out_status': '0'
}
fatp = fatp_db_server.LoadApplyRepository()
query_result = fatp.handel_query('1', ('serial_no'), **putout_status)
if query_result is None:
public.log_record('当前查询条件【%s】下未存在有效数据' % putout_status, sys._getframe().f_lineno, query_result)
return None
public.log_record('当前查询条件【%s】下查询结果数据' % putout_status, sys._getframe().f_lineno, query_result)
# 获取借据编号
serial_no = query_result['serial_no']
# 取消终止申请请求数据
cancel_stop_req_data = {
'loanNo': serial_no,
'type': '0'
}
public.log_record('取消终止申请请求数据', sys._getframe().f_lineno, cancel_stop_req_data)
cancel_stop_res_data = requests.post(
url=config.fatp_notify_default_url,
json=cancel_stop_req_data
)
if cancel_stop_res_data.json():
public.log_record('取消终止申请响应数据', sys._getframe().f_lineno, cancel_stop_res_data.text)
# 检测资金数据库中暂缓状态是否为0(未暂缓)
reprieve_status = fatp.handel_query('1', ('defer_pay_status'), **{'serial_no': serial_no})
public.log_record('检测资金数据库中暂缓状态是否为1(未暂缓)', sys._getframe().f_lineno, reprieve_status['defer_pay_status'])
self.assertEqual(str(reprieve_status['defer_pay_status']), '0')
else:
public.log_record('取消终止申请失败响应数据', sys._getframe().f_lineno, cancel_stop_res_data.text)
def test_stop_loan(self):
''' 终止放款'''
# 未记账/已暂缓状态数据
putout_status = {
'defer_pay_status': '1',
'put_out_status': '0'
}
fatp = fatp_db_server.LoadApplyRepository()
query_result = fatp.handel_query('1', ('serial_no'), **putout_status)
if query_result is None:
public.log_record('当前查询条件【%s】下未存在有效数据' % putout_status, sys._getframe().f_lineno, query_result)
return None
public.log_record('当前查询条件【%s】下查询结果数据' % putout_status, sys._getframe().f_lineno, query_result)
# 获取借据编号
serial_no = query_result['serial_no']
# 终止放款请求数据
stop_loan_req_data = {
'loanNo': serial_no,
'type': '2'
}
public.log_record('终止放款请求数据', sys._getframe().f_lineno, stop_loan_req_data)
stop_loan_res_data = requests.post(
url=config.fatp_notify_default_url,
json=stop_loan_req_data
)
if stop_loan_res_data.json():
public.log_record('终止放款响应数据', sys._getframe().f_lineno, stop_loan_res_data.text)
# 检测资金数据库中暂缓状态是否为2(已终止)
reprieve_status = fatp.handel_query('1', ('defer_pay_status'), **{'serial_no': serial_no})
public.log_record('检测资金数据库中暂缓状态是否为2(已终止)', sys._getframe().f_lineno, reprieve_status['defer_pay_status'])
self.assertEqual(str(reprieve_status['defer_pay_status']), '2')
else:
public.log_record('终止放款失败响应数据', sys._getframe().f_lineno, stop_loan_res_data.text)
def test_cancel_stop_loan(self):
''' 取消终止放款'''
# 未记账/已暂缓状态数据
putout_status = {
'defer_pay_status': '1',
'put_out_status': '0'
}
fatp = fatp_db_server.LoadApplyRepository()
query_result = fatp.handel_query('1', ('serial_no'), **putout_status)
if query_result is None:
public.log_record('当前查询条件【%s】下未存在有效数据' % putout_status, sys._getframe().f_lineno, query_result)
return None
public.log_record('当前查询条件【%s】下查询结果数据' % putout_status, sys._getframe().f_lineno, query_result)
# 获取借据编号
serial_no = query_result['serial_no']
# 取消终止放款请求数据
cancel_stop_req_data = {
'loanNo': serial_no,
'type': '1'
}
public.log_record('取消终止放款请求数据', sys._getframe().f_lineno, cancel_stop_req_data)
stop_loan_res_data = requests.post(
url=config.fatp_notify_default_url,
json=cancel_stop_req_data
)
if stop_loan_res_data.json():
public.log_record('取消终止放款响应数据', sys._getframe().f_lineno, stop_loan_res_data.text)
# 检测资金数据库中暂缓状态是否为1(已暂缓)
reprieve_status = fatp.handel_query('1', ('defer_pay_status'), **{'serial_no': serial_no})
public.log_record('检测资金数据库中暂缓状态是否为1(已暂缓)', sys._getframe().f_lineno, reprieve_status['defer_pay_status'])
self.assertEqual(str(reprieve_status['defer_pay_status']), '1')
else:
public.log_record('取消终止放款失败响应数据', sys._getframe().f_lineno, stop_loan_res_data.text)
if __name__ == '__main__':
unittest.main()
| 33.9
| 117
| 0.624204
| 1,511
| 12,882
| 4.915288
| 0.095963
| 0.056954
| 0.094924
| 0.113909
| 0.83358
| 0.826983
| 0.777838
| 0.757102
| 0.745927
| 0.67093
| 0
| 0.008029
| 0.25555
| 12,882
| 380
| 118
| 33.9
| 0.766423
| 0.048517
| 0
| 0.565217
| 0
| 0
| 0.132122
| 0.012086
| 0
| 0
| 0
| 0
| 0.034783
| 1
| 0.034783
| false
| 0
| 0.026087
| 0
| 0.1
| 0
| 0
| 0
| 0
| null | 0
| 0
| 0
| 1
| 1
| 1
| 1
| 1
| 1
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| null | 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
|
0
| 6
|
c04c9c42cf5836a1eff63a7d533e9e572094b517
| 222
|
py
|
Python
|
exceptions.py
|
rafagonc/django-amqp-consumer
|
9a14a3d62fbf533f2f340495f0037cc5a0799e6b
|
[
"MIT"
] | null | null | null |
exceptions.py
|
rafagonc/django-amqp-consumer
|
9a14a3d62fbf533f2f340495f0037cc5a0799e6b
|
[
"MIT"
] | null | null | null |
exceptions.py
|
rafagonc/django-amqp-consumer
|
9a14a3d62fbf533f2f340495f0037cc5a0799e6b
|
[
"MIT"
] | null | null | null |
class CannotFindQueueException(Exception):
def __init__(self, queue_name):
self.queue_name = queue_name
def __str__(self):
return "Cannot find queue: " + self.queue_name + " on django settings"
| 22.2
| 78
| 0.684685
| 26
| 222
| 5.384615
| 0.576923
| 0.257143
| 0.278571
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0.225225
| 222
| 9
| 79
| 24.666667
| 0.813953
| 0
| 0
| 0
| 0
| 0
| 0.172727
| 0
| 0
| 0
| 0
| 0
| 0
| 1
| 0.4
| false
| 0
| 0
| 0.2
| 0.8
| 0
| 1
| 0
| 0
| null | 1
| 1
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 1
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| null | 0
| 0
| 0
| 0
| 0
| 1
| 0
| 0
| 0
| 1
| 0
| 0
|
0
| 6
|
c05847a970427ca9b7b78a9bd5d689741b3e088c
| 40
|
py
|
Python
|
torpido/exceptions/__init__.py
|
AP-Atul/Torpido
|
a646b4d6de7f2e2c96de4c64ce3113f53e3931c2
|
[
"Unlicense"
] | 21
|
2020-12-23T07:13:10.000Z
|
2022-01-12T10:32:22.000Z
|
torpido/exceptions/__init__.py
|
AP-Atul/Torpido
|
a646b4d6de7f2e2c96de4c64ce3113f53e3931c2
|
[
"Unlicense"
] | 2
|
2020-12-30T10:45:42.000Z
|
2021-09-25T09:52:00.000Z
|
torpido/exceptions/__init__.py
|
AP-Atul/Torpido
|
a646b4d6de7f2e2c96de4c64ce3113f53e3931c2
|
[
"Unlicense"
] | 1
|
2021-02-06T21:39:41.000Z
|
2021-02-06T21:39:41.000Z
|
from torpido.exceptions.custom import *
| 20
| 39
| 0.825
| 5
| 40
| 6.6
| 1
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0.1
| 40
| 1
| 40
| 40
| 0.916667
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 1
| 0
| true
| 0
| 1
| 0
| 1
| 0
| 1
| 1
| 0
| null | 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 1
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| null | 0
| 0
| 0
| 0
| 0
| 0
| 1
| 0
| 1
| 0
| 1
| 0
|
0
| 6
|
c05a4c2bba8c9f85a65eca0b40600c663ee19113
| 202
|
py
|
Python
|
components/camera.py
|
nancynobody/teddy
|
ac2bde38d2f9891e83b644e9092af63b9b33e705
|
[
"MIT"
] | null | null | null |
components/camera.py
|
nancynobody/teddy
|
ac2bde38d2f9891e83b644e9092af63b9b33e705
|
[
"MIT"
] | null | null | null |
components/camera.py
|
nancynobody/teddy
|
ac2bde38d2f9891e83b644e9092af63b9b33e705
|
[
"MIT"
] | null | null | null |
"""CAMERA
"""
import picamera
class Camera:
def __init__(self):
self.camera = picamera.PiCamera()
def start_recording(self):
pass
def stop_recording(self):
pass
| 12.625
| 41
| 0.608911
| 22
| 202
| 5.318182
| 0.5
| 0.222222
| 0.290598
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0.287129
| 202
| 15
| 42
| 13.466667
| 0.8125
| 0.029703
| 0
| 0.25
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 1
| 0.375
| false
| 0.25
| 0.125
| 0
| 0.625
| 0
| 1
| 0
| 0
| null | 1
| 1
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| null | 0
| 0
| 0
| 0
| 0
| 1
| 0
| 1
| 0
| 0
| 1
| 0
|
0
| 6
|
c0699e70f27a08712282b97f1c28869c3ea3e6ab
| 38,207
|
py
|
Python
|
cryosat_toolkit/read_cryosat_L2.py
|
Sibada/read-cryosat-2
|
3267a0bb52857feb142a67cbb0e352160415c28f
|
[
"MIT"
] | null | null | null |
cryosat_toolkit/read_cryosat_L2.py
|
Sibada/read-cryosat-2
|
3267a0bb52857feb142a67cbb0e352160415c28f
|
[
"MIT"
] | null | null | null |
cryosat_toolkit/read_cryosat_L2.py
|
Sibada/read-cryosat-2
|
3267a0bb52857feb142a67cbb0e352160415c28f
|
[
"MIT"
] | null | null | null |
#!/usr/bin/env python
u"""
read_cryosat_L2.py
Written by Tyler Sutterley (10/2018)
Reads CryoSat Level-2 data products from baselines A, B and C
Supported CryoSat Modes: LRM, SAR, SARin, FDM, SID, GDR
INPUTS:
full_filename: full path of CryoSat .DBL file
OUTPUTS:
Data_1Hz: Time and Orbit Parameters
Corrections: Elevation Corrections and Flags
Data_20Hz: Geolocation and Elevation Measurements with Quality Parameters
METADATA: MPH, SPH and DSD Header data
UPDATE HISTORY:
Updated 10/2018: updated header read functions for python3
Updated 11/2016: added Abs_Orbit and Ascending_Flg to Data_1Hz outputs
Abs_Orbit should be same as in read_cryosat_ground_tracks.py
Ascending_Flg can use in surface regression fits following McMillan (2014)
Updated 05/2016: using __future__ print and division functions
Written 03/2016
"""
from __future__ import print_function
from __future__ import division
import os
import re
import numpy as np
#-- PURPOSE: Initiate L2 MDS variables for CryoSat Baselines A and B
def cryosat_baseline_AB(fid,record_size,n_records):
#-- CryoSat-2 1 Hz data fields (Location Group)
#-- Time and Orbit Parameters plus Measurement Mode
L2_1Hz_parameters = {}
#-- Time: day part
L2_1Hz_parameters['Day'] = np.zeros((n_records),dtype=np.int32)
#-- Time: second part
L2_1Hz_parameters['Second'] = np.zeros((n_records),dtype=np.int32)
#-- Time: microsecond part
L2_1Hz_parameters['Micsec'] = np.zeros((n_records),dtype=np.int32)
#-- SIRAL mode
L2_1Hz_parameters['Siral_mode'] = np.zeros((n_records),dtype=np.uint64)
#-- Lat_1Hz: packed units (0.1 micro-degree, 1e-7 degrees)
L2_1Hz_parameters['Lat_1Hz'] = np.zeros((n_records),dtype=np.int32)
#-- Lon_1Hz: packed units (0.1 micro-degree, 1e-7 degrees)
L2_1Hz_parameters['Lon_1Hz'] = np.zeros((n_records),dtype=np.int32)
#-- Alt_1Hz: packed units (mm, 1e-3 m)
#-- Altitude of COG above reference ellipsoid (interpolated value)
L2_1Hz_parameters['Alt_1Hz'] = np.zeros((n_records),dtype=np.int32)
#-- Mispointing: packed units (millidegrees, 1e-3 degrees)
L2_1Hz_parameters['Mispointing'] = np.zeros((n_records),dtype=np.int16)
#-- Number of valid records in the block of twenty that contain data
#-- Last few records of the last block of a dataset may be blank blocks
#-- inserted to bring the file up to a multiple of twenty.
L2_1Hz_parameters['N_valid'] = np.zeros((n_records),dtype=np.int16)
#-- CryoSat-2 geophysical corrections (External Corrections Group)
L2_final_corrections = {}
#-- Dry Tropospheric Correction packed units (mm, 1e-3 m)
L2_final_corrections['dryTrop'] = np.zeros((n_records),dtype=np.int16)
#-- Wet Tropospheric Correction packed units (mm, 1e-3 m)
L2_final_corrections['wetTrop'] = np.zeros((n_records),dtype=np.int16)
#-- Inverse Barometric Correction packed units (mm, 1e-3 m)
L2_final_corrections['InvBar'] = np.zeros((n_records),dtype=np.int16)
#-- Dynamic Atmosphere Correction packed units (mm, 1e-3 m)
L2_final_corrections['DynAtm'] = np.zeros((n_records),dtype=np.int16)
#-- Ionospheric Correction packed units (mm, 1e-3 m)
L2_final_corrections['Iono'] = np.zeros((n_records),dtype=np.int16)
#-- Sea State Bias Correction packed units (mm, 1e-3 m)
L2_final_corrections['SSB'] = np.zeros((n_records),dtype=np.int16)
#-- Ocean tide Correction packed units (mm, 1e-3 m)
L2_final_corrections['ocTideElv'] = np.zeros((n_records),dtype=np.int16)
#-- Long period equilibrium ocean tide Correction packed units (mm, 1e-3 m)
L2_final_corrections['lpeTideElv'] = np.zeros((n_records),dtype=np.int16)
#-- Ocean loading tide Correction packed units (mm, 1e-3 m)
L2_final_corrections['olTideElv'] = np.zeros((n_records),dtype=np.int16)
#-- Solid Earth tide Correction packed units (mm, 1e-3 m)
L2_final_corrections['seTideElv'] = np.zeros((n_records),dtype=np.int16)
#-- Geocentric Polar tide Correction packed units (mm, 1e-3 m)
L2_final_corrections['gpTideElv'] = np.zeros((n_records),dtype=np.int16)
L2_final_corrections['Spare1'] = np.zeros((n_records),dtype=np.int16)
#-- Surface Type: Packed in groups of three bits for each of the 20 records
L2_final_corrections['Surf_type'] = np.zeros((n_records),dtype=np.uint64)
#-- Mean Sea Surface or Geoid packed units (mm, 1e-3 m)
L2_final_corrections['MSS_Geoid'] = np.zeros((n_records),dtype=np.int32)
#-- Ocean Depth/Land Elevation Model (ODLE) packed units (mm, 1e-3 m)
L2_final_corrections['ODLE'] = np.zeros((n_records),dtype=np.int32)
#-- Ice Concentration packed units (%/100)
L2_final_corrections['Ice_conc'] = np.zeros((n_records),dtype=np.int16)
#-- Snow Depth packed units (mm, 1e-3 m)
L2_final_corrections['Snow_depth'] = np.zeros((n_records),dtype=np.int16)
#-- Snow Density packed units (kg/m^3)
L2_final_corrections['Snow_density'] = np.zeros((n_records),dtype=np.int16)
L2_final_corrections['Spare2'] = np.zeros((n_records),dtype=np.int16)
#-- Corrections Status Flag
L2_final_corrections['C_status'] = np.zeros((n_records),dtype=np.uint32)
#-- Significant Wave Height (SWH) packed units (mm, 1e-3)
L2_final_corrections['SWH'] = np.zeros((n_records),dtype=np.int16)
#-- Wind Speed packed units (mm/s, 1e-3 m/s)
L2_final_corrections['Wind_speed'] = np.zeros((n_records),dtype=np.uint16)
L2_final_corrections['Spare3'] = np.zeros((n_records),dtype=np.int16)
L2_final_corrections['Spare4'] = np.zeros((n_records),dtype=np.int16)
L2_final_corrections['Spare5'] = np.zeros((n_records),dtype=np.int16)
L2_final_corrections['Spare6'] = np.zeros((n_records),dtype=np.int16)
#-- CryoSat-2 20 Hz data fields (Measurement Group)
#-- Derived from instrument measurement parameters
n_blocks = 20
L2_final_measurements = {}
#-- Delta between the timestamps for 20Hz record and the 1Hz record
#-- D_time_mics packed units (microseconds)
L2_final_measurements['D_time_mics'] = np.zeros((n_records,n_blocks),dtype=np.int32)
#-- Lat: packed units (0.1 micro-degree, 1e-7 degrees)
L2_final_measurements['Lat'] = np.zeros((n_records,n_blocks),dtype=np.int32)
#-- Lon: packed units (0.1 micro-degree, 1e-7 degrees)
L2_final_measurements['Lon'] = np.zeros((n_records,n_blocks),dtype=np.int32)
#-- Measured elevation above ellipsoid from retracker: packed units (mm, 1e-3 m)
L2_final_measurements['Elev'] = np.zeros((n_records,n_blocks),dtype=np.int32)
#-- Interpolated Sea Surface Height Anomaly: packed units (mm, 1e-3 m)
L2_final_measurements['SSHA_interp'] = np.zeros((n_records,n_blocks),dtype=np.int16)
#-- Interpolated Sea Surface Height measurement count
L2_final_measurements['SSHA_num'] = np.zeros((n_records,n_blocks),dtype=np.int16)
#-- Interpolation quality estimate RSS: packed units (mm, 1e-3 m)
L2_final_measurements['SSHA_qual'] = np.zeros((n_records,n_blocks),dtype=np.int16)
#-- Sigma Zero Backscatter for retracker: packed units (1e-2 dB)
L2_final_measurements['Sig0'] = np.zeros((n_records,n_blocks),dtype=np.int16)
#-- Peakiness: packed units (1e-2)
L2_final_measurements['Peakiness'] = np.zeros((n_records,n_blocks),dtype=np.uint16)
#-- Freeboard: packed units (mm, 1e-3 m)
#-- -9999 default value indicates computation has not been performed
L2_final_measurements['Freeboard'] = np.zeros((n_records,n_blocks),dtype=np.int16)
#-- Number of averaged echoes or beams
L2_final_measurements['N_avg'] = np.zeros((n_records,n_blocks),dtype=np.int16)
L2_final_measurements['Spare1'] = np.zeros((n_records,n_blocks),dtype=np.int16)
#-- Quality flags
L2_final_measurements['Quality_Flg'] = np.zeros((n_records,n_blocks),dtype=np.uint32)
L2_final_measurements['Spare2'] = np.zeros((n_records,n_blocks),dtype=np.int16)
L2_final_measurements['Spare3'] = np.zeros((n_records,n_blocks),dtype=np.int16)
L2_final_measurements['Spare4'] = np.zeros((n_records,n_blocks),dtype=np.int16)
L2_final_measurements['Spare5'] = np.zeros((n_records,n_blocks),dtype=np.int16)
#-- for each record in the CryoSat file
for r in range(n_records):
#-- CryoSat-2 Location Group for record r
L2_1Hz_parameters['Day'][r] = np.fromfile(fid,dtype='>i4',count=1)
L2_1Hz_parameters['Second'][r] = np.fromfile(fid,dtype='>i4',count=1)
L2_1Hz_parameters['Micsec'][r] = np.fromfile(fid,dtype='>i4',count=1)
L2_1Hz_parameters['Siral_mode'][r] = np.fromfile(fid,dtype='>u8',count=1)
L2_1Hz_parameters['Lat_1Hz'][r] = np.fromfile(fid,dtype='>i4',count=1)
L2_1Hz_parameters['Lon_1Hz'][r] = np.fromfile(fid,dtype='>i4',count=1)
L2_1Hz_parameters['Alt_1Hz'][r] = np.fromfile(fid,dtype='>i4',count=1)
L2_1Hz_parameters['Mispointing'][r] = np.fromfile(fid,dtype='>i2',count=1)
L2_1Hz_parameters['N_valid'][r] = np.fromfile(fid,dtype='>i2',count=1)
#-- CryoSat-2 External Corrections Group for record r
L2_final_corrections['dryTrop'][r] = np.fromfile(fid,dtype='>i2',count=1)
L2_final_corrections['wetTrop'][r] = np.fromfile(fid,dtype='>i2',count=1)
L2_final_corrections['InvBar'][r] = np.fromfile(fid,dtype='>i2',count=1)
L2_final_corrections['DynAtm'][r] = np.fromfile(fid,dtype='>i2',count=1)
L2_final_corrections['Iono'][r] = np.fromfile(fid,dtype='>i2',count=1)
L2_final_corrections['SSB'][r] = np.fromfile(fid,dtype='>i2',count=1)
L2_final_corrections['ocTideElv'][r] = np.fromfile(fid,dtype='>i2',count=1)
L2_final_corrections['lpeTideElv'][r] = np.fromfile(fid,dtype='>i2',count=1)
L2_final_corrections['olTideElv'][r] = np.fromfile(fid,dtype='>i2',count=1)
L2_final_corrections['seTideElv'][r] = np.fromfile(fid,dtype='>i2',count=1)
L2_final_corrections['gpTideElv'][r] = np.fromfile(fid,dtype='>i2',count=1)
L2_final_corrections['Spare1'][r] = np.fromfile(fid,dtype='>i2',count=1)
L2_final_corrections['Surf_type'][r] = np.fromfile(fid,dtype='>u8',count=1)
L2_final_corrections['MSS_Geoid'][r] = np.fromfile(fid,dtype='>i4',count=1)
L2_final_corrections['ODLE'][r] = np.fromfile(fid,dtype='>i4',count=1)
L2_final_corrections['Ice_conc'][r] = np.fromfile(fid,dtype='>i2',count=1)
L2_final_corrections['Snow_depth'][r] = np.fromfile(fid,dtype='>i2',count=1)
L2_final_corrections['Snow_density'][r] = np.fromfile(fid,dtype='>i2',count=1)
L2_final_corrections['Spare2'][r] = np.fromfile(fid,dtype='>i2',count=1)
L2_final_corrections['C_status'][r] = np.fromfile(fid,dtype='>u4',count=1)
L2_final_corrections['SWH'][r] = np.fromfile(fid,dtype='>i2',count=1)
L2_final_corrections['Wind_speed'][r] = np.fromfile(fid,dtype='>u2',count=1)
L2_final_corrections['Spare3'][r] = np.fromfile(fid,dtype='>i2',count=1)
L2_final_corrections['Spare4'][r] = np.fromfile(fid,dtype='>i2',count=1)
L2_final_corrections['Spare5'][r] = np.fromfile(fid,dtype='>i2',count=1)
L2_final_corrections['Spare6'][r] = np.fromfile(fid,dtype='>i2',count=1)
#-- CryoSat-2 Measurements Group for record r and block b
for b in range(n_blocks):
L2_final_measurements['D_time_mics'][r,b] = np.fromfile(fid,dtype='>i4',count=1)
L2_final_measurements['Lat'][r,b] = np.fromfile(fid,dtype='>i4',count=1)
L2_final_measurements['Lon'][r,b] = np.fromfile(fid,dtype='>i4',count=1)
L2_final_measurements['Elev'][r,b] = np.fromfile(fid,dtype='>i4',count=1)
L2_final_measurements['SSHA_interp'][r,b] = np.fromfile(fid,dtype='>i2',count=1)
L2_final_measurements['SSHA_num'][r,b] = np.fromfile(fid,dtype='>i2',count=1)
L2_final_measurements['SSHA_qual'][r,b] = np.fromfile(fid,dtype='>i2',count=1)
L2_final_measurements['Sig0'][r,b] = np.fromfile(fid,dtype='>i2',count=1)
L2_final_measurements['Peakiness'][r,b] = np.fromfile(fid,dtype='>u2',count=1)
L2_final_measurements['Freeboard'][r,b] = np.fromfile(fid,dtype='>i2',count=1)
L2_final_measurements['N_avg'][r,b] = np.fromfile(fid,dtype='>i2',count=1)
L2_final_measurements['Spare1'][r,b] = np.fromfile(fid,dtype='>i2',count=1)
L2_final_measurements['Quality_Flg'][r,b] = np.fromfile(fid,dtype='>u4',count=1)
L2_final_measurements['Spare2'][r,b] = np.fromfile(fid,dtype='>i2',count=1)
L2_final_measurements['Spare3'][r,b] = np.fromfile(fid,dtype='>i2',count=1)
L2_final_measurements['Spare4'][r,b] = np.fromfile(fid,dtype='>i2',count=1)
L2_final_measurements['Spare5'][r,b] = np.fromfile(fid,dtype='>i2',count=1)
#-- Bind all the bits of the l2_mds together into a single dictionary
CS_l2_mds = {}
CS_l2_mds['Data_1Hz'] = L2_1Hz_parameters
CS_l2_mds['Corrections'] = L2_final_corrections
CS_l2_mds['Data_20Hz'] = L2_final_measurements
#-- return the output dictionary
return CS_l2_mds
#-- PURPOSE: Initiate L2 MDS variables for CryoSat Baseline C
def cryosat_baseline_C(fid,record_size,n_records):
#-- CryoSat-2 1 Hz data fields (Location Group)
#-- Time and Orbit Parameters plus Measurement Mode
L2_c_1Hz_parameters = {}
#-- Time: day part
L2_c_1Hz_parameters['Day'] = np.zeros((n_records),dtype=np.int32)
#-- Time: second part
L2_c_1Hz_parameters['Second'] = np.zeros((n_records),dtype=np.int32)
#-- Time: microsecond part
L2_c_1Hz_parameters['Micsec'] = np.zeros((n_records),dtype=np.int32)
#-- SIRAL mode
L2_c_1Hz_parameters['Siral_mode'] = np.zeros((n_records),dtype=np.uint64)
#-- Lat_1Hz: packed units (0.1 micro-degree, 1e-7 degrees)
L2_c_1Hz_parameters['Lat_1Hz'] = np.zeros((n_records),dtype=np.int32)
#-- Lon_1Hz: packed units (0.1 micro-degree, 1e-7 degrees)
L2_c_1Hz_parameters['Lon_1Hz'] = np.zeros((n_records),dtype=np.int32)
#-- Alt_1Hz: packed units (mm, 1e-3 m)
#-- Altitude of COG above reference ellipsoid (interpolated value)
L2_c_1Hz_parameters['Alt_1Hz'] = np.zeros((n_records),dtype=np.int32)
#-- Roll: packed units (0.1 micro-degree, 1e-7 degrees)
L2_c_1Hz_parameters['Roll'] = np.zeros((n_records),dtype=np.int32)
#-- Pitch: packed units (0.1 micro-degree, 1e-7 degrees)
L2_c_1Hz_parameters['Pitch'] = np.zeros((n_records),dtype=np.int32)
#-- Yaw: packed units (0.1 micro-degree, 1e-7 degrees)
L2_c_1Hz_parameters['Yaw'] = np.zeros((n_records),dtype=np.int32)
L2_c_1Hz_parameters['Spare'] = np.zeros((n_records),dtype=np.int16)
#-- Number of valid records in the block of twenty that contain data
#-- Last few records of the last block of a dataset may be blank blocks
#-- inserted to bring the file up to a multiple of twenty.
L2_c_1Hz_parameters['N_valid'] = np.zeros((n_records),dtype=np.int16)
#-- CryoSat-2 geophysical corrections (External Corrections Group)
L2_c_final_corrections = {}
#-- Dry Tropospheric Correction packed units (mm, 1e-3 m)
L2_c_final_corrections['dryTrop'] = np.zeros((n_records),dtype=np.int16)
#-- Wet Tropospheric Correction packed units (mm, 1e-3 m)
L2_c_final_corrections['wetTrop'] = np.zeros((n_records),dtype=np.int16)
#-- Inverse Barometric Correction packed units (mm, 1e-3 m)
L2_c_final_corrections['InvBar'] = np.zeros((n_records),dtype=np.int16)
#-- Dynamic Atmosphere Correction packed units (mm, 1e-3 m)
L2_c_final_corrections['DynAtm'] = np.zeros((n_records),dtype=np.int16)
#-- Ionospheric Correction packed units (mm, 1e-3 m)
L2_c_final_corrections['Iono'] = np.zeros((n_records),dtype=np.int16)
#-- Sea State Bias Correction packed units (mm, 1e-3 m)
L2_c_final_corrections['SSB'] = np.zeros((n_records),dtype=np.int16)
#-- Ocean tide Correction packed units (mm, 1e-3 m)
L2_c_final_corrections['ocTideElv'] = np.zeros((n_records),dtype=np.int16)
#-- Long period equilibrium ocean tide Correction packed units (mm, 1e-3 m)
L2_c_final_corrections['lpeTideElv'] = np.zeros((n_records),dtype=np.int16)
#-- Ocean loading tide Correction packed units (mm, 1e-3 m)
L2_c_final_corrections['olTideElv'] = np.zeros((n_records),dtype=np.int16)
#-- Solid Earth tide Correction packed units (mm, 1e-3 m)
L2_c_final_corrections['seTideElv'] = np.zeros((n_records),dtype=np.int16)
#-- Geocentric Polar tide Correction packed units (mm, 1e-3 m)
L2_c_final_corrections['gpTideElv'] = np.zeros((n_records),dtype=np.int16)
L2_c_final_corrections['Spare1'] = np.zeros((n_records),dtype=np.int16)
#-- Surface Type: Packed in groups of three bits for each of the 20 records
L2_c_final_corrections['Surf_type'] = np.zeros((n_records),dtype=np.uint64)
#-- Mean Sea Surface or Geoid packed units (mm, 1e-3 m)
L2_c_final_corrections['MSS_Geoid'] = np.zeros((n_records),dtype=np.int32)
#-- Ocean Depth/Land Elevation Model (ODLE) packed units (mm, 1e-3 m)
L2_c_final_corrections['ODLE'] = np.zeros((n_records),dtype=np.int32)
#-- Ice Concentration packed units (%/100)
L2_c_final_corrections['Ice_conc'] = np.zeros((n_records),dtype=np.int16)
#-- Snow Depth packed units (mm, 1e-3 m)
L2_c_final_corrections['Snow_depth'] = np.zeros((n_records),dtype=np.int16)
#-- Snow Density packed units (kg/m^3)
L2_c_final_corrections['Snow_density'] = np.zeros((n_records),dtype=np.int16)
L2_c_final_corrections['Spare2'] = np.zeros((n_records),dtype=np.int16)
#-- Corrections Status Flag
L2_c_final_corrections['C_status'] = np.zeros((n_records),dtype=np.uint32)
#-- Significant Wave Height (SWH) packed units (mm, 1e-3)
L2_c_final_corrections['SWH'] = np.zeros((n_records),dtype=np.int16)
#-- Wind Speed packed units (mm/s, 1e-3 m/s)
L2_c_final_corrections['Wind_speed'] = np.zeros((n_records),dtype=np.uint16)
L2_c_final_corrections['Spare3'] = np.zeros((n_records),dtype=np.int16)
L2_c_final_corrections['Spare4'] = np.zeros((n_records),dtype=np.int16)
L2_c_final_corrections['Spare5'] = np.zeros((n_records),dtype=np.int16)
L2_c_final_corrections['Spare6'] = np.zeros((n_records),dtype=np.int16)
#-- CryoSat-2 20 Hz data fields (Measurement Group)
#-- Derived from instrument measurement parameters
n_blocks = 20
L2_c_final_measurements = {}
#-- Delta between the timestamps for 20Hz record and the 1Hz record
#-- D_time_mics packed units (microseconds)
L2_c_final_measurements['D_time_mics'] = np.zeros((n_records,n_blocks),dtype=np.int32)
#-- Lat: packed units (0.1 micro-degree, 1e-7 degrees)
L2_c_final_measurements['Lat'] = np.zeros((n_records,n_blocks),dtype=np.int32)
#-- Lon: packed units (0.1 micro-degree, 1e-7 degrees)
L2_c_final_measurements['Lon'] = np.zeros((n_records,n_blocks),dtype=np.int32)
#-- Measured elevation above ellipsoid from retracker 1: packed units (mm, 1e-3 m)
L2_c_final_measurements['Elev_1'] = np.zeros((n_records,n_blocks),dtype=np.int32)
#-- Measured elevation above ellipsoid from retracker 2: packed units (mm, 1e-3 m)
L2_c_final_measurements['Elev_2'] = np.zeros((n_records,n_blocks),dtype=np.int32)
#-- Measured elevation above ellipsoid from retracker 3: packed units (mm, 1e-3 m)
L2_c_final_measurements['Elev_3'] = np.zeros((n_records,n_blocks),dtype=np.int32)
#-- Sigma Zero Backscatter for retracker 1: packed units (1e-2 dB)
L2_c_final_measurements['Sig0_1'] = np.zeros((n_records,n_blocks),dtype=np.int16)
#-- Sigma Zero Backscatter for retracker 2: packed units (1e-2 dB)
L2_c_final_measurements['Sig0_2'] = np.zeros((n_records,n_blocks),dtype=np.int16)
#-- Sigma Zero Backscatter for retracker 3: packed units (1e-2 dB)
L2_c_final_measurements['Sig0_3'] = np.zeros((n_records,n_blocks),dtype=np.int16)
#-- Freeboard: packed units (mm, 1e-3 m)
#-- -9999 default value indicates computation has not been performed
L2_c_final_measurements['Freeboard'] = np.zeros((n_records,n_blocks),dtype=np.int16)
#-- Interpolated Sea Surface Height Anomaly: packed units (mm, 1e-3 m)
L2_c_final_measurements['SSHA_interp'] = np.zeros((n_records,n_blocks),dtype=np.int16)
#-- Interpolated Sea Surface Height measurement count
L2_c_final_measurements['SSHA_num'] = np.zeros((n_records,n_blocks),dtype=np.int16)
#-- Interpolation quality estimate RSS: packed units (mm, 1e-3 m)
L2_c_final_measurements['SSHA_qual'] = np.zeros((n_records,n_blocks),dtype=np.int16)
#-- Peakiness: packed units (1e-2)
L2_c_final_measurements['Peakiness'] = np.zeros((n_records,n_blocks),dtype=np.uint16)
#-- Number of averaged echoes or beams
L2_c_final_measurements['N_avg'] = np.zeros((n_records,n_blocks),dtype=np.int16)
L2_c_final_measurements['Spare1'] = np.zeros((n_records,n_blocks),dtype=np.int16)
#-- Quality flags
L2_c_final_measurements['Quality_Flg'] = np.zeros((n_records,n_blocks),dtype=np.uint32)
#-- Corrections Application Flag
L2_c_final_measurements['Corrections_Flg'] = np.zeros((n_records,n_blocks),dtype=np.uint32)
#-- Quality metric for retracker 1
L2_c_final_measurements['Quality_1'] = np.zeros((n_records,n_blocks),dtype=np.int32)
#-- Quality metric for retracker 2
L2_c_final_measurements['Quality_2'] = np.zeros((n_records,n_blocks),dtype=np.int32)
#-- Quality metric for retracker 3
L2_c_final_measurements['Quality_3'] = np.zeros((n_records,n_blocks),dtype=np.int32)
#-- for each record in the CryoSat file
for r in range(n_records):
#-- CryoSat-2 Location Group for record r
L2_c_1Hz_parameters['Day'][r] = np.fromfile(fid,dtype='>i4',count=1)
L2_c_1Hz_parameters['Second'][r] = np.fromfile(fid,dtype='>i4',count=1)
L2_c_1Hz_parameters['Micsec'][r] = np.fromfile(fid,dtype='>i4',count=1)
L2_c_1Hz_parameters['Siral_mode'][r] = np.fromfile(fid,dtype='>u8',count=1)
L2_c_1Hz_parameters['Lat_1Hz'][r] = np.fromfile(fid,dtype='>i4',count=1)
L2_c_1Hz_parameters['Lon_1Hz'][r] = np.fromfile(fid,dtype='>i4',count=1)
L2_c_1Hz_parameters['Alt_1Hz'][r] = np.fromfile(fid,dtype='>i4',count=1)
L2_c_1Hz_parameters['Roll'][r] = np.fromfile(fid,dtype='>i4',count=1)
L2_c_1Hz_parameters['Pitch'][r] = np.fromfile(fid,dtype='>i4',count=1)
L2_c_1Hz_parameters['Yaw'][r] = np.fromfile(fid,dtype='>i4',count=1)
L2_c_1Hz_parameters['Spare'][r] = np.fromfile(fid,dtype='>i2',count=1)
L2_c_1Hz_parameters['N_valid'][r] = np.fromfile(fid,dtype='>i2',count=1)
#-- CryoSat-2 External Corrections Group for record r
L2_c_final_corrections['dryTrop'][r] = np.fromfile(fid,dtype='>i2',count=1)
L2_c_final_corrections['wetTrop'][r] = np.fromfile(fid,dtype='>i2',count=1)
L2_c_final_corrections['InvBar'][r] = np.fromfile(fid,dtype='>i2',count=1)
L2_c_final_corrections['DynAtm'][r] = np.fromfile(fid,dtype='>i2',count=1)
L2_c_final_corrections['Iono'][r] = np.fromfile(fid,dtype='>i2',count=1)
L2_c_final_corrections['SSB'][r] = np.fromfile(fid,dtype='>i2',count=1)
L2_c_final_corrections['ocTideElv'][r] = np.fromfile(fid,dtype='>i2',count=1)
L2_c_final_corrections['lpeTideElv'][r] = np.fromfile(fid,dtype='>i2',count=1)
L2_c_final_corrections['olTideElv'][r] = np.fromfile(fid,dtype='>i2',count=1)
L2_c_final_corrections['seTideElv'][r] = np.fromfile(fid,dtype='>i2',count=1)
L2_c_final_corrections['gpTideElv'][r] = np.fromfile(fid,dtype='>i2',count=1)
L2_c_final_corrections['Spare1'][r] = np.fromfile(fid,dtype='>i2',count=1)
L2_c_final_corrections['Surf_type'][r] = np.fromfile(fid,dtype='>u8',count=1)
L2_c_final_corrections['MSS_Geoid'][r] = np.fromfile(fid,dtype='>i4',count=1)
L2_c_final_corrections['ODLE'][r] = np.fromfile(fid,dtype='>i4',count=1)
L2_c_final_corrections['Ice_conc'][r] = np.fromfile(fid,dtype='>i2',count=1)
L2_c_final_corrections['Snow_depth'][r] = np.fromfile(fid,dtype='>i2',count=1)
L2_c_final_corrections['Snow_density'][r] = np.fromfile(fid,dtype='>i2',count=1)
L2_c_final_corrections['Spare2'][r] = np.fromfile(fid,dtype='>i2',count=1)
L2_c_final_corrections['C_status'][r] = np.fromfile(fid,dtype='>u4',count=1)
L2_c_final_corrections['SWH'][r] = np.fromfile(fid,dtype='>i2',count=1)
L2_c_final_corrections['Wind_speed'][r] = np.fromfile(fid,dtype='>u2',count=1)
L2_c_final_corrections['Spare3'][r] = np.fromfile(fid,dtype='>i2',count=1)
L2_c_final_corrections['Spare4'][r] = np.fromfile(fid,dtype='>i2',count=1)
L2_c_final_corrections['Spare5'][r] = np.fromfile(fid,dtype='>i2',count=1)
L2_c_final_corrections['Spare6'][r] = np.fromfile(fid,dtype='>i2',count=1)
#-- CryoSat-2 Measurements Group for record r and block b
for b in range(n_blocks):
L2_c_final_measurements['D_time_mics'][r,b] = np.fromfile(fid,dtype='>i4',count=1)
L2_c_final_measurements['Lat'][r,b] = np.fromfile(fid,dtype='>i4',count=1)
L2_c_final_measurements['Lon'][r,b] = np.fromfile(fid,dtype='>i4',count=1)
L2_c_final_measurements['Elev_1'][r,b] = np.fromfile(fid,dtype='>i4',count=1)
L2_c_final_measurements['Elev_2'][r,b] = np.fromfile(fid,dtype='>i4',count=1)
L2_c_final_measurements['Elev_3'][r,b] = np.fromfile(fid,dtype='>i4',count=1)
L2_c_final_measurements['Sig0_1'][r,b] = np.fromfile(fid,dtype='>i2',count=1)
L2_c_final_measurements['Sig0_2'][r,b] = np.fromfile(fid,dtype='>i2',count=1)
L2_c_final_measurements['Sig0_3'][r,b] = np.fromfile(fid,dtype='>i2',count=1)
L2_c_final_measurements['Freeboard'][r,b] = np.fromfile(fid,dtype='>i2',count=1)
L2_c_final_measurements['SSHA_interp'][r,b] = np.fromfile(fid,dtype='>i2',count=1)
L2_c_final_measurements['SSHA_num'][r,b] = np.fromfile(fid,dtype='>i2',count=1)
L2_c_final_measurements['SSHA_qual'][r,b] = np.fromfile(fid,dtype='>i2',count=1)
L2_c_final_measurements['Peakiness'][r,b] = np.fromfile(fid,dtype='>u2',count=1)
L2_c_final_measurements['N_avg'][r,b] = np.fromfile(fid,dtype='>i2',count=1)
L2_c_final_measurements['Spare1'][r,b] = np.fromfile(fid,dtype='>i2',count=1)
L2_c_final_measurements['Quality_Flg'][r,b] = np.fromfile(fid,dtype='>u4',count=1)
L2_c_final_measurements['Corrections_Flg'][r,b] = np.fromfile(fid,dtype='>u4',count=1)
L2_c_final_measurements['Quality_1'][r,b] = np.fromfile(fid,dtype='>i4',count=1)
L2_c_final_measurements['Quality_2'][r,b] = np.fromfile(fid,dtype='>i4',count=1)
L2_c_final_measurements['Quality_3'][r,b] = np.fromfile(fid,dtype='>i4',count=1)
#-- Bind all the bits of the l2_mds together into a single dictionary
CS_l2_c_mds = {}
CS_l2_c_mds['Data_1Hz'] = L2_c_1Hz_parameters
CS_l2_c_mds['Corrections'] = L2_c_final_corrections
CS_l2_c_mds['Data_20Hz'] = L2_c_final_measurements
#-- return the output dictionary
return CS_l2_c_mds
#-- PURPOSE: Read ASCII Main Product Header (MPH) block from an ESA PDS file
def read_MPH(full_filename):
#-- read input data file
with open(full_filename, 'rb') as fid:
file_contents = fid.read().splitlines()
#-- Define constant values associated with PDS file formats
#-- number of text lines in standard MPH
n_MPH_lines = 41
#-- check that first line of header matches PRODUCT
if not bool(re.match(b'PRODUCT\=\"(.*)(?=\")',file_contents[0])):
raise IOError('File does not start with a valid PDS MPH')
#-- read MPH header text
s_MPH_fields = {}
for i in range(n_MPH_lines):
#-- use regular expression operators to read headers
if bool(re.match(b'(.*?)\=\"(.*)(?=\")',file_contents[i])):
#-- data fields within quotes
field,value=re.findall(b'(.*?)\=\"(.*)(?=\")',file_contents[i]).pop()
s_MPH_fields[field.decode('utf-8')] = value.decode('utf-8').rstrip()
elif bool(re.match(b'(.*?)\=(.*)',file_contents[i])):
#-- data fields without quotes
field,value=re.findall(b'(.*?)\=(.*)',file_contents[i]).pop()
s_MPH_fields[field.decode('utf-8')] = value.decode('utf-8').rstrip()
#-- Return block name array to calling function
return s_MPH_fields
#-- PURPOSE: Read ASCII Specific Product Header (SPH) block from a PDS file
def read_SPH(full_filename,j_sph_size):
#-- read input data file
with open(full_filename, 'rb') as fid:
file_contents = fid.read().splitlines()
#-- Define constant values associated with PDS file formats
#-- number of text lines in standard MPH
n_MPH_lines = 41
#-- compile regular expression operator for reading headers
rx = re.compile(b'(.*?)\=\"?(.*)',re.VERBOSE)
#-- check first line of header matches SPH_DESCRIPTOR
if not bool(re.match(b'SPH\_DESCRIPTOR\=',file_contents[n_MPH_lines+1])):
raise IOError('File does not have a valid PDS DSD')
#-- read SPH header text (no binary control characters)
s_SPH_lines = [li for li in file_contents[n_MPH_lines+1:] if rx.match(li)
and not re.search(b'[^\x20-\x7e]+',li)]
#-- extract SPH header text
s_SPH_fields = {}
c = 0
while (c < len(s_SPH_lines)):
#-- check if line is within DS_NAME portion of SPH header
if bool(re.match(b'DS_NAME',s_SPH_lines[c])):
#-- add dictionary for DS_NAME
field,value=re.findall(b'(.*?)\=\"(.*)(?=\")',s_SPH_lines[c]).pop()
key = value.decode('utf-8').rstrip()
s_SPH_fields[key] = {}
for line in s_SPH_lines[c+1:c+7]:
if bool(re.match(b'(.*?)\=\"(.*)(?=\")',line)):
#-- data fields within quotes
dsfield,dsvalue=re.findall(b'(.*?)\=\"(.*)(?=\")',line).pop()
s_SPH_fields[key][dsfield.decode('utf-8')] = dsvalue.decode('utf-8').rstrip()
elif bool(re.match(b'(.*?)\=(.*)',line)):
#-- data fields without quotes
dsfield,dsvalue=re.findall(b'(.*?)\=(.*)',line).pop()
s_SPH_fields[key][dsfield.decode('utf-8')] = dsvalue.decode('utf-8').rstrip()
#-- add 6 to counter to go to next entry
c += 6
#-- use regular expression operators to read headers
elif bool(re.match(b'(.*?)\=\"(.*)(?=\")',s_SPH_lines[c])):
#-- data fields within quotes
field,value=re.findall(b'(.*?)\=\"(.*)(?=\")',s_SPH_lines[c]).pop()
s_SPH_fields[field.decode('utf-8')] = value.decode('utf-8').rstrip()
elif bool(re.match(b'(.*?)\=(.*)',s_SPH_lines[c])):
#-- data fields without quotes
field,value=re.findall(b'(.*?)\=(.*)',s_SPH_lines[c]).pop()
s_SPH_fields[field.decode('utf-8')] = value.decode('utf-8').rstrip()
#-- add 1 to counter to go to next line
c += 1
#-- Return block name array to calling function
return s_SPH_fields
#-- PURPOSE: Read ASCII Data Set Descriptors (DSD) block from a PDS file
def read_DSD(full_filename):
#-- read input data file
with open(full_filename, 'rb') as fid:
file_contents = fid.read().splitlines()
#-- Define constant values associated with PDS file formats
#-- number of text lines in standard MPH
n_MPH_lines = 41
#-- number of text lines in a DSD header
n_DSD_lines = 8
#-- Level-2 CryoSat DS_NAMES within files
regex_patterns = []
regex_patterns.append(b'DS_NAME\="SIR_LRM_L2[\s+]*"')
regex_patterns.append(b'DS_NAME\="SIR_SAR_L2B[\s+]*"')
regex_patterns.append(b'DS_NAME\="SIR_SAR_L2[\s+]*"')
regex_patterns.append(b'DS_NAME\="SIR_FDM_L2[\s+]*"')
regex_patterns.append(b'DS_NAME\="SIR_SARIL2B[\s+]*"')
regex_patterns.append(b'DS_NAME\="SIR_SARIL2[\s+]*"')
regex_patterns.append(b'DS_NAME\="SIR_SAR_L2B_I[\s+]*"')
regex_patterns.append(b'DS_NAME\="SIR_SAR_L2A[\s+]*"')
regex_patterns.append(b'DS_NAME\="SIR_SIN_L2[\s+]*"')
regex_patterns.append(b'DS_NAME\="SIR_SID_L2[\s+]*"')
regex_patterns.append(b'DS_NAME\="SIR_LRMIL2[\s+]*"')
regex_patterns.append(b'DS_NAME\="SIR_LRM_L2_I[\s+]*"')
regex_patterns.append(b'DS_NAME\="SIR_SARIL2A[\s+]*"')
regex_patterns.append(b'DS_NAME\="SIR_SAR_L2A_I[\s+]*"')
regex_patterns.append(b'DS_NAME\="SIR_SAR_L2_I[\s+]*"')
regex_patterns.append(b'DS_NAME\="SIR_SINIL2[\s+]*"')
regex_patterns.append(b'DS_NAME\="SIR_SIN_L2_I[\s+]*"')
regex_patterns.append(b'DS_NAME\="SIR_SIDIL2[\s+]*"')
regex_patterns.append(b'DS_NAME\="SIR_SID_L2_I[\s+]*"')
regex_patterns.append(b'DS_NAME\="SIR_GDR_2A[\s+]*"')
regex_patterns.append(b'DS_NAME\="SIR_GDR_2B[\s+]*"')
regex_patterns.append(b'DS_NAME\="SIR_GDR_2[\s+]*"')
#-- find the DSD starting line within the SPH header
c = 0
Flag = False
while ((Flag is False) and (c < len(regex_patterns))):
#-- find indice within
indice = [i for i,line in enumerate(file_contents[n_MPH_lines+1:]) if
re.search(regex_patterns[c],line)]
if indice:
Flag = True
else:
c+=1
#-- check that valid indice was found within header
if not indice:
raise IOError('Can not find correct DSD field')
#-- extract s_DSD_fields info
DSD_START = n_MPH_lines + indice[0] + 1
s_DSD_fields = {}
for i in range(DSD_START,DSD_START+n_DSD_lines):
#-- use regular expression operators to read headers
if bool(re.match(b'(.*?)\=\"(.*)(?=\")',file_contents[i])):
#-- data fields within quotes
field,value=re.findall(b'(.*?)\=\"(.*)(?=\")',file_contents[i]).pop()
s_DSD_fields[field.decode('utf-8')] = value.decode('utf-8').rstrip()
elif bool(re.match(b'(.*?)\=(.*)',file_contents[i])):
#-- data fields without quotes
field,value=re.findall(b'(.*?)\=(.*)',file_contents[i]).pop()
s_DSD_fields[field.decode('utf-8')] = value.decode('utf-8').rstrip()
#-- Return block name array to calling function
return s_DSD_fields
#-- PURPOSE: read CryoSat Level-2 data
def read_cryosat_L2(full_filename, VERBOSE=False):
#-- file basename and file extension of input file
fileBasename,fileExtension=os.path.splitext(os.path.basename(full_filename))
#-- CryoSat file class
#-- OFFL (Off Line Processing/Systematic)
#-- NRT_ (Near Real Time)
#-- RPRO (ReProcessing)
#-- TEST (Testing)
#-- LTA_ (Long Term Archive)
regex_class = 'OFFL|NRT_|RPRO|TEST|LTA_'
#-- CryoSat mission products
#-- SIR_LRM_2 L2 Product from Low Resolution Mode Processing
#-- SIR_FDM_2 L2 Product from Fast Delivery Marine Mode Processing
#-- SIR_SIN_2 L2 Product from SAR Interferometric Processing
#-- SIR_SID_2 L2 Product from SIN Degraded Processing
#-- SIR_SAR_2 L2 Product from SAR Processing
#-- SIR_GDR_2 L2 Consolidated Product
#-- SIR_LRMI2 In-depth L2 Product from LRM Processing
#-- SIR_SINI2 In-depth L2 Product from SIN Processing
#-- SIR_SIDI2 In-depth L2 Product from SIN Degraded Process.
#-- SIR_SARI2 In-depth L2 Product from SAR Processing
regex_products = ('SIR_LRM_2|SIR_FDM_2|SIR_SIN_2|SIR_SID_2|'
'SIR_SAR_2|SIR_GDR_2|SIR_LRMI2|SIR_SINI2|SIR_SIDI2|SIR_SARI2')
#-- CRYOSAT LEVEL-2 PRODUCTS NAMING RULES
#-- Mission Identifier
#-- File Class
#-- File Product
#-- Validity Start Date and Time
#-- Validity Stop Date and Time
#-- Baseline Identifier
#-- Version Number
regex_pattern = '(.*?)_({0})_({1})__(\d+T?\d+)_(\d+T?\d+)_(.*?)(\d+)'.format(
regex_class, regex_products)
rx = re.compile(regex_pattern, re.VERBOSE)
#-- extract file information from filename
MI,CLASS,PRODUCT,START,STOP,BASELINE,VERSION=rx.findall(fileBasename).pop()
#-- Extract Date information
start_yr,start_mon,start_day=np.array([START[:4],START[4:6],START[6:8]],dtype=np.uint16)
start_hh,start_mm,start_ss=np.array([START[-6:-4],START[-4:-2],START[-2:]],dtype=np.uint8)
stop_yr,stop_mon,stop_day=np.array([STOP[:4],STOP[4:6],STOP[6:8]],dtype=np.uint16)
stop_hh,stop_mm,stop_ss=np.array([STOP[-6:-4],STOP[-4:-2],STOP[-2:]],dtype=np.uint8)
#-- Record sizes
CS_L2_MDS_REC_SIZE = 980
CS_L2_C_MDS_REC_SIZE = 1392
#-- check baseline from file to set i_record_size and allocation function
if (BASELINE == 'C'):
i_record_size = CS_L2_C_MDS_REC_SIZE
read_cryosat_variables = cryosat_baseline_C
else:
i_record_size = CS_L2_MDS_REC_SIZE
read_cryosat_variables = cryosat_baseline_AB
#-- read the input file to get file information
fid = os.open(os.path.expanduser(full_filename),os.O_RDONLY)
file_info = os.fstat(fid)
os.close(fid)
#-- num DSRs from SPH
j_num_DSR = np.int32(file_info.st_size//i_record_size)
#-- print file information
if VERBOSE:
print(fileBasename)
print('{0:d} {1:d} {2:d}'.format(j_num_DSR,file_info.st_size,i_record_size))
#-- Check if MPH/SPH/DSD headers
if (j_num_DSR*i_record_size == file_info.st_size):
print('No Header on file')
print('The number of DSRs is: {0:d}'.format(j_num_DSR))
else:
print('Header on file')
#-- Check if MPH/SPH/DSD headers
if (j_num_DSR*i_record_size != file_info.st_size):
#-- If there are MPH/SPH/DSD headers
s_MPH_fields = read_MPH(full_filename)
j_sph_size = np.int32(re.findall('[-+]?\d+',s_MPH_fields['SPH_SIZE']).pop())
s_SPH_fields = read_SPH(full_filename,j_sph_size)
#-- extract information from DSD fields
s_DSD_fields = read_DSD(full_filename)
#-- extract DS_OFFSET
j_DS_start = np.int32(re.findall('[-+]?\d+',s_DSD_fields['DS_OFFSET']).pop())
#-- extract number of DSR in the file
j_num_DSR = np.int32(re.findall('[-+]?\d+',s_DSD_fields['NUM_DSR']).pop())
#-- check the record size
j_DSR_size = np.int32(re.findall('[-+]?\d+',s_DSD_fields['DSR_SIZE']).pop())
#-- minimum size is start of the read plus number of records to read
j_check_size = j_DS_start +(j_DSR_size*j_num_DSR)
if VERBOSE:
print('The offset of the DSD is: {0:d} bytes'.format(j_DS_start))
print('The number of DSRs is {0:d}'.format(j_num_DSR))
print('The size of the DSR is {0:d}'.format(j_DSR_size))
#-- check if invalid file size
if (j_check_size > file_info.st_size):
raise IOError('File size error')
#-- extract binary data from input CryoSat data file (skip headers)
fid = open(full_filename, 'rb')
cryosat_header = fid.read(j_DS_start)
#-- iterate through CryoSat file and fill output variables
CS_L2_mds = read_cryosat_variables(fid,i_record_size,j_num_DSR)
#-- add headers to output dictionary as METADATA
CS_L2_mds['METADATA'] = {}
CS_L2_mds['METADATA']['MPH'] = s_MPH_fields
CS_L2_mds['METADATA']['SPH'] = s_SPH_fields
CS_L2_mds['METADATA']['DSD'] = s_DSD_fields
#-- add absolute orbit number to 1Hz data
CS_L2_mds['Data_1Hz']['Abs_Orbit']=np.zeros((j_num_DSR),dtype=np.uint32)
CS_L2_mds['Data_1Hz']['Abs_Orbit'][:]=np.uint32(s_MPH_fields['ABS_ORBIT'])
#-- add ascending/descending flag to 1Hz data (A=ascending,D=descending)
CS_L2_mds['Data_1Hz']['Ascending_Flg']=np.zeros((j_num_DSR),dtype=np.bool)
if (s_SPH_fields['ASCENDING_FLAG'] == 'A'):
CS_L2_mds['Data_1Hz']['Ascending_Flg'][:] = True
#-- close the input CryoSat binary file
fid.close()
else:
#-- If there are not MPH/SPH/DSD headers
#-- extract binary data from input CryoSat data file
fid = open(full_filename, 'rb')
#-- iterate through CryoSat file and fill output variables
CS_L2_mds = read_cryosat_variables(fid,i_record_size,j_num_DSR)
#-- close the input CryoSat binary file
fid.close()
#-- return the data and headers
return CS_L2_mds
| 55.45283
| 93
| 0.710105
| 6,181
| 38,207
| 4.170199
| 0.080731
| 0.015247
| 0.034451
| 0.064595
| 0.822432
| 0.793102
| 0.779912
| 0.754268
| 0.738439
| 0.715123
| 0
| 0.037113
| 0.123407
| 38,207
| 688
| 94
| 55.53343
| 0.732503
| 0.291491
| 0
| 0.118357
| 0
| 0.002415
| 0.140185
| 0.030762
| 0
| 0
| 0
| 0
| 0
| 1
| 0.014493
| false
| 0
| 0.012077
| 0
| 0.041063
| 0.021739
| 0
| 0
| 0
| null | 0
| 0
| 0
| 1
| 1
| 1
| 1
| 1
| 1
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| null | 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
|
0
| 6
|
fbf12203c00167a6583c5273bfe342886b08eaa3
| 16,928
|
py
|
Python
|
tests/gui/steps/oneprovider/file_browser.py
|
aoxiangflysky/onedata
|
5fe5783f4fb23e90e6567d638a165a0bfcc2f663
|
[
"Apache-2.0"
] | 2
|
2017-09-15T10:38:56.000Z
|
2017-09-20T12:48:55.000Z
|
tests/gui/steps/oneprovider/file_browser.py
|
aoxiangflysky/onedata
|
5fe5783f4fb23e90e6567d638a165a0bfcc2f663
|
[
"Apache-2.0"
] | 31
|
2016-09-07T11:50:15.000Z
|
2017-10-31T11:47:50.000Z
|
tests/gui/steps/oneprovider/file_browser.py
|
aoxiangflysky/onedata
|
5fe5783f4fb23e90e6567d638a165a0bfcc2f663
|
[
"Apache-2.0"
] | 1
|
2017-08-31T11:55:09.000Z
|
2017-08-31T11:55:09.000Z
|
"""Steps used for file list handling in various GUI testing scenarios
"""
from time import time
from datetime import datetime
import pytest
from pytest_bdd import when, then, parsers
from tests.gui.conftest import WAIT_BACKEND, SELENIUM_IMPLICIT_WAIT, WAIT_FRONTEND
from tests.gui.utils.generic import parse_seq, repeat_failed, implicit_wait
__author__ = "Bartek Walkowicz"
__copyright__ = "Copyright (C) 2017 ACK CYFRONET AGH"
__license__ = "This software is released under the MIT license cited in " \
"LICENSE.txt"
@when(parsers.parse('user of {browser_id} sees "{msg}" '
'instead of file browser'))
@then(parsers.parse('user of {browser_id} sees "{msg}" '
'instead of file browser'))
@repeat_failed(timeout=WAIT_BACKEND)
def assert_msg_instead_of_browser(browser_id, msg, tmp_memory):
browser = tmp_memory[browser_id]['file_browser']
displayed_msg = browser.empty_dir_msg
assert displayed_msg == msg, 'displayed {} does not match expected ' \
'{}'.format(displayed_msg, msg)
@when(parsers.parse('user of {browser_id} does not see {tool_type} '
'icon for "{item_name}" in file browser'))
@then(parsers.parse('user of {browser_id} does not see {tool_type} '
'icon for "{item_name}" in file browser'))
@repeat_failed(timeout=WAIT_FRONTEND)
def assert_not_tool_icon_for_file_in_file_browser(browser_id, tool_type,
item_name, tmp_memory):
browser = tmp_memory[browser_id]['file_browser']
err_msg = '{} tool for {} in file browser visible, ' \
'while should not be'.format(tool_type, item_name)
assert not browser[item_name].is_tool_visible(tool_type), err_msg
@when(parsers.parse('user of {browser_id} sees {tool_type} '
'icon for "{item_name}" in file browser'))
@then(parsers.parse('user of {browser_id} sees {tool_type} '
'icon for "{item_name}" in file browser'))
@repeat_failed(timeout=WAIT_FRONTEND)
def assert_tool_icon_for_file_in_file_browser(browser_id, tool_type,
item_name, tmp_memory):
browser = tmp_memory[browser_id]['file_browser']
err_msg = '{} tool for {} in file browser not visible'.format(tool_type,
item_name)
assert browser[item_name].is_tool_visible(tool_type), err_msg
@when(parsers.parse('user of {browser_id} clicks on {tool_type} tool icon '
'in file row for "{item_name}" in file browser'))
@then(parsers.parse('user of {browser_id} clicks on {tool_type} tool icon '
'in file row for "{item_name}" in file browser'))
@repeat_failed(timeout=WAIT_FRONTEND)
def click_on_tool_icon_for_file_in_file_browser(browser_id, tool_type,
item_name, tmp_memory):
browser = tmp_memory[browser_id]['file_browser']
browser[item_name].click_on_tool(tool_type)
@when(parsers.parse('user of {browser_id} sees that item named {item_list} '
'has disappeared from files browser'))
@then(parsers.parse('user of {browser_id} sees that item named {item_list} '
'has disappeared from files browser'))
@when(parsers.parse('user of {browser_id} sees that items named {item_list} '
'have disappeared from files browser'))
@then(parsers.parse('user of {browser_id} sees that items named {item_list} '
'have disappeared from files browser'))
@when(parsers.parse('user of {browser_id} does not see any item(s) named '
'{item_list} in file browser'))
@then(parsers.parse('user of {browser_id} does not see any item(s) named '
'{item_list} in file browser'))
@repeat_failed(timeout=WAIT_BACKEND)
def assert_items_absence_in_file_browser(selenium, browser_id, item_list,
tmp_memory):
driver = selenium[browser_id]
browser = tmp_memory[browser_id]['file_browser']
with implicit_wait(driver, 0.1, SELENIUM_IMPLICIT_WAIT):
for item_name in parse_seq(item_list):
with pytest.raises(RuntimeError):
_ = browser[item_name]
@when(parsers.parse('user of {browser_id} sees item(s) '
'named {item_list} in file browser'))
@then(parsers.parse('user of {browser_id} sees item(s) '
'named {item_list} in file browser'))
@when(parsers.parse('user of {browser_id} sees that item named '
'{item_list} has appeared in file browser'))
@then(parsers.parse('user of {browser_id} sees that item named '
'{item_list} has appeared in file browser'))
@when(parsers.parse('user of {browser_id} sees that items named '
'{item_list} have appeared in file browser'))
@then(parsers.parse('user of {browser_id} sees that items named '
'{item_list} have appeared in file browser'))
@repeat_failed(timeout=WAIT_BACKEND)
def assert_items_presence_in_file_browser(browser_id, item_list, tmp_memory):
browser = tmp_memory[browser_id]['file_browser']
for item_name in parse_seq(item_list):
_ = browser[item_name]
@when(parsers.parse('user of {browser_id} sees item(s) named '
'{item_list} in file browser in given order'))
@then(parsers.parse('user of {browser_id} sees item(s) named '
'{item_list} in file browser in given order'))
@repeat_failed(timeout=WAIT_BACKEND)
def assert_presence_in_file_browser_with_order(browser_id, item_list,
tmp_memory):
browser = tmp_memory[browser_id]['file_browser']
items = iter(parse_seq(item_list))
curr_item = next(items)
for item in browser:
if item.name == curr_item:
try:
curr_item = next(items)
except StopIteration:
return
raise RuntimeError('item(s) not in browser or not in specified order '
'{order} starting from {item}'.format(order=item_list,
item=curr_item))
@when(parsers.parse('user of {browser_id} sees that modification date of item '
'named "{item_name}" is not earlier than {err_time:d} '
'seconds ago in file browser'))
@then(parsers.parse('user of {browser_id} sees that modification date of item '
'named "{item_name}" is not earlier than {err_time:d} '
'seconds ago in file browser'))
@repeat_failed(timeout=WAIT_FRONTEND)
def assert_item_in_file_browser_is_of_mdate(browser_id, item_name,
err_time, tmp_memory):
browser = tmp_memory[browser_id]['file_browser']
date_fmt = '%Y-%m-%d %H:%M'
item_date = datetime.strptime(browser[item_name].modification_date, date_fmt)
expected_date = datetime.fromtimestamp(time())
err_msg = 'displayed mod time {} for {} does not match expected {}'
assert abs(expected_date - item_date).seconds < err_time, \
err_msg.format(item_date, item_name, expected_date)
@when(parsers.parse('user of {browser_id} sees that item named "{item_name}" '
'is of {size} size in file browser'))
@then(parsers.parse('user of {browser_id} sees that item named "{item_name}" '
'is of {size} size in file browser'))
@repeat_failed(timeout=WAIT_FRONTEND)
def assert_item_in_file_browser_is_of_size(browser_id, item_name, size,
tmp_memory):
browser = tmp_memory[browser_id]['file_browser']
item_size = browser[item_name].size
err_msg = 'displayed size {} for {} does not match expected {}'
assert size == item_size, err_msg.format(item_size, item_name, size)
@when(parsers.parse('user of {browser_id} scrolls to the bottom '
'of file browser'))
@then(parsers.parse('user of {browser_id} scrolls to the bottom '
'of file browser'))
@repeat_failed(timeout=WAIT_FRONTEND)
def scroll_to_bottom_of_file_browser(browser_id, tmp_memory):
browser = tmp_memory[browser_id]['file_browser']
browser.scroll_to_bottom()
# @when(parsers.parse('user of {browser_id} sees that there is(are) {num:d} '
# 'item(s) in file browser'))
# @then(parsers.parse('user of {browser_id} sees that there is(are) {num:d} '
# 'item(s) in file browser'))
@when(parsers.re('user of (?P<browser_id>.+?) sees that there '
'(is 1|are (?P<num>\d+)) items? in file browser'))
@then(parsers.re('user of (?P<browser_id>.+?) sees that there '
'(is 1|are (?P<num>\d+)) items? in file browser'))
@repeat_failed(timeout=WAIT_BACKEND)
def assert_num_of_files_are_displayed_in_file_browser(browser_id, num,
tmp_memory):
browser = tmp_memory[browser_id]['file_browser']
err_msg = 'displayed number of files {} does not match expected {}'
files_num = browser.files_count
num = int(num) if num is not None else 1
assert files_num == num, err_msg.format(files_num, num)
@when(parsers.parse('user of {browser_id} sees that item named "{item_name}" '
'is {item_attr} in file browser'))
@then(parsers.parse('user of {browser_id} sees that item named "{item_name}" '
'is {item_attr} in file browser'))
@repeat_failed(timeout=WAIT_BACKEND)
def assert_item_in_file_browser_is_of_type(browser_id, item_name, item_attr,
tmp_memory):
browser = tmp_memory[browser_id]['file_browser']
action = getattr(browser[item_name], 'is_{}'.format(item_attr))
assert action(), '"{}" is not {}, while it should'.format(item_name,
item_attr)
@when(parsers.parse('user of {browser_id} double clicks on item '
'named "{item_name}" in file browser'))
@then(parsers.parse('user of {browser_id} double clicks on item '
'named "{item_name}" in file browser'))
@repeat_failed(timeout=WAIT_FRONTEND)
def double_click_on_item_in_file_browser(browser_id, item_name, tmp_memory):
browser = tmp_memory[browser_id]['file_browser']
browser[item_name].double_click()
@when(parsers.parse('user of {browser_id} clicks once on item '
'named "{item_name}" in file browser'))
@then(parsers.parse('user of {browser_id} clicks once on item '
'named "{item_name}" in file browser'))
@repeat_failed(timeout=WAIT_BACKEND)
def click_on_item_in_file_browser(browser_id, item_name, tmp_memory):
browser = tmp_memory[browser_id]['file_browser']
browser[item_name].click()
@when(parsers.parse('user of {browser_id} selects {item_list} '
'item(s) from file browser with pressed shift'))
@then(parsers.parse('user of {browser_id} selects {item_list} '
'item(s) from file browser with pressed shift'))
def select_files_from_file_list_using_shift(browser_id, item_list, tmp_memory):
browser = tmp_memory[browser_id]['file_browser']
with browser.select_files() as selector:
selector.shift_down()
_select_files(browser, selector, item_list)
selector.shift_up()
@when(parsers.parse('user of {browser_id} selects {item_list} '
'item(s) from file browser with pressed ctrl'))
@then(parsers.parse('user of {browser_id} selects {item_list} '
'item(s) from file browser with pressed ctrl'))
@repeat_failed(timeout=WAIT_FRONTEND)
def select_files_from_file_list_using_ctrl(browser_id, item_list,
tmp_memory):
browser = tmp_memory[browser_id]['file_browser']
with browser.select_files() as selector:
selector.ctrl_or_cmd_down()
_select_files(browser, selector, item_list)
selector.ctrl_or_cmd_up()
@when(parsers.parse('user of {browser_id} deselects {item_list} '
'item(s) from file browser'))
@then(parsers.parse('user of {browser_id} deselects {item_list} '
'item(s) from file browser'))
@repeat_failed(timeout=WAIT_FRONTEND)
def deselect_items_from_file_browser(browser_id, item_list, tmp_memory):
browser = tmp_memory[browser_id]['file_browser']
with browser.select_files() as selector:
selector.ctrl_or_cmd_down()
_deselect_files(browser, selector, item_list)
selector.ctrl_or_cmd_up()
def _select_files(browser, selector, item_list):
for item_name in parse_seq(item_list):
item = browser[item_name]
if not item.is_selected():
selector.select(item)
def _deselect_files(browser, selector, item_list):
for item_name in parse_seq(item_list):
item = browser[item_name]
if item.is_selected():
selector.select(item)
@when(parsers.parse('user of {browser_id} deselects all '
'selected items from file browser'))
@then(parsers.parse('user of {browser_id} deselects all '
'selected items from file browser'))
@repeat_failed(timeout=WAIT_FRONTEND)
def deselect_all_items_from_file_browser(browser_id, tmp_memory):
browser = tmp_memory[browser_id]['file_browser']
item = browser[0]
item.click()
if item.is_selected():
item.click()
@when(parsers.parse('user of {browser_id} sees that {item_list} '
'item is selected in file browser'))
@then(parsers.parse('user of {browser_id} sees that {item_list} '
'item is selected in file browser'))
@when(parsers.parse('user of {browser_id} sees that {item_list} '
'items are selected in file browser'))
@then(parsers.parse('user of {browser_id} sees that {item_list} '
'items are selected in file browser'))
@repeat_failed(timeout=WAIT_FRONTEND)
def assert_items_are_selected_in_file_browser(browser_id, item_list,
tmp_memory):
browser = tmp_memory[browser_id]['file_browser']
err_msg = 'item "{name}" is not selected while it should be'
for item_name in parse_seq(item_list):
item = browser[item_name]
assert item.is_selected(), err_msg.format(name=item_name)
@when(parsers.parse('user of {browser_id} sees that {item_list} '
'item is not selected in file browser'))
@then(parsers.parse('user of {browser_id} sees that {item_list} '
'item is not selected in file browser'))
@when(parsers.parse('user of {browser_id} sees that {item_list} '
'items are not selected in file browser'))
@then(parsers.parse('user of {browser_id} sees that {item_list} '
'items are not selected in file browser'))
@repeat_failed(timeout=WAIT_FRONTEND)
def assert_items_are_not_selected_in_file_browser(browser_id, item_list,
tmp_memory):
browser = tmp_memory[browser_id]['file_browser']
err_msg = 'item "{name}" is selected while it should not be'
for item_name in parse_seq(item_list):
item = browser[item_name]
assert not item.is_selected(), err_msg.format(name=item_name)
@when(parsers.parse('user of {browser_id} sees that none '
'item is selected in file browser'))
@then(parsers.parse('user of {browser_id} sees that none '
'item is selected in file browser'))
@repeat_failed(timeout=WAIT_FRONTEND)
def assert_none_item_is_selected_in_file_browser(browser_id, item_list,
tmp_memory):
browser = tmp_memory[browser_id]['file_browser']
err_msg = 'item "{name}" is selected while it should not be'
for item_name in parse_seq(item_list):
item = browser[item_name]
assert not item.is_selected(), err_msg.format(name=item_name)
@when(parsers.parse('user of {browser_id} sees empty directory message '
'in file browser'))
@then(parsers.parse('user of {browser_id} sees empty directory message '
'in file browser'))
@repeat_failed(timeout=WAIT_BACKEND)
def assert_empty_dir_msg_in_file_browser(browser_id, tmp_memory):
browser = tmp_memory[browser_id]['file_browser']
expected_msg = 'Nothing here yet.\n' \
'Drop your files here or use the button in toolbar'
displayed_msg = browser.empty_dir_msg
assert expected_msg == displayed_msg, 'Displayed empty dir msg "{}" ' \
'does not match expected one ' \
'"{}"'.format(displayed_msg,
expected_msg)
| 47.684507
| 82
| 0.643785
| 2,268
| 16,928
| 4.541005
| 0.080688
| 0.090009
| 0.075736
| 0.097874
| 0.818041
| 0.814933
| 0.78862
| 0.769783
| 0.746092
| 0.727449
| 0
| 0.000791
| 0.252776
| 16,928
| 354
| 83
| 47.819209
| 0.813424
| 0.018608
| 0
| 0.564626
| 0
| 0
| 0.336325
| 0
| 0
| 0
| 0
| 0
| 0.085034
| 1
| 0.081633
| false
| 0
| 0.020408
| 0
| 0.105442
| 0
| 0
| 0
| 0
| null | 0
| 0
| 0
| 1
| 1
| 1
| 1
| 1
| 1
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| null | 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
|
0
| 6
|
fbfc223779491c516d4a00188f3cd001a39089dc
| 258
|
py
|
Python
|
omoide_index/domain/infra/__init__.py
|
IgorZyktin/omoide-index
|
b64cdc9e661b0b3d3b25a460f8bb0ef689ea81ad
|
[
"MIT"
] | null | null | null |
omoide_index/domain/infra/__init__.py
|
IgorZyktin/omoide-index
|
b64cdc9e661b0b3d3b25a460f8bb0ef689ea81ad
|
[
"MIT"
] | 16
|
2021-12-22T02:27:24.000Z
|
2022-03-31T02:26:07.000Z
|
omoide_index/domain/infra/__init__.py
|
IgorZyktin/omoide-index
|
b64cdc9e661b0b3d3b25a460f8bb0ef689ea81ad
|
[
"MIT"
] | null | null | null |
# -*- coding: utf-8 -*-
from omoide_index.domain.infra.abstract_clock import AbstractClock
from omoide_index.domain.infra.abstract_config import AbstractConfig
from omoide_index.domain.infra.abstract_memory_calculator import (
AbstractMemoryCalculator
)
| 36.857143
| 68
| 0.833333
| 31
| 258
| 6.709677
| 0.548387
| 0.144231
| 0.216346
| 0.302885
| 0.490385
| 0.490385
| 0
| 0
| 0
| 0
| 0
| 0.004255
| 0.089147
| 258
| 6
| 69
| 43
| 0.880851
| 0.081395
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 1
| 0
| true
| 0
| 0.6
| 0
| 0.6
| 0
| 0
| 0
| 0
| null | 0
| 1
| 1
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 1
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| null | 0
| 0
| 0
| 0
| 0
| 0
| 1
| 0
| 1
| 0
| 1
| 0
|
0
| 6
|
223621529b2849d9a663d8fcfa232fd37ee2c856
| 5,808
|
py
|
Python
|
tests/vmss/test_vmss_fetcher.py
|
ianalderman/chaostoolkit-azure
|
1ed41aa19b005cd05faffe3a11446e13d53b781a
|
[
"Apache-2.0"
] | null | null | null |
tests/vmss/test_vmss_fetcher.py
|
ianalderman/chaostoolkit-azure
|
1ed41aa19b005cd05faffe3a11446e13d53b781a
|
[
"Apache-2.0"
] | null | null | null |
tests/vmss/test_vmss_fetcher.py
|
ianalderman/chaostoolkit-azure
|
1ed41aa19b005cd05faffe3a11446e13d53b781a
|
[
"Apache-2.0"
] | 2
|
2020-09-20T11:07:40.000Z
|
2020-10-19T14:48:58.000Z
|
from unittest.mock import patch
import pytest
from chaoslib.exceptions import FailedActivity
import chaosazure
from chaosazure.vmss.actions import delete_vmss
from chaosazure.vmss.fetcher import fetch_vmss, fetch_instances
from tests.data import vmss_provider
@patch('chaosazure.vmss.fetcher.fetch_resources', autospec=True)
def test_succesful_fetch_vmss(mocked_fetch_vmss):
scale_set = vmss_provider.provide_scale_set()
scale_sets = [scale_set]
mocked_fetch_vmss.return_value = scale_sets
result = fetch_vmss(None, None, None)
assert len(result) == 1
assert result[0].get('name') == 'chaos-pool'
@patch('chaosazure.vmss.fetcher.fetch_resources', autospec=True)
def test_empty_fetch_vmss(mocked_fetch_vmss):
with pytest.raises(FailedActivity) as x:
mocked_fetch_vmss.return_value = []
fetch_vmss(None, None, None)
assert "No VMSS" in str(x.value)
@patch.object(chaosazure.vmss.fetcher, '__fetch_vmss_instances', autospec=True)
def test_succesful_fetch_instances_without_instance_criteria(mocked_fetch_instances):
instance = vmss_provider.provide_instance()
instances = [instance]
mocked_fetch_instances.return_value = instances
scale_set = vmss_provider.provide_scale_set()
result = fetch_instances(scale_set, None, None, None)
assert len(result) == 1
assert result[0].get('name') == 'chaos-pool_0'
assert result[0].get('instance_id') == '0'
@patch.object(chaosazure.vmss.fetcher, '__fetch_vmss_instances', autospec=True)
def test_empty_fetch_instances_without_instance_criteria(mocked_fetch_instances):
with pytest.raises(FailedActivity) as x:
mocked_fetch_instances.return_value = []
scale_set = vmss_provider.provide_scale_set()
fetch_instances(scale_set, None, None, None)
assert "No VMSS instances" in str(x.value)
@patch.object(chaosazure.vmss.fetcher, '__fetch_vmss_instances', autospec=True)
def test_succesful_fetch_instances_with_instance_criteria_for_instance0(mocked_fetch_instances):
# arrange
instance_0 = vmss_provider.provide_instance()
instance_0['instance_id'] = '0'
instance_1 = vmss_provider.provide_instance()
instance_1['instance_id'] = '1'
instance_2 = vmss_provider.provide_instance()
instance_2['instance_id'] = '2'
instances = [instance_0, instance_1, instance_2]
mocked_fetch_instances.return_value = instances
scale_set = vmss_provider.provide_scale_set()
# fire
result = fetch_instances(scale_set, [{'instance_id': '0'}], None, None)
# assert
assert len(result) == 1
assert result[0].get('name') == 'chaos-pool_0'
assert result[0].get('instance_id') == '0'
@patch.object(chaosazure.vmss.fetcher, '__fetch_vmss_instances', autospec=True)
def test_succesful_fetch_instances_with_instance_criteria_for_instance0_instance_2(mocked_fetch_instances):
# arrange
instance_0 = vmss_provider.provide_instance()
instance_0['instance_id'] = '0'
instance_0['name'] = 'chaos-pool_0'
instance_1 = vmss_provider.provide_instance()
instance_1['instance_id'] = '1'
instance_1['name'] = 'chaos-pool_1'
instance_2 = vmss_provider.provide_instance()
instance_2['instance_id'] = '2'
instance_2['name'] = 'chaos-pool_2'
instances = [instance_0, instance_1, instance_2]
mocked_fetch_instances.return_value = instances
scale_set = vmss_provider.provide_scale_set()
# fire
result = fetch_instances(scale_set, [{'instance_id': '0'}, {'instance_id': '2'}], None, None)
# assert
assert len(result) == 2
assert result[0].get('name') == 'chaos-pool_0'
assert result[0].get('instance_id') == '0'
assert result[1].get('name') == 'chaos-pool_2'
assert result[1].get('instance_id') == '2'
@patch.object(chaosazure.vmss.fetcher, '__fetch_vmss_instances', autospec=True)
def test_succesful_fetch_instances_with_instance_criteria_for_all_instances(mocked_fetch_instances):
# arrange
instance_0 = vmss_provider.provide_instance()
instance_0['instance_id'] = '0'
instance_0['name'] = 'chaos-pool_0'
instance_1 = vmss_provider.provide_instance()
instance_1['instance_id'] = '1'
instance_1['name'] = 'chaos-pool_1'
instance_2 = vmss_provider.provide_instance()
instance_2['instance_id'] = '2'
instance_2['name'] = 'chaos-pool_2'
instances = [instance_0, instance_1, instance_2]
mocked_fetch_instances.return_value = instances
scale_set = vmss_provider.provide_scale_set()
# fire
result = fetch_instances(
scale_set, [{'instance_id': '0'}, {'instance_id': '1'}, {'instance_id': '2'}], None, None)
# assert
assert len(result) == 3
assert result[0].get('name') == 'chaos-pool_0'
assert result[0].get('instance_id') == '0'
assert result[1].get('name') == 'chaos-pool_1'
assert result[1].get('instance_id') == '1'
assert result[2].get('name') == 'chaos-pool_2'
assert result[2].get('instance_id') == '2'
@patch.object(chaosazure.vmss.fetcher, '__fetch_vmss_instances', autospec=True)
def test_empty_fetch_instances_with_instance_criteria(mocked_fetch_instances):
# arrange
instance_0 = vmss_provider.provide_instance()
instance_0['instance_id'] = '0'
instance_1 = vmss_provider.provide_instance()
instance_1['instance_id'] = '1'
instance_2 = vmss_provider.provide_instance()
instance_2['instance_id'] = '2'
instances = [instance_0, instance_1, instance_2]
mocked_fetch_instances.return_value = instances
scale_set = vmss_provider.provide_scale_set()
# fire
with pytest.raises(FailedActivity) as x:
fetch_instances(
scale_set, [{'instance_id': '99'}, {'instance_id': '100'}, {'instance_id': '101'}], None, None)
assert "No VMSS instance" in x.value
| 36.993631
| 107
| 0.721763
| 769
| 5,808
| 5.093628
| 0.084525
| 0.071483
| 0.097013
| 0.089609
| 0.900179
| 0.860863
| 0.81542
| 0.786827
| 0.726576
| 0.708706
| 0
| 0.022579
| 0.153581
| 5,808
| 156
| 108
| 37.230769
| 0.774207
| 0.012397
| 0
| 0.612613
| 0
| 0
| 0.142034
| 0.036688
| 0
| 0
| 0
| 0
| 0.207207
| 1
| 0.072072
| false
| 0
| 0.063063
| 0
| 0.135135
| 0
| 0
| 0
| 0
| null | 0
| 0
| 0
| 1
| 1
| 1
| 1
| 1
| 1
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| null | 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
|
0
| 6
|
97d47ac5be712c13a3a8b67a284823eb26d57d2a
| 1,825
|
py
|
Python
|
tasks/docs.py
|
tmbb/playfair
|
cad2491c955259e0482a443cea94f5d334b6e05e
|
[
"MIT"
] | null | null | null |
tasks/docs.py
|
tmbb/playfair
|
cad2491c955259e0482a443cea94f5d334b6e05e
|
[
"MIT"
] | null | null | null |
tasks/docs.py
|
tmbb/playfair
|
cad2491c955259e0482a443cea94f5d334b6e05e
|
[
"MIT"
] | null | null | null |
def make_example_image_1():
from playfair.compare import add_comparisons_to_axes, Comparison, stars
from matplotlib import pyplot as plt
import numpy as np
# Generate some data
d1 = np.linspace(1, 2, 55)
d2 = np.linspace(2, 2.5, 34)
# Create a comparison marker between populations at the positions 1 and 2.
comparison_marker = Comparison("$p < 0.01$", d1, d2, 1, 2)
fig, ax = plt.subplots(1)
# Add a normal boxplot
ax.boxplot([d1, d2], labels=["Left", "Right"])
add_comparisons_to_axes(ax, [comparison_marker])
# Set the ylims manually because matplotlib isn't smart enough
# to scale things such that the markers fit in the plot
ax.set_ylim(0, 3.5)
fig.savefig('docs/_static/images/example1.png')
def make_example_image_2():
from playfair.compare import add_comparisons_to_axes, Comparison, stars
from matplotlib import pyplot as plt
import numpy as np
# Generate some data
d1 = np.linspace(1, 2, 55)
d2 = np.linspace(2, 2.5, 34)
d3 = np.linspace(1.35, 1.70, 55)
# Create a comparison marker between populations at the positions 1 and 2.
comparison_marker_1 = Comparison("$p < 0.01$", d1, d2, 1, 2)
# Create a comparison marker between populations at the positions 1 and 3.
comparison_marker_2 = Comparison("$p < 0.05$", d1, d2, 1, 3)
fig, ax = plt.subplots(1)
# Add a normal boxplot
ax.boxplot([d1, d2, d3], labels=["A", "B", "C"])
add_comparisons_to_axes(ax, [comparison_marker_1, comparison_marker_2])
# Set the ylims manually because matplotlib isn't smart enough
# to scale things such that the markers fit in the plot
ax.set_ylim(0, 4)
fig.savefig('docs/_static/images/example2.png')
if __name__ == '__main__':
make_example_image_1()
make_example_image_2()
| 34.433962
| 78
| 0.684384
| 288
| 1,825
| 4.177083
| 0.298611
| 0.119701
| 0.0532
| 0.0665
| 0.823774
| 0.780549
| 0.780549
| 0.717373
| 0.684123
| 0.684123
| 0
| 0.055517
| 0.210411
| 1,825
| 52
| 79
| 35.096154
| 0.77932
| 0.289315
| 0
| 0.413793
| 1
| 0
| 0.088716
| 0.049805
| 0
| 0
| 0
| 0
| 0
| 1
| 0.068966
| false
| 0
| 0.206897
| 0
| 0.275862
| 0
| 0
| 0
| 0
| null | 0
| 0
| 0
| 1
| 1
| 1
| 1
| 0
| 1
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 1
| 0
| 0
| 0
| null | 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
|
0
| 6
|
97ede6c37c4d381c2d5119717b7c6ab3912f1e2d
| 22
|
py
|
Python
|
python/app/thirdparty/dirsearch/thirdparty/requests/packages/__init__.py
|
taomujian/linbing
|
fe772a58f41e3b046b51a866bdb7e4655abaf51a
|
[
"MIT"
] | 351
|
2020-02-26T05:23:26.000Z
|
2022-03-26T12:39:19.000Z
|
python/app/thirdparty/dirsearch/thirdparty/requests/packages/__init__.py
|
taomujian/linbing
|
fe772a58f41e3b046b51a866bdb7e4655abaf51a
|
[
"MIT"
] | 15
|
2020-03-26T07:31:49.000Z
|
2022-03-09T02:12:17.000Z
|
python/app/thirdparty/dirsearch/thirdparty/requests/packages/__init__.py
|
taomujian/linbing
|
fe772a58f41e3b046b51a866bdb7e4655abaf51a
|
[
"MIT"
] | 99
|
2020-02-28T07:30:46.000Z
|
2022-03-16T16:41:09.000Z
|
from . import urllib3
| 11
| 21
| 0.772727
| 3
| 22
| 5.666667
| 1
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0.055556
| 0.181818
| 22
| 1
| 22
| 22
| 0.888889
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 1
| 0
| true
| 0
| 1
| 0
| 1
| 0
| 1
| 1
| 0
| null | 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 1
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| null | 0
| 0
| 0
| 0
| 0
| 0
| 1
| 0
| 1
| 0
| 1
| 0
|
0
| 6
|
451f93db6e8045db8d799feecc51a41bba6dd94d
| 46,395
|
py
|
Python
|
font_6x8_src.py
|
azorg/font_6x8
|
6c889e1c89b1dc1902782057b5b151119ad6f379
|
[
"BSD-3-Clause"
] | 1
|
2021-09-12T19:28:36.000Z
|
2021-09-12T19:28:36.000Z
|
font_6x8_src.py
|
azorg/font_6x8
|
6c889e1c89b1dc1902782057b5b151119ad6f379
|
[
"BSD-3-Clause"
] | null | null | null |
font_6x8_src.py
|
azorg/font_6x8
|
6c889e1c89b1dc1902782057b5b151119ad6f379
|
[
"BSD-3-Clause"
] | null | null | null |
#!/usr/bin/env python3
# -*- coding: UTF8 -*-
font_6x8_koi8r_src = [tuple(' ' * 12 for i in range(8)) for j in range(256)]
# ' ' "\u0020"
font_6x8_koi8r_src[0x20] = (
" ",
" ",
" ",
" ",
" ",
" ",
" ",
" ")
# '!' "\u0021"
font_6x8_koi8r_src[0x21] = (
" ",
" ## ",
" ## ",
" ## ",
" ## ",
" ## ",
" ",
" ## ")
# '"' "\u0022"
font_6x8_koi8r_src[0x22] = (
" ",
" ## ## ",
" ## ## ",
" ",
" ",
" ",
" ",
" ")
# '#' "\u0023"
font_6x8_koi8r_src[0x23] = (
" ",
" ## ## ",
" ## ## ",
"########## ",
" ## ## ",
"########## ",
" ## ## ",
" ## ## ")
# '$' "\u0024"
font_6x8_koi8r_src[0x24] = (
" ",
" ## ",
" ######## ",
"## ## ",
" ###### ",
" ## ## ",
"######## ",
" ## ")
# '%' "\u0025"
font_6x8_koi8r_src[0x25] = (
" ",
"#### ",
"#### ## ",
" ## ",
" ## ",
" ## ",
"## #### ",
" #### ")
# '&' "\u0026"
font_6x8_koi8r_src[0x26] = (
" ",
" #### ",
"## ## ",
"## ## ",
" ## ",
"## ## ## ",
"## ## ",
" #### ## ")
# ''' "\u0027"
font_6x8_koi8r_src[0x27] = (
" ",
" ## ",
" ## ",
" ",
" ",
" ",
" ",
" ")
# '(' "\u0028"
font_6x8_koi8r_src[0x28] = (
" ",
" ## ",
" ## ",
" ## ",
" ## ",
" ## ",
" ## ",
" ## ")
# ')' "\u0029"
font_6x8_koi8r_src[0x29] = (
" ",
" ## ",
" ## ",
" ## ",
" ## ",
" ## ",
" ## ",
" ## ")
# '*' "\u002A"
font_6x8_koi8r_src[0x2A] = (
" ",
" ",
" ## ",
"## ## ## ",
" ###### ",
"## ## ## ",
" ## ",
" ")
# '+' "\u002B"
font_6x8_koi8r_src[0x2B] = (
" ",
" ",
" ## ",
" ## ",
"########## ",
" ## ",
" ## ",
" ")
# ',' "\u002C"
font_6x8_koi8r_src[0x2C] = (
" ",
" ",
" ",
" ",
" ",
" #### ",
" ## ",
" ## ")
# '-' "\u002D"
font_6x8_koi8r_src[0x2D] = (
" ",
" ",
" ",
" ",
"########## ",
" ",
" ",
" ")
# '.' "\u002E"
font_6x8_koi8r_src[0x2E] = (
" ",
" ",
" ",
" ",
" ",
" ",
" #### ",
" #### ")
# '/' "\u002F"
font_6x8_koi8r_src[0x2F] = (
" ",
" ",
" ## ",
" ## ",
" ## ",
" ## ",
"## ",
" ")
# '0' "\u0030"
font_6x8_koi8r_src[0x30] = (
" ",
" ###### ",
"## ## ",
"## #### ",
"## ## ## ",
"#### ## ",
"## ## ",
" ###### ")
# '1' "\u0031"
font_6x8_koi8r_src[0x31] = (
" ",
" ## ",
" #### ",
" ## ",
" ## ",
" ## ",
" ## ",
" ###### ")
# '2' "\u0032"
font_6x8_koi8r_src[0x32] = (
" ",
" ###### ",
"## ## ",
" ## ",
" ###### ",
"## ",
"## ",
"########## ")
# '3' "\u0033"
font_6x8_koi8r_src[0x33] = (
" ",
"########## ",
" ## ",
" ## ",
" ## ",
" ## ",
"## ## ",
" ###### ")
# '4' "\u0034"
font_6x8_koi8r_src[0x34] = (
" ",
" ## ",
" #### ",
" ## ## ",
"## ## ",
"########## ",
" ## ",
" ## ")
# '5' "\u0035"
font_6x8_koi8r_src[0x35] = (
" ",
"########## ",
"## ",
"######## ",
" ## ",
" ## ",
"## ## ",
" ###### ")
# '6' "\u0036"
font_6x8_koi8r_src[0x36] = (
" ",
" ###### ",
"## ## ",
"## ",
"######## ",
"## ## ",
"## ## ",
" ###### ")
# '7' "\u0037"
font_6x8_koi8r_src[0x37] = (
" ",
"########## ",
"## ## ",
" ## ",
" ## ",
" ## ",
" ## ",
" ## ")
# '8' "\u0038"
font_6x8_koi8r_src[0x38] = (
" ",
" ###### ",
"## ## ",
"## ## ",
" ###### ",
"## ## ",
"## ## ",
" ###### ")
# '9' "\u0039"
font_6x8_koi8r_src[0x39] = (
" ",
" ###### ",
"## ## ",
"## ## ",
" ######## ",
" ## ",
"## ## ",
" ###### ")
# ':' "\u003A"
font_6x8_koi8r_src[0x3A] = (
" ",
" ",
" #### ",
" #### ",
" ",
" #### ",
" #### ",
" ")
# ';' "\u003B"
font_6x8_koi8r_src[0x3B] = (
" ",
" ",
" #### ",
" #### ",
" ",
" #### ",
" #### ",
" ## ")
# '<' "\u003C"
font_6x8_koi8r_src[0x3C] = (
" ",
" ## ",
" ## ",
" ## ",
"## ",
" ## ",
" ## ",
" ## ")
# '=' "\u003D"
font_6x8_koi8r_src[0x3D] = (
" ",
" ",
" ",
"########## ",
" ",
"########## ",
" ",
" ")
# '>' "\u003E"
font_6x8_koi8r_src[0x3E] = (
" ",
"## ",
" ## ",
" ## ",
" ## ",
" ## ",
" ## ",
"## ")
# '?' "\u003F"
font_6x8_koi8r_src[0x3F] = (
" ",
" ###### ",
"## ## ",
" ## ",
" ## ",
" ## ",
" ",
" ## ")
# '@' "\u0040"
font_6x8_koi8r_src[0x40] = (
" ",
" ###### ",
"## ###### ",
"#### ## ",
"#### ## ",
"## ###### ",
"## ",
" ###### ")
# 'A' "\u0041"
font_6x8_koi8r_src[0x41] = (
" ",
" ###### ",
" ## ## ",
"## ## ",
"########## ",
"## ## ",
"## ## ",
"## ## ")
# 'B' "\u0042"
font_6x8_koi8r_src[0x42] = (
" ",
"######## ",
"## ## ",
"## ## ",
"######## ",
"## ## ",
"## ## ",
"######## ")
# 'C' "\u0043"
font_6x8_koi8r_src[0x43] = (
" ",
" ###### ",
"## ## ",
"## ",
"## ",
"## ",
"## ## ",
" ###### ")
# 'D' "\u0044"
font_6x8_koi8r_src[0x44] = (
" ",
"###### ",
"## ## ",
"## ## ",
"## ## ",
"## ## ",
"## ## ",
"###### ")
# 'E' "\u0045"
font_6x8_koi8r_src[0x45] = (
" ",
"########## ",
"## ",
"## ",
"######## ",
"## ",
"## ",
"########## ")
# 'F' "\u0046"
font_6x8_koi8r_src[0x46] = (
" ",
"########## ",
"## ",
"## ",
"######## ",
"## ",
"## ",
"## ")
# 'G' "\u0047"
font_6x8_koi8r_src[0x47] = (
" ",
" ###### ",
"## ## ",
"## ",
"## ",
"## #### ",
"## ## ",
" ###### ")
# 'H' "\u0048"
font_6x8_koi8r_src[0x48] = (
" ",
"## ## ",
"## ## ",
"## ## ",
"########## ",
"## ## ",
"## ## ",
"## ## ")
# 'I' "\u0049"
font_6x8_koi8r_src[0x49] = (
" ",
" ###### ",
" ## ",
" ## ",
" ## ",
" ## ",
" ## ",
" ###### ")
# 'J' "\u004A"
font_6x8_koi8r_src[0x4A] = (
" ",
" ###### ",
" ## ",
" ## ",
" ## ",
" ## ",
"## ## ",
" #### ")
# 'K' "\u004B"
font_6x8_koi8r_src[0x4B] = (
" ",
"## ## ",
"## ## ",
"## ## ",
"#### ",
"## ## ",
"## ## ",
"## ## ")
# 'L' "\u004C"
font_6x8_koi8r_src[0x4C] = (
" ",
"## ",
"## ",
"## ",
"## ",
"## ",
"## ",
"########## ")
# 'M' "\u004D"
font_6x8_koi8r_src[0x4D] = (
" ",
"## ## ",
"#### #### ",
"## ## ## ",
"## ## ",
"## ## ",
"## ## ",
"## ## ")
# 'N' "\u004E"
font_6x8_koi8r_src[0x4E] = (
" ",
"## ## ",
"## ## ",
"#### ## ",
"## ## ## ",
"## #### ",
"## ## ",
"## ## ")
# 'O' "\u004F"
font_6x8_koi8r_src[0x4F] = (
" ",
" ###### ",
"## ## ",
"## ## ",
"## ## ",
"## ## ",
"## ## ",
" ###### ")
# 'P' "\u0050"
font_6x8_koi8r_src[0x50] = (
" ",
"######## ",
"## ## ",
"## ## ",
"######## ",
"## ",
"## ",
"## ")
# 'Q' "\u0051"
font_6x8_koi8r_src[0x51] = (
" ",
" ###### ",
"## ## ",
"## ## ",
"## ## ",
"## ## ## ",
"## ## ",
" #### ## ")
# 'R' "\u0052"
font_6x8_koi8r_src[0x52] = (
" ",
"######## ",
"## ## ",
"## ## ",
"######## ",
"## ## ",
"## ## ",
"## ## ")
# 'S' "\u0053"
font_6x8_koi8r_src[0x53] = (
" ",
" ###### ",
"## ## ",
"## ",
" ###### ",
" ## ",
"## ## ",
" ###### ")
# 'T' "\u0054"
font_6x8_koi8r_src[0x54] = (
" ",
"########## ",
" ## ",
" ## ",
" ## ",
" ## ",
" ## ",
" ## ")
# 'U' "\u0055"
font_6x8_koi8r_src[0x55] = (
" ",
"## ## ",
"## ## ",
"## ## ",
"## ## ",
"## ## ",
"## ## ",
" ###### ")
# 'V' "\u0056"
font_6x8_koi8r_src[0x56] = (
" ",
"## ## ",
"## ## ",
"## ## ",
"## ## ",
"## ## ",
" ## ## ",
" ## ")
# 'W' "\u0057"
font_6x8_koi8r_src[0x57] = (
" ",
"## ## ",
"## ## ",
"## ## ",
"## ## ## ",
"## ## ## ",
"## ## ## ",
" ## ## ")
# 'X' "\u0058"
font_6x8_koi8r_src[0x58] = (
" ",
"## ## ",
"## ## ",
" ## ## ",
" ## ",
" ## ## ",
"## ## ",
"## ## ")
# 'Y' "\u0059"
font_6x8_koi8r_src[0x59] = (
" ",
"## ## ",
"## ## ",
"## ## ",
" ## ## ",
" ## ",
" ## ",
" ## ")
# 'Z' "\u005A"
font_6x8_koi8r_src[0x5A] = (
" ",
"########## ",
" ## ",
" ## ",
" ## ",
" ## ",
"## ",
"########## ")
# '[' "\u005B"
font_6x8_koi8r_src[0x5B] = (
" ",
" ###### ",
" ## ",
" ## ",
" ## ",
" ## ",
" ## ",
" ###### ")
# '\' "\u005C"
font_6x8_koi8r_src[0x5C] = (
" ",
" ",
"## ",
" ## ",
" ## ",
" ## ",
" ## ",
" ")
# ']' "\u005D"
font_6x8_koi8r_src[0x5D] = (
" ",
" ###### ",
" ## ",
" ## ",
" ## ",
" ## ",
" ## ",
" ###### ")
# '^' "\u005E"
font_6x8_koi8r_src[0x5E] = (
" ",
" ## ",
" ## ## ",
"## ## ",
" ",
" ",
" ",
" ")
# '_' "\u005F"
font_6x8_koi8r_src[0x5F] = (
" ",
" ",
" ",
" ",
" ",
" ",
" ",
"############")
# '`' "\u0060"
font_6x8_koi8r_src[0x60] = (
" ",
" ## ",
" ## ",
" ",
" ",
" ",
" ",
" ")
# 'a' "\u0061"
font_6x8_koi8r_src[0x61] = (
" ",
" ",
" ",
" ###### ",
"## ## ",
"## ## ",
"## ## ",
" #### ## ")
# 'b' "\u0062"
font_6x8_koi8r_src[0x62] = (
" ",
"## ",
"## ",
"######## ",
"## ## ",
"## ## ",
"## ## ",
"######## ")
# 'c' "\u0063"
font_6x8_koi8r_src[0x63] = (
" ",
" ",
" ",
" ###### ",
"## ## ",
"## ",
"## ## ",
" ###### ")
# 'd' "\u0064"
font_6x8_koi8r_src[0x64] = (
" ",
" ## ",
" ## ",
" ######## ",
"## ## ",
"## ## ",
"## ## ",
" ######## ")
# 'e' "\u0065"
font_6x8_koi8r_src[0x65] = (
" ",
" ",
" ",
" ###### ",
"## ## ",
"########## ",
"## ",
" ###### ")
# 'f' "\u0066"
font_6x8_koi8r_src[0x66] = (
" ",
" #### ",
" ## ## ",
" ## ",
"###### ",
" ## ",
" ## ",
" ## ")
# 'g' "\u0067"
font_6x8_koi8r_src[0x67] = (
" ",
" ",
" ###### ",
"## ## ",
"## ## ",
" ######## ",
" ## ",
" ###### ")
# 'h' "\u0068"
font_6x8_koi8r_src[0x68] = (
" ",
"## ",
"## ",
"## #### ",
"#### ## ",
"## ## ",
"## ## ",
"## ## ")
# 'i' "\u0069"
font_6x8_koi8r_src[0x69] = (
" ",
" ## ",
" ",
" #### ",
" ## ",
" ## ",
" ## ",
" ###### ")
# 'j' "\u006A"
font_6x8_koi8r_src[0x6A] = (
" ",
" ## ",
" ",
" #### ",
" ## ",
" ## ",
"## ## ",
" #### ")
# 'k' "\u006B"
font_6x8_koi8r_src[0x6B] = (
" ",
" ## ",
" ## ",
" ## ## ",
" ## ## ",
" #### ",
" ## ## ",
" ## ## ")
# 'l' "\u006C"
font_6x8_koi8r_src[0x6C] = (
" ",
" #### ",
" ## ",
" ## ",
" ## ",
" ## ",
" ## ",
" ###### ")
# 'm' "\u006D"
font_6x8_koi8r_src[0x6D] = (
" ",
" ",
" ",
"#### ## ",
"## ## ## ",
"## ## ## ",
"## ## ## ",
"## ## ## ")
# 'n' "\u006E"
font_6x8_koi8r_src[0x6E] = (
" ",
" ",
" ",
"## #### ",
"#### ## ",
"## ## ",
"## ## ",
"## ## ")
# 'o' "\u006F"
font_6x8_koi8r_src[0x6F] = (
" ",
" ",
" ",
" ###### ",
"## ## ",
"## ## ",
"## ## ",
" ###### ")
# 'p' "\u0070"
font_6x8_koi8r_src[0x70] = (
" ",
" ",
" ",
"######## ",
"## ## ",
"## ## ",
"######## ",
"## ")
# 'q' "\u0071"
font_6x8_koi8r_src[0x71] = (
" ",
" ",
" ",
" ######## ",
"## ## ",
"## ## ",
" ######## ",
" ## ")
# 'r' "\u0072"
font_6x8_koi8r_src[0x72] = (
" ",
" ",
" ",
"## #### ",
"#### ## ",
"## ",
"## ",
"## ")
# 's' "\u0073"
font_6x8_koi8r_src[0x73] = (
" ",
" ",
" ",
" ###### ",
"## ",
" ###### ",
" ## ",
" ###### ")
# 't' "\u0074"
font_6x8_koi8r_src[0x74] = (
" ",
" ## ",
" ## ",
"###### ",
" ## ",
" ## ",
" ## ## ",
" #### ")
# 'u' "\u0075"
font_6x8_koi8r_src[0x75] = (
" ",
" ",
" ",
"## ## ",
"## ## ",
"## ## ",
"## #### ",
" #### ## ")
# 'v' "\u0076"
font_6x8_koi8r_src[0x76] = (
" ",
" ",
" ",
"## ## ",
"## ## ",
"## ## ",
" ## ## ",
" ## ")
# 'w' "\u0077"
font_6x8_koi8r_src[0x77] = (
" ",
" ",
" ",
"## ## ",
"## ## ",
"## ## ",
"## ## ## ",
" ## ## ")
# 'x' "\u0078"
font_6x8_koi8r_src[0x78] = (
" ",
" ",
" ",
"## ## ",
" ## ## ",
" ## ",
" ## ## ",
"## ## ")
# 'y' "\u0079"
font_6x8_koi8r_src[0x79] = (
" ",
" ",
" ",
"## ## ",
"## ## ",
" ######## ",
" ## ",
" ###### ")
# 'z' "\u007A"
font_6x8_koi8r_src[0x7A] = (
" ",
" ",
" ",
"########## ",
" ## ",
" ## ",
" ## ",
"########## ")
# '{' "\u007B"
font_6x8_koi8r_src[0x7B] = (
" ",
" #### ",
" ## ",
" ## ",
" ## ",
" ## ",
" ## ",
" #### ")
# '|' "\u007C"
font_6x8_koi8r_src[0x7C] = (
" ",
" ## ",
" ## ",
" ## ",
" ",
" ## ",
" ## ",
" ## ")
# '}' "\u007D"
font_6x8_koi8r_src[0x7D] = (
" ",
" #### ",
" ## ",
" ## ",
" ## ",
" ## ",
" ## ",
" #### ")
# '~' "\u007E"
font_6x8_koi8r_src[0x7E] = (
" ",
" ",
" ",
" ## ",
"## ## ## ",
" ## ",
" ",
" ")
# [DEL] "\u007F"
font_6x8_koi8r_src[0x7F] = (
" ",
" ## ",
" ## ",
" ## ",
"########## ",
" ## ",
" ## ",
" ## ")
# '─' "\u2500"
font_6x8_koi8r_src[0x80] = (
" ",
" ",
" ",
" ",
"############",
" ",
" ",
" ")
# '│' "\u2502"
font_6x8_koi8r_src[0x81] = (
" ## ",
" ## ",
" ## ",
" ## ",
" ## ",
" ## ",
" ## ",
" ## ")
# '┌' "\u250C"
font_6x8_koi8r_src[0x82] = (
" ",
" ",
" ",
" ",
" ########",
" ## ",
" ## ",
" ## ")
# '┐' "\u2510"
font_6x8_koi8r_src[0x83] = (
" ",
" ",
" ",
" ",
"###### ",
" ## ",
" ## ",
" ## ")
# '└' "\u2514"
font_6x8_koi8r_src[0x84] = (
" ## ",
" ## ",
" ## ",
" ## ",
" ########",
" ",
" ",
" ")
# '┘' "\u2518"
font_6x8_koi8r_src[0x85] = (
" ## ",
" ## ",
" ## ",
" ## ",
"###### ",
" ",
" ",
" ")
# '├' "\u251C"
font_6x8_koi8r_src[0x86] = (
" ## ",
" ## ",
" ## ",
" ## ",
" ########",
" ## ",
" ## ",
" ## ")
# '┤' "\u2524"
font_6x8_koi8r_src[0x87] = (
" ## ",
" ## ",
" ## ",
" ## ",
"###### ",
" ## ",
" ## ",
" ## ")
# '┬' "\u252C"
font_6x8_koi8r_src[0x88] = (
" ",
" ",
" ",
" ",
"############",
" ## ",
" ## ",
" ## ")
# '┴' "\u2534"
font_6x8_koi8r_src[0x89] = (
" ## ",
" ## ",
" ## ",
" ## ",
"############",
" ",
" ",
" ")
# '┼' "\u253C"
font_6x8_koi8r_src[0x8A] = (
" ## ",
" ## ",
" ## ",
" ## ",
"############",
" ## ",
" ## ",
" ## ")
# '▀' "\u2580"
font_6x8_koi8r_src[0x8B] = (
"############",
"############",
"############",
"############",
"############",
" ",
" ",
" ")
# '▄' "\u2584"
font_6x8_koi8r_src[0x8C] = (
" ",
" ",
" ",
" ",
"############",
"############",
"############",
"############")
# '█' "\u2588"
font_6x8_koi8r_src[0x8D] = (
"############",
"############",
"############",
"############",
"############",
"############",
"############",
"############")
# '▌' "\u258C"
font_6x8_koi8r_src[0x8E] = (
"###### ",
"###### ",
"###### ",
"###### ",
"###### ",
"###### ",
"###### ",
"###### ")
# '▐' "\u2590"
font_6x8_koi8r_src[0x8F] = (
" ########",
" ########",
" ########",
" ########",
" ########",
" ########",
" ########",
" ########")
# '░' "\u2591"
font_6x8_koi8r_src[0x90] = (
" ",
"## ## ",
" ",
" ## ## ",
" ",
"## ## ",
" ",
" ## ## ")
# '▒' "\u2592"
font_6x8_koi8r_src[0x91] = (
" ## ##",
"## ## ",
" ## ## ",
" ## ##",
"## ## ",
" ## ## ",
" ## ##",
"## ## ")
# '▓' "\u2593"
font_6x8_koi8r_src[0x92] = (
" ## ## ##",
"## ## ## ",
" ## ## ##",
"## ## ## ",
" ## ## ##",
"## ## ## ",
" ## ## ##",
"## ## ## ")
# '⌠' "\u2320"
font_6x8_koi8r_src[0x93] = (
" ## ",
" ## ## ",
" ## ",
" ## ",
" ## ",
" ## ",
" ## ",
" ## ")
# '■' "\u25A0"
font_6x8_koi8r_src[0x94] = (
" ",
" ",
"########## ",
"########## ",
"########## ",
"########## ",
"########## ",
"########## ")
# '∙' "\u2219"
font_6x8_koi8r_src[0x95] = (
" ",
" ",
" ",
" ###### ",
" ###### ",
" ###### ",
" ",
" ")
# '√' "\u221A"
font_6x8_koi8r_src[0x96] = (
" ",
" ## ",
"## ## ",
" ## ## ",
" ## ",
" ## ",
" ## ",
" ## ")
# '≈' "\u2248"
font_6x8_koi8r_src[0x97] = (
" ",
" ",
" ## ## ",
" ## ## ",
" ",
" ## ## ",
" ## ## ",
" ")
# '≤' "\u2264"
font_6x8_koi8r_src[0x98] = (
" ",
" ## ",
" ## ",
" ## ",
" ## ",
" ## ",
" ",
" ###### ")
# '≥' "\u2265"
font_6x8_koi8r_src[0x99] = (
" ",
" ## ",
" ## ",
" ## ",
" ## ",
" ## ",
" ",
" ###### ")
# ' ' "\u00A0"
font_6x8_koi8r_src[0x9A] = (
" ",
" ",
" ",
" ",
" ",
" ",
" ",
" ")
# '⌡' "\u2321"
font_6x8_koi8r_src[0x9B] = (
" ## ",
" ## ",
" ## ",
" ## ",
" ## ",
" ## ",
"## ## ",
" ## ")
# '°' "\u00B0"
font_6x8_koi8r_src[0x9C] = (
" ",
" #### ",
" ## ## ",
" ## ## ",
" #### ",
" ",
" ",
" ")
# '²' "\u00B2"
font_6x8_koi8r_src[0x9D] = (
" ",
" ###### ",
" ## ## ",
" #### ",
" ## ",
" ###### ",
" ",
" ")
# '·' "\u00B7"
font_6x8_koi8r_src[0x9E] = (
" ",
" ",
" ",
" ## ",
" ###### ",
" ## ",
" ",
" ")
# '÷' "\u00F7"
font_6x8_koi8r_src[0x9F] = (
" ",
" ",
" ## ",
" ",
"########## ",
" ",
" ## ",
" ")
# '═' "\u2550"
font_6x8_koi8r_src[0xA0] = (
" ",
" ",
" ",
"############",
" ",
"############",
" ",
" ")
# '║' "\u2551"
font_6x8_koi8r_src[0xA1] = (
" ## ## ",
" ## ## ",
" ## ## ",
" ## ## ",
" ## ## ",
" ## ## ",
" ## ## ",
" ## ## ")
# '╒' "\u2552"
font_6x8_koi8r_src[0xA2] = (
" ",
" ",
" ",
" ########",
" ## ",
" ########",
" ## ",
" ## ")
# 'ё' "\u0451"
font_6x8_koi8r_src[0xA3] = (
" ",
" ## ## ",
" ",
" ###### ",
"## ## ",
"########## ",
"## ",
" ###### ")
# '╓' "\u2553"
font_6x8_koi8r_src[0xA4] = (
" ",
" ",
" ",
" ",
" ##########",
" ## ## ",
" ## ## ",
" ## ## ")
# '╔' "\u2554"
font_6x8_koi8r_src[0xA5] = (
" ",
" ",
" ",
" ##########",
" ## ",
" ## ######",
" ## ## ",
" ## ## ")
# '╕' "\u2555"
font_6x8_koi8r_src[0xA6] = (
" ",
" ",
" ",
"###### ",
" ## ",
"###### ",
" ## ",
" ## ")
# '╖' "\u2556"
font_6x8_koi8r_src[0xA7] = (
" ",
" ",
" ",
" ",
"######## ",
" ## ## ",
" ## ## ",
" ## ## ")
# '╗' "\u2557"
font_6x8_koi8r_src[0xA8] = (
" ",
" ",
" ",
"######## ",
" ## ",
"#### ## ",
" ## ## ",
" ## ## ")
# '╘' "\u2558"
font_6x8_koi8r_src[0xA9] = (
" ## ",
" ## ",
" ## ",
" ########",
" ## ",
" ########",
" ",
" ")
# '╙' "\u2559"
font_6x8_koi8r_src[0xAA] = (
" ## ## ",
" ## ## ",
" ## ## ",
" ## ## ",
" ##########",
" ",
" ",
" ")
# '╚' "\u255A"
font_6x8_koi8r_src[0xAB] = (
" ## ## ",
" ## ## ",
" ## ## ",
" ## ######",
" ## ",
" ##########",
" ",
" ")
# '╛' "\u255B"
font_6x8_koi8r_src[0xAC] = (
" ## ",
" ## ",
" ## ",
"###### ",
" ## ",
"###### ",
" ",
" ")
# '╜' "\u255C"
font_6x8_koi8r_src[0xAD] = (
" ## ## ",
" ## ## ",
" ## ## ",
" ## ## ",
"######## ",
" ",
" ",
" ")
# '╝' "\u255D"
font_6x8_koi8r_src[0xAE] = (
" ## ## ",
" ## ## ",
" ## ## ",
"#### ## ",
" ## ",
"######## ",
" ",
" ")
# '╞' "\u255E"
font_6x8_koi8r_src[0xAF] = (
" ## ",
" ## ",
" ## ",
" ########",
" ## ",
" ########",
" ## ",
" ## ")
# '╟' "\u255F"
font_6x8_koi8r_src[0xB0] = (
" ## ## ",
" ## ## ",
" ## ## ",
" ## ## ",
" ## ######",
" ## ## ",
" ## ## ",
" ## ## ")
# '╠' "\u2560"
font_6x8_koi8r_src[0xB1] = (
" ## ## ",
" ## ## ",
" ## ## ",
" ## ######",
" ## ",
" ## ######",
" ## ## ",
" ## ## ")
# '╡' "\u2561"
font_6x8_koi8r_src[0xB2] = (
" ",
" ## ",
" ## ",
"###### ",
" ## ",
"###### ",
" ## ",
" ## ")
# 'Ё' "\u0401"
font_6x8_koi8r_src[0xB3] = (
" ",
" ## ## ",
"########## ",
"## ",
"######## ",
"## ",
"## ",
"########## ")
# '╢' "\u2562"
font_6x8_koi8r_src[0xB4] = (
" ## ## ",
" ## ## ",
" ## ## ",
" ## ## ",
"#### ## ",
" ## ## ",
" ## ## ",
" ## ## ")
# '╣' "\u2563"
font_6x8_koi8r_src[0xB5] = (
" ## ## ",
" ## ## ",
" ## ## ",
"#### ## ",
" ## ",
"#### ## ",
" ## ## ",
" ## ## ")
# '╤' "\u2564"
font_6x8_koi8r_src[0xB6] = (
" ",
" ",
" ",
"############",
" ",
"#### ######",
" ## ## ",
" ## ## ")
# '╥' "\u2565"
font_6x8_koi8r_src[0xB7] = (
" ",
" ",
" ",
" ",
"############",
" ## ## ",
" ## ## ",
" ## ## ")
# '╦' "\u2566"
font_6x8_koi8r_src[0xB8] = (
" ",
" ",
" ",
"############",
" ",
"#### ######",
" ## ## ",
" ## ## ")
# '╧' "\u2567"
font_6x8_koi8r_src[0xB9] = (
" ## ",
" ## ",
" ## ",
"############",
" ",
"############",
" ",
" ")
# '╨' "\u2568"
font_6x8_koi8r_src[0xBA] = (
" ## ## ",
" ## ## ",
" ## ## ",
" ## ## ",
"############",
" ",
" ",
" ")
# '╩' "\u2569"
font_6x8_koi8r_src[0xBB] = (
" ## ## ",
" ## ## ",
" ## ## ",
"#### ######",
" ",
"############",
" ",
" ")
# '╪' "\u256A"
font_6x8_koi8r_src[0xBC] = (
" ## ",
" ## ",
" ## ",
"############",
" ",
"############",
" ## ",
" ## ")
# '╫' "\u256B"
font_6x8_koi8r_src[0xBD] = (
" ## ## ",
" ## ## ",
" ## ## ",
" ## ## ",
"############",
" ## ## ",
" ## ## ",
" ## ## ")
# '╬' "\u256C"
font_6x8_koi8r_src[0xBE] = (
" ## ## ",
" ## ## ",
" ## ## ",
"#### ######",
" ",
"#### ######",
" ## ## ",
" ## ## ")
# '©' "\u00A9"
font_6x8_koi8r_src[0xBF] = (
" ",
" ######## ",
"## ##",
"## #### ##",
"## ## ##",
"## #### ##",
"## ##",
" ######## ")
# 'ю' "\u044E"
font_6x8_koi8r_src[0xC0] = (
" ",
" ",
" ",
"## ## ",
"## ## ## ",
"###### ## ",
"## ## ## ",
"## ## ")
# 'а' "\u0430"
font_6x8_koi8r_src[0xC1] = (
" ",
" ",
" ",
" ###### ",
"## ## ",
"## ## ",
"## ## ",
" #### ## ")
# 'б' "\u0431"
font_6x8_koi8r_src[0xC2] = (
" ",
" ## ",
" ###### ",
"## ",
" ###### ",
"## ## ",
"## ## ",
" ###### ")
# 'ц' "\u0446"
font_6x8_koi8r_src[0xC3] = (
" ",
" ",
" ",
"## ## ",
"## ## ",
"## ## ",
"########## ",
" ## ")
# 'д' "\u0434"
font_6x8_koi8r_src[0xC4] = (
" ",
" ",
" ",
" #### ",
" ## ## ",
" ## ## ",
"########## ",
"## ## ")
# 'е' "\u0435"
font_6x8_koi8r_src[0xC5] = (
" ",
" ",
" ",
" ###### ",
"## ## ",
"########## ",
"## ",
" ###### ")
# 'ф' "\u0444"
font_6x8_koi8r_src[0xC6] = (
" ",
" ",
" ## ",
" ###### ",
"## ## ## ",
" ###### ",
" ## ",
" ## ")
# 'г' "\u0433"
font_6x8_koi8r_src[0xC7] = (
" ",
" ",
" ",
" ######## ",
" ## ",
" ## ",
" ## ",
" ## ")
# 'х' "\u0445"
font_6x8_koi8r_src[0xC8] = (
" ",
" ",
" ",
"## ## ",
" ## ## ",
" ## ",
" ## ## ",
"## ## ")
# 'и' "\u0438"
font_6x8_koi8r_src[0xC9] = (
" ",
" ",
" ",
"## ## ",
"## ## ",
"## ## ",
"## #### ",
" #### ## ")
# 'й' "\u0439"
font_6x8_koi8r_src[0xCA] = (
" ",
" ## ",
" ## ",
"## ## ",
"## ## ",
"## ## ",
"## #### ",
" #### ## ")
# 'к' "\u043A"
font_6x8_koi8r_src[0xCB] = (
" ",
" ",
" ",
"## #### ",
"## ## ",
"###### ",
"## ## ",
"## ## ")
# 'л' "\u043B"
font_6x8_koi8r_src[0xCC] = (
" ",
" ",
" ",
" ###### ",
" ## ## ",
" ## ## ",
" ## ## ",
"## ## ")
# 'м' "\u043C"
font_6x8_koi8r_src[0xCD] = (
" ",
" ",
" ",
"## ## ",
"#### #### ",
"## ## ## ",
"## ## ",
"## ## ")
# 'н' "\u043D"
font_6x8_koi8r_src[0xCE] = (
" ",
" ",
" ",
"## ## ",
"## ## ",
"########## ",
"## ## ",
"## ## ")
# 'о' "\u043E"
font_6x8_koi8r_src[0xCF] = (
" ",
" ",
" ",
" ###### ",
"## ## ",
"## ## ",
"## ## ",
" ###### ")
# 'п' "\u043F"
font_6x8_koi8r_src[0xD0] = (
" ",
" ",
" ",
"########## ",
"## ## ",
"## ## ",
"## ## ",
"## ## ")
# 'я' "\u044F"
font_6x8_koi8r_src[0xD1] = (
" ",
" ",
" ",
" ######## ",
"## ## ",
" ######## ",
" ## ## ",
"#### ## ")
# 'р' "\u0440"
font_6x8_koi8r_src[0xD2] = (
" ",
" ",
" ",
"########## ",
"## ## ",
"## ## ",
"########## ",
"## ")
# 'с' "\u0441"
font_6x8_koi8r_src[0xD3] = (
" ",
" ",
" ",
" ###### ",
"## ## ",
"## ",
"## ## ",
" ###### ")
# 'т' "\u0442"
font_6x8_koi8r_src[0xD4] = (
" ",
" ",
" ",
"########## ",
" ## ",
" ## ",
" ## ",
" ## ")
# 'у' "\u0443"
font_6x8_koi8r_src[0xD5] = (
" ",
" ",
" ",
"## ## ",
"## ## ",
" ######## ",
" ## ",
" ###### ")
# 'ж' "\u0436"
font_6x8_koi8r_src[0xD6] = (
" ",
" ",
" ",
"## ## ## ",
"## ## ## ",
" ###### ",
"## ## ## ",
"## ## ## ")
# 'в' "\u0432"
font_6x8_koi8r_src[0xD7] = (
" ",
" ",
" ",
" ###### ",
" ## ## ",
" ###### ",
" ## ## ",
" ###### ")
# 'ь' "\u044C"
font_6x8_koi8r_src[0xD8] = (
" ",
" ",
" ",
" ## ",
" ## ",
" ###### ",
" ## ## ",
" ###### ")
# 'ы' "\u044B"
font_6x8_koi8r_src[0xD9] = (
" ",
" ",
" ",
"## ## ",
"## ## ",
"###### ## ",
"## ## ## ",
"###### ## ")
# 'з' "\u0437"
font_6x8_koi8r_src[0xDA] = (
" ",
" ",
" ",
" ###### ",
" ## ",
" #### ",
" ## ",
" ###### ")
# 'ш' "\u0448"
font_6x8_koi8r_src[0xDB] = (
" ",
" ",
" ",
"## ## ## ",
"## ## ## ",
"## ## ## ",
"## ## ## ",
"########## ")
# 'э' "\u044D"
font_6x8_koi8r_src[0xDC] = (
" ",
" ",
" ",
" ###### ",
" ## ",
" ###### ",
" ## ",
" ###### ")
# 'щ' "\u0449"
font_6x8_koi8r_src[0xDD] = (
" ",
" ",
" ",
"## ## ## ",
"## ## ## ",
"## ## ## ",
"########## ",
" ## ")
# 'ч' "\u0447"
font_6x8_koi8r_src[0xDE] = (
" ",
" ",
" ",
"## ## ",
"## ## ",
" ######## ",
" ## ",
" ## ")
# 'ъ' "\u044A"
font_6x8_koi8r_src[0xDF] = (
" ",
" ",
" ",
"#### ",
" ## ",
" ###### ",
" ## ## ",
" ###### ")
# 'Ю' "\u042E"
font_6x8_koi8r_src[0xE0] = (
" ",
"## ## ",
"## ## ## ",
"## ## ## ",
"###### ## ",
"## ## ## ",
"## ## ## ",
"## ## ")
# 'А' "\u0410"
font_6x8_koi8r_src[0xE1] = (
" ",
" ###### ",
" ## ## ",
"## ## ",
"########## ",
"## ## ",
"## ## ",
"## ## ")
# 'Б' "\u0411"
font_6x8_koi8r_src[0xE2] = (
" ",
"######## ",
"## ",
"## ",
"######## ",
"## ## ",
"## ## ",
"######## ")
# 'Ц' "\u0426"
font_6x8_koi8r_src[0xE3] = (
" ",
"## ## ",
"## ## ",
"## ## ",
"## ## ",
"## ## ",
"########## ",
" ## ")
# 'Д' "\u0414"
font_6x8_koi8r_src[0xE4] = (
" ",
" #### ",
" ## ## ",
" ## ## ",
" ## ## ",
" ## ## ",
"########## ",
"## ## ")
# 'Е' "\u0415"
font_6x8_koi8r_src[0xE5] = (
" ",
"########## ",
"## ",
"## ",
"######## ",
"## ",
"## ",
"########## ")
# 'Ф' "\u0424"
font_6x8_koi8r_src[0xE6] = (
" ",
" ###### ",
"## ## ## ",
"## ## ## ",
"## ## ## ",
" ###### ",
" ## ",
" ## ")
# 'Г' "\u0413"
font_6x8_koi8r_src[0xE7] = (
" ",
"########## ",
"## ",
"## ",
"## ",
"## ",
"## ",
"## ")
# 'Х' "\u0425"
font_6x8_koi8r_src[0xE8] = (
" ",
"## ## ",
"## ## ",
" ## ## ",
" ## ",
" ## ## ",
"## ## ",
"## ## ")
# 'И' "\u0418"
font_6x8_koi8r_src[0xE9] = (
" ",
"## ## ",
"## ## ",
"## ## ",
"## #### ",
"## ## ## ",
"#### ## ",
"## ## ")
# 'Й' "\u0419"
font_6x8_koi8r_src[0xEA] = (
" ",
" ## ## ",
"## ## ## ",
"## ## ",
"## #### ",
"## ## ## ",
"#### ## ",
"## ## ")
# 'К' "\u041A"
font_6x8_koi8r_src[0xEB] = (
" ",
"## ## ",
"## ## ",
"## ## ",
"#### ",
"## ## ",
"## ## ",
"## ## ")
# 'Л' "\u041B"
font_6x8_koi8r_src[0xEC] = (
" ",
" #### ",
" ## ## ",
" ## ## ",
" ## ## ",
" ## ## ",
" ## ## ",
"## ## ")
# 'М' "\u041C"
font_6x8_koi8r_src[0xED] = (
" ",
"## ## ",
"#### #### ",
"## ## ## ",
"## ## ",
"## ## ",
"## ## ",
"## ## ")
# 'Н' "\u041D"
font_6x8_koi8r_src[0xEE] = (
" ",
"## ## ",
"## ## ",
"## ## ",
"########## ",
"## ## ",
"## ## ",
"## ## ")
# 'О' "\u041E"
font_6x8_koi8r_src[0xEF] = (
" ",
" ###### ",
"## ## ",
"## ## ",
"## ## ",
"## ## ",
"## ## ",
" ###### ")
# 'П' "\u041F"
font_6x8_koi8r_src[0xF0] = (
" ",
"########## ",
"## ## ",
"## ## ",
"## ## ",
"## ## ",
"## ## ",
"## ## ")
# 'Я' "\u042F"
font_6x8_koi8r_src[0xF1] = (
" ",
" ######## ",
"## ## ",
"## ## ",
" ######## ",
" ## ## ",
" ## ## ",
"## ## ")
# 'Р' "\u0420"
font_6x8_koi8r_src[0xF2] = (
" ",
"######## ",
"## ## ",
"## ## ",
"######## ",
"## ",
"## ",
"## ")
# 'С' "\u0421"
font_6x8_koi8r_src[0xF3] = (
" ",
" ###### ",
"## ## ",
"## ",
"## ",
"## ",
"## ## ",
" ###### ")
# 'Т' "\u0422"
font_6x8_koi8r_src[0xF4] = (
" ",
"########## ",
" ## ",
" ## ",
" ## ",
" ## ",
" ## ",
" ## ")
# 'У' "\u0423"
font_6x8_koi8r_src[0xF5] = (
" ",
"## ## ",
"## ## ",
"## ## ",
" ######## ",
" ## ",
"## ## ",
" ###### ")
# 'Ж' "\u0416"
font_6x8_koi8r_src[0xF6] = (
" ",
"## ## ## ",
"## ## ## ",
"## ## ## ",
" ###### ",
"## ## ## ",
"## ## ## ",
"## ## ## ")
# 'В' "\u0412"
font_6x8_koi8r_src[0xF7] = (
" ",
"######## ",
"## ## ",
"## ## ",
"######## ",
"## ## ",
"## ## ",
"######## ")
# 'Ь' "\u042C"
font_6x8_koi8r_src[0xF8] = (
" ",
"## ",
"## ",
"## ",
"######## ",
"## ## ",
"## ## ",
"######## ")
# 'Ы' "\u042B"
font_6x8_koi8r_src[0xF9] = (
" ",
"## ## ",
"## ## ",
"## ## ",
"#### ## ",
"## ## ## ",
"## ## ## ",
"#### ## ")
# 'З' "\u0417"
font_6x8_koi8r_src[0xFA] = (
" ",
" ###### ",
"## ## ",
" ## ",
" ## ",
" ## ",
"## ## ",
" ###### ")
# 'Ш' "\u0428"
font_6x8_koi8r_src[0xFB] = (
" ",
"## ## ## ",
"## ## ## ",
"## ## ## ",
"## ## ## ",
"## ## ## ",
"## ## ## ",
"########## ")
# 'Э' "\u042D"
font_6x8_koi8r_src[0xFC] = (
" ",
" ###### ",
"## ## ",
" ## ",
" ######## ",
" ## ",
"## ## ",
" ###### ")
# 'Щ' "\u0429"
font_6x8_koi8r_src[0xFD] = (
" ",
"## ## ## ",
"## ## ## ",
"## ## ## ",
"## ## ## ",
"## ## ## ",
"########## ",
" ## ")
# 'Ч' "\u0427"
font_6x8_koi8r_src[0xFE] = (
" ",
"## ## ",
"## ## ",
"## ## ",
" ######## ",
" ## ",
" ## ",
" ## ")
# 'Ъ' "\u042A"
font_6x8_koi8r_src[0xFF] = (
" ",
"#### ",
" ## ",
" ## ",
" ###### ",
" ## ## ",
" ## ## ",
" ###### ")
def f1(s):
retv = ""
for i in range(6):
retv += "#" if s[i * 2] != " " else " "
return '"' + retv + '"'
def f2(s):
retv = ""
for i in range(6):
retv += "()" if s[i * 2] != " " else " "
return '"' + retv + '"'
def f3(s):
retv = ""
for i in range(5):
retv += "1, " if s[i * 2] != " " else "0, "
retv += "1" if s[5 * 2] != " " else "0"
return '(' + retv + ')'
def f4(s):
retv = "0b00"
for i in range(6):
if s[i * 2] != " ":
retv += '1'
else:
retv += '0'
return retv
def f5(v, x):
retv = 0
for i in range(8):
if v[i][x * 2] != " ":
retv |= 0x80 >> i
return "%02X" % retv
def fhex(s):
retv = 0
for i in range(6):
if s[i * 2] != " ":
retv |= 0x20 >> i
return "%02X" % retv
for i in range(0x20, 0x100):
ustr = bytes((i, )).decode(encoding="koi8-r")
uchr = ord(ustr)
sym = "'" + ustr + "'" if i != 0x7F else "[D]"
#uni = True # unicode
uni = False # KOI8-R
var = 6
if var == 1: # demo print
print("# " + sym + " " + (('"\\u%04X"') % uchr) + (" - 0x%02X" % i))
if uni:
print(("font_6x8[0x%04X] = (" % uchr))
else:
print(("font_6x8_koi8r[0x%02X] = (" % i))
f = f2 # f1, f2, f3, f4
for j in range(7):
print(' ' + f(font_6x8_koi8r_src[i][j]) + ',')
print(' ' + f(font_6x8_koi8r_src[i][7]) + ')')
print()
elif var == 2: # bad idea
if uni:
str = "font_6x8[0x%04X] = (" % uchr
else:
str = "font_6x8_koi8r[0x%2X] = (" % i
for j in range(7):
str += '0x' + fhex(font_6x8_koi8r_src[i][j]) + ", "
str += fhex(font_6x8_koi8r_src[i][7]) + ")"
str += " # " + sym + " " + (('"\\u%04X"') % uchr) +(" - 0x%02X" % i)
print(str)
elif var == 3: # hex mode (bad idea in Python, may be for C)
str = " ("
for j in range(7):
str += '0x' + fhex(font_6x8_koi8r_src[i][j]) + ", "
str += '0x' + fhex(font_6x8_koi8r_src[i][7]) + "),"
str += " # " + sym + " " + (('"\\u%04X"') % uchr)
str += (" - 0x%02X" % i)
print(str)
elif var == 4: # KOI8-R bytes (good idea)
str = ' b"'
for j in range(7):
str += '\\x' + fhex(font_6x8_koi8r_src[i][j])
str += '\\x' + fhex(font_6x8_koi8r_src[i][7]) + '",'
str += " # " + sym + " " + (('"\\u%04X"') % uchr)
str += (" - 0x%02X" % i)
print(str)
elif var == 5: # Unicode dict (good idea)
str = ' 0x%04X: b"' % uchr
for j in range(7):
str += '\\x' + fhex(font_6x8_koi8r_src[i][j])
str += '\\x' + fhex(font_6x8_koi8r_src[i][7]) + '",'
str += " # " + sym + " " + (('"\\u%04X"') % uchr)
str += (" - 0x%02X" % i)
print(str)
elif var == 6: # Unicode dict (best idea !!!)
str = ' 0x%04X: b"' % uchr
for j in range(6):
str += '\\x' + f5(font_6x8_koi8r_src[i], j)
str += '", # ' + sym + " " + (('"\\u%04X"') % uchr)
str += (" - 0x%02X" % i)
print(str)
elif var == 7: # KOI8-R matrix (good idea)
print(" # " + sym + " " + (('"\\u%04X"') % uchr) + (" - 0x%02X" % i))
print(" (", end="")
print(f3(font_6x8_koi8r_src[i][0]) + ',')
for j in range(1, 7):
print(' ' + f3(font_6x8_koi8r_src[i][j]) + ',')
print(' ' + f3(font_6x8_koi8r_src[i][7]) + '),')
print()
elif var == 8: # Unicode matrix (good idea)
print((" 0x%04X:" % uchr) + " # " + sym + (" - 0x%02X" % i))
print(' (' + f3(font_6x8_koi8r_src[i][0]) + ',')
for j in range(1, 7):
print(' ' + f3(font_6x8_koi8r_src[i][j]) + ',')
print(' ' + f3(font_6x8_koi8r_src[i][7]) + '),')
print()
| 17.892403
| 78
| 0.169005
| 2,092
| 46,395
| 3.426386
| 0.305927
| 0.240234
| 0.408482
| 0.506417
| 0.146066
| 0.13923
| 0.128488
| 0.120675
| 0.112026
| 0.107003
| 0
| 0.09907
| 0.518095
| 46,395
| 2,592
| 79
| 17.899306
| 0.218848
| 0.068801
| 0
| 0.869238
| 0
| 0
| 0.510276
| 0.001001
| 0
| 0
| 0.021344
| 0
| 0
| 1
| 0.002822
| false
| 0
| 0
| 0
| 0.005644
| 0.010348
| 0
| 0
| 0
| null | 1
| 1
| 1
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 1
| 0
| 0
| 0
| 0
| 1
| 0
| 0
| 1
| 0
| 0
| 0
| 0
| null | 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
|
0
| 6
|
18aeb369ef13926aa8f76586750af7fae5287599
| 10,362
|
py
|
Python
|
pycity_calc/test/test_chp.py
|
RWTH-EBC/pyCity_calc
|
99fd0dab7f9a9030fd84ba4715753364662927ec
|
[
"MIT"
] | 4
|
2020-06-22T14:14:25.000Z
|
2021-11-08T11:47:01.000Z
|
pycity_calc/test/test_chp.py
|
RWTH-EBC/pyCity_calc
|
99fd0dab7f9a9030fd84ba4715753364662927ec
|
[
"MIT"
] | 4
|
2019-08-28T19:42:28.000Z
|
2019-08-28T19:43:44.000Z
|
pycity_calc/test/test_chp.py
|
RWTH-EBC/pyCity_calc
|
99fd0dab7f9a9030fd84ba4715753364662927ec
|
[
"MIT"
] | null | null | null |
#!/usr/bin/env python
# coding=utf-8
"""
Test script for BatteryExtended class
"""
from __future__ import division
from decimal import *
import pycity_calc.energysystems.chp as Chp
import pycity_calc.economic.energy_sys_cost.chp_cost as chp_cost
from pycity_calc.test.pycity_calc_fixtures import fixture_environment, \
fixture_chp_el, fixture_chp_th
class Test_Chp():
def test_chp_init(self, fixture_environment):
chp = Chp.ChpExtended(environment=fixture_environment,
q_nominal=1000, p_nominal=300)
assert chp._kind == 'chp'
assert chp.chp_type == 'ASUE_2015'
# TODO test both operation modi
def test_thOperation_calc_chp_th_power_output(self, fixture_chp_th):
# thermal power is 10000 W
# lower_activation_limit is 0.6 -> 6000 W
control_signal = 5000
th_power = fixture_chp_th.thOperation_calc_chp_th_power_output(
control_signal)
assert th_power == 0
control_signal = 6000
th_power = fixture_chp_th.thOperation_calc_chp_th_power_output(
control_signal)
assert th_power == 6000
control_signal = 12000
th_power = fixture_chp_th.thOperation_calc_chp_th_power_output(
control_signal)
assert th_power == 10000
def test_thOperation_calc_chp_el_power_output(self, fixture_chp_th):
# thermal power is 10000 W
# lower_activation_limit is 0.6 -> 6000 W
control_signal = 5000
el_power = fixture_chp_th.thOperation_calc_chp_el_power_output(
control_signal)
assert el_power == 0
control_signal = 6000
el_power = fixture_chp_th.thOperation_calc_chp_el_power_output(
control_signal)
assert round(el_power, 2) == 2262.05
control_signal = 12000
el_power = fixture_chp_th.thOperation_calc_chp_el_power_output(
control_signal)
assert round(el_power, 2) == 4127.95
def test_thOperation_calc_chp_fuel_power_input(self, fixture_chp_th):
control_signal = 5000
fuel_power = fixture_chp_th.thOperation_calc_chp_fuel_power_input(
control_signal)
assert fuel_power == 0
control_signal = 6000
fuel_power = fixture_chp_th.thOperation_calc_chp_fuel_power_input(
control_signal)
assert round(fuel_power, 2) == 9496.61
control_signal = 12000
fuel_power = fixture_chp_th.thOperation_calc_chp_fuel_power_input(
control_signal)
assert round(fuel_power, 2) == 16239.03
def test_thOperation_calc_chp_th_efficiency(self, fixture_chp_th):
control_signal = 5000
th_eff = fixture_chp_th.thOperation_calc_chp_th_efficiency(
control_signal)
assert th_eff == 0
control_signal = 6000
th_eff = fixture_chp_th.thOperation_calc_chp_th_efficiency(
control_signal)
assert round(th_eff, 4) == 0.6318
control_signal = 12000
th_eff = fixture_chp_th.thOperation_calc_chp_th_efficiency(
control_signal)
assert round(th_eff, 4) == 0.6158
def test_thOperation_calc_chp_el_efficiency(self, fixture_chp_th):
control_signal = 5000
el_eff = fixture_chp_th.thOperation_calc_chp_el_efficiency(
control_signal)
assert el_eff == 0
control_signal = 6000
el_eff = fixture_chp_th.thOperation_calc_chp_el_efficiency(
control_signal)
assert round(el_eff, 4) == 0.2382
control_signal = 12000
el_eff = fixture_chp_th.thOperation_calc_chp_el_efficiency(
control_signal)
assert round(el_eff, 4) == 0.2542
def test_elOperation_calc_chp_el_power_output(self, fixture_chp_el):
# electrical power is 4500 W
# lower_activation_limit is 0.6 -> 2700 W
control_signal = 2500
th_power = fixture_chp_el.elOperation_calc_chp_el_power_output(
control_signal)
assert th_power == 0
control_signal = 3000
th_power = fixture_chp_el.elOperation_calc_chp_el_power_output(
control_signal)
assert th_power == 3000
control_signal = 6000
th_power = fixture_chp_el.elOperation_calc_chp_el_power_output(
control_signal)
assert th_power == 4500
def test_elOperation_calc_chp_th_power_output(self, fixture_chp_el):
# electrical power is 4500 W
# lower_activation_limit is 0.6 -> 2700 W
control_signal = 2500
el_power = fixture_chp_el.elOperation_calc_chp_th_power_output(
control_signal)
assert el_power == 0
control_signal = 3000
el_power = fixture_chp_el.elOperation_calc_chp_th_power_output(
control_signal)
assert round(el_power, 2) == 7635.91
control_signal = 6000
el_power = fixture_chp_el.elOperation_calc_chp_th_power_output(
control_signal)
assert round(el_power, 2) == 10770.31
def test_elOperation_calc_chp_fuel_power_input(self, fixture_chp_el):
# electrical power is 4500 W
# lower_activation_limit is 0.6 -> 2700 W
control_signal = 2500
fuel_power = fixture_chp_el.elOperation_calc_chp_fuel_power_input(
control_signal)
assert fuel_power == 0
control_signal = 3000
fuel_power = fixture_chp_el.elOperation_calc_chp_fuel_power_input(
control_signal)
assert round(fuel_power, 2) == 12225.18
control_signal = 6000
fuel_power = fixture_chp_el.elOperation_calc_chp_fuel_power_input(
control_signal)
assert round(fuel_power, 2) == 17552.08
def test_elOperation_calc_chp_th_efficiency(self, fixture_chp_el):
# electrical power is 4500 W
# lower_activation_limit is 0.6 -> 2700 W
control_signal = 2500
th_eff = fixture_chp_el.elOperation_calc_chp_th_efficiency(
control_signal)
assert th_eff == 0
control_signal = 3000
th_eff = fixture_chp_el.elOperation_calc_chp_th_efficiency(
control_signal)
assert round(th_eff, 4) == 0.6246
control_signal = 6000
th_eff = fixture_chp_el.elOperation_calc_chp_th_efficiency(
control_signal)
assert round(th_eff, 4) == 0.6136
def test_elOperation_calc_chp_el_efficiency(self, fixture_chp_el):
# electrical power is 4500 W
# lower_activation_limit is 0.6 -> 2700 W
control_signal = 2500
el_eff = fixture_chp_el.elOperation_calc_chp_el_efficiency(
control_signal)
assert el_eff == 0
control_signal = 3000
el_eff = fixture_chp_el.elOperation_calc_chp_el_efficiency(
control_signal)
assert round(el_eff, 4) == 0.2454
control_signal = 6000
el_eff = fixture_chp_el.elOperation_calc_chp_el_efficiency(
control_signal)
assert round(el_eff, 4) == 0.2564
def test_chp_cost(self):
p_el_nom = 900 # in kW
chp_cost.calc_invest_cost_chp(p_el_nom,
method='asue2015',
with_inst=True,
use_el_input=True,
q_th_nom=None)
p_el_nom = 1100 # in kW
chp_cost.calc_invest_cost_chp(p_el_nom,
method='asue2015',
with_inst=True,
use_el_input=True,
q_th_nom=None)
chp_cost.calc_invest_cost_chp(p_el_nom,
method='asue2015',
with_inst=True,
use_el_input=False,
q_th_nom=12)
p_el_nom = 5 # in kW
chp_cost.calc_invest_cost_chp(p_el_nom,
method='spieker',
with_inst=True,
use_el_input=True,
q_th_nom=None)
p_el_nom = 50 # in kW
chp_cost.calc_invest_cost_chp(p_el_nom,
method='spieker',
with_inst=True,
use_el_input=True,
q_th_nom=None)
p_el_nom = 250 # in kW
chp_cost.calc_invest_cost_chp(p_el_nom,
method='spieker',
with_inst=True,
use_el_input=True,
q_th_nom=None)
p_el_nom = 450 # in kW
chp_cost.calc_invest_cost_chp(p_el_nom,
method='spieker',
with_inst=True,
use_el_input=True,
q_th_nom=None)
p_el_nom = 550 # in kW
chp_cost.calc_invest_cost_chp(p_el_nom,
method='spieker',
with_inst=True,
use_el_input=True,
q_th_nom=None)
p_el_nom = 800 # in kW
chp_cost.calc_invest_cost_chp(p_el_nom,
method='spieker',
with_inst=True,
use_el_input=True,
q_th_nom=None)
def test_nb_switches(self, fixture_environment):
"""
Test checks returning of number of switching events
"""
chp = Chp.ChpExtended(environment=fixture_environment,
q_nominal=1000)
# Manipulate results array (8 switching events)
chp.totalQOutput[1] = 1
chp.totalQOutput[2] = 1
chp.totalQOutput[3] = 2
chp.totalQOutput[4] = 3
chp.totalQOutput[25] = 3
chp.totalQOutput[27] = 3.9
chp.totalQOutput[50] = 0.5
nb_switch = chp.calc_nb_on_off_switching()
assert nb_switch == 8
| 35.244898
| 74
| 0.585987
| 1,257
| 10,362
| 4.381862
| 0.115354
| 0.141612
| 0.103486
| 0.069717
| 0.828613
| 0.82244
| 0.792302
| 0.763253
| 0.730937
| 0.709877
| 0
| 0.060765
| 0.356784
| 10,362
| 293
| 75
| 35.365188
| 0.765641
| 0.068809
| 0
| 0.697115
| 0
| 0
| 0.008131
| 0
| 0
| 0
| 0
| 0.003413
| 0.158654
| 1
| 0.0625
| false
| 0
| 0.024038
| 0
| 0.091346
| 0
| 0
| 0
| 0
| null | 0
| 0
| 0
| 1
| 1
| 1
| 1
| 1
| 1
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| null | 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
|
0
| 6
|
18b4c48d63e145af6c4c3ae24ea037a18aa0ee5d
| 148
|
py
|
Python
|
app/main/errors.py
|
Abzed/pitches-python
|
28c9b1462f929ae4b84ca76d8d72092d460ba380
|
[
"MIT"
] | null | null | null |
app/main/errors.py
|
Abzed/pitches-python
|
28c9b1462f929ae4b84ca76d8d72092d460ba380
|
[
"MIT"
] | null | null | null |
app/main/errors.py
|
Abzed/pitches-python
|
28c9b1462f929ae4b84ca76d8d72092d460ba380
|
[
"MIT"
] | null | null | null |
from flask import render_template
from . import main
@main.app_errorhandler(404)
def fo_o_fo(error):
return render_template('fo_o_fo.html'),404
| 24.666667
| 46
| 0.790541
| 25
| 148
| 4.4
| 0.6
| 0.254545
| 0.090909
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0.045802
| 0.114865
| 148
| 6
| 46
| 24.666667
| 0.793893
| 0
| 0
| 0
| 0
| 0
| 0.080537
| 0
| 0
| 0
| 0
| 0
| 0
| 1
| 0.2
| false
| 0
| 0.4
| 0.2
| 0.8
| 0
| 1
| 0
| 0
| null | 1
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 1
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| null | 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 1
| 1
| 1
| 0
|
0
| 6
|
18ca96d80812360b0d02f2e1f9d5dbb3519fe7ad
| 10,160
|
py
|
Python
|
testcases/security_scan/connect.py
|
rski/functest-mirror
|
7a2538438eab7a406c821acd7c72352f4a6ba364
|
[
"Apache-2.0"
] | null | null | null |
testcases/security_scan/connect.py
|
rski/functest-mirror
|
7a2538438eab7a406c821acd7c72352f4a6ba364
|
[
"Apache-2.0"
] | null | null | null |
testcases/security_scan/connect.py
|
rski/functest-mirror
|
7a2538438eab7a406c821acd7c72352f4a6ba364
|
[
"Apache-2.0"
] | null | null | null |
#!/usr/bin/python
#
# Copyright (c) 2016 Red Hat
# Luke Hinds ([email protected])
# This program and the accompanying materials
# are made available under the terms of the Apache License, Version 2.0
# which accompanies this distribution, and is available at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# 0.1: OpenSCAP paramiko connection functions
import os
import socket
import paramiko
import functest.utils.functest_logger as ft_logger
# add installer IP from env
INSTALLER_IP = os.getenv('INSTALLER_IP')
# Set up loggers
logger = ft_logger.Logger("security_scan").getLogger()
paramiko.util.log_to_file("/var/log/paramiko.log")
class SetUp:
def __init__(self, *args):
self.args = args
def keystonepass(self):
com = self.args[0]
client = paramiko.SSHClient()
privatekeyfile = os.path.expanduser('/root/.ssh/id_rsa')
selectedkey = paramiko.RSAKey.from_private_key_file(privatekeyfile)
client.set_missing_host_key_policy(paramiko.AutoAddPolicy())
try:
client.connect(INSTALLER_IP, port=22, username='stack',
pkey=selectedkey)
except paramiko.SSHException:
logger.error("Password is invalid for "
"undercloud host: {0}".format(INSTALLER_IP))
except paramiko.AuthenticationException:
logger.error("Authentication failed for "
"undercloud host: {0}".format(INSTALLER_IP))
except socket.error:
logger.error("Socker Connection failed for "
"undercloud host: {0}".format(INSTALLER_IP))
stdin, stdout, stderr = client.exec_command(com)
return stdout.read()
client.close()
def getockey(self):
remotekey = self.args[0]
localkey = self.args[1]
privatekeyfile = os.path.expanduser('/root/.ssh/id_rsa')
selectedkey = paramiko.RSAKey.from_private_key_file(privatekeyfile)
transport = paramiko.Transport((INSTALLER_IP, 22))
transport.connect(username='stack', pkey=selectedkey)
try:
sftp = paramiko.SFTPClient.from_transport(transport)
except paramiko.SSHException:
logger.error("Authentication failed for "
"host: {0}".format(INSTALLER_IP))
except paramiko.AuthenticationException:
logger.error("Authentication failed for "
"host: {0}".format(INSTALLER_IP))
except socket.error:
logger.error("Socker Connection failed for "
"undercloud host: {0}".format(INSTALLER_IP))
sftp.get(remotekey, localkey)
sftp.close()
transport.close()
class ConnectionManager:
def __init__(self, host, port, user, localkey, *args):
self.host = host
self.port = port
self.user = user
self.localkey = localkey
self.args = args
def remotescript(self):
localpath = self.args[0]
remotepath = self.args[1]
com = self.args[2]
client = paramiko.SSHClient()
privatekeyfile = os.path.expanduser('/root/.ssh/id_rsa')
selectedkey = paramiko.RSAKey.from_private_key_file(privatekeyfile)
client.set_missing_host_key_policy(paramiko.AutoAddPolicy())
# Connection to undercloud
try:
client.connect(INSTALLER_IP, port=22, username='stack',
pkey=selectedkey)
except paramiko.SSHException:
logger.error("Authentication failed for "
"host: {0}".format(self.host))
except paramiko.AuthenticationException:
logger.error("Authentication failed for "
"host: {0}".format(self.host))
except socket.error:
logger.error("Socker Connection failed for "
"undercloud host: {0}".format(self.host))
transport = client.get_transport()
local_addr = ('127.0.0.1', 0)
channel = transport.open_channel("direct-tcpip",
(self.host, int(self.port)),
(local_addr))
remote_client = paramiko.SSHClient()
remote_client.set_missing_host_key_policy(paramiko.AutoAddPolicy())
# Tunnel to overcloud
try:
remote_client.connect('127.0.0.1', port=22, username=self.user,
key_filename=self.localkey, sock=channel)
sftp = remote_client.open_sftp()
sftp.put(localpath, remotepath)
except paramiko.SSHException:
logger.error("Authentication failed for "
"host: {0}".format(self.host))
except paramiko.AuthenticationException:
logger.error("Authentication failed for "
"host: {0}".format(self.host))
except socket.error:
logger.error("Socker Connection failed for "
"undercloud host: {0}".format(self.host))
output = ""
stdin, stdout, stderr = remote_client.exec_command(com)
stdout = stdout.readlines()
# remove script
sftp.remove(remotepath)
remote_client.close()
client.close()
# Pipe back stout
for line in stdout:
output = output + line
if output != "":
return output
def remotecmd(self):
com = self.args[0]
client = paramiko.SSHClient()
privatekeyfile = os.path.expanduser('/root/.ssh/id_rsa')
selectedkey = paramiko.RSAKey.from_private_key_file(privatekeyfile)
client.set_missing_host_key_policy(paramiko.AutoAddPolicy())
# Connection to undercloud
try:
client.connect(INSTALLER_IP, port=22, username='stack',
pkey=selectedkey)
except paramiko.SSHException:
logger.error("Authentication failed for "
"host: {0}".format(self.host))
except paramiko.AuthenticationException:
logger.error("Authentication failed for "
"host: {0}".format(self.host))
except socket.error:
logger.error("Socker Connection failed for "
"undercloud host: {0}".format(self.host))
transport = client.get_transport()
local_addr = ('127.0.0.1', 0) # 0 denotes choose random port
channel = transport.open_channel("direct-tcpip",
(self.host, int(self.port)),
(local_addr))
remote_client = paramiko.SSHClient()
remote_client.set_missing_host_key_policy(paramiko.AutoAddPolicy())
# Tunnel to overcloud
try:
remote_client.connect('127.0.0.1', port=22, username=self.user,
key_filename=self.localkey, sock=channel)
except paramiko.SSHException:
logger.error("Authentication failed for "
"host: {0}".format(self.host))
except paramiko.AuthenticationException:
logger.error("Authentication failed for "
"host: {0}".format(self.host))
except socket.error:
logger.error("Socker Connection failed for "
"undercloud host: {0}".format(self.host))
chan = remote_client.get_transport().open_session()
chan.get_pty()
feed = chan.makefile()
chan.exec_command(com)
print feed.read()
remote_client.close()
client.close()
def download_reports(self):
dl_folder = self.args[0]
reportfile = self.args[1]
reportname = self.args[2]
resultsname = self.args[3]
client = paramiko.SSHClient()
privatekeyfile = os.path.expanduser('/root/.ssh/id_rsa')
selectedkey = paramiko.RSAKey.from_private_key_file(privatekeyfile)
client.set_missing_host_key_policy(paramiko.AutoAddPolicy())
# Connection to overcloud
try:
client.connect(INSTALLER_IP, port=22, username='stack',
pkey=selectedkey)
except paramiko.SSHException:
logger.error("Authentication failed for "
"host: {0}".format(self.host))
except paramiko.AuthenticationException:
logger.error("Authentication failed for "
"host: {0}".format(self.host))
except socket.error:
logger.error("Socker Connection failed for "
"undercloud host: {0}".format(self.host))
transport = client.get_transport()
local_addr = ('127.0.0.1', 0) # 0 denotes choose random port
channel = transport.open_channel("direct-tcpip",
(self.host, int(self.port)),
(local_addr))
remote_client = paramiko.SSHClient()
remote_client.set_missing_host_key_policy(paramiko.AutoAddPolicy())
# Tunnel to overcloud
try:
remote_client.connect('127.0.0.1', port=22, username=self.user,
key_filename=self.localkey, sock=channel)
except paramiko.SSHException:
logger.error("Authentication failed for "
"host: {0}".format(self.host))
except paramiko.AuthenticationException:
logger.error("Authentication failed for "
"host: {0}".format(self.host))
except socket.error:
logger.error("Socker Connection failed for "
"undercloud host: {0}".format(self.host))
# Download the reports
sftp = remote_client.open_sftp()
logger.info("Downloading \"{0}\"...".format(reportname))
sftp.get(reportfile, ('{0}/{1}'.format(dl_folder, reportname)))
logger.info("Downloading \"{0}\"...".format(resultsname))
sftp.get(reportfile, ('{0}/{1}'.format(dl_folder, resultsname)))
sftp.close()
transport.close()
| 41.469388
| 75
| 0.585728
| 1,039
| 10,160
| 5.614052
| 0.169394
| 0.031202
| 0.04526
| 0.046288
| 0.737871
| 0.710441
| 0.710441
| 0.710441
| 0.695183
| 0.695183
| 0
| 0.015376
| 0.308661
| 10,160
| 244
| 76
| 41.639344
| 0.815063
| 0.06063
| 0
| 0.731343
| 0
| 0
| 0.132773
| 0.002206
| 0
| 0
| 0
| 0
| 0
| 0
| null | null | 0.00995
| 0.019901
| null | null | 0.004975
| 0
| 0
| 0
| null | 0
| 0
| 0
| 0
| 1
| 1
| 1
| 0
| 1
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 1
| 0
| 0
| 0
| 0
| null | 0
| 0
| 0
| 0
| 1
| 0
| 0
| 0
| 0
| 0
| 0
| 0
|
0
| 6
|
18f237b1bdcfc940cf58e3a2abd3ce6c3dbd7088
| 32,955
|
py
|
Python
|
zfit/_loss/binnedloss.py
|
nsahoo/zfit
|
fcad2578f31138f5383f7fa5de6c0f8c6b1dbaa4
|
[
"BSD-3-Clause"
] | null | null | null |
zfit/_loss/binnedloss.py
|
nsahoo/zfit
|
fcad2578f31138f5383f7fa5de6c0f8c6b1dbaa4
|
[
"BSD-3-Clause"
] | null | null | null |
zfit/_loss/binnedloss.py
|
nsahoo/zfit
|
fcad2578f31138f5383f7fa5de6c0f8c6b1dbaa4
|
[
"BSD-3-Clause"
] | null | null | null |
# Copyright (c) 2021 zfit
from typing import Iterable, Optional, Set
import numpy as np
import tensorflow as tf
from uhi.typing.plottable import PlottableHistogram
from .. import z
from ..core.interfaces import ZfitBinnedData, ZfitBinnedPDF
from ..core.loss import BaseLoss
from ..util import ztyping
from ..util.checks import NONE
from ..util.container import convert_to_container
from ..util.warnings import warn_advanced_feature
from ..util.ztyping import OptionsInputType, ConstraintsInputType
from ..z import numpy as znp
@z.function(wraps='tensor')
def _spd_transform(values, probs, variances):
# Scaled Poisson distribution from Bohm and Zech, NIMA 748 (2014) 1-6
scale = values * tf.math.reciprocal_no_nan(variances)
return values * scale, probs * scale
@z.function(wraps='tensor')
def poisson_loss_calc(probs, values, log_offset=None, variances=None):
if variances is not None:
values, probs = _spd_transform(values, probs, variances=variances)
values += znp.asarray(1e-307, dtype=znp.float64)
probs += znp.asarray(1e-307, dtype=znp.float64)
poisson_term = tf.nn.log_poisson_loss(values, # TODO: correct offset
znp.log(
probs), compute_full_loss=False) # TODO: optimization?
if log_offset is not None:
poisson_term += log_offset
return poisson_term
class BaseBinned(BaseLoss):
def __init__(self,
model: ztyping.BinnedPDFInputType,
data: ztyping.BinnedDataInputType,
constraints: ConstraintsInputType = None,
options: OptionsInputType = None):
model = convert_to_container(model)
data = convert_to_container(data)
from zfit._data.binneddatav1 import BinnedData
data = [
BinnedData.from_hist(d)
if (isinstance(d, PlottableHistogram) and not isinstance(d, ZfitBinnedData)) else d
for d in data
]
not_binned_pdf = [mod for mod in model if not isinstance(mod, ZfitBinnedPDF)]
not_binned_data = [dat for dat in data if not isinstance(dat, ZfitBinnedData)]
not_binned_pdf_msg = ("The following PDFs are not binned but need to be. They can be wrapped in an "
f"BinnedFromUnbinnedPDF. {not_binned_pdf} ")
not_binned_data_msg = (
"The following datasets are not binned but need to be. They can be converted to a binned "
f"using the `to_binned` method. {not_binned_data}")
error_msg = ""
if not_binned_pdf:
error_msg += not_binned_pdf_msg
if not_binned_data:
error_msg += not_binned_data_msg
if error_msg:
raise ValueError(error_msg)
super().__init__(model=model, data=data, constraints=constraints, fit_range=None, options=options)
def create_new(self,
model: ztyping.BinnedPDFInputType = NONE,
data: ztyping.BinnedDataInputType = NONE,
constraints: ConstraintsInputType = NONE,
options: OptionsInputType = NONE):
r"""Create a new binned loss of this type. This is preferrable over creating a new instance in most cases.
Internals, such as certain optimizations will be shared and therefore the loss is made comparable.
If something is not given, it will be taken from the current loss.
Args:
model: |@doc:loss.binned.init.model| Binned PDF(s) that return the normalized probability
(`rel_counts` or `counts`) for
*data* under the given parameters.
If multiple model and data are given, they will be used
in the same order to do a simultaneous fit. |@docend:loss.binned.init.model|
data: |@doc:loss.binned.init.data| Binned dataset that will be given to the *model*.
If multiple model and data are given, they will be used
in the same order to do a simultaneous fit. |@docend:loss.binned.init.data|
constraints: |@doc:loss.init.constraints| Auxiliary measurements ("constraints")
that add a likelihood term to the loss.
.. math::
\mathcal{L}(\theta) = \mathcal{L}_{unconstrained} \prod_{i} f_{constr_i}(\theta)
Usually, an auxiliary measurement -- by its very nature -S should only be added once
to the loss. zfit does not automatically deduplicate constraints if they are given
multiple times, leaving the freedom for arbitrary constructs.
Constraints can also be used to restrict the loss by adding any kinds of penalties. |@docend:loss.init.constraints|
options: |@doc:loss.init.options| Additional options (as a dict) for the loss.
Current possibilities include:
- 'subtr_const' (default True): subtract from each points
log probability density a constant that
is approximately equal to the average log probability
density in the very first evaluation before
the summation. This brings the initial loss value closer to 0 and increases,
especially for large datasets, the numerical stability.
The value will be stored ith 'subtr_const_value' and can also be given
directly.
The subtraction should not affect the minimum as the absolute
value of the NLL is meaningless. However,
with this switch on, one cannot directly compare
different likelihoods ablolute value as the constant
may differ! Use `create_new` in order to have a comparable likelihood
between different losses
These settings may extend over time. In order to make sure that a loss is the
same under the same data, make sure to use `create_new` instead of instantiating
a new loss as the former will automatically overtake any relevant constants
and behavior. |@docend:loss.init.options|
Returns:
"""
if model is NONE:
model = self.model
if data is NONE:
data = self.data
if constraints is NONE:
constraints = self.constraints
if constraints is not None:
constraints = constraints.copy()
if options is NONE:
options = self._options
if isinstance(options, dict):
options = options.copy()
return type(self)(model=model, data=data, constraints=constraints, options=options)
class ExtendedBinnedNLL(BaseBinned):
def __init__(self,
model: ztyping.BinnedPDFInputType,
data: ztyping.BinnedDataInputType,
constraints: ConstraintsInputType = None,
options: OptionsInputType = None):
r"""Extended binned likelihood using the expected number of events per bin with a poisson probability.
|@doc:loss.init.explain.spdtransform| A scaled Poisson distribution is
used as described by Bohm and Zech, NIMA 748 (2014) 1-6 |@docend:loss.init.explain.spdtransform|
The binned likelihood is defined as
.. math::
\mathcal{L} = \product \mathcal{poiss}(N_{modelbin_i}, N_{databin_i})
= N_{databin_i}^{N_{modelbin_i}} \frac{e^{- N_{databin_i}}}{N_{modelbin_i}!}
where :math:`databin_i` is the :math:`i^{th}` bin in the data and
:math:`modelbin_i` is the :math:`i^{th}` bin of the model, the expected counts.
|@doc:loss.init.explain.simultaneous| A simultaneous fit can be performed by giving one or more `model`, `data`, to the loss. The
length of each has to match the length of the others
.. math::
\mathcal{L}_{simultaneous}(\theta | {data_0, data_1, ..., data_n})
= \prod_{i} \mathcal{L}(\theta_i, data_i)
where :math:`\theta_i` is a set of parameters and
a subset of :math:`\theta` |@docend:loss.init.explain.simultaneous|
|@doc:loss.init.explain.negativelog| For optimization purposes, it is often easier
to minimize a function and to use a log transformation. The actual loss is given by
.. math::
\mathcal{L} = - \sum_{i}^{n} ln(f(\theta|x_i))
and therefore being called "negative log ..." |@docend:loss.init.explain.negativelog|
Args:
model: |@doc:loss.binned.init.model| Binned PDF(s) that return the normalized probability
(`rel_counts` or `counts`) for
*data* under the given parameters.
If multiple model and data are given, they will be used
in the same order to do a simultaneous fit. |@docend:loss.binned.init.model|
data: |@doc:loss.binned.init.data| Binned dataset that will be given to the *model*.
If multiple model and data are given, they will be used
in the same order to do a simultaneous fit. |@docend:loss.binned.init.data|
constraints: |@doc:loss.init.constraints| Auxiliary measurements ("constraints")
that add a likelihood term to the loss.
.. math::
\mathcal{L}(\theta) = \mathcal{L}_{unconstrained} \prod_{i} f_{constr_i}(\theta)
Usually, an auxiliary measurement -- by its very nature -S should only be added once
to the loss. zfit does not automatically deduplicate constraints if they are given
multiple times, leaving the freedom for arbitrary constructs.
Constraints can also be used to restrict the loss by adding any kinds of penalties. |@docend:loss.init.constraints|
options: |@doc:loss.init.options| Additional options (as a dict) for the loss.
Current possibilities include:
- 'subtr_const' (default True): subtract from each points
log probability density a constant that
is approximately equal to the average log probability
density in the very first evaluation before
the summation. This brings the initial loss value closer to 0 and increases,
especially for large datasets, the numerical stability.
The value will be stored ith 'subtr_const_value' and can also be given
directly.
The subtraction should not affect the minimum as the absolute
value of the NLL is meaningless. However,
with this switch on, one cannot directly compare
different likelihoods ablolute value as the constant
may differ! Use `create_new` in order to have a comparable likelihood
between different losses
These settings may extend over time. In order to make sure that a loss is the
same under the same data, make sure to use `create_new` instead of instantiating
a new loss as the former will automatically overtake any relevant constants
and behavior. |@docend:loss.init.options|
"""
self._errordef = 0.5
super().__init__(model=model, data=data, constraints=constraints, options=options)
@z.function(wraps='loss')
def _loss_func(self, model: Iterable[ZfitBinnedPDF], data: Iterable[ZfitBinnedData],
fit_range, constraints, log_offset):
poisson_terms = []
for mod, dat in zip(model, data):
values = dat.values( # TODO: right order of model and data?
# obs=mod.obs
)
variances = dat.variances()
probs = mod.counts(dat)
poisson_term = poisson_loss_calc(probs, values, log_offset, variances)
poisson_terms.append(poisson_term) # TODO: change None
nll = znp.sum(poisson_terms)
if constraints:
constraints = z.reduce_sum([c.value() for c in constraints])
nll += constraints
return nll
@property
def is_extended(self):
return True
def _get_params(self, floating: Optional[bool] = True, is_yield: Optional[bool] = None,
extract_independent: Optional[bool] = True) -> Set["ZfitParameter"]:
return super()._get_params(floating, is_yield, extract_independent)
class BinnedNLL(BaseBinned):
def __init__(self,
model: ztyping.BinnedPDFInputType,
data: ztyping.BinnedDataInputType,
constraints: ConstraintsInputType = None,
options: OptionsInputType = None):
r"""Binned negative log likelihood.
|@doc:loss.init.explain.spdtransform| A scaled Poisson distribution is
used as described by Bohm and Zech, NIMA 748 (2014) 1-6 |@docend:loss.init.explain.spdtransform|
The binned likelihood is the binned version of :py:class:`~zfit.loss.UnbinnedNLL`. It is defined as
.. math::
\\mathcal{L} = \\product \\mathcal{poiss}(N_{modelbin_i}, N_{databin_i}) = N_{databin_i}^{N_{modelbin_i}} \frac{e^{- N_{databin_i}}}{N_{modelbin_i}!}
where :math:`databin_i` is the :math:`i^{th}` bin in the data and
:math:`modelbin_i` is the :math:`i^{th}` bin of the model multiplied by the total number of events in data.
|@doc:loss.init.explain.simultaneous| A simultaneous fit can be performed by giving one or more `model`, `data`, to the loss. The
length of each has to match the length of the others
.. math::
\mathcal{L}_{simultaneous}(\theta | {data_0, data_1, ..., data_n})
= \prod_{i} \mathcal{L}(\theta_i, data_i)
where :math:`\theta_i` is a set of parameters and
a subset of :math:`\theta` |@docend:loss.init.explain.simultaneous|
|@doc:loss.init.explain.negativelog| For optimization purposes, it is often easier
to minimize a function and to use a log transformation. The actual loss is given by
.. math::
\mathcal{L} = - \sum_{i}^{n} ln(f(\theta|x_i))
and therefore being called "negative log ..." |@docend:loss.init.explain.negativelog|
Args:
model: |@doc:loss.binned.init.model| Binned PDF(s) that return the normalized probability
(`rel_counts` or `counts`) for
*data* under the given parameters.
If multiple model and data are given, they will be used
in the same order to do a simultaneous fit. |@docend:loss.binned.init.model|
data: |@doc:loss.binned.init.data| Binned dataset that will be given to the *model*.
If multiple model and data are given, they will be used
in the same order to do a simultaneous fit. |@docend:loss.binned.init.data|
constraints: |@doc:loss.init.constraints| Auxiliary measurements ("constraints")
that add a likelihood term to the loss.
.. math::
\mathcal{L}(\theta) = \mathcal{L}_{unconstrained} \prod_{i} f_{constr_i}(\theta)
Usually, an auxiliary measurement -- by its very nature -S should only be added once
to the loss. zfit does not automatically deduplicate constraints if they are given
multiple times, leaving the freedom for arbitrary constructs.
Constraints can also be used to restrict the loss by adding any kinds of penalties. |@docend:loss.init.constraints|
options: |@doc:loss.init.options| Additional options (as a dict) for the loss.
Current possibilities include:
- 'subtr_const' (default True): subtract from each points
log probability density a constant that
is approximately equal to the average log probability
density in the very first evaluation before
the summation. This brings the initial loss value closer to 0 and increases,
especially for large datasets, the numerical stability.
The value will be stored ith 'subtr_const_value' and can also be given
directly.
The subtraction should not affect the minimum as the absolute
value of the NLL is meaningless. However,
with this switch on, one cannot directly compare
different likelihoods ablolute value as the constant
may differ! Use `create_new` in order to have a comparable likelihood
between different losses
These settings may extend over time. In order to make sure that a loss is the
same under the same data, make sure to use `create_new` instead of instantiating
a new loss as the former will automatically overtake any relevant constants
and behavior. |@docend:loss.init.options|
"""
self._errordef = 0.5
super().__init__(model=model, data=data, constraints=constraints, options=options)
extended_pdfs = [pdf for pdf in self.model if pdf.is_extended]
if extended_pdfs and type(self) == BinnedNLL:
warn_advanced_feature(f"Extended PDFs ({extended_pdfs}) are given to a normal BinnedNLL. "
f" This won't take the yield "
"into account and simply treat the PDFs as non-extended PDFs. To create an "
"extended NLL, use the `ExtendedBinnedNLL`.", identifier='extended_in_BinnedNLL')
@z.function(wraps='loss')
def _loss_func(self, model: Iterable[ZfitBinnedPDF], data: Iterable[ZfitBinnedData],
fit_range, constraints, log_offset):
poisson_terms = []
for mod, dat in zip(model, data):
values = dat.values( # TODO: right order of model and data?
# obs=mod.obs
)
variances = dat.variances()
probs = mod.rel_counts(dat)
probs *= znp.sum(values)
poisson_term = poisson_loss_calc(probs, values, log_offset, variances)
poisson_terms.append(poisson_term)
nll = znp.sum(poisson_terms)
if constraints:
constraints = z.reduce_sum([c.value() for c in constraints])
nll += constraints
return nll
@property
def is_extended(self):
return False
def _get_params(self, floating: Optional[bool] = True, is_yield: Optional[bool] = None,
extract_independent: Optional[bool] = True) -> Set["ZfitParameter"]:
if not self.is_extended:
is_yield = False # the loss does not depend on the yields
return super()._get_params(floating, is_yield, extract_independent)
@z.function(wraps='tensor')
def chi2_loss_calc(probs, values, variances, log_offset=None, ignore_empty=None):
if ignore_empty is None:
ignore_empty = True
chi2_term = tf.math.squared_difference(probs, values)
if ignore_empty:
one_over_var = tf.math.reciprocal_no_nan(variances)
else:
one_over_var = tf.math.reciprocal(variances)
chi2_term *= one_over_var
chi2_term = znp.sum(chi2_term)
if log_offset is not None:
chi2_term += log_offset
return chi2_term
def _check_small_counts_chi2(data, ignore_empty):
for dat in data:
variances = dat.variances()
smaller_than_six = dat.values() < 6
if variances is None:
raise ValueError(f"variances cannot be None for Chi2: {dat}")
elif np.any(variances <= 0) and not ignore_empty:
raise ValueError(f"Variances of {dat} contains zeros or negative numbers, cannot calculate chi2."
f" {variances}")
elif np.any(smaller_than_six):
warn_advanced_feature(f"Some values in {dat} are < 6, the chi2 assumption of gaussian distributed"
f" uncertainties most likely won't hold anymore. Use Chi2 for large samples."
f"For smaller samples, consider using (Extended)BinnedNLL (or an unbinned fit).",
identifier='chi2_counts_small')
class BinnedChi2(BaseBinned):
def __init__(self,
model: ztyping.BinnedPDFInputType,
data: ztyping.BinnedDataInputType,
constraints: ConstraintsInputType = None,
options: OptionsInputType = None):
r"""Binned Chi2 loss, using the :math:`N_{tot} from the data.
.. math::
\chi^2 = \sum_{\mathrm{bins}} \left( \frac{N_\mathrm{PDF,bin} - N_\mathrm{Data,bin}}{\sigma_\mathrm{Data,bin}} \right)^2
where
.. math::
N_\mathrm{PDF,bin} = \mathrm{pdf}(\text{integral}) \cdot N_\mathrm{Data,tot}
\sigma_\mathrm{bin} = \text{variance}
with `variance` the value of :class:`~zfit.data.BinnedData.variances` of the binned data.
|@doc:loss.init.binned.explain.chi2zeros| If the dataset has empty bins, the errors
will be zero and :math:`\chi^2` is undefined. Two possibilities are available and
can be given as an option:
- "empty": "ignore" will ignore all bins with zero entries and won't count to the loss
- "errors": "expected" will use the expected counts from the model
with a Poissonian uncertainty |@docend:loss.init.binned.explain.chi2zeros|
Args:
model: |@doc:loss.binned.init.model| Binned PDF(s) that return the normalized probability
(`rel_counts` or `counts`) for
*data* under the given parameters.
If multiple model and data are given, they will be used
in the same order to do a simultaneous fit. |@docend:loss.binned.init.model|
data: |@doc:loss.binned.init.data| Binned dataset that will be given to the *model*.
If multiple model and data are given, they will be used
in the same order to do a simultaneous fit. |@docend:loss.binned.init.data|
constraints: |@doc:loss.init.constraints| Auxiliary measurements ("constraints")
that add a likelihood term to the loss.
.. math::
\mathcal{L}(\theta) = \mathcal{L}_{unconstrained} \prod_{i} f_{constr_i}(\theta)
Usually, an auxiliary measurement -- by its very nature -S should only be added once
to the loss. zfit does not automatically deduplicate constraints if they are given
multiple times, leaving the freedom for arbitrary constructs.
Constraints can also be used to restrict the loss by adding any kinds of penalties. |@docend:loss.init.constraints|
options: |@doc:loss.init.options| Additional options (as a dict) for the loss.
Current possibilities include:
- 'subtr_const' (default True): subtract from each points
log probability density a constant that
is approximately equal to the average log probability
density in the very first evaluation before
the summation. This brings the initial loss value closer to 0 and increases,
especially for large datasets, the numerical stability.
The value will be stored ith 'subtr_const_value' and can also be given
directly.
The subtraction should not affect the minimum as the absolute
value of the NLL is meaningless. However,
with this switch on, one cannot directly compare
different likelihoods ablolute value as the constant
may differ! Use `create_new` in order to have a comparable likelihood
between different losses
These settings may extend over time. In order to make sure that a loss is the
same under the same data, make sure to use `create_new` instead of instantiating
a new loss as the former will automatically overtake any relevant constants
and behavior. |@docend:loss.init.options|
"""
self._errordef = 1.
if options is None:
options = {}
if options.get('empty') is None:
options['empty'] = "ignore"
if options.get('errors') is None:
options['errors'] = "data"
super().__init__(model=model, data=data, constraints=constraints, options=options)
extended_pdfs = [pdf for pdf in self.model if pdf.is_extended]
if extended_pdfs and type(self) == BinnedChi2:
warn_advanced_feature(f"Extended PDFs ({extended_pdfs}) are given to a normal BinnedChi2. "
f" This won't take the yield "
"into account and simply treat the PDFs as non-extended PDFs. To create an "
"extended loss, use the `ExtendedBinnedChi2`.", identifier='extended_in_BinnedChi2')
def _precompile(self):
super()._precompile()
ignore_empty = self._options.get('empty') == "ignore" or self._options.get('errors') == 'expected'
data = self.data
_check_small_counts_chi2(data, ignore_empty)
@z.function(wraps='loss')
def _loss_func(self, model: Iterable[ZfitBinnedPDF], data: Iterable[ZfitBinnedData],
fit_range, constraints, log_offset):
del fit_range
ignore_empty = self._options.get('empty') == 'ignore'
chi2_terms = []
for mod, dat in zip(model, data):
values = dat.values( # TODO: right order of model and data?
# obs=mod.obs
)
probs = mod.rel_counts(dat)
probs *= znp.sum(values)
variance_method = self._options.get('errors')
if variance_method == 'expected':
variances = znp.sqrt(probs + znp.asarray(1e-307, dtype=znp.float64))
elif variance_method == 'data':
variances = dat.variances()
else:
raise ValueError()
if variances is None:
raise ValueError(f"variances cannot be None for Chi2: {dat}")
chi2_term = chi2_loss_calc(probs, values, variances, log_offset, ignore_empty=ignore_empty)
chi2_terms.append(chi2_term)
chi2_term = znp.sum(chi2_terms)
if constraints:
constraints = z.reduce_sum([c.value() for c in constraints])
chi2_term += constraints
return chi2_term
@property
def is_extended(self):
return False
def _get_params(self, floating: Optional[bool] = True, is_yield: Optional[bool] = None,
extract_independent: Optional[bool] = True) -> Set["ZfitParameter"]:
if not self.is_extended:
is_yield = False # the loss does not depend on the yields
return super()._get_params(floating, is_yield, extract_independent)
class ExtendedBinnedChi2(BaseBinned):
def __init__(self,
model: ztyping.BinnedPDFInputType,
data: ztyping.BinnedDataInputType,
constraints: ConstraintsInputType = None,
options: OptionsInputType = None):
r"""Binned Chi2 loss, using the :math:`N_{tot} from the PDF.
.. math::
\chi^2 = \sum_{\mathrm{bins}} \left( \frac{N_\mathrm{PDF,bin} - N_\mathrm{Data,bin}}{\sigma_\mathrm{Data,bin}} \right)^2
where
.. math::
N_\mathrm{PDF,bin} = \mathrm{pdf}(\text{integral}) \cdot N_\mathrm{PDF,expected}
\sigma_\mathrm{bin} = \text{variance}
with `variance` the value of :class:`~zfit.data.BinnedData.variances` of the binned data.
|@doc:loss.init.binned.explain.chi2zeros| If the dataset has empty bins, the errors
will be zero and :math:`\chi^2` is undefined. Two possibilities are available and
can be given as an option:
- "empty": "ignore" will ignore all bins with zero entries and won't count to the loss
- "errors": "expected" will use the expected counts from the model
with a Poissonian uncertainty |@docend:loss.init.binned.explain.chi2zeros|
Args:
model: |@doc:loss.binned.init.model| Binned PDF(s) that return the normalized probability
(`rel_counts` or `counts`) for
*data* under the given parameters.
If multiple model and data are given, they will be used
in the same order to do a simultaneous fit. |@docend:loss.binned.init.model|
data: |@doc:loss.binned.init.data| Binned dataset that will be given to the *model*.
If multiple model and data are given, they will be used
in the same order to do a simultaneous fit. |@docend:loss.binned.init.data|
constraints: |@doc:loss.init.constraints| Auxiliary measurements ("constraints")
that add a likelihood term to the loss.
.. math::
\mathcal{L}(\theta) = \mathcal{L}_{unconstrained} \prod_{i} f_{constr_i}(\theta)
Usually, an auxiliary measurement -- by its very nature -S should only be added once
to the loss. zfit does not automatically deduplicate constraints if they are given
multiple times, leaving the freedom for arbitrary constructs.
Constraints can also be used to restrict the loss by adding any kinds of penalties. |@docend:loss.init.constraints|
options: |@doc:loss.init.options| Additional options (as a dict) for the loss.
Current possibilities include:
- 'subtr_const' (default True): subtract from each points
log probability density a constant that
is approximately equal to the average log probability
density in the very first evaluation before
the summation. This brings the initial loss value closer to 0 and increases,
especially for large datasets, the numerical stability.
The value will be stored ith 'subtr_const_value' and can also be given
directly.
The subtraction should not affect the minimum as the absolute
value of the NLL is meaningless. However,
with this switch on, one cannot directly compare
different likelihoods ablolute value as the constant
may differ! Use `create_new` in order to have a comparable likelihood
between different losses
These settings may extend over time. In order to make sure that a loss is the
same under the same data, make sure to use `create_new` instead of instantiating
a new loss as the former will automatically overtake any relevant constants
and behavior. |@docend:loss.init.options|
"""
self._errordef = 1.
if options is None:
options = {}
if options.get('empty') is None:
options['empty'] = "ignore"
if options.get('errors') is None:
options['errors'] = "data"
super().__init__(model=model, data=data, constraints=constraints, options=options)
def _precompile(self):
super()._precompile()
ignore_empty = self._options.get('empty') == "ignore" or self._options.get('errors') == 'expected'
data = self.data
_check_small_counts_chi2(data, ignore_empty)
@z.function(wraps='loss')
def _loss_func(self, model: Iterable[ZfitBinnedPDF], data: Iterable[ZfitBinnedData],
fit_range, constraints, log_offset):
del fit_range
ignore_empty = self._options.get('empty') == "ignore"
chi2_terms = []
for mod, dat in zip(model, data):
values = dat.values( # TODO: right order of model and data?
# obs=mod.obs
)
probs = mod.counts(dat)
variance_method = self._options.get('errors')
if variance_method == 'expected':
variances = znp.sqrt(probs + znp.asarray(1e-307, dtype=znp.float64))
elif variance_method == 'data':
variances = dat.variances()
else:
raise ValueError(f"Variance method {variance_method} not supported")
if variances is None:
raise ValueError(f"variances cannot be None for Chi2: {dat}")
chi2_term = chi2_loss_calc(probs, values, variances, log_offset, ignore_empty=ignore_empty)
chi2_terms.append(chi2_term)
chi2_term = znp.sum(chi2_terms)
if constraints:
constraints = z.reduce_sum([c.value() for c in constraints])
chi2_term += constraints
return chi2_term
@property
def is_extended(self):
return True
| 48.250366
| 161
| 0.626491
| 4,120
| 32,955
| 4.913107
| 0.100728
| 0.014228
| 0.013833
| 0.008398
| 0.854708
| 0.844087
| 0.837368
| 0.82892
| 0.818891
| 0.816026
| 0
| 0.005459
| 0.294037
| 32,955
| 682
| 162
| 48.321114
| 0.864603
| 0.528842
| 0
| 0.611888
| 0
| 0
| 0.106352
| 0.006286
| 0
| 0
| 0
| 0.007331
| 0
| 1
| 0.08042
| false
| 0
| 0.048951
| 0.017483
| 0.199301
| 0
| 0
| 0
| 0
| null | 0
| 0
| 0
| 1
| 1
| 1
| 1
| 1
| 1
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| null | 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
|
0
| 6
|
7a09afedf6f9ee42306fe61a4fd8f4fdec0a20f5
| 11,014
|
py
|
Python
|
mistral/db/sqlalchemy/migration/alembic_migrations/versions/001_kilo.py
|
shubhamdang/mistral
|
3c83837f6ce1e4ab74fb519a63e82eaae70f9d2d
|
[
"Apache-2.0"
] | 205
|
2015-06-21T11:51:47.000Z
|
2022-03-05T04:00:04.000Z
|
mistral/db/sqlalchemy/migration/alembic_migrations/versions/001_kilo.py
|
shubhamdang/mistral
|
3c83837f6ce1e4ab74fb519a63e82eaae70f9d2d
|
[
"Apache-2.0"
] | 8
|
2015-06-23T14:47:58.000Z
|
2021-01-28T06:06:44.000Z
|
mistral/db/sqlalchemy/migration/alembic_migrations/versions/001_kilo.py
|
shubhamdang/mistral
|
3c83837f6ce1e4ab74fb519a63e82eaae70f9d2d
|
[
"Apache-2.0"
] | 110
|
2015-06-14T03:34:38.000Z
|
2021-11-11T12:12:56.000Z
|
# Copyright 2015 OpenStack Foundation.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or
# implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Kilo release
Revision ID: 001
Revises: None
Create Date: 2015-03-31 12:02:51.935368
"""
# revision identifiers, used by Alembic.
revision = '001'
down_revision = None
from alembic import op
import sqlalchemy as sa
from mistral.db.sqlalchemy import types as st
def upgrade():
op.create_table(
'workbooks_v2',
sa.Column('created_at', sa.DateTime(), nullable=True),
sa.Column('updated_at', sa.DateTime(), nullable=True),
sa.Column('scope', sa.String(length=80), nullable=True),
sa.Column('project_id', sa.String(length=80), nullable=True),
sa.Column('id', sa.String(length=36), nullable=False),
sa.Column('name', sa.String(length=80), nullable=True),
sa.Column('definition', sa.Text(), nullable=True),
sa.Column('spec', st.JsonEncoded(), nullable=True),
sa.Column('tags', st.JsonEncoded(), nullable=True),
sa.PrimaryKeyConstraint('id'),
sa.UniqueConstraint('name', 'project_id')
)
op.create_table(
'tasks',
sa.Column('created_at', sa.DateTime(), nullable=True),
sa.Column('updated_at', sa.DateTime(), nullable=True),
sa.Column('id', sa.String(length=36), nullable=False),
sa.Column('name', sa.String(length=80), nullable=True),
sa.Column('requires', st.JsonEncoded(), nullable=True),
sa.Column('workbook_name', sa.String(length=80), nullable=True),
sa.Column('execution_id', sa.String(length=36), nullable=True),
sa.Column('description', sa.String(length=200), nullable=True),
sa.Column('task_spec', st.JsonEncoded(), nullable=True),
sa.Column('action_spec', st.JsonEncoded(), nullable=True),
sa.Column('state', sa.String(length=20), nullable=True),
sa.Column('tags', st.JsonEncoded(), nullable=True),
sa.Column('in_context', st.JsonEncoded(), nullable=True),
sa.Column('parameters', st.JsonEncoded(), nullable=True),
sa.Column('output', st.JsonEncoded(), nullable=True),
sa.Column('task_runtime_context', st.JsonEncoded(), nullable=True),
sa.PrimaryKeyConstraint('id')
)
op.create_table(
'action_definitions_v2',
sa.Column('created_at', sa.DateTime(), nullable=True),
sa.Column('updated_at', sa.DateTime(), nullable=True),
sa.Column('scope', sa.String(length=80), nullable=True),
sa.Column('project_id', sa.String(length=80), nullable=True),
sa.Column('id', sa.String(length=36), nullable=False),
sa.Column('name', sa.String(length=80), nullable=True),
sa.Column('definition', sa.Text(), nullable=True),
sa.Column('spec', st.JsonEncoded(), nullable=True),
sa.Column('tags', st.JsonEncoded(), nullable=True),
sa.Column('description', sa.Text(), nullable=True),
sa.Column('input', sa.Text(), nullable=True),
sa.Column('action_class', sa.String(length=200), nullable=True),
sa.Column('attributes', st.JsonEncoded(), nullable=True),
sa.Column('is_system', sa.Boolean(), nullable=True),
sa.PrimaryKeyConstraint('id'),
sa.UniqueConstraint('name', 'project_id')
)
op.create_table(
'workflow_definitions_v2',
sa.Column('created_at', sa.DateTime(), nullable=True),
sa.Column('updated_at', sa.DateTime(), nullable=True),
sa.Column('scope', sa.String(length=80), nullable=True),
sa.Column('project_id', sa.String(length=80), nullable=True),
sa.Column('id', sa.String(length=36), nullable=False),
sa.Column('name', sa.String(length=80), nullable=True),
sa.Column('definition', sa.Text(), nullable=True),
sa.Column('spec', st.JsonEncoded(), nullable=True),
sa.Column('tags', st.JsonEncoded(), nullable=True),
sa.PrimaryKeyConstraint('id'),
sa.UniqueConstraint('name', 'project_id')
)
op.create_table(
'executions_v2',
sa.Column('created_at', sa.DateTime(), nullable=True),
sa.Column('updated_at', sa.DateTime(), nullable=True),
sa.Column('scope', sa.String(length=80), nullable=True),
sa.Column('project_id', sa.String(length=80), nullable=True),
sa.Column('type', sa.String(length=50), nullable=True),
sa.Column('id', sa.String(length=36), nullable=False),
sa.Column('name', sa.String(length=80), nullable=True),
sa.Column('workflow_name', sa.String(length=80), nullable=True),
sa.Column('spec', st.JsonEncoded(), nullable=True),
sa.Column('state', sa.String(length=20), nullable=True),
sa.Column('state_info', sa.String(length=1024), nullable=True),
sa.Column('tags', st.JsonEncoded(), nullable=True),
sa.Column('accepted', sa.Boolean(), nullable=True),
sa.Column('input', st.JsonEncoded(), nullable=True),
sa.Column('output', st.JsonLongDictType(), nullable=True),
sa.Column('params', st.JsonEncoded(), nullable=True),
sa.Column('context', st.JsonEncoded(), nullable=True),
sa.Column('action_spec', st.JsonEncoded(), nullable=True),
sa.Column('processed', sa.BOOLEAN(), nullable=True),
sa.Column('in_context', st.JsonLongDictType(), nullable=True),
sa.Column('published', st.JsonEncoded(), nullable=True),
sa.Column('runtime_context', st.JsonEncoded(), nullable=True),
sa.Column('task_execution_id', sa.String(length=36), nullable=True),
sa.Column(
'workflow_execution_id', sa.String(length=36), nullable=True
),
sa.ForeignKeyConstraint(
['task_execution_id'], ['executions_v2.id'],
),
sa.ForeignKeyConstraint(
['workflow_execution_id'], ['executions_v2.id'],
),
sa.PrimaryKeyConstraint('id')
)
op.create_table(
'workbooks',
sa.Column('created_at', sa.DateTime(), nullable=True),
sa.Column('updated_at', sa.DateTime(), nullable=True),
sa.Column('id', sa.String(length=36), nullable=False),
sa.Column('name', sa.String(length=80), nullable=False),
sa.Column('definition', sa.Text(), nullable=True),
sa.Column('description', sa.String(length=200), nullable=True),
sa.Column('tags', st.JsonEncoded(), nullable=True),
sa.Column('scope', sa.String(length=80), nullable=True),
sa.Column('project_id', sa.String(length=80), nullable=True),
sa.Column('trust_id', sa.String(length=80), nullable=True),
sa.PrimaryKeyConstraint('id', 'name'),
sa.UniqueConstraint('name')
)
op.create_table(
'environments_v2',
sa.Column('created_at', sa.DateTime(), nullable=True),
sa.Column('updated_at', sa.DateTime(), nullable=True),
sa.Column('scope', sa.String(length=80), nullable=True),
sa.Column('project_id', sa.String(length=80), nullable=True),
sa.Column('id', sa.String(length=36), nullable=False),
sa.Column('name', sa.String(length=200), nullable=True),
sa.Column('description', sa.Text(), nullable=True),
sa.Column('variables', st.JsonEncoded(), nullable=True),
sa.PrimaryKeyConstraint('id'),
sa.UniqueConstraint('name', 'project_id')
)
op.create_table(
'triggers',
sa.Column('created_at', sa.DateTime(), nullable=True),
sa.Column('updated_at', sa.DateTime(), nullable=True),
sa.Column('id', sa.String(length=36), nullable=False),
sa.Column('name', sa.String(length=80), nullable=False),
sa.Column('pattern', sa.String(length=20), nullable=False),
sa.Column('next_execution_time', sa.DateTime(), nullable=False),
sa.Column('workbook_name', sa.String(length=80), nullable=False),
sa.PrimaryKeyConstraint('id'),
sa.UniqueConstraint('name')
)
op.create_table(
'delayed_calls_v2',
sa.Column('created_at', sa.DateTime(), nullable=True),
sa.Column('updated_at', sa.DateTime(), nullable=True),
sa.Column('id', sa.String(length=36), nullable=False),
sa.Column(
'factory_method_path', sa.String(length=200), nullable=True
),
sa.Column('target_method_name', sa.String(length=80), nullable=False),
sa.Column('method_arguments', st.JsonEncoded(), nullable=True),
sa.Column('serializers', st.JsonEncoded(), nullable=True),
sa.Column('auth_context', st.JsonEncoded(), nullable=True),
sa.Column('execution_time', sa.DateTime(), nullable=False),
sa.PrimaryKeyConstraint('id')
)
op.create_table(
'workflow_executions',
sa.Column('created_at', sa.DateTime(), nullable=True),
sa.Column('updated_at', sa.DateTime(), nullable=True),
sa.Column('id', sa.String(length=36), nullable=False),
sa.Column('workbook_name', sa.String(length=80), nullable=True),
sa.Column('task', sa.String(length=80), nullable=True),
sa.Column('state', sa.String(length=20), nullable=True),
sa.Column('context', st.JsonEncoded(), nullable=True),
sa.PrimaryKeyConstraint('id')
)
op.create_table(
'cron_triggers_v2',
sa.Column('created_at', sa.DateTime(), nullable=True),
sa.Column('updated_at', sa.DateTime(), nullable=True),
sa.Column('scope', sa.String(length=80), nullable=True),
sa.Column('project_id', sa.String(length=80), nullable=True),
sa.Column('id', sa.String(length=36), nullable=False),
sa.Column('name', sa.String(length=200), nullable=True),
sa.Column('pattern', sa.String(length=100), nullable=True),
sa.Column('next_execution_time', sa.DateTime(), nullable=False),
sa.Column('workflow_name', sa.String(length=80), nullable=True),
sa.Column('remaining_executions', sa.Integer(), nullable=True),
sa.Column('workflow_id', sa.String(length=36), nullable=True),
sa.Column('workflow_input', st.JsonEncoded(), nullable=True),
sa.Column('workflow_input_hash', sa.CHAR(length=64), nullable=True),
sa.Column('trust_id', sa.String(length=80), nullable=True),
sa.ForeignKeyConstraint(
['workflow_id'], ['workflow_definitions_v2.id'],
),
sa.PrimaryKeyConstraint('id'),
sa.UniqueConstraint('name', 'project_id'),
sa.UniqueConstraint(
'workflow_input_hash', 'workflow_name', 'pattern', 'project_id'
)
)
| 48.09607
| 78
| 0.638551
| 1,364
| 11,014
| 5.075513
| 0.1261
| 0.146757
| 0.218402
| 0.286003
| 0.829265
| 0.812942
| 0.729597
| 0.687563
| 0.653763
| 0.639607
| 0
| 0.019166
| 0.18994
| 11,014
| 228
| 79
| 48.307018
| 0.756781
| 0.061649
| 0
| 0.63
| 0
| 0
| 0.14632
| 0.01086
| 0
| 0
| 0
| 0
| 0
| 1
| 0.005
| false
| 0
| 0.015
| 0
| 0.02
| 0
| 0
| 0
| 0
| null | 0
| 1
| 1
| 1
| 1
| 1
| 0
| 0
| 1
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| null | 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
|
0
| 6
|
7a15c8b10b6be644cfeed0310573c5374df35e24
| 27
|
py
|
Python
|
limix_ext/gcta/__init__.py
|
glimix/limix-ext
|
7cf7a3b2b02f6a73cbba90f1945a06b9295b7357
|
[
"MIT"
] | null | null | null |
limix_ext/gcta/__init__.py
|
glimix/limix-ext
|
7cf7a3b2b02f6a73cbba90f1945a06b9295b7357
|
[
"MIT"
] | 2
|
2017-06-05T08:29:22.000Z
|
2017-06-07T16:54:54.000Z
|
limix_ext/gcta/__init__.py
|
glimix/limix-ext
|
7cf7a3b2b02f6a73cbba90f1945a06b9295b7357
|
[
"MIT"
] | null | null | null |
from . import heritability
| 13.5
| 26
| 0.814815
| 3
| 27
| 7.333333
| 1
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0.148148
| 27
| 1
| 27
| 27
| 0.956522
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 1
| 0
| true
| 0
| 1
| 0
| 1
| 0
| 1
| 1
| 0
| null | 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 1
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| null | 0
| 0
| 0
| 0
| 0
| 0
| 1
| 0
| 1
| 0
| 1
| 0
|
0
| 6
|
e1b2782c8ce4b0270809102f21fc90c1f96879b8
| 189
|
py
|
Python
|
tax_calc/filing_status.py
|
dayfine/tax_calc
|
4315e79c10f117cb56603d3e232792e01d37781e
|
[
"MIT"
] | null | null | null |
tax_calc/filing_status.py
|
dayfine/tax_calc
|
4315e79c10f117cb56603d3e232792e01d37781e
|
[
"MIT"
] | null | null | null |
tax_calc/filing_status.py
|
dayfine/tax_calc
|
4315e79c10f117cb56603d3e232792e01d37781e
|
[
"MIT"
] | null | null | null |
import enum
class FilingStatus(enum.Enum):
SINGLE = enum.auto()
MARRIED_FILING_JOINTLY = enum.auto()
MARRIED_FILING_SEPARATELY = enum.auto()
HEAD_OF_HOUSEHOLD = enum.auto()
| 27
| 43
| 0.724868
| 24
| 189
| 5.458333
| 0.541667
| 0.244275
| 0.229008
| 0.320611
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0.169312
| 189
| 7
| 44
| 27
| 0.834395
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 1
| 0
| false
| 0
| 0.166667
| 0
| 1
| 0
| 1
| 0
| 0
| null | 1
| 1
| 1
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 1
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| null | 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 1
| 0
|
0
| 6
|
e1bbeb4f4d91df2cacca1635c97a67bf7db70b8f
| 157
|
py
|
Python
|
pdml2flow-new-plugin.py
|
Enteee/pdml2flow
|
2e5da6f03bc799f0e8ef77dd987031b969d4a5df
|
[
"Apache-2.0"
] | 12
|
2016-04-01T10:59:14.000Z
|
2022-01-27T04:05:43.000Z
|
pdml2flow-new-plugin.py
|
Enteee/pdml2flow
|
2e5da6f03bc799f0e8ef77dd987031b969d4a5df
|
[
"Apache-2.0"
] | 16
|
2016-03-18T10:44:00.000Z
|
2019-08-12T05:52:24.000Z
|
pdml2flow-new-plugin.py
|
Enteee/pdml2flow
|
2e5da6f03bc799f0e8ef77dd987031b969d4a5df
|
[
"Apache-2.0"
] | 2
|
2016-09-08T11:49:39.000Z
|
2020-09-09T04:39:15.000Z
|
#!/usr/bin/env python3
# vim: set fenc=utf8 ts=4 sw=4 et :
from pdml2flow import pdml2flow_new_plugin
if __name__ == '__main__':
pdml2flow_new_plugin()
| 22.428571
| 42
| 0.732484
| 25
| 157
| 4.12
| 0.8
| 0.23301
| 0.349515
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0.052632
| 0.152866
| 157
| 6
| 43
| 26.166667
| 0.721805
| 0.350318
| 0
| 0
| 0
| 0
| 0.08
| 0
| 0
| 0
| 0
| 0
| 0
| 1
| 0
| true
| 0
| 0.333333
| 0
| 0.333333
| 0
| 1
| 0
| 0
| null | 1
| 1
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 1
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| null | 0
| 0
| 0
| 0
| 0
| 0
| 1
| 0
| 1
| 0
| 0
| 0
|
0
| 6
|
bed61d0301287edb78f1bb38264d567bbbb2b789
| 5,370
|
py
|
Python
|
tests/test_transition_masks.py
|
sagnik/baseline
|
8d75616e04c1cca509dbebbb6d08ad7e1a7b9f88
|
[
"Apache-2.0"
] | 241
|
2016-04-25T20:02:31.000Z
|
2019-09-03T05:44:09.000Z
|
tests/test_transition_masks.py
|
sagnik/baseline
|
8d75616e04c1cca509dbebbb6d08ad7e1a7b9f88
|
[
"Apache-2.0"
] | 131
|
2019-10-12T10:53:17.000Z
|
2021-12-03T19:52:47.000Z
|
tests/test_transition_masks.py
|
sagnik/baseline
|
8d75616e04c1cca509dbebbb6d08ad7e1a7b9f88
|
[
"Apache-2.0"
] | 75
|
2016-06-28T01:18:58.000Z
|
2019-08-29T06:47:22.000Z
|
import pytest
from eight_mile.utils import transition_mask
IOBv = {"<PAD>": 0, "<GO>": 1, "<EOS>": 2, "B-X": 3, "I-X": 4, "B-X-Y": 5, "I-X-Y": 6, "O": 7}
BIOv = IOBv
IOBESv = {
"<PAD>": 0,
"<GO>": 1,
"<EOS>": 2,
"B-X": 3,
"I-X": 4,
"E-X": 5,
"S-X": 6,
"B-X-Y": 7,
"I-X-Y": 8,
"E-X-Y": 9,
"S-X-Y": 10,
"O": 11,
}
@pytest.fixture
def IOB():
return transition_mask(IOBv, "IOB", IOBv["<GO>"], IOBv["<EOS>"], IOBv["<PAD>"])
@pytest.fixture
def BIO():
return transition_mask(IOBv, "BIO", IOBv["<GO>"], IOBv["<EOS>"], IOBv["<PAD>"])
@pytest.fixture
def IOBES():
return transition_mask(IOBESv, "IOBES", IOBESv["<GO>"], IOBESv["<EOS>"], IOBESv["<PAD>"])
def test_IOB_shape(IOB):
assert IOB.shape == (len(IOBv), len(IOBv))
def test_BIO_shape(BIO):
assert BIO.shape == (len(IOBv), len(IOBv))
mask = transition_mask(IOBv, "IOB2", IOBv["<GO>"], IOBv["<EOS>"], IOBv["<PAD>"])
assert mask.shape == (len(IOBv), len(IOBv))
def test_IOBES_shape(IOBES):
assert IOBES.shape == (len(IOBESv), len(IOBESv))
def test_IOB_I_B_mismatch(IOB):
assert IOB[IOBv["B-X"], IOBv["I-X-Y"]] == 0
def test_ION_I_I_match(IOB):
assert IOB[IOBv["I-X"], IOBv["I-X"]] == 1
def test_IOB_I_I_mismatch(IOB):
assert IOB[IOBv["I-X-Y"], IOBv["I-X"]] == 1
def test_IOB_to_pad(IOB):
assert IOB[IOBv["<PAD>"], IOBv["O"]] == 1
assert IOB[IOBv["<PAD>"], IOBv["I-X"]] == 1
assert IOB[IOBv["<PAD>"], IOBv["B-X"]] == 1
def test_IOB_to_end(IOB):
assert IOB[IOBv["<EOS>"], IOBv["O"]] == 1
assert IOB[IOBv["<EOS>"], IOBv["I-X"]] == 1
assert IOB[IOBv["<EOS>"], IOBv["B-X"]] == 1
def test_BIO_from_start(BIO):
assert BIO[BIOv["B-X"], BIOv["<GO>"]] == 1
assert BIO[BIOv["I-X"], BIOv["<GO>"]] == 0
assert BIO[BIOv["O"], BIOv["<GO>"]] == 1
def test_IOBES_to_start(IOBES):
assert IOBES[IOBESv["<GO>"], IOBESv["B-X"]] == 0
assert IOBES[IOBESv["<GO>"], IOBESv["I-X"]] == 0
assert IOBES[IOBESv["<GO>"], IOBESv["E-X"]] == 0
assert IOBES[IOBESv["<GO>"], IOBESv["S-X"]] == 0
assert IOBES[IOBESv["<GO>"], IOBESv["O"]] == 0
assert IOBES[IOBESv["<GO>"], IOBESv["<EOS>"]] == 0
assert IOBES[IOBESv["<GO>"], IOBESv["<PAD>"]] == 0
assert IOBES[IOBESv["<GO>"], IOBESv["<GO>"]] == 0
def test_IOBES_from_end(IOBES):
assert IOBES[IOBESv["B-X"], IOBESv["<EOS>"]] == 0
assert IOBES[IOBESv["I-X"], IOBESv["<EOS>"]] == 0
assert IOBES[IOBESv["E-X"], IOBESv["<EOS>"]] == 0
assert IOBES[IOBESv["S-X"], IOBESv["<EOS>"]] == 0
assert IOBES[IOBESv["O"], IOBESv["<EOS>"]] == 0
assert IOBES[IOBESv["<PAD>"], IOBESv["<EOS>"]] == 0
assert IOBES[IOBESv["<GO>"], IOBESv["<EOS>"]] == 0
assert IOBES[IOBESv["<EOS>"], IOBESv["<EOS>"]] == 0
def test_IOBES_from_pad(IOBES):
assert IOBES[IOBESv["B-X"], IOBESv["<PAD>"]] == 0
assert IOBES[IOBESv["I-X"], IOBESv["<PAD>"]] == 0
assert IOBES[IOBESv["E-X"], IOBESv["<PAD>"]] == 0
assert IOBES[IOBESv["S-X"], IOBESv["<PAD>"]] == 0
assert IOBES[IOBESv["O"], IOBESv["<PAD>"]] == 0
assert IOBES[IOBESv["<GO>"], IOBESv["<PAD>"]] == 0
assert IOBES[IOBESv["<PAD>"], IOBESv["<PAD>"]] == 1
assert IOBES[IOBESv["<EOS>"], IOBESv["<PAD>"]] == 1
def test_IOBES_O(IOBES):
assert IOBES[IOBESv["B-X"], IOBESv["O"]] == 1
assert IOBES[IOBESv["I-X"], IOBESv["O"]] == 0
assert IOBES[IOBESv["E-X"], IOBESv["O"]] == 0
assert IOBES[IOBESv["S-X"], IOBESv["O"]] == 1
assert IOBES[IOBESv["O"], IOBESv["O"]] == 1
def test_IOBES_B(IOBES):
assert IOBES[IOBESv["I-X"], IOBESv["B-X"]] == 1
assert IOBES[IOBESv["E-X"], IOBESv["B-X"]] == 1
assert IOBES[IOBESv["I-X-Y"], IOBESv["B-X"]] == 0
assert IOBES[IOBESv["E-X-Y"], IOBESv["B-X"]] == 0
assert IOBES[IOBESv["S-X"], IOBESv["B-X"]] == 0
assert IOBES[IOBESv["B-X"], IOBESv["B-X"]] == 0
assert IOBES[IOBESv["O"], IOBESv["B-X"]] == 0
def test_IOBES_I(IOBES):
assert IOBES[IOBESv["I-X"], IOBESv["I-X"]] == 1
assert IOBES[IOBESv["E-X"], IOBESv["I-X"]] == 1
assert IOBES[IOBESv["I-X-Y"], IOBESv["I-X"]] == 0
assert IOBES[IOBESv["E-X-Y"], IOBESv["I-X"]] == 0
assert IOBES[IOBESv["S-X"], IOBESv["I-X"]] == 0
assert IOBES[IOBESv["B-X"], IOBESv["I-X"]] == 0
assert IOBES[IOBESv["O"], IOBESv["I-X"]] == 0
def test_IOBES_from_E(IOBES):
assert IOBES[IOBESv["I-X"], IOBESv["E-X"]] == 0
assert IOBES[IOBESv["E-X"], IOBESv["E-X"]] == 0
assert IOBES[IOBESv["S-X"], IOBESv["E-X"]] == 1
assert IOBES[IOBESv["B-X"], IOBESv["E-X"]] == 1
assert IOBES[IOBESv["O"], IOBESv["E-X"]] == 1
def test_IOBES_to_E(IOBES):
assert IOBES[IOBESv["E-X"], IOBESv["B-X"]] == 1
assert IOBES[IOBESv["E-X"], IOBESv["I-X"]] == 1
assert IOBES[IOBESv["E-X"], IOBESv["E-X"]] == 0
assert IOBES[IOBESv["E-X"], IOBESv["B-X-Y"]] == 0
assert IOBES[IOBESv["E-X"], IOBESv["I-X-Y"]] == 0
assert IOBES[IOBESv["E-X"], IOBESv["E-X-Y"]] == 0
assert IOBES[IOBESv["E-X"], IOBESv["S-X"]] == 0
assert IOBES[IOBESv["E-X"], IOBESv["S-X-Y"]] == 0
assert IOBES[IOBESv["E-X"], IOBESv["O"]] == 0
def test_IOBES_S(IOBES):
assert IOBES[IOBESv["B-X"], IOBESv["S-X"]] == 1
assert IOBES[IOBESv["I-X"], IOBESv["S-X"]] == 0
assert IOBES[IOBESv["E-X"], IOBESv["S-X"]] == 0
assert IOBES[IOBESv["S-X"], IOBESv["S-X"]] == 1
assert IOBES[IOBESv["O"], IOBESv["S-X"]] == 1
| 31.588235
| 94
| 0.550838
| 876
| 5,370
| 3.312785
| 0.057078
| 0.238801
| 0.363198
| 0.248105
| 0.805996
| 0.715713
| 0.649897
| 0.393866
| 0.307719
| 0.202963
| 0
| 0.021876
| 0.174302
| 5,370
| 169
| 95
| 31.775148
| 0.632612
| 0
| 0
| 0.137097
| 0
| 0
| 0.120857
| 0
| 0
| 0
| 0
| 0
| 0.629032
| 1
| 0.169355
| false
| 0
| 0.016129
| 0.024194
| 0.209677
| 0
| 0
| 0
| 0
| null | 1
| 1
| 1
| 1
| 1
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| null | 0
| 0
| 0
| 1
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
|
0
| 6
|
befb3a0760cc473c85eb3f0e827c3857d7ca2b8e
| 26
|
py
|
Python
|
mail_to_sms/__init__.py
|
naschorr/mail-to-sms
|
40acd30b1ebccf350713c6b17d5b9b313e3f39d6
|
[
"MIT"
] | 5
|
2017-08-15T03:57:14.000Z
|
2022-01-24T00:37:27.000Z
|
mail_to_sms/__init__.py
|
agcashdaum/mail-to-sms
|
b1d9bcaf20570192b82a0684e595f9ed000335e1
|
[
"MIT"
] | 2
|
2021-05-03T06:01:17.000Z
|
2021-10-30T07:53:34.000Z
|
mail_to_sms/__init__.py
|
agcashdaum/mail-to-sms
|
b1d9bcaf20570192b82a0684e595f9ed000335e1
|
[
"MIT"
] | 4
|
2018-01-25T09:14:18.000Z
|
2021-09-21T06:25:22.000Z
|
from .mail_to_sms import *
| 26
| 26
| 0.807692
| 5
| 26
| 3.8
| 1
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0.115385
| 26
| 1
| 26
| 26
| 0.826087
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 1
| 0
| true
| 0
| 1
| 0
| 1
| 0
| 1
| 1
| 0
| null | 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 1
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| null | 0
| 0
| 0
| 0
| 0
| 0
| 1
| 0
| 1
| 0
| 1
| 0
|
0
| 6
|
8366bc46f113764791ef128e075b6f9df98a13cd
| 27
|
py
|
Python
|
2018-01/2018-01-23/animal/animal.py
|
wenjuanchendora/Python_Study
|
02d08229210602edf4e1fa96fd7167356275e316
|
[
"MIT"
] | null | null | null |
2018-01/2018-01-23/animal/animal.py
|
wenjuanchendora/Python_Study
|
02d08229210602edf4e1fa96fd7167356275e316
|
[
"MIT"
] | null | null | null |
2018-01/2018-01-23/animal/animal.py
|
wenjuanchendora/Python_Study
|
02d08229210602edf4e1fa96fd7167356275e316
|
[
"MIT"
] | null | null | null |
def run():
print("run")
| 13.5
| 16
| 0.518519
| 4
| 27
| 3.5
| 0.75
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0.222222
| 27
| 2
| 16
| 13.5
| 0.666667
| 0
| 0
| 0
| 0
| 0
| 0.107143
| 0
| 0
| 0
| 0
| 0
| 0
| 1
| 0.5
| true
| 0
| 0
| 0
| 0.5
| 0.5
| 1
| 1
| 0
| null | 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 1
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| null | 0
| 0
| 0
| 0
| 0
| 1
| 1
| 0
| 0
| 0
| 0
| 1
|
0
| 6
|
3607b17a7ea85fbdf681d26efbd8046602b81f6b
| 258,376
|
py
|
Python
|
instances/passenger_demand/pas-20210422-1717-int1/92.py
|
LHcau/scheduling-shared-passenger-and-freight-transport-on-a-fixed-infrastructure
|
bba1e6af5bc8d9deaa2dc3b83f6fe9ddf15d2a11
|
[
"BSD-3-Clause"
] | null | null | null |
instances/passenger_demand/pas-20210422-1717-int1/92.py
|
LHcau/scheduling-shared-passenger-and-freight-transport-on-a-fixed-infrastructure
|
bba1e6af5bc8d9deaa2dc3b83f6fe9ddf15d2a11
|
[
"BSD-3-Clause"
] | null | null | null |
instances/passenger_demand/pas-20210422-1717-int1/92.py
|
LHcau/scheduling-shared-passenger-and-freight-transport-on-a-fixed-infrastructure
|
bba1e6af5bc8d9deaa2dc3b83f6fe9ddf15d2a11
|
[
"BSD-3-Clause"
] | null | null | null |
"""
PASSENGERS
"""
numPassengers = 19309
passenger_arriving = (
(5, 2, 2, 5, 2, 1, 4, 1, 1, 2, 0, 1, 0, 7, 7, 2, 1, 8, 0, 1, 2, 2, 4, 1, 1, 0), # 0
(4, 11, 5, 2, 2, 4, 6, 0, 3, 1, 0, 1, 0, 5, 3, 3, 0, 6, 4, 2, 2, 2, 0, 1, 1, 0), # 1
(8, 8, 1, 6, 2, 2, 2, 3, 1, 0, 0, 1, 0, 8, 7, 4, 5, 6, 6, 0, 1, 3, 1, 0, 2, 0), # 2
(6, 4, 4, 4, 3, 3, 2, 1, 2, 1, 0, 0, 0, 4, 5, 4, 2, 3, 1, 3, 1, 0, 2, 1, 0, 0), # 3
(7, 8, 5, 9, 5, 1, 4, 1, 4, 1, 0, 1, 0, 10, 8, 5, 3, 6, 3, 1, 1, 1, 0, 0, 1, 0), # 4
(3, 5, 4, 3, 12, 4, 4, 3, 2, 1, 4, 0, 0, 9, 3, 3, 4, 7, 2, 2, 1, 3, 1, 3, 0, 0), # 5
(6, 5, 4, 5, 3, 8, 1, 6, 3, 0, 2, 2, 0, 2, 10, 4, 2, 4, 3, 2, 1, 1, 2, 0, 1, 0), # 6
(9, 8, 6, 7, 7, 1, 3, 2, 3, 0, 0, 2, 0, 8, 3, 4, 4, 5, 4, 5, 1, 2, 2, 2, 0, 0), # 7
(5, 8, 10, 8, 7, 3, 4, 3, 4, 2, 1, 0, 0, 11, 10, 5, 4, 5, 2, 2, 3, 2, 2, 0, 1, 0), # 8
(11, 3, 7, 9, 3, 5, 1, 4, 1, 1, 0, 0, 0, 4, 13, 6, 3, 7, 7, 4, 2, 3, 3, 3, 0, 0), # 9
(4, 6, 4, 2, 9, 1, 2, 5, 4, 0, 2, 1, 0, 8, 9, 5, 5, 4, 5, 3, 0, 5, 4, 3, 1, 0), # 10
(7, 5, 8, 7, 3, 0, 2, 3, 3, 2, 3, 0, 0, 7, 9, 4, 4, 6, 5, 3, 4, 2, 2, 0, 0, 0), # 11
(11, 9, 9, 9, 8, 3, 3, 3, 6, 0, 4, 2, 0, 5, 6, 3, 4, 5, 6, 3, 2, 1, 2, 2, 0, 0), # 12
(7, 8, 5, 6, 5, 5, 8, 7, 6, 2, 0, 0, 0, 9, 12, 12, 5, 6, 5, 3, 1, 2, 4, 0, 0, 0), # 13
(14, 5, 5, 6, 5, 3, 2, 5, 3, 1, 1, 0, 0, 11, 8, 12, 8, 6, 4, 3, 4, 2, 2, 1, 0, 0), # 14
(6, 10, 10, 8, 7, 3, 2, 7, 5, 3, 0, 1, 0, 7, 10, 7, 5, 15, 5, 6, 0, 4, 6, 4, 0, 0), # 15
(10, 11, 9, 10, 5, 4, 5, 5, 2, 6, 1, 1, 0, 5, 8, 8, 5, 6, 3, 5, 5, 4, 6, 1, 2, 0), # 16
(6, 9, 6, 9, 14, 5, 5, 5, 5, 2, 4, 0, 0, 11, 7, 6, 4, 10, 7, 3, 4, 8, 3, 1, 1, 0), # 17
(14, 10, 10, 9, 7, 5, 4, 5, 4, 0, 2, 0, 0, 8, 8, 10, 6, 8, 3, 5, 2, 4, 0, 2, 1, 0), # 18
(6, 8, 10, 6, 5, 4, 2, 4, 2, 0, 1, 0, 0, 3, 11, 6, 7, 7, 4, 2, 2, 7, 4, 0, 0, 0), # 19
(17, 9, 6, 13, 7, 2, 4, 1, 1, 4, 1, 2, 0, 9, 10, 6, 13, 8, 7, 0, 2, 6, 8, 1, 1, 0), # 20
(7, 14, 10, 8, 6, 5, 6, 4, 4, 4, 1, 2, 0, 12, 8, 12, 8, 5, 1, 3, 5, 3, 2, 4, 0, 0), # 21
(16, 8, 5, 14, 12, 2, 4, 3, 9, 1, 1, 2, 0, 12, 7, 5, 7, 5, 6, 3, 1, 2, 4, 2, 1, 0), # 22
(12, 5, 7, 11, 8, 5, 3, 5, 5, 3, 0, 0, 0, 9, 9, 9, 7, 11, 7, 3, 1, 3, 2, 5, 0, 0), # 23
(8, 12, 10, 12, 6, 1, 3, 5, 6, 4, 0, 1, 0, 4, 6, 10, 4, 7, 5, 6, 1, 5, 7, 1, 2, 0), # 24
(13, 10, 12, 8, 4, 0, 3, 8, 4, 1, 3, 2, 0, 12, 11, 10, 8, 7, 7, 5, 0, 4, 0, 0, 0, 0), # 25
(11, 9, 5, 11, 12, 6, 4, 7, 3, 5, 2, 1, 0, 12, 6, 12, 3, 3, 10, 4, 1, 4, 5, 1, 1, 0), # 26
(7, 8, 9, 5, 7, 2, 6, 5, 4, 3, 1, 1, 0, 9, 9, 7, 4, 8, 6, 5, 2, 4, 1, 3, 0, 0), # 27
(10, 9, 11, 9, 2, 2, 4, 4, 7, 3, 2, 2, 0, 14, 6, 3, 8, 4, 10, 3, 3, 2, 4, 0, 0, 0), # 28
(12, 9, 8, 8, 17, 6, 11, 4, 4, 1, 4, 0, 0, 13, 4, 7, 9, 4, 6, 5, 2, 2, 5, 1, 0, 0), # 29
(22, 13, 10, 7, 9, 2, 2, 5, 7, 1, 3, 0, 0, 15, 5, 2, 8, 9, 10, 5, 1, 7, 3, 2, 0, 0), # 30
(8, 10, 15, 12, 4, 9, 3, 5, 5, 4, 2, 0, 0, 9, 6, 6, 6, 4, 4, 2, 2, 4, 4, 3, 0, 0), # 31
(16, 8, 4, 7, 8, 4, 3, 2, 2, 2, 4, 2, 0, 6, 11, 5, 7, 4, 5, 5, 2, 4, 3, 0, 1, 0), # 32
(13, 14, 8, 14, 6, 5, 7, 5, 2, 0, 0, 1, 0, 7, 8, 11, 6, 10, 6, 11, 2, 2, 2, 1, 1, 0), # 33
(9, 8, 7, 8, 6, 1, 2, 4, 2, 6, 0, 1, 0, 13, 10, 5, 8, 11, 5, 4, 0, 2, 1, 0, 1, 0), # 34
(4, 14, 10, 11, 10, 1, 1, 2, 4, 0, 1, 3, 0, 10, 9, 3, 4, 8, 4, 5, 2, 8, 8, 2, 2, 0), # 35
(12, 10, 7, 1, 8, 4, 6, 4, 0, 0, 1, 2, 0, 10, 16, 4, 6, 7, 9, 5, 2, 4, 6, 1, 2, 0), # 36
(8, 15, 6, 11, 7, 5, 5, 5, 3, 2, 1, 1, 0, 8, 9, 5, 4, 6, 8, 4, 5, 1, 2, 0, 1, 0), # 37
(6, 5, 12, 7, 7, 6, 3, 3, 6, 2, 0, 0, 0, 14, 7, 9, 6, 10, 5, 2, 3, 3, 5, 2, 3, 0), # 38
(13, 17, 9, 10, 9, 6, 2, 0, 4, 3, 1, 0, 0, 10, 7, 9, 5, 8, 3, 1, 3, 5, 5, 4, 0, 0), # 39
(13, 13, 13, 11, 13, 3, 3, 6, 3, 1, 0, 1, 0, 9, 7, 5, 5, 7, 7, 5, 1, 1, 2, 2, 0, 0), # 40
(10, 8, 6, 7, 8, 6, 7, 5, 6, 2, 1, 0, 0, 12, 9, 8, 4, 7, 7, 2, 1, 3, 0, 1, 1, 0), # 41
(9, 10, 10, 11, 10, 2, 4, 1, 5, 3, 0, 1, 0, 14, 14, 3, 4, 12, 3, 3, 1, 3, 3, 2, 2, 0), # 42
(16, 8, 6, 19, 9, 3, 2, 5, 4, 2, 0, 1, 0, 14, 9, 9, 10, 8, 4, 4, 2, 2, 2, 1, 0, 0), # 43
(10, 8, 7, 6, 9, 3, 6, 8, 7, 2, 1, 1, 0, 6, 13, 5, 6, 12, 3, 3, 4, 5, 3, 2, 3, 0), # 44
(9, 8, 5, 14, 5, 4, 0, 2, 1, 5, 2, 0, 0, 11, 13, 5, 9, 11, 6, 9, 4, 7, 4, 1, 1, 0), # 45
(8, 9, 8, 4, 7, 1, 1, 1, 2, 2, 2, 1, 0, 14, 6, 6, 5, 6, 3, 4, 3, 11, 1, 1, 1, 0), # 46
(11, 10, 12, 17, 10, 6, 1, 2, 3, 0, 1, 0, 0, 11, 8, 8, 14, 9, 6, 3, 1, 3, 1, 3, 1, 0), # 47
(11, 9, 10, 5, 4, 3, 3, 4, 6, 0, 0, 0, 0, 15, 10, 7, 4, 3, 6, 6, 0, 1, 2, 3, 2, 0), # 48
(8, 11, 2, 8, 5, 1, 4, 3, 1, 3, 2, 0, 0, 12, 8, 7, 5, 11, 5, 3, 3, 3, 1, 2, 0, 0), # 49
(8, 12, 12, 7, 8, 4, 4, 2, 6, 3, 0, 0, 0, 8, 14, 2, 3, 9, 3, 3, 2, 8, 2, 2, 3, 0), # 50
(13, 9, 4, 4, 9, 2, 5, 1, 3, 2, 1, 1, 0, 13, 12, 6, 4, 10, 7, 5, 4, 3, 2, 1, 2, 0), # 51
(8, 13, 7, 5, 11, 1, 3, 0, 4, 2, 0, 2, 0, 9, 8, 8, 9, 8, 5, 4, 5, 1, 2, 2, 1, 0), # 52
(6, 10, 7, 13, 8, 7, 5, 2, 5, 2, 1, 1, 0, 10, 8, 5, 2, 5, 7, 2, 4, 4, 1, 1, 1, 0), # 53
(11, 5, 6, 17, 9, 5, 5, 1, 3, 4, 2, 2, 0, 12, 10, 7, 5, 10, 1, 5, 3, 3, 4, 0, 0, 0), # 54
(12, 10, 10, 9, 3, 6, 3, 2, 3, 1, 1, 0, 0, 8, 5, 9, 4, 6, 4, 5, 5, 2, 5, 3, 3, 0), # 55
(11, 9, 13, 8, 9, 5, 4, 2, 4, 1, 3, 1, 0, 6, 10, 4, 7, 7, 3, 4, 1, 4, 5, 3, 0, 0), # 56
(14, 18, 11, 10, 12, 2, 7, 5, 9, 1, 1, 0, 0, 7, 13, 6, 4, 11, 6, 3, 2, 3, 6, 1, 0, 0), # 57
(6, 8, 11, 11, 5, 5, 5, 5, 1, 1, 4, 1, 0, 14, 6, 13, 8, 6, 3, 3, 2, 5, 3, 3, 2, 0), # 58
(9, 8, 11, 15, 4, 0, 4, 5, 6, 4, 2, 1, 0, 11, 9, 8, 6, 11, 5, 4, 0, 3, 0, 1, 1, 0), # 59
(10, 12, 7, 5, 7, 2, 3, 4, 2, 3, 0, 4, 0, 14, 3, 4, 5, 10, 3, 5, 0, 4, 6, 1, 1, 0), # 60
(6, 11, 9, 7, 3, 3, 8, 3, 8, 2, 1, 0, 0, 9, 5, 9, 10, 8, 7, 3, 4, 5, 2, 2, 1, 0), # 61
(7, 5, 9, 9, 5, 6, 5, 2, 5, 1, 1, 0, 0, 11, 10, 9, 8, 9, 4, 5, 3, 3, 2, 3, 1, 0), # 62
(9, 5, 10, 7, 7, 8, 4, 2, 1, 1, 2, 1, 0, 13, 5, 3, 7, 12, 3, 5, 2, 7, 4, 0, 2, 0), # 63
(5, 9, 10, 10, 8, 4, 3, 2, 5, 2, 2, 2, 0, 7, 5, 11, 3, 8, 3, 3, 3, 4, 2, 4, 1, 0), # 64
(7, 11, 8, 10, 10, 2, 5, 2, 4, 5, 1, 0, 0, 16, 10, 5, 6, 9, 5, 5, 0, 1, 1, 2, 0, 0), # 65
(17, 9, 9, 10, 8, 2, 4, 2, 5, 4, 1, 0, 0, 8, 13, 9, 1, 10, 6, 3, 3, 2, 4, 3, 1, 0), # 66
(8, 3, 10, 15, 6, 3, 4, 1, 3, 3, 2, 0, 0, 16, 9, 9, 3, 9, 1, 2, 4, 2, 4, 0, 2, 0), # 67
(14, 11, 4, 5, 8, 2, 2, 7, 9, 0, 1, 1, 0, 7, 11, 11, 3, 11, 5, 2, 3, 3, 4, 2, 1, 0), # 68
(15, 9, 7, 6, 5, 3, 6, 5, 3, 3, 2, 1, 0, 11, 7, 9, 9, 9, 3, 8, 2, 5, 2, 3, 0, 0), # 69
(8, 11, 4, 8, 11, 4, 2, 2, 7, 2, 1, 0, 0, 5, 7, 6, 4, 9, 8, 2, 0, 4, 1, 3, 0, 0), # 70
(9, 8, 5, 13, 6, 1, 1, 2, 3, 0, 1, 1, 0, 12, 6, 7, 9, 6, 2, 5, 5, 5, 2, 2, 0, 0), # 71
(15, 7, 7, 9, 10, 7, 3, 0, 8, 5, 1, 0, 0, 12, 13, 8, 8, 5, 5, 7, 1, 3, 3, 1, 2, 0), # 72
(13, 8, 9, 11, 8, 2, 4, 3, 3, 2, 1, 1, 0, 13, 9, 6, 7, 8, 7, 3, 5, 4, 5, 0, 0, 0), # 73
(13, 10, 8, 6, 7, 5, 3, 3, 4, 1, 2, 2, 0, 12, 10, 7, 4, 6, 4, 5, 7, 4, 5, 2, 0, 0), # 74
(11, 7, 6, 8, 10, 5, 2, 3, 4, 3, 3, 0, 0, 12, 13, 9, 6, 6, 4, 4, 3, 6, 3, 3, 1, 0), # 75
(14, 10, 11, 11, 7, 4, 3, 2, 2, 0, 0, 0, 0, 9, 12, 10, 4, 8, 5, 5, 1, 3, 1, 0, 1, 0), # 76
(12, 4, 9, 9, 6, 2, 2, 2, 4, 0, 2, 1, 0, 12, 8, 6, 6, 7, 2, 5, 2, 4, 2, 1, 1, 0), # 77
(10, 10, 8, 11, 7, 3, 1, 3, 3, 0, 2, 0, 0, 13, 9, 9, 5, 5, 4, 7, 1, 1, 3, 4, 1, 0), # 78
(10, 16, 6, 12, 5, 6, 9, 3, 3, 1, 1, 1, 0, 6, 6, 2, 3, 8, 4, 7, 1, 2, 2, 2, 0, 0), # 79
(7, 7, 11, 5, 5, 2, 4, 2, 4, 1, 1, 1, 0, 9, 3, 4, 5, 11, 8, 5, 3, 3, 3, 2, 0, 0), # 80
(6, 6, 9, 6, 10, 4, 4, 4, 3, 1, 3, 0, 0, 11, 9, 4, 6, 5, 4, 3, 2, 4, 4, 2, 0, 0), # 81
(7, 7, 13, 8, 3, 2, 6, 0, 5, 1, 1, 0, 0, 8, 7, 1, 8, 7, 2, 2, 2, 2, 1, 1, 0, 0), # 82
(7, 7, 3, 6, 2, 3, 2, 1, 2, 2, 1, 0, 0, 11, 8, 4, 5, 7, 1, 4, 3, 7, 1, 3, 0, 0), # 83
(8, 8, 10, 10, 11, 3, 3, 5, 10, 1, 0, 4, 0, 10, 11, 6, 7, 9, 3, 4, 6, 4, 4, 3, 3, 0), # 84
(5, 10, 5, 8, 9, 5, 1, 7, 1, 5, 1, 0, 0, 6, 6, 9, 9, 8, 8, 7, 3, 7, 5, 1, 1, 0), # 85
(12, 2, 13, 7, 12, 2, 4, 2, 5, 0, 3, 2, 0, 10, 13, 8, 4, 10, 4, 1, 3, 2, 4, 2, 0, 0), # 86
(14, 12, 5, 6, 5, 2, 4, 9, 3, 2, 0, 1, 0, 15, 9, 7, 7, 7, 2, 2, 2, 3, 4, 0, 1, 0), # 87
(13, 5, 14, 8, 10, 0, 2, 4, 8, 1, 1, 1, 0, 9, 13, 9, 4, 6, 3, 7, 5, 3, 3, 3, 0, 0), # 88
(12, 7, 3, 6, 10, 6, 6, 1, 3, 0, 0, 1, 0, 13, 9, 5, 4, 9, 3, 4, 3, 5, 4, 1, 1, 0), # 89
(9, 9, 14, 11, 8, 4, 1, 2, 5, 2, 1, 1, 0, 7, 14, 11, 6, 4, 3, 1, 5, 1, 5, 1, 0, 0), # 90
(13, 8, 6, 9, 7, 3, 4, 5, 4, 2, 3, 0, 0, 9, 5, 4, 5, 8, 1, 4, 3, 3, 3, 0, 0, 0), # 91
(14, 9, 9, 7, 11, 5, 3, 4, 5, 3, 1, 0, 0, 15, 11, 7, 7, 11, 4, 5, 3, 2, 4, 2, 0, 0), # 92
(13, 7, 10, 9, 4, 6, 3, 3, 7, 4, 2, 0, 0, 7, 10, 4, 5, 8, 4, 2, 6, 4, 1, 1, 1, 0), # 93
(17, 3, 10, 7, 8, 8, 4, 4, 7, 3, 0, 0, 0, 15, 9, 5, 2, 5, 2, 3, 0, 3, 1, 3, 1, 0), # 94
(8, 11, 9, 6, 10, 6, 5, 3, 2, 3, 1, 0, 0, 11, 4, 7, 4, 6, 8, 3, 0, 4, 3, 0, 4, 0), # 95
(5, 7, 21, 11, 5, 4, 4, 0, 4, 3, 1, 0, 0, 12, 7, 9, 5, 5, 7, 1, 2, 3, 4, 0, 0, 0), # 96
(6, 6, 12, 13, 9, 4, 1, 1, 7, 1, 1, 2, 0, 10, 8, 11, 5, 5, 3, 2, 4, 2, 0, 1, 2, 0), # 97
(17, 5, 11, 6, 4, 5, 5, 4, 5, 1, 0, 1, 0, 8, 10, 4, 5, 6, 2, 3, 2, 3, 2, 1, 1, 0), # 98
(9, 12, 6, 3, 6, 3, 5, 0, 4, 3, 1, 0, 0, 15, 10, 3, 3, 11, 6, 6, 3, 4, 1, 1, 0, 0), # 99
(8, 9, 10, 9, 11, 3, 5, 1, 4, 3, 1, 0, 0, 11, 9, 9, 4, 5, 4, 4, 3, 3, 2, 2, 2, 0), # 100
(12, 7, 11, 6, 8, 6, 3, 5, 6, 4, 1, 0, 0, 10, 12, 4, 5, 7, 5, 4, 3, 2, 4, 2, 1, 0), # 101
(8, 12, 7, 10, 5, 2, 1, 3, 4, 5, 1, 2, 0, 9, 9, 4, 2, 8, 3, 3, 5, 3, 2, 3, 4, 0), # 102
(14, 5, 6, 11, 8, 5, 1, 1, 5, 1, 2, 1, 0, 9, 6, 8, 0, 6, 3, 1, 2, 7, 5, 1, 1, 0), # 103
(9, 8, 10, 9, 3, 0, 3, 3, 2, 1, 2, 1, 0, 9, 10, 5, 8, 8, 3, 3, 3, 6, 3, 2, 1, 0), # 104
(6, 8, 7, 10, 6, 5, 4, 2, 4, 1, 1, 0, 0, 5, 7, 3, 8, 4, 1, 5, 1, 3, 3, 2, 1, 0), # 105
(16, 0, 5, 10, 5, 0, 1, 1, 1, 1, 1, 1, 0, 16, 4, 7, 6, 4, 0, 2, 3, 2, 0, 1, 0, 0), # 106
(13, 8, 7, 3, 7, 3, 2, 2, 3, 1, 2, 1, 0, 10, 7, 10, 6, 6, 4, 4, 5, 5, 2, 3, 1, 0), # 107
(13, 3, 5, 13, 2, 3, 2, 1, 3, 1, 1, 0, 0, 11, 14, 4, 2, 8, 2, 4, 2, 5, 2, 4, 2, 0), # 108
(13, 7, 4, 7, 3, 5, 3, 1, 5, 5, 3, 1, 0, 7, 5, 9, 4, 7, 2, 2, 1, 6, 1, 4, 0, 0), # 109
(11, 7, 8, 8, 12, 3, 5, 2, 3, 4, 2, 0, 0, 10, 8, 2, 6, 3, 2, 4, 5, 4, 1, 1, 1, 0), # 110
(10, 12, 11, 8, 2, 3, 4, 1, 4, 2, 1, 0, 0, 14, 10, 6, 3, 6, 5, 1, 6, 4, 4, 2, 0, 0), # 111
(4, 9, 4, 8, 8, 1, 3, 5, 3, 2, 1, 0, 0, 8, 6, 4, 5, 9, 1, 3, 2, 5, 3, 2, 1, 0), # 112
(7, 4, 5, 5, 6, 4, 2, 6, 4, 0, 0, 1, 0, 10, 8, 5, 5, 10, 3, 3, 4, 2, 4, 2, 2, 0), # 113
(16, 6, 6, 3, 15, 2, 1, 0, 3, 0, 0, 1, 0, 9, 5, 7, 8, 9, 3, 3, 1, 3, 3, 1, 2, 0), # 114
(10, 11, 9, 7, 6, 7, 3, 1, 2, 1, 2, 1, 0, 5, 11, 7, 3, 6, 5, 2, 2, 2, 1, 1, 0, 0), # 115
(9, 10, 8, 4, 7, 1, 3, 8, 5, 2, 0, 0, 0, 8, 10, 7, 10, 6, 4, 4, 5, 1, 2, 2, 1, 0), # 116
(7, 9, 7, 8, 3, 3, 3, 2, 6, 1, 1, 1, 0, 15, 2, 4, 6, 6, 5, 5, 3, 3, 3, 0, 1, 0), # 117
(14, 5, 8, 4, 9, 2, 3, 2, 2, 1, 2, 0, 0, 12, 6, 2, 4, 4, 2, 2, 2, 3, 2, 0, 1, 0), # 118
(7, 2, 5, 6, 6, 0, 1, 3, 2, 1, 1, 0, 0, 7, 5, 7, 6, 6, 3, 5, 2, 6, 2, 1, 1, 0), # 119
(4, 3, 10, 7, 9, 4, 2, 5, 5, 0, 2, 0, 0, 7, 7, 3, 7, 7, 1, 2, 4, 1, 4, 0, 0, 0), # 120
(6, 8, 5, 8, 9, 3, 5, 2, 5, 1, 2, 0, 0, 7, 5, 6, 3, 8, 7, 4, 1, 2, 1, 0, 0, 0), # 121
(12, 3, 10, 4, 5, 2, 2, 3, 3, 1, 2, 0, 0, 14, 8, 6, 8, 3, 0, 3, 5, 1, 3, 0, 0, 0), # 122
(12, 7, 7, 12, 11, 2, 2, 3, 7, 0, 1, 0, 0, 10, 9, 6, 3, 6, 2, 6, 5, 8, 3, 2, 0, 0), # 123
(10, 8, 8, 2, 9, 3, 0, 1, 3, 2, 0, 1, 0, 10, 8, 5, 9, 8, 1, 4, 3, 8, 4, 0, 0, 0), # 124
(8, 6, 7, 3, 4, 4, 0, 3, 3, 3, 2, 2, 0, 4, 5, 4, 2, 6, 3, 3, 3, 3, 1, 1, 2, 0), # 125
(9, 10, 8, 5, 6, 8, 5, 5, 2, 2, 1, 0, 0, 7, 13, 4, 5, 7, 4, 2, 1, 3, 4, 2, 2, 0), # 126
(22, 4, 5, 10, 10, 3, 0, 2, 3, 1, 2, 1, 0, 11, 7, 7, 5, 7, 3, 3, 0, 3, 5, 1, 1, 0), # 127
(8, 4, 10, 10, 11, 8, 3, 4, 7, 0, 2, 0, 0, 11, 7, 7, 7, 9, 1, 1, 0, 3, 2, 4, 0, 0), # 128
(14, 8, 5, 4, 3, 6, 3, 1, 5, 0, 2, 1, 0, 5, 7, 7, 3, 5, 3, 2, 0, 4, 3, 2, 0, 0), # 129
(10, 10, 3, 9, 7, 7, 3, 2, 5, 3, 0, 2, 0, 10, 11, 3, 2, 5, 4, 2, 1, 0, 2, 3, 1, 0), # 130
(5, 9, 9, 11, 7, 3, 5, 2, 1, 4, 1, 1, 0, 6, 4, 6, 2, 4, 4, 2, 1, 3, 2, 1, 1, 0), # 131
(9, 11, 9, 8, 4, 4, 2, 3, 5, 0, 0, 1, 0, 5, 4, 8, 6, 12, 4, 2, 1, 1, 2, 1, 0, 0), # 132
(5, 2, 6, 9, 7, 2, 5, 2, 2, 2, 1, 0, 0, 9, 1, 4, 6, 5, 2, 3, 1, 2, 1, 6, 1, 0), # 133
(8, 9, 10, 13, 8, 5, 4, 1, 6, 1, 0, 1, 0, 9, 12, 2, 4, 13, 2, 4, 4, 4, 2, 2, 1, 0), # 134
(11, 8, 5, 10, 6, 4, 2, 2, 2, 2, 1, 0, 0, 5, 5, 1, 6, 4, 3, 2, 2, 3, 4, 0, 1, 0), # 135
(8, 7, 7, 8, 4, 4, 2, 0, 8, 3, 0, 0, 0, 8, 10, 11, 1, 10, 4, 2, 5, 3, 4, 2, 1, 0), # 136
(6, 2, 10, 7, 3, 4, 2, 2, 2, 1, 1, 1, 0, 8, 6, 6, 3, 8, 4, 5, 4, 2, 2, 0, 0, 0), # 137
(7, 1, 9, 7, 7, 1, 2, 2, 3, 0, 0, 0, 0, 5, 4, 4, 4, 6, 3, 2, 4, 6, 2, 3, 0, 0), # 138
(13, 5, 11, 7, 7, 1, 5, 1, 3, 0, 0, 1, 0, 8, 7, 7, 2, 8, 1, 1, 0, 3, 0, 2, 0, 0), # 139
(11, 7, 6, 10, 4, 7, 2, 3, 3, 1, 1, 0, 0, 10, 5, 6, 4, 1, 4, 5, 3, 4, 1, 1, 1, 0), # 140
(6, 11, 6, 7, 6, 3, 0, 1, 4, 3, 2, 0, 0, 9, 7, 5, 7, 4, 3, 3, 3, 5, 1, 1, 2, 0), # 141
(13, 4, 5, 6, 4, 4, 2, 3, 3, 0, 1, 0, 0, 12, 8, 5, 4, 9, 2, 6, 3, 4, 7, 2, 0, 0), # 142
(8, 7, 7, 8, 4, 6, 4, 1, 5, 3, 0, 2, 0, 5, 10, 11, 2, 10, 3, 2, 1, 3, 0, 3, 2, 0), # 143
(9, 6, 6, 7, 10, 3, 0, 3, 4, 3, 1, 0, 0, 6, 7, 2, 4, 6, 4, 3, 3, 6, 1, 1, 1, 0), # 144
(4, 3, 7, 11, 9, 7, 2, 4, 8, 2, 0, 1, 0, 11, 5, 8, 9, 9, 4, 3, 1, 2, 3, 2, 1, 0), # 145
(6, 4, 13, 7, 5, 1, 1, 2, 4, 0, 0, 0, 0, 11, 4, 5, 6, 4, 4, 6, 2, 5, 4, 2, 0, 0), # 146
(6, 5, 9, 12, 5, 4, 0, 2, 5, 1, 0, 1, 0, 6, 14, 4, 3, 4, 3, 1, 4, 5, 3, 0, 0, 0), # 147
(10, 5, 4, 3, 10, 2, 0, 1, 2, 0, 2, 0, 0, 14, 11, 1, 5, 8, 2, 3, 3, 4, 1, 3, 0, 0), # 148
(7, 9, 8, 6, 4, 3, 2, 0, 5, 2, 3, 0, 0, 11, 4, 6, 2, 4, 4, 3, 2, 2, 1, 0, 0, 0), # 149
(12, 4, 7, 6, 10, 0, 1, 3, 2, 2, 1, 1, 0, 14, 8, 5, 5, 6, 5, 6, 1, 2, 2, 2, 1, 0), # 150
(8, 9, 7, 11, 4, 2, 3, 5, 1, 1, 2, 0, 0, 12, 3, 3, 0, 4, 3, 2, 2, 5, 2, 2, 0, 0), # 151
(14, 9, 6, 10, 11, 4, 2, 3, 4, 2, 0, 0, 0, 9, 6, 2, 4, 5, 3, 3, 1, 5, 2, 1, 2, 0), # 152
(8, 7, 11, 12, 3, 2, 3, 3, 7, 1, 2, 1, 0, 8, 2, 3, 3, 2, 4, 4, 2, 3, 2, 2, 0, 0), # 153
(5, 7, 5, 7, 4, 2, 2, 4, 6, 1, 2, 0, 0, 8, 6, 5, 6, 9, 3, 1, 4, 2, 2, 0, 0, 0), # 154
(9, 3, 5, 3, 4, 1, 0, 2, 1, 2, 3, 0, 0, 9, 6, 7, 3, 8, 2, 4, 4, 1, 1, 1, 0, 0), # 155
(8, 4, 1, 9, 8, 1, 4, 0, 7, 0, 1, 0, 0, 6, 5, 3, 5, 9, 4, 5, 3, 1, 0, 0, 1, 0), # 156
(7, 6, 5, 9, 5, 4, 4, 5, 2, 2, 1, 0, 0, 5, 9, 5, 2, 10, 8, 1, 2, 2, 4, 1, 0, 0), # 157
(8, 5, 6, 6, 10, 2, 1, 3, 8, 1, 5, 0, 0, 10, 16, 7, 2, 2, 2, 1, 3, 6, 3, 3, 0, 0), # 158
(10, 3, 7, 9, 5, 1, 5, 3, 4, 1, 1, 0, 0, 9, 5, 1, 4, 5, 2, 1, 2, 3, 5, 1, 1, 0), # 159
(4, 8, 6, 8, 7, 3, 0, 2, 1, 2, 0, 0, 0, 3, 4, 3, 3, 6, 3, 5, 1, 2, 3, 0, 0, 0), # 160
(12, 2, 5, 11, 5, 3, 2, 1, 4, 3, 1, 1, 0, 5, 4, 7, 3, 4, 1, 3, 4, 1, 0, 0, 0, 0), # 161
(0, 4, 10, 7, 6, 3, 5, 4, 1, 1, 4, 1, 0, 9, 6, 7, 3, 9, 3, 3, 5, 3, 1, 0, 0, 0), # 162
(9, 4, 6, 6, 6, 2, 5, 3, 5, 1, 3, 1, 0, 8, 4, 6, 1, 5, 3, 10, 2, 2, 1, 2, 2, 0), # 163
(8, 5, 7, 8, 4, 3, 0, 5, 0, 0, 1, 0, 0, 10, 4, 4, 1, 8, 2, 0, 3, 3, 1, 0, 0, 0), # 164
(8, 3, 3, 3, 5, 6, 1, 1, 2, 2, 1, 1, 0, 4, 7, 8, 3, 4, 2, 1, 0, 1, 3, 1, 0, 0), # 165
(12, 5, 6, 2, 7, 4, 3, 1, 1, 0, 1, 0, 0, 10, 5, 7, 3, 4, 3, 1, 0, 3, 4, 1, 1, 0), # 166
(9, 6, 6, 5, 5, 5, 1, 1, 2, 2, 0, 0, 0, 9, 6, 2, 2, 8, 3, 1, 2, 2, 2, 2, 0, 0), # 167
(7, 1, 4, 7, 6, 1, 2, 1, 5, 2, 1, 1, 0, 6, 4, 1, 2, 7, 5, 1, 2, 1, 2, 1, 0, 0), # 168
(14, 2, 4, 4, 4, 4, 0, 1, 2, 1, 2, 1, 0, 5, 5, 7, 1, 10, 3, 1, 0, 2, 2, 0, 0, 0), # 169
(3, 5, 7, 3, 3, 3, 0, 2, 2, 1, 1, 0, 0, 11, 2, 3, 1, 1, 6, 2, 2, 3, 3, 1, 0, 0), # 170
(3, 1, 7, 3, 2, 1, 1, 2, 3, 0, 2, 1, 0, 7, 3, 7, 1, 6, 3, 1, 0, 4, 2, 1, 0, 0), # 171
(3, 2, 7, 6, 3, 2, 5, 1, 1, 0, 0, 0, 0, 7, 4, 3, 1, 9, 4, 1, 2, 1, 6, 2, 0, 0), # 172
(8, 2, 4, 2, 3, 1, 0, 0, 0, 0, 1, 1, 0, 7, 3, 5, 0, 5, 2, 1, 2, 0, 1, 0, 1, 0), # 173
(9, 5, 3, 4, 2, 2, 2, 3, 1, 1, 0, 0, 0, 7, 3, 0, 2, 6, 1, 1, 1, 1, 1, 1, 0, 0), # 174
(8, 2, 4, 4, 7, 0, 1, 1, 3, 3, 0, 0, 0, 6, 5, 3, 1, 5, 1, 2, 3, 1, 0, 0, 0, 0), # 175
(4, 5, 5, 3, 4, 3, 3, 1, 1, 0, 0, 0, 0, 2, 1, 3, 0, 4, 1, 1, 1, 1, 1, 2, 0, 0), # 176
(6, 3, 7, 3, 7, 2, 0, 1, 0, 2, 0, 2, 0, 7, 6, 3, 3, 7, 0, 1, 1, 3, 4, 0, 2, 0), # 177
(5, 2, 4, 1, 1, 2, 1, 1, 2, 1, 1, 0, 0, 6, 2, 3, 1, 2, 0, 1, 1, 2, 1, 1, 0, 0), # 178
(0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0), # 179
)
station_arriving_intensity = (
(5.020865578371768, 5.525288559693166, 5.211283229612507, 6.214667773863432, 5.554685607609612, 3.1386549320373387, 4.146035615373915, 4.653176172979423, 6.090099062168007, 3.9580150155223697, 4.205265163885603, 4.897915078306173, 5.083880212578363), # 0
(5.354327152019974, 5.890060694144759, 5.555346591330152, 6.625144253276616, 5.922490337474237, 3.3459835840425556, 4.419468941263694, 4.959513722905708, 6.492245326332909, 4.21898069227715, 4.483096135956131, 5.221216660814354, 5.419791647439855), # 1
(5.686723008979731, 6.253385170890979, 5.8980422855474135, 7.033987704664794, 6.288962973749744, 3.5524851145124448, 4.691818507960704, 5.264625247904419, 6.892786806877549, 4.478913775020546, 4.759823148776313, 5.543232652053055, 5.75436482820969), # 2
(6.016757793146562, 6.613820501936447, 6.238010869319854, 7.439576407532074, 6.652661676001902, 3.757340622585113, 4.962003641647955, 5.567301157494507, 7.290135160921093, 4.736782698426181, 5.0343484118273825, 5.862685684930461, 6.086272806254225), # 3
(6.343136148415981, 6.9699251992857745, 6.573892899703036, 7.840288641382569, 7.012144603796492, 3.9597312073986677, 5.2289436685084585, 5.866331861194915, 7.682702045582707, 4.991555897167679, 5.305574134590575, 6.178298392354764, 6.414188632939817), # 4
(6.66456271868351, 7.320257774943588, 6.9043289337525175, 8.234502685720393, 7.36596991669928, 4.158837968091214, 5.491557914725224, 6.160507768524592, 8.068899117981559, 5.242201805918663, 5.572402526547132, 6.488793407234148, 6.736785359632827), # 5
(6.979742147844666, 7.663376740914501, 7.227959528523866, 8.620596820049652, 7.712695774276043, 4.353842003800864, 5.7487657064812625, 6.4486192890024885, 8.447138035236815, 5.487688859352758, 5.833735797178282, 6.792893362476808, 7.052736037699606), # 6
(7.2873790797949685, 7.997840609203132, 7.543425241072635, 8.996949323874462, 8.050880336092554, 4.543924413665721, 5.999486369959585, 6.729456832147552, 8.815830454467644, 5.726985492143586, 6.088476155965268, 7.089320890990929, 7.360713718506519), # 7
(7.586178158429934, 8.322207891814099, 7.849366628454396, 9.361938476698928, 8.379081761714586, 4.7282662968238895, 6.2426392313431975, 7.001810807478725, 9.173388032793206, 5.959060138964774, 6.335525812389321, 7.376798625684702, 7.659391453419917), # 8
(7.874844027645085, 8.635037100752022, 8.144424247724704, 9.713942558027169, 8.69585821070791, 4.906048752413484, 6.47714361681512, 7.264471624514963, 9.518222427332674, 6.182881234489941, 6.573786975931678, 7.654049199466313, 7.947442293806162), # 9
(8.152081331335932, 8.934886748021516, 8.427238655939124, 10.051339847363288, 8.9997678426383, 5.076452879572607, 6.701918852558355, 7.516229692775211, 9.848745295205214, 6.397417213392714, 6.802161856073574, 7.919795245243952, 8.22353929103161), # 10
(8.416594713398005, 9.220315345627206, 8.696450410153215, 10.372508624211397, 9.289368817071534, 5.238659777439368, 6.915884264755916, 7.7558754217784145, 10.163368293529993, 6.601636510346719, 7.019552662296249, 8.17275939592581, 8.486355496462611), # 11
(8.667088817726812, 9.489881405573698, 8.95070006742254, 10.675827168075612, 9.563219293573377, 5.391850545151869, 7.1179591795908115, 7.982199221043521, 10.460503079426179, 6.794507560025572, 7.224861604080934, 8.411664284420068, 8.734563961465534), # 12
(8.902268288217876, 9.74214343986562, 9.188628184802662, 10.959673758460044, 9.819877431709601, 5.5352062818482235, 7.307062923246056, 8.193991500089481, 10.738561310012932, 6.974998797102904, 7.416990890908869, 8.63523254363492, 8.966837737406735), # 13
(9.120837768766716, 9.975659960507588, 9.408875319349146, 11.222426674868792, 10.05790139104599, 5.667908086666534, 7.482114821904661, 8.390042668435246, 10.995954642409421, 7.142078656252334, 7.594842732261284, 8.84218680647856, 9.181849875652563), # 14
(9.321501903268855, 10.188989479504217, 9.610082028117542, 11.462464196805985, 10.275849331148308, 5.789137058744912, 7.642034201749626, 8.569143135599756, 11.23109473373482, 7.29471557214749, 7.757319337619419, 9.031249705859171, 9.37827342756938), # 15
(9.5029653356198, 10.380690508860132, 9.790888868163425, 11.678164603775716, 10.472279411582333, 5.898074297221459, 7.785740388963976, 8.73008331110196, 11.442393241108286, 7.431877979461996, 7.9033229164645125, 9.20114387468494, 9.554781444523545), # 16
(9.663932709715075, 10.549321560579946, 9.949936396542352, 11.867906175282112, 10.645749791913838, 5.993900901234285, 7.9121527097307105, 8.871653604460818, 11.628261821648984, 7.552534312869467, 8.031755678277799, 9.350591945864055, 9.710046977881415), # 17
(9.803108669450204, 10.693441146668274, 10.08586517030988, 12.030067190829278, 10.794818631708589, 6.075797969921503, 8.020190490232851, 8.99264442519526, 11.787112132476096, 7.6556530070435365, 8.141519832540508, 9.478316552304715, 9.842743079009345), # 18
(9.919197858720699, 10.811607779129744, 10.197315746521578, 12.163025929921314, 10.918044090532366, 6.142946602421208, 8.108773056653394, 9.091846182824245, 11.917355830708779, 7.740202496657828, 8.231517588733878, 9.583040326915096, 9.951542799273696), # 19
(10.010904921422082, 10.902379969968962, 10.282928682233003, 12.265160672062354, 11.013984327950944, 6.194527897871518, 8.176819735175362, 9.168049286866717, 12.017404573466198, 7.805151216385958, 8.30065115633915, 9.66348590260339, 10.035119190040824), # 20
(10.076934501449866, 10.964316231190558, 10.341344534499719, 12.334849696756486, 11.081197503530088, 6.229722955410535, 8.223249851981759, 9.220044146841623, 12.085670017867521, 7.849467600901555, 8.34782274483756, 9.718375912277793, 10.092145302677078), # 21
(10.115991242699579, 10.995975074799144, 10.371203860377285, 12.370471283507836, 11.118241776835575, 6.247712874176367, 8.2469827332556, 9.246621172267915, 12.120563821031915, 7.872120084878242, 8.37193456371034, 9.74643298884649, 10.121294188548827), # 22
(10.13039336334264, 10.999723593964335, 10.374923182441702, 12.374930812757203, 11.127732056032597, 6.25, 8.249804002259339, 9.249493827160494, 12.124926234567901, 7.874792272519433, 8.37495803716174, 9.749897576588934, 10.125), # 23
(10.141012413034153, 10.997537037037038, 10.374314814814815, 12.374381944444446, 11.133107613614852, 6.25, 8.248253812636166, 9.2455, 12.124341666666666, 7.87315061728395, 8.37462457912458, 9.749086419753086, 10.125), # 24
(10.15140723021158, 10.993227023319616, 10.373113854595337, 12.373296039094651, 11.138364945594503, 6.25, 8.24519890260631, 9.237654320987655, 12.123186728395062, 7.869918838591678, 8.373963399426362, 9.747485139460448, 10.125), # 25
(10.161577019048034, 10.986859396433472, 10.371336762688616, 12.37168544238683, 11.143503868421105, 6.25, 8.240686718308721, 9.226104938271606, 12.1214762345679, 7.865150708733425, 8.372980483850855, 9.745115683584821, 10.125), # 26
(10.171520983716636, 10.978499999999999, 10.369, 12.369562499999999, 11.148524198544214, 6.25, 8.234764705882354, 9.211, 12.119225, 7.858899999999999, 8.371681818181818, 9.742, 10.125), # 27
(10.181238328390501, 10.968214677640603, 10.366120027434842, 12.366939557613168, 11.153425752413401, 6.25, 8.22748031146615, 9.192487654320988, 12.116447839506172, 7.851220484682213, 8.370073388203018, 9.73816003657979, 10.125), # 28
(10.19072825724275, 10.95606927297668, 10.362713305898492, 12.36382896090535, 11.15820834647822, 6.25, 8.218880981199066, 9.170716049382715, 12.113159567901235, 7.842165935070874, 8.368161179698216, 9.733617741197987, 10.125), # 29
(10.199989974446497, 10.94212962962963, 10.358796296296296, 12.360243055555555, 11.162871797188236, 6.25, 8.209014161220043, 9.145833333333332, 12.109375, 7.83179012345679, 8.365951178451178, 9.728395061728394, 10.125), # 30
(10.209022684174858, 10.926461591220852, 10.354385459533608, 12.356194187242798, 11.167415920993008, 6.25, 8.19792729766804, 9.117987654320988, 12.105108950617284, 7.820146822130773, 8.363449370245666, 9.722513946044812, 10.125), # 31
(10.217825590600954, 10.909131001371742, 10.349497256515773, 12.35169470164609, 11.171840534342095, 6.25, 8.185667836681999, 9.087327160493828, 12.100376234567902, 7.807289803383631, 8.360661740865444, 9.715996342021034, 10.125), # 32
(10.226397897897897, 10.890203703703703, 10.344148148148149, 12.346756944444444, 11.176145453685063, 6.25, 8.172283224400871, 9.054, 12.095191666666667, 7.793272839506173, 8.357594276094275, 9.708864197530863, 10.125), # 33
(10.23473881023881, 10.869745541838133, 10.338354595336076, 12.341393261316872, 11.180330495471466, 6.25, 8.15782090696361, 9.018154320987653, 12.089570061728397, 7.778149702789209, 8.354252961715924, 9.701139460448102, 10.125), # 34
(10.242847531796807, 10.847822359396433, 10.332133058984912, 12.335615997942385, 11.18439547615087, 6.25, 8.142328330509159, 8.979938271604938, 12.083526234567902, 7.761974165523548, 8.350643783514153, 9.692844078646548, 10.125), # 35
(10.250723266745005, 10.824499999999999, 10.3255, 12.3294375, 11.188340212172836, 6.25, 8.12585294117647, 8.9395, 12.077074999999999, 7.7448, 8.346772727272727, 9.684000000000001, 10.125), # 36
(10.258365219256524, 10.799844307270233, 10.318471879286694, 12.322870113168724, 11.192164519986921, 6.25, 8.108442185104494, 8.896987654320988, 12.070231172839506, 7.726680978509374, 8.34264577877541, 9.674629172382259, 10.125), # 37
(10.265772593504476, 10.773921124828533, 10.311065157750342, 12.315926183127573, 11.19586821604269, 6.25, 8.09014350843218, 8.85254938271605, 12.063009567901235, 7.707670873342479, 8.33826892380596, 9.664753543667125, 10.125), # 38
(10.272944593661986, 10.746796296296296, 10.303296296296297, 12.308618055555556, 11.199451116789703, 6.25, 8.071004357298476, 8.806333333333333, 12.055425000000001, 7.687823456790124, 8.333648148148148, 9.654395061728394, 10.125), # 39
(10.279880423902163, 10.718535665294924, 10.295181755829903, 12.300958076131687, 11.202913038677519, 6.25, 8.05107217784233, 8.758487654320989, 12.047492283950618, 7.667192501143119, 8.328789437585733, 9.643575674439873, 10.125), # 40
(10.286579288398128, 10.689205075445816, 10.286737997256516, 12.29295859053498, 11.206253798155702, 6.25, 8.030394416202695, 8.709160493827161, 12.0392262345679, 7.645831778692272, 8.323698777902482, 9.632317329675354, 10.125), # 41
(10.293040391323, 10.658870370370371, 10.277981481481483, 12.284631944444445, 11.209473211673808, 6.25, 8.009018518518518, 8.6585, 12.030641666666668, 7.623795061728395, 8.318382154882155, 9.620641975308642, 10.125), # 42
(10.299262936849892, 10.627597393689987, 10.268928669410151, 12.275990483539095, 11.212571095681403, 6.25, 7.98699193092875, 8.606654320987655, 12.021753395061728, 7.601136122542296, 8.312845554308517, 9.608571559213535, 10.125), # 43
(10.305246129151927, 10.595451989026063, 10.259596021947875, 12.267046553497943, 11.215547266628045, 6.25, 7.964362099572339, 8.553771604938273, 12.0125762345679, 7.577908733424783, 8.307094961965332, 9.596128029263832, 10.125), # 44
(10.310989172402216, 10.5625, 10.25, 12.2578125, 11.218401540963296, 6.25, 7.9411764705882355, 8.5, 12.003124999999999, 7.554166666666667, 8.301136363636363, 9.583333333333332, 10.125), # 45
(10.31649127077388, 10.528807270233196, 10.240157064471878, 12.24830066872428, 11.221133735136716, 6.25, 7.917482490115388, 8.445487654320988, 11.993414506172838, 7.529963694558756, 8.294975745105374, 9.57020941929584, 10.125), # 46
(10.321751628440035, 10.49443964334705, 10.230083676268862, 12.238523405349794, 11.223743665597867, 6.25, 7.893327604292747, 8.390382716049382, 11.983459567901235, 7.505353589391861, 8.288619092156129, 9.55677823502515, 10.125), # 47
(10.326769449573796, 10.459462962962963, 10.219796296296296, 12.228493055555557, 11.22623114879631, 6.25, 7.868759259259259, 8.334833333333334, 11.973275000000001, 7.4803901234567896, 8.28207239057239, 9.543061728395061, 10.125), # 48
(10.331543938348286, 10.42394307270233, 10.209311385459534, 12.218221965020577, 11.228596001181607, 6.25, 7.8438249011538765, 8.278987654320987, 11.96287561728395, 7.455127069044353, 8.275341626137923, 9.529081847279379, 10.125), # 49
(10.336074298936616, 10.387945816186559, 10.198645404663925, 12.207722479423868, 11.230838039203315, 6.25, 7.81857197611555, 8.222993827160494, 11.9522762345679, 7.429618198445358, 8.268432784636488, 9.514860539551899, 10.125), # 50
(10.34035973551191, 10.351537037037037, 10.187814814814814, 12.197006944444444, 11.232957079310998, 6.25, 7.793047930283224, 8.167, 11.941491666666668, 7.403917283950617, 8.261351851851853, 9.50041975308642, 10.125), # 51
(10.344399452247279, 10.314782578875173, 10.176836076817558, 12.186087705761317, 11.234952937954214, 6.25, 7.767300209795852, 8.111154320987653, 11.930536728395062, 7.3780780978509375, 8.254104813567777, 9.485781435756746, 10.125), # 52
(10.348192653315843, 10.27774828532236, 10.165725651577505, 12.174977109053497, 11.23682543158253, 6.25, 7.741376260792383, 8.055604938271605, 11.919426234567903, 7.3521544124371285, 8.246697655568026, 9.470967535436671, 10.125), # 53
(10.351738542890716, 10.2405, 10.154499999999999, 12.1636875, 11.238574376645502, 6.25, 7.715323529411765, 8.000499999999999, 11.908175, 7.3262, 8.239136363636362, 9.456, 10.125), # 54
(10.355036325145022, 10.203103566529492, 10.143175582990398, 12.152231224279834, 11.24019958959269, 6.25, 7.689189461792948, 7.945987654320987, 11.896797839506172, 7.300268632830361, 8.231426923556553, 9.44090077732053, 10.125), # 55
(10.358085204251871, 10.165624828532236, 10.131768861454047, 12.140620627572016, 11.241700886873659, 6.25, 7.663021504074881, 7.892216049382716, 11.885309567901235, 7.274414083219022, 8.223575321112358, 9.425691815272062, 10.125), # 56
(10.360884384384383, 10.12812962962963, 10.120296296296297, 12.128868055555555, 11.243078084937967, 6.25, 7.636867102396514, 7.839333333333334, 11.873725, 7.24869012345679, 8.215587542087542, 9.410395061728394, 10.125), # 57
(10.36343306971568, 10.090683813443073, 10.108774348422497, 12.116985853909464, 11.244331000235174, 6.25, 7.610773702896797, 7.787487654320987, 11.862058950617284, 7.223150525834477, 8.20746957226587, 9.395032464563329, 10.125), # 58
(10.36573046441887, 10.053353223593964, 10.097219478737998, 12.104986368312757, 11.245459449214845, 6.25, 7.584788751714678, 7.736827160493827, 11.850326234567902, 7.197849062642891, 8.1992273974311, 9.379625971650663, 10.125), # 59
(10.367775772667077, 10.016203703703704, 10.085648148148147, 12.092881944444445, 11.246463248326537, 6.25, 7.558959694989106, 7.6875, 11.838541666666668, 7.172839506172839, 8.190867003367003, 9.364197530864198, 10.125), # 60
(10.369568198633415, 9.97930109739369, 10.0740768175583, 12.080684927983539, 11.247342214019811, 6.25, 7.533333978859033, 7.639654320987654, 11.826720061728395, 7.148175628715135, 8.182394375857339, 9.348769090077733, 10.125), # 61
(10.371106946491004, 9.942711248285322, 10.062521947873801, 12.068407664609055, 11.248096162744234, 6.25, 7.507959049463406, 7.5934382716049384, 11.814876234567901, 7.123911202560586, 8.17381550068587, 9.333362597165067, 10.125), # 62
(10.37239122041296, 9.9065, 10.051, 12.056062500000001, 11.248724910949356, 6.25, 7.482882352941176, 7.549, 11.803025, 7.100099999999999, 8.165136363636364, 9.318, 10.125), # 63
(10.373420224572397, 9.870733196159122, 10.039527434842249, 12.043661779835391, 11.249228275084748, 6.25, 7.458151335431292, 7.506487654320988, 11.791181172839506, 7.076795793324188, 8.156362950492579, 9.302703246456334, 10.125), # 64
(10.374193163142438, 9.835476680384087, 10.0281207133059, 12.031217849794238, 11.249606071599967, 6.25, 7.433813443072703, 7.466049382716049, 11.779359567901235, 7.054052354823959, 8.147501247038285, 9.287494284407863, 10.125), # 65
(10.374709240296196, 9.800796296296298, 10.016796296296297, 12.018743055555555, 11.249858116944573, 6.25, 7.409916122004357, 7.427833333333334, 11.767575, 7.031923456790123, 8.138557239057238, 9.272395061728396, 10.125), # 66
(10.374967660206792, 9.766757887517146, 10.005570644718793, 12.006249742798353, 11.24998422756813, 6.25, 7.386506818365206, 7.391987654320989, 11.755842283950617, 7.010462871513489, 8.12953691233321, 9.257427526291723, 10.125), # 67
(10.374791614480825, 9.733248639320323, 9.994405949931412, 11.993641740472357, 11.249877955297345, 6.2498840115836, 7.363515194829646, 7.358343850022862, 11.744087848651121, 6.989620441647166, 8.120285988540376, 9.242530021899743, 10.124875150034294), # 68
(10.373141706924315, 9.699245519713262, 9.982988425925925, 11.980283514492752, 11.248910675381262, 6.248967078189301, 7.340268181346613, 7.325098765432099, 11.731797839506173, 6.968806390704429, 8.10986283891547, 9.227218973359324, 10.12388599537037), # 69
(10.369885787558895, 9.664592459843355, 9.971268432784635, 11.966087124261943, 11.246999314128942, 6.247161255906112, 7.31666013456137, 7.291952446273434, 11.718902892089622, 6.947919524462734, 8.09814888652608, 9.211422761292809, 10.121932334533609), # 70
(10.365069660642929, 9.62931016859153, 9.959250085733881, 11.951073503757382, 11.244168078754136, 6.244495808565767, 7.292701659538988, 7.258915866483768, 11.705422210791038, 6.926960359342639, 8.085187370783862, 9.195152937212715, 10.119039887688615), # 71
(10.358739130434783, 9.593419354838709, 9.946937499999999, 11.935263586956522, 11.240441176470588, 6.2410000000000005, 7.268403361344538, 7.226, 11.691375, 6.905929411764705, 8.07102153110048, 9.17842105263158, 10.115234375), # 72
(10.35094000119282, 9.556940727465816, 9.934334790809327, 11.918678307836823, 11.23584281449205, 6.236703094040542, 7.243775845043092, 7.193215820759031, 11.676780464106082, 6.884827198149493, 8.055694606887588, 9.161238659061919, 10.110541516632374), # 73
(10.341718077175404, 9.519894995353777, 9.921446073388202, 11.901338600375738, 11.230397200032275, 6.231634354519128, 7.218829715699722, 7.160574302697759, 11.661657807498857, 6.863654234917561, 8.039249837556856, 9.143617308016267, 10.104987032750344), # 74
(10.331119162640901, 9.482302867383511, 9.908275462962962, 11.883265398550725, 11.224128540305012, 6.22582304526749, 7.1935755783795, 7.128086419753086, 11.6460262345679, 6.84241103848947, 8.021730462519935, 9.125568551007147, 10.098596643518519), # 75
(10.319189061847677, 9.44418505243595, 9.894827074759945, 11.864479636339238, 11.217061042524005, 6.219298430117361, 7.168024038147495, 7.095763145861912, 11.629904949702789, 6.821098125285779, 8.003179721188491, 9.107103939547082, 10.091396069101508), # 76
(10.305973579054093, 9.40556225939201, 9.881105024005485, 11.845002247718732, 11.209218913903008, 6.212089772900472, 7.142185700068779, 7.063615454961135, 11.613313157293096, 6.7997160117270505, 7.983640852974187, 9.088235025148606, 10.083411029663925), # 77
(10.291518518518519, 9.366455197132618, 9.867113425925925, 11.824854166666666, 11.200626361655774, 6.204226337448559, 7.116071169208425, 7.031654320987655, 11.596270061728394, 6.7782652142338415, 7.9631570972886765, 9.068973359324238, 10.074667245370371), # 78
(10.275869684499314, 9.326884574538697, 9.8528563957476, 11.804056327160493, 11.191307592996047, 6.195737387593354, 7.089691050631501, 6.9998907178783725, 11.578794867398262, 6.756746249226714, 7.941771693543622, 9.049330493586504, 10.065190436385459), # 79
(10.259072881254847, 9.286871100491172, 9.838338048696844, 11.782629663177671, 11.181286815137579, 6.18665218716659, 7.063055949403081, 6.968335619570188, 11.560906778692273, 6.7351596331262265, 7.919527881150688, 9.029317979447935, 10.0550063228738), # 80
(10.241173913043479, 9.246435483870968, 9.8235625, 11.760595108695654, 11.170588235294117, 6.177, 7.036176470588235, 6.937, 11.542625, 6.713505882352941, 7.8964688995215315, 9.008947368421053, 10.044140624999999), # 81
(10.222218584123576, 9.205598433559008, 9.808533864883403, 11.737973597691894, 11.159236060679415, 6.166810089925317, 7.009063219252036, 6.90589483310471, 11.52396873571102, 6.691785513327416, 7.872637988067813, 8.988230212018387, 10.03261906292867), # 82
(10.202252698753504, 9.164380658436214, 9.793256258573388, 11.714786064143853, 11.147254498507221, 6.156111720774272, 6.981726800459553, 6.875031092821216, 11.504957190214906, 6.669999042470211, 7.848078386201194, 8.967178061752461, 10.020467356824417), # 83
(10.181322061191626, 9.122802867383513, 9.777733796296296, 11.691053442028986, 11.134667755991286, 6.144934156378601, 6.954177819275858, 6.844419753086419, 11.485609567901234, 6.648146986201889, 7.822833333333333, 8.945802469135803, 10.007711226851852), # 84
(10.159472475696308, 9.080885769281826, 9.761970593278463, 11.666796665324746, 11.121500040345357, 6.133306660570035, 6.926426880766024, 6.814071787837221, 11.465945073159578, 6.626229860943005, 7.796946068875894, 8.924114985680937, 9.994376393175584), # 85
(10.136749746525913, 9.03865007301208, 9.745970764746229, 11.64203666800859, 11.107775558783183, 6.121258497180309, 6.89848458999512, 6.783998171010516, 11.445982910379517, 6.604248183114124, 7.770459832240534, 8.902127162900394, 9.98048857596022), # 86
(10.113199677938807, 8.996116487455197, 9.729738425925925, 11.61679438405797, 11.09351851851852, 6.108818930041152, 6.870361552028219, 6.75420987654321, 11.425742283950619, 6.582202469135802, 7.743417862838915, 8.879850552306692, 9.96607349537037), # 87
(10.088868074193357, 8.9533057214921, 9.713277692043896, 11.59109074745035, 11.07875312676511, 6.096017222984301, 6.842068371930391, 6.724717878372199, 11.40524239826246, 6.560093235428601, 7.715863400082698, 8.857296705412365, 9.951156871570646), # 88
(10.063800739547922, 8.910238484003717, 9.696592678326475, 11.564946692163177, 11.063503590736707, 6.082882639841488, 6.813615654766708, 6.695533150434385, 11.384502457704619, 6.537920998413083, 7.687839683383544, 8.834477173729935, 9.935764424725651), # 89
(10.03804347826087, 8.866935483870968, 9.6796875, 11.538383152173914, 11.04779411764706, 6.069444444444445, 6.785014005602241, 6.666666666666666, 11.363541666666668, 6.515686274509804, 7.65938995215311, 8.81140350877193, 9.919921875), # 90
(10.011642094590563, 8.823417429974777, 9.662566272290809, 11.511421061460013, 11.031648914709915, 6.055731900624904, 6.756274029502062, 6.638129401005944, 11.342379229538182, 6.4933895801393255, 7.63055744580306, 8.788087262050874, 9.903654942558298), # 91
(9.984642392795372, 8.779705031196071, 9.64523311042524, 11.484081353998926, 11.015092189139029, 6.041774272214601, 6.727406331531242, 6.609932327389118, 11.321034350708734, 6.471031431722209, 7.601385403745053, 8.764539985079297, 9.886989347565157), # 92
(9.957090177133654, 8.735818996415771, 9.62769212962963, 11.456384963768118, 10.998148148148148, 6.027600823045267, 6.69842151675485, 6.582086419753087, 11.299526234567901, 6.448612345679011, 7.57191706539075, 8.74077322936972, 9.869950810185184), # 93
(9.92903125186378, 8.691780034514801, 9.609947445130317, 11.428352824745035, 10.98084099895102, 6.0132408169486355, 6.669330190237961, 6.554602652034752, 11.277874085505259, 6.426132838430297, 7.54219567015181, 8.716798546434674, 9.85256505058299), # 94
(9.90051142124411, 8.647608854374088, 9.592003172153635, 11.400005870907139, 10.963194948761398, 5.9987235177564395, 6.640142957045644, 6.527491998171011, 11.25609710791038, 6.403593426396621, 7.512264457439896, 8.69262748778668, 9.834857788923182), # 95
(9.871576489533012, 8.603326164874554, 9.573863425925927, 11.371365036231884, 10.945234204793028, 5.984078189300411, 6.610870422242971, 6.500765432098766, 11.234214506172838, 6.3809946259985475, 7.482166666666667, 8.668271604938273, 9.816854745370371), # 96
(9.842272260988848, 8.558952674897121, 9.555532321673525, 11.342451254696725, 10.926982974259664, 5.969334095412284, 6.581523190895013, 6.474433927754916, 11.212245484682214, 6.358336953656634, 7.451945537243782, 8.64374244940197, 9.798581640089164), # 97
(9.812644539869984, 8.514509093322713, 9.53701397462277, 11.31328546027912, 10.908465464375052, 5.954520499923793, 6.552111868066842, 6.44850845907636, 11.190209247828074, 6.335620925791441, 7.421644308582906, 8.619051572690298, 9.78006419324417), # 98
(9.782739130434782, 8.470016129032258, 9.5183125, 11.283888586956522, 10.889705882352942, 5.939666666666667, 6.52264705882353, 6.423, 11.168125, 6.312847058823529, 7.391306220095694, 8.59421052631579, 9.761328125), # 99
(9.752601836941611, 8.425494490906676, 9.49943201303155, 11.254281568706388, 10.870728435407084, 5.924801859472641, 6.493139368230145, 6.3979195244627345, 11.146011945587563, 6.290015869173458, 7.36097451119381, 8.569230861790967, 9.742399155521262), # 100
(9.722278463648834, 8.380964887826895, 9.480376628943759, 11.224485339506174, 10.85155733075123, 5.909955342173449, 6.463599401351762, 6.3732780064014625, 11.123889288980338, 6.267127873261788, 7.330692421288912, 8.544124130628353, 9.723303004972564), # 101
(9.691814814814816, 8.336448028673836, 9.461150462962962, 11.194520833333334, 10.832216775599129, 5.895156378600824, 6.43403776325345, 6.349086419753086, 11.1017762345679, 6.244183587509078, 7.300503189792663, 8.518901884340481, 9.704065393518519), # 102
(9.661256694697919, 8.291964622328422, 9.4417576303155, 11.164408984165325, 10.812730977164529, 5.880434232586496, 6.40446505900028, 6.325355738454504, 11.079691986739826, 6.221183528335889, 7.270450056116723, 8.493575674439873, 9.68471204132373), # 103
(9.63064990755651, 8.247535377671579, 9.422202246227709, 11.134170725979603, 10.79312414266118, 5.865818167962201, 6.374891893657326, 6.302096936442616, 11.057655749885688, 6.19812821216278, 7.24057625967275, 8.468157052439054, 9.665268668552812), # 104
(9.600040257648953, 8.203181003584229, 9.402488425925926, 11.103826992753623, 10.773420479302832, 5.851337448559671, 6.345328872289658, 6.279320987654321, 11.035686728395062, 6.175018155410313, 7.210925039872408, 8.442657569850553, 9.64576099537037), # 105
(9.569473549233614, 8.158922208947299, 9.382620284636488, 11.073398718464842, 10.753644194303236, 5.837021338210638, 6.315786599962345, 6.25703886602652, 11.01380412665752, 6.151853874499045, 7.181539636127355, 8.417088778186894, 9.626214741941014), # 106
(9.538995586568856, 8.11477970264171, 9.362601937585735, 11.042906837090714, 10.733819494876139, 5.822899100746838, 6.286275681740461, 6.235261545496114, 10.992027149062643, 6.128635885849539, 7.152463287849252, 8.391462228960604, 9.606655628429355), # 107
(9.508652173913044, 8.070774193548388, 9.3424375, 11.012372282608696, 10.713970588235293, 5.809, 6.256806722689075, 6.214, 10.970375, 6.105364705882353, 7.1237392344497605, 8.365789473684211, 9.587109375), # 108
(9.478489115524543, 8.026926390548255, 9.322131087105625, 10.98181598899624, 10.69412168159445, 5.795353299801859, 6.227390327873262, 6.193265203475081, 10.948866883859168, 6.082040851018047, 7.09541071534054, 8.340082063870238, 9.567601701817559), # 109
(9.448552215661715, 7.983257002522237, 9.301686814128946, 10.951258890230811, 10.674296982167354, 5.7819882639841484, 6.198037102358089, 6.173068129858253, 10.92752200502972, 6.058664837677183, 7.06752096993325, 8.314351551031214, 9.54815832904664), # 110
(9.41888727858293, 7.9397867383512555, 9.281108796296298, 10.920721920289855, 10.654520697167756, 5.768934156378601, 6.168757651208631, 6.153419753086419, 10.906359567901236, 6.035237182280319, 7.040113237639553, 8.288609486679663, 9.528804976851852), # 111
(9.38954010854655, 7.896536306916234, 9.26040114883402, 10.890226013150832, 10.634817033809409, 5.756220240816949, 6.139562579489958, 6.134331047096479, 10.885398776863282, 6.011758401248016, 7.013230757871109, 8.26286742232811, 9.509567365397805), # 112
(9.360504223703044, 7.853598618785952, 9.239617828252069, 10.85983388249204, 10.615175680173705, 5.7438697692145135, 6.1105259636567695, 6.115852568780606, 10.86471281125862, 5.988304736612729, 6.9869239061528665, 8.237192936504428, 9.490443900843221), # 113
(9.331480897900065, 7.811397183525536, 9.219045675021619, 10.829789421277336, 10.595393354566326, 5.731854608529901, 6.082018208410579, 6.09821125950512, 10.84461903571306, 5.965315167912783, 6.961244337113197, 8.211912172112974, 9.471275414160035), # 114
(9.302384903003995, 7.769947198683046, 9.198696932707318, 10.800084505181779, 10.5754076778886, 5.7201435124987645, 6.054059650191562, 6.081402654278709, 10.82512497866879, 5.942825327988077, 6.936154511427094, 8.187037582558851, 9.452006631660376), # 115
(9.273179873237634, 7.729188281291702, 9.178532189983873, 10.770666150266404, 10.555188526383779, 5.708708877287098, 6.026604817527893, 6.065380312898993, 10.80618133922783, 5.920793358449547, 6.911605931271481, 8.162523197487346, 9.43260725975589), # 116
(9.243829442823772, 7.689060048384721, 9.158512035525986, 10.741481372592244, 10.53470577629511, 5.6975230990608905, 5.9996082389477525, 6.050097795163585, 10.787738816492203, 5.899177400908129, 6.887550098823283, 8.13832304654375, 9.413047004858225), # 117
(9.214297245985211, 7.649502116995324, 9.138597058008367, 10.712477188220333, 10.513929303865842, 5.686558573986138, 5.973024442979315, 6.0355086608700965, 10.769748109563935, 5.877935596974759, 6.863938516259424, 8.11439115937335, 9.393295573379024), # 118
(9.184546916944742, 7.610454104156729, 9.118747846105723, 10.683600613211706, 10.492828985339221, 5.675787698228833, 5.946807958150756, 6.021566469816145, 10.752159917545043, 5.857026088260372, 6.840722685756828, 8.090681565621434, 9.373322671729932), # 119
(9.154542089925162, 7.571855626902158, 9.098924988492762, 10.654798663627394, 10.471374696958497, 5.665182867954965, 5.920913312990253, 6.008224781799343, 10.734924939537558, 5.836407016375905, 6.817854109492416, 8.067148294933297, 9.353098006322597), # 120
(9.124246399149268, 7.533646302264829, 9.079089073844187, 10.626018355528434, 10.449536314966918, 5.6547164793305305, 5.89529503602598, 5.995437156617307, 10.717993874643499, 5.816036522932296, 6.795284289643116, 8.043745376954222, 9.33259128356866), # 121
(9.093623478839854, 7.495765747277961, 9.059200690834711, 10.597206704975855, 10.427283715607734, 5.644360928521519, 5.869907655786117, 5.983157154067649, 10.70131742196489, 5.795872749540477, 6.772964728385851, 8.0204268413295, 9.31177220987977), # 122
(9.062636963219719, 7.458153578974774, 9.039220428139036, 10.568310728030694, 10.40458677512419, 5.634088611693925, 5.844705700798839, 5.971338333947983, 10.684846280603754, 5.775873837811387, 6.750846927897544, 7.997146717704421, 9.290610491667572), # 123
(9.031250486511654, 7.420749414388487, 9.01910887443187, 10.539277440753986, 10.381415369759537, 5.623871925013739, 5.819643699592319, 5.959934256055926, 10.668531149662115, 5.755997929355961, 6.728882390355119, 7.973859035724275, 9.269075835343711), # 124
(8.999427682938459, 7.38349287055232, 8.998826618387923, 10.51005385920676, 10.357739375757022, 5.613683264646956, 5.794676180694739, 5.948898480189091, 10.652322728241993, 5.736203165785134, 6.707022617935501, 7.950517825034348, 9.247137947319828), # 125
(8.967132186722928, 7.346323564499494, 8.978334248681898, 10.480586999450054, 10.333528669359893, 5.603495026759568, 5.76975767263427, 5.938184566145092, 10.636171715445418, 5.7164476887098425, 6.685219112815613, 7.927077115279934, 9.224766534007578), # 126
(8.93432763208786, 7.309181113263224, 8.957592353988504, 10.450823877544899, 10.308753126811398, 5.593279607517565, 5.744842703939094, 5.927746073721545, 10.620028810374407, 5.696689639741024, 6.6634233771723785, 7.903490936106316, 9.201931301818599), # 127
(8.900977653256046, 7.272005133876735, 8.93656152298245, 10.420711509552332, 10.28338262435479, 5.583009403086944, 5.719885803137382, 5.917536562716062, 10.603844712130984, 5.6768871604896125, 6.641586913182724, 7.879713317158788, 9.178601957164537), # 128
(8.867045884450281, 7.234735243373241, 8.91520234433844, 10.390196911533382, 10.257387038233311, 5.572656809633695, 5.694841498757313, 5.90750959292626, 10.587570119817174, 5.656998392566545, 6.619661223023571, 7.855698288082636, 9.154748206457038), # 129
(8.832495959893366, 7.197311058785966, 8.893475406731179, 10.359227099549086, 10.230736244690213, 5.562194223323808, 5.669664319327063, 5.89761872414975, 10.571155732535, 5.636981477582757, 6.5975978088718445, 7.831399878523152, 9.130339756107748), # 130
(8.797291513808094, 7.159672197148127, 8.87134129883538, 10.327749089660475, 10.203400119968745, 5.55159404032328, 5.644308793374809, 5.88781751618415, 10.554552249386486, 5.616794557149185, 6.575348172904468, 7.806772118125624, 9.105346312528312), # 131
(8.76139618041726, 7.121758275492944, 8.848760609325746, 10.295709897928587, 10.175348540312154, 5.540828656798102, 5.618729449428725, 5.878059528827073, 10.537710369473654, 5.596395772876765, 6.552863817298364, 7.781769036535342, 9.079737582130376), # 132
(8.724773593943663, 7.083508910853635, 8.825693926876983, 10.263056540414452, 10.146551381963686, 5.529870468914266, 5.592880816016989, 5.868298321876132, 10.520580791898526, 5.575743266376432, 6.53009624423046, 7.756344663397592, 9.053483271325586), # 133
(8.687387388610095, 7.044863720263423, 8.802101840163804, 10.229736033179103, 10.116978521166592, 5.518691872837765, 5.566717421667779, 5.858487455128944, 10.503114215763128, 5.5547951792591235, 6.506996955877678, 7.730453028357666, 9.026553086525583), # 134
(8.649201198639354, 7.005762320755524, 8.777944937860909, 10.195695392283579, 10.08659983416412, 5.507265264734592, 5.540193794909268, 5.84858048838312, 10.48526134016948, 5.533509653135776, 6.483517454416942, 7.704048161060852, 8.99891673414202), # 135
(8.610178658254235, 6.966144329363159, 8.753183808643008, 10.160881633788906, 10.055385197199517, 5.495563040770739, 5.513264464269635, 5.838530981436277, 10.466972864219606, 5.511844829617322, 6.459609242025177, 7.677084091152441, 8.970543920586536), # 136
(8.570283401677534, 6.925949363119547, 8.72777904118481, 10.125241773756125, 10.023304486516034, 5.483557597112198, 5.485883958277055, 5.828292494086029, 10.448199487015533, 5.4897588503147015, 6.435223820879306, 7.649514848277719, 8.941404352270776), # 137
(8.529479063132047, 6.885117039057908, 8.701691224161017, 10.088722828246263, 9.990327578356919, 5.471221329924964, 5.458006805459704, 5.81781858612999, 10.428891907659281, 5.4672098568388465, 6.410312693156252, 7.621294462081978, 8.91146773560639), # 138
(8.487729276840568, 6.843586974211461, 8.67488094624634, 10.051271813320358, 9.956424348965415, 5.458526635375026, 5.429587534345759, 5.807062817365774, 10.409000825252871, 5.444155990800697, 6.38482736103294, 7.592376962210506, 8.880703777005019), # 139
(8.444997677025897, 6.801298785613425, 8.647308796115487, 10.012835745039444, 9.92156467458478, 5.445445909628379, 5.400580673463397, 5.795978747590996, 10.388476938898332, 5.420555393811186, 6.358719326686294, 7.562716378308592, 8.849082182878314), # 140
(8.40124789791083, 6.758192090297021, 8.61893536244316, 9.973361639464553, 9.885718431458253, 5.431951548851015, 5.370940751340795, 5.78451993660327, 10.36727094769768, 5.396366207481251, 6.331940092293238, 7.532266740021525, 8.816572659637913), # 141
(8.356443573718156, 6.714206505295466, 8.58972123390407, 9.93279651265672, 9.848855495829087, 5.418015949208927, 5.340622296506126, 5.772639944200211, 10.345333550752942, 5.371546573421828, 6.304441160030697, 7.500982076994594, 8.783144913695466), # 142
(8.310548338670674, 6.669281647641981, 8.559626999172925, 9.891087380676975, 9.810945743940529, 5.403611506868106, 5.3095798374875685, 5.760292330179432, 10.322615447166147, 5.3460546332438525, 6.276174032075593, 7.4688164188730894, 8.748768651462617), # 143
(8.263525826991184, 6.623357134369786, 8.528613246924428, 9.848181259586356, 9.771959052035829, 5.388710617994547, 5.277767902813299, 5.747430654338549, 10.29906733603931, 5.31984852855826, 6.247090210604851, 7.435723795302299, 8.713413579351014), # 144
(8.215339672902477, 6.576372582512099, 8.496640565833289, 9.804025165445895, 9.731865296358233, 5.3732856787542405, 5.245141021011493, 5.734008476475176, 10.274639916474454, 5.292886400975988, 6.217141197795395, 7.401658235927513, 8.6770494037723), # 145
(8.16595351062735, 6.528267609102142, 8.463669544574216, 9.758566114316626, 9.690634353150992, 5.35730908531318, 5.21165372061033, 5.719979356386927, 10.249283887573606, 5.2651263921079705, 6.186278495824149, 7.3665737703940195, 8.639645831138118), # 146
(8.1153309743886, 6.47898183117313, 8.42966077182191, 9.71175112225958, 9.648236098657351, 5.340753233837358, 5.177260530137981, 5.705296853871415, 10.22294994843879, 5.236526643565146, 6.154453606868036, 7.3304244283471105, 8.601172567860118), # 147
(8.063435698409021, 6.428454865758288, 8.394574836251083, 9.663527205335797, 9.604640409120561, 5.323590520492767, 5.1419159781226265, 5.689914528726257, 10.195588798172029, 5.207045296958447, 6.1216180331039824, 7.29316423943207, 8.561599320349941), # 148
(8.010231316911412, 6.37662632989083, 8.358372326536443, 9.613841379606303, 9.55981716078387, 5.3057933414453995, 5.105574593092441, 5.673785940749067, 10.167151135875338, 5.176640493898813, 6.08772327670891, 7.254747233294191, 8.520895795019237), # 149
(7.955681464118564, 6.323435840603979, 8.321013831352694, 9.562640661132138, 9.513736229890526, 5.287334092861249, 5.0681909035756005, 5.656864649737456, 10.137587660650752, 5.1452703759971765, 6.0527208398597425, 7.215127439578763, 8.479031698279647), # 150
(7.899749774253275, 6.268823014930954, 8.282459939374542, 9.50987206597433, 9.466367492683776, 5.268185170906305, 5.029719438100283, 5.639104215489043, 10.106849071600289, 5.112893084864478, 6.016562224733405, 7.174258887931072, 8.435976736542818), # 151
(7.842399881538343, 6.212727469904973, 8.242671239276701, 9.455482610193918, 9.417680825406869, 5.2483189717465635, 4.9901147251946645, 5.620458197801441, 10.07488606782597, 5.079466762111649, 5.979198933506821, 7.132095607996409, 8.391700616220398), # 152
(7.78359542019656, 6.155088822559256, 8.201608319733868, 9.399419309851933, 9.367646104303056, 5.2277078915480155, 4.949331293386919, 5.600880156472262, 10.041649348429823, 5.044949549349629, 5.940582468356916, 7.088591629420064, 8.346173043724027), # 153
(7.723300024450729, 6.095846689927024, 8.159231769420758, 9.34162918100941, 9.31623320561558, 5.206324326476654, 4.907323671205228, 5.580323651299123, 10.007089612513866, 5.009299588189353, 5.900664331460612, 7.043700981847325, 8.299363725465357), # 154
(7.6614773285236355, 6.034940689041495, 8.115502177012075, 9.282059239727378, 9.263412005587696, 5.184140672698471, 4.864046387177761, 5.558742242079636, 9.971157559180128, 4.972475020241754, 5.859396024994833, 6.997377694923482, 8.251242367856026), # 155
(7.598090966638081, 5.972310436935888, 8.070380131182526, 9.220656502066875, 9.209152380462648, 5.161129326379461, 4.8194539698327, 5.5360894886114185, 9.933803887530626, 4.934433987117773, 5.816729051136504, 6.949575798293822, 8.201778677307685), # 156
(7.533104573016862, 5.907895550643423, 8.023826220606818, 9.157367984088937, 9.153424206483685, 5.137262683685614, 4.773500947698219, 5.512318950692082, 9.894979296667389, 4.895134630428341, 5.772614912062549, 6.900249321603637, 8.150942360231976), # 157
(7.464680946405239, 5.840453120772258, 7.973591953902355, 9.089769581651243, 9.093681105870997, 5.11102447631711, 4.725106720927857, 5.485796952349372, 9.851662091599097, 4.8533659162911436, 5.7255957525389425, 6.847599564194339, 8.096485859415345), # 158
(7.382286766978402, 5.763065319599478, 7.906737818402988, 9.003977158788453, 9.015191309781628, 5.073689648007103, 4.668212763385716, 5.4472135327643825, 9.786427261222144, 4.802280994098745, 5.667416935618994, 6.781362523683108, 8.025427646920194), # 159
(7.284872094904309, 5.675096728540714, 7.821920957955888, 8.89857751040886, 8.916420131346795, 5.024341296047684, 4.602243748383784, 5.3955991895273465, 9.697425227228651, 4.741205651862893, 5.59725950860954, 6.700501948887847, 7.93642060889358), # 160
(7.17322205458596, 5.577120868080469, 7.720046971910309, 8.774572503756728, 8.798393124282113, 4.963577241570314, 4.527681446006876, 5.33160053310978, 9.585829766999018, 4.6706581931709374, 5.515741654599707, 6.605767468907571, 7.830374044819097), # 161
(7.048121770426357, 5.469711258703239, 7.602021459615496, 8.632964006076326, 8.662135842303204, 4.891995305706455, 4.445007626339809, 5.255864173983202, 9.452814657913637, 4.5911569216102315, 5.42348155667862, 6.497908712841293, 7.708197254180333), # 162
(6.9103563668284975, 5.353441420893524, 7.468750020420702, 8.474753884611934, 8.508673839125688, 4.810193309587572, 4.354704059467401, 5.169036722619125, 9.299553677352906, 4.503220140768125, 5.321097397935408, 6.3776753097880325, 7.570799536460879), # 163
(6.760710968195384, 5.228884875135821, 7.321138253675176, 8.300944006607818, 8.339032668465189, 4.718769074345129, 4.257252515474466, 5.071764789489069, 9.127220602697223, 4.407366154231968, 5.209207361459196, 6.245816888846803, 7.419090191144328), # 164
(6.599970698930017, 5.096615141914632, 7.160091758728169, 8.112536239308252, 8.154237884037324, 4.618320421110586, 4.153134764445822, 4.964694985064546, 8.93698921132698, 4.3041132655891134, 5.088429630339111, 6.10308307911662, 7.25397851771427), # 165
(6.428920683435397, 4.957205741714454, 6.9865161349289275, 7.910532449957501, 7.955315039557714, 4.509445171015408, 4.042832576466286, 4.848473919817077, 8.730033280622573, 4.193979778426912, 4.959382387664279, 5.950223509696501, 7.0763738156542955), # 166
(6.248346046114523, 4.811230195019787, 6.801316981626704, 7.695934505799843, 7.74328968874198, 4.392741145191058, 3.9268277216206746, 4.723748204218176, 8.5075265879644, 4.077483996332714, 4.822683816523827, 5.7879878096854585, 6.887185384447996), # 167
(6.059031911370395, 4.659262022315128, 6.605399898170748, 7.469744274079546, 7.519187385305742, 4.268806164768999, 3.805601969993804, 4.5911644487393595, 8.270642910732855, 3.955144222893872, 4.678952100006881, 5.617125608182511, 6.6873225235789615), # 168
(5.861763403606015, 4.501874744084979, 6.399670483910309, 7.232963622040883, 7.28403368296462, 4.138238050880695, 3.6796370916704917, 4.451369263852145, 8.020556026308338, 3.8274787616977366, 4.528805421202568, 5.438386534286672, 6.477694532530785), # 169
(5.657325647224384, 4.339641880813837, 6.185034338194635, 6.98659441692812, 7.038854135434233, 4.001634624657607, 3.549414856735553, 4.305009260028047, 7.7584397120712385, 3.6950059163316578, 4.372861963200016, 5.252520217096959, 6.259210710787055), # 170
(5.4465037666285, 4.173136952986201, 5.962397060372978, 6.731638525985535, 6.784674296430206, 3.8595937072311983, 3.4154170352738054, 4.152731047738583, 7.485467745401956, 3.5582439903829886, 4.211739909088348, 5.060276285712386, 6.032780357831365), # 171
(5.230082886221365, 4.002933481086569, 5.7326642497945866, 6.4690978164573965, 6.5225197196681535, 3.7127131197329337, 3.2781253973700655, 3.9951812374552707, 7.202813903680886, 3.41771128743908, 4.046057441956694, 4.862404369231971, 5.799312773147303), # 172
(5.00884813040598, 3.8296049855994423, 5.4967415058087115, 6.1999741555879755, 6.253415958863702, 3.5615906832942748, 3.1380217131091497, 3.8330064396496235, 6.911651964288422, 3.2739261110872815, 3.8764327448941778, 4.659654096754725, 5.5597172562184625), # 173
(4.783584623585344, 3.653724987009318, 5.2555344277646014, 5.9252694106215404, 5.978388567732466, 3.406824219046685, 2.9955877525758754, 3.6668532647931604, 6.613155704604964, 3.1274067649149466, 3.7034840009899277, 4.452775097379668, 5.314903106528433), # 174
(4.555077490162455, 3.4758670058006946, 5.009948615011508, 5.645985448802367, 5.698463099990069, 3.2490115481216284, 2.851305285855058, 3.497368323357396, 6.308498902010905, 2.9786715525094243, 3.5278293933330693, 4.242517000205814, 5.0657796235608075), # 175
(4.324111854540319, 3.296604562458073, 4.760889666898678, 5.363124137374725, 5.41466510935213, 3.0887504916505666, 2.705656083031515, 3.325198225813849, 5.998855333886642, 2.828238777458067, 3.35008710501273, 4.029629434332179, 4.813256106799174), # 176
(4.0914728411219325, 3.1165111774659513, 4.5092631827753635, 5.077687343582883, 5.128020149534273, 2.9266388707649633, 2.5591219141900625, 3.1509895826340326, 5.68539877761257, 2.6766267433482245, 3.1708753191180357, 3.8148620288577786, 4.5582418557271245), # 177
(3.8579455743102966, 2.9361603713088282, 4.255974761990814, 4.790676934671116, 4.8395537742521135, 2.7632745065962827, 2.4121845494155174, 2.9753890042894655, 5.3693030105690855, 2.52435375376725, 2.9908122187381125, 3.598964412881627, 4.301646169828252), # 178
(0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0), # 179
)
passenger_arriving_acc = (
(5, 2, 2, 5, 2, 1, 4, 1, 1, 2, 0, 1, 0, 7, 7, 2, 1, 8, 0, 1, 2, 2, 4, 1, 1, 0), # 0
(9, 13, 7, 7, 4, 5, 10, 1, 4, 3, 0, 2, 0, 12, 10, 5, 1, 14, 4, 3, 4, 4, 4, 2, 2, 0), # 1
(17, 21, 8, 13, 6, 7, 12, 4, 5, 3, 0, 3, 0, 20, 17, 9, 6, 20, 10, 3, 5, 7, 5, 2, 4, 0), # 2
(23, 25, 12, 17, 9, 10, 14, 5, 7, 4, 0, 3, 0, 24, 22, 13, 8, 23, 11, 6, 6, 7, 7, 3, 4, 0), # 3
(30, 33, 17, 26, 14, 11, 18, 6, 11, 5, 0, 4, 0, 34, 30, 18, 11, 29, 14, 7, 7, 8, 7, 3, 5, 0), # 4
(33, 38, 21, 29, 26, 15, 22, 9, 13, 6, 4, 4, 0, 43, 33, 21, 15, 36, 16, 9, 8, 11, 8, 6, 5, 0), # 5
(39, 43, 25, 34, 29, 23, 23, 15, 16, 6, 6, 6, 0, 45, 43, 25, 17, 40, 19, 11, 9, 12, 10, 6, 6, 0), # 6
(48, 51, 31, 41, 36, 24, 26, 17, 19, 6, 6, 8, 0, 53, 46, 29, 21, 45, 23, 16, 10, 14, 12, 8, 6, 0), # 7
(53, 59, 41, 49, 43, 27, 30, 20, 23, 8, 7, 8, 0, 64, 56, 34, 25, 50, 25, 18, 13, 16, 14, 8, 7, 0), # 8
(64, 62, 48, 58, 46, 32, 31, 24, 24, 9, 7, 8, 0, 68, 69, 40, 28, 57, 32, 22, 15, 19, 17, 11, 7, 0), # 9
(68, 68, 52, 60, 55, 33, 33, 29, 28, 9, 9, 9, 0, 76, 78, 45, 33, 61, 37, 25, 15, 24, 21, 14, 8, 0), # 10
(75, 73, 60, 67, 58, 33, 35, 32, 31, 11, 12, 9, 0, 83, 87, 49, 37, 67, 42, 28, 19, 26, 23, 14, 8, 0), # 11
(86, 82, 69, 76, 66, 36, 38, 35, 37, 11, 16, 11, 0, 88, 93, 52, 41, 72, 48, 31, 21, 27, 25, 16, 8, 0), # 12
(93, 90, 74, 82, 71, 41, 46, 42, 43, 13, 16, 11, 0, 97, 105, 64, 46, 78, 53, 34, 22, 29, 29, 16, 8, 0), # 13
(107, 95, 79, 88, 76, 44, 48, 47, 46, 14, 17, 11, 0, 108, 113, 76, 54, 84, 57, 37, 26, 31, 31, 17, 8, 0), # 14
(113, 105, 89, 96, 83, 47, 50, 54, 51, 17, 17, 12, 0, 115, 123, 83, 59, 99, 62, 43, 26, 35, 37, 21, 8, 0), # 15
(123, 116, 98, 106, 88, 51, 55, 59, 53, 23, 18, 13, 0, 120, 131, 91, 64, 105, 65, 48, 31, 39, 43, 22, 10, 0), # 16
(129, 125, 104, 115, 102, 56, 60, 64, 58, 25, 22, 13, 0, 131, 138, 97, 68, 115, 72, 51, 35, 47, 46, 23, 11, 0), # 17
(143, 135, 114, 124, 109, 61, 64, 69, 62, 25, 24, 13, 0, 139, 146, 107, 74, 123, 75, 56, 37, 51, 46, 25, 12, 0), # 18
(149, 143, 124, 130, 114, 65, 66, 73, 64, 25, 25, 13, 0, 142, 157, 113, 81, 130, 79, 58, 39, 58, 50, 25, 12, 0), # 19
(166, 152, 130, 143, 121, 67, 70, 74, 65, 29, 26, 15, 0, 151, 167, 119, 94, 138, 86, 58, 41, 64, 58, 26, 13, 0), # 20
(173, 166, 140, 151, 127, 72, 76, 78, 69, 33, 27, 17, 0, 163, 175, 131, 102, 143, 87, 61, 46, 67, 60, 30, 13, 0), # 21
(189, 174, 145, 165, 139, 74, 80, 81, 78, 34, 28, 19, 0, 175, 182, 136, 109, 148, 93, 64, 47, 69, 64, 32, 14, 0), # 22
(201, 179, 152, 176, 147, 79, 83, 86, 83, 37, 28, 19, 0, 184, 191, 145, 116, 159, 100, 67, 48, 72, 66, 37, 14, 0), # 23
(209, 191, 162, 188, 153, 80, 86, 91, 89, 41, 28, 20, 0, 188, 197, 155, 120, 166, 105, 73, 49, 77, 73, 38, 16, 0), # 24
(222, 201, 174, 196, 157, 80, 89, 99, 93, 42, 31, 22, 0, 200, 208, 165, 128, 173, 112, 78, 49, 81, 73, 38, 16, 0), # 25
(233, 210, 179, 207, 169, 86, 93, 106, 96, 47, 33, 23, 0, 212, 214, 177, 131, 176, 122, 82, 50, 85, 78, 39, 17, 0), # 26
(240, 218, 188, 212, 176, 88, 99, 111, 100, 50, 34, 24, 0, 221, 223, 184, 135, 184, 128, 87, 52, 89, 79, 42, 17, 0), # 27
(250, 227, 199, 221, 178, 90, 103, 115, 107, 53, 36, 26, 0, 235, 229, 187, 143, 188, 138, 90, 55, 91, 83, 42, 17, 0), # 28
(262, 236, 207, 229, 195, 96, 114, 119, 111, 54, 40, 26, 0, 248, 233, 194, 152, 192, 144, 95, 57, 93, 88, 43, 17, 0), # 29
(284, 249, 217, 236, 204, 98, 116, 124, 118, 55, 43, 26, 0, 263, 238, 196, 160, 201, 154, 100, 58, 100, 91, 45, 17, 0), # 30
(292, 259, 232, 248, 208, 107, 119, 129, 123, 59, 45, 26, 0, 272, 244, 202, 166, 205, 158, 102, 60, 104, 95, 48, 17, 0), # 31
(308, 267, 236, 255, 216, 111, 122, 131, 125, 61, 49, 28, 0, 278, 255, 207, 173, 209, 163, 107, 62, 108, 98, 48, 18, 0), # 32
(321, 281, 244, 269, 222, 116, 129, 136, 127, 61, 49, 29, 0, 285, 263, 218, 179, 219, 169, 118, 64, 110, 100, 49, 19, 0), # 33
(330, 289, 251, 277, 228, 117, 131, 140, 129, 67, 49, 30, 0, 298, 273, 223, 187, 230, 174, 122, 64, 112, 101, 49, 20, 0), # 34
(334, 303, 261, 288, 238, 118, 132, 142, 133, 67, 50, 33, 0, 308, 282, 226, 191, 238, 178, 127, 66, 120, 109, 51, 22, 0), # 35
(346, 313, 268, 289, 246, 122, 138, 146, 133, 67, 51, 35, 0, 318, 298, 230, 197, 245, 187, 132, 68, 124, 115, 52, 24, 0), # 36
(354, 328, 274, 300, 253, 127, 143, 151, 136, 69, 52, 36, 0, 326, 307, 235, 201, 251, 195, 136, 73, 125, 117, 52, 25, 0), # 37
(360, 333, 286, 307, 260, 133, 146, 154, 142, 71, 52, 36, 0, 340, 314, 244, 207, 261, 200, 138, 76, 128, 122, 54, 28, 0), # 38
(373, 350, 295, 317, 269, 139, 148, 154, 146, 74, 53, 36, 0, 350, 321, 253, 212, 269, 203, 139, 79, 133, 127, 58, 28, 0), # 39
(386, 363, 308, 328, 282, 142, 151, 160, 149, 75, 53, 37, 0, 359, 328, 258, 217, 276, 210, 144, 80, 134, 129, 60, 28, 0), # 40
(396, 371, 314, 335, 290, 148, 158, 165, 155, 77, 54, 37, 0, 371, 337, 266, 221, 283, 217, 146, 81, 137, 129, 61, 29, 0), # 41
(405, 381, 324, 346, 300, 150, 162, 166, 160, 80, 54, 38, 0, 385, 351, 269, 225, 295, 220, 149, 82, 140, 132, 63, 31, 0), # 42
(421, 389, 330, 365, 309, 153, 164, 171, 164, 82, 54, 39, 0, 399, 360, 278, 235, 303, 224, 153, 84, 142, 134, 64, 31, 0), # 43
(431, 397, 337, 371, 318, 156, 170, 179, 171, 84, 55, 40, 0, 405, 373, 283, 241, 315, 227, 156, 88, 147, 137, 66, 34, 0), # 44
(440, 405, 342, 385, 323, 160, 170, 181, 172, 89, 57, 40, 0, 416, 386, 288, 250, 326, 233, 165, 92, 154, 141, 67, 35, 0), # 45
(448, 414, 350, 389, 330, 161, 171, 182, 174, 91, 59, 41, 0, 430, 392, 294, 255, 332, 236, 169, 95, 165, 142, 68, 36, 0), # 46
(459, 424, 362, 406, 340, 167, 172, 184, 177, 91, 60, 41, 0, 441, 400, 302, 269, 341, 242, 172, 96, 168, 143, 71, 37, 0), # 47
(470, 433, 372, 411, 344, 170, 175, 188, 183, 91, 60, 41, 0, 456, 410, 309, 273, 344, 248, 178, 96, 169, 145, 74, 39, 0), # 48
(478, 444, 374, 419, 349, 171, 179, 191, 184, 94, 62, 41, 0, 468, 418, 316, 278, 355, 253, 181, 99, 172, 146, 76, 39, 0), # 49
(486, 456, 386, 426, 357, 175, 183, 193, 190, 97, 62, 41, 0, 476, 432, 318, 281, 364, 256, 184, 101, 180, 148, 78, 42, 0), # 50
(499, 465, 390, 430, 366, 177, 188, 194, 193, 99, 63, 42, 0, 489, 444, 324, 285, 374, 263, 189, 105, 183, 150, 79, 44, 0), # 51
(507, 478, 397, 435, 377, 178, 191, 194, 197, 101, 63, 44, 0, 498, 452, 332, 294, 382, 268, 193, 110, 184, 152, 81, 45, 0), # 52
(513, 488, 404, 448, 385, 185, 196, 196, 202, 103, 64, 45, 0, 508, 460, 337, 296, 387, 275, 195, 114, 188, 153, 82, 46, 0), # 53
(524, 493, 410, 465, 394, 190, 201, 197, 205, 107, 66, 47, 0, 520, 470, 344, 301, 397, 276, 200, 117, 191, 157, 82, 46, 0), # 54
(536, 503, 420, 474, 397, 196, 204, 199, 208, 108, 67, 47, 0, 528, 475, 353, 305, 403, 280, 205, 122, 193, 162, 85, 49, 0), # 55
(547, 512, 433, 482, 406, 201, 208, 201, 212, 109, 70, 48, 0, 534, 485, 357, 312, 410, 283, 209, 123, 197, 167, 88, 49, 0), # 56
(561, 530, 444, 492, 418, 203, 215, 206, 221, 110, 71, 48, 0, 541, 498, 363, 316, 421, 289, 212, 125, 200, 173, 89, 49, 0), # 57
(567, 538, 455, 503, 423, 208, 220, 211, 222, 111, 75, 49, 0, 555, 504, 376, 324, 427, 292, 215, 127, 205, 176, 92, 51, 0), # 58
(576, 546, 466, 518, 427, 208, 224, 216, 228, 115, 77, 50, 0, 566, 513, 384, 330, 438, 297, 219, 127, 208, 176, 93, 52, 0), # 59
(586, 558, 473, 523, 434, 210, 227, 220, 230, 118, 77, 54, 0, 580, 516, 388, 335, 448, 300, 224, 127, 212, 182, 94, 53, 0), # 60
(592, 569, 482, 530, 437, 213, 235, 223, 238, 120, 78, 54, 0, 589, 521, 397, 345, 456, 307, 227, 131, 217, 184, 96, 54, 0), # 61
(599, 574, 491, 539, 442, 219, 240, 225, 243, 121, 79, 54, 0, 600, 531, 406, 353, 465, 311, 232, 134, 220, 186, 99, 55, 0), # 62
(608, 579, 501, 546, 449, 227, 244, 227, 244, 122, 81, 55, 0, 613, 536, 409, 360, 477, 314, 237, 136, 227, 190, 99, 57, 0), # 63
(613, 588, 511, 556, 457, 231, 247, 229, 249, 124, 83, 57, 0, 620, 541, 420, 363, 485, 317, 240, 139, 231, 192, 103, 58, 0), # 64
(620, 599, 519, 566, 467, 233, 252, 231, 253, 129, 84, 57, 0, 636, 551, 425, 369, 494, 322, 245, 139, 232, 193, 105, 58, 0), # 65
(637, 608, 528, 576, 475, 235, 256, 233, 258, 133, 85, 57, 0, 644, 564, 434, 370, 504, 328, 248, 142, 234, 197, 108, 59, 0), # 66
(645, 611, 538, 591, 481, 238, 260, 234, 261, 136, 87, 57, 0, 660, 573, 443, 373, 513, 329, 250, 146, 236, 201, 108, 61, 0), # 67
(659, 622, 542, 596, 489, 240, 262, 241, 270, 136, 88, 58, 0, 667, 584, 454, 376, 524, 334, 252, 149, 239, 205, 110, 62, 0), # 68
(674, 631, 549, 602, 494, 243, 268, 246, 273, 139, 90, 59, 0, 678, 591, 463, 385, 533, 337, 260, 151, 244, 207, 113, 62, 0), # 69
(682, 642, 553, 610, 505, 247, 270, 248, 280, 141, 91, 59, 0, 683, 598, 469, 389, 542, 345, 262, 151, 248, 208, 116, 62, 0), # 70
(691, 650, 558, 623, 511, 248, 271, 250, 283, 141, 92, 60, 0, 695, 604, 476, 398, 548, 347, 267, 156, 253, 210, 118, 62, 0), # 71
(706, 657, 565, 632, 521, 255, 274, 250, 291, 146, 93, 60, 0, 707, 617, 484, 406, 553, 352, 274, 157, 256, 213, 119, 64, 0), # 72
(719, 665, 574, 643, 529, 257, 278, 253, 294, 148, 94, 61, 0, 720, 626, 490, 413, 561, 359, 277, 162, 260, 218, 119, 64, 0), # 73
(732, 675, 582, 649, 536, 262, 281, 256, 298, 149, 96, 63, 0, 732, 636, 497, 417, 567, 363, 282, 169, 264, 223, 121, 64, 0), # 74
(743, 682, 588, 657, 546, 267, 283, 259, 302, 152, 99, 63, 0, 744, 649, 506, 423, 573, 367, 286, 172, 270, 226, 124, 65, 0), # 75
(757, 692, 599, 668, 553, 271, 286, 261, 304, 152, 99, 63, 0, 753, 661, 516, 427, 581, 372, 291, 173, 273, 227, 124, 66, 0), # 76
(769, 696, 608, 677, 559, 273, 288, 263, 308, 152, 101, 64, 0, 765, 669, 522, 433, 588, 374, 296, 175, 277, 229, 125, 67, 0), # 77
(779, 706, 616, 688, 566, 276, 289, 266, 311, 152, 103, 64, 0, 778, 678, 531, 438, 593, 378, 303, 176, 278, 232, 129, 68, 0), # 78
(789, 722, 622, 700, 571, 282, 298, 269, 314, 153, 104, 65, 0, 784, 684, 533, 441, 601, 382, 310, 177, 280, 234, 131, 68, 0), # 79
(796, 729, 633, 705, 576, 284, 302, 271, 318, 154, 105, 66, 0, 793, 687, 537, 446, 612, 390, 315, 180, 283, 237, 133, 68, 0), # 80
(802, 735, 642, 711, 586, 288, 306, 275, 321, 155, 108, 66, 0, 804, 696, 541, 452, 617, 394, 318, 182, 287, 241, 135, 68, 0), # 81
(809, 742, 655, 719, 589, 290, 312, 275, 326, 156, 109, 66, 0, 812, 703, 542, 460, 624, 396, 320, 184, 289, 242, 136, 68, 0), # 82
(816, 749, 658, 725, 591, 293, 314, 276, 328, 158, 110, 66, 0, 823, 711, 546, 465, 631, 397, 324, 187, 296, 243, 139, 68, 0), # 83
(824, 757, 668, 735, 602, 296, 317, 281, 338, 159, 110, 70, 0, 833, 722, 552, 472, 640, 400, 328, 193, 300, 247, 142, 71, 0), # 84
(829, 767, 673, 743, 611, 301, 318, 288, 339, 164, 111, 70, 0, 839, 728, 561, 481, 648, 408, 335, 196, 307, 252, 143, 72, 0), # 85
(841, 769, 686, 750, 623, 303, 322, 290, 344, 164, 114, 72, 0, 849, 741, 569, 485, 658, 412, 336, 199, 309, 256, 145, 72, 0), # 86
(855, 781, 691, 756, 628, 305, 326, 299, 347, 166, 114, 73, 0, 864, 750, 576, 492, 665, 414, 338, 201, 312, 260, 145, 73, 0), # 87
(868, 786, 705, 764, 638, 305, 328, 303, 355, 167, 115, 74, 0, 873, 763, 585, 496, 671, 417, 345, 206, 315, 263, 148, 73, 0), # 88
(880, 793, 708, 770, 648, 311, 334, 304, 358, 167, 115, 75, 0, 886, 772, 590, 500, 680, 420, 349, 209, 320, 267, 149, 74, 0), # 89
(889, 802, 722, 781, 656, 315, 335, 306, 363, 169, 116, 76, 0, 893, 786, 601, 506, 684, 423, 350, 214, 321, 272, 150, 74, 0), # 90
(902, 810, 728, 790, 663, 318, 339, 311, 367, 171, 119, 76, 0, 902, 791, 605, 511, 692, 424, 354, 217, 324, 275, 150, 74, 0), # 91
(916, 819, 737, 797, 674, 323, 342, 315, 372, 174, 120, 76, 0, 917, 802, 612, 518, 703, 428, 359, 220, 326, 279, 152, 74, 0), # 92
(929, 826, 747, 806, 678, 329, 345, 318, 379, 178, 122, 76, 0, 924, 812, 616, 523, 711, 432, 361, 226, 330, 280, 153, 75, 0), # 93
(946, 829, 757, 813, 686, 337, 349, 322, 386, 181, 122, 76, 0, 939, 821, 621, 525, 716, 434, 364, 226, 333, 281, 156, 76, 0), # 94
(954, 840, 766, 819, 696, 343, 354, 325, 388, 184, 123, 76, 0, 950, 825, 628, 529, 722, 442, 367, 226, 337, 284, 156, 80, 0), # 95
(959, 847, 787, 830, 701, 347, 358, 325, 392, 187, 124, 76, 0, 962, 832, 637, 534, 727, 449, 368, 228, 340, 288, 156, 80, 0), # 96
(965, 853, 799, 843, 710, 351, 359, 326, 399, 188, 125, 78, 0, 972, 840, 648, 539, 732, 452, 370, 232, 342, 288, 157, 82, 0), # 97
(982, 858, 810, 849, 714, 356, 364, 330, 404, 189, 125, 79, 0, 980, 850, 652, 544, 738, 454, 373, 234, 345, 290, 158, 83, 0), # 98
(991, 870, 816, 852, 720, 359, 369, 330, 408, 192, 126, 79, 0, 995, 860, 655, 547, 749, 460, 379, 237, 349, 291, 159, 83, 0), # 99
(999, 879, 826, 861, 731, 362, 374, 331, 412, 195, 127, 79, 0, 1006, 869, 664, 551, 754, 464, 383, 240, 352, 293, 161, 85, 0), # 100
(1011, 886, 837, 867, 739, 368, 377, 336, 418, 199, 128, 79, 0, 1016, 881, 668, 556, 761, 469, 387, 243, 354, 297, 163, 86, 0), # 101
(1019, 898, 844, 877, 744, 370, 378, 339, 422, 204, 129, 81, 0, 1025, 890, 672, 558, 769, 472, 390, 248, 357, 299, 166, 90, 0), # 102
(1033, 903, 850, 888, 752, 375, 379, 340, 427, 205, 131, 82, 0, 1034, 896, 680, 558, 775, 475, 391, 250, 364, 304, 167, 91, 0), # 103
(1042, 911, 860, 897, 755, 375, 382, 343, 429, 206, 133, 83, 0, 1043, 906, 685, 566, 783, 478, 394, 253, 370, 307, 169, 92, 0), # 104
(1048, 919, 867, 907, 761, 380, 386, 345, 433, 207, 134, 83, 0, 1048, 913, 688, 574, 787, 479, 399, 254, 373, 310, 171, 93, 0), # 105
(1064, 919, 872, 917, 766, 380, 387, 346, 434, 208, 135, 84, 0, 1064, 917, 695, 580, 791, 479, 401, 257, 375, 310, 172, 93, 0), # 106
(1077, 927, 879, 920, 773, 383, 389, 348, 437, 209, 137, 85, 0, 1074, 924, 705, 586, 797, 483, 405, 262, 380, 312, 175, 94, 0), # 107
(1090, 930, 884, 933, 775, 386, 391, 349, 440, 210, 138, 85, 0, 1085, 938, 709, 588, 805, 485, 409, 264, 385, 314, 179, 96, 0), # 108
(1103, 937, 888, 940, 778, 391, 394, 350, 445, 215, 141, 86, 0, 1092, 943, 718, 592, 812, 487, 411, 265, 391, 315, 183, 96, 0), # 109
(1114, 944, 896, 948, 790, 394, 399, 352, 448, 219, 143, 86, 0, 1102, 951, 720, 598, 815, 489, 415, 270, 395, 316, 184, 97, 0), # 110
(1124, 956, 907, 956, 792, 397, 403, 353, 452, 221, 144, 86, 0, 1116, 961, 726, 601, 821, 494, 416, 276, 399, 320, 186, 97, 0), # 111
(1128, 965, 911, 964, 800, 398, 406, 358, 455, 223, 145, 86, 0, 1124, 967, 730, 606, 830, 495, 419, 278, 404, 323, 188, 98, 0), # 112
(1135, 969, 916, 969, 806, 402, 408, 364, 459, 223, 145, 87, 0, 1134, 975, 735, 611, 840, 498, 422, 282, 406, 327, 190, 100, 0), # 113
(1151, 975, 922, 972, 821, 404, 409, 364, 462, 223, 145, 88, 0, 1143, 980, 742, 619, 849, 501, 425, 283, 409, 330, 191, 102, 0), # 114
(1161, 986, 931, 979, 827, 411, 412, 365, 464, 224, 147, 89, 0, 1148, 991, 749, 622, 855, 506, 427, 285, 411, 331, 192, 102, 0), # 115
(1170, 996, 939, 983, 834, 412, 415, 373, 469, 226, 147, 89, 0, 1156, 1001, 756, 632, 861, 510, 431, 290, 412, 333, 194, 103, 0), # 116
(1177, 1005, 946, 991, 837, 415, 418, 375, 475, 227, 148, 90, 0, 1171, 1003, 760, 638, 867, 515, 436, 293, 415, 336, 194, 104, 0), # 117
(1191, 1010, 954, 995, 846, 417, 421, 377, 477, 228, 150, 90, 0, 1183, 1009, 762, 642, 871, 517, 438, 295, 418, 338, 194, 105, 0), # 118
(1198, 1012, 959, 1001, 852, 417, 422, 380, 479, 229, 151, 90, 0, 1190, 1014, 769, 648, 877, 520, 443, 297, 424, 340, 195, 106, 0), # 119
(1202, 1015, 969, 1008, 861, 421, 424, 385, 484, 229, 153, 90, 0, 1197, 1021, 772, 655, 884, 521, 445, 301, 425, 344, 195, 106, 0), # 120
(1208, 1023, 974, 1016, 870, 424, 429, 387, 489, 230, 155, 90, 0, 1204, 1026, 778, 658, 892, 528, 449, 302, 427, 345, 195, 106, 0), # 121
(1220, 1026, 984, 1020, 875, 426, 431, 390, 492, 231, 157, 90, 0, 1218, 1034, 784, 666, 895, 528, 452, 307, 428, 348, 195, 106, 0), # 122
(1232, 1033, 991, 1032, 886, 428, 433, 393, 499, 231, 158, 90, 0, 1228, 1043, 790, 669, 901, 530, 458, 312, 436, 351, 197, 106, 0), # 123
(1242, 1041, 999, 1034, 895, 431, 433, 394, 502, 233, 158, 91, 0, 1238, 1051, 795, 678, 909, 531, 462, 315, 444, 355, 197, 106, 0), # 124
(1250, 1047, 1006, 1037, 899, 435, 433, 397, 505, 236, 160, 93, 0, 1242, 1056, 799, 680, 915, 534, 465, 318, 447, 356, 198, 108, 0), # 125
(1259, 1057, 1014, 1042, 905, 443, 438, 402, 507, 238, 161, 93, 0, 1249, 1069, 803, 685, 922, 538, 467, 319, 450, 360, 200, 110, 0), # 126
(1281, 1061, 1019, 1052, 915, 446, 438, 404, 510, 239, 163, 94, 0, 1260, 1076, 810, 690, 929, 541, 470, 319, 453, 365, 201, 111, 0), # 127
(1289, 1065, 1029, 1062, 926, 454, 441, 408, 517, 239, 165, 94, 0, 1271, 1083, 817, 697, 938, 542, 471, 319, 456, 367, 205, 111, 0), # 128
(1303, 1073, 1034, 1066, 929, 460, 444, 409, 522, 239, 167, 95, 0, 1276, 1090, 824, 700, 943, 545, 473, 319, 460, 370, 207, 111, 0), # 129
(1313, 1083, 1037, 1075, 936, 467, 447, 411, 527, 242, 167, 97, 0, 1286, 1101, 827, 702, 948, 549, 475, 320, 460, 372, 210, 112, 0), # 130
(1318, 1092, 1046, 1086, 943, 470, 452, 413, 528, 246, 168, 98, 0, 1292, 1105, 833, 704, 952, 553, 477, 321, 463, 374, 211, 113, 0), # 131
(1327, 1103, 1055, 1094, 947, 474, 454, 416, 533, 246, 168, 99, 0, 1297, 1109, 841, 710, 964, 557, 479, 322, 464, 376, 212, 113, 0), # 132
(1332, 1105, 1061, 1103, 954, 476, 459, 418, 535, 248, 169, 99, 0, 1306, 1110, 845, 716, 969, 559, 482, 323, 466, 377, 218, 114, 0), # 133
(1340, 1114, 1071, 1116, 962, 481, 463, 419, 541, 249, 169, 100, 0, 1315, 1122, 847, 720, 982, 561, 486, 327, 470, 379, 220, 115, 0), # 134
(1351, 1122, 1076, 1126, 968, 485, 465, 421, 543, 251, 170, 100, 0, 1320, 1127, 848, 726, 986, 564, 488, 329, 473, 383, 220, 116, 0), # 135
(1359, 1129, 1083, 1134, 972, 489, 467, 421, 551, 254, 170, 100, 0, 1328, 1137, 859, 727, 996, 568, 490, 334, 476, 387, 222, 117, 0), # 136
(1365, 1131, 1093, 1141, 975, 493, 469, 423, 553, 255, 171, 101, 0, 1336, 1143, 865, 730, 1004, 572, 495, 338, 478, 389, 222, 117, 0), # 137
(1372, 1132, 1102, 1148, 982, 494, 471, 425, 556, 255, 171, 101, 0, 1341, 1147, 869, 734, 1010, 575, 497, 342, 484, 391, 225, 117, 0), # 138
(1385, 1137, 1113, 1155, 989, 495, 476, 426, 559, 255, 171, 102, 0, 1349, 1154, 876, 736, 1018, 576, 498, 342, 487, 391, 227, 117, 0), # 139
(1396, 1144, 1119, 1165, 993, 502, 478, 429, 562, 256, 172, 102, 0, 1359, 1159, 882, 740, 1019, 580, 503, 345, 491, 392, 228, 118, 0), # 140
(1402, 1155, 1125, 1172, 999, 505, 478, 430, 566, 259, 174, 102, 0, 1368, 1166, 887, 747, 1023, 583, 506, 348, 496, 393, 229, 120, 0), # 141
(1415, 1159, 1130, 1178, 1003, 509, 480, 433, 569, 259, 175, 102, 0, 1380, 1174, 892, 751, 1032, 585, 512, 351, 500, 400, 231, 120, 0), # 142
(1423, 1166, 1137, 1186, 1007, 515, 484, 434, 574, 262, 175, 104, 0, 1385, 1184, 903, 753, 1042, 588, 514, 352, 503, 400, 234, 122, 0), # 143
(1432, 1172, 1143, 1193, 1017, 518, 484, 437, 578, 265, 176, 104, 0, 1391, 1191, 905, 757, 1048, 592, 517, 355, 509, 401, 235, 123, 0), # 144
(1436, 1175, 1150, 1204, 1026, 525, 486, 441, 586, 267, 176, 105, 0, 1402, 1196, 913, 766, 1057, 596, 520, 356, 511, 404, 237, 124, 0), # 145
(1442, 1179, 1163, 1211, 1031, 526, 487, 443, 590, 267, 176, 105, 0, 1413, 1200, 918, 772, 1061, 600, 526, 358, 516, 408, 239, 124, 0), # 146
(1448, 1184, 1172, 1223, 1036, 530, 487, 445, 595, 268, 176, 106, 0, 1419, 1214, 922, 775, 1065, 603, 527, 362, 521, 411, 239, 124, 0), # 147
(1458, 1189, 1176, 1226, 1046, 532, 487, 446, 597, 268, 178, 106, 0, 1433, 1225, 923, 780, 1073, 605, 530, 365, 525, 412, 242, 124, 0), # 148
(1465, 1198, 1184, 1232, 1050, 535, 489, 446, 602, 270, 181, 106, 0, 1444, 1229, 929, 782, 1077, 609, 533, 367, 527, 413, 242, 124, 0), # 149
(1477, 1202, 1191, 1238, 1060, 535, 490, 449, 604, 272, 182, 107, 0, 1458, 1237, 934, 787, 1083, 614, 539, 368, 529, 415, 244, 125, 0), # 150
(1485, 1211, 1198, 1249, 1064, 537, 493, 454, 605, 273, 184, 107, 0, 1470, 1240, 937, 787, 1087, 617, 541, 370, 534, 417, 246, 125, 0), # 151
(1499, 1220, 1204, 1259, 1075, 541, 495, 457, 609, 275, 184, 107, 0, 1479, 1246, 939, 791, 1092, 620, 544, 371, 539, 419, 247, 127, 0), # 152
(1507, 1227, 1215, 1271, 1078, 543, 498, 460, 616, 276, 186, 108, 0, 1487, 1248, 942, 794, 1094, 624, 548, 373, 542, 421, 249, 127, 0), # 153
(1512, 1234, 1220, 1278, 1082, 545, 500, 464, 622, 277, 188, 108, 0, 1495, 1254, 947, 800, 1103, 627, 549, 377, 544, 423, 249, 127, 0), # 154
(1521, 1237, 1225, 1281, 1086, 546, 500, 466, 623, 279, 191, 108, 0, 1504, 1260, 954, 803, 1111, 629, 553, 381, 545, 424, 250, 127, 0), # 155
(1529, 1241, 1226, 1290, 1094, 547, 504, 466, 630, 279, 192, 108, 0, 1510, 1265, 957, 808, 1120, 633, 558, 384, 546, 424, 250, 128, 0), # 156
(1536, 1247, 1231, 1299, 1099, 551, 508, 471, 632, 281, 193, 108, 0, 1515, 1274, 962, 810, 1130, 641, 559, 386, 548, 428, 251, 128, 0), # 157
(1544, 1252, 1237, 1305, 1109, 553, 509, 474, 640, 282, 198, 108, 0, 1525, 1290, 969, 812, 1132, 643, 560, 389, 554, 431, 254, 128, 0), # 158
(1554, 1255, 1244, 1314, 1114, 554, 514, 477, 644, 283, 199, 108, 0, 1534, 1295, 970, 816, 1137, 645, 561, 391, 557, 436, 255, 129, 0), # 159
(1558, 1263, 1250, 1322, 1121, 557, 514, 479, 645, 285, 199, 108, 0, 1537, 1299, 973, 819, 1143, 648, 566, 392, 559, 439, 255, 129, 0), # 160
(1570, 1265, 1255, 1333, 1126, 560, 516, 480, 649, 288, 200, 109, 0, 1542, 1303, 980, 822, 1147, 649, 569, 396, 560, 439, 255, 129, 0), # 161
(1570, 1269, 1265, 1340, 1132, 563, 521, 484, 650, 289, 204, 110, 0, 1551, 1309, 987, 825, 1156, 652, 572, 401, 563, 440, 255, 129, 0), # 162
(1579, 1273, 1271, 1346, 1138, 565, 526, 487, 655, 290, 207, 111, 0, 1559, 1313, 993, 826, 1161, 655, 582, 403, 565, 441, 257, 131, 0), # 163
(1587, 1278, 1278, 1354, 1142, 568, 526, 492, 655, 290, 208, 111, 0, 1569, 1317, 997, 827, 1169, 657, 582, 406, 568, 442, 257, 131, 0), # 164
(1595, 1281, 1281, 1357, 1147, 574, 527, 493, 657, 292, 209, 112, 0, 1573, 1324, 1005, 830, 1173, 659, 583, 406, 569, 445, 258, 131, 0), # 165
(1607, 1286, 1287, 1359, 1154, 578, 530, 494, 658, 292, 210, 112, 0, 1583, 1329, 1012, 833, 1177, 662, 584, 406, 572, 449, 259, 132, 0), # 166
(1616, 1292, 1293, 1364, 1159, 583, 531, 495, 660, 294, 210, 112, 0, 1592, 1335, 1014, 835, 1185, 665, 585, 408, 574, 451, 261, 132, 0), # 167
(1623, 1293, 1297, 1371, 1165, 584, 533, 496, 665, 296, 211, 113, 0, 1598, 1339, 1015, 837, 1192, 670, 586, 410, 575, 453, 262, 132, 0), # 168
(1637, 1295, 1301, 1375, 1169, 588, 533, 497, 667, 297, 213, 114, 0, 1603, 1344, 1022, 838, 1202, 673, 587, 410, 577, 455, 262, 132, 0), # 169
(1640, 1300, 1308, 1378, 1172, 591, 533, 499, 669, 298, 214, 114, 0, 1614, 1346, 1025, 839, 1203, 679, 589, 412, 580, 458, 263, 132, 0), # 170
(1643, 1301, 1315, 1381, 1174, 592, 534, 501, 672, 298, 216, 115, 0, 1621, 1349, 1032, 840, 1209, 682, 590, 412, 584, 460, 264, 132, 0), # 171
(1646, 1303, 1322, 1387, 1177, 594, 539, 502, 673, 298, 216, 115, 0, 1628, 1353, 1035, 841, 1218, 686, 591, 414, 585, 466, 266, 132, 0), # 172
(1654, 1305, 1326, 1389, 1180, 595, 539, 502, 673, 298, 217, 116, 0, 1635, 1356, 1040, 841, 1223, 688, 592, 416, 585, 467, 266, 133, 0), # 173
(1663, 1310, 1329, 1393, 1182, 597, 541, 505, 674, 299, 217, 116, 0, 1642, 1359, 1040, 843, 1229, 689, 593, 417, 586, 468, 267, 133, 0), # 174
(1671, 1312, 1333, 1397, 1189, 597, 542, 506, 677, 302, 217, 116, 0, 1648, 1364, 1043, 844, 1234, 690, 595, 420, 587, 468, 267, 133, 0), # 175
(1675, 1317, 1338, 1400, 1193, 600, 545, 507, 678, 302, 217, 116, 0, 1650, 1365, 1046, 844, 1238, 691, 596, 421, 588, 469, 269, 133, 0), # 176
(1681, 1320, 1345, 1403, 1200, 602, 545, 508, 678, 304, 217, 118, 0, 1657, 1371, 1049, 847, 1245, 691, 597, 422, 591, 473, 269, 135, 0), # 177
(1686, 1322, 1349, 1404, 1201, 604, 546, 509, 680, 305, 218, 118, 0, 1663, 1373, 1052, 848, 1247, 691, 598, 423, 593, 474, 270, 135, 0), # 178
(1686, 1322, 1349, 1404, 1201, 604, 546, 509, 680, 305, 218, 118, 0, 1663, 1373, 1052, 848, 1247, 691, 598, 423, 593, 474, 270, 135, 0), # 179
)
passenger_arriving_rate = (
(5.020865578371768, 5.064847846385402, 4.342736024677089, 4.661000830397574, 3.7031237384064077, 1.8308820436884476, 2.0730178076869574, 1.938823405408093, 2.030033020722669, 0.9895037538805926, 0.7008775273142672, 0.4081595898588478, 0.0, 5.083880212578363, 4.489755488447325, 3.5043876365713356, 2.968511261641777, 4.060066041445338, 2.7143527675713304, 2.0730178076869574, 1.3077728883488913, 1.8515618692032039, 1.5536669434658585, 0.8685472049354179, 0.4604407133077639, 0.0), # 0
(5.354327152019974, 5.399222302966028, 4.629455492775127, 4.968858189957462, 3.948326891649491, 1.9518237573581576, 2.209734470631847, 2.066464051210712, 2.164081775444303, 1.0547451730692876, 0.7471826893260219, 0.4351013884011963, 0.0, 5.419791647439855, 4.786115272413158, 3.73591344663011, 3.164235519207862, 4.328163550888606, 2.8930496716949965, 2.209734470631847, 1.3941598266843982, 1.9741634458247455, 1.6562860633191545, 0.9258910985550255, 0.49083839117872996, 0.0), # 1
(5.686723008979731, 5.732269739983398, 4.915035237956178, 5.275490778498595, 4.192641982499829, 2.072282983465593, 2.345909253980352, 2.193593853293508, 2.297595602292516, 1.1197284437551367, 0.7933038581293855, 0.46193605433775464, 0.0, 5.75436482820969, 5.0812965977153, 3.9665192906469278, 3.3591853312654094, 4.595191204585032, 3.0710313946109116, 2.345909253980352, 1.480202131046852, 2.0963209912499146, 1.758496926166199, 0.9830070475912357, 0.5211154309075817, 0.0), # 2
(6.016757793146562, 6.062668793441743, 5.198342391099879, 5.579682305649055, 4.435107784001268, 2.191782029841316, 2.4810018208239777, 2.3197088156227115, 2.430045053640364, 1.1841956746065454, 0.8390580686378972, 0.4885571404108718, 0.0, 6.086272806254225, 5.374128544519589, 4.195290343189486, 3.5525870238196355, 4.860090107280728, 3.247592341871796, 2.4810018208239777, 1.5655585927437972, 2.217553892000634, 1.8598941018830188, 1.0396684782199759, 0.551151708494704, 0.0), # 3
(6.343136148415981, 6.389098099345293, 5.478244083085864, 5.880216481036927, 4.674763069197661, 2.3098432043158894, 2.6144718342542292, 2.444304942164548, 2.560900681860902, 1.24788897429192, 0.8842623557650959, 0.514858199362897, 0.0, 6.414188632939817, 5.6634401929918665, 4.42131177882548, 3.743666922875759, 5.121801363721804, 3.422026919030367, 2.6144718342542292, 1.6498880030827783, 2.3373815345988307, 1.9600721603456428, 1.095648816617173, 0.5808270999404813, 0.0), # 4
(6.66456271868351, 6.710236293698289, 5.753607444793765, 6.175877014290295, 4.910646611132853, 2.4259888147198754, 2.745778957362612, 2.566878236885247, 2.689633039327186, 1.310550451479666, 0.9287337544245222, 0.5407327839361791, 0.0, 6.736785359632827, 5.948060623297969, 4.64366877212261, 3.9316513544389973, 5.379266078654372, 3.593629531639346, 2.745778957362612, 1.7328491533713395, 2.4553233055664263, 2.058625671430099, 1.1507214889587531, 0.6100214812452991, 0.0), # 5
(6.979742147844666, 7.024762012504959, 6.023299607103222, 6.465447615037239, 5.141797182850695, 2.5397411688838374, 2.8743828532406313, 2.686924703751037, 2.8157126784122717, 1.3719222148381898, 0.9722892995297139, 0.5660744468730674, 0.0, 7.052736037699606, 6.22681891560374, 4.8614464976485685, 4.115766644514569, 5.631425356824543, 3.761694585251452, 2.8743828532406313, 1.8141008349170267, 2.5708985914253475, 2.1551492050124135, 1.2046599214206444, 0.6386147284095418, 0.0), # 6
(7.2873790797949685, 7.331353891769537, 6.286187700893863, 6.747711992905847, 5.367253557395036, 2.650622574638337, 2.9997431849797924, 2.8039403467281465, 2.9386101514892147, 1.4317463730358968, 1.0147460259942116, 0.5907767409159108, 0.0, 7.360713718506519, 6.498544150075018, 5.073730129971057, 4.2952391191076895, 5.877220302978429, 3.9255164854194056, 2.9997431849797924, 1.8933018390273837, 2.683626778697518, 2.249237330968616, 1.2572375401787725, 0.6664867174335943, 0.0), # 7
(7.586178158429934, 7.628690567496257, 6.54113885704533, 7.021453857524196, 5.586054507809724, 2.7581553398139356, 3.1213196156715988, 2.917421169782802, 3.0577960109310682, 1.4897650347411937, 1.0559209687315536, 0.6147332188070586, 0.0, 7.659391453419917, 6.762065406877643, 5.279604843657768, 4.469295104223581, 6.1155920218621365, 4.084389637695923, 3.1213196156715988, 1.970110957009954, 2.793027253904862, 2.3404846191747324, 1.3082277714090662, 0.6935173243178416, 0.0), # 8
(7.874844027645085, 7.915450675689353, 6.787020206437253, 7.285456918520376, 5.797238807138606, 2.861861772241199, 3.23857180840756, 3.0268631768812346, 3.1727408091108913, 1.5457203086224858, 1.0956311626552797, 0.6378374332888596, 0.0, 7.947442293806162, 7.016211766177453, 5.478155813276398, 4.637160925867456, 6.345481618221783, 4.237608447633728, 3.23857180840756, 2.044186980172285, 2.898619403569303, 2.4284856395067926, 1.3574040412874508, 0.7195864250626686, 0.0), # 9
(8.152081331335932, 8.190312852353056, 7.022698879949271, 7.538504885522466, 5.999845228425533, 2.961264179750688, 3.3509594262791773, 3.1317623719896712, 3.282915098401738, 1.599354303348179, 1.133693642678929, 0.6599829371036627, 0.0, 8.22353929103161, 7.259812308140289, 5.668468213394645, 4.798062910044536, 6.565830196803476, 4.384467320785539, 3.3509594262791773, 2.11518869982192, 2.9999226142127666, 2.5128349618408223, 1.4045397759898541, 0.7445738956684597, 0.0), # 10
(8.416594713398005, 8.451955733491605, 7.247042008461013, 7.779381468158547, 6.192912544714355, 3.055884870172965, 3.457942132377958, 3.2316147590743394, 3.3877894311766643, 1.6504091275866801, 1.1699254437160416, 0.6810632829938176, 0.0, 8.486355496462611, 7.491696112931993, 5.849627218580208, 4.951227382760039, 6.775578862353329, 4.524260662704076, 3.457942132377958, 2.1827749072664036, 3.0964562723571776, 2.5931271560528497, 1.4494084016922026, 0.7683596121356006, 0.0), # 11
(8.667088817726812, 8.699057955109222, 7.458916722852117, 8.006870376056709, 6.375479529048918, 3.1452461513385908, 3.5589795897954057, 3.325916342101467, 3.486834359808726, 1.6986268900063934, 1.2041436006801558, 0.7009720237016724, 0.0, 8.734563961465534, 7.710692260718395, 6.020718003400779, 5.095880670019179, 6.973668719617452, 4.656282878942054, 3.5589795897954057, 2.246604393813279, 3.187739764524459, 2.6689567920189035, 1.4917833445704234, 0.7908234504644749, 0.0), # 12
(8.902268288217876, 8.93029815321015, 7.657190154002218, 8.219755318845033, 6.546584954473067, 3.2288703310781304, 3.653531461623028, 3.414163125037284, 3.579520436670977, 1.7437496992757264, 1.2361651484848115, 0.7196027119695768, 0.0, 8.966837737406735, 7.915629831665344, 6.180825742424058, 5.2312490978271775, 7.159040873341954, 4.7798283750521975, 3.653531461623028, 2.306335950770093, 3.2732924772365335, 2.7399184396150114, 1.5314380308004438, 0.8118452866554684, 0.0), # 13
(9.120837768766716, 9.144354963798623, 7.840729432790956, 8.416820006151594, 6.705267594030659, 3.306279717222145, 3.7410574109523305, 3.4958511118480193, 3.6653182141364735, 1.785519664063084, 1.2658071220435476, 0.7368489005398801, 0.0, 9.181849875652563, 8.10533790593868, 6.329035610217737, 5.3565589921892505, 7.330636428272947, 4.894191556587227, 3.7410574109523305, 2.3616283694443894, 3.3526337970153297, 2.8056066687171985, 1.5681458865581912, 0.8313049967089657, 0.0), # 14
(9.321501903268855, 9.339907022878865, 8.008401690097953, 8.59684814760449, 6.850566220765538, 3.376996617601199, 3.821017100874813, 3.5704763064998986, 3.743698244578273, 1.823678893036873, 1.2928865562699035, 0.752604142154931, 0.0, 9.37827342756938, 8.27864556370424, 6.464432781349516, 5.471036679110618, 7.487396489156546, 4.998666829099858, 3.821017100874813, 2.4121404411437135, 3.425283110382769, 2.865616049201497, 1.6016803380195905, 0.8490824566253515, 0.0), # 15
(9.5029653356198, 9.51563296645512, 8.159074056802854, 8.758623452831788, 6.981519607721555, 3.4405433400458514, 3.892870194481988, 3.6375347129591504, 3.8141310803694286, 1.8579694948654994, 1.3172204860774188, 0.7667619895570784, 0.0, 9.554781444523545, 8.434381885127861, 6.586102430387094, 5.5739084845964975, 7.628262160738857, 5.092548598142811, 3.892870194481988, 2.4575309571756083, 3.4907598038607777, 2.9195411509439295, 1.6318148113605708, 0.8650575424050111, 0.0), # 16
(9.663932709715075, 9.670211430531618, 8.291613663785293, 8.900929631461583, 7.097166527942559, 3.4964421923866666, 3.9560763548653552, 3.6965223351920073, 3.8760872738829946, 1.8881335782173672, 1.3386259463796333, 0.7792159954886714, 0.0, 9.710046977881415, 8.571375950375383, 6.693129731898166, 5.6644007346521, 7.752174547765989, 5.17513126926881, 3.9560763548653552, 2.4974587088476192, 3.5485832639712793, 2.9669765438205284, 1.6583227327570589, 0.8791101300483289, 0.0), # 17
(9.803108669450204, 9.802321051112584, 8.404887641924901, 9.022550393121959, 7.1965457544723925, 3.5442154824542103, 4.010095245116426, 3.746935177164692, 3.929037377492032, 1.9139132517608846, 1.3569199720900849, 0.7898597126920597, 0.0, 9.842743079009345, 8.688456839612655, 6.784599860450424, 5.741739755282652, 7.858074754984064, 5.245709248030569, 4.010095245116426, 2.531582487467293, 3.5982728772361963, 3.0075167977073205, 1.6809775283849802, 0.8911200955556896, 0.0), # 18
(9.919197858720699, 9.910640464202265, 8.497763122101317, 9.122269447440985, 7.2786960603549105, 3.5833855180790386, 4.054386528326697, 3.7882692428434357, 3.9724519435695926, 1.9350506241644574, 1.3719195981223131, 0.7985866939095915, 0.0, 9.951542799273696, 8.784453633005505, 6.859597990611565, 5.80515187249337, 7.944903887139185, 5.30357693998081, 4.054386528326697, 2.55956108434217, 3.6393480301774552, 3.0407564824803295, 1.6995526244202632, 0.9009673149274788, 0.0), # 19
(10.010904921422082, 9.993848305804882, 8.569107235194169, 9.198870504046766, 7.342656218633962, 3.613474607091719, 4.088409867587681, 3.8200205361944657, 4.005801524488732, 1.95128780409649, 1.3834418593898585, 0.805290491883616, 0.0, 10.035119190040824, 8.858195410719775, 6.9172092969492915, 5.853863412289469, 8.011603048977465, 5.348028750672252, 4.088409867587681, 2.5810532907797996, 3.671328109316981, 3.0662901680155894, 1.713821447038834, 0.9085316641640803, 0.0), # 20
(10.076934501449866, 10.050623211924679, 8.6177871120831, 9.251137272567364, 7.387465002353392, 3.6340050573228124, 4.1116249259908795, 3.84168506118401, 4.028556672622507, 1.9623669002253892, 1.39130379080626, 0.8098646593564828, 0.0, 10.092145302677078, 8.90851125292131, 6.9565189540313, 5.887100700676166, 8.057113345245014, 5.378359085657614, 4.1116249259908795, 2.5957178980877234, 3.693732501176696, 3.0837124241891223, 1.72355742241662, 0.91369301926588, 0.0), # 21
(10.115991242699579, 10.079643818565883, 8.642669883647738, 9.277853462630876, 7.41216118455705, 3.644499176602881, 4.1234913666278, 3.852758821778298, 4.040187940343971, 1.968030021219561, 1.3953224272850568, 0.8122027490705409, 0.0, 10.121294188548827, 8.934230239775948, 6.976612136425284, 5.904090063658682, 8.080375880687942, 5.393862350489617, 4.1234913666278, 2.6032136975734863, 3.706080592278525, 3.09261782087696, 1.7285339767295478, 0.9163312562332622, 0.0), # 22
(10.13039336334264, 10.083079961133974, 8.645769318701419, 9.281198109567903, 7.418488037355065, 3.6458333333333335, 4.124902001129669, 3.8539557613168727, 4.0416420781893, 1.9686980681298587, 1.3958263395269568, 0.8124914647157445, 0.0, 10.125, 8.93740611187319, 6.9791316976347835, 5.906094204389575, 8.0832841563786, 5.395538065843622, 4.124902001129669, 2.604166666666667, 3.7092440186775324, 3.0937327031893016, 1.729153863740284, 0.9166436328303613, 0.0), # 23
(10.141012413034153, 10.08107561728395, 8.645262345679013, 9.280786458333335, 7.422071742409901, 3.6458333333333335, 4.124126906318083, 3.852291666666667, 4.041447222222222, 1.968287654320988, 1.39577076318743, 0.8124238683127573, 0.0, 10.125, 8.936662551440328, 6.978853815937151, 5.904862962962962, 8.082894444444443, 5.393208333333334, 4.124126906318083, 2.604166666666667, 3.7110358712049507, 3.0935954861111123, 1.7290524691358027, 0.9164614197530866, 0.0), # 24
(10.15140723021158, 10.077124771376313, 8.644261545496114, 9.279972029320987, 7.4255766303963355, 3.6458333333333335, 4.122599451303155, 3.8490226337448563, 4.041062242798354, 1.96747970964792, 1.3956605665710604, 0.8122904282883707, 0.0, 10.125, 8.935194711172077, 6.978302832855302, 5.902439128943758, 8.082124485596708, 5.388631687242799, 4.122599451303155, 2.604166666666667, 3.7127883151981678, 3.0933240097736636, 1.728852309099223, 0.9161022519433014, 0.0), # 25
(10.161577019048034, 10.071287780064015, 8.642780635573846, 9.278764081790122, 7.429002578947403, 3.6458333333333335, 4.120343359154361, 3.8442103909465026, 4.0404920781893, 1.9662876771833566, 1.3954967473084758, 0.8120929736320684, 0.0, 10.125, 8.933022709952752, 6.977483736542379, 5.898863031550069, 8.0809841563786, 5.381894547325103, 4.120343359154361, 2.604166666666667, 3.7145012894737013, 3.0929213605967085, 1.7285561271147696, 0.915571616369456, 0.0), # 26
(10.171520983716636, 10.063624999999998, 8.640833333333333, 9.277171874999999, 7.432349465696142, 3.6458333333333335, 4.117382352941177, 3.837916666666667, 4.039741666666666, 1.9647250000000003, 1.3952803030303031, 0.8118333333333335, 0.0, 10.125, 8.930166666666667, 6.976401515151515, 5.894175, 8.079483333333332, 5.373083333333334, 4.117382352941177, 2.604166666666667, 3.716174732848071, 3.0923906250000006, 1.7281666666666669, 0.914875, 0.0), # 27
(10.181238328390501, 10.054196787837219, 8.638433356195703, 9.275204668209877, 7.4356171682756, 3.6458333333333335, 4.113740155733075, 3.830203189300412, 4.038815946502057, 1.9628051211705537, 1.3950122313671698, 0.8115133363816492, 0.0, 10.125, 8.926646700198141, 6.9750611568358485, 5.88841536351166, 8.077631893004114, 5.3622844650205765, 4.113740155733075, 2.604166666666667, 3.7178085841378, 3.091734889403293, 1.7276866712391405, 0.9140178898033837, 0.0), # 28
(10.19072825724275, 10.043063500228623, 8.635594421582077, 9.272871720679012, 7.438805564318813, 3.6458333333333335, 4.109440490599533, 3.821131687242798, 4.037719855967078, 1.9605414837677189, 1.3946935299497027, 0.811134811766499, 0.0, 10.125, 8.922482929431489, 6.973467649748514, 5.881624451303155, 8.075439711934155, 5.349584362139917, 4.109440490599533, 2.604166666666667, 3.7194027821594067, 3.0909572402263383, 1.7271188843164156, 0.9130057727480568, 0.0), # 29
(10.199989974446497, 10.03028549382716, 8.63233024691358, 9.270182291666666, 7.441914531458824, 3.6458333333333335, 4.104507080610022, 3.8107638888888884, 4.036458333333333, 1.957947530864198, 1.39432519640853, 0.8106995884773662, 0.0, 10.125, 8.917695473251028, 6.9716259820426485, 5.873842592592593, 8.072916666666666, 5.335069444444444, 4.104507080610022, 2.604166666666667, 3.720957265729412, 3.0900607638888897, 1.7264660493827162, 0.9118441358024693, 0.0), # 30
(10.209022684174858, 10.01592312528578, 8.62865454961134, 9.267145640432098, 7.444943947328672, 3.6458333333333335, 4.09896364883402, 3.799161522633745, 4.035036316872428, 1.9550367055326936, 1.3939082283742779, 0.8102094955037343, 0.0, 10.125, 8.912304450541077, 6.969541141871389, 5.865110116598079, 8.070072633744855, 5.318826131687243, 4.09896364883402, 2.604166666666667, 3.722471973664336, 3.0890485468107003, 1.7257309099222682, 0.910538465935071, 0.0), # 31
(10.217825590600954, 10.00003675125743, 8.624581047096479, 9.263771026234568, 7.447893689561397, 3.6458333333333335, 4.092833918340999, 3.7863863168724285, 4.033458744855967, 1.951822450845908, 1.3934436234775742, 0.8096663618350862, 0.0, 10.125, 8.906329980185948, 6.96721811738787, 5.8554673525377225, 8.066917489711933, 5.3009408436214, 4.092833918340999, 2.604166666666667, 3.7239468447806985, 3.0879236754115236, 1.7249162094192958, 0.909094250114312, 0.0), # 32
(10.226397897897897, 9.98268672839506, 8.620123456790123, 9.260067708333333, 7.450763635790041, 3.6458333333333335, 4.086141612200436, 3.7725000000000004, 4.031730555555555, 1.9483182098765437, 1.392932379349046, 0.8090720164609053, 0.0, 10.125, 8.899792181069957, 6.96466189674523, 5.84495462962963, 8.06346111111111, 5.2815, 4.086141612200436, 2.604166666666667, 3.7253818178950207, 3.086689236111112, 1.724024691358025, 0.9075169753086421, 0.0), # 33
(10.23473881023881, 9.963933413351622, 8.615295496113397, 9.256044945987654, 7.453553663647644, 3.6458333333333335, 4.078910453481805, 3.7575643004115222, 4.029856687242798, 1.9445374256973027, 1.3923754936193207, 0.8084282883706753, 0.0, 10.125, 8.892711172077426, 6.961877468096604, 5.833612277091907, 8.059713374485597, 5.260590020576132, 4.078910453481805, 2.604166666666667, 3.726776831823822, 3.085348315329219, 1.7230590992226795, 0.9058121284865113, 0.0), # 34
(10.242847531796807, 9.943837162780063, 8.610110882487428, 9.25171199845679, 7.456263650767246, 3.6458333333333335, 4.071164165254579, 3.741640946502058, 4.0278420781893, 1.9404935413808875, 1.3917739639190256, 0.807737006553879, 0.0, 10.125, 8.88510707209267, 6.958869819595128, 5.821480624142661, 8.0556841563786, 5.238297325102881, 4.071164165254579, 2.604166666666667, 3.728131825383623, 3.0839039994855972, 1.7220221764974855, 0.9039851966163696, 0.0), # 35
(10.250723266745005, 9.922458333333331, 8.604583333333334, 9.247078125, 7.45889347478189, 3.6458333333333335, 4.062926470588235, 3.724791666666667, 4.025691666666666, 1.9362000000000004, 1.391128787878788, 0.8070000000000002, 0.0, 10.125, 8.877, 6.95564393939394, 5.8086, 8.051383333333332, 5.214708333333334, 4.062926470588235, 2.604166666666667, 3.729446737390945, 3.0823593750000007, 1.7209166666666669, 0.9020416666666666, 0.0), # 36
(10.258365219256524, 9.89985728166438, 8.598726566072246, 9.242152584876543, 7.4614430133246135, 3.6458333333333335, 4.054221092552247, 3.707078189300412, 4.023410390946502, 1.931670244627344, 1.3904409631292352, 0.8062190976985216, 0.0, 10.125, 8.868410074683737, 6.952204815646175, 5.79501073388203, 8.046820781893004, 5.189909465020577, 4.054221092552247, 2.604166666666667, 3.7307215066623067, 3.080717528292182, 1.7197453132144491, 0.8999870256058529, 0.0), # 37
(10.265772593504476, 9.876094364426155, 8.592554298125286, 9.23694463734568, 7.46391214402846, 3.6458333333333335, 4.04507175421609, 3.6885622427983544, 4.021003189300411, 1.92691771833562, 1.3897114873009937, 0.8053961286389272, 0.0, 10.125, 8.859357415028198, 6.948557436504967, 5.780753155006859, 8.042006378600822, 5.163987139917697, 4.04507175421609, 2.604166666666667, 3.73195607201423, 3.078981545781894, 1.7185108596250571, 0.8978267604023779, 0.0), # 38
(10.272944593661986, 9.851229938271604, 8.586080246913582, 9.231463541666667, 7.466300744526468, 3.6458333333333335, 4.035502178649238, 3.6693055555555554, 4.0184750000000005, 1.9219558641975314, 1.3889413580246914, 0.8045329218106996, 0.0, 10.125, 8.849862139917693, 6.944706790123457, 5.765867592592593, 8.036950000000001, 5.137027777777778, 4.035502178649238, 2.604166666666667, 3.733150372263234, 3.07715451388889, 1.7172160493827164, 0.8955663580246914, 0.0), # 39
(10.279880423902163, 9.82532435985368, 8.579318129858253, 9.225718557098766, 7.468608692451679, 3.6458333333333335, 4.025536088921165, 3.649369855967079, 4.015830761316872, 1.9167981252857802, 1.3881315729309558, 0.8036313062033228, 0.0, 10.125, 8.83994436823655, 6.940657864654778, 5.750394375857339, 8.031661522633744, 5.1091177983539104, 4.025536088921165, 2.604166666666667, 3.7343043462258394, 3.0752395190329227, 1.7158636259716507, 0.8932113054412438, 0.0), # 40
(10.286579288398128, 9.79843798582533, 8.57228166438043, 9.219718942901235, 7.4708358654371345, 3.6458333333333335, 4.015197208101347, 3.628816872427984, 4.0130754115226335, 1.9114579446730684, 1.3872831296504138, 0.8026931108062796, 0.0, 10.125, 8.829624218869075, 6.936415648252069, 5.734373834019204, 8.026150823045267, 5.0803436213991775, 4.015197208101347, 2.604166666666667, 3.7354179327185673, 3.073239647633746, 1.7144563328760862, 0.8907670896204848, 0.0), # 41
(10.293040391323, 9.770631172839506, 8.564984567901236, 9.213473958333335, 7.472982141115872, 3.6458333333333335, 4.004509259259259, 3.6077083333333335, 4.010213888888889, 1.9059487654320992, 1.3863970258136926, 0.8017201646090536, 0.0, 10.125, 8.818921810699589, 6.931985129068463, 5.717846296296297, 8.020427777777778, 5.050791666666667, 4.004509259259259, 2.604166666666667, 3.736491070557936, 3.0711579861111122, 1.7129969135802474, 0.8882391975308643, 0.0), # 42
(10.299262936849892, 9.741964277549155, 8.557440557841794, 9.206992862654321, 7.475047397120935, 3.6458333333333335, 3.993495965464375, 3.58610596707819, 4.007251131687243, 1.9002840306355744, 1.3854742590514195, 0.800714296601128, 0.0, 10.125, 8.807857262612407, 6.927371295257098, 5.700852091906722, 8.014502263374485, 5.020548353909466, 3.993495965464375, 2.604166666666667, 3.7375236985604676, 3.0689976208847747, 1.7114881115683587, 0.8856331161408324, 0.0), # 43
(10.305246129151927, 9.712497656607225, 8.549663351623229, 9.200284915123458, 7.477031511085363, 3.6458333333333335, 3.9821810497861696, 3.564071502057614, 4.0041920781893, 1.8944771833561962, 1.3845158269942222, 0.7996773357719861, 0.0, 10.125, 8.796450693491845, 6.92257913497111, 5.683431550068587, 8.0083841563786, 4.98970010288066, 3.9821810497861696, 2.604166666666667, 3.7385157555426813, 3.0667616383744867, 1.709932670324646, 0.8829543324188387, 0.0), # 44
(10.310989172402216, 9.682291666666666, 8.541666666666668, 9.193359375, 7.478934360642197, 3.6458333333333335, 3.9705882352941178, 3.541666666666667, 4.001041666666666, 1.8885416666666672, 1.3835227272727273, 0.798611111111111, 0.0, 10.125, 8.784722222222221, 6.917613636363637, 5.665625, 8.002083333333331, 4.958333333333334, 3.9705882352941178, 2.604166666666667, 3.7394671803210984, 3.064453125000001, 1.7083333333333335, 0.8802083333333335, 0.0), # 45
(10.31649127077388, 9.65140666438043, 8.533464220393233, 9.186225501543209, 7.480755823424477, 3.6458333333333335, 3.958741245057694, 3.518953189300412, 3.997804835390946, 1.8824909236396894, 1.3824959575175624, 0.7975174516079867, 0.0, 10.125, 8.772691967687852, 6.912479787587812, 5.647472770919067, 7.995609670781892, 4.926534465020577, 3.958741245057694, 2.604166666666667, 3.7403779117122387, 3.062075167181071, 1.7066928440786466, 0.8774006058527665, 0.0), # 46
(10.321751628440035, 9.619903006401461, 8.525069730224052, 9.178892554012345, 7.482495777065244, 3.6458333333333335, 3.9466638021463734, 3.4959927983539094, 3.994486522633745, 1.8763383973479657, 1.3814365153593549, 0.7963981862520958, 0.0, 10.125, 8.760380048773053, 6.9071825767967745, 5.629015192043896, 7.98897304526749, 4.894389917695474, 3.9466638021463734, 2.604166666666667, 3.741247888532622, 3.0596308513374493, 1.7050139460448106, 0.8745366369455876, 0.0), # 47
(10.326769449573796, 9.587841049382716, 8.516496913580248, 9.171369791666667, 7.48415409919754, 3.6458333333333335, 3.9343796296296296, 3.4728472222222226, 3.9910916666666667, 1.8700975308641978, 1.3803453984287317, 0.7952551440329219, 0.0, 10.125, 8.74780658436214, 6.901726992143659, 5.610292592592592, 7.982183333333333, 4.861986111111112, 3.9343796296296296, 2.604166666666667, 3.74207704959877, 3.05712326388889, 1.7032993827160496, 0.871621913580247, 0.0), # 48
(10.331543938348286, 9.555281149977136, 8.507759487882945, 9.163666473765433, 7.485730667454405, 3.6458333333333335, 3.9219124505769383, 3.4495781893004116, 3.987625205761317, 1.8637817672610888, 1.3792236043563206, 0.7940901539399483, 0.0, 10.125, 8.73499169333943, 6.896118021781603, 5.5913453017832655, 7.975250411522634, 4.829409465020577, 3.9219124505769383, 2.604166666666667, 3.7428653337272024, 3.054555491255145, 1.7015518975765893, 0.8686619227251944, 0.0), # 49
(10.336074298936616, 9.522283664837678, 8.49887117055327, 9.155791859567902, 7.4872253594688765, 3.6458333333333335, 3.909285988057775, 3.4262474279835393, 3.9840920781893, 1.85740454961134, 1.3780721307727481, 0.7929050449626583, 0.0, 10.125, 8.72195549458924, 6.89036065386374, 5.572213648834019, 7.9681841563786, 4.796746399176955, 3.909285988057775, 2.604166666666667, 3.7436126797344382, 3.051930619855968, 1.6997742341106543, 0.86566215134888, 0.0), # 50
(10.34035973551191, 9.488908950617283, 8.489845679012346, 9.147755208333333, 7.488638052873998, 3.6458333333333335, 3.896523965141612, 3.4029166666666666, 3.9804972222222226, 1.8509793209876546, 1.3768919753086422, 0.7917016460905352, 0.0, 10.125, 8.708718106995885, 6.884459876543211, 5.552937962962963, 7.960994444444445, 4.764083333333334, 3.896523965141612, 2.604166666666667, 3.744319026436999, 3.049251736111112, 1.6979691358024693, 0.8626280864197532, 0.0), # 51
(10.344399452247279, 9.455217363968908, 8.480696730681299, 9.139565779320987, 7.489968625302809, 3.6458333333333335, 3.883650104897926, 3.3796476337448556, 3.976845576131687, 1.8445195244627348, 1.3756841355946297, 0.7904817863130622, 0.0, 10.125, 8.695299649443683, 6.878420677973147, 5.533558573388203, 7.953691152263374, 4.731506687242798, 3.883650104897926, 2.604166666666667, 3.7449843126514044, 3.04652192644033, 1.69613934613626, 0.8595652149062645, 0.0), # 52
(10.348192653315843, 9.421269261545497, 8.471438042981255, 9.131232831790122, 7.491216954388353, 3.6458333333333335, 3.8706881303961915, 3.3565020576131688, 3.9731420781893005, 1.8380386031092826, 1.3744496092613379, 0.7892472946197227, 0.0, 10.125, 8.681720240816947, 6.872248046306688, 5.514115809327846, 7.946284156378601, 4.699102880658437, 3.8706881303961915, 2.604166666666667, 3.7456084771941764, 3.043744277263375, 1.694287608596251, 0.8564790237768635, 0.0), # 53
(10.351738542890716, 9.387125000000001, 8.462083333333332, 9.122765625, 7.492382917763668, 3.6458333333333335, 3.8576617647058824, 3.333541666666666, 3.9693916666666667, 1.8315500000000005, 1.3731893939393938, 0.788, 0.0, 10.125, 8.668, 6.865946969696969, 5.49465, 7.938783333333333, 4.666958333333333, 3.8576617647058824, 2.604166666666667, 3.746191458881834, 3.040921875000001, 1.6924166666666667, 0.8533750000000002, 0.0), # 54
(10.355036325145022, 9.352844935985367, 8.452646319158665, 9.114173418209877, 7.493466393061793, 3.6458333333333335, 3.844594730896474, 3.3108281893004117, 3.9655992798353905, 1.8250671582075908, 1.3719044872594257, 0.7867417314433777, 0.0, 10.125, 8.654159045877153, 6.859522436297127, 5.4752014746227715, 7.931198559670781, 4.6351594650205765, 3.844594730896474, 2.604166666666667, 3.7467331965308963, 3.0380578060699595, 1.6905292638317333, 0.8502586305441244, 0.0), # 55
(10.358085204251871, 9.31848942615455, 8.443140717878373, 9.105465470679011, 7.4944672579157725, 3.6458333333333335, 3.8315107520374405, 3.288423353909465, 3.961769855967078, 1.818603520804756, 1.3705958868520598, 0.7854743179393385, 0.0, 10.125, 8.640217497332722, 6.852979434260299, 5.455810562414267, 7.923539711934156, 4.603792695473251, 3.8315107520374405, 2.604166666666667, 3.7472336289578863, 3.035155156893005, 1.6886281435756747, 0.8471354023776865, 0.0), # 56
(10.360884384384383, 9.284118827160494, 8.433580246913582, 9.096651041666666, 7.495385389958644, 3.6458333333333335, 3.818433551198257, 3.2663888888888892, 3.957908333333333, 1.812172530864198, 1.369264590347924, 0.7841995884773663, 0.0, 10.125, 8.626195473251027, 6.8463229517396185, 5.436517592592593, 7.915816666666666, 4.572944444444445, 3.818433551198257, 2.604166666666667, 3.747692694979322, 3.0322170138888898, 1.6867160493827165, 0.844010802469136, 0.0), # 57
(10.36343306971568, 9.24979349565615, 8.423978623685414, 9.087739390432098, 7.496220666823449, 3.6458333333333335, 3.8053868514483984, 3.2447865226337447, 3.954019650205761, 1.8057876314586196, 1.367911595377645, 0.7829193720469442, 0.0, 10.125, 8.612113092516385, 6.8395579768882255, 5.417362894375858, 7.908039300411522, 4.5427011316872425, 3.8053868514483984, 2.604166666666667, 3.7481103334117245, 3.029246463477367, 1.684795724737083, 0.8408903177869229, 0.0), # 58
(10.36573046441887, 9.215573788294467, 8.414349565614998, 9.078739776234567, 7.49697296614323, 3.6458333333333335, 3.792394375857339, 3.2236779835390945, 3.9501087448559673, 1.799462265660723, 1.3665378995718502, 0.7816354976375554, 0.0, 10.125, 8.597990474013107, 6.83268949785925, 5.398386796982168, 7.900217489711935, 4.513149176954733, 3.792394375857339, 2.604166666666667, 3.748486483071615, 3.02624659207819, 1.6828699131229998, 0.8377794352994972, 0.0), # 59
(10.367775772667077, 9.181520061728396, 8.404706790123456, 9.069661458333334, 7.497642165551024, 3.6458333333333335, 3.779479847494553, 3.203125, 3.946180555555556, 1.7932098765432103, 1.3651445005611673, 0.7803497942386832, 0.0, 10.125, 8.583847736625515, 6.825722502805837, 5.37962962962963, 7.892361111111112, 4.484375, 3.779479847494553, 2.604166666666667, 3.748821082775512, 3.023220486111112, 1.6809413580246915, 0.8346836419753088, 0.0), # 60
(10.369568198633415, 9.147692672610884, 8.395064014631917, 9.060513695987654, 7.498228142679874, 3.6458333333333335, 3.7666669894295164, 3.183189300411523, 3.9422400205761314, 1.7870439071787843, 1.3637323959762233, 0.7790640908398111, 0.0, 10.125, 8.56970499923792, 6.818661979881115, 5.361131721536351, 7.884480041152263, 4.456465020576132, 3.7666669894295164, 2.604166666666667, 3.749114071339937, 3.0201712319958856, 1.6790128029263836, 0.8316084247828076, 0.0), # 61
(10.371106946491004, 9.114151977594878, 8.385434956561502, 9.051305748456791, 7.498730775162823, 3.6458333333333335, 3.753979524731703, 3.1639326131687247, 3.9382920781893, 1.7809778006401469, 1.3623025834476452, 0.7777802164304223, 0.0, 10.125, 8.555582380734645, 6.811512917238226, 5.3429334019204395, 7.8765841563786, 4.429505658436215, 3.753979524731703, 2.604166666666667, 3.7493653875814115, 3.0171019161522645, 1.6770869913123003, 0.8285592706904436, 0.0), # 62
(10.37239122041296, 9.080958333333333, 8.375833333333334, 9.042046875, 7.499149940632904, 3.6458333333333335, 3.741441176470588, 3.1454166666666667, 3.9343416666666666, 1.7750250000000003, 1.360856060606061, 0.7765000000000001, 0.0, 10.125, 8.5415, 6.804280303030303, 5.325075, 7.868683333333333, 4.403583333333334, 3.741441176470588, 2.604166666666667, 3.749574970316452, 3.014015625000001, 1.675166666666667, 0.8255416666666667, 0.0), # 63
(10.373420224572397, 9.048172096479195, 8.366272862368541, 9.032746334876544, 7.4994855167231655, 3.6458333333333335, 3.729075667715646, 3.127703189300412, 3.9303937242798352, 1.7691989483310475, 1.3593938250820965, 0.7752252705380279, 0.0, 10.125, 8.527477975918305, 6.796969125410483, 5.307596844993141, 7.8607874485596705, 4.378784465020577, 3.729075667715646, 2.604166666666667, 3.7497427583615828, 3.0109154449588487, 1.6732545724737085, 0.822561099679927, 0.0), # 64
(10.374193163142438, 9.015853623685413, 8.35676726108825, 9.023413387345679, 7.499737381066645, 3.6458333333333335, 3.7169067215363514, 3.1108539094650207, 3.9264531893004113, 1.7635130887059902, 1.357916874506381, 0.7739578570339887, 0.0, 10.125, 8.513536427373873, 6.7895843725319045, 5.290539266117969, 7.852906378600823, 4.355195473251029, 3.7169067215363514, 2.604166666666667, 3.7498686905333223, 3.0078044624485605, 1.67135345221765, 0.819623056698674, 0.0), # 65
(10.374709240296196, 8.984063271604938, 8.34733024691358, 9.014057291666667, 7.499905411296382, 3.6458333333333335, 3.7049580610021784, 3.094930555555556, 3.9225250000000003, 1.7579808641975312, 1.3564262065095398, 0.7726995884773664, 0.0, 10.125, 8.499695473251029, 6.782131032547699, 5.273942592592592, 7.8450500000000005, 4.332902777777778, 3.7049580610021784, 2.604166666666667, 3.749952705648191, 3.0046857638888897, 1.6694660493827165, 0.8167330246913582, 0.0), # 66
(10.374967660206792, 8.952861396890716, 8.337975537265661, 9.004687307098765, 7.499989485045419, 3.6458333333333335, 3.693253409182603, 3.0799948559670787, 3.9186140946502057, 1.7526157178783728, 1.3549228187222018, 0.7714522938576437, 0.0, 10.125, 8.485975232434079, 6.774614093611008, 5.257847153635117, 7.837228189300411, 4.31199279835391, 3.693253409182603, 2.604166666666667, 3.7499947425227096, 3.001562435699589, 1.6675951074531323, 0.8138964906264289, 0.0), # 67
(10.374791614480825, 8.922144586043629, 8.328671624942844, 8.995231305354269, 7.499918636864896, 3.645765673423767, 3.681757597414823, 3.0659766041761927, 3.9146959495503735, 1.747405110411792, 1.3533809980900628, 0.770210835158312, 0.0, 10.124875150034294, 8.47231918674143, 6.766904990450313, 5.242215331235375, 7.829391899100747, 4.29236724584667, 3.681757597414823, 2.604118338159833, 3.749959318432448, 2.99841043511809, 1.6657343249885688, 0.8111040532766937, 0.0), # 68
(10.373141706924315, 8.890975059737157, 8.319157021604937, 8.985212635869564, 7.499273783587508, 3.6452307956104257, 3.6701340906733066, 3.052124485596708, 3.910599279835391, 1.7422015976761076, 1.3516438064859118, 0.7689349144466104, 0.0, 10.12388599537037, 8.458284058912714, 6.758219032429559, 5.226604793028321, 7.821198559670782, 4.272974279835391, 3.6701340906733066, 2.6037362825788755, 3.749636891793754, 2.9950708786231885, 1.6638314043209876, 0.8082704599761052, 0.0), # 69
(10.369885787558895, 8.859209754856408, 8.309390360653863, 8.974565343196456, 7.497999542752628, 3.6441773992785653, 3.658330067280685, 3.0383135192805977, 3.9063009640298736, 1.736979881115684, 1.3496914810876801, 0.7676185634410675, 0.0, 10.121932334533609, 8.44380419785174, 6.7484574054383994, 5.210939643347051, 7.812601928059747, 4.253638926992837, 3.658330067280685, 2.6029838566275467, 3.748999771376314, 2.991521781065486, 1.6618780721307727, 0.8053827049869463, 0.0), # 70
(10.365069660642929, 8.826867654542236, 8.299375071444901, 8.963305127818035, 7.496112052502757, 3.6426225549966977, 3.646350829769494, 3.0245482777015704, 3.9018074035970125, 1.7317400898356603, 1.347531228463977, 0.7662627447677263, 0.0, 10.119039887688615, 8.428890192444989, 6.737656142319885, 5.195220269506979, 7.803614807194025, 4.234367588782199, 3.646350829769494, 2.6018732535690696, 3.7480560262513785, 2.987768375939346, 1.6598750142889804, 0.8024425140492942, 0.0), # 71
(10.358739130434783, 8.793967741935482, 8.289114583333333, 8.95144769021739, 7.493627450980392, 3.6405833333333337, 3.634201680672269, 3.0108333333333333, 3.897125, 1.7264823529411768, 1.3451702551834133, 0.7648684210526316, 0.0, 10.115234375, 8.413552631578947, 6.7258512759170666, 5.179447058823529, 7.79425, 4.215166666666667, 3.634201680672269, 2.600416666666667, 3.746813725490196, 2.983815896739131, 1.6578229166666667, 0.7994516129032258, 0.0), # 72
(10.35094000119282, 8.760529000176998, 8.27861232567444, 8.939008730877617, 7.490561876328034, 3.638076804856983, 3.621887922521546, 2.9971732586495965, 3.8922601547020275, 1.7212067995373737, 1.3426157678145982, 0.7634365549218266, 0.0, 10.110541516632374, 8.397802104140093, 6.71307883907299, 5.163620398612119, 7.784520309404055, 4.196042562109435, 3.621887922521546, 2.598626289183559, 3.745280938164017, 2.979669576959206, 1.655722465134888, 0.7964117272888181, 0.0), # 73
(10.341718077175404, 8.726570412407629, 8.267871727823502, 8.926003950281803, 7.486931466688183, 3.6351200401361585, 3.609414857849861, 2.9835726261240665, 3.8872192691662857, 1.7159135587293908, 1.3398749729261428, 0.7619681090013557, 0.0, 10.104987032750344, 8.38164919901491, 6.699374864630713, 5.147740676188171, 7.774438538332571, 4.177001676573693, 3.609414857849861, 2.5965143143829703, 3.7434657333440917, 2.975334650093935, 1.6535743455647005, 0.7933245829461482, 0.0), # 74
(10.331119162640901, 8.692110961768218, 8.256896219135802, 8.912449048913043, 7.482752360203341, 3.6317301097393697, 3.59678778918975, 2.9700360082304527, 3.8820087448559666, 1.7106027596223679, 1.336955077086656, 0.7604640459172624, 0.0, 10.098596643518519, 8.365104505089885, 6.684775385433279, 5.131808278867102, 7.764017489711933, 4.158050411522634, 3.59678778918975, 2.594092935528121, 3.7413761801016703, 2.9708163496376816, 1.6513792438271604, 0.7901919056152927, 0.0), # 75
(10.319189061847677, 8.65716963139962, 8.245689228966622, 8.898359727254428, 7.478040695016003, 3.6279240842351275, 3.5840120190737474, 2.956567977442463, 3.876634983234263, 1.7052745313214452, 1.3338632868647486, 0.7589253282955902, 0.0, 10.091396069101508, 8.348178611251491, 6.669316434323743, 5.115823593964334, 7.753269966468526, 4.139195168419449, 3.5840120190737474, 2.5913743458822336, 3.7390203475080015, 2.96611990908481, 1.6491378457933243, 0.7870154210363293, 0.0), # 76
(10.305973579054093, 8.621765404442675, 8.234254186671238, 8.883751685789049, 7.472812609268672, 3.6237190341919425, 3.5710928500343897, 2.9431731062338065, 3.871104385764365, 1.699929002931763, 1.3306068088290313, 0.7573529187623839, 0.0, 10.083411029663925, 8.330882106386222, 6.653034044145156, 5.099787008795288, 7.74220877152873, 4.120442348727329, 3.5710928500343897, 2.58837073870853, 3.736406304634336, 2.9612505619296834, 1.6468508373342476, 0.7837968549493343, 0.0), # 77
(10.291518518518519, 8.585917264038233, 8.222594521604938, 8.868640625, 7.467084241103849, 3.6191320301783265, 3.5580355846042124, 2.9298559670781894, 3.8654233539094642, 1.6945663035584608, 1.327192849548113, 0.7557477799436866, 0.0, 10.074667245370371, 8.313225579380552, 6.635964247740564, 5.083698910675381, 7.7308467078189285, 4.101798353909466, 3.5580355846042124, 2.585094307270233, 3.7335421205519244, 2.956213541666667, 1.6445189043209878, 0.7805379330943849, 0.0), # 78
(10.275869684499314, 8.549644193327138, 8.210713663123, 8.85304224537037, 7.460871728664031, 3.61418014276279, 3.5448455253157505, 2.916621132449322, 3.859598289132754, 1.6891865623066789, 1.3236286155906039, 0.7541108744655421, 0.0, 10.065190436385459, 8.295219619120962, 6.618143077953018, 5.067559686920035, 7.719196578265508, 4.083269585429051, 3.5448455253157505, 2.5815572448305644, 3.7304358643320157, 2.951014081790124, 1.6421427326246, 0.7772403812115581, 0.0), # 79
(10.259072881254847, 8.51296517545024, 8.198615040580703, 8.836972247383253, 7.454191210091719, 3.6088804425138448, 3.5315279747015405, 2.9034731748209115, 3.853635592897424, 1.683789908281557, 1.3199213135251149, 0.7524431649539947, 0.0, 10.0550063228738, 8.27687481449394, 6.599606567625574, 5.05136972484467, 7.707271185794848, 4.064862444749276, 3.5315279747015405, 2.577771744652746, 3.7270956050458595, 2.945657415794418, 1.639723008116141, 0.7739059250409311, 0.0), # 80
(10.241173913043479, 8.475899193548386, 8.186302083333333, 8.82044633152174, 7.447058823529411, 3.60325, 3.5180882352941176, 2.890416666666667, 3.8475416666666664, 1.6783764705882358, 1.3160781499202554, 0.7507456140350878, 0.0, 10.044140624999999, 8.258201754385965, 6.580390749601277, 5.035129411764706, 7.695083333333333, 4.046583333333333, 3.5180882352941176, 2.57375, 3.7235294117647055, 2.940148777173914, 1.6372604166666667, 0.7705362903225808, 0.0), # 81
(10.222218584123576, 8.438465230762423, 8.17377822073617, 8.803480198268922, 7.43949070711961, 3.5973058857897686, 3.504531609626018, 2.8774561804602956, 3.841322911903673, 1.6729463783318543, 1.3121063313446355, 0.7490191843348656, 0.0, 10.03261906292867, 8.23921102768352, 6.560531656723177, 5.018839134995561, 7.682645823807346, 4.0284386526444145, 3.504531609626018, 2.5695042041355487, 3.719745353559805, 2.934493399422974, 1.634755644147234, 0.767133202796584, 0.0), # 82
(10.202252698753504, 8.400682270233196, 8.16104688214449, 8.78608954810789, 7.431502999004814, 3.591065170451659, 3.4908634002297765, 2.8645962886755068, 3.8349857300716352, 1.6674997606175532, 1.3080130643668657, 0.7472648384793719, 0.0, 10.020467356824417, 8.219913223273089, 6.540065321834328, 5.002499281852659, 7.6699714601432705, 4.01043480414571, 3.4908634002297765, 2.5650465503226134, 3.715751499502407, 2.9286965160359637, 1.632209376428898, 0.7636983882030178, 0.0), # 83
(10.181322061191626, 8.362569295101553, 8.14811149691358, 8.768290081521739, 7.423111837327523, 3.584544924554184, 3.477088909637929, 2.851841563786008, 3.8285365226337444, 1.6620367465504726, 1.3038055555555557, 0.7454835390946503, 0.0, 10.007711226851852, 8.200318930041153, 6.519027777777778, 4.986110239651417, 7.657073045267489, 3.9925781893004113, 3.477088909637929, 2.5603892318244172, 3.7115559186637617, 2.922763360507247, 1.629622299382716, 0.7602335722819594, 0.0), # 84
(10.159472475696308, 8.32414528850834, 8.13497549439872, 8.75009749899356, 7.414333360230238, 3.577762218665854, 3.463213440383012, 2.8391965782655086, 3.8219816910531925, 1.6565574652357518, 1.2994910114793157, 0.7436762488067449, 0.0, 9.994376393175584, 8.180438736874192, 6.497455057396579, 4.969672395707254, 7.643963382106385, 3.9748752095717124, 3.463213440383012, 2.5555444419041815, 3.707166680115119, 2.916699166331187, 1.626995098879744, 0.7567404807734855, 0.0), # 85
(10.136749746525913, 8.285429233594407, 8.121642303955191, 8.731527501006443, 7.405183705855455, 3.57073412335518, 3.44924229499756, 2.826665904587715, 3.815327636793172, 1.6510620457785314, 1.2950766387067558, 0.7418439302416996, 0.0, 9.98048857596022, 8.160283232658694, 6.475383193533778, 4.953186137335593, 7.630655273586344, 3.9573322664228017, 3.44924229499756, 2.550524373825129, 3.7025918529277275, 2.910509167002148, 1.6243284607910382, 0.7532208394176735, 0.0), # 86
(10.113199677938807, 8.246440113500597, 8.10811535493827, 8.712595788043478, 7.3956790123456795, 3.563477709190672, 3.4351807760141093, 2.8142541152263374, 3.8085807613168727, 1.645550617283951, 1.290569643806486, 0.7399875460255577, 0.0, 9.96607349537037, 8.139863006281134, 6.452848219032429, 4.936651851851852, 7.6171615226337455, 3.9399557613168725, 3.4351807760141093, 2.54534122085048, 3.6978395061728397, 2.904198596014493, 1.6216230709876542, 0.7496763739545999, 0.0), # 87
(10.088868074193357, 8.207196911367758, 8.094398076703246, 8.693318060587762, 7.385835417843406, 3.5560100467408424, 3.4210341859651954, 2.801965782655083, 3.8017474660874866, 1.6400233088571508, 1.2859772333471164, 0.7381080587843638, 0.0, 9.951156871570646, 8.119188646628, 6.429886166735582, 4.9200699265714505, 7.603494932174973, 3.9227520957171165, 3.4210341859651954, 2.540007176243459, 3.692917708921703, 2.897772686862588, 1.6188796153406495, 0.7461088101243417, 0.0), # 88
(10.063800739547922, 8.16771861033674, 8.080493898605397, 8.673710019122383, 7.375669060491138, 3.5483482065742016, 3.406807827383354, 2.7898054793476605, 3.794834152568206, 1.634480249603271, 1.2813066138972575, 0.7362064311441613, 0.0, 9.935764424725651, 8.098270742585774, 6.4065330694862865, 4.903440748809812, 7.589668305136412, 3.905727671086725, 3.406807827383354, 2.534534433267287, 3.687834530245569, 2.891236673040795, 1.6160987797210793, 0.7425198736669765, 0.0), # 89
(10.03804347826087, 8.128024193548386, 8.06640625, 8.653787364130435, 7.365196078431373, 3.5405092592592595, 3.3925070028011204, 2.7777777777777777, 3.7878472222222226, 1.6289215686274514, 1.2765649920255184, 0.7342836257309943, 0.0, 9.919921875, 8.077119883040936, 6.382824960127592, 4.886764705882353, 7.575694444444445, 3.888888888888889, 3.3925070028011204, 2.5289351851851856, 3.6825980392156863, 2.884595788043479, 1.6132812500000002, 0.7389112903225807, 0.0), # 90
(10.011642094590563, 8.088132644143545, 8.05213856024234, 8.63356579609501, 7.35443260980661, 3.532510275364528, 3.378137014751031, 2.7658872504191434, 3.780793076512727, 1.6233473950348318, 1.2717595743005101, 0.7323406051709063, 0.0, 9.903654942558298, 8.055746656879968, 6.35879787150255, 4.870042185104494, 7.561586153025454, 3.872242150586801, 3.378137014751031, 2.5232216252603767, 3.677216304903305, 2.8778552653650036, 1.6104277120484682, 0.7352847858312315, 0.0), # 91
(9.984642392795372, 8.048062945263066, 8.0376942586877, 8.613061015499195, 7.343394792759352, 3.524368325458518, 3.363703165765621, 2.754138469745466, 3.773678116902911, 1.6177578579305527, 1.2668975672908422, 0.7303783320899415, 0.0, 9.886989347565157, 8.034161652989356, 6.334487836454211, 4.853273573791657, 7.547356233805822, 3.8557938576436523, 3.363703165765621, 2.517405946756084, 3.671697396379676, 2.871020338499732, 1.6075388517375402, 0.7316420859330061, 0.0), # 92
(9.957090177133654, 8.00783408004779, 8.023076774691358, 8.592288722826089, 7.332098765432098, 3.5161004801097393, 3.349210758377425, 2.742536008230453, 3.766508744855967, 1.6121530864197533, 1.261986177565125, 0.7283977691141434, 0.0, 9.869950810185184, 8.012375460255576, 6.309930887825625, 4.836459259259259, 7.533017489711934, 3.839550411522634, 3.349210758377425, 2.5115003429355283, 3.666049382716049, 2.86409624094203, 1.6046153549382718, 0.727984916367981, 0.0), # 93
(9.92903125186378, 7.967465031638567, 8.008289537608597, 8.571264618558777, 7.320560665967347, 3.5077238098867043, 3.3346650951189805, 2.7310844383478132, 3.759291361835086, 1.6065332096075746, 1.2570326116919686, 0.7263998788695563, 0.0, 9.85256505058299, 7.990398667565118, 6.285163058459842, 4.819599628822722, 7.518582723670172, 3.823518213686939, 3.3346650951189805, 2.5055170070619317, 3.6602803329836733, 2.8570882061862592, 1.6016579075217197, 0.7243150028762335, 0.0), # 94
(9.90051142124411, 7.926974783176247, 7.993335976794697, 8.550004403180354, 7.308796632507598, 3.499255385357923, 3.320071478522822, 2.719788332571255, 3.7520323693034596, 1.6008983565991557, 1.2520440762399827, 0.7243856239822234, 0.0, 9.834857788923182, 7.968241863804456, 6.260220381199914, 4.8026950697974655, 7.504064738606919, 3.8077036655997567, 3.320071478522822, 2.4994681323985164, 3.654398316253799, 2.850001467726785, 1.5986671953589393, 0.7206340711978407, 0.0), # 95
(9.871576489533012, 7.886382317801674, 7.978219521604939, 8.528523777173913, 7.296822803195352, 3.4907122770919066, 3.3054352111214853, 2.708652263374486, 3.7447381687242793, 1.5952486564996373, 1.247027777777778, 0.7223559670781895, 0.0, 9.816854745370371, 7.945915637860083, 6.23513888888889, 4.785745969498911, 7.489476337448559, 3.7921131687242804, 3.3054352111214853, 2.4933659122085046, 3.648411401597676, 2.8428412590579715, 1.595643904320988, 0.7169438470728796, 0.0), # 96
(9.842272260988848, 7.845706618655694, 7.962943601394604, 8.506838441022543, 7.284655316173109, 3.482111555657166, 3.2907615954475067, 2.697680803231215, 3.7374151615607376, 1.589584238414159, 1.2419909228739638, 0.7203118707834976, 0.0, 9.798581640089164, 7.923430578618472, 6.209954614369819, 4.768752715242476, 7.474830323121475, 3.7767531245237014, 3.2907615954475067, 2.4872225397551184, 3.6423276580865545, 2.8356128136741816, 1.5925887202789208, 0.7132460562414268, 0.0), # 97
(9.812644539869984, 7.804966668879153, 7.947511645518976, 8.48496409520934, 7.272310309583368, 3.4734702916222124, 3.276055934033421, 2.68687852461515, 3.7300697492760246, 1.5839052314478608, 1.236940718097151, 0.7182542977241916, 0.0, 9.78006419324417, 7.900797274966106, 6.184703590485755, 4.751715694343581, 7.460139498552049, 3.7616299344612103, 3.276055934033421, 2.48105020830158, 3.636155154791684, 2.8283213650697805, 1.589502329103795, 0.7095424244435595, 0.0), # 98
(9.782739130434782, 7.764181451612902, 7.931927083333334, 8.462916440217391, 7.259803921568627, 3.464805555555556, 3.261323529411765, 2.67625, 3.7227083333333333, 1.5782117647058826, 1.2318843700159492, 0.7161842105263159, 0.0, 9.761328125, 7.878026315789473, 6.159421850079745, 4.734635294117647, 7.445416666666667, 3.7467500000000005, 3.261323529411765, 2.474861111111111, 3.6299019607843137, 2.820972146739131, 1.5863854166666669, 0.7058346774193549, 0.0), # 99
(9.752601836941611, 7.723369949997786, 7.916193344192958, 8.44071117652979, 7.247152290271389, 3.4561344180257074, 3.2465696841150726, 2.665799801859473, 3.715337315195854, 1.572503967293365, 1.2268290851989685, 0.714102571815914, 0.0, 9.742399155521262, 7.8551282899750525, 6.134145425994841, 4.717511901880093, 7.430674630391708, 3.732119722603262, 3.2465696841150726, 2.468667441446934, 3.6235761451356945, 2.8135703921765973, 1.5832386688385918, 0.7021245409088898, 0.0), # 100
(9.722278463648834, 7.682551147174654, 7.900313857453133, 8.41836400462963, 7.234371553834153, 3.4474739496011786, 3.231799700675881, 2.6555325026672763, 3.7079630963267793, 1.5667819683154474, 1.2217820702148188, 0.7120103442190294, 0.0, 9.723303004972564, 7.832113786409323, 6.108910351074094, 4.7003459049463405, 7.415926192653559, 3.7177455037341867, 3.231799700675881, 2.4624813925722706, 3.6171857769170765, 2.806121334876544, 1.5800627714906266, 0.6984137406522414, 0.0), # 101
(9.691814814814816, 7.641744026284349, 7.884292052469135, 8.395890625, 7.221477850399419, 3.4388412208504806, 3.217018881626725, 2.645452674897119, 3.7005920781893, 1.56104589687727, 1.2167505316321108, 0.7099084903617069, 0.0, 9.704065393518519, 7.808993393978774, 6.083752658160553, 4.683137690631809, 7.4011841563786, 3.703633744855967, 3.217018881626725, 2.4563151577503435, 3.6107389251997093, 2.798630208333334, 1.5768584104938272, 0.6947040023894864, 0.0), # 102
(9.661256694697919, 7.60096757046772, 7.8681313585962505, 8.373306738123993, 7.208487318109686, 3.430253302342123, 3.20223252950014, 2.63556489102271, 3.6932306622466085, 1.5552958820839726, 1.211741676019454, 0.7077979728699895, 0.0, 9.68471204132373, 7.785777701569883, 6.058708380097269, 4.6658876462519165, 7.386461324493217, 3.689790847431794, 3.20223252950014, 2.4501809302443736, 3.604243659054843, 2.7911022460413317, 1.5736262717192502, 0.6909970518607019, 0.0), # 103
(9.63064990755651, 7.560240762865614, 7.851835205189758, 8.350628044484703, 7.195416095107452, 3.421727264644617, 3.187445946828663, 2.6258737235177567, 3.685885249961896, 1.5495320530406955, 1.2067627099454585, 0.7056797543699213, 0.0, 9.665268668552812, 7.762477298069133, 6.033813549727292, 4.648596159122086, 7.371770499923792, 3.6762232129248593, 3.187445946828663, 2.4440909033175835, 3.597708047553726, 2.783542681494901, 1.5703670410379515, 0.687294614805965, 0.0), # 104
(9.600040257648953, 7.519582586618876, 7.835407021604938, 8.327870244565217, 7.182280319535221, 3.4132801783264752, 3.172664436144829, 2.6163837448559675, 3.6785622427983538, 1.5437545388525786, 1.201820839978735, 0.7035547974875461, 0.0, 9.64576099537037, 7.739102772363006, 6.009104199893674, 4.631263616557734, 7.3571244855967075, 3.662937242798354, 3.172664436144829, 2.4380572702331964, 3.5911401597676105, 2.775956748188406, 1.5670814043209877, 0.6835984169653525, 0.0), # 105
(9.569473549233614, 7.479012024868357, 7.818850237197074, 8.305049038848631, 7.1690961295354905, 3.404929113956206, 3.1578932999811724, 2.6070995275110502, 3.6712680422191735, 1.5379634686247616, 1.1969232726878927, 0.701424064848908, 0.0, 9.626214741941014, 7.715664713337986, 5.9846163634394625, 4.613890405874283, 7.342536084438347, 3.6499393385154706, 3.1578932999811724, 2.4320922242544327, 3.5845480647677452, 2.768349679616211, 1.5637700474394147, 0.6799101840789417, 0.0), # 106
(9.538995586568856, 7.438548060754901, 7.802168281321446, 8.282180127818036, 7.155879663250759, 3.3966911421023225, 3.1431378408702306, 2.5980256439567144, 3.6640090496875475, 1.532158971462385, 1.1920772146415421, 0.6992885190800504, 0.0, 9.606655628429355, 7.692173709880553, 5.96038607320771, 4.596476914387154, 7.328018099375095, 3.6372359015394005, 3.1431378408702306, 2.426207958644516, 3.5779398316253794, 2.760726709272679, 1.5604336562642893, 0.6762316418868093, 0.0), # 107
(9.508652173913044, 7.398209677419356, 7.785364583333334, 8.259279211956523, 7.1426470588235285, 3.3885833333333335, 3.1284033613445374, 2.589166666666667, 3.656791666666667, 1.5263411764705888, 1.1872898724082936, 0.6971491228070177, 0.0, 9.587109375, 7.668640350877193, 5.936449362041468, 4.579023529411765, 7.313583333333334, 3.624833333333334, 3.1284033613445374, 2.4204166666666667, 3.5713235294117642, 2.7530930706521746, 1.557072916666667, 0.6725645161290325, 0.0), # 108
(9.478489115524543, 7.358015858002567, 7.768442572588021, 8.23636199174718, 7.129414454396299, 3.3806227582177515, 3.113695163936631, 2.580527168114617, 3.6496222946197223, 1.5205102127545123, 1.1825684525567568, 0.6950068386558532, 0.0, 9.567601701817559, 7.645075225214384, 5.9128422627837836, 4.561530638263536, 7.299244589239445, 3.612738035360464, 3.113695163936631, 2.4147305415841083, 3.5647072271981495, 2.7454539972490606, 1.5536885145176043, 0.668910532545688, 0.0), # 109
(9.448552215661715, 7.317985585645383, 7.751405678440788, 8.213444167673108, 7.116197988111569, 3.3728264873240867, 3.0990185511790447, 2.5721117207742723, 3.6425073350099066, 1.5146662094192962, 1.177920161655542, 0.6928626292526012, 0.0, 9.54815832904664, 7.621488921778612, 5.8896008082777085, 4.543998628257887, 7.285014670019813, 3.600956409083981, 3.0990185511790447, 2.409161776660062, 3.5580989940557846, 2.737814722557703, 1.5502811356881578, 0.6652714168768531, 0.0), # 110
(9.41888727858293, 7.278137843488651, 7.7342573302469155, 8.190541440217391, 7.103013798111837, 3.365211591220851, 3.0843788256043156, 2.5639248971193416, 3.635453189300412, 1.5088092955700803, 1.173352206273259, 0.6907174572233054, 0.0, 9.528804976851852, 7.597892029456357, 5.866761031366295, 4.526427886710239, 7.270906378600824, 3.5894948559670783, 3.0843788256043156, 2.4037225651577505, 3.5515068990559184, 2.7301804800724643, 1.546851466049383, 0.6616488948626047, 0.0), # 111
(9.38954010854655, 7.238491614673214, 7.717000957361684, 8.167669509863124, 7.089878022539605, 3.357795140476554, 3.069781289744979, 2.5559712696235333, 3.628466258954427, 1.5029396003120044, 1.1688717929785184, 0.6885722851940093, 0.0, 9.509567365397805, 7.574295137134101, 5.844358964892591, 4.5088188009360115, 7.256932517908854, 3.5783597774729463, 3.069781289744979, 2.3984251003403956, 3.5449390112698027, 2.7225565032877084, 1.543400191472337, 0.6580446922430195, 0.0), # 112
(9.360504223703044, 7.1991320672204555, 7.699681523543391, 8.14487541186903, 7.076783786782469, 3.3505906987084666, 3.0552629818283847, 2.548271903658586, 3.6215709370862066, 1.4970761841531826, 1.1644873176921446, 0.6864327447087024, 0.0, 9.490443900843221, 7.550760191795725, 5.8224365884607225, 4.491228552459547, 7.243141874172413, 3.5675806651220205, 3.0552629818283847, 2.3932790705060474, 3.5383918933912346, 2.7149584706230105, 1.5399363047086783, 0.654466551565496, 0.0), # 113
(9.331480897900065, 7.16044741823174, 7.682538062518016, 8.122342065958001, 7.063595569710884, 3.343581854975776, 3.0410091042052896, 2.5409213581271333, 3.6148730119043533, 1.491328791978196, 1.1602073895188663, 0.684326014342748, 0.0, 9.471275414160035, 7.5275861577702265, 5.801036947594331, 4.473986375934587, 7.229746023808707, 3.557289901377987, 3.0410091042052896, 2.3882727535541255, 3.531797784855442, 2.7074473553193346, 1.5365076125036032, 0.6509497652937947, 0.0), # 114
(9.302384903003995, 7.122451598792792, 7.665580777256098, 8.100063378886334, 7.050271785259067, 3.3367503822909463, 3.027029825095781, 2.533917772616129, 3.6083749928895963, 1.4857063319970194, 1.1560257519045158, 0.6822531318799043, 0.0, 9.452006631660376, 7.5047844506789465, 5.7801287595225785, 4.457118995991058, 7.216749985779193, 3.5474848816625806, 3.027029825095781, 2.3833931302078186, 3.5251358926295335, 2.700021126295445, 1.5331161554512198, 0.647495599890254, 0.0), # 115
(9.273179873237634, 7.0850892578507265, 7.648776824986561, 8.077999612699802, 7.036792350922519, 3.330080178417474, 3.0133024087639466, 2.5272417970412473, 3.6020604464092765, 1.480198339612387, 1.1519343218785802, 0.6802102664572789, 0.0, 9.43260725975589, 7.482312931030067, 5.7596716093929015, 4.44059501883716, 7.204120892818553, 3.5381385158577463, 3.0133024087639466, 2.3786286988696244, 3.5183961754612594, 2.6926665375666015, 1.5297553649973124, 0.6440990234409752, 0.0), # 116
(9.243829442823772, 7.04830504435266, 7.632093362938321, 8.056111029444182, 7.02313718419674, 3.323555141118853, 2.9998041194738763, 2.5208740813181603, 3.5959129388307343, 1.4747943502270324, 1.1479250164705472, 0.6781935872119792, 0.0, 9.413047004858225, 7.46012945933177, 5.739625082352736, 4.424383050681096, 7.1918258776614685, 3.5292237138454245, 2.9998041194738763, 2.3739679579420376, 3.51156859209837, 2.6853703431480613, 1.5264186725876645, 0.6407550040320601, 0.0), # 117
(9.214297245985211, 7.0120436072457135, 7.615497548340306, 8.03435789116525, 7.009286202577227, 3.317159168158581, 2.9865122214896576, 2.51479527536254, 3.5899160365213114, 1.46948389924369, 1.143989752709904, 0.6761992632811126, 0.0, 9.393295573379024, 7.438191896092237, 5.71994876354952, 4.40845169773107, 7.179832073042623, 3.5207133855075567, 2.9865122214896576, 2.369399405827558, 3.5046431012886137, 2.678119297055084, 1.5230995096680613, 0.6374585097496104, 0.0), # 118
(9.184546916944742, 6.976249595477001, 7.598956538421437, 8.012700459908778, 6.99521932355948, 3.3108761573001524, 2.973403979075378, 2.5089860290900607, 3.5840533058483475, 1.4642565220650932, 1.1401204476261382, 0.6742234638017862, 0.0, 9.373322671729932, 7.416458101819647, 5.70060223813069, 4.392769566195279, 7.168106611696695, 3.5125804407260848, 2.973403979075378, 2.3649115409286803, 3.49760966177974, 2.670900153302927, 1.5197913076842873, 0.6342045086797276, 0.0), # 119
(9.154542089925162, 6.940867657993644, 7.582437490410635, 7.991098997720545, 6.980916464638998, 3.304690006307063, 2.9604566564951265, 2.5034269924163928, 3.578308313179186, 1.4591017540939766, 1.136309018248736, 0.6722623579111081, 0.0, 9.353098006322597, 7.394885937022188, 5.68154509124368, 4.377305262281929, 7.156616626358372, 3.50479778938295, 2.9604566564951265, 2.360492861647902, 3.490458232319499, 2.663699665906849, 1.516487498082127, 0.6309879689085133, 0.0), # 120
(9.124246399149268, 6.90584244374276, 7.565907561536823, 7.969513766646325, 6.966357543311279, 3.29858461294281, 2.94764751801299, 2.4980988152572112, 3.572664624881166, 1.4540091307330743, 1.1325473816071863, 0.6703121147461852, 0.0, 9.33259128356866, 7.373433262208036, 5.662736908035931, 4.362027392199222, 7.145329249762332, 3.497338341360096, 2.94764751801299, 2.356131866387721, 3.4831787716556395, 2.656504588882109, 1.5131815123073646, 0.6278038585220692, 0.0), # 121
(9.093623478839854, 6.871118601671464, 7.549333909028926, 7.947905028731892, 6.951522477071823, 3.292543874970886, 2.9349538278930587, 2.492982147528187, 3.5671058073216297, 1.4489681873851195, 1.1288274547309753, 0.6683689034441251, 0.0, 9.31177220987977, 7.352057937885375, 5.644137273654876, 4.346904562155357, 7.1342116146432595, 3.490175006539462, 2.9349538278930587, 2.351817053550633, 3.4757612385359113, 2.6493016762439643, 1.5098667818057854, 0.6246471456064968, 0.0), # 122
(9.062636963219719, 6.836640780726876, 7.532683690115864, 7.92623304602302, 6.936391183416127, 3.28655169015479, 2.9223528503994194, 2.4880576391449933, 3.5616154268679177, 1.443968459452847, 1.1251411546495909, 0.6664288931420351, 0.0, 9.290610491667572, 7.330717824562385, 5.625705773247954, 4.33190537835854, 7.123230853735835, 3.4832806948029904, 2.9223528503994194, 2.3475369215391355, 3.4681955917080636, 2.642077682007674, 1.5065367380231727, 0.621512798247898, 0.0), # 123
(9.031250486511654, 6.802353629856113, 7.515924062026559, 7.90445808056549, 6.920943579839691, 3.2805919562580144, 2.9098218497961597, 2.483305940023303, 3.5561770498873715, 1.4389994823389904, 1.1214803983925201, 0.664488252977023, 0.0, 9.269075835343711, 7.309370782747252, 5.6074019919625995, 4.316998447016971, 7.112354099774743, 3.476628316032624, 2.9098218497961597, 2.3432799687557244, 3.4604717899198456, 2.634819360188497, 1.5031848124053118, 0.618395784532374, 0.0), # 124
(8.999427682938459, 6.768201798006293, 7.499022181989936, 7.88254039440507, 6.905159583838015, 3.274648571044058, 2.8973380903473696, 2.478707700078788, 3.5507742427473308, 1.4340507914462837, 1.1178371029892504, 0.6625431520861957, 0.0, 9.247137947319828, 7.2879746729481525, 5.5891855149462515, 4.30215237433885, 7.1015484854946616, 3.470190780110303, 2.8973380903473696, 2.3390346936028985, 3.4525797919190073, 2.6275134648016905, 1.4998044363979874, 0.6152910725460268, 0.0), # 125
(8.967132186722928, 6.734129934124536, 7.481945207234916, 7.8604402495875405, 6.889019112906595, 3.2687054322764144, 2.884878836317135, 2.474243569227122, 3.545390571815139, 1.4291119221774609, 1.1142031854692689, 0.6605897596066612, 0.0, 9.224766534007578, 7.266487355673273, 5.571015927346345, 4.287335766532382, 7.090781143630278, 3.463940996917971, 2.884878836317135, 2.334789594483153, 3.4445095564532977, 2.620146749862514, 1.4963890414469831, 0.6121936303749579, 0.0), # 126
(8.93432763208786, 6.7000826871579555, 7.464660294990421, 7.838117908158674, 6.8725020845409315, 3.26274643771858, 2.872421351969547, 2.469894197383977, 3.5400096034581354, 1.4241724099352562, 1.1105705628620632, 0.6586242446755264, 0.0, 9.201931301818599, 7.244866691430789, 5.552852814310316, 4.272517229805768, 7.080019206916271, 3.457851876337568, 2.872421351969547, 2.3305331697989855, 3.4362510422704657, 2.612705969386225, 1.4929320589980841, 0.6090984261052688, 0.0), # 127
(8.900977653256046, 6.666004706053673, 7.447134602485375, 7.815533632164248, 6.855588416236526, 3.2567554851340508, 2.859942901568691, 2.465640234465026, 3.534614904043661, 1.4192217901224033, 1.1069311521971208, 0.6566427764298991, 0.0, 9.178601957164537, 7.223070540728888, 5.534655760985604, 4.257665370367209, 7.069229808087322, 3.4518963282510366, 2.859942901568691, 2.3262539179528936, 3.427794208118263, 2.6051778773880834, 1.4894269204970751, 0.6060004278230613, 0.0), # 128
(8.867045884450281, 6.631840639758805, 7.4293352869486995, 7.792647683650037, 6.838258025488874, 3.250716472286322, 2.8474207493786565, 2.4614623303859418, 3.529190039939058, 1.4142495981416365, 1.1032768705039286, 0.6546415240068865, 0.0, 9.154748206457038, 7.20105676407575, 5.516384352519642, 4.242748794424909, 7.058380079878116, 3.4460472625403185, 2.8474207493786565, 2.321940337347373, 3.419129012744437, 2.597549227883346, 1.4858670573897401, 0.6028946036144368, 0.0), # 129
(8.832495959893366, 6.5975351372204685, 7.411229505609316, 7.769420324661814, 6.820490829793475, 3.2446132969388883, 2.8348321596635313, 2.457341135062396, 3.5237185775116666, 1.4092453693956895, 1.0995996348119743, 0.6526166565435961, 0.0, 9.130339756107748, 7.178783221979556, 5.4979981740598705, 4.2277361081870675, 7.047437155023333, 3.4402775890873545, 2.8348321596635313, 2.3175809263849203, 3.4102454148967376, 2.589806774887272, 1.4822459011218634, 0.5997759215654973, 0.0), # 130
(8.797291513808094, 6.563032847385783, 7.392784415696151, 7.7458118172453565, 6.802266746645829, 3.238429856855247, 2.8221543966874045, 2.4532572984100627, 3.5181840831288285, 1.4041986392872965, 1.0958913621507447, 0.6505643431771354, 0.0, 9.105346312528312, 7.156207774948489, 5.479456810753724, 4.212595917861889, 7.036368166257657, 3.4345602177740875, 2.8221543966874045, 2.3131641834680337, 3.4011333733229145, 2.5819372724151193, 1.4785568831392302, 0.596639349762344, 0.0), # 131
(8.76139618041726, 6.528278419201865, 7.373967174438122, 7.72178242344644, 6.783565693541435, 3.2321500497988933, 2.8093647247143627, 2.449191470344614, 3.5125701231578845, 1.3990989432191914, 1.0921439695497275, 0.6484807530446118, 0.0, 9.079737582130376, 7.13328828349073, 5.460719847748638, 4.1972968296575734, 7.025140246315769, 3.4288680584824593, 2.8093647247143627, 2.3086786069992096, 3.3917828467707176, 2.573927474482147, 1.4747934348876244, 0.5934798562910787, 0.0), # 132
(8.724773593943663, 6.493216501615832, 7.354744939064153, 7.697292405310838, 6.764367587975791, 3.225757773533322, 2.7964404080084946, 2.445124300781722, 3.5068602639661752, 1.3939358165941083, 1.0883493740384103, 0.6463620552831327, 0.0, 9.053483271325586, 7.10998260811446, 5.44174687019205, 4.181807449782324, 7.0137205279323505, 3.4231740210944106, 2.7964404080084946, 2.3041126953809443, 3.3821837939878954, 2.5657641351036133, 1.4709489878128308, 0.590292409237803, 0.0), # 133
(8.687387388610095, 6.457791743574804, 7.33508486680317, 7.672302024884328, 6.7446523474443945, 3.2192369258220297, 2.7833587108338893, 2.44103643963706, 3.5010380719210428, 1.388698794814781, 1.0844994926462799, 0.6442044190298056, 0.0, 9.026553086525583, 7.0862486093278605, 5.422497463231399, 4.166096384444343, 7.0020761438420855, 3.417451015491884, 2.7833587108338893, 2.2994549470157355, 3.3723261737221972, 2.557434008294776, 1.4670169733606342, 0.5870719766886187, 0.0), # 134
(8.649201198639354, 6.421948794025897, 7.314954114884091, 7.646771544212684, 6.724399889442747, 3.212571404428512, 2.770096897454634, 2.4369085368263, 3.4950871133898262, 1.3833774132839443, 1.0805862424028239, 0.6420040134217377, 0.0, 8.99891673414202, 7.0620441476391145, 5.402931212014119, 4.150132239851832, 6.9901742267796525, 3.41167195155682, 2.770096897454634, 2.2946938603060802, 3.3621999447213735, 2.548923848070895, 1.4629908229768183, 0.583813526729627, 0.0), # 135
(8.610178658254235, 6.385632301916229, 7.294319840535841, 7.62066122534168, 6.703590131466344, 3.205745107116265, 2.7566322321348173, 2.4327212422651154, 3.4889909547398688, 1.3779612074043308, 1.0766015403375297, 0.6397570075960368, 0.0, 8.970543920586536, 7.037327083556404, 5.383007701687648, 4.133883622212991, 6.9779819094797375, 3.4058097391711617, 2.7566322321348173, 2.289817933654475, 3.351795065733172, 2.540220408447227, 1.4588639681071682, 0.58051202744693, 0.0), # 136
(8.570283401677534, 6.348786916192918, 7.273149200987342, 7.593931330317094, 6.682202991010689, 3.1987419316487826, 2.7429419791385277, 2.428455205869179, 3.4827331623385107, 1.3724397125786756, 1.0725373034798844, 0.63745957068981, 0.0, 8.941404352270776, 7.012055277587909, 5.362686517399421, 4.117319137736026, 6.965466324677021, 3.3998372882168506, 2.7429419791385277, 2.284815665463416, 3.3411014955053444, 2.5313104434390317, 1.4546298401974684, 0.577162446926629, 0.0), # 137
(8.529479063132047, 6.311357285803083, 7.251409353467515, 7.566542121184698, 6.660218385571278, 3.1915457757895624, 2.729003402729852, 2.4240910775541624, 3.4762973025530934, 1.3668024642097119, 1.0683854488593754, 0.6351078718401649, 0.0, 8.91146773560639, 6.986186590241813, 5.341927244296877, 4.100407392629135, 6.952594605106187, 3.3937275085758274, 2.729003402729852, 2.2796755541354017, 3.330109192785639, 2.5221807070615663, 1.450281870693503, 0.5737597532548258, 0.0), # 138
(8.487729276840568, 6.273288059693839, 7.229067455205284, 7.538453859990269, 6.63761623264361, 3.184140537302099, 2.7147937671728797, 2.4196095072357395, 3.469666941750957, 1.3610389977001744, 1.0641378935054902, 0.6326980801842089, 0.0, 8.880703777005019, 6.959678882026297, 5.32068946752745, 4.083116993100523, 6.939333883501914, 3.3874533101300353, 2.7147937671728797, 2.274386098072928, 3.318808116321805, 2.51281795333009, 1.4458134910410567, 0.5702989145176218, 0.0), # 139
(8.444997677025897, 6.234523886812306, 7.206090663429573, 7.509626808779583, 6.614376449723186, 3.176510113949888, 2.7002903367316984, 2.4149911448295818, 3.462825646299444, 1.3551388484527966, 1.0597865544477159, 0.6302263648590494, 0.0, 8.849082182878314, 6.932490013449542, 5.298932772238579, 4.0654165453583895, 6.925651292598888, 3.3809876027614147, 2.7002903367316984, 2.2689357956784915, 3.307188224861593, 2.5032089362598615, 1.4412181326859146, 0.5667748988011189, 0.0), # 140
(8.40124789791083, 6.195009416105602, 7.1824461353693, 7.480021229598415, 6.590478954305501, 3.1686384034964257, 2.6854703756703975, 2.4102166402513627, 3.455756982565893, 1.349091551870313, 1.0553233487155398, 0.6276888950017938, 0.0, 8.816572659637913, 6.904577845019731, 5.276616743577699, 4.047274655610939, 6.911513965131786, 3.3743032963519077, 2.6854703756703975, 2.26331314535459, 3.2952394771527507, 2.4933404098661387, 1.4364892270738603, 0.5631826741914184, 0.0), # 141
(8.356443573718156, 6.154689296520844, 7.158101028253392, 7.44959738449254, 6.565903663886058, 3.1605093037052074, 2.670311148253063, 2.4052666434167547, 3.448444516917647, 1.3428866433554572, 1.0507401933384497, 0.6250818397495496, 0.0, 8.783144913695466, 6.875900237245045, 5.253700966692247, 4.028659930066371, 6.896889033835294, 3.3673733007834565, 2.670311148253063, 2.2575066455037196, 3.282951831943029, 2.4831991281641805, 1.4316202056506786, 0.5595172087746222, 0.0), # 142
(8.310548338670674, 6.113508177005149, 7.133022499310772, 7.418315535507731, 6.540630495960352, 3.152106712339729, 2.6547899187437842, 2.4001218042414303, 3.4408718157220486, 1.3365136583109634, 1.0460290053459322, 0.6224013682394242, 0.0, 8.748768651462617, 6.846415050633665, 5.230145026729661, 4.009540974932889, 6.881743631444097, 3.360170525938002, 2.6547899187437842, 2.251504794528378, 3.270315247980176, 2.472771845169244, 1.4266044998621543, 0.5557734706368318, 0.0), # 143
(8.263525826991184, 6.071410706505636, 7.107177705770357, 7.386135944689768, 6.514639368023886, 3.1434145271634857, 2.6388839514066493, 2.3947627726410623, 3.4330224453464364, 1.3299621321395652, 1.0411817017674754, 0.619643649608525, 0.0, 8.713413579351014, 6.816080145693774, 5.205908508837376, 3.9898863964186946, 6.866044890692873, 3.3526678816974873, 2.6388839514066493, 2.245296090831061, 3.257319684011943, 2.4620453148965895, 1.4214355411540713, 0.5519464278641489, 0.0), # 144
(8.215339672902477, 6.0283415339694235, 7.080533804861075, 7.353018874084421, 6.487910197572155, 3.134416645939974, 2.6225705105057466, 2.3891701985313234, 3.424879972158151, 1.3232216002439972, 1.036190199632566, 0.6168048529939595, 0.0, 8.6770494037723, 6.784853382933553, 5.180950998162829, 3.969664800731991, 6.849759944316302, 3.344838277943853, 2.6225705105057466, 2.238869032814267, 3.2439550987860777, 2.451006291361474, 1.4161067609722149, 0.548031048542675, 0.0), # 145
(8.16595351062735, 5.984245308343629, 7.053057953811847, 7.318924585737469, 6.460422902100661, 3.1250969664326886, 2.605826860305165, 2.3833247318278863, 3.4164279625245353, 1.3162815980269928, 1.0310464159706916, 0.6138811475328351, 0.0, 8.639645831138118, 6.7526926228611845, 5.155232079853457, 3.948844794080978, 6.832855925049071, 3.3366546245590407, 2.605826860305165, 2.2322121188804918, 3.2302114510503306, 2.439641528579157, 1.4106115907623695, 0.5440223007585119, 0.0), # 146
(8.1153309743886, 5.93906667857537, 7.024717309851591, 7.283813341694685, 6.4321573991049, 3.1154393864051255, 2.5886302650689905, 2.3772070224464232, 3.40764998281293, 1.3091316608912866, 1.0257422678113395, 0.6108687023622593, 0.0, 8.601172567860118, 6.719555725984851, 5.1287113390566965, 3.9273949826738592, 6.81529996562586, 3.3280898314249923, 2.5886302650689905, 2.2253138474322327, 3.21607869955245, 2.4279377805648954, 1.4049434619703185, 0.5399151525977609, 0.0), # 147
(8.063435698409021, 5.892750293611764, 6.9954790302092364, 7.247645404001847, 6.403093606080374, 3.105427803620781, 2.5709579890613132, 2.3707977203026074, 3.398529599390676, 1.301761324239612, 1.0202696721839972, 0.6077636866193392, 0.0, 8.561599320349941, 6.68540055281273, 5.101348360919985, 3.905283972718835, 6.797059198781352, 3.3191168084236504, 2.5709579890613132, 2.2181627168719866, 3.201546803040187, 2.4158818013339496, 1.3990958060418472, 0.535704572146524, 0.0), # 148
(8.010231316911412, 5.845240802399927, 6.965310272113703, 7.210381034704727, 6.37321144052258, 3.0950461158431497, 2.5527872965462204, 2.3640774753121114, 3.3890503786251127, 1.2941601234747035, 1.0146205461181517, 0.6045622694411826, 0.0, 8.520895795019237, 6.650184963853008, 5.073102730590758, 3.88248037042411, 6.778100757250225, 3.3097084654369557, 2.5527872965462204, 2.21074722560225, 3.18660572026129, 2.403460344901576, 1.3930620544227408, 0.5313855274909026, 0.0), # 149
(7.955681464118564, 5.796482853886981, 6.934178192793912, 7.171980495849104, 6.342490819927017, 3.0842782208357287, 2.5340954517878003, 2.3570269373906068, 3.3791958868835836, 1.2863175939992944, 1.0087868066432906, 0.601260619964897, 0.0, 8.479031698279647, 6.6138668196138655, 5.043934033216452, 3.8589527819978824, 6.758391773767167, 3.2998377123468496, 2.5340954517878003, 2.2030558720255207, 3.1712454099635083, 2.390660165283035, 1.3868356385587826, 0.5269529867169983, 0.0), # 150
(7.899749774253275, 5.746421097020041, 6.902049949478785, 7.132404049480748, 6.310911661789184, 3.0731080163620113, 2.5148597190501416, 2.3496267564537683, 3.3689496905334293, 1.2782232712161197, 1.002760370788901, 0.5978549073275894, 0.0, 8.435976736542818, 6.576403980603482, 5.013801853944504, 3.8346698136483583, 6.737899381066859, 3.2894774590352753, 2.5148597190501416, 2.1950771545442938, 3.155455830894592, 2.377468016493583, 1.3804099898957571, 0.5224019179109128, 0.0), # 151
(7.842399881538343, 5.6950001807462245, 6.868892699397251, 7.091611957645439, 6.278453883604579, 3.0615194001854955, 2.4950573625973322, 2.3418575824172674, 3.3582953559419897, 1.2698666905279126, 0.9965331555844703, 0.5943413006663675, 0.0, 8.391700616220398, 6.537754307330042, 4.982665777922351, 3.809600071583737, 6.716590711883979, 3.2786006153841742, 2.4950573625973322, 2.1867995715610684, 3.1392269418022893, 2.36387065254848, 1.3737785398794504, 0.5177272891587478, 0.0), # 152
(7.78359542019656, 5.642164754012652, 6.834673599778224, 7.049564482388949, 6.245097402868703, 3.049496270069676, 2.4746656466934596, 2.333700065196776, 3.3472164494766075, 1.2612373873374074, 0.9900970780594861, 0.5907159691183387, 0.0, 8.346173043724027, 6.497875660301725, 4.95048539029743, 3.783712162012222, 6.694432898953215, 3.2671800912754865, 2.4746656466934596, 2.17821162147834, 3.1225487014343516, 2.3498548274629836, 1.3669347199556448, 0.5129240685466048, 0.0), # 153
(7.723300024450729, 5.587859465766439, 6.7993598078506325, 7.006221885757057, 6.210822137077053, 3.0370225237780484, 2.453661835602614, 2.325134854707968, 3.3356965375046217, 1.2523248970473384, 0.9834440552434354, 0.5869750818206104, 0.0, 8.299363725465357, 6.456725900026714, 4.917220276217177, 3.7569746911420143, 6.671393075009243, 3.2551887965911552, 2.453661835602614, 2.169301802698606, 3.1054110685385266, 2.335407295252353, 1.3598719615701265, 0.5079872241605854, 0.0), # 154
(7.6614773285236355, 5.532028964954703, 6.762918480843396, 6.961544429795533, 6.175608003725131, 3.0240820590741087, 2.4320231935888805, 2.316142600866515, 3.323719186393376, 1.2431187550604388, 0.9765660041658056, 0.5831148079102902, 0.0, 8.251242367856026, 6.414262887013191, 4.882830020829028, 3.7293562651813157, 6.647438372786752, 3.242599641213121, 2.4320231935888805, 2.160058613624363, 3.0878040018625654, 2.320514809931845, 1.3525836961686795, 0.5029117240867913, 0.0), # 155
(7.598090966638081, 5.474617900524564, 6.725316775985439, 6.915492376550157, 6.139434920308432, 3.0106587737213526, 2.40972698491635, 2.3067039535880913, 3.3112679625102084, 1.2336084967794434, 0.9694548418560842, 0.5791313165244852, 0.0, 8.201778677307685, 6.370444481769337, 4.84727420928042, 3.7008254903383295, 6.622535925020417, 3.2293855350233276, 2.40972698491635, 2.150470552658109, 3.069717460154216, 2.3051641255167192, 1.3450633551970879, 0.49769253641132405, 0.0), # 156
(7.533104573016862, 5.415570921423138, 6.686521850505682, 6.868025988066703, 6.102282804322456, 2.9967365654832747, 2.3867504738491094, 2.2967995627883675, 3.2983264322224626, 1.2237836576070855, 0.9621024853437583, 0.5750207768003032, 0.0, 8.150942360231976, 6.325228544803333, 4.810512426718791, 3.671350972821256, 6.596652864444925, 3.2155193879037145, 2.3867504738491094, 2.140526118202339, 3.051141402161228, 2.2893419960222348, 1.3373043701011365, 0.4923246292202853, 0.0), # 157
(7.464680946405239, 5.353748694041236, 6.644659961585297, 6.817327186238432, 6.062454070580665, 2.9814309445183143, 2.3625533604639286, 2.285748730145572, 3.2838873638663655, 1.213341479072786, 0.9542659587564906, 0.570633297016195, 0.0, 8.096485859415345, 6.276966267178143, 4.771329793782452, 3.640024437218358, 6.567774727732731, 3.200048222203801, 2.3625533604639286, 2.129593531798796, 3.0312270352903323, 2.2724423954128112, 1.3289319923170593, 0.48670442673102154, 0.0), # 158
(7.382286766978402, 5.282809876299521, 6.58894818200249, 6.7529828690913405, 6.010127539854418, 2.95965229467081, 2.334106381692858, 2.2696723053184926, 3.2621424204073812, 1.2005702485246865, 0.9445694892698324, 0.5651135436402591, 0.0, 8.025427646920194, 6.216248980042849, 4.722847446349162, 3.601710745574059, 6.5242848408147625, 3.17754122744589, 2.334106381692858, 2.114037353336293, 3.005063769927209, 2.250994289697114, 1.3177896364004982, 0.4802554432999565, 0.0), # 159
(7.284872094904309, 5.202172001162321, 6.51826746496324, 6.673933132806645, 5.94428008756453, 2.9308657560278157, 2.301121874191892, 2.248166328969728, 3.2324750757428835, 1.1853014129657236, 0.9328765847682567, 0.5583751624073207, 0.0, 7.93642060889358, 6.142126786480525, 4.664382923841283, 3.55590423889717, 6.464950151485767, 3.147432860557619, 2.301121874191892, 2.0934755400198686, 2.972140043782265, 2.2246443776022153, 1.3036534929926482, 0.47292472737839286, 0.0), # 160
(7.17322205458596, 5.11236079574043, 6.4333724765919245, 6.5809293778175455, 5.865595416188075, 2.895420057582683, 2.263840723003438, 2.2215002221290754, 3.1952765889996724, 1.1676645482927346, 0.9192902757666179, 0.5504806224089643, 0.0, 7.830374044819097, 6.055286846498606, 4.596451378833089, 3.5029936448782033, 6.390553177999345, 3.1101003109807053, 2.263840723003438, 2.0681571839876307, 2.9327977080940375, 2.1936431259391824, 1.2866744953183848, 0.46476007234003913, 0.0), # 161
(7.048121770426357, 5.013901987144635, 6.335017883012913, 6.474723004557244, 5.7747572282021356, 2.853663928328766, 2.2225038131699044, 2.1899434058263343, 3.150938219304545, 1.147789230402558, 0.9039135927797701, 0.5414923927367745, 0.0, 7.708197254180333, 5.956416320104519, 4.519567963898851, 3.4433676912076736, 6.30187643860909, 3.065920768156868, 2.2225038131699044, 2.03833137737769, 2.8873786141010678, 2.158241001519082, 1.2670035766025827, 0.4558092715586033, 0.0), # 162
(6.9103563668284975, 4.90732130248573, 6.223958350350585, 6.35606541345895, 5.672449226083792, 2.8059460972594175, 2.1773520297337003, 2.153765301091302, 3.0998512257843016, 1.1258050351920315, 0.8868495663225682, 0.5314729424823361, 0.0, 7.570799536460879, 5.846202367305696, 4.43424783161284, 3.3774151055760937, 6.199702451568603, 3.015271421527823, 2.1773520297337003, 2.0042472123281554, 2.836224613041896, 2.118688471152984, 1.2447916700701172, 0.4461201184077937, 0.0), # 163
(6.760710968195384, 4.793144468874502, 6.100948544729314, 6.225708004955863, 5.559355112310126, 2.752615293367992, 2.128626257737233, 2.113235328953779, 3.0424068675657407, 1.1018415385579923, 0.8682012269098661, 0.5204847407372336, 0.0, 7.419090191144328, 5.725332148109569, 4.34100613454933, 3.305524615673976, 6.0848137351314815, 2.9585294605352903, 2.128626257737233, 1.9661537809771372, 2.779677556155063, 2.075236001651955, 1.2201897089458629, 0.43574040626131844, 0.0), # 164
(6.599970698930017, 4.671897213421746, 5.966743132273474, 6.084402179481189, 5.436158589358215, 2.694020245647842, 2.076567382222911, 2.068622910443561, 2.9789964037756596, 1.0760283163972786, 0.8480716050565187, 0.5085902565930517, 0.0, 7.25397851771427, 5.594492822523568, 4.2403580252825925, 3.2280849491918353, 5.957992807551319, 2.8960720746209856, 2.076567382222911, 1.9243001754627442, 2.7180792946791077, 2.0281340598270634, 1.1933486264546949, 0.42471792849288603, 0.0), # 165
(6.428920683435397, 4.54410526323825, 5.82209677910744, 5.932899337468126, 5.3035433597051425, 2.630509683092322, 2.021416288233143, 2.020197466590449, 2.9100110935408576, 1.0484949446067282, 0.8265637312773799, 0.49585195914137514, 0.0, 7.0763738156542955, 5.454371550555126, 4.1328186563869, 3.145484833820184, 5.820022187081715, 2.8282764532266285, 2.021416288233143, 1.8789354879230868, 2.6517716798525712, 1.9776331124893758, 1.1644193558214881, 0.41310047847620457, 0.0), # 166
(6.248346046114523, 4.410294345434805, 5.667764151355587, 5.771950879349882, 5.1621931258279865, 2.562432334694784, 1.9634138608103373, 1.9682284184242402, 2.835842195988133, 1.0193709990831787, 0.8037806360873045, 0.48233231747378824, 0.0, 6.887185384447996, 5.30565549221167, 4.0189031804365225, 3.058112997249536, 5.671684391976266, 2.755519785793936, 1.9634138608103373, 1.8303088104962744, 2.5810965629139933, 1.9239836264499612, 1.1335528302711175, 0.4009358495849823, 0.0), # 167
(6.059031911370395, 4.270990187122201, 5.50449991514229, 5.60230820555966, 5.012791590203827, 2.490136929448583, 1.902800984996902, 1.9129851869747332, 2.7568809702442847, 0.9887860557234682, 0.7798253500011468, 0.468093800681876, 0.0, 6.6873225235789615, 5.149031807500635, 3.8991267500057343, 2.9663581671704042, 5.513761940488569, 2.6781792617646265, 1.902800984996902, 1.7786692353204163, 2.5063957951019136, 1.867436068519887, 1.100899983028458, 0.3882718351929274, 0.0), # 168
(5.861763403606015, 4.1267185154112305, 5.333058736591924, 5.4247227165306615, 4.856022455309747, 2.413972196347072, 1.8398185458352458, 1.8547371932717271, 2.6735186754361124, 0.9568696904244344, 0.7548009035337614, 0.45319887785722274, 0.0, 6.477694532530785, 4.985187656429449, 3.774004517668807, 2.8706090712733023, 5.347037350872225, 2.596632070580418, 1.8398185458352458, 1.724265854533623, 2.4280112276548733, 1.808240905510221, 1.066611747318385, 0.3751562286737483, 0.0), # 169
(5.657325647224384, 3.978005057412684, 5.154195281828863, 5.23994581269609, 4.692569423622822, 2.334286864383604, 1.7747074283677764, 1.7937538583450197, 2.5861465706904125, 0.9237514790829147, 0.7288103272000027, 0.4377100180914133, 0.0, 6.259210710787055, 4.814810199005545, 3.6440516360000137, 2.7712544372487433, 5.172293141380825, 2.5112554016830275, 1.7747074283677764, 1.6673477602740028, 2.346284711811411, 1.7466486042320304, 1.0308390563657726, 0.36163682340115316, 0.0), # 170
(5.4465037666285, 3.82537554023735, 4.968664216977482, 5.048728894489152, 4.523116197620137, 2.2514296625515327, 1.7077085176369027, 1.7303046032244096, 2.495155915133985, 0.8895609975957474, 0.7019566515147247, 0.4216896904760322, 0.0, 6.032780357831365, 4.638586595236354, 3.509783257573624, 2.6686829927872413, 4.99031183026797, 2.4224264445141737, 1.7077085176369027, 1.6081640446796661, 2.2615580988100685, 1.6829096314963843, 0.9937328433954964, 0.3477614127488501, 0.0), # 171
(5.230082886221365, 3.6693556909960217, 4.777220208162156, 4.851823362343048, 4.348346479778769, 2.1657493198442115, 1.6390626986850327, 1.664658848939696, 2.4009379678936282, 0.8544278218597702, 0.6743429069927823, 0.4052003641026643, 0.0, 5.799312773147303, 4.457204005129307, 3.3717145349639117, 2.56328346557931, 4.8018759357872565, 2.3305223885155746, 1.6390626986850327, 1.5469637998887225, 2.1741732398893845, 1.6172744541143496, 0.9554440416324312, 0.3335777900905475, 0.0), # 172
(5.00884813040598, 3.510471236799489, 4.58061792150726, 4.649980616690982, 4.168943972575801, 2.077594565254994, 1.5690108565545748, 1.5970860165206766, 2.303883988096141, 0.8184815277718206, 0.6460721241490297, 0.3883045080628938, 0.0, 5.5597172562184625, 4.271349588691831, 3.2303606207451483, 2.4554445833154612, 4.607767976192282, 2.235920423128947, 1.5690108565545748, 1.483996118039281, 2.0844719862879004, 1.5499935388969943, 0.916123584301452, 0.31913374879995354, 0.0), # 173
(4.783584623585344, 3.349247904758541, 4.3796120231371685, 4.443952057966156, 3.9855923784883105, 1.987314127777233, 1.4977938762879377, 1.5278555269971503, 2.204385234868321, 0.7818516912287369, 0.6172473334983214, 0.37106459144830567, 0.0, 5.314903106528433, 4.081710505931362, 3.0862366674916064, 2.34555507368621, 4.408770469736642, 2.1389977377960103, 1.4977938762879377, 1.4195100912694523, 1.9927961892441552, 1.4813173526553853, 0.8759224046274336, 0.3044770822507765, 0.0), # 174
(4.555077490162455, 3.18621142198397, 4.174957179176257, 4.2344890866017755, 3.7989753999933793, 1.8952567364042834, 1.425652642927529, 1.457236801398915, 2.102832967336968, 0.7446678881273562, 0.5879715655555117, 0.35354308335048457, 0.0, 5.0657796235608075, 3.8889739168553294, 2.939857827777558, 2.234003664382068, 4.205665934673936, 2.040131521958481, 1.425652642927529, 1.3537548117173452, 1.8994876999966896, 1.411496362200592, 0.8349914358352515, 0.28965558381672457, 0.0), # 175
(4.324111854540319, 3.0218875155865668, 3.9674080557488987, 4.0223431030310435, 3.609776739568087, 1.8017711201294973, 1.3528280415157574, 1.3854992607557703, 1.9996184446288805, 0.7070596943645169, 0.558347850835455, 0.33580245286101496, 0.0, 4.813256106799174, 3.693826981471164, 2.791739254177275, 2.1211790830935504, 3.999236889257761, 1.9396989650580787, 1.3528280415157574, 1.2869793715210696, 1.8048883697840434, 1.3407810343436815, 0.7934816111497798, 0.2747170468715061, 0.0), # 176
(4.0914728411219325, 2.856801912677122, 3.7577193189794698, 3.808265507687162, 3.4186800996895155, 1.7072060079462288, 1.2795609570950313, 1.3129123260975137, 1.8951329258708567, 0.6691566858370562, 0.528479219853006, 0.3179051690714816, 0.0, 4.5582418557271245, 3.496956859786297, 2.6423960992650297, 2.0074700575111684, 3.7902658517417134, 1.838077256536519, 1.2795609570950313, 1.2194328628187348, 1.7093400498447577, 1.269421835895721, 0.751543863795894, 0.25970926478882933, 0.0), # 177
(3.8579455743102966, 2.6914803403664256, 3.5466456349923448, 3.593007701003337, 3.226369182834742, 1.6119101288478317, 1.2060922747077587, 1.239745418453944, 1.7897676701896952, 0.6310884384418126, 0.49846870312301883, 0.299913701073469, 0.0, 4.301646169828252, 3.299050711808158, 2.4923435156150937, 1.8932653153254375, 3.5795353403793904, 1.7356435858355217, 1.2060922747077587, 1.1513643777484512, 1.613184591417371, 1.1976692336677792, 0.7093291269984691, 0.24468003094240237, 0.0), # 178
(0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0), # 179
)
passenger_allighting_rate = (
(0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1, 0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1), # 0
(0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1, 0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1), # 1
(0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1, 0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1), # 2
(0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1, 0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1), # 3
(0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1, 0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1), # 4
(0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1, 0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1), # 5
(0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1, 0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1), # 6
(0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1, 0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1), # 7
(0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1, 0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1), # 8
(0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1, 0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1), # 9
(0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1, 0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1), # 10
(0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1, 0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1), # 11
(0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1, 0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1), # 12
(0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1, 0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1), # 13
(0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1, 0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1), # 14
(0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1, 0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1), # 15
(0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1, 0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1), # 16
(0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1, 0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1), # 17
(0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1, 0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1), # 18
(0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1, 0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1), # 19
(0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1, 0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1), # 20
(0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1, 0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1), # 21
(0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1, 0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1), # 22
(0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1, 0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1), # 23
(0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1, 0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1), # 24
(0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1, 0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1), # 25
(0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1, 0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1), # 26
(0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1, 0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1), # 27
(0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1, 0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1), # 28
(0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1, 0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1), # 29
(0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1, 0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1), # 30
(0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1, 0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1), # 31
(0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1, 0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1), # 32
(0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1, 0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1), # 33
(0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1, 0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1), # 34
(0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1, 0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1), # 35
(0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1, 0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1), # 36
(0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1, 0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1), # 37
(0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1, 0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1), # 38
(0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1, 0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1), # 39
(0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1, 0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1), # 40
(0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1, 0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1), # 41
(0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1, 0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1), # 42
(0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1, 0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1), # 43
(0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1, 0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1), # 44
(0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1, 0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1), # 45
(0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1, 0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1), # 46
(0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1, 0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1), # 47
(0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1, 0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1), # 48
(0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1, 0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1), # 49
(0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1, 0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1), # 50
(0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1, 0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1), # 51
(0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1, 0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1), # 52
(0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1, 0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1), # 53
(0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1, 0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1), # 54
(0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1, 0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1), # 55
(0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1, 0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1), # 56
(0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1, 0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1), # 57
(0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1, 0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1), # 58
(0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1, 0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1), # 59
(0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1, 0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1), # 60
(0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1, 0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1), # 61
(0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1, 0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1), # 62
(0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1, 0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1), # 63
(0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1, 0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1), # 64
(0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1, 0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1), # 65
(0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1, 0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1), # 66
(0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1, 0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1), # 67
(0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1, 0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1), # 68
(0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1, 0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1), # 69
(0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1, 0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1), # 70
(0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1, 0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1), # 71
(0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1, 0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1), # 72
(0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1, 0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1), # 73
(0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1, 0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1), # 74
(0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1, 0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1), # 75
(0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1, 0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1), # 76
(0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1, 0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1), # 77
(0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1, 0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1), # 78
(0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1, 0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1), # 79
(0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1, 0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1), # 80
(0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1, 0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1), # 81
(0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1, 0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1), # 82
(0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1, 0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1), # 83
(0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1, 0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1), # 84
(0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1, 0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1), # 85
(0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1, 0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1), # 86
(0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1, 0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1), # 87
(0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1, 0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1), # 88
(0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1, 0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1), # 89
(0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1, 0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1), # 90
(0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1, 0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1), # 91
(0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1, 0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1), # 92
(0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1, 0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1), # 93
(0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1, 0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1), # 94
(0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1, 0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1), # 95
(0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1, 0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1), # 96
(0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1, 0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1), # 97
(0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1, 0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1), # 98
(0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1, 0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1), # 99
(0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1, 0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1), # 100
(0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1, 0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1), # 101
(0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1, 0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1), # 102
(0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1, 0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1), # 103
(0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1, 0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1), # 104
(0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1, 0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1), # 105
(0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1, 0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1), # 106
(0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1, 0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1), # 107
(0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1, 0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1), # 108
(0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1, 0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1), # 109
(0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1, 0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1), # 110
(0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1, 0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1), # 111
(0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1, 0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1), # 112
(0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1, 0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1), # 113
(0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1, 0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1), # 114
(0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1, 0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1), # 115
(0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1, 0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1), # 116
(0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1, 0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1), # 117
(0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1, 0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1), # 118
(0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1, 0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1), # 119
(0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1, 0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1), # 120
(0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1, 0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1), # 121
(0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1, 0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1), # 122
(0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1, 0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1), # 123
(0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1, 0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1), # 124
(0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1, 0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1), # 125
(0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1, 0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1), # 126
(0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1, 0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1), # 127
(0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1, 0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1), # 128
(0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1, 0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1), # 129
(0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1, 0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1), # 130
(0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1, 0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1), # 131
(0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1, 0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1), # 132
(0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1, 0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1), # 133
(0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1, 0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1), # 134
(0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1, 0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1), # 135
(0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1, 0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1), # 136
(0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1, 0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1), # 137
(0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1, 0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1), # 138
(0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1, 0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1), # 139
(0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1, 0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1), # 140
(0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1, 0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1), # 141
(0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1, 0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1), # 142
(0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1, 0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1), # 143
(0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1, 0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1), # 144
(0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1, 0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1), # 145
(0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1, 0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1), # 146
(0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1, 0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1), # 147
(0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1, 0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1), # 148
(0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1, 0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1), # 149
(0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1, 0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1), # 150
(0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1, 0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1), # 151
(0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1, 0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1), # 152
(0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1, 0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1), # 153
(0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1, 0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1), # 154
(0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1, 0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1), # 155
(0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1, 0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1), # 156
(0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1, 0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1), # 157
(0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1, 0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1), # 158
(0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1, 0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1), # 159
(0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1, 0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1), # 160
(0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1, 0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1), # 161
(0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1, 0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1), # 162
(0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1, 0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1), # 163
(0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1, 0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1), # 164
(0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1, 0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1), # 165
(0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1, 0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1), # 166
(0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1, 0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1), # 167
(0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1, 0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1), # 168
(0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1, 0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1), # 169
(0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1, 0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1), # 170
(0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1, 0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1), # 171
(0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1, 0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1), # 172
(0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1, 0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1), # 173
(0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1, 0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1), # 174
(0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1, 0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1), # 175
(0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1, 0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1), # 176
(0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1, 0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1), # 177
(0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1, 0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1), # 178
(0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1, 0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1), # 179
)
"""
parameters for reproducibiliy. More information: https://numpy.org/doc/stable/reference/random/parallel.html
"""
#initial entropy
entropy = 8991598675325360468762009371570610170
#index for seed sequence child
child_seed_index = (
1, # 0
91, # 1
)
| 276.337968
| 494
| 0.769623
| 32,987
| 258,376
| 6.027859
| 0.2166
| 0.358477
| 0.343993
| 0.651777
| 0.375913
| 0.367314
| 0.364759
| 0.363939
| 0.363939
| 0.363939
| 0
| 0.849856
| 0.095729
| 258,376
| 934
| 495
| 276.633833
| 0.001194
| 0.015524
| 0
| 0.200873
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 1
| 0
| false
| 0.005459
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| null | 1
| 1
| 1
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 1
| 0
| 0
| 0
| 0
| 1
| 1
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| null | 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
|
0
| 6
|
362a3ccfb5c08880a373a77798da06c480ea8367
| 96
|
py
|
Python
|
venv/lib/python3.8/site-packages/future/moves/reprlib.py
|
Retraces/UkraineBot
|
3d5d7f8aaa58fa0cb8b98733b8808e5dfbdb8b71
|
[
"MIT"
] | 2
|
2022-03-13T01:58:52.000Z
|
2022-03-31T06:07:54.000Z
|
venv/lib/python3.8/site-packages/future/moves/reprlib.py
|
DesmoSearch/Desmobot
|
b70b45df3485351f471080deb5c785c4bc5c4beb
|
[
"MIT"
] | 19
|
2021-11-20T04:09:18.000Z
|
2022-03-23T15:05:55.000Z
|
venv/lib/python3.8/site-packages/future/moves/reprlib.py
|
DesmoSearch/Desmobot
|
b70b45df3485351f471080deb5c785c4bc5c4beb
|
[
"MIT"
] | null | null | null |
/home/runner/.cache/pip/pool/36/de/6c/520310de379522e92a4873af074508b25e98e6dfa6993ff5de6a599a26
| 96
| 96
| 0.895833
| 9
| 96
| 9.555556
| 1
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0.447917
| 0
| 96
| 1
| 96
| 96
| 0.447917
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 1
| 0
| 0
| 0
| 0
| null | null | 0
| 0
| null | null | 0
| 1
| 0
| 0
| null | 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 1
| 0
| 0
| 1
| 0
| 0
| 1
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| null | 1
| 0
| 0
| 0
| 1
| 0
| 0
| 0
| 0
| 0
| 0
| 0
|
0
| 6
|
3650ffa2f133264e813a879801171ae94bfce644
| 23
|
py
|
Python
|
vsbuy_backend/products/models/__init__.py
|
Edward-TL/vsbuy_backend
|
e6b3e71d6c0e6b253707489d70d951400acac451
|
[
"MIT"
] | null | null | null |
vsbuy_backend/products/models/__init__.py
|
Edward-TL/vsbuy_backend
|
e6b3e71d6c0e6b253707489d70d951400acac451
|
[
"MIT"
] | 13
|
2019-12-09T02:38:36.000Z
|
2022-03-12T00:33:57.000Z
|
vsbuy_backend/products/models/__init__.py
|
Edward-TL/vsbuy_backend
|
e6b3e71d6c0e6b253707489d70d951400acac451
|
[
"MIT"
] | 1
|
2020-10-05T01:21:59.000Z
|
2020-10-05T01:21:59.000Z
|
from .products import *
| 23
| 23
| 0.782609
| 3
| 23
| 6
| 1
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0.130435
| 23
| 1
| 23
| 23
| 0.9
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 1
| 0
| true
| 0
| 1
| 0
| 1
| 0
| 1
| 1
| 0
| null | 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 1
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| null | 0
| 0
| 0
| 0
| 0
| 0
| 1
| 0
| 1
| 0
| 1
| 0
|
0
| 6
|
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.