hexsha
string
size
int64
ext
string
lang
string
max_stars_repo_path
string
max_stars_repo_name
string
max_stars_repo_head_hexsha
string
max_stars_repo_licenses
list
max_stars_count
int64
max_stars_repo_stars_event_min_datetime
string
max_stars_repo_stars_event_max_datetime
string
max_issues_repo_path
string
max_issues_repo_name
string
max_issues_repo_head_hexsha
string
max_issues_repo_licenses
list
max_issues_count
int64
max_issues_repo_issues_event_min_datetime
string
max_issues_repo_issues_event_max_datetime
string
max_forks_repo_path
string
max_forks_repo_name
string
max_forks_repo_head_hexsha
string
max_forks_repo_licenses
list
max_forks_count
int64
max_forks_repo_forks_event_min_datetime
string
max_forks_repo_forks_event_max_datetime
string
content
string
avg_line_length
float64
max_line_length
int64
alphanum_fraction
float64
qsc_code_num_words_quality_signal
int64
qsc_code_num_chars_quality_signal
float64
qsc_code_mean_word_length_quality_signal
float64
qsc_code_frac_words_unique_quality_signal
float64
qsc_code_frac_chars_top_2grams_quality_signal
float64
qsc_code_frac_chars_top_3grams_quality_signal
float64
qsc_code_frac_chars_top_4grams_quality_signal
float64
qsc_code_frac_chars_dupe_5grams_quality_signal
float64
qsc_code_frac_chars_dupe_6grams_quality_signal
float64
qsc_code_frac_chars_dupe_7grams_quality_signal
float64
qsc_code_frac_chars_dupe_8grams_quality_signal
float64
qsc_code_frac_chars_dupe_9grams_quality_signal
float64
qsc_code_frac_chars_dupe_10grams_quality_signal
float64
qsc_code_frac_chars_replacement_symbols_quality_signal
float64
qsc_code_frac_chars_digital_quality_signal
float64
qsc_code_frac_chars_whitespace_quality_signal
float64
qsc_code_size_file_byte_quality_signal
float64
qsc_code_num_lines_quality_signal
float64
qsc_code_num_chars_line_max_quality_signal
float64
qsc_code_num_chars_line_mean_quality_signal
float64
qsc_code_frac_chars_alphabet_quality_signal
float64
qsc_code_frac_chars_comments_quality_signal
float64
qsc_code_cate_xml_start_quality_signal
float64
qsc_code_frac_lines_dupe_lines_quality_signal
float64
qsc_code_cate_autogen_quality_signal
float64
qsc_code_frac_lines_long_string_quality_signal
float64
qsc_code_frac_chars_string_length_quality_signal
float64
qsc_code_frac_chars_long_word_length_quality_signal
float64
qsc_code_frac_lines_string_concat_quality_signal
float64
qsc_code_cate_encoded_data_quality_signal
float64
qsc_code_frac_chars_hex_words_quality_signal
float64
qsc_code_frac_lines_prompt_comments_quality_signal
float64
qsc_code_frac_lines_assert_quality_signal
float64
qsc_codepython_cate_ast_quality_signal
float64
qsc_codepython_frac_lines_func_ratio_quality_signal
float64
qsc_codepython_cate_var_zero_quality_signal
bool
qsc_codepython_frac_lines_pass_quality_signal
float64
qsc_codepython_frac_lines_import_quality_signal
float64
qsc_codepython_frac_lines_simplefunc_quality_signal
float64
qsc_codepython_score_lines_no_logic_quality_signal
float64
qsc_codepython_frac_lines_print_quality_signal
float64
qsc_code_num_words
int64
qsc_code_num_chars
int64
qsc_code_mean_word_length
int64
qsc_code_frac_words_unique
null
qsc_code_frac_chars_top_2grams
int64
qsc_code_frac_chars_top_3grams
int64
qsc_code_frac_chars_top_4grams
int64
qsc_code_frac_chars_dupe_5grams
int64
qsc_code_frac_chars_dupe_6grams
int64
qsc_code_frac_chars_dupe_7grams
int64
qsc_code_frac_chars_dupe_8grams
int64
qsc_code_frac_chars_dupe_9grams
int64
qsc_code_frac_chars_dupe_10grams
int64
qsc_code_frac_chars_replacement_symbols
int64
qsc_code_frac_chars_digital
int64
qsc_code_frac_chars_whitespace
int64
qsc_code_size_file_byte
int64
qsc_code_num_lines
int64
qsc_code_num_chars_line_max
int64
qsc_code_num_chars_line_mean
int64
qsc_code_frac_chars_alphabet
int64
qsc_code_frac_chars_comments
int64
qsc_code_cate_xml_start
int64
qsc_code_frac_lines_dupe_lines
int64
qsc_code_cate_autogen
int64
qsc_code_frac_lines_long_string
int64
qsc_code_frac_chars_string_length
int64
qsc_code_frac_chars_long_word_length
int64
qsc_code_frac_lines_string_concat
null
qsc_code_cate_encoded_data
int64
qsc_code_frac_chars_hex_words
int64
qsc_code_frac_lines_prompt_comments
int64
qsc_code_frac_lines_assert
int64
qsc_codepython_cate_ast
int64
qsc_codepython_frac_lines_func_ratio
int64
qsc_codepython_cate_var_zero
int64
qsc_codepython_frac_lines_pass
int64
qsc_codepython_frac_lines_import
int64
qsc_codepython_frac_lines_simplefunc
int64
qsc_codepython_score_lines_no_logic
int64
qsc_codepython_frac_lines_print
int64
effective
string
hits
int64
ebc490bea67c102bec880a94000f61e89d45c863
170
py
Python
aziende/admin.py
luca772005/studio
8d19d28f13f400aa4dde84c36e44cf5891d18ddd
[ "MIT" ]
null
null
null
aziende/admin.py
luca772005/studio
8d19d28f13f400aa4dde84c36e44cf5891d18ddd
[ "MIT" ]
null
null
null
aziende/admin.py
luca772005/studio
8d19d28f13f400aa4dde84c36e44cf5891d18ddd
[ "MIT" ]
null
null
null
from django.contrib import admin from aziende.models import Azienda # Register your models here. @admin.register(Azienda) class AziendaAdmin(admin.ModelAdmin): pass
21.25
37
0.8
22
170
6.181818
0.681818
0
0
0
0
0
0
0
0
0
0
0
0.129412
170
8
38
21.25
0.918919
0.152941
0
0
0
0
0
0
0
0
0
0
0
1
0
true
0.2
0.4
0
0.6
0
1
0
0
null
0
0
0
0
0
0
0
0
0
0
0
0
0
1
0
0
0
0
0
0
0
0
0
0
null
0
0
0
0
0
0
1
1
1
0
1
0
0
6
ebe7d7dacffead944fd340e71684583d203cdc23
125
py
Python
ctr-in-action/deepctr/__init__.py
wdxtub/compute-ad-note
0ea1927acece84aae40b71009d5e865ae14ef57a
[ "MIT" ]
21
2019-04-30T08:55:46.000Z
2022-03-02T07:37:39.000Z
ctr-in-action/deepctr/__init__.py
wdxtub/compute-ad-note
0ea1927acece84aae40b71009d5e865ae14ef57a
[ "MIT" ]
null
null
null
ctr-in-action/deepctr/__init__.py
wdxtub/compute-ad-note
0ea1927acece84aae40b71009d5e865ae14ef57a
[ "MIT" ]
3
2019-08-09T05:15:17.000Z
2021-01-20T09:12:12.000Z
from . import layers from . import models from .utils import check_version __version__ = '0.4.1' check_version(__version__)
17.857143
32
0.784
18
125
4.888889
0.555556
0.227273
0.431818
0
0
0
0
0
0
0
0
0.027778
0.136
125
6
33
20.833333
0.787037
0
0
0
0
0
0.04
0
0
0
0
0
0
1
0
false
0
0.6
0
0.6
0
1
0
0
null
1
1
0
0
0
0
0
0
0
0
0
0
0
1
0
0
0
0
0
0
0
0
0
0
null
0
0
0
0
0
0
0
0
1
0
1
0
0
6
cce60edafccb1c58d9e5204c496e3f2f1b6845b4
168,346
py
Python
tests/test_scottbrian_paratools/test_smart_event.py
ScottBrian/scottbrian_paratools
1b370d985f6d3fd28efc85dee6e3404f86bc7d12
[ "MIT" ]
null
null
null
tests/test_scottbrian_paratools/test_smart_event.py
ScottBrian/scottbrian_paratools
1b370d985f6d3fd28efc85dee6e3404f86bc7d12
[ "MIT" ]
null
null
null
tests/test_scottbrian_paratools/test_smart_event.py
ScottBrian/scottbrian_paratools
1b370d985f6d3fd28efc85dee6e3404f86bc7d12
[ "MIT" ]
null
null
null
"""test_smart_event.py module.""" ############################################################################### # Standard Library ############################################################################### from enum import Enum import logging import time from typing import Any, cast, Dict, Final, List, Optional, Union import threading ############################################################################### # Third Party ############################################################################### import pytest ############################################################################### # Local ############################################################################### from .conftest import Cmds, ThreadPairDesc, ThreadPairDescs, ExpLogMsgs from scottbrian_paratools.smart_event import ( SmartEvent, WUCond, SmartEventConflictDeadlockDetected, SmartEventInconsistentFlagSettings, SmartEventRemoteThreadNotAlive, SmartEventWaitDeadlockDetected, SmartEventWaitUntilTimeout) from scottbrian_paratools.thread_pair import ( ThreadPair, ThreadPairAlreadyPairedWithRemote, ThreadPairDetectedOpFromForeignThread, ThreadPairErrorInRegistry, ThreadPairIncorrectNameSpecified, ThreadPairNameAlreadyInUse, ThreadPairNotPaired, ThreadPairPairWithSelfNotAllowed, ThreadPairPairWithTimedOut, ThreadPairRemotePairedWithOther) logger = logging.getLogger(__name__) logger.debug('about to start the tests') ############################################################################### # SmartEvent test exceptions ############################################################################### class ErrorTstSmartEvent(Exception): """Base class for exception in this module.""" pass class IncorrectActionSpecified(ErrorTstSmartEvent): """IncorrectActionSpecified exception class.""" pass class UnrecognizedMessageType(ErrorTstSmartEvent): """UnrecognizedMessageType exception class.""" pass class UnrecognizedCmd(ErrorTstSmartEvent): """UnrecognizedCmd exception class.""" pass ############################################################################### # Cmd Constants ############################################################################### Cmd = Enum('Cmd', 'Wait Wait_TOT Wait_TOF Wait_Clear Resume Sync Exit ' 'Next_Action') ############################################################################### # Action ############################################################################### Action = Enum('Action', 'MainWait ' 'MainSync MainSync_TOT MainSync_TOF ' 'MainResume MainResume_TOT MainResume_TOF ' 'ThreadWait ThreadWait_TOT ThreadWait_TOF ' 'ThreadResume ') ############################################################################### # action_arg fixtures ############################################################################### action_arg_list = [Action.MainWait, Action.MainSync, Action.MainSync_TOT, Action.MainSync_TOF, Action.MainResume, Action.MainResume_TOT, Action.MainResume_TOF, Action.ThreadWait, Action.ThreadWait_TOT, Action.ThreadWait_TOF, Action.ThreadResume] action_arg_list1 = [Action.MainWait # Action.MainResume, # Action.MainResume_TOT, # Action.MainResume_TOF, # Action.ThreadWait, # Action.ThreadWait_TOT, # Action.ThreadWait_TOF, # Action.ThreadResume ] action_arg_list2 = [ # Action.MainWait, # Action.MainResume, # Action.MainResume_TOT, Action.MainResume_TOF # Action.ThreadWait, # Action.ThreadWait_TOT, # Action.ThreadWait_TOF, # Action.ThreadResume ] @pytest.fixture(params=action_arg_list) # type: ignore def action_arg1(request: Any) -> Any: """Using different reply messages. Args: request: special fixture that returns the fixture params Returns: The params values are returned one at a time """ return request.param @pytest.fixture(params=action_arg_list) # type: ignore def action_arg2(request: Any) -> Any: """Using different reply messages. Args: request: special fixture that returns the fixture params Returns: The params values are returned one at a time """ return request.param ############################################################################### # timeout_arg fixtures ############################################################################### timeout_arg_list = [None, 'TO_False', 'TO_True'] @pytest.fixture(params=timeout_arg_list) # type: ignore def timeout_arg1(request: Any) -> Any: """Using different requests. Args: request: special fixture that returns the fixture params Returns: The params values are returned one at a time """ return request.param @pytest.fixture(params=timeout_arg_list) # type: ignore def timeout_arg2(request: Any) -> Any: """Using different requests. Args: request: special fixture that returns the fixture params Returns: The params values are returned one at a time """ return request.param ############################################################################### # code fixtures ############################################################################### code_arg_list = [None, 42] @pytest.fixture(params=code_arg_list) # type: ignore def code_arg1(request: Any) -> Any: """Using different codes. Args: request: special fixture that returns the fixture params Returns: The params values are returned one at a time """ return cast(int, request.param) @pytest.fixture(params=code_arg_list) # type: ignore def code_arg2(request: Any) -> Any: """Using different codes. Args: request: special fixture that returns the fixture params Returns: The params values are returned one at a time """ return cast(int, request.param) ############################################################################### # log_msg fixtures ############################################################################### log_msg_arg_list = [None, 'log msg1'] @pytest.fixture(params=log_msg_arg_list) # type: ignore def log_msg_arg1(request: Any) -> Any: """Using different log messages. Args: request: special fixture that returns the fixture params Returns: The params values are returned one at a time """ return cast(int, request.param) @pytest.fixture(params=log_msg_arg_list) # type: ignore def log_msg_arg2(request: Any) -> Any: """Using different log messages. Args: request: special fixture that returns the fixture params Returns: The params values are returned one at a time """ return cast(int, request.param) ############################################################################### # log_enabled fixtures ############################################################################### log_enabled_list = [True, False] @pytest.fixture(params=log_enabled_list) # type: ignore def log_enabled_arg(request: Any) -> bool: """Using different log messages. Args: request: special fixture that returns the fixture params Returns: The params values are returned one at a time """ return cast(bool, request.param) ############################################################################### # TestSmartEventBasic class to test SmartEvent methods ############################################################################### ############################################################################### # SmartEventDesc class ############################################################################### class SmartEventDesc(ThreadPairDesc): """Describes a SmartEvent with name and thread to verify.""" def __init__(self, name: Optional[str] = '', s_event: Optional[SmartEvent] = None, thread: Optional[threading.Thread] = None, # type: ignore state: Optional[int] = 0, # 0 is unknown paired_with: Optional[Any] = None) -> None: """Initialize the SmartEventDesc. Args: name: name of the SmartEvent s_event: the SmartEvent being tracked by this desc thread: the thread associated with this SmartEvent state: describes whether the SmartEvent is alive and registered paired_with: names the SmartEvent paired with this one, if one """ ThreadPairDesc.__init__(self, name=name, thread_pair=s_event, thread=thread, state=state, paired_with=paired_with) def verify_state(self) -> None: """Verify the state of the SmartEvent.""" ThreadPairDesc.verify_state(self) self.verify_smart_event_desc() if self.paired_with is not None: self.paired_with.verify_smart_event_desc() ########################################################################### # verify_smart_event_init ########################################################################### def verify_smart_event_desc(self) -> None: """Verify the SmartEvent object is initialized correctly.""" assert isinstance(self.thread_pair, SmartEvent) assert isinstance(self.thread_pair.event, threading.Event) # assert isinstance(self.thread, threading.Thread) assert self.thread_pair.name == self.name assert self.thread_pair.thread is self.thread assert not self.thread_pair.wait_wait assert not self.thread_pair.wait_timeout_specified assert not self.thread_pair.deadlock assert not self.thread_pair.conflict assert self.thread_pair.code is None # class SmartEventDescs: # """Contains a collection of SmartEventDesc items.""" # # ########################################################################### # # __init__ # ########################################################################### # def __init__(self): # """Initialize object.""" # self._descs_lock = threading.RLock() # self.descs: Dict[str, SmartEventDesc] = {} # # ########################################################################### # # add_desc # ########################################################################### # def add_desc(self, # desc: SmartEventDesc, # verify: bool = True) -> None: # """Add desc to collection. # # Args: # desc: the desc to add # verify: specify False when verification should not be done # # """ # with self._descs_lock: # self.cleanup_registry() # desc.state = SmartEventDesc.STATE_ALIVE_REGISTERED # self.descs[desc.name] = desc # if verify: # self.verify_registry() # # ########################################################################### # # thread_end # ########################################################################### # def thread_end(self, # name: str) -> None: # """Update SmartEventDescs to show a thread ended. # # Args: # name: name of SmartEvent for desc to be updated # # """ # with self._descs_lock: # # Note that this action does not cause registry cleanup # # make sure thread is not alive # assert not self.descs[name].s_event.thread.is_alive() # # # make sure we are transitioning correctly # assert (self.descs[name].state # == SmartEventDesc.STATE_ALIVE_REGISTERED) # self.descs[name].state = SmartEventDesc.STATE_NOT_ALIVE_REGISTERED # # ################################################################### # # verify the registry # ################################################################### # self.verify_registry() # # ########################################################################### # # cleanup # ########################################################################### # def cleanup(self) -> None: # """Perform cleanup for SmartEventDescs.""" # # Cleanup applies to all of the descs and is done # # when first thing when a new SmartEvent is instantiated and # # registered, or when a pair_with is done. This action is called # # here for the other cases that trigger cleanup, such as # # getting a SmartEventRemoteThreadNotAlive error. # with self._descs_lock: # self.cleanup_registry() # # ################################################################### # # verify the registry # ################################################################### # self.verify_registry() # # ########################################################################### # # paired # ########################################################################### # def paired(self, # name1: Optional[str] = '', # name2: Optional[str] = '', # verify: bool = True) -> None: # """Update SmartEventDescs to show paired status. # # Args: # name1: name of SmartEvent for desc that is paired with name2 # name2: name of SmartEvent for desc that is paired with name1, or # null if name1 became unpaired # verify: specify False when verification should not be done # # """ # with self._descs_lock: # self.cleanup_registry() # # make sure we can allow the pair # assert self.descs[name1].s_event.thread.is_alive() # assert (self.descs[name1].state # == SmartEventDesc.STATE_ALIVE_REGISTERED) # assert name1 in SmartEvent._registry # assert name1 in self.descs # # # note that name2 will normally be the SmartEventDesc # # that we are pairing with, but it could be None in the case # # where we are doing a second or subsequent pairing but the # # remote fails to to do the pair, which means we lose the # # residual name2 SmartEventDesc # if name2: # assert name2 in SmartEvent._registry # assert self.descs[name2].s_event.thread.is_alive() # assert (self.descs[name2].state # == SmartEventDesc.STATE_ALIVE_REGISTERED) # assert name2 in SmartEvent._registry # assert name2 in self.descs # self.descs[name1].paired_with = self.descs[name2] # self.descs[name2].paired_with = self.descs[name1] # else: # self.descs[name1].paired_with = None # # ################################################################### # # verify the registry # ################################################################### # if verify: # self.verify_registry() # # ########################################################################### # # verify_registry # ########################################################################### # def verify_registry(self): # """Verify the registry.""" # with self._descs_lock: # num_registered = 0 # for key, item in self.descs.items(): # if (item.state == SmartEventDesc.STATE_ALIVE_REGISTERED # or item.state # == SmartEventDesc.STATE_NOT_ALIVE_REGISTERED): # num_registered += 1 # item.verify_state() # # assert len(SmartEvent._registry) == num_registered # # ########################################################################### # # cleanup_registry # ########################################################################### # def cleanup_registry(self): # """Cleanup the registry.""" # for key, item in self.descs.items(): # if item.state == SmartEventDesc.STATE_NOT_ALIVE_REGISTERED: # assert not item.s_event.thread.is_alive() # item.state = SmartEventDesc.STATE_NOT_ALIVE_UNREGISTERED ############################################################################### # outer_f1 ############################################################################### def outer_f1(cmds: Cmds, descs: ThreadPairDescs, ) -> None: """Outer function to test SmartEvent. Args: cmds: Cmds object to tell alpha when to go descs: tracks set of SmartEventDesc items """ logger.debug('outer_f1 entered') s_event = SmartEvent(name='beta') descs.add_desc(SmartEventDesc(name='beta', s_event=s_event)) # tell alpha OK to verify (i.e., beta_smart_event set with s_event) cmds.queue_cmd('alpha', 'go') s_event.pair_with(remote_name='alpha') assert s_event.sync(log_msg='outer beta sync point 1') assert s_event.wait(log_msg='outer f1 wait 12') assert s_event.sync(log_msg='outer beta sync point 2') assert s_event.resume(log_msg='outer f1 resume 23') assert s_event.sync(log_msg='outer beta sync point 3') logger.debug('outer f1 exiting') ############################################################################### # OuterThreadApp class ############################################################################### class OuterThreadApp(threading.Thread): """Outer thread app for test.""" def __init__(self, cmds: Cmds, descs: ThreadPairDescs ) -> None: """Initialize the object. Args: cmds: used to tell alpha to go descs: tracks set of ThreadPairDescs items """ super().__init__() self.cmds = cmds self.descs = descs self.s_event = SmartEvent(name='beta', thread=self) def run(self) -> None: """Run the test.""" print('beta run started') # normally, the add_desc is done just after the instantiation, but # in this case the thread is not made alive until now, and the # add_desc checks that the thread is alive self.descs.add_desc(SmartEventDesc(name='beta', s_event=self.s_event, thread=self)) self.cmds.queue_cmd('alpha') self.s_event.pair_with(remote_name='alpha') self.descs.paired('alpha', 'beta') assert self.s_event.sync(log_msg='outer beta sync point 1') assert self.s_event.wait(log_msg='outer f1 wait 12') assert self.s_event.sync(log_msg='outer beta sync point 2') assert self.s_event.resume(log_msg='outer f1 resume 23') assert self.s_event.sync(log_msg='outer beta sync point 3') logger.debug('beta run exiting') ############################################################################### # OuterThreadEventApp class ############################################################################### class OuterThreadEventApp(threading.Thread, SmartEvent): """Outer thread event app for test.""" def __init__(self, cmds: Cmds, descs: ThreadPairDescs) -> None: """Initialize the object. Args: cmds: used to send cmds between threads descs: tracks set of SmartEventDesc items """ threading.Thread.__init__(self) SmartEvent.__init__(self, name='beta', thread=self) self.cmds = cmds self.descs = descs def run(self): """Run the test.""" print('beta run started') # normally, the add_desc is done just after the instantiation, but # in this case the thread is not made alive until now, and the # add_desc checks that the thread is alive self.descs.add_desc(SmartEventDesc(name='beta', s_event=self, thread=self)) self.cmds.queue_cmd('alpha') self.pair_with(remote_name='alpha', timeout=3) self.descs.paired('alpha', 'beta') assert self.sync(log_msg='outer beta sync point 1') assert self.wait(log_msg='outer f1 wait 12') assert self.sync(log_msg='outer beta sync point 2') assert self.resume(log_msg='outer f1 resume 23') assert self.sync(log_msg='outer beta sync point 3') logger.debug('beta run exiting') ############################################################################### # TestSmartEventBasic class ############################################################################### class TestSmartEventBasic: """Test class for SmartEvent basic tests.""" ########################################################################### # repr for SmartEvent ########################################################################### def test_smart_event_repr(self, thread_exc: Any) -> None: """Test event with code repr. Args: thread_exc: captures thread exceptions """ descs = ThreadPairDescs() smart_event = SmartEvent(name='alpha') descs.add_desc(SmartEventDesc(name='alpha', s_event=smart_event, thread=threading.current_thread())) expected_repr_str = 'SmartEvent(name="alpha")' assert repr(smart_event) == expected_repr_str smart_event2 = SmartEvent(name="AlphaDog") descs.add_desc(SmartEventDesc(name='AlphaDog', s_event=smart_event2, thread=threading.current_thread())) expected_repr_str = 'SmartEvent(name="AlphaDog")' assert repr(smart_event2) == expected_repr_str def f1(): s_event = SmartEvent(name='beta1') descs.add_desc(SmartEventDesc(name='beta1', s_event=s_event, thread=threading.current_thread())) f1_expected_repr_str = 'SmartEvent(name="beta1")' assert repr(s_event) == f1_expected_repr_str cmds.queue_cmd('alpha', 'go') cmds.get_cmd('beta1') def f2(): s_event = SmartEvent(name='beta2') descs.add_desc(SmartEventDesc(name='beta2', s_event=s_event, thread=threading.current_thread())) f1_expected_repr_str = 'SmartEvent(name="beta2")' assert repr(s_event) == f1_expected_repr_str cmds.queue_cmd('alpha', 'go') cmds.get_cmd('beta2') cmds = Cmds() a_thread1 = threading.Thread(target=f1) a_thread1.start() cmds.get_cmd('alpha') a_thread2 = threading.Thread(target=f2) a_thread2.start() cmds.get_cmd('alpha') cmds.queue_cmd('beta1', 'go') a_thread1.join() descs.thread_end('beta1') cmds.queue_cmd('beta2', 'go') a_thread2.join() descs.thread_end('beta2') ########################################################################### # test_smart_event_instantiate_with_errors ########################################################################### def test_smart_event_instantiate_with_errors(self) -> None: """Test register_thread alpha first.""" descs = ThreadPairDescs() smart_event = SmartEvent(name='alpha') descs.add_desc(SmartEventDesc(name='alpha', s_event=smart_event, thread=threading.current_thread())) # not OK to instantiate a new smart_event with same name with pytest.raises(ThreadPairNameAlreadyInUse): _ = SmartEvent(name='alpha') with pytest.raises(ThreadPairIncorrectNameSpecified): _ = SmartEvent(name=42) # type: ignore # try wait, resume, and pause_until without having been paired with pytest.raises(ThreadPairNotPaired): smart_event.wait() with pytest.raises(ThreadPairNotPaired): smart_event.resume() with pytest.raises(ThreadPairNotPaired): smart_event.pause_until(WUCond.RemoteWaiting) # try to pair with unknown remote with pytest.raises(ThreadPairPairWithTimedOut): smart_event.pair_with(remote_name='beta', timeout=0.1) # try to pair with bad name with pytest.raises(ThreadPairIncorrectNameSpecified): smart_event.pair_with(remote_name=3) # type: ignore # make sure everything still the same descs.verify_registry() ########################################################################### # test_smart_event_pairing_with_errors ########################################################################### def test_smart_event_pairing_with_errors(self) -> None: """Test register_thread during instantiation.""" def f1(name: str) -> None: """Func to test instantiate SmartEvent. Args: name: name to use for s_event """ logger.debug(f'{name} f1 entered') s_event = SmartEvent(name=name) descs.add_desc(SmartEventDesc(name=name, s_event=s_event)) cmds.queue_cmd('alpha', 'go') # not OK to pair with self with pytest.raises(ThreadPairPairWithSelfNotAllowed): s_event.pair_with(remote_name=name) s_event.pair_with(remote_name='alpha') # not OK to pair with remote a second time with pytest.raises(ThreadPairAlreadyPairedWithRemote): s_event.pair_with(remote_name='alpha') s_event.sync(timeout=3, log_msg=f'{name} f1 sync point 1') logger.debug(f'{name} f1 exiting') cmds = Cmds() descs = ThreadPairDescs() beta_t = threading.Thread(target=f1, args=('beta',)) smart_event = SmartEvent(name='alpha') descs.add_desc(SmartEventDesc(name='alpha', s_event=smart_event, thread=threading.current_thread())) beta_t.start() # not OK to pair with self with pytest.raises(ThreadPairPairWithSelfNotAllowed): smart_event.pair_with(remote_name='alpha') cmds.get_cmd('alpha') smart_event.pair_with(remote_name='beta') descs.paired('alpha', 'beta') # not OK to pair with remote a second time with pytest.raises(ThreadPairAlreadyPairedWithRemote): smart_event.pair_with(remote_name='beta') smart_event.sync(log_msg='alpha sync point 1') beta_t.join() descs.thread_end(name='beta') # at this point, f1 has ended. But, the registry will not have changed, # so everything will still show paired, even both alpha and beta # SmartEvents. Alpha SmartEvent will detect that beta is no longer # alive if a function is attempted. descs.verify_registry() ####################################################################### # second case - f1 with same name beta ####################################################################### beta_t2 = threading.Thread(target=f1, args=('beta',)) beta_t2.start() cmds.get_cmd('alpha') smart_event.pair_with(remote_name='beta') descs.paired('alpha', 'beta') smart_event.sync(log_msg='alpha sync point 1 again') beta_t2.join() descs.thread_end(name='beta') # at this point, f1 has ended. But, the registry will not have changed, # so everything will still show paired, even both alpha and beta # SmartEvents. Alpha SmartEvent will detect that beta is no longer # alive if a function is attempted. descs.verify_registry() ####################################################################### # third case, use different name for f1. Should clean up old beta # from the registry. ####################################################################### with pytest.raises(ThreadPairNameAlreadyInUse): smart_event = SmartEvent(name='alpha') # create fresh beta_t3 = threading.Thread(target=f1, args=('charlie',)) beta_t3.start() cmds.get_cmd('alpha') smart_event.pair_with(remote_name='charlie') descs.paired('alpha', 'charlie') assert 'beta' not in SmartEvent._registry smart_event.sync(log_msg='alpha sync point 1 again') beta_t3.join() descs.thread_end(name='charlie') # at this point, f1 has ended. But, the registry will not have changed, # so everything will still show paired, even both alpha and charlie # SmartEvents. Alpha SmartEvent will detect that charlie is no longer # alive if a function is attempted. # change name in SmartEvent, then register a new entry to force the # ThreadPairErrorInRegistry error smart_event.remote.name = 'bad_name' with pytest.raises(ThreadPairErrorInRegistry): _ = SmartEvent(name='alpha2') # restore the good name to allow verify_registry to succeed smart_event.remote.name = 'charlie' descs.verify_registry() ########################################################################### # test_smart_event_pairing_with_multiple_threads ########################################################################### def test_smart_event_pairing_with_multiple_threads(self) -> None: """Test register_thread during instantiation.""" def f1(name: str) -> None: """Func to test instantiate SmartEvent. Args: name: name to use for s_event """ logger.debug(f'{name} f1 entered') s_event = SmartEvent(name=name) descs.add_desc(SmartEventDesc(name=name, s_event=s_event)) # not OK to pair with self with pytest.raises(ThreadPairPairWithSelfNotAllowed): s_event.pair_with(remote_name=name) cmds.queue_cmd('alpha', 'go') s_event.pair_with(remote_name='alpha') descs.paired('alpha', 'beta') # alpha needs to wait until we are officially paired to avoid # timing issue when pairing with charlie cmds.queue_cmd('alpha') # not OK to pair with remote a second time with pytest.raises(ThreadPairAlreadyPairedWithRemote): s_event.pair_with(remote_name='alpha') cmds.queue_cmd('alpha', 'go') s_event.sync(log_msg=f'{name} f1 sync point 1') logger.debug(f'{name} f1 exiting') def f2(name: str) -> None: """Func to test instantiate SmartEvent. Args: name: name to use for s_event """ logger.debug(f'{name} f2 entered') s_event = SmartEvent(name=name) descs.add_desc(SmartEventDesc(name=name, s_event=s_event)) # not OK to pair with self with pytest.raises(ThreadPairPairWithSelfNotAllowed): s_event.pair_with(remote_name=name) with pytest.raises(ThreadPairPairWithTimedOut): s_event.pair_with(remote_name='alpha', timeout=1) s_event.pair_with(remote_name='alpha2') descs.paired('alpha2', 'charlie') # not OK to pair with remote a second time with pytest.raises(ThreadPairAlreadyPairedWithRemote): s_event.pair_with(remote_name='alpha2') cmds.queue_cmd('alpha', 'go') s_event.sync(log_msg=f'{name} f1 sync point 1') logger.debug(f'{name} f2 exiting') ####################################################################### # mainline ####################################################################### descs = ThreadPairDescs() cmds = Cmds() beta_t = threading.Thread(target=f1, args=('beta',)) charlie_t = threading.Thread(target=f2, args=('charlie',)) smart_event = SmartEvent(name='alpha') descs.add_desc(SmartEventDesc(name='alpha', s_event=smart_event)) beta_t.start() cmds.get_cmd('alpha') smart_event.pair_with(remote_name='beta') ####################################################################### # pair with charlie ####################################################################### cmds.get_cmd('alpha') smart_event2 = SmartEvent(name='alpha2') descs.add_desc(SmartEventDesc(name='alpha2', s_event=smart_event2)) charlie_t.start() smart_event2.pair_with(remote_name='charlie') cmds.get_cmd('alpha') smart_event.sync(log_msg='alpha sync point 1') beta_t.join() descs.thread_end(name='beta') smart_event2.sync(log_msg='alpha sync point 2') charlie_t.join() descs.thread_end(name='charlie') # at this point, f1 and f2 have ended. But, the registry will not have # changed, so everything will still show paired, even all # SmartEvents. Any SmartEvents requests will detect that # their pairs are no longer active and will trigger cleanup to # remove any not alive entries from the registry. The SmartEvent # objects for not alive threads remain pointed to by the alive # entries so that they may still report SmartEventRemoteThreadNotAlive. descs.verify_registry() # cause cleanup via a sync request with pytest.raises(SmartEventRemoteThreadNotAlive): smart_event.sync(log_msg='mainline sync point 3') descs.cleanup() # try to pair with old beta - should timeout with pytest.raises(ThreadPairPairWithTimedOut): smart_event.pair_with(remote_name='beta', timeout=1) # the pair_with sets smart_event.remote to none before trying the # pair_with, and leaves it None when pair_with fails descs.paired('alpha') # try to pair with old charlie - should timeout with pytest.raises(ThreadPairPairWithTimedOut): smart_event.pair_with(remote_name='charlie', timeout=1) # try to pair with nobody - should timeout with pytest.raises(ThreadPairPairWithTimedOut): smart_event.pair_with(remote_name='nobody', timeout=1) # try to pair with old beta - should timeout with pytest.raises(ThreadPairPairWithTimedOut): smart_event2.pair_with(remote_name='beta', timeout=1) # the pair_with sets smart_event.remote to none before trying the # pair_with, and leaves it None when pair_with fails descs.paired('alpha2') # try to pair with old charlie - should timeout with pytest.raises(ThreadPairPairWithTimedOut): smart_event2.pair_with(remote_name='charlie', timeout=1) # try to pair with nobody - should timeout with pytest.raises(ThreadPairPairWithTimedOut): smart_event2.pair_with(remote_name='nobody', timeout=1) descs.verify_registry() ########################################################################### # test_smart_event_pairing_with_multiple_threads ########################################################################### def test_smart_event_remote_pair_with_other_error(self) -> None: """Test pair_with error case.""" def f1() -> None: """Func to test pair_with SmartEvent.""" logger.debug('beta f1 entered') s_event = SmartEvent(name='beta') descs.add_desc(SmartEventDesc(name='beta', s_event=s_event)) cmds.queue_cmd('alpha', 'go') with pytest.raises(ThreadPairRemotePairedWithOther): s_event.pair_with(remote_name='alpha') cmds.get_cmd('beta') logger.debug(f'beta f1 exiting') def f2() -> None: """Func to test pair_with SmartEvent.""" logger.debug('charlie f2 entered') s_event = SmartEvent(name='charlie') descs.add_desc(SmartEventDesc(name='charlie', s_event=s_event), verify=False) cmds.queue_cmd('alpha', 'go') s_event.pair_with(remote_name='alpha') descs.paired('alpha', 'charlie', verify=False) cmds.queue_cmd('alpha', 'go') s_event.sync(log_msg='charlie f1 sync point 1') logger.debug(f'charlie f2 exiting') ####################################################################### # mainline ####################################################################### descs = ThreadPairDescs() cmds = Cmds() beta_t = threading.Thread(target=f1) charlie_t = threading.Thread(target=f2) smart_event = SmartEvent(name='alpha') descs.add_desc(SmartEventDesc(name='alpha', s_event=smart_event)) beta_t.start() cmds.get_cmd('alpha') beta_se = SmartEvent._registry['beta'] # make sure beta has alpha as target of pair_with while beta_se.remote is None: time.sleep(1) ####################################################################### # pair with charlie ####################################################################### charlie_t.start() cmds.get_cmd('alpha') smart_event.pair_with(remote_name='charlie') cmds.get_cmd('alpha') cmds.queue_cmd('beta') # wait for beta to raise ThreadPairRemotePairedWithOther and end beta_t.join() descs.thread_end(name='beta') # sync up with charlie to allow charlie to exit smart_event.sync(log_msg='alpha sync point 1') charlie_t.join() descs.thread_end(name='charlie') # cause cleanup via a sync request with pytest.raises(SmartEventRemoteThreadNotAlive): smart_event.sync(log_msg='mainline sync point 3') descs.cleanup() ########################################################################### # test_smart_event_pairing_cleanup ########################################################################### def test_smart_event_pairing_cleanup(self) -> None: """Test register_thread during instantiation.""" def f1(name: str, remote_name: str, idx: int) -> None: """Func to test instantiate SmartEvent. Args: name: name to use for s_event remote_name: name to pair with idx: index into beta_smart_events """ logger.debug(f'{name} f1 entered, remote {remote_name}, idx {idx}') s_event = SmartEvent(name=name) descs.add_desc(SmartEventDesc(name=name, s_event=s_event)) cmds.queue_cmd('alpha') s_event.pair_with(remote_name=remote_name, log_msg=f'f1 {name} pair with {remote_name} ' f'for idx {idx}') s_event.sync(log_msg=f'{name} f1 sync point 1') assert s_event.sync(timeout=3, log_msg=f'{name} f1 sync point 2') logger.debug(f'{name} f1 exiting') ####################################################################### # mainline start ####################################################################### cmds = Cmds() descs = ThreadPairDescs() ####################################################################### # create 4 beta threads ####################################################################### beta_t0 = threading.Thread(target=f1, args=('beta0', 'alpha0', 0)) beta_t1 = threading.Thread(target=f1, args=('beta1', 'alpha1', 1)) beta_t2 = threading.Thread(target=f1, args=('beta2', 'alpha2', 2)) beta_t3 = threading.Thread(target=f1, args=('beta3', 'alpha3', 3)) ####################################################################### # create alpha0 SmartEvent and desc, and verify ####################################################################### smart_event0 = SmartEvent(name='alpha0') descs.add_desc(SmartEventDesc(name='alpha0', s_event=smart_event0)) ####################################################################### # create alpha1 SmartEvent and desc, and verify ####################################################################### smart_event1 = SmartEvent(name='alpha1') descs.add_desc(SmartEventDesc(name='alpha1', s_event=smart_event1)) ####################################################################### # create alpha2 SmartEvent and desc, and verify ####################################################################### smart_event2 = SmartEvent(name='alpha2') descs.add_desc(SmartEventDesc(name='alpha2', s_event=smart_event2)) ####################################################################### # create alpha3 SmartEvent and desc, and verify ####################################################################### smart_event3 = SmartEvent(name='alpha3') descs.add_desc(SmartEventDesc(name='alpha3', s_event=smart_event3)) ####################################################################### # start beta0 thread, and verify ####################################################################### beta_t0.start() cmds.get_cmd('alpha') smart_event0.pair_with(remote_name='beta0') smart_event0.sync(log_msg='alpha0 sync point 1') descs.paired('alpha0', 'beta0') ####################################################################### # start beta1 thread, and verify ####################################################################### beta_t1.start() cmds.get_cmd('alpha') smart_event1.pair_with(remote_name='beta1') smart_event1.sync(log_msg='alpha1 sync point 1') descs.paired('alpha1', 'beta1') ####################################################################### # start beta2 thread, and verify ####################################################################### beta_t2.start() cmds.get_cmd('alpha') smart_event2.pair_with(remote_name='beta2') smart_event2.sync(log_msg='alpha2 sync point 1') descs.paired('alpha2', 'beta2') ####################################################################### # start beta3 thread, and verify ####################################################################### beta_t3.start() cmds.get_cmd('alpha') smart_event3.pair_with(remote_name='beta3') smart_event3.sync(log_msg='alpha3 sync point 1') descs.paired('alpha3', 'beta3') ####################################################################### # let beta0 finish ####################################################################### smart_event0.sync(log_msg='alpha0 sync point 1') beta_t0.join() descs.thread_end(name='beta0') ####################################################################### # replace old beta0 w new beta0 - should cleanup registry old beta0 ####################################################################### beta_t0 = threading.Thread(target=f1, args=('beta0', 'alpha0', 0)) beta_t0.start() cmds.get_cmd('alpha') smart_event0.pair_with(remote_name='beta0') smart_event0.sync(log_msg='alpha0 sync point 1') descs.paired('alpha0', 'beta0') ####################################################################### # let beta1 and beta3 finish ####################################################################### smart_event1.sync(log_msg='alpha1 sync point 2') beta_t1.join() descs.thread_end(name='beta1') smart_event3.sync(log_msg='alpha3 sync point 3') beta_t3.join() descs.thread_end(name='beta3') ####################################################################### # replace old beta1 w new beta1 - should cleanup old beta1 and beta3 ####################################################################### beta_t1 = threading.Thread(target=f1, args=('beta1', 'alpha1', 1)) beta_t1.start() cmds.get_cmd('alpha') smart_event1.pair_with(remote_name='beta1') smart_event1.sync(log_msg='alpha1 sync point 1') descs.paired('alpha1', 'beta1') # should get not alive for beta3 with pytest.raises(SmartEventRemoteThreadNotAlive): smart_event3.sync(log_msg='mainline sync point 4') # should still be the same descs.verify_registry() ####################################################################### # get a new beta3 going ####################################################################### beta_t3 = threading.Thread(target=f1, args=('beta3', 'alpha3', 3)) beta_t3.start() cmds.get_cmd('alpha') smart_event3.pair_with(remote_name='beta3') smart_event3.sync(log_msg='alpha3 sync point 1') descs.paired('alpha3', 'beta3') ####################################################################### # let beta1 and beta2 finish ####################################################################### smart_event1.sync(log_msg='alpha1 sync point 5') beta_t1.join() descs.thread_end(name='beta1') smart_event2.sync(log_msg='alpha2 sync point 6') beta_t2.join() descs.thread_end(name='beta2') ####################################################################### # trigger cleanup for beta1 and beta2 ####################################################################### with pytest.raises(SmartEventRemoteThreadNotAlive): smart_event2.sync(log_msg='alpha2 sync point 7') descs.cleanup() ####################################################################### # should get SmartEventRemoteThreadNotAlive for beta1 and beta2 ####################################################################### with pytest.raises(SmartEventRemoteThreadNotAlive): smart_event1.sync(log_msg='alpha1 sync point 8') with pytest.raises(SmartEventRemoteThreadNotAlive): smart_event2.sync(log_msg='alpha 2 sync point 9') descs.verify_registry() ####################################################################### # get a new beta2 going ####################################################################### beta_t2 = threading.Thread(target=f1, args=('beta2', 'alpha2', 2)) beta_t2.start() cmds.get_cmd('alpha') smart_event2.pair_with(remote_name='beta2') smart_event2.sync(log_msg='alpha2 sync point 1') descs.paired('alpha2', 'beta2') smart_event2.sync(log_msg='alpha2 sync point 2') beta_t2.join() descs.thread_end(name='beta2') ####################################################################### # let beta0 complete ####################################################################### smart_event0.sync(log_msg='alpha0 sync point 2') beta_t0.join() descs.thread_end(name='beta0') ####################################################################### # let beta3 complete ####################################################################### smart_event3.sync(log_msg='alpha0 sync point 2') beta_t3.join() descs.thread_end(name='beta3') ########################################################################### # test_smart_event_foreign_op_detection ########################################################################### def test_smart_event_foreign_op_detection(self) -> None: """Test register_thread with f1.""" ####################################################################### # mainline and f1 - mainline pairs with beta ####################################################################### logger.debug('start test 1') def f1(): print('beta f1 entered') s_event = SmartEvent(name='beta') descs.add_desc(SmartEventDesc(name='beta', s_event=s_event)) my_c_thread = threading.current_thread() assert s_event.thread is my_c_thread assert s_event.thread is threading.current_thread() s_event.pair_with(remote_name='alpha') s_event.sync(log_msg='f1 beta sync point 1') logger.debug('f1 beta about to enter cmd loop') while True: beta_cmd = cmds.get_cmd('beta') if beta_cmd == Cmd.Exit: break logger.debug(f'thread_func1 received cmd: {beta_cmd}') if beta_cmd == Cmd.Wait: assert s_event.wait() elif beta_cmd == Cmd.Resume: with pytest.raises(SmartEventWaitUntilTimeout): s_event.pause_until(WUCond.RemoteWaiting, timeout=0.002) with pytest.raises(SmartEventWaitUntilTimeout): s_event.pause_until(WUCond.RemoteWaiting, timeout=0.01) with pytest.raises(SmartEventWaitUntilTimeout): s_event.pause_until(WUCond.RemoteWaiting, timeout=0.02) s_event.sync(log_msg='f1 beta sync point 2') s_event.pause_until(WUCond.RemoteWaiting) s_event.pause_until(WUCond.RemoteWaiting, timeout=0.001) s_event.pause_until(WUCond.RemoteWaiting, timeout=0.01) s_event.pause_until(WUCond.RemoteWaiting, timeout=0.02) s_event.pause_until(WUCond.RemoteWaiting, timeout=-0.02) s_event.pause_until(WUCond.RemoteWaiting, timeout=-1) s_event.pause_until(WUCond.RemoteWaiting, timeout=0) s_event.resume() def foreign1(s_event): logger.debug('foreign1 entered') with pytest.raises(ThreadPairDetectedOpFromForeignThread): s_event.resume() with pytest.raises(ThreadPairDetectedOpFromForeignThread): s_event.pair_with(remote_name='beta') with pytest.raises(ThreadPairDetectedOpFromForeignThread): s_event.pair_with(remote_name='beta', timeout=1) with pytest.raises(ThreadPairDetectedOpFromForeignThread): s_event.pause_until(WUCond.RemoteWaiting, timeout=0.02) with pytest.raises(ThreadPairDetectedOpFromForeignThread): s_event.pause_until(WUCond.RemoteWaiting, timeout=0.02) with pytest.raises(ThreadPairDetectedOpFromForeignThread): s_event.pause_until(WUCond.RemoteWaiting) with pytest.raises(ThreadPairDetectedOpFromForeignThread): s_event.wait() with pytest.raises(ThreadPairDetectedOpFromForeignThread): s_event.sync() logger.debug('foreign1 exiting') cmds = Cmds() descs = ThreadPairDescs() smart_event1 = SmartEvent(name='alpha') descs.add_desc(SmartEventDesc(name='alpha', s_event=smart_event1)) alpha_t = threading.current_thread() my_f1_thread = threading.Thread(target=f1) my_foreign1_thread = threading.Thread(target=foreign1, args=(smart_event1,)) with pytest.raises(ThreadPairNotPaired): smart_event1.pause_until(WUCond.RemoteWaiting, timeout=-0.002) with pytest.raises(ThreadPairNotPaired): smart_event1.pause_until(WUCond.RemoteWaiting, timeout=0) with pytest.raises(ThreadPairNotPaired): smart_event1.pause_until(WUCond.RemoteWaiting, timeout=0.002) with pytest.raises(ThreadPairNotPaired): smart_event1.pause_until(WUCond.RemoteWaiting, timeout=0.2) with pytest.raises(ThreadPairNotPaired): smart_event1.pause_until(WUCond.RemoteWaiting) logger.debug('mainline about to start beta thread') my_f1_thread.start() smart_event1.pair_with(remote_name='beta') descs.paired('alpha', 'beta') smart_event1.sync(log_msg='mainline sync point 1') cmds.queue_cmd('beta', Cmd.Wait) my_foreign1_thread.start() # attempt to resume beta (should fail) my_foreign1_thread.join() logger.debug('about to pause_until RemoteWaiting') smart_event1.pause_until(WUCond.RemoteWaiting) smart_event1.pause_until(WUCond.RemoteWaiting, timeout=0.001) smart_event1.pause_until(WUCond.RemoteWaiting, timeout=0.01) smart_event1.pause_until(WUCond.RemoteWaiting, timeout=0.02) smart_event1.pause_until(WUCond.RemoteWaiting, timeout=-0.02) smart_event1.pause_until(WUCond.RemoteWaiting, timeout=-1) smart_event1.pause_until(WUCond.RemoteWaiting, timeout=0) smart_event1.resume() cmds.queue_cmd('beta', Cmd.Resume) smart_event1.sync(log_msg='mainline sync point 2') assert smart_event1.wait() cmds.queue_cmd('beta', Cmd.Exit) my_f1_thread.join() descs.thread_end(name='beta') with pytest.raises(SmartEventRemoteThreadNotAlive): smart_event1.resume() with pytest.raises(SmartEventRemoteThreadNotAlive): smart_event1.wait() with pytest.raises(SmartEventRemoteThreadNotAlive): smart_event1.pause_until(WUCond.RemoteWaiting) with pytest.raises(SmartEventRemoteThreadNotAlive): smart_event1.sync(log_msg='mainline sync point 3') assert smart_event1.thread is alpha_t ########################################################################### # test_smart_event_outer_thread_f1 ########################################################################### def test_smart_event_outer_thread_f1(self) -> None: """Test simple sequence with outer thread f1.""" ####################################################################### # mainline ####################################################################### logger.debug('mainline starting') cmds = Cmds() descs = ThreadPairDescs() smart_event = SmartEvent(name='alpha') descs.add_desc(SmartEventDesc(name='alpha', s_event=smart_event)) f1_thread = threading.Thread(target=outer_f1, args=(cmds, descs)) f1_thread.start() cmds.get_cmd('alpha') smart_event.pair_with(remote_name='beta') descs.paired('alpha', 'beta') smart_event.sync(log_msg='mainline sync point 1') smart_event.resume(log_msg='alpha resume 12') smart_event.sync(log_msg='mainline sync point 2') smart_event.wait(log_msg='alpha wait 23') smart_event.sync(log_msg='mainline sync point 3') f1_thread.join() descs.thread_end(name='beta') logger.debug('mainline exiting') ########################################################################### # test_smart_event_outer_thread_app ########################################################################### def test_smart_event_outer_thread_app(self) -> None: """Test simple sequence with outer thread app.""" ####################################################################### # mainline ####################################################################### logger.debug('mainline starting') cmds = Cmds() descs = ThreadPairDescs() smart_event = SmartEvent(name='alpha') descs.add_desc(SmartEventDesc(name='alpha', s_event=smart_event)) thread_app = OuterThreadApp(cmds=cmds, descs=descs) thread_app.start() cmds.get_cmd('alpha') smart_event.pair_with(remote_name='beta', timeout=3) smart_event.sync(log_msg='mainline sync point 1') smart_event.resume(log_msg='alpha resume 12') smart_event.sync(log_msg='mainline sync point 2') smart_event.wait(log_msg='alpha wait 23') smart_event.sync(log_msg='mainline sync point 3') thread_app.join() descs.thread_end(name='beta') logger.debug('mainline exiting') ########################################################################### # test_smart_event_outer_thread_app ########################################################################### def test_smart_event_outer_thread_event_app(self) -> None: """Test simple sequence with outer thread event app.""" ####################################################################### # mainline ####################################################################### logger.debug('mainline starting') cmds = Cmds() descs = ThreadPairDescs() smart_event = SmartEvent(name='alpha') descs.add_desc(SmartEventDesc(name='alpha', s_event=smart_event)) thread_event_app = OuterThreadEventApp(cmds=cmds, descs=descs) thread_event_app.start() cmds.get_cmd('alpha') smart_event.pair_with(remote_name='beta', timeout=3) smart_event.sync(log_msg='mainline sync point 1') smart_event.resume(log_msg='alpha resume 12') smart_event.sync(log_msg='mainline sync point 2') smart_event.wait(log_msg='alpha wait 23') smart_event.sync(log_msg='mainline sync point 3') thread_event_app.join() descs.thread_end(name='beta') logger.debug('mainline exiting') ########################################################################### # test_smart_event_wait_deadlock_detection ########################################################################### def test_smart_event_wait_deadlock_detection(self) -> None: """Test deadlock detection with f1.""" ####################################################################### # f1 ####################################################################### def f1(ml_thread): logger.debug('beta f1 beta entered') s_event = SmartEvent(name='beta') descs.add_desc(SmartEventDesc(name='beta', s_event=s_event)) my_c_thread = threading.current_thread() cmds.get_cmd('beta') s_event.pair_with(remote_name='alpha') assert s_event.remote.thread is ml_thread assert s_event.remote.thread is alpha_t assert s_event.thread is my_c_thread assert s_event.thread is threading.current_thread() s_event.sync(log_msg='beta f1 thread sync point 1') with pytest.raises(SmartEventWaitDeadlockDetected): s_event.wait() s_event.sync(log_msg='beta f1 thread sync point 2') s_event.wait() # clear the resume that comes after the deadlock s_event.sync(log_msg='beta f1 thread sync point 3') s_event.pause_until(WUCond.RemoteWaiting, timeout=2) with pytest.raises(SmartEventWaitDeadlockDetected): s_event.wait() s_event.sync(log_msg='beta f1 thread sync point 4') s_event.resume() ####################################################################### # mainline start ####################################################################### cmds = Cmds() descs = ThreadPairDescs() alpha_t = threading.current_thread() smart_event = SmartEvent(name='alpha') descs.add_desc(SmartEventDesc(name='alpha', s_event=smart_event)) my_f1_thread = threading.Thread(target=f1, args=(alpha_t,)) with pytest.raises(ThreadPairNotPaired): smart_event.pause_until(WUCond.RemoteWaiting, timeout=-0.002) with pytest.raises(ThreadPairNotPaired): smart_event.pause_until(WUCond.RemoteWaiting, timeout=0) with pytest.raises(ThreadPairNotPaired): smart_event.pause_until(WUCond.RemoteWaiting, timeout=0.002) with pytest.raises(ThreadPairNotPaired): smart_event.pause_until(WUCond.RemoteWaiting, timeout=0.2) with pytest.raises(ThreadPairNotPaired): smart_event.pause_until(WUCond.RemoteWaiting) my_f1_thread.start() with pytest.raises(ThreadPairNotPaired): smart_event.pause_until(WUCond.RemoteWaiting) # tell f1 to proceed to pair_with cmds.queue_cmd('beta', Cmd.Exit) smart_event.pair_with(remote_name='beta', timeout=3) descs.paired('alpha', 'beta') smart_event.sync(log_msg='mainline sync point 1') with pytest.raises(SmartEventWaitDeadlockDetected): smart_event.wait() smart_event.sync(log_msg='mainline sync point 2') smart_event.resume() smart_event.sync(log_msg='mainline sync point 3') with pytest.raises(SmartEventWaitDeadlockDetected): smart_event.wait() smart_event.sync(log_msg='mainline sync point 4') assert smart_event.wait() # clear resume my_f1_thread.join() descs.thread_end(name='beta') with pytest.raises(SmartEventRemoteThreadNotAlive): smart_event.resume() descs.cleanup() with pytest.raises(SmartEventRemoteThreadNotAlive): smart_event.wait() with pytest.raises(SmartEventRemoteThreadNotAlive): smart_event.sync(log_msg='mainline sync point 5') assert smart_event.thread is alpha_t assert smart_event.remote.thread is my_f1_thread ########################################################################### # test_smart_event_inner_thread_app ########################################################################### def test_smart_event_inner_thread_app(self) -> None: """Test SmartEvent with thread_app.""" ####################################################################### # ThreadApp ####################################################################### class MyThread(threading.Thread): """MyThread class to test SmartEvent.""" def __init__(self, alpha_smart_event: SmartEvent, alpha_thread: threading.Thread ) -> None: """Initialize the object. Args: alpha_smart_event: alpha SmartEvent to use for verification alpha_thread: alpha thread to use for verification """ super().__init__() self.s_event = SmartEvent(name='beta', thread=self) self.alpha_s_event = alpha_smart_event self.alpha_thread = alpha_thread def run(self): """Run the tests.""" logger.debug('run started') # normally, the add_desc is done just after the # instantiation, but # in this case the thread is not made alive until now, and the # add_desc checks that the thread is alive descs.add_desc(SmartEventDesc(name='beta', s_event=self.s_event, thread=self)) cmds.queue_cmd('alpha') self.s_event.pair_with(remote_name='alpha') descs.paired('alpha', 'beta') assert self.s_event.remote is self.alpha_s_event assert (self.s_event.remote.thread is self.alpha_thread) assert self.s_event.remote.thread is alpha_t assert self.s_event.thread is self my_run_thread = threading.current_thread() assert self.s_event.thread is my_run_thread assert self.s_event.thread is threading.current_thread() with pytest.raises(SmartEventWaitUntilTimeout): self.s_event.pause_until(WUCond.RemoteResume, timeout=0.009) self.s_event.sync(log_msg='beta run sync point 1') self.s_event.pause_until(WUCond.RemoteResume, timeout=5) self.s_event.pause_until(WUCond.RemoteResume) assert self.s_event.wait(log_msg='beta run wait 12') self.s_event.sync(log_msg='beta run sync point 2') self.s_event.sync(log_msg='beta run sync point 3') self.s_event.resume() self.s_event.sync(log_msg='beta run sync point 4') logger.debug('beta run exiting 45') ####################################################################### # mainline starts ####################################################################### cmds = Cmds() descs = ThreadPairDescs() alpha_t = threading.current_thread() smart_event1 = SmartEvent(name='alpha') descs.add_desc(SmartEventDesc(name='alpha', s_event=smart_event1)) my_taa_thread = MyThread(smart_event1, alpha_t) my_taa_thread.start() cmds.get_cmd('alpha') smart_event1.pair_with(remote_name='beta') smart_event1.sync(log_msg='mainline sync point 1') assert smart_event1.resume(log_msg='mainline resume 12') smart_event1.sync(log_msg='mainline sync point 2') with pytest.raises(SmartEventWaitUntilTimeout): smart_event1.pause_until(WUCond.RemoteResume, timeout=0.009) smart_event1.sync(log_msg='mainline sync point 3') smart_event1.pause_until(WUCond.RemoteResume, timeout=5) smart_event1.pause_until(WUCond.RemoteResume) assert smart_event1.wait(log_msg='mainline wait 34') smart_event1.sync(log_msg='mainline sync point 4') my_taa_thread.join() descs.thread_end('beta') with pytest.raises(SmartEventRemoteThreadNotAlive): smart_event1.resume() descs.cleanup() with pytest.raises(SmartEventRemoteThreadNotAlive): smart_event1.wait() with pytest.raises(SmartEventRemoteThreadNotAlive): smart_event1.pause_until(WUCond.RemoteWaiting) with pytest.raises(SmartEventRemoteThreadNotAlive): smart_event1.pause_until(WUCond.RemoteResume) with pytest.raises(ThreadPairPairWithTimedOut): smart_event1.pair_with(remote_name='beta', timeout=1) descs.paired('alpha') with pytest.raises(ThreadPairNotPaired): smart_event1.wait() with pytest.raises(ThreadPairNotPaired): smart_event1.pause_until(WUCond.RemoteWaiting) with pytest.raises(ThreadPairNotPaired): smart_event1.pause_until(WUCond.RemoteResume) assert smart_event1.thread is alpha_t assert smart_event1.remote is None descs.verify_registry() ########################################################################### # test_smart_event_inner_thread_app2 ########################################################################### def test_smart_event_inner_thread_app2(self) -> None: """Test SmartEvent with thread_app.""" ####################################################################### # mainline and ThreadApp - mainline provide beta SmartEvent ####################################################################### class MyThread2(threading.Thread): def __init__(self, s_event: SmartEvent, alpha_t1: threading.Thread): super().__init__() self.s_event = s_event # not really a good idea to set the thread - this test case # may not be realistic - need to consider whether the idea # of passing in a pre-instantiated SmartEvent (which gets # its thread set during instantiation) is something we want # to support given that we have to change the thread self.s_event.thread = self self.alpha_t1 = alpha_t1 def run(self): print('run started') # normally, the add_desc is done just after the # instantiation, but # in this case the thread is not made alive until now, and the # add_desc checks that the thread is alive descs.add_desc(SmartEventDesc(name='beta', s_event=self.s_event, thread=self)) cmds.queue_cmd('alpha') self.s_event.pair_with(remote_name='alpha2') assert self.s_event.remote.thread is self.alpha_t1 assert self.s_event.remote.thread is alpha_t assert self.s_event.thread is self my_run_thread = threading.current_thread() assert self.s_event.thread is my_run_thread assert self.s_event.thread is threading.current_thread() with pytest.raises(SmartEventWaitDeadlockDetected): self.s_event.wait() assert self.s_event.wait() self.s_event.pause_until(WUCond.RemoteWaiting) self.s_event.pause_until(WUCond.RemoteWaiting, timeout=2) self.s_event.resume() cmds = Cmds() descs = ThreadPairDescs() smart_event2 = SmartEvent(name='alpha2') descs.add_desc(SmartEventDesc(name='alpha2', s_event=smart_event2)) smart_event3 = SmartEvent(name='beta') alpha_t = threading.current_thread() my_tab_thread = MyThread2(smart_event3, alpha_t) my_tab_thread.start() cmds.get_cmd('alpha') smart_event2.pair_with(remote_name='beta') descs.paired('alpha2', 'beta') smart_event2.pause_until(WUCond.RemoteWaiting) with pytest.raises(SmartEventWaitDeadlockDetected): smart_event2.wait() smart_event2.resume() assert smart_event2.wait() my_tab_thread.join() descs.thread_end('beta') with pytest.raises(SmartEventRemoteThreadNotAlive): smart_event2.resume() descs.cleanup() with pytest.raises(SmartEventRemoteThreadNotAlive): smart_event2.wait() with pytest.raises(SmartEventRemoteThreadNotAlive): smart_event2.pause_until(WUCond.RemoteWaiting) with pytest.raises(SmartEventRemoteThreadNotAlive): smart_event2.pause_until(WUCond.RemoteResume) assert smart_event2.thread is alpha_t assert smart_event2.remote.thread is my_tab_thread descs.verify_registry() ########################################################################### # test_smart_event_inner_thread_event_app ########################################################################### def test_smart_event_inner_thread_event_app(self) -> None: """Test SmartEvent with thread_event_app.""" ####################################################################### # mainline and ThreadEventApp - mainline sets alpha and beta ####################################################################### class MyThreadEvent1(threading.Thread, SmartEvent): def __init__(self, alpha_t1: threading.Thread): threading.Thread.__init__(self) SmartEvent.__init__(self, name='beta', thread=self) self.alpha_t1 = alpha_t1 def run(self): logger.debug('run started') # normally, the add_desc is done just after the # instantiation, but # in this case the thread is not made alive until now, and the # add_desc checks that the thread is alive descs.add_desc(SmartEventDesc(name='beta', s_event=self, thread=self)) cmds.queue_cmd('alpha') self.pair_with(remote_name='alpha') descs.paired('alpha', 'beta') assert self.remote.thread is self.alpha_t1 assert self.remote.thread is alpha_t assert self.thread is self my_run_thread = threading.current_thread() assert self.thread is my_run_thread assert self.thread is threading.current_thread() assert self.wait() self.pause_until(WUCond.RemoteWaiting, timeout=2) with pytest.raises(SmartEventWaitDeadlockDetected): self.wait() self.resume() logger.debug('run exiting') cmds = Cmds() descs = ThreadPairDescs() alpha_t = threading.current_thread() my_te1_thread = MyThreadEvent1(alpha_t) with pytest.raises(ThreadPairDetectedOpFromForeignThread): my_te1_thread.pause_until(WUCond.RemoteWaiting, timeout=0.005) with pytest.raises(ThreadPairDetectedOpFromForeignThread): my_te1_thread.wait(timeout=0.005) with pytest.raises(ThreadPairDetectedOpFromForeignThread): my_te1_thread.resume(timeout=0.005) with pytest.raises(ThreadPairDetectedOpFromForeignThread): my_te1_thread.sync(timeout=0.005) with pytest.raises(ThreadPairDetectedOpFromForeignThread): my_te1_thread.pair_with(remote_name='alpha', timeout=0.5) assert my_te1_thread.remote is None assert my_te1_thread.thread is my_te1_thread my_te1_thread.start() cmds.get_cmd('alpha') smart_event = SmartEvent(name='alpha') descs.add_desc(SmartEventDesc(name='alpha', s_event=smart_event)) with pytest.raises(ThreadPairNotPaired): smart_event.sync() with pytest.raises(ThreadPairNotPaired): smart_event.wait() with pytest.raises(ThreadPairNotPaired): smart_event.resume() smart_event.pair_with(remote_name='beta') smart_event.resume() with pytest.raises(SmartEventWaitDeadlockDetected): smart_event.wait() assert smart_event.wait() my_te1_thread.join() descs.thread_end('beta') with pytest.raises(SmartEventRemoteThreadNotAlive): smart_event.resume() with pytest.raises(SmartEventRemoteThreadNotAlive): smart_event.wait() with pytest.raises(SmartEventRemoteThreadNotAlive): smart_event.pause_until(WUCond.RemoteWaiting) with pytest.raises(SmartEventRemoteThreadNotAlive): smart_event.pause_until(WUCond.RemoteResume) assert my_te1_thread.remote is not None assert my_te1_thread.remote.thread is not None assert my_te1_thread.remote.thread is alpha_t assert my_te1_thread.thread is my_te1_thread ########################################################################### # test_smart_event_inner_thread_event_app2 ########################################################################### def test_smart_event_inner_thread_event_app2(self) -> None: """Test SmartEvent with thread_event_app.""" ####################################################################### # mainline and ThreadApp - mainline sets alpha thread_app sets beta ####################################################################### class MyThreadEvent2(threading.Thread, SmartEvent): def __init__(self, alpha_t1: threading.Thread): threading.Thread.__init__(self) SmartEvent.__init__(self, name='beta', thread=self) self.alpha_t1 = alpha_t1 def run(self): logger.debug('run started') assert self.remote is None assert self.thread is self my_run_thread = threading.current_thread() assert self.thread is my_run_thread assert self.thread is threading.current_thread() # normally, the add_desc is done just after the # instantiation, but # in this case the thread is not made alive until now, and the # add_desc checks that the thread is alive descs.add_desc(SmartEventDesc(name='beta', s_event=self, thread=self)) cmds.queue_cmd('alpha') self.pair_with(remote_name='alpha') assert self.remote.thread is self.alpha_t1 assert self.remote.thread is alpha_t descs.paired('alpha', 'beta') with pytest.raises(SmartEventWaitDeadlockDetected): self.wait() assert self.wait() self.resume() logger.debug('run exiting') cmds = Cmds() descs = ThreadPairDescs() alpha_t = threading.current_thread() my_te2_thread = MyThreadEvent2(alpha_t) my_te2_thread.start() cmds.get_cmd('alpha') smart_event = SmartEvent(name='alpha') descs.add_desc(SmartEventDesc(name='alpha', s_event=smart_event)) smart_event.pair_with(remote_name='beta') smart_event.pause_until(WUCond.RemoteWaiting, timeout=2) with pytest.raises(SmartEventWaitDeadlockDetected): smart_event.wait() assert smart_event.resume() assert smart_event.wait() my_te2_thread.join() descs.thread_end('beta') with pytest.raises(SmartEventRemoteThreadNotAlive): smart_event.resume() with pytest.raises(SmartEventRemoteThreadNotAlive): smart_event.wait() with pytest.raises(SmartEventRemoteThreadNotAlive): smart_event.pause_until(WUCond.RemoteWaiting, timeout=2) with pytest.raises(SmartEventRemoteThreadNotAlive): smart_event.pause_until(WUCond.RemoteResume, timeout=2) assert smart_event.thread is alpha_t assert smart_event.remote.thread is my_te2_thread ########################################################################### # test_smart_event_two_f_threads ########################################################################### def test_smart_event_two_f_threads(self) -> None: """Test register_thread with thread_event_app.""" ####################################################################### # two threads - mainline sets alpha and beta ####################################################################### def fa1(): logger.debug('fa1 entered') my_fa_thread = threading.current_thread() s_event = SmartEvent(name='fa1') descs.add_desc(SmartEventDesc(name='fa1', s_event=s_event, thread=my_fa_thread)) assert s_event.thread is my_fa_thread s_event.pair_with(remote_name='fb1') descs.paired('fa1', 'fb1') logger.debug('fa1 about to wait') s_event.wait() logger.debug('fa1 back from wait') s_event.pause_until(WUCond.RemoteWaiting, timeout=2) s_event.resume() def fb1(): logger.debug('fb1 entered') my_fb_thread = threading.current_thread() s_event = SmartEvent(name='fb1') descs.add_desc(SmartEventDesc(name='fb1', s_event=s_event, thread=my_fb_thread)) assert s_event.thread is my_fb_thread s_event.pair_with(remote_name='fa1') logger.debug('fb1 about to resume') s_event.resume() s_event.wait() # tell mainline we are out of the wait - OK to do descs fa1 end cmds.queue_cmd('alpha') # wait for mainline to give to go ahead after doing descs fa1 end cmds.get_cmd('beta') with pytest.raises(SmartEventRemoteThreadNotAlive): s_event.resume() descs.cleanup() with pytest.raises(SmartEventRemoteThreadNotAlive): s_event.wait() with pytest.raises(SmartEventRemoteThreadNotAlive): s_event.pause_until(WUCond.RemoteWaiting) ####################################################################### # mainline ####################################################################### cmds = Cmds() descs = ThreadPairDescs() fa1_thread = threading.Thread(target=fa1) fb1_thread = threading.Thread(target=fb1) logger.debug('starting fa1_thread') fa1_thread.start() logger.debug('starting fb1_thread') fb1_thread.start() fa1_thread.join() cmds.get_cmd('alpha') descs.thread_end('fa1') cmds.queue_cmd('beta', 'go') fb1_thread.join() descs.thread_end('fb1') ########################################################################### # test_smart_event_two_f_threads2 ########################################################################### def test_smart_event_two_f_threads2(self) -> None: """Test register_thread with thread_event_app.""" ####################################################################### # two threads - fa2 and fb2 set their own threads ####################################################################### def fa2(): logger.debug('fa2 entered') s_event = SmartEvent(name='fa2') my_fa_thread = threading.current_thread() assert s_event.thread is my_fa_thread descs.add_desc(SmartEventDesc(name='fa2', s_event=s_event, thread=my_fa_thread)) s_event.pair_with(remote_name='fb2') cmds.get_cmd('beta') logger.debug('fa2 about to deadlock') with pytest.raises(SmartEventWaitDeadlockDetected): logger.debug('fa2 about to wait') s_event.wait() logger.debug('fa2 back from wait') logger.debug('fa2 about to pause_until') s_event.pause_until(WUCond.RemoteWaiting, timeout=2) logger.debug('fa2 about to resume') s_event.resume() s_event.wait() logger.debug('fa2 exiting') def fb2(): logger.debug('fb2 entered') s_event = SmartEvent(name='fb2') my_fb_thread = threading.current_thread() descs.add_desc(SmartEventDesc(name='fb2', s_event=s_event, thread=my_fb_thread)) assert s_event.thread is my_fb_thread s_event.pair_with(remote_name='fa2') descs.paired('fa2', 'fb2') cmds.queue_cmd('beta') logger.debug('fb2 about to deadlock') with pytest.raises(SmartEventWaitDeadlockDetected): logger.debug('fb2 about to wait') s_event.wait() logger.debug('fb2 back from wait') logger.debug('fb2 about to pause_until') logger.debug('fb2 about to wait') s_event.wait() s_event.resume() # tell mainline we are out of the wait - OK to do descs fa1 end cmds.queue_cmd('alpha') # wait for mainline to give to go ahead after doing descs fa1 end cmds.get_cmd('beta') logger.debug('fb2 about to try resume for SmartEventRemoteThreadNotAlive') with pytest.raises(SmartEventRemoteThreadNotAlive): s_event.resume() descs.cleanup() logger.debug('fb2 about to try wait for SmartEventRemoteThreadNotAlive') with pytest.raises(SmartEventRemoteThreadNotAlive): s_event.wait() logger.debug('fb2 exiting') cmds = Cmds() descs = ThreadPairDescs() fa2_thread = threading.Thread(target=fa2) fb2_thread = threading.Thread(target=fb2) fa2_thread.start() fb2_thread.start() fa2_thread.join() cmds.get_cmd('alpha') descs.thread_end('fa2') cmds.queue_cmd('beta', 'go') fb2_thread.join() descs.thread_end('fb2') ############################################################################### # TestResumeExc Class ############################################################################### class TestResumeExc: """Test SmartEvent resume() exceptions.""" ########################################################################### # test_smart_event_sync_f1 ########################################################################### def test_smart_event_resume_exc_f1(self) -> None: """Test register_thread with f1.""" def f1(): logger.debug('f1 beta entered') s_event = SmartEvent(name='beta') descs.add_desc(SmartEventDesc(name='beta', s_event=s_event, thread=threading.current_thread())) cmds.queue_cmd('alpha') s_event.pair_with(remote_name='alpha') descs.paired('alpha', 'beta') s_event.sync(log_msg='f1 beta sync point 1') cmds.queue_cmd('alpha', 'go') cmds.get_cmd('beta') s_event.sync(log_msg='f1 beta sync point 2') s_event.resume(log_msg='f1 beta resume 3') s_event.sync(log_msg='f1 beta sync point 4') logger.debug('f1 beta exiting 5') logger.debug('mainline entered') cmds = Cmds() descs = ThreadPairDescs() smart_event1 = SmartEvent(name='alpha') descs.add_desc(SmartEventDesc(name='alpha', s_event=smart_event1, thread=threading.current_thread())) f1_thread = threading.Thread(target=f1) f1_thread.start() cmds.get_cmd('alpha') smart_event1.pair_with(remote_name='beta') assert smart_event1.sync(log_msg='mainline sync point 1') cmds.get_cmd('alpha') smart_event1.remote.deadlock = True smart_event1.remote.conflict = True with pytest.raises(SmartEventInconsistentFlagSettings): smart_event1.resume(log_msg='alpha error resume 1a') smart_event1.remote.deadlock = False smart_event1.remote.conflict = False smart_event1.remote.wait_wait = True smart_event1.remote.sync_wait = True with pytest.raises(SmartEventInconsistentFlagSettings): smart_event1.resume(log_msg='alpha error resume 1b') smart_event1.remote.wait_wait = False smart_event1.remote.sync_wait = False smart_event1.remote.deadlock = True with pytest.raises(SmartEventInconsistentFlagSettings): smart_event1.resume(log_msg='alpha error resume 1c') smart_event1.remote.deadlock = False smart_event1.remote.conflict = True with pytest.raises(SmartEventInconsistentFlagSettings): smart_event1.resume(log_msg='alpha error resume 1d') smart_event1.remote.conflict = False cmds.queue_cmd('beta', 'go') smart_event1.sync(log_msg='mainline sync point 2') smart_event1.wait(log_msg='mainline wait 3') smart_event1.sync(log_msg='mainline sync point 4') f1_thread.join() descs.thread_end('beta') with pytest.raises(SmartEventRemoteThreadNotAlive): smart_event1.resume(log_msg='mainline sync point 5') descs.cleanup() logger.debug('mainline exiting') ############################################################################### # TestSync Class ############################################################################### class TestSync: """Test SmartEvent sync function.""" ########################################################################### # test_smart_event_sync_f1 ########################################################################### def test_smart_event_sync_f1(self) -> None: """Test register_thread with f1.""" def f1(): logger.debug('f1 beta entered') s_event = SmartEvent(name='beta') descs.add_desc(SmartEventDesc(name='beta', s_event=s_event, thread=threading.current_thread())) cmds.queue_cmd('alpha') s_event.pair_with(remote_name='alpha') s_event.sync(log_msg='f1 beta sync point 1') s_event.wait() s_event.sync(log_msg='f1 beta sync point 2') s_event.resume() s_event.sync(log_msg='f1 beta sync point 3') s_event.sync(log_msg='f1 beta sync point 4') s_event.wait() logger.debug('f1 beta exiting') logger.debug('mainline entered') cmds = Cmds() descs = ThreadPairDescs() smart_event1 = SmartEvent(name='alpha') descs.add_desc(SmartEventDesc(name='alpha', s_event=smart_event1, thread=threading.current_thread())) f1_thread = threading.Thread(target=f1) f1_thread.start() cmds.get_cmd('alpha') smart_event1.pair_with(remote_name='beta') descs.paired('alpha', 'beta') smart_event1.sync(log_msg='mainline sync point 1') smart_event1.resume() smart_event1.sync(log_msg='mainline sync point 2') smart_event1.wait() smart_event1.sync(log_msg='mainline sync point 3') smart_event1.resume() smart_event1.sync(log_msg='mainline sync point 4') f1_thread.join() descs.thread_end('beta') logger.debug('mainline exiting') ########################################################################### # test_smart_event_sync_exc ########################################################################### def test_smart_event_sync_exc(self, thread_exc: Any) -> None: """Test register_thread with f1. Args: thread_exc: capture thread exceptions """ def f1(): logger.debug('f1 beta entered') s_event = SmartEvent(name='beta') descs.add_desc(SmartEventDesc(name='beta', s_event=s_event, thread=threading.current_thread())) cmds.queue_cmd('alpha') s_event.pair_with(remote_name='alpha') descs.paired('alpha', 'beta') assert s_event.sync(log_msg='f1 beta sync point 1') with pytest.raises(SmartEventConflictDeadlockDetected): s_event.wait(log_msg='f1 beta wait 2') assert s_event.sync(log_msg='f1 beta sync point 3') s_event.resume(log_msg='f1 beta resume 4') assert s_event.sync(log_msg='f1 beta sync point 5') assert s_event.wait(log_msg='f1 beta wait 6') s_event.pause_until(WUCond.RemoteWaiting) s_event.resume() assert s_event.sync(log_msg='f1 beta sync point 8') # When one thread issues a sync request, and the other issues a # wait request, a conflict deadlock is recognized. The # process is of conflict detection is that one side recognizes the # conflict, sets a flag to tell the other side that the conflict # exists, and then raises the SmartEventConflictDeadlockDetected error. # The other side, upon seeing the conflict flag set, will also # raise the SmartEventConflictDeadlockDetected error. # We want to ensure that sync code that detects the conflict is # exercised here which requires setting certain flags in a way # that coaxes each side into behaving such that the sync # detection code will run. We will do this as follows: # make sure alpha is in sync code now looping in phase 1 while not s_event.remote.sync_wait: time.sleep(.1) # make alpha think it is in sync phase 2 and continue looping # until beta sets sync_cleanup from True back to False with s_event.status.status_lock: s_event.remote.sync_wait = False s_event.status.sync_cleanup = True # pre-resume to set beta event and set alpha wait_wait to get beta # thinking alpha is resumed and waiting and will eventually # leave (i.e., get beta the think that alpha not in a sync # deadlock) s_event.resume() s_event.remote.wait_wait = True # Now issue the wait. There is no way to prove that alpha saw # the deadlock first, but we will see later whether the code # coverage will show that the sync detection code ran. with pytest.raises(SmartEventConflictDeadlockDetected): s_event.wait(log_msg='f1 beta wait 89') s_event.status.sync_cleanup = False assert s_event.sync(log_msg='f1 beta sync point 9') logger.debug('f1 beta exiting 10') logger.debug('mainline entered') cmds = Cmds() descs = ThreadPairDescs() smart_event1 = SmartEvent(name='alpha') descs.add_desc(SmartEventDesc(name='alpha', s_event=smart_event1, thread=threading.current_thread())) f1_thread = threading.Thread(target=f1) f1_thread.start() cmds.get_cmd('alpha') smart_event1.pair_with(remote_name='beta') assert smart_event1.sync(log_msg='mainline sync point 1') # See the comments in f1 regarding the detection and handling of a # confict deadlock. We need to force the code in the following # scenario to behave such that beta will be the side that detects # the conflict. This will be done as follows: # make sure beta is looping in wait code smart_event1.pause_until(WUCond.RemoteWaiting) # set remote.wait_wait to False to trick alpha in the folloiwng # sync request to think alpha is NOT in wait request code so # that alpha does not detect the conflict. smart_event1.remote.wait_wait = False # Issue the sync request. If all goes well, beta will see the conflict # first, set the conflict flag and then raise the # SmartEventConflictDeadlockDetected error. We can't prove that it worked out # that way, but the coverage report will tell us whether the # detection code in wait ran. with pytest.raises(SmartEventConflictDeadlockDetected): smart_event1.sync(log_msg='mainline sync point 2') assert smart_event1.sync(log_msg='mainline sync point 3') assert smart_event1.wait(log_msg='mainline wait 4') assert smart_event1.sync(log_msg='mainline sync point 5') smart_event1.resume(log_msg='mainline resume 6') assert not smart_event1.sync(log_msg='mainline sync point 7', timeout=0.5) assert smart_event1.wait() assert smart_event1.sync(log_msg='mainline sync point 8') # thread will ensure we see conflict first with pytest.raises(SmartEventConflictDeadlockDetected): smart_event1.sync(log_msg='mainline sync point 10') logger.debug('mainline about to issue wait to clear trick pre-resume') smart_event1.wait() # clear the trick pre-resume from beta assert smart_event1.sync(log_msg='mainline sync point 9') f1_thread.join() descs.thread_end('beta') with pytest.raises(SmartEventRemoteThreadNotAlive): smart_event1.sync(log_msg='mainline sync point 10') descs.cleanup() logger.debug('mainline exiting 9') ############################################################################### # TestWaitClear Class ############################################################################### class TestWaitClear: """Test SmartEvent clearing of event set flag.""" ########################################################################### # test_smart_event_f1_clear ########################################################################### def test_smart_event_f1_clear(self) -> None: """Test smart event timeout with f1 thread.""" def f1(): logger.debug('f1 entered') s_event = SmartEvent(name='beta') descs.add_desc(SmartEventDesc(name='beta', s_event=s_event, thread=threading.current_thread())) cmds.queue_cmd('alpha') s_event.pair_with(remote_name='alpha') descs.paired('alpha', 'beta') cmds.start_clock(iter=1) assert s_event.wait() assert 2 <= cmds.duration() <= 3 assert not s_event.remote.event.is_set() cmds.start_clock(iter=2) assert s_event.wait() assert 2 <= cmds.duration() <= 3 assert not s_event.remote.event.is_set() cmds.pause(2, iter=3) s_event.resume() cmds.pause(2, iter=4) s_event.resume() cmds = Cmds() descs = ThreadPairDescs() smart_event = SmartEvent(name='alpha') descs.add_desc(SmartEventDesc(name='alpha', s_event=smart_event, thread=threading.current_thread())) beta_thread = threading.Thread(target=f1) beta_thread.start() cmds.get_cmd('alpha') smart_event.pair_with(remote_name='beta') cmds.pause(2, iter=1) smart_event.resume() cmds.pause(2, iter=2) smart_event.resume() cmds.start_clock(iter=3) assert smart_event.wait() assert 2 <= cmds.duration() <= 3 assert not smart_event.remote.event.is_set() cmds.start_clock(iter=4) assert smart_event.wait() assert 2 <= cmds.duration() <= 3 assert not smart_event.remote.event.is_set() beta_thread.join() descs.thread_end('beta') ########################################################################### # test_smart_event_thread_app_clear ########################################################################### def test_smart_event_thread_app_clear(self) -> None: """Test smart event timeout with thread_app thread.""" class MyThread(threading.Thread): def __init__(self) -> None: super().__init__() self.s_event = SmartEvent(name='beta', thread=self) def run(self): logger.debug('ThreadApp run entered') # s_event = SmartEvent(name='beta') descs.add_desc(SmartEventDesc(name='beta', s_event=self.s_event, thread=self)) cmds.queue_cmd('alpha') self.s_event.pair_with(remote_name='alpha') assert not self.s_event.remote.event.is_set() assert not self.s_event.event.is_set() self.s_event.sync(log_msg='beta run sync point 1') cmds.start_clock(iter=1) assert self.s_event.wait(log_msg='beta run wait 12') assert 2 <= cmds.duration() <= 3 assert not self.s_event.remote.event.is_set() assert not self.s_event.event.is_set() self.s_event.sync(log_msg='beta run sync point 2') cmds.start_clock(iter=2) assert self.s_event.wait(log_msg='beta run wait 23') assert 2 <= cmds.duration() <= 3 assert not self.s_event.remote.event.is_set() assert not self.s_event.event.is_set() self.s_event.sync(log_msg='beta run sync point 3') cmds.pause(2, iter=3) self.s_event.resume(log_msg='beta run resume 34') self.s_event.sync(log_msg='beta run sync point 4') cmds.pause(2, iter=4) self.s_event.resume(log_msg='beta run resume 45') self.s_event.sync(log_msg='beta run sync point 5') logger.debug('beta run exiting 910') cmds = Cmds() descs = ThreadPairDescs() smart_event = SmartEvent(name='alpha') descs.add_desc(SmartEventDesc(name='alpha', s_event=smart_event, thread=threading.current_thread())) thread_app = MyThread() thread_app.start() cmds.get_cmd('alpha') smart_event.pair_with(remote_name='beta') descs.paired('alpha', 'beta') smart_event.sync(log_msg='mainline sync point 1') cmds.pause(2, iter=1) smart_event.resume(log_msg='mainline resume 12') smart_event.sync(log_msg='mainline sync point 2') cmds.pause(2, iter=2) smart_event.resume(log_msg='mainline resume 23') smart_event.sync(log_msg='mainline sync point 3') cmds.start_clock(iter=3) assert smart_event.wait(log_msg='mainline wait 34') assert 2 <= cmds.duration() <= 3 assert not smart_event.event.is_set() assert not smart_event.remote.event.is_set() smart_event.sync(log_msg='mainline sync point 4') cmds.start_clock(iter=4) assert smart_event.wait(log_msg='mainline sync point 45') assert 2 <= cmds.duration() <= 3 assert not smart_event.event.is_set() assert not smart_event.remote.event.is_set() smart_event.sync(log_msg='mainline sync point 5') thread_app.join() descs.thread_end('beta') ############################################################################### # TestSmartEventTimeout Class ############################################################################### class TestSmartEventTimeout: """Test SmartEvent timeout cases.""" ########################################################################### # test_smart_event_f1_wait_time_out ########################################################################### def test_smart_event_f1_wait_time_out(self) -> None: """Test smart event wait timeout with f1 thread.""" def f1(): logger.debug('f1 entered') s_event = SmartEvent(name='beta') descs.add_desc(SmartEventDesc(name='beta', s_event=s_event, thread=threading.current_thread())) cmds.queue_cmd('alpha') s_event.pair_with(remote_name='alpha') descs.paired('alpha', 'beta') s_event.sync(log_msg='f1 beta sync point 1') assert s_event.wait(timeout=2) s_event.sync(log_msg='f1 beta sync point 2') s_time = time.time() assert not s_event.wait(timeout=0.5) assert 0.5 <= time.time() - s_time <= 0.75 s_event.sync(log_msg='f1 beta sync point 3') s_event.pause_until(WUCond.RemoteWaiting) s_event.resume(log_msg='f1 beta resume 34') s_event.sync(log_msg='f1 beta sync point 4') s_event.sync(log_msg='f1 beta sync point 5') cmds = Cmds() descs = ThreadPairDescs() smart_event = SmartEvent(name='alpha') descs.add_desc(SmartEventDesc(name='alpha', s_event=smart_event, thread=threading.current_thread())) beta_thread = threading.Thread(target=f1) beta_thread.start() cmds.get_cmd('alpha') smart_event.pair_with(remote_name='beta') smart_event.pause_until(WUCond.ThreadsReady) smart_event.sync(log_msg='mainline sync point 1') smart_event.pause_until(WUCond.RemoteWaiting) smart_event.resume(log_msg='mainline resume 12') smart_event.sync(log_msg='mainline sync point 2') smart_event.sync(log_msg='mainline sync point 3') assert smart_event.wait(timeout=2) smart_event.sync(log_msg='mainline sync point 4') start_time = time.time() assert not smart_event.wait(timeout=0.75) assert 0.75 <= time.time() - start_time <= 1 smart_event.sync(log_msg='mainline sync point 5') beta_thread.join() descs.thread_end('beta') ########################################################################### # test_smart_event_f1_resume_time_out ########################################################################### def test_smart_event_f1_resume_time_out(self) -> None: """Test smart event wait timeout with f1 thread.""" def f1() -> None: """The remote thread for requests.""" logger.debug('f1 entered') s_event = SmartEvent(name='beta') descs.add_desc(SmartEventDesc(name='beta', s_event=s_event, thread=threading.current_thread())) cmds.queue_cmd('alpha') s_event.pair_with(remote_name='alpha') # s_event.sync(log_msg='f1 beta sync point 1') # the first resume will set the flag ON and the flag will stay ON # since there is no matching wait assert not s_event.event.is_set() assert s_event.resume(timeout=2) assert s_event.event.is_set() # this second resume will timeout waiting for the flag to go OFF cmds.start_clock(iter=1) assert not s_event.resume(timeout=0.5) assert 0.5 <= cmds.duration() <= 0.75 assert s_event.event.is_set() s_event.sync(log_msg='f1 beta sync point 1') s_event.sync(log_msg='f1 beta sync point 2') # this first resume will complete within the timeout s_event.remote.wait_wait = True # simulate waiting s_event.remote.deadlock = True # simulate deadlock cmds.start_clock(iter=2) assert s_event.resume(timeout=1) assert 0.5 <= cmds.duration() <= 0.75 # s_event.sync(log_msg='f1 beta sync point 3') s_event.sync(log_msg='f1 beta sync point 4') # this resume will timeout s_event.remote.wait_wait = True # simulate waiting s_event.remote.deadlock = True # simulate deadlock cmds.start_clock(iter=3) assert not s_event.resume(timeout=0.5) assert 0.5 <= cmds.duration() <= 0.75 s_event.sync(log_msg='f1 beta sync point 5') s_event.sync(log_msg='f1 beta sync point 6') # this wait will clear the flag - use timeout to prevent f1 beta # sync from raising SmartEventConflictDeadlockDetected assert s_event.wait(log_msg='f1 beta wait 67', timeout=1) s_event.sync(log_msg='f1 beta sync point 7') cmds.pause(0.5, iter=5) # we purposely skipped 4 # clear the deadlock within the resume timeout to allow mainline # resume to complete s_event.deadlock = False s_event.wait_wait = False s_event.sync(log_msg='f1 beta sync point 8') cmds.pause(0.75, iter=6) # clear the deadlock after resume timeout to cause ml to timeout s_event.deadlock = False s_event.wait_wait = False s_event.sync(log_msg='f1 beta sync point 9') cmds = Cmds() descs = ThreadPairDescs() smart_event = SmartEvent(name='alpha') descs.add_desc(SmartEventDesc(name='alpha', s_event=smart_event, thread=threading.current_thread())) beta_thread = threading.Thread(target=f1) beta_thread.start() cmds.get_cmd('alpha') smart_event.pair_with(remote_name='beta') descs.paired('alpha', 'beta') smart_event.pause_until(WUCond.ThreadsReady) smart_event.sync(log_msg='mainline sync point 1') # this wait will clear the flag - use timeout to prevent sync # from raising SmartEventConflictDeadlockDetected assert smart_event.remote.event.is_set() assert smart_event.wait(log_msg='mainline wait 12', timeout=1) assert not smart_event.wait_timeout_specified smart_event.sync(log_msg='mainline sync point 2') cmds.pause(0.5, iter=2) # we purposely skipped iter=1 # clear the deadlock within resume timeout to allow f1 resume to # complete smart_event.deadlock = False smart_event.wait_wait = False # smart_event.sync(log_msg='mainline sync point 3') smart_event.sync(log_msg='mainline sync point 4') cmds.pause(0.75, iter=3) # clear the deadlock after the resume timeout to cause f1 to timeout smart_event.deadlock = False smart_event.wait_wait = False smart_event.sync(log_msg='mainline sync point 5') # the first resume will set the flag ON and the flag will stay ON # since there is no matching wait assert smart_event.resume(timeout=2) # this second resume will timeout waiting for the flag to go OFF cmds.start_clock(iter=4) assert not smart_event.resume(timeout=0.3) assert 0.3 <= cmds.duration() <= 0.6 smart_event.sync(log_msg='mainline sync point 6') smart_event.sync(log_msg='mainline sync point 7') # this first resume will complete within the timeout smart_event.remote.wait_wait = True # simulate waiting smart_event.remote.deadlock = True # simulate deadlock cmds.start_clock(iter=5) assert smart_event.resume(timeout=1) assert 0.5 <= cmds.duration() <= 0.75 smart_event.sync(log_msg='mainline sync point 8') # this resume will timeout smart_event.remote.wait_wait = True # simulate waiting smart_event.remote.deadlock = True # simulate deadlock cmds.start_clock(iter=6) assert not smart_event.resume(timeout=0.5) assert 0.5 <= cmds.duration() <= 0.75 smart_event.sync(log_msg='mainline sync point 9') beta_thread.join() descs.thread_end('beta') ########################################################################### # test_smart_event_thread_app_time_out ########################################################################### def test_smart_event_thread_app_time_out(self) -> None: """Test smart event timeout with thread_app thread.""" class MyThread(threading.Thread): def __init__(self): super().__init__() self.s_event = SmartEvent(name='beta', thread=self) def run(self): logger.debug('ThreadApp run entered') descs.add_desc(SmartEventDesc(name='beta', s_event=self.s_event, thread=self)) cmds.queue_cmd('alpha') self.s_event.pair_with(remote_name='alpha') descs.paired('alpha', 'beta') cmds.start_clock(iter=1) assert not self.s_event.wait(timeout=2) assert 2 <= cmds.duration() < 3 assert self.s_event.sync(log_msg='beta sync point 1') assert self.s_event.sync(log_msg='beta sync point 2') cmds = Cmds() descs = ThreadPairDescs() smart_event = SmartEvent(name='alpha') descs.add_desc(SmartEventDesc(name='alpha', s_event=smart_event, thread=threading.current_thread())) thread_app = MyThread() thread_app.start() cmds.get_cmd('alpha') smart_event.pair_with(remote_name='beta') assert smart_event.sync(log_msg='alpha sync point 1') cmds.start_clock(iter=2) assert not smart_event.wait(timeout=2) assert 2 <= cmds.duration() < 3 assert smart_event.sync(log_msg='alpha sync point 2') thread_app.join() descs.thread_end('beta') ############################################################################### # TestSmartEventCode Class ############################################################################### class TestSmartEventCode: """Test SmartEvent resume codes.""" ########################################################################### # test_smart_event_f1_event_code ########################################################################### def test_smart_event_f1_event_code(self) -> None: """Test smart event code with f1 thread.""" def f1(): logger.debug('f1 entered') s_event = SmartEvent(name='beta') descs.add_desc(SmartEventDesc(name='beta', s_event=s_event, thread=threading.current_thread())) cmds.queue_cmd('alpha') s_event.pair_with(remote_name='alpha') assert not s_event.remote.code assert not s_event.code assert not s_event.get_code() s_event.sync(log_msg='beta sync point 1') assert s_event.wait(timeout=2) assert not s_event.remote.code assert s_event.code == 42 assert 42 == s_event.get_code() s_event.sync(log_msg='beta sync point 2') s_event.resume(code='forty-two') assert s_event.remote.code == 'forty-two' assert s_event.code == 42 assert 42 == s_event.get_code() s_event.sync(log_msg='beta sync point 3') assert s_event.remote.code == 'forty-two' assert s_event.code == 42 assert 42 == s_event.get_code() assert not s_event.wait(timeout=.5) assert s_event.remote.code == 'forty-two' assert s_event.code == 42 assert 42 == s_event.get_code() s_event.sync(log_msg='beta sync point 4') s_event.sync(log_msg='beta sync point 5') assert s_event.remote.code == 'forty-two' assert s_event.code == 'twenty one' assert 'twenty one' == s_event.get_code() assert s_event.remote.event.is_set() cmds = Cmds() descs = ThreadPairDescs() smart_event = SmartEvent(name='alpha') descs.add_desc(SmartEventDesc(name='alpha', s_event=smart_event, thread=threading.current_thread())) beta_thread = threading.Thread(target=f1) beta_thread.start() cmds.get_cmd('alpha') smart_event.pair_with(remote_name='beta') descs.paired('alpha', 'beta') smart_event.sync(log_msg='mainline sync point 1') assert not smart_event.get_code() assert not smart_event.code assert not smart_event.remote.code smart_event.resume(code=42) assert not smart_event.get_code() assert not smart_event.code assert smart_event.remote.code == 42 smart_event.sync(log_msg='mainline sync point 2') assert smart_event.wait() assert smart_event.get_code() == 'forty-two' assert smart_event.code == 'forty-two' assert smart_event.remote.code == 42 smart_event.sync(log_msg='mainline sync point 3') smart_event.sync(log_msg='mainline sync point 4') smart_event.resume(code='twenty one') smart_event.sync(log_msg='mainline sync point 5') beta_thread.join() smart_event.code = None smart_event.remote.code = None descs.thread_end('beta') ########################################################################### # test_smart_event_thread_app_event_code ########################################################################### def test_smart_event_thread_app_event_code(self) -> None: """Test smart event code with thread_app thread.""" class MyThread(threading.Thread): def __init__(self): super().__init__() self.s_event = SmartEvent(name='beta', thread=self) def run(self): logger.debug('ThreadApp run entered') descs.add_desc(SmartEventDesc(name='beta', s_event=self.s_event, thread=self)) cmds.queue_cmd('alpha') self.s_event.pair_with(remote_name='alpha') descs.paired('alpha', 'beta') assert self.s_event.get_code() is None assert not self.s_event.wait(timeout=2, log_msg='beta wait 1') self.s_event.sync(log_msg='beta sync point 2') self.s_event.sync(log_msg='beta sync point 3') assert self.s_event.remote.event.is_set() assert self.s_event.code == 42 assert self.s_event.get_code() == 42 self.s_event.resume(log_msg='beta resume 4', code='forty-two') cmds = Cmds() descs = ThreadPairDescs() smart_event = SmartEvent(name='alpha') descs.add_desc(SmartEventDesc(name='alpha', s_event=smart_event, thread=threading.current_thread())) thread_app = MyThread() thread_app.start() cmds.get_cmd('alpha') smart_event.pair_with(remote_name='beta') smart_event.pause_until(WUCond.ThreadsReady) smart_event.sync(log_msg='mainline sync point 2') smart_event.resume(code=42) smart_event.sync(log_msg='mainline sync point 3') assert smart_event.wait(log_msg='mainline wait 4') assert smart_event.get_code() == 'forty-two' thread_app.join() smart_event.code = None smart_event.remote.code = None descs.thread_end('beta') ########################################################################### # test_smart_event_thread_event_app_event_code ########################################################################### def test_smart_event_thread_event_app_event_code(self) -> None: """Test smart event code with thread_event_app thread.""" class MyThread(threading.Thread, SmartEvent): def __init__(self) -> None: threading.Thread.__init__(self) SmartEvent.__init__(self, name='beta', thread=self) def run(self): logger.debug('ThreadApp run entered') descs.add_desc(SmartEventDesc(name='beta', s_event=self, thread=self)) cmds.queue_cmd('alpha') self.pair_with(remote_name='alpha') assert not self.remote.code assert not self.code assert not self.get_code() self.sync(log_msg='beta sync point 1') assert not self.wait(timeout=0.5) assert not self.remote.code assert not self.code assert not self.get_code() self.sync(log_msg='beta sync point 2') self.sync(log_msg='beta sync point 3') assert not self.remote.code assert self.code == 42 assert self.get_code() == 42 self.resume(code='forty-two') assert self.remote.code == 'forty-two' assert self.code == 42 assert self.get_code() == 42 self.sync(log_msg='beta sync point 4') self.sync(log_msg='beta sync point 5') assert self.remote.code == 'forty-two' assert self.code == 42 assert self.get_code() == 42 assert self.wait(timeout=0.5, log_msg='beta wait 56') assert self.remote.code == 'forty-two' assert self.code == 42 assert self.get_code() == 42 self.sync(log_msg='beta sync point 6') cmds = Cmds() descs = ThreadPairDescs() thread_event_app = MyThread() thread_event_app.start() cmds.get_cmd('alpha') time.sleep(2) # make beta loop in pair_with smart_event = SmartEvent(name='alpha') descs.add_desc(SmartEventDesc(name='alpha', s_event=smart_event, thread=threading.current_thread())) smart_event.pair_with(remote_name='beta') descs.paired('alpha', 'beta') assert not smart_event.code assert not smart_event.remote.code assert not smart_event.get_code() smart_event.sync(log_msg='mainline sync point 1') smart_event.sync(log_msg='mainline sync point 2') assert not smart_event.code assert not smart_event.remote.code assert not smart_event.get_code() smart_event.resume(code=42, log_msg='mainline resume for beta 56') assert not smart_event.code assert smart_event.remote.code == 42 assert not smart_event.get_code() smart_event.sync(log_msg='mainline sync point 3') smart_event.sync(log_msg='mainline sync point 4') assert smart_event.code == 'forty-two' assert smart_event.remote.code == 42 assert smart_event.get_code() == 'forty-two' assert smart_event.wait() assert smart_event.code == 'forty-two' assert smart_event.remote.code == 42 assert smart_event.get_code() == 'forty-two' smart_event.sync(log_msg='mainline sync point 5') assert smart_event.code == 'forty-two' assert smart_event.remote.code == 42 assert smart_event.get_code() == 'forty-two' smart_event.sync(log_msg='mainline sync point 6') thread_event_app.join() smart_event.code = None smart_event.remote.code = None descs.thread_end('beta') ############################################################################### # TestSmartEventLogger Class ############################################################################### class TestSmartEventLogger: """Test log messages.""" ########################################################################### # test_smart_event_f1_event_logger ########################################################################### def test_smart_event_f1_event_logger(self, caplog, log_enabled_arg) -> None: """Test smart event logger with f1 thread. Args: caplog: fixture to capture log messages log_enabled_arg: fixture to indicate whether log is enabled """ def f1(): exp_log_msgs.add_msg('f1 entered') logger.debug('f1 entered') s_event = SmartEvent(name='beta') descs.add_desc(SmartEventDesc(name='beta', s_event=s_event, thread=threading.current_thread())) cmds.queue_cmd('alpha') exp_log_msgs.add_beta_pair_with_msg('beta pair_with alpha 1', ['beta', 'alpha']) s_event.pair_with(remote_name='alpha', log_msg='beta pair_with alpha 1') descs.paired('alpha', 'beta') exp_log_msgs.add_beta_sync_msg('beta sync point 1') s_event.sync(log_msg='beta sync point 1') exp_log_msgs.add_beta_wait_msg('wait for mainline to post 12') assert s_event.wait(log_msg='wait for mainline to post 12') exp_log_msgs.add_beta_sync_msg('beta sync point 2') s_event.sync(log_msg='beta sync point 2') exp_log_msgs.add_beta_resume_msg('post mainline 23') s_event.resume(log_msg='post mainline 23') exp_log_msgs.add_beta_sync_msg('beta sync point 3') s_event.sync(log_msg='beta sync point 3') exp_log_msgs.add_beta_sync_msg('beta sync point 4') s_event.sync(log_msg='beta sync point 4') cmds = Cmds() descs = ThreadPairDescs() if log_enabled_arg: logging.getLogger().setLevel(logging.DEBUG) else: logging.getLogger().setLevel(logging.INFO) alpha_call_seq = ('test_smart_event.py::TestSmartEventLogger.' 'test_smart_event_f1_event_logger') beta_call_seq = ('test_smart_event.py::f1') exp_log_msgs = ExpLogMsgs(alpha_call_seq, beta_call_seq) l_msg = 'mainline started' exp_log_msgs.add_msg(l_msg) logger.debug(l_msg) smart_event = SmartEvent(name='alpha') descs.add_desc(SmartEventDesc(name='alpha', s_event=smart_event, thread=threading.current_thread())) beta_thread = threading.Thread(target=f1) beta_thread.start() cmds.get_cmd('alpha') exp_log_msgs.add_alpha_pair_with_msg('alpha pair_with beta 1', ['alpha', 'beta']) smart_event.pair_with(remote_name='beta', log_msg='alpha pair_with beta 1') exp_log_msgs.add_alpha_sync_msg('mainline sync point 1') smart_event.sync(log_msg='mainline sync point 1') smart_event.pause_until(WUCond.RemoteWaiting) exp_log_msgs.add_alpha_resume_msg('post beta 12') smart_event.resume(log_msg='post beta 12') exp_log_msgs.add_alpha_sync_msg('mainline sync point 2') smart_event.sync(log_msg='mainline sync point 2') exp_log_msgs.add_alpha_sync_msg('mainline sync point 3') smart_event.sync(log_msg='mainline sync point 3') exp_log_msgs.add_alpha_wait_msg('wait for pre-post 23') assert smart_event.wait(log_msg='wait for pre-post 23') exp_log_msgs.add_alpha_sync_msg('mainline sync point 4') smart_event.sync(log_msg='mainline sync point 4') beta_thread.join() descs.thread_end('beta') exp_log_msgs.add_msg('mainline all tests complete') logger.debug('mainline all tests complete') exp_log_msgs.verify_log_msgs(caplog=caplog, log_enabled_tf=log_enabled_arg) # restore root to debug logging.getLogger().setLevel(logging.DEBUG) ########################################################################### # test_smart_event_thread_app_event_logger ########################################################################### def test_smart_event_thread_app_event_logger(self, caplog, log_enabled_arg) -> None: """Test smart event logger with thread_app thread. Args: caplog: fixture to capture log messages log_enabled_arg: fixture to indicate whether log is enabled """ class MyThread(threading.Thread): def __init__(self, exp_log_msgs1: ExpLogMsgs): super().__init__() self.s_event = SmartEvent(name='beta', thread=self) self.exp_log_msgs = exp_log_msgs1 def run(self): l_msg = 'ThreadApp run entered' self.exp_log_msgs.add_msg(l_msg) logger.debug(l_msg) descs.add_desc(SmartEventDesc(name='beta', s_event=self.s_event, thread=self)) cmds.queue_cmd('alpha') self.exp_log_msgs.add_beta_pair_with_msg('beta pair alpha 2', ['beta', 'alpha']) self.s_event.pair_with(remote_name='alpha', log_msg='beta pair alpha 2') self.exp_log_msgs.add_beta_sync_msg('beta sync point 1') self.s_event.sync(log_msg='beta sync point 1') self.exp_log_msgs.add_beta_wait_msg('wait 12') assert self.s_event.wait(log_msg='wait 12') self.exp_log_msgs.add_beta_sync_msg('beta sync point 2') self.s_event.sync(log_msg='beta sync point 2') self.s_event.pause_until(WUCond.RemoteWaiting) self.exp_log_msgs.add_beta_resume_msg('post mainline 34', True, 'forty-two') self.s_event.resume(code='forty-two', log_msg='post mainline 34') self.exp_log_msgs.add_beta_sync_msg('beta sync point 3') self.s_event.sync(log_msg='beta sync point 3') self.exp_log_msgs.add_beta_sync_msg('beta sync point 4') self.s_event.sync(log_msg='beta sync point 4') cmds = Cmds() descs = ThreadPairDescs() if log_enabled_arg: logging.getLogger().setLevel(logging.DEBUG) else: logging.getLogger().setLevel(logging.INFO) alpha_call_seq = ('test_smart_event.py::TestSmartEventLogger.' 'test_smart_event_thread_app_event_logger') beta_call_seq = 'test_smart_event.py::MyThread.run' exp_log_msgs = ExpLogMsgs(alpha_call_seq, beta_call_seq) l_msg = 'mainline starting' exp_log_msgs.add_msg(l_msg) logger.debug(l_msg) smart_event = SmartEvent(name='alpha') descs.add_desc(SmartEventDesc(name='alpha', s_event=smart_event, thread=threading.current_thread())) thread_app = MyThread(exp_log_msgs) thread_app.start() cmds.get_cmd('alpha') exp_log_msgs.add_alpha_pair_with_msg('alpha pair beta 2', ['alpha', 'beta']) smart_event.pair_with(remote_name='beta', log_msg='alpha pair beta 2') descs.paired('alpha', 'beta') exp_log_msgs.add_alpha_sync_msg('mainline sync point 1') smart_event.sync(log_msg='mainline sync point 1') smart_event.pause_until(WUCond.RemoteWaiting) exp_log_msgs.add_alpha_resume_msg( f'post thread {smart_event.remote.name} 23', True, 42) smart_event.resume(log_msg=f'post thread {smart_event.remote.name} 23', code=42) exp_log_msgs.add_alpha_sync_msg('mainline sync point 2') smart_event.sync(log_msg='mainline sync point 2') exp_log_msgs.add_alpha_wait_msg('wait for post from thread 34') assert smart_event.wait(log_msg='wait for post from thread 34') exp_log_msgs.add_alpha_sync_msg('mainline sync point 3') smart_event.sync(log_msg='mainline sync point 3') exp_log_msgs.add_alpha_sync_msg('mainline sync point 4') smart_event.sync(log_msg='mainline sync point 4') thread_app.join() smart_event.code = None smart_event.remote.code = None descs.thread_end('beta') l_msg = 'mainline all tests complete' exp_log_msgs.add_msg(l_msg) logger.debug('mainline all tests complete') exp_log_msgs.verify_log_msgs(caplog=caplog, log_enabled_tf=log_enabled_arg) # restore root to debug logging.getLogger().setLevel(logging.DEBUG) ########################################################################### # test_smart_event_thread_event_app_event_logger ########################################################################### def test_smart_event_thread_event_app_event_logger(self, caplog, log_enabled_arg ) -> None: """Test smart event logger with thread_event_app thread. Args: caplog: fixture to capture log messages log_enabled_arg: fixture to indicate whether log is enabled """ class MyThread(threading.Thread, SmartEvent): def __init__(self, exp_log_msgs1: ExpLogMsgs): threading.Thread.__init__(self) SmartEvent.__init__(self, name='beta', thread=self) self.exp_log_msgs = exp_log_msgs1 def run(self): self.exp_log_msgs.add_msg('ThreadApp run entered') logger.debug('ThreadApp run entered') descs.add_desc(SmartEventDesc(name='beta', s_event=self, thread=self)) cmds.queue_cmd('alpha') self.exp_log_msgs.add_beta_pair_with_msg('beta to alpha 3', ['beta', 'alpha']) self.pair_with(remote_name='alpha', log_msg='beta to alpha 3') descs.paired('alpha', 'beta') self.exp_log_msgs.add_beta_sync_msg('beta sync point 1') self.sync(log_msg='beta sync point 1') self.exp_log_msgs.add_beta_wait_msg( 'wait for mainline to post 12') assert self.wait(log_msg='wait for mainline to post 12') self.exp_log_msgs.add_beta_sync_msg('beta sync point 2') self.sync(log_msg='beta sync point 2') self.pause_until(WUCond.RemoteWaiting) self.exp_log_msgs.add_beta_resume_msg('post mainline 23') self.resume(log_msg='post mainline 23') self.exp_log_msgs.add_beta_sync_msg('beta sync point 3') self.sync(log_msg='beta sync point 3') cmds = Cmds() descs = ThreadPairDescs() if log_enabled_arg: logging.getLogger().setLevel(logging.DEBUG) else: logging.getLogger().setLevel(logging.INFO) alpha_call_seq = ('test_smart_event.py::TestSmartEventLogger.' 'test_smart_event_thread_event_app_event_logger') beta_call_seq = 'test_smart_event.py::MyThread.run' exp_log_msgs = ExpLogMsgs(alpha_call_seq, beta_call_seq) l_msg = 'mainline starting' exp_log_msgs.add_msg(l_msg) logger.debug(l_msg) smart_event = SmartEvent(name='alpha') descs.add_desc(SmartEventDesc(name='alpha', s_event=smart_event, thread=threading.current_thread())) thread_event_app = MyThread(exp_log_msgs1=exp_log_msgs) thread_event_app.start() cmds.get_cmd('alpha') exp_log_msgs.add_alpha_pair_with_msg('alpha to beta 3', ['alpha', 'beta']) smart_event.pair_with(remote_name='beta', log_msg='alpha to beta 3') exp_log_msgs.add_alpha_sync_msg('mainline sync point 1') smart_event.sync(log_msg='mainline sync point 1') smart_event.pause_until(WUCond.RemoteWaiting) exp_log_msgs.add_alpha_resume_msg( f'post thread {thread_event_app.name} 12') smart_event.resume(log_msg=f'post thread ' f'{thread_event_app.name} 12') exp_log_msgs.add_alpha_sync_msg('mainline sync point 2') smart_event.sync(log_msg='mainline sync point 2') exp_log_msgs.add_alpha_wait_msg('wait for post from thread 23') assert smart_event.wait(log_msg='wait for post from thread 23') exp_log_msgs.add_alpha_sync_msg('mainline sync point 3') smart_event.sync(log_msg='mainline sync point 3') thread_event_app.join() descs.thread_end('beta') exp_log_msgs.add_msg('mainline all tests complete') logger.debug('mainline all tests complete') exp_log_msgs.verify_log_msgs(caplog=caplog, log_enabled_tf=log_enabled_arg) # restore root to debug logging.getLogger().setLevel(logging.DEBUG) ############################################################################### # TestCombos Class ############################################################################### class TestCombos: """Test various combinations of SmartEvent.""" ########################################################################### # test_smart_event_thread_f1_combos ########################################################################### def test_smart_event_f1_combos(self, action_arg1: Any, code_arg1: Any, log_msg_arg1: Any, action_arg2: Any, caplog: Any, thread_exc: Any) -> None: """Test the SmartEvent with f1 combos. Args: action_arg1: first action code_arg1: whether to set and recv a code log_msg_arg1: whether to specify a log message action_arg2: second action caplog: fixture to capture log messages thread_exc: intercepts thread exceptions """ alpha_call_seq = ('test_smart_event.py::TestCombos.action_loop') beta_call_seq = ('test_smart_event.py::thread_func1') exp_log_msgs = ExpLogMsgs(alpha_call_seq, beta_call_seq) l_msg = 'mainline entered' exp_log_msgs.add_msg(l_msg) logger.debug(l_msg) cmds = Cmds() descs = ThreadPairDescs() cmds.l_msg = log_msg_arg1 cmds.r_code = code_arg1 f1_thread = threading.Thread(target=thread_func1, args=(cmds, descs, exp_log_msgs)) l_msg = 'mainline about to start thread_func1' exp_log_msgs.add_msg(l_msg) logger.debug(l_msg) f1_thread.start() self.action_loop(action1=action_arg1, action2=action_arg2, cmds=cmds, descs=descs, exp_log_msgs=exp_log_msgs, thread_exc1=thread_exc) l_msg = 'main completed all actions' exp_log_msgs.add_msg(l_msg) logger.debug(l_msg) cmds.queue_cmd('beta', Cmd.Exit) f1_thread.join() descs.thread_end('beta') if log_msg_arg1: exp_log_msgs.verify_log_msgs(caplog=caplog, log_enabled_tf=True) ########################################################################### # test_smart_event_thread_f1_combos ########################################################################### def test_smart_event_f1_f2_combos(self, action_arg1: Any, code_arg1: Any, log_msg_arg1: Any, action_arg2: Any, caplog: Any, thread_exc: Any) -> None: """Test the SmartEvent with f1 anf f2 combos. Args: action_arg1: first action code_arg1: whether to set and recv a code log_msg_arg1: whether to specify a log message action_arg2: second action caplog: fixture to capture log messages thread_exc: intercepts thread exceptions """ alpha_call_seq = ('test_smart_event.py::TestCombos.action_loop') beta_call_seq = ('test_smart_event.py::thread_func1') exp_log_msgs = ExpLogMsgs(alpha_call_seq, beta_call_seq) l_msg = 'mainline entered' exp_log_msgs.add_msg(l_msg) logger.debug(l_msg) cmds = Cmds() descs = ThreadPairDescs() cmds.l_msg = log_msg_arg1 cmds.r_code = code_arg1 f1_thread = threading.Thread(target=thread_func1, args=(cmds, descs, exp_log_msgs)) f2_thread = threading.Thread(target=self.action_loop, args=(action_arg1, action_arg2, cmds, descs, exp_log_msgs, thread_exc)) l_msg = 'mainline about to start thread_func1' exp_log_msgs.add_msg(l_msg) logger.debug(l_msg) f1_thread.start() f2_thread.start() l_msg = 'main completed all actions' exp_log_msgs.add_msg(l_msg) logger.debug(l_msg) f2_thread.join() descs.thread_end('alpha') cmds.queue_cmd('beta', Cmd.Exit) f1_thread.join() descs.thread_end('beta') if log_msg_arg1: exp_log_msgs.verify_log_msgs(caplog=caplog, log_enabled_tf=True) ########################################################################### # test_smart_event_thread_thread_app_combos ########################################################################### def test_smart_event_thread_app_combos(self, action_arg1: Any, code_arg1: Any, log_msg_arg1: Any, action_arg2: Any, caplog: Any, thread_exc: Any) -> None: """Test the SmartEvent with ThreadApp combos. Args: action_arg1: first action code_arg1: whether to set and recv a code log_msg_arg1: whether to specify a log message action_arg2: second action caplog: fixture to capture log messages thread_exc: intercepts thread exceptions """ class SmartEventApp(threading.Thread): """SmartEventApp class with thread.""" def __init__(self, cmds: Cmds, exp_log_msgs: ExpLogMsgs ) -> None: """Initialize the object. Args: cmds: commands for beta to do exp_log_msgs: container for expected log messages """ super().__init__() self.smart_event = SmartEvent(name='beta', thread=self) self.cmds = cmds self.exp_log_msgs = exp_log_msgs def run(self): """Thread to send and receive messages.""" l_msg = 'SmartEventApp run started' self.exp_log_msgs.add_msg(l_msg) logger.debug(l_msg) thread_func1( cmds=self.cmds, descs=descs, exp_log_msgs=self.exp_log_msgs, s_event=self.smart_event) l_msg = 'SmartEventApp run exiting' self.exp_log_msgs.add_msg(l_msg) logger.debug(l_msg) alpha_call_seq = ('test_smart_event.py::TestCombos.action_loop') beta_call_seq = ('test_smart_event.py::thread_func1') exp_log_msgs = ExpLogMsgs(alpha_call_seq, beta_call_seq) l_msg = 'mainline entered' exp_log_msgs.add_msg(l_msg) logger.debug(l_msg) cmds = Cmds() descs = ThreadPairDescs() cmds.l_msg = log_msg_arg1 cmds.r_code = code_arg1 f1_thread = SmartEventApp(cmds, exp_log_msgs) l_msg = 'mainline about to start SmartEventApp' exp_log_msgs.add_msg(l_msg) logger.debug(l_msg) f1_thread.start() self.action_loop(action1=action_arg1, action2=action_arg2, cmds=cmds, descs=descs, exp_log_msgs=exp_log_msgs, thread_exc1=thread_exc) l_msg = 'main completed all actions' exp_log_msgs.add_msg(l_msg) logger.debug(l_msg) cmds.queue_cmd('beta', Cmd.Exit) f1_thread.join() descs.thread_end('beta') if log_msg_arg1: exp_log_msgs.verify_log_msgs(caplog=caplog, log_enabled_tf=True) ########################################################################### # test_smart_event_thread_thread_app_combos ########################################################################### def test_smart_event_thread_event_app_combos(self, action_arg1: Any, code_arg1: Any, log_msg_arg1: Any, action_arg2: Any, caplog: Any, thread_exc: Any) -> None: """Test the SmartEvent with ThreadApp combos. Args: action_arg1: first action code_arg1: whether to set and recv a code log_msg_arg1: whether to specify a log message action_arg2: second action caplog: fixture to capture log messages thread_exc: intercepts thread exceptions """ class SmartEventApp(threading.Thread, SmartEvent): """SmartEventApp class with thread and event.""" def __init__(self, cmds: Cmds, exp_log_msgs: ExpLogMsgs ) -> None: """Initialize the object. Args: cmds: commands for beta to do exp_log_msgs: container for expected log messages """ threading.Thread.__init__(self) SmartEvent.__init__(self, name='beta', thread=self) self.cmds = cmds self.exp_log_msgs = exp_log_msgs def run(self): """Thread to send and receive messages.""" l_msg = 'SmartEventApp run started' self.exp_log_msgs.add_msg(l_msg) logger.debug(l_msg) thread_func1( cmds=self.cmds, descs=descs, exp_log_msgs=self.exp_log_msgs, s_event=self) l_msg = 'SmartEventApp run exiting' self.exp_log_msgs.add_msg(l_msg) logger.debug(l_msg) alpha_call_seq = ('test_smart_event.py::TestCombos.action_loop') beta_call_seq = ('test_smart_event.py::thread_func1') exp_log_msgs = ExpLogMsgs(alpha_call_seq, beta_call_seq) l_msg = 'mainline entered' exp_log_msgs.add_msg(l_msg) logger.debug(l_msg) cmds = Cmds() descs = ThreadPairDescs() cmds.l_msg = log_msg_arg1 cmds.r_code = code_arg1 f1_thread = SmartEventApp(cmds, exp_log_msgs) l_msg = 'mainline about to start SmartEventApp' exp_log_msgs.add_msg(l_msg) logger.debug(l_msg) f1_thread.start() self.action_loop(action1=action_arg1, action2=action_arg2, cmds=cmds, descs=descs, exp_log_msgs=exp_log_msgs, thread_exc1=thread_exc) l_msg = 'main completed all actions' exp_log_msgs.add_msg(l_msg) logger.debug(l_msg) cmds.queue_cmd('beta', Cmd.Exit) f1_thread.join() descs.thread_end('beta') if log_msg_arg1: exp_log_msgs.verify_log_msgs(caplog=caplog, log_enabled_tf=True) ########################################################################### # action loop ########################################################################### def action_loop(self, action1: Any, action2: Any, cmds: Cmds, descs: ThreadPairDescs, exp_log_msgs: Any, thread_exc1: Any ) -> None: """Actions to perform with the thread. Args: action1: first smart event request to do action2: second smart event request to do cmds: contains cmd queues and other test args descs: tracking and verification for registry exp_log_msgs: container for expected log messages thread_exc1: contains any uncaptured errors from thread Raises: IncorrectActionSpecified: The Action is not recognized UnrecognizedCmd: beta send mainline an unrecognized command """ cmds.get_cmd('alpha') # go1 smart_event = SmartEvent(name='alpha') descs.add_desc(SmartEventDesc(name='alpha', s_event=smart_event, thread=threading.current_thread())) cmds.queue_cmd('beta') # go2 smart_event.pair_with(remote_name='beta') cmds.get_cmd('alpha') # go3 actions = [] actions.append(action1) actions.append(action2) for action in actions: if action == Action.MainWait: l_msg = 'main starting Action.MainWait' exp_log_msgs.add_msg(l_msg) logger.debug(l_msg) cmds.queue_cmd('beta', Cmd.Resume) assert smart_event.wait() if cmds.r_code: assert smart_event.code == cmds.r_code assert cmds.r_code == smart_event.get_code() elif action == Action.MainSync: l_msg = 'main starting Action.MainSync' exp_log_msgs.add_msg(l_msg) logger.debug(l_msg) cmds.queue_cmd('beta', Cmd.Sync) if cmds.l_msg: exp_log_msgs.add_alpha_sync_msg(cmds.l_msg, True) assert smart_event.sync(log_msg=cmds.l_msg) else: assert smart_event.sync() elif action == Action.MainSync_TOT: l_msg = 'main starting Action.MainSync_TOT' exp_log_msgs.add_msg(l_msg) logger.debug(l_msg) cmds.queue_cmd('beta', Cmd.Sync) if cmds.l_msg: exp_log_msgs.add_alpha_sync_msg(cmds.l_msg, True) assert smart_event.sync(timeout=5, log_msg=cmds.l_msg) else: assert smart_event.sync(timeout=5) elif action == Action.MainSync_TOF: l_msg = 'main starting Action.MainSync_TOF' exp_log_msgs.add_msg(l_msg) logger.debug(l_msg) l_msg = r'alpha timeout of a sync\(\) request.' exp_log_msgs.add_msg(l_msg) if cmds.l_msg: exp_log_msgs.add_alpha_sync_msg(cmds.l_msg, False) assert not smart_event.sync(timeout=0.3, log_msg=cmds.l_msg) else: assert not smart_event.sync(timeout=0.3) # for this case, we did not tell beta to do anything, so # we need to tell ourselves to go to next action. # Note that we could use a continue, but we also want # to check for thread exception which is what we do # at the bottom cmds.queue_cmd('alpha', Cmd.Next_Action) elif action == Action.MainResume: l_msg = 'main starting Action.MainResume' exp_log_msgs.add_msg(l_msg) logger.debug(l_msg) if cmds.r_code: assert smart_event.resume(code=cmds.r_code) assert smart_event.remote.code == cmds.r_code else: assert smart_event.resume() assert not smart_event.remote.code assert smart_event.event.is_set() cmds.queue_cmd('beta', Cmd.Wait) elif action == Action.MainResume_TOT: l_msg = 'main starting Action.MainResume_TOT' exp_log_msgs.add_msg(l_msg) logger.debug(l_msg) if cmds.r_code: assert smart_event.resume(code=cmds.r_code, timeout=0.5) assert smart_event.remote.code == cmds.r_code else: assert smart_event.resume(timeout=0.5) assert not smart_event.remote.code assert smart_event.event.is_set() cmds.queue_cmd('beta', Cmd.Wait) elif action == Action.MainResume_TOF: l_msg = 'main starting Action.MainResume_TOF' exp_log_msgs.add_msg(l_msg) logger.debug(l_msg) l_msg = (f'{smart_event.name} timeout ' r'of a resume\(\) request with ' r'self.event.is_set\(\) = True and ' 'self.remote.deadlock = False') exp_log_msgs.add_msg(l_msg) assert not smart_event.event.is_set() # pre-resume to set flag if cmds.r_code: assert smart_event.resume(code=cmds.r_code) assert smart_event.remote.code == cmds.r_code else: assert smart_event.resume() assert not smart_event.remote.code assert smart_event.event.is_set() if cmds.r_code: start_time = time.time() assert not smart_event.resume(code=cmds.r_code, timeout=0.3) assert 0.3 <= (time.time() - start_time) <= 0.5 assert smart_event.remote.code == cmds.r_code else: start_time = time.time() assert not smart_event.resume(timeout=0.5) assert 0.5 <= (time.time() - start_time) <= 0.75 assert not smart_event.remote.code assert smart_event.event.is_set() # tell thread to clear wait cmds.queue_cmd('beta', Cmd.Wait_Clear) elif action == Action.ThreadWait: l_msg = 'main starting Action.ThreadWait' exp_log_msgs.add_msg(l_msg) logger.debug(l_msg) cmds.queue_cmd('beta', Cmd.Wait) smart_event.pause_until(WUCond.RemoteWaiting) if cmds.r_code: smart_event.resume(code=cmds.r_code) assert smart_event.remote.code == cmds.r_code else: smart_event.resume() elif action == Action.ThreadWait_TOT: l_msg = 'main starting Action.ThreadWait_TOT' exp_log_msgs.add_msg(l_msg) logger.debug(l_msg) cmds.queue_cmd('beta', Cmd.Wait_TOT) smart_event.pause_until(WUCond.RemoteWaiting) # time.sleep(0.3) if cmds.r_code: smart_event.resume(code=cmds.r_code) assert smart_event.remote.code == cmds.r_code else: smart_event.resume() elif action == Action.ThreadWait_TOF: l_msg = 'main starting Action.ThreadWait_TOF' exp_log_msgs.add_msg(l_msg) logger.debug(l_msg) cmds.queue_cmd('beta', Cmd.Wait_TOF) smart_event.pause_until(WUCond.RemoteWaiting) elif action == Action.ThreadResume: l_msg = 'main starting Action.ThreadResume' exp_log_msgs.add_msg(l_msg) logger.debug(l_msg) cmds.queue_cmd('beta', Cmd.Resume) smart_event.pause_until(WUCond.RemoteResume) assert smart_event.wait() if cmds.r_code: assert smart_event.code == cmds.r_code assert cmds.r_code == smart_event.get_code() else: raise IncorrectActionSpecified('The Action is not recognized') while True: thread_exc1.raise_exc_if_one() # detect thread error alpha_cmd = cmds.get_cmd('alpha') if alpha_cmd == Cmd.Next_Action: break else: raise UnrecognizedCmd # clear the codes to allow verify registry to work smart_event.code = None smart_event.remote.code = None ############################################################################### # thread_func1 ############################################################################### def thread_func1(cmds: Cmds, descs: ThreadPairDescs, exp_log_msgs: Any, s_event: Optional[SmartEvent] = None, ) -> None: """Thread to test SmartEvent scenarios. Args: cmds: commands to do descs: used to verify registry and SmartEvent status exp_log_msgs: expected log messages s_event: instance of SmartEvent Raises: UnrecognizedCmd: Thread received an unrecognized command """ l_msg = 'thread_func1 beta started' exp_log_msgs.add_msg(l_msg) logger.debug(l_msg) if s_event is None: s_event = SmartEvent(name='beta') descs.add_desc(SmartEventDesc(name='beta', s_event=s_event, thread=threading.current_thread())) cmds.queue_cmd('alpha', 'go1') cmds.get_cmd('beta') # go2 s_event.pair_with(remote_name='alpha') descs.paired('alpha', 'beta') cmds.queue_cmd('alpha', 'go3') while True: beta_cmd = cmds.get_cmd('beta') if beta_cmd == Cmd.Exit: break l_msg = f'thread_func1 received cmd: {beta_cmd}' exp_log_msgs.add_msg(l_msg) logger.debug(l_msg) if beta_cmd == Cmd.Wait: l_msg = 'thread_func1 doing Wait' exp_log_msgs.add_msg(l_msg) logger.debug(l_msg) if cmds.l_msg: exp_log_msgs.add_beta_wait_msg(cmds.l_msg, True) assert s_event.wait(log_msg=cmds.l_msg) else: assert s_event.wait() if cmds.r_code: assert s_event.code == cmds.r_code assert cmds.r_code == s_event.get_code() cmds.queue_cmd('alpha', Cmd.Next_Action) elif beta_cmd == Cmd.Wait_TOT: l_msg = 'thread_func1 doing Wait_TOT' exp_log_msgs.add_msg(l_msg) logger.debug(l_msg) if cmds.l_msg: exp_log_msgs.add_beta_wait_msg(cmds.l_msg, True) assert s_event.wait(log_msg=cmds.l_msg) else: assert s_event.wait() if cmds.r_code: assert s_event.code == cmds.r_code assert cmds.r_code == s_event.get_code() cmds.queue_cmd('alpha', Cmd.Next_Action) elif beta_cmd == Cmd.Wait_TOF: l_msg = 'thread_func1 doing Wait_TOF' exp_log_msgs.add_msg(l_msg) logger.debug(l_msg) l_msg = (f'{s_event.name} timeout of a ' r'wait\(\) request with ' 'self.wait_wait = True and ' 'self.sync_wait = False') exp_log_msgs.add_msg(l_msg) start_time = time.time() if cmds.l_msg: exp_log_msgs.add_beta_wait_msg(cmds.l_msg, False) assert not s_event.wait(timeout=0.5, log_msg=cmds.l_msg) else: assert not s_event.wait(timeout=0.5) assert 0.5 < (time.time() - start_time) < 0.75 cmds.queue_cmd('alpha', Cmd.Next_Action) elif beta_cmd == Cmd.Wait_Clear: l_msg = 'thread_func1 doing Wait_Clear' exp_log_msgs.add_msg(l_msg) logger.debug(l_msg) if cmds.l_msg: exp_log_msgs.add_beta_wait_msg(cmds.l_msg, True) assert s_event.wait(log_msg=cmds.l_msg) else: assert s_event.wait() if cmds.r_code: assert s_event.code == cmds.r_code assert cmds.r_code == s_event.get_code() cmds.queue_cmd('alpha', Cmd.Next_Action) elif beta_cmd == Cmd.Sync: l_msg = 'thread_func1 beta doing Sync' exp_log_msgs.add_msg(l_msg) logger.debug(l_msg) if cmds.l_msg: exp_log_msgs.add_beta_sync_msg(cmds.l_msg, True) assert s_event.sync(log_msg=cmds.l_msg) else: assert s_event.sync() cmds.queue_cmd('alpha', Cmd.Next_Action) elif beta_cmd == Cmd.Resume: l_msg = 'thread_func1 beta doing Resume' exp_log_msgs.add_msg(l_msg) logger.debug(l_msg) if cmds.r_code: if cmds.l_msg: exp_log_msgs.add_beta_resume_msg(cmds.l_msg, True, cmds.r_code) assert s_event.resume(code=cmds.r_code, log_msg=cmds.l_msg) else: assert s_event.resume(code=cmds.r_code) assert s_event.remote.code == cmds.r_code else: if cmds.l_msg: exp_log_msgs.add_beta_resume_msg(cmds.l_msg, True) assert s_event.resume(log_msg=cmds.l_msg) else: assert s_event.resume() cmds.queue_cmd('alpha', Cmd.Next_Action) else: raise UnrecognizedCmd('Thread received an unrecognized cmd') l_msg = 'thread_func1 beta exiting' exp_log_msgs.add_msg(l_msg) logger.debug(l_msg)
37.343833
86
0.517203
17,524
168,346
4.738359
0.034581
0.032661
0.023243
0.024749
0.823472
0.781586
0.73186
0.703788
0.662636
0.615235
0
0.013152
0.305834
168,346
4,507
87
37.352119
0.697399
0.143365
0
0.717572
0
0
0.102036
0.007958
0
0
0
0
0.12376
1
0.040063
false
0.001587
0.00357
0
0.057914
0.001587
0
0
0
null
0
0
0
1
1
1
1
0
1
0
0
0
0
0
0
0
0
0
0
1
0
0
0
0
null
0
0
0
0
0
0
0
0
0
0
0
0
0
6
692c2967dc8b83a8426ca865233d5ebc02f155aa
20
py
Python
oletools/thirdparty/xglob/__init__.py
maniVix/oletools
63c4d5261521664f4df7c8f055227118d4fc9349
[ "BSD-2-Clause" ]
2,059
2016-05-27T10:27:15.000Z
2022-03-30T19:54:08.000Z
oletools/thirdparty/xglob/__init__.py
maniVix/oletools
63c4d5261521664f4df7c8f055227118d4fc9349
[ "BSD-2-Clause" ]
626
2016-05-28T15:05:12.000Z
2022-03-27T06:08:47.000Z
oletools/thirdparty/xglob/__init__.py
maniVix/oletools
63c4d5261521664f4df7c8f055227118d4fc9349
[ "BSD-2-Clause" ]
530
2016-05-30T10:18:08.000Z
2022-03-30T07:41:27.000Z
from .xglob import *
20
20
0.75
3
20
5
1
0
0
0
0
0
0
0
0
0
0
0
0.15
20
1
20
20
0.882353
0
0
0
0
0
0
0
0
0
0
0
0
1
0
true
0
1
0
1
0
1
1
0
null
0
0
0
0
0
0
0
0
0
0
0
0
0
1
0
0
0
0
0
0
0
0
0
0
null
0
0
0
0
0
0
1
0
1
0
1
0
0
6
15c428f7603c9d66155cd6b93f1920ec4033bd6c
414
py
Python
zenithml/torch/layers/__init__.py
zenith-ml/zenithml
b2e68d31f9649d5477f8321b4394822f6f3a8e0c
[ "MIT" ]
null
null
null
zenithml/torch/layers/__init__.py
zenith-ml/zenithml
b2e68d31f9649d5477f8321b4394822f6f3a8e0c
[ "MIT" ]
1
2022-03-07T16:29:32.000Z
2022-03-07T16:29:32.000Z
zenithml/torch/layers/__init__.py
zenith-ml/zenithml
b2e68d31f9649d5477f8321b4394822f6f3a8e0c
[ "MIT" ]
null
null
null
from zenithml.torch.layers.preprocess.numerical import NumericalLayer from zenithml.torch.layers.preprocess.normalizers import MinMaxNormalizeLayer, LogNormalizeLayer, BucketizedLayer from zenithml.torch.layers.preprocess.nhotencoder import NHotEncodingLayer from zenithml.torch.layers.preprocess.embedding import EmbeddingLayer # from zenithml.tf.layers.preprocess.cosine_similarity import CosineSimilarityLayer
59.142857
113
0.886473
43
414
8.511628
0.465116
0.163934
0.185792
0.251366
0.360656
0
0
0
0
0
0
0
0.057971
414
6
114
69
0.938462
0.195652
0
0
0
0
0
0
0
0
0
0
0
1
0
true
0
1
0
1
0
0
0
0
null
0
1
1
0
0
0
0
0
0
0
0
0
0
1
0
0
0
0
0
0
0
0
0
0
null
0
0
0
0
0
0
1
0
1
0
1
0
0
6
15fd3f98e57322cd2e9f70dbcf1cb9a28d020819
81
py
Python
src/py/route.py
AlecioFuranze/zeloo7
d3e662679363dac4457b349cd5531ce92b1a0456
[ "MIT" ]
null
null
null
src/py/route.py
AlecioFuranze/zeloo7
d3e662679363dac4457b349cd5531ce92b1a0456
[ "MIT" ]
null
null
null
src/py/route.py
AlecioFuranze/zeloo7
d3e662679363dac4457b349cd5531ce92b1a0456
[ "MIT" ]
null
null
null
from ast import arg class Route: def RETURN(): return None
11.571429
19
0.555556
10
81
4.5
0.9
0
0
0
0
0
0
0
0
0
0
0
0.395062
81
7
20
11.571429
0.918367
0
0
0
0
0
0
0
0
0
0
0
0
1
0.25
true
0
0.25
0.25
1
0
1
0
0
null
0
0
0
0
0
0
0
0
0
0
0
0
0
1
0
0
0
0
0
0
0
0
0
0
null
0
0
0
0
0
1
1
0
0
1
1
0
0
6
c60834a29854695db62c550ebda2c672458088b2
117
py
Python
tests/pyflakes_bears/pep8_naming_test_files/E05/invalid_nested_class.py
MacBox7/coala-pyflakes
637f8a2e77973384be79d30b0dae1f43072e60c8
[ "MIT" ]
null
null
null
tests/pyflakes_bears/pep8_naming_test_files/E05/invalid_nested_class.py
MacBox7/coala-pyflakes
637f8a2e77973384be79d30b0dae1f43072e60c8
[ "MIT" ]
12
2018-05-21T06:12:59.000Z
2018-07-30T10:37:16.000Z
tests/pyflakes_bears/pep8_naming_test_files/E05/invalid_nested_class.py
MacBox7/coala-pyflakes
637f8a2e77973384be79d30b0dae1f43072e60c8
[ "MIT" ]
1
2018-06-10T16:16:47.000Z
2018-06-10T16:16:47.000Z
def foo(): ''' >>> class Good(): ... class bad(): ... pass ''' pass
14.625
28
0.264957
8
117
3.875
0.75
0
0
0
0
0
0
0
0
0
0
0
0.529915
117
7
29
16.714286
0.563636
0.478632
0
0
0
0
0
0
0
0
0
0
0
1
0.5
true
0.5
0
0
0.5
0
1
0
0
null
0
0
0
0
0
0
0
0
0
0
0
1
0
1
0
0
0
0
0
0
0
0
0
0
null
0
0
0
0
0
1
1
1
0
0
0
0
0
6
d6b4438311ed0428830b2410cd875a8f77f091a1
27
py
Python
erdospy/test/__init__.py
NiMlr/erdospy
9c060fa9285da7346e0b6d367555b45f4dcc82f6
[ "MIT" ]
null
null
null
erdospy/test/__init__.py
NiMlr/erdospy
9c060fa9285da7346e0b6d367555b45f4dcc82f6
[ "MIT" ]
null
null
null
erdospy/test/__init__.py
NiMlr/erdospy
9c060fa9285da7346e0b6d367555b45f4dcc82f6
[ "MIT" ]
1
2022-01-19T11:51:51.000Z
2022-01-19T11:51:51.000Z
from .tests import testall
13.5
26
0.814815
4
27
5.5
1
0
0
0
0
0
0
0
0
0
0
0
0.148148
27
1
27
27
0.956522
0
0
0
0
0
0
0
0
0
0
0
0
1
0
true
0
1
0
1
0
1
1
0
null
0
0
0
0
0
0
0
0
0
0
0
0
0
1
0
0
0
0
0
0
0
0
0
0
null
0
0
0
0
0
0
1
0
1
0
1
0
0
6
d6dfd7325555dd2299c95baebd138e4fb7043ffb
157
py
Python
atomate/lammps/firetasks/__init__.py
dongsenfo/atomate
01558e8c3e38470c02bc8b50c0ee3aa6198e5206
[ "BSD-3-Clause-LBNL" ]
1
2019-09-02T00:55:26.000Z
2019-09-02T00:55:26.000Z
atomate/lammps/firetasks/__init__.py
dongsenfo/atomate
01558e8c3e38470c02bc8b50c0ee3aa6198e5206
[ "BSD-3-Clause-LBNL" ]
1
2019-04-09T20:55:30.000Z
2019-04-09T21:30:24.000Z
atomate/lammps/firetasks/__init__.py
dongsenfo/atomate
01558e8c3e38470c02bc8b50c0ee3aa6198e5206
[ "BSD-3-Clause-LBNL" ]
3
2017-03-31T07:42:39.000Z
2018-10-10T12:52:49.000Z
from __future__ import unicode_literals # from .write_inputs import * # from .run_calc import * # from .parse_outputs import * # from .glue_tasks import *
19.625
39
0.757962
21
157
5.238095
0.619048
0.272727
0
0
0
0
0
0
0
0
0
0
0.165605
157
7
40
22.428571
0.839695
0.675159
0
0
0
0
0
0
0
0
0
0
0
1
0
true
0
1
0
1
0
1
0
0
null
1
0
0
0
0
0
0
0
0
0
0
0
0
1
0
0
0
0
0
0
0
0
0
0
null
0
0
0
0
0
0
1
0
1
0
1
0
0
6
ba567f961a219cedc74092a14f49b5f7723f7c6e
188
py
Python
experiments/archived/20210119/bag_model/__init__.py
fxnnxc/text_summarization
b8c8a5f491bc44622203602941c1514b2e006fe3
[ "Apache-2.0" ]
5
2020-10-14T02:30:44.000Z
2021-05-06T12:48:28.000Z
experiments/archived/20210119/bag_model/__init__.py
fxnnxc/text_summarization
b8c8a5f491bc44622203602941c1514b2e006fe3
[ "Apache-2.0" ]
2
2020-12-19T05:59:31.000Z
2020-12-22T11:05:31.000Z
experiments/archived/20210119/bag_model/__init__.py
fxnnxc/text_summarization
b8c8a5f491bc44622203602941c1514b2e006fe3
[ "Apache-2.0" ]
null
null
null
from . import text_summarization_annealing # noqa from .models import model, hub_interface # noqa from .criterions import kld_loss from .modules import pgn #from .modules import # noqa
37.6
50
0.792553
26
188
5.576923
0.576923
0.110345
0.234483
0
0
0
0
0
0
0
0
0
0.154255
188
5
51
37.6
0.91195
0.196809
0
0
0
0
0
0
0
0
0
0
0
1
0
true
0
1
0
1
0
1
0
0
null
0
1
0
0
0
0
0
0
0
0
0
0
0
1
0
0
0
0
0
0
0
0
0
0
null
0
0
0
0
0
0
1
0
1
0
1
0
0
6
ba6be2e01f5c2a7f71fb4e9813ef4f46239426f3
4,420
py
Python
tests/unit-tests/test_config_titlefix.py
hazemelraffiee/confluencebuilder
c283e7fb513c156b9b6e0ba3694fc3e0468a74c9
[ "BSD-2-Clause" ]
90
2016-07-21T00:39:19.000Z
2019-03-08T08:27:17.000Z
tests/unit-tests/test_config_titlefix.py
hazemelraffiee/confluencebuilder
c283e7fb513c156b9b6e0ba3694fc3e0468a74c9
[ "BSD-2-Clause" ]
124
2016-10-18T20:06:48.000Z
2019-03-08T04:41:53.000Z
tests/unit-tests/test_config_titlefix.py
hazemelraffiee/confluencebuilder
c283e7fb513c156b9b6e0ba3694fc3e0468a74c9
[ "BSD-2-Clause" ]
39
2016-07-21T00:39:52.000Z
2019-03-06T14:33:31.000Z
# -*- coding: utf-8 -*- """ :copyright: Copyright 2020-2022 Sphinx Confluence Builder Contributors (AUTHORS) :license: BSD-2-Clause (LICENSE) """ from tests.lib.testcase import ConfluenceTestCase from tests.lib.testcase import setup_builder from tests.lib import parse import os class TestConfluenceConfigTitlefix(ConfluenceTestCase): @classmethod def setUpClass(cls): super(TestConfluenceConfigTitlefix, cls).setUpClass() cls.config['root_doc'] = 'titlefix' cls.dataset = os.path.join(cls.datasets, 'common') cls.filenames = [ 'titlefix', 'titlefix-child', ] @setup_builder('confluence') def test_storage_config_titlefix_none(self): out_dir = self.build(self.dataset, filenames=self.filenames) with parse('titlefix', out_dir) as data: page_ref = data.find('ri:page') self.assertIsNotNone(page_ref) self.assertEqual(page_ref['ri:content-title'], 'titlefix-child') with parse('titlefix-child', out_dir) as data: page_ref = data.find('ri:page') self.assertIsNotNone(page_ref) self.assertEqual(page_ref['ri:content-title'], 'titlefix') @setup_builder('confluence') def test_storage_config_titlefix_postfix(self): config = dict(self.config) config['confluence_publish_postfix'] = '-mypostfix' out_dir = self.build(self.dataset, config=config, filenames=self.filenames) with parse('titlefix', out_dir) as data: page_ref = data.find('ri:page') self.assertIsNotNone(page_ref) self.assertEqual(page_ref['ri:content-title'], 'titlefix-child-mypostfix') with parse('titlefix-child', out_dir) as data: page_ref = data.find('ri:page') self.assertIsNotNone(page_ref) self.assertEqual(page_ref['ri:content-title'], 'titlefix-mypostfix') @setup_builder('confluence') def test_storage_config_titlefix_prefix(self): config = dict(self.config) config['confluence_publish_prefix'] = 'myprefix-' out_dir = self.build(self.dataset, config=config, filenames=self.filenames) with parse('titlefix', out_dir) as data: page_ref = data.find('ri:page') self.assertIsNotNone(page_ref) self.assertEqual(page_ref['ri:content-title'], 'myprefix-titlefix-child') with parse('titlefix-child', out_dir) as data: page_ref = data.find('ri:page') self.assertIsNotNone(page_ref) self.assertEqual(page_ref['ri:content-title'], 'myprefix-titlefix') @setup_builder('confluence') def test_storage_config_titlefix_prefix_and_postfix(self): config = dict(self.config) config['confluence_publish_prefix'] = 'myprefix-' config['confluence_publish_postfix'] = '-mypostfix' out_dir = self.build(self.dataset, config=config, filenames=self.filenames) with parse('titlefix', out_dir) as data: page_ref = data.find('ri:page') self.assertIsNotNone(page_ref) self.assertEqual(page_ref['ri:content-title'], 'myprefix-titlefix-child-mypostfix') with parse('titlefix-child', out_dir) as data: page_ref = data.find('ri:page') self.assertIsNotNone(page_ref) self.assertEqual(page_ref['ri:content-title'], 'myprefix-titlefix-mypostfix') @setup_builder('confluence') def test_storage_config_titlefix_ignore_root(self): config = dict(self.config) config['confluence_ignore_titlefix_on_index'] = True config['confluence_publish_postfix'] = '-mypostfix' config['confluence_publish_prefix'] = 'myprefix-' out_dir = self.build(self.dataset, config=config, filenames=self.filenames) with parse('titlefix', out_dir) as data: page_ref = data.find('ri:page') self.assertIsNotNone(page_ref) self.assertEqual(page_ref['ri:content-title'], 'myprefix-titlefix-child-mypostfix') with parse('titlefix-child', out_dir) as data: page_ref = data.find('ri:page') self.assertIsNotNone(page_ref) self.assertEqual(page_ref['ri:content-title'], 'titlefix')
37.142857
80
0.63552
495
4,420
5.490909
0.143434
0.077263
0.062546
0.04415
0.842899
0.809419
0.799853
0.785136
0.76674
0.711553
0
0.002995
0.24457
4,420
118
81
37.457627
0.811021
0.030769
0
0.7
0
0
0.206735
0.076707
0
0
0
0
0.222222
1
0.066667
false
0
0.044444
0
0.122222
0
0
0
0
null
0
0
0
1
1
1
1
1
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
null
0
0
0
0
0
0
0
0
0
0
0
0
0
6
241715314e6cac2f918c86b960e56f1eed869c44
2,686
py
Python
epytope/Data/pssms/smm/mat/A_24_02_11.py
christopher-mohr/epytope
8ac9fe52c0b263bdb03235a5a6dffcb72012a4fd
[ "BSD-3-Clause" ]
7
2021-02-01T18:11:28.000Z
2022-01-31T19:14:07.000Z
epytope/Data/pssms/smm/mat/A_24_02_11.py
christopher-mohr/epytope
8ac9fe52c0b263bdb03235a5a6dffcb72012a4fd
[ "BSD-3-Clause" ]
22
2021-01-02T15:25:23.000Z
2022-03-14T11:32:53.000Z
epytope/Data/pssms/smm/mat/A_24_02_11.py
christopher-mohr/epytope
8ac9fe52c0b263bdb03235a5a6dffcb72012a4fd
[ "BSD-3-Clause" ]
4
2021-05-28T08:50:38.000Z
2022-03-14T11:45:32.000Z
A_24_02_11 = {0: {'A': 0.219, 'C': -0.201, 'E': 0.106, 'D': 0.153, 'G': 0.052, 'F': 0.18, 'I': 0.146, 'H': 0.226, 'K': 0.166, 'M': 0.196, 'L': -0.246, 'N': 0.084, 'Q': 0.266, 'P': 0.052, 'S': -0.448, 'R': -0.13, 'T': -0.152, 'W': 0.0, 'V': -0.32, 'Y': -0.348}, 1: {'A': 0.011, 'C': 0.021, 'E': 0.324, 'D': 0.012, 'G': 0.0, 'F': -0.364, 'I': -0.055, 'H': 0.0, 'K': 0.0, 'M': -0.218, 'L': 0.072, 'N': 0.0, 'Q': 0.318, 'P': -0.114, 'S': 0.248, 'R': -0.152, 'T': 0.241, 'W': -0.298, 'V': 0.287, 'Y': -0.333}, 2: {'A': -0.213, 'C': 0.051, 'E': 0.01, 'D': 0.029, 'G': 0.017, 'F': -0.055, 'I': 0.067, 'H': 0.044, 'K': -0.121, 'M': 0.032, 'L': -0.007, 'N': 0.006, 'Q': 0.129, 'P': 0.017, 'S': -0.028, 'R': 0.171, 'T': 0.047, 'W': -0.07, 'V': -0.155, 'Y': 0.031}, 3: {'A': 0.159, 'C': -0.091, 'E': 0.19, 'D': 0.277, 'G': -0.039, 'F': 0.163, 'I': 0.0, 'H': -0.007, 'K': -0.26, 'M': 0.021, 'L': -0.06, 'N': -0.035, 'Q': 0.126, 'P': -0.359, 'S': 0.187, 'R': -0.162, 'T': -0.062, 'W': -0.415, 'V': 0.303, 'Y': 0.065}, 4: {'A': 0.079, 'C': 0.001, 'E': 0.082, 'D': 0.096, 'G': -0.025, 'F': -0.005, 'I': -0.029, 'H': 0.023, 'K': -0.102, 'M': 0.055, 'L': -0.19, 'N': -0.058, 'Q': -0.005, 'P': 0.038, 'S': -0.022, 'R': -0.047, 'T': 0.03, 'W': 0.0, 'V': 0.077, 'Y': 0.003}, 5: {'A': -0.179, 'C': 0.125, 'E': 0.047, 'D': 0.049, 'G': 0.064, 'F': -0.141, 'I': 0.11, 'H': 0.06, 'K': -0.145, 'M': -0.124, 'L': 0.072, 'N': 0.072, 'Q': 0.107, 'P': 0.045, 'S': 0.08, 'R': 0.006, 'T': -0.153, 'W': -0.009, 'V': -0.1, 'Y': 0.015}, 6: {'A': 0.019, 'C': 0.079, 'E': 0.018, 'D': 0.109, 'G': 0.057, 'F': -0.008, 'I': 0.065, 'H': -0.075, 'K': -0.025, 'M': 0.011, 'L': -0.011, 'N': 0.016, 'Q': -0.042, 'P': 0.094, 'S': -0.132, 'R': -0.088, 'T': 0.075, 'W': -0.101, 'V': -0.025, 'Y': -0.037}, 7: {'A': -0.0, 'C': 0.0, 'E': -0.0, 'D': 0.0, 'G': 0.0, 'F': -0.0, 'I': 0.0, 'H': 0.0, 'K': 0.0, 'M': -0.0, 'L': 0.0, 'N': 0.0, 'Q': 0.0, 'P': 0.0, 'S': 0.0, 'R': -0.0, 'T': -0.0, 'W': 0.0, 'V': 0.0, 'Y': 0.0}, 8: {'A': -0.0, 'C': 0.0, 'E': -0.0, 'D': 0.0, 'G': -0.0, 'F': -0.0, 'I': -0.0, 'H': -0.0, 'K': 0.0, 'M': -0.0, 'L': 0.0, 'N': 0.0, 'Q': 0.0, 'P': 0.0, 'S': 0.0, 'R': 0.0, 'T': -0.0, 'W': 0.0, 'V': 0.0, 'Y': 0.0}, 9: {'A': -0.148, 'C': 0.0, 'E': 0.05, 'D': 0.014, 'G': 0.083, 'F': -0.058, 'I': 0.016, 'H': 0.009, 'K': 0.092, 'M': 0.036, 'L': -0.033, 'N': 0.004, 'Q': 0.053, 'P': 0.048, 'S': -0.052, 'R': -0.095, 'T': -0.172, 'W': 0.0, 'V': 0.095, 'Y': 0.058}, 10: {'A': 0.241, 'C': 0.0, 'E': 0.0, 'D': 0.0, 'G': 0.0, 'F': -0.627, 'I': 0.068, 'H': 0.0, 'K': 0.304, 'M': 0.145, 'L': -0.174, 'N': 0.0, 'Q': -0.002, 'P': -0.285, 'S': 0.053, 'R': 0.125, 'T': 0.128, 'W': -0.105, 'V': 0.089, 'Y': 0.04}, -1: {'con': 4.13708}}
2,686
2,686
0.374162
679
2,686
1.4757
0.243004
0.10978
0.01497
0.01996
0.198603
0.141717
0.141717
0.141717
0.133733
0.133733
0
0.348723
0.169397
2,686
1
2,686
2,686
0.100403
0
0
0
0
0
0.082992
0
0
0
0
0
0
1
0
false
0
0
0
0
0
0
0
1
null
0
0
0
0
0
0
0
0
0
0
1
0
0
1
1
1
1
0
0
0
0
0
0
0
null
0
0
0
0
0
0
0
0
0
0
0
0
0
6
242a209c7e330946c06da5e7d3926e203e3673d7
143
py
Python
kwat/vcf/__init__.py
KwatME/ccal
d96dfa811482eee067f346386a2181ec514625f4
[ "MIT" ]
5
2017-05-05T17:50:28.000Z
2019-01-30T19:23:02.000Z
kwat/vcf/__init__.py
KwatME/ccal
d96dfa811482eee067f346386a2181ec514625f4
[ "MIT" ]
5
2017-05-05T01:52:31.000Z
2019-04-20T21:06:05.000Z
kwat/vcf/__init__.py
KwatME/ccal
d96dfa811482eee067f346386a2181ec514625f4
[ "MIT" ]
5
2017-07-17T18:55:54.000Z
2019-02-02T04:46:19.000Z
from .ANN import ANN from .COLUMN import COLUMN from .count_variant import count_variant from .read import read from .read_row import read_row
23.833333
40
0.825175
24
143
4.75
0.333333
0.210526
0
0
0
0
0
0
0
0
0
0
0.13986
143
5
41
28.6
0.926829
0
0
0
0
0
0
0
0
0
0
0
0
1
0
true
0
1
0
1
0
1
0
0
null
1
0
0
0
0
0
0
0
0
0
0
0
0
1
0
0
0
0
0
0
0
0
0
0
null
0
0
0
0
0
0
1
0
1
0
1
0
0
6
2444bfda5192c4823c0aa33cb28aafc9bb284d33
48
py
Python
urdf2optcontrol/__init__.py
abcamiletto/urdf2optcontrol
39b3f761a4685cc7d50b48793b6b2906c89b1694
[ "MIT" ]
null
null
null
urdf2optcontrol/__init__.py
abcamiletto/urdf2optcontrol
39b3f761a4685cc7d50b48793b6b2906c89b1694
[ "MIT" ]
null
null
null
urdf2optcontrol/__init__.py
abcamiletto/urdf2optcontrol
39b3f761a4685cc7d50b48793b6b2906c89b1694
[ "MIT" ]
null
null
null
from urdf2optcontrol.optimizer import optimizer
24
47
0.895833
5
48
8.6
0.8
0
0
0
0
0
0
0
0
0
0
0.022727
0.083333
48
1
48
48
0.954545
0
0
0
0
0
0
0
0
0
0
0
0
1
0
true
0
1
0
1
0
1
1
0
null
0
0
0
0
0
0
0
0
0
0
0
0
0
1
0
0
0
0
0
0
0
0
0
0
null
0
0
0
0
0
0
1
0
1
0
1
0
0
6
79ec537d798dd165bdadeed344519ce946fbb58f
17
py
Python
atmPy/data_archives/__init__.py
wblumberg/atm-py
253fc427fb366667da2d46a9af4a5d6550a13a6d
[ "MIT" ]
5
2015-09-09T20:06:59.000Z
2021-03-17T17:41:40.000Z
atmPy/data_archives/__init__.py
wblumberg/atm-py
253fc427fb366667da2d46a9af4a5d6550a13a6d
[ "MIT" ]
9
2016-02-22T18:15:21.000Z
2020-01-09T15:56:30.000Z
atmPy/data_archives/__init__.py
wblumberg/atm-py
253fc427fb366667da2d46a9af4a5d6550a13a6d
[ "MIT" ]
3
2016-04-19T16:19:35.000Z
2017-08-18T16:01:40.000Z
from . import arm
17
17
0.764706
3
17
4.333333
1
0
0
0
0
0
0
0
0
0
0
0
0.176471
17
1
17
17
0.928571
0
0
0
0
0
0
0
0
0
0
0
0
1
0
true
0
1
0
1
0
1
1
0
null
0
0
0
0
0
0
0
0
0
0
0
0
0
1
0
0
0
0
0
0
0
0
0
0
null
0
0
0
0
0
0
1
0
1
0
1
0
0
6
79fd5c1e63ef69fca3001ea30cfe970aedb5057c
117
py
Python
mbuild/lib/bulk_materials/__init__.py
daico007/mbuild
8baa19a46d1ece809f214a2e1a2f8984dd923b56
[ "MIT" ]
101
2017-02-14T18:23:52.000Z
2022-03-20T03:29:59.000Z
mbuild/lib/bulk_materials/__init__.py
Leticia-maria/mbuild
b6278441ff6d6cf1f954affe3d0fbeec17bbbc6d
[ "MIT" ]
689
2017-02-13T04:40:30.000Z
2022-03-31T19:57:32.000Z
mbuild/lib/bulk_materials/__init__.py
Leticia-maria/mbuild
b6278441ff6d6cf1f954affe3d0fbeec17bbbc6d
[ "MIT" ]
82
2017-02-13T21:08:48.000Z
2022-03-21T21:55:43.000Z
"""mBuild bulk materials library.""" from mbuild.lib.bulk_materials.amorphous_silica_bulk import AmorphousSilicaBulk
39
79
0.846154
14
117
6.857143
0.714286
0.270833
0
0
0
0
0
0
0
0
0
0
0.068376
117
2
80
58.5
0.880734
0.25641
0
0
0
0
0
0
0
0
0
0
0
1
0
true
0
1
0
1
0
1
0
0
null
1
0
0
0
0
0
0
0
0
0
0
0
0
1
0
0
0
0
0
0
0
0
0
0
null
0
0
0
0
0
0
1
0
1
0
1
0
0
6
30081b99ed015655f62a2925588934f7ea214a6c
1,543
py
Python
tests/test_router.py
elizabrock/adventofcode
542d86df55696e60b9044a468d9231650b93594c
[ "MIT" ]
null
null
null
tests/test_router.py
elizabrock/adventofcode
542d86df55696e60b9044a468d9231650b93594c
[ "MIT" ]
null
null
null
tests/test_router.py
elizabrock/adventofcode
542d86df55696e60b9044a468d9231650b93594c
[ "MIT" ]
null
null
null
import unittest from day3 import Router, Path, Traveler class TestRouter(unittest.TestCase): def test_houses_visited_single_visitor_2(self): input = '>' expected = 2 path = Path() Router.route(input, Traveler(path)) self.assertEqual(expected, path.houses_visited()) def test_houses_visited_single_visitor_4(self): input = '^>v<' expected = 4 path = Path() Router.route(input, Traveler(path)) self.assertEqual(expected, path.houses_visited()) def test_houses_visited_long_single_visitor_2(self): input = '^v^v^v^v^v' expected = 2 path = Path() Router.route(input, Traveler(path)) self.assertEqual(expected, path.houses_visited()) def test_houses_visited_multiple_visitors_2(self): input = '^v' expected = 3 path = Path() Router.route(input, Traveler(path), Traveler(path)) self.assertEqual(expected, path.houses_visited()) def test_houses_visited_multiple_visitors_4(self): input = '^>v<' expected = 3 path = Path() Router.route(input, Traveler(path), Traveler(path)) self.assertEqual(expected, path.houses_visited()) def test_houses_visited_long_multiple_visitors_2(self): input = '^v^v^v^v^v' expected = 11 path = Path() Router.route(input, Traveler(path), Traveler(path)) self.assertEqual(expected, path.houses_visited()) if __name__ == '__main__': unittest.main()
30.86
59
0.635126
182
1,543
5.131868
0.175824
0.167024
0.083512
0.12848
0.890792
0.844754
0.777302
0.777302
0.777302
0.736617
0
0.012079
0.248866
1,543
49
60
31.489796
0.793788
0
0
0.634146
0
0
0.025275
0
0
0
0
0
0.146341
1
0.146341
false
0
0.04878
0
0.219512
0
0
0
0
null
0
0
0
1
1
1
1
1
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
null
0
0
0
0
0
0
0
0
0
0
0
0
0
6
302b5c1fae21cc0412ea3e093f2daee245ab78e4
277
py
Python
bindings/python/hgdb/__init__.py
mithro/hgdb
8a028b9ee8751a2cc77cd1c889e96059747b2f18
[ "BSD-2-Clause" ]
null
null
null
bindings/python/hgdb/__init__.py
mithro/hgdb
8a028b9ee8751a2cc77cd1c889e96059747b2f18
[ "BSD-2-Clause" ]
null
null
null
bindings/python/hgdb/__init__.py
mithro/hgdb
8a028b9ee8751a2cc77cd1c889e96059747b2f18
[ "BSD-2-Clause" ]
null
null
null
try: from .client import HGDBClient, HGDBClientException from .symbol import (SymbolTableProvider, VariableSymbol, GeneratorVariableSymbol, ContextVariableSymbol, BreakpointSymbol) except ImportError: pass from .db import DebugSymbolTable
30.777778
109
0.743682
21
277
9.809524
0.809524
0
0
0
0
0
0
0
0
0
0
0
0.212996
277
8
110
34.625
0.944954
0
0
0
0
0
0
0
0
0
0
0
0
1
0
true
0.142857
0.571429
0
0.571429
0
1
0
0
null
0
0
0
0
0
0
0
0
0
0
0
0
0
1
0
0
0
0
0
0
0
0
0
0
null
0
0
0
0
0
0
1
1
1
0
1
0
0
6
063ec248cab953998ddab52490481255e605a0c3
24
py
Python
getpw/__init__.py
N0x1s/getpw
ab1acae4ff80d756663845ba8b56dbeadb6a4d4a
[ "MIT" ]
2
2020-07-12T07:00:48.000Z
2020-08-20T18:14:35.000Z
getpw/__init__.py
N0x1s/getpw
ab1acae4ff80d756663845ba8b56dbeadb6a4d4a
[ "MIT" ]
null
null
null
getpw/__init__.py
N0x1s/getpw
ab1acae4ff80d756663845ba8b56dbeadb6a4d4a
[ "MIT" ]
1
2021-01-26T15:07:02.000Z
2021-01-26T15:07:02.000Z
from .main import getpw
12
23
0.791667
4
24
4.75
1
0
0
0
0
0
0
0
0
0
0
0
0.166667
24
1
24
24
0.95
0
0
0
0
0
0
0
0
0
0
0
0
1
0
true
0
1
0
1
0
1
1
0
null
0
0
0
0
0
0
0
0
0
0
0
0
0
1
0
0
0
0
0
0
0
0
0
0
null
0
0
0
0
0
0
1
0
1
0
1
0
0
6
069a99b2d207f477a99a4ee093bdde5d744a1f44
4,481
py
Python
tests/regressiontests/forms/localflavor/sk.py
huicheese/Django-test3
ac11d2dce245b48392e52d1f4acfd5e7433b243e
[ "BSD-3-Clause" ]
23
2015-01-26T12:16:59.000Z
2022-02-10T10:58:40.000Z
tests/regressiontests/forms/localflavor/sk.py
joetyson/django
c3699190186561d5c216b2a77ecbfc487d42a734
[ "BSD-3-Clause" ]
1
2015-11-25T10:57:23.000Z
2017-02-25T07:54:03.000Z
tests/regressiontests/forms/localflavor/sk.py
joetyson/django
c3699190186561d5c216b2a77ecbfc487d42a734
[ "BSD-3-Clause" ]
30
2015-03-25T19:40:07.000Z
2021-05-28T22:59:26.000Z
# -*- coding: utf-8 -*- # Tests for the contrib/localflavor/ SK form fields. tests = r""" # SKPostalCodeField ######################################################### >>> from django.contrib.localflavor.sk.forms import SKPostalCodeField >>> f = SKPostalCodeField() >>> f.clean('84545x') Traceback (most recent call last): ... ValidationError: [u'Enter a postal code in the format XXXXX or XXX XX.'] >>> f.clean('91909') u'91909' >>> f.clean('917 01') u'91701' # SKRegionSelect ############################################################ >>> from django.contrib.localflavor.sk.forms import SKRegionSelect >>> w = SKRegionSelect() >>> w.render('regions', 'TT') u'<select name="regions">\n<option value="BB">Banska Bystrica region</option>\n<option value="BA">Bratislava region</option>\n<option value="KE">Kosice region</option>\n<option value="NR">Nitra region</option>\n<option value="PO">Presov region</option>\n<option value="TN">Trencin region</option>\n<option value="TT" selected="selected">Trnava region</option>\n<option value="ZA">Zilina region</option>\n</select>' # SKDistrictSelect ########################################################## >>> from django.contrib.localflavor.sk.forms import SKDistrictSelect >>> w = SKDistrictSelect() >>> w.render('Districts', 'RK') u'<select name="Districts">\n<option value="BB">Banska Bystrica</option>\n<option value="BS">Banska Stiavnica</option>\n<option value="BJ">Bardejov</option>\n<option value="BN">Banovce nad Bebravou</option>\n<option value="BR">Brezno</option>\n<option value="BA1">Bratislava I</option>\n<option value="BA2">Bratislava II</option>\n<option value="BA3">Bratislava III</option>\n<option value="BA4">Bratislava IV</option>\n<option value="BA5">Bratislava V</option>\n<option value="BY">Bytca</option>\n<option value="CA">Cadca</option>\n<option value="DT">Detva</option>\n<option value="DK">Dolny Kubin</option>\n<option value="DS">Dunajska Streda</option>\n<option value="GA">Galanta</option>\n<option value="GL">Gelnica</option>\n<option value="HC">Hlohovec</option>\n<option value="HE">Humenne</option>\n<option value="IL">Ilava</option>\n<option value="KK">Kezmarok</option>\n<option value="KN">Komarno</option>\n<option value="KE1">Kosice I</option>\n<option value="KE2">Kosice II</option>\n<option value="KE3">Kosice III</option>\n<option value="KE4">Kosice IV</option>\n<option value="KEO">Kosice - okolie</option>\n<option value="KA">Krupina</option>\n<option value="KM">Kysucke Nove Mesto</option>\n<option value="LV">Levice</option>\n<option value="LE">Levoca</option>\n<option value="LM">Liptovsky Mikulas</option>\n<option value="LC">Lucenec</option>\n<option value="MA">Malacky</option>\n<option value="MT">Martin</option>\n<option value="ML">Medzilaborce</option>\n<option value="MI">Michalovce</option>\n<option value="MY">Myjava</option>\n<option value="NO">Namestovo</option>\n<option value="NR">Nitra</option>\n<option value="NM">Nove Mesto nad Vahom</option>\n<option value="NZ">Nove Zamky</option>\n<option value="PE">Partizanske</option>\n<option value="PK">Pezinok</option>\n<option value="PN">Piestany</option>\n<option value="PT">Poltar</option>\n<option value="PP">Poprad</option>\n<option value="PB">Povazska Bystrica</option>\n<option value="PO">Presov</option>\n<option value="PD">Prievidza</option>\n<option value="PU">Puchov</option>\n<option value="RA">Revuca</option>\n<option value="RS">Rimavska Sobota</option>\n<option value="RV">Roznava</option>\n<option value="RK" selected="selected">Ruzomberok</option>\n<option value="SB">Sabinov</option>\n<option value="SC">Senec</option>\n<option value="SE">Senica</option>\n<option value="SI">Skalica</option>\n<option value="SV">Snina</option>\n<option value="SO">Sobrance</option>\n<option value="SN">Spisska Nova Ves</option>\n<option value="SL">Stara Lubovna</option>\n<option value="SP">Stropkov</option>\n<option value="SK">Svidnik</option>\n<option value="SA">Sala</option>\n<option value="TO">Topolcany</option>\n<option value="TV">Trebisov</option>\n<option value="TN">Trencin</option>\n<option value="TT">Trnava</option>\n<option value="TR">Turcianske Teplice</option>\n<option value="TS">Tvrdosin</option>\n<option value="VK">Velky Krtis</option>\n<option value="VT">Vranov nad Toplou</option>\n<option value="ZM">Zlate Moravce</option>\n<option value="ZV">Zvolen</option>\n<option value="ZC">Zarnovica</option>\n<option value="ZH">Ziar nad Hronom</option>\n<option value="ZA">Zilina</option>\n</select>' """
140.03125
3,188
0.700736
668
4,481
4.700599
0.341317
0.193949
0.332484
0.487261
0.220064
0.123248
0.039172
0
0
0
0
0.008233
0.051328
4,481
31
3,189
144.548387
0.730416
0.016068
0
0
0
0.086957
0.995688
0.697912
0
0
0
0
0
1
0
false
0
0.130435
0
0.130435
0
0
0
0
null
0
1
1
0
0
0
0
0
0
0
0
0
0
0
1
1
0
0
0
0
0
0
1
1
null
0
0
0
0
0
0
0
0
0
0
0
0
0
6
23159cfa74dfdec1ad7127226ba277cf96d5ec57
47
py
Python
vnpy/api/lhang/__init__.py
firekay/vnpy
22311a882c465312ebad20eaa1cb607fa7b8b7af
[ "MIT" ]
5
2018-01-25T01:59:41.000Z
2022-03-11T10:08:58.000Z
vnpy/api/lhang/__init__.py
ianchan1988/vnpy
5fd3814ba5ce3559ef1cb1a04c877a06114b4728
[ "MIT" ]
null
null
null
vnpy/api/lhang/__init__.py
ianchan1988/vnpy
5fd3814ba5ce3559ef1cb1a04c877a06114b4728
[ "MIT" ]
6
2018-03-12T06:08:21.000Z
2021-11-18T15:14:40.000Z
# encoding: UTF-8 from vnlhang import LhangApi
15.666667
28
0.787234
7
47
5.285714
1
0
0
0
0
0
0
0
0
0
0
0.025
0.148936
47
3
28
15.666667
0.9
0.319149
0
0
0
0
0
0
0
0
0
0
0
1
0
true
0
1
0
1
0
1
1
0
null
0
0
0
0
0
0
0
0
0
0
0
0
0
1
0
0
0
0
0
0
0
0
0
0
null
0
0
0
0
0
0
1
0
1
0
1
0
0
6
2342e6f5d5a14d9ffb94a6dfe26cfec369450b05
7,259
py
Python
tests/test_models.py
ivoire/KissCache
ccdf6454bccc29dbd0cd30b00c95a37fa3680b2c
[ "MIT" ]
null
null
null
tests/test_models.py
ivoire/KissCache
ccdf6454bccc29dbd0cd30b00c95a37fa3680b2c
[ "MIT" ]
null
null
null
tests/test_models.py
ivoire/KissCache
ccdf6454bccc29dbd0cd30b00c95a37fa3680b2c
[ "MIT" ]
1
2020-09-29T21:05:43.000Z
2020-09-29T21:05:43.000Z
# -*- coding: utf-8 -*- # vim: set ts=4 # # Copyright 2019 Linaro Limited # # Author: Rémi Duraffort <[email protected]> # # SPDX-License-Identifier: MIT import pytest import time from kiss_cache.models import Resource def test_resource_parse_ttl(): assert Resource.parse_ttl("1d") == 60 * 60 * 24 assert Resource.parse_ttl("18d") == 60 * 60 * 24 * 18 assert Resource.parse_ttl("5h") == 60 * 60 * 5 assert Resource.parse_ttl("34m") == 60 * 34 assert Resource.parse_ttl("500s") == 500 assert Resource.parse_ttl("42s") == 42 with pytest.raises(NotImplementedError, match="Unknown TTL value"): Resource.parse_ttl("42t") with pytest.raises(Exception, match="The TTL should be positive"): Resource.parse_ttl("-1s") def test_resource_path(db): res = Resource.objects.create(url="https://example.com/kernel") assert ( res.path == "76/66828e5a43fe3e8c06c2e62ad216cc354c91da92f093d6d8a7c3dc9d1baa82" ) def test_resource_total_size(db): assert Resource.total_size() == 0 Resource.objects.create(url="http://example.com", content_length=4212) Resource.objects.create(url="http://example.org", content_length=5379) Resource.objects.create(url="http://example.net", content_length=2) assert Resource.total_size() == 4212 + 5379 + 2 def test_resource_total_size(db, settings): settings.RESOURCE_QUOTA = 12 assert Resource.is_over_quota() is False Resource.objects.create(url="http://example.com", content_length=4212) Resource.objects.create(url="http://example.org", content_length=5379) Resource.objects.create(url="http://example.net", content_length=2) assert Resource.is_over_quota() is True settings.RESOURCE_QUOTA = 4212 + 5379 + 2 - 1 assert Resource.is_over_quota() is True settings.RESOURCE_QUOTA = 4212 + 5379 + 2 + 1 assert Resource.is_over_quota() is False settings.RESOURCE_QUOTA = 0 assert Resource.is_over_quota() is False def test_resource_progress(db, settings, tmpdir): settings.DOWNLOAD_PATH = str(tmpdir) res = Resource.objects.create(url="https://example.com/kernel") assert res.progress() == "??" res.content_length = 56 assert res.progress() == 0 (tmpdir / "76").mkdir() ( tmpdir / "76/66828e5a43fe3e8c06c2e62ad216cc354c91da92f093d6d8a7c3dc9d1baa82" ).write_text("hello", encoding="utf-8") assert res.progress() == 8 def test_resource_stream(db, monkeypatch, settings, tmpdir): monkeypatch.setattr(time, "sleep", lambda d: d) settings.DOWNLOAD_PATH = str(tmpdir) res = Resource.objects.create(url="https://example.com/kernel") (tmpdir / "76").mkdir() with ( tmpdir / "76/66828e5a43fe3e8c06c2e62ad216cc354c91da92f093d6d8a7c3dc9d1baa82" ).open("wb") as f_out: f_out.write(b"hello") f_out.flush() it = res.stream() assert next(it) == b"hello" f_out.write(b" world") f_out.flush() assert next(it) == b" world" res.status_code = 200 res.state = Resource.STATE_FINISHED res.save() f_out.write(b"!") f_out.flush() assert next(it) == b"!" with pytest.raises(StopIteration): next(it) def test_resource_stream_errors(db, monkeypatch, settings, tmpdir): monkeypatch.setattr(time, "sleep", lambda d: d) settings.DOWNLOAD_PATH = str(tmpdir) res = Resource.objects.create(url="https://example.com/kernel", content_length=11) (tmpdir / "76").mkdir() with ( tmpdir / "76/66828e5a43fe3e8c06c2e62ad216cc354c91da92f093d6d8a7c3dc9d1baa82" ).open("wb") as f_out: f_out.write(b"hello") f_out.flush() it = res.stream() assert next(it) == b"hello" f_out.write(b" world") f_out.flush() assert next(it) == b" world" res.status_code = 403 res.state = Resource.STATE_FINISHED res.save() # The length is right: no exception will be raised with pytest.raises(StopIteration): next(it) def test_resource_stream_errors_2(db, monkeypatch, settings, tmpdir): monkeypatch.setattr(time, "sleep", lambda d: d) settings.DOWNLOAD_PATH = str(tmpdir) res = Resource.objects.create(url="https://example.com/kernel", content_length=13) (tmpdir / "76").mkdir() with ( tmpdir / "76/66828e5a43fe3e8c06c2e62ad216cc354c91da92f093d6d8a7c3dc9d1baa82" ).open("wb") as f_out: f_out.write(b"hello") f_out.flush() it = res.stream() assert next(it) == b"hello" f_out.write(b" world") f_out.flush() assert next(it) == b" world" res.status_code = 403 res.state = Resource.STATE_FINISHED res.save() # The length is wrong: an exception should be raised with pytest.raises(Exception, match="Resource length streamed is wrong: 11 vs 13"): next(it) def test_resource_stream_errors_3(db, monkeypatch, settings, tmpdir): monkeypatch.setattr(time, "sleep", lambda d: d) settings.DOWNLOAD_PATH = str(tmpdir) res = Resource.objects.create(url="https://example.com/kernel") (tmpdir / "76").mkdir() with ( tmpdir / "76/66828e5a43fe3e8c06c2e62ad216cc354c91da92f093d6d8a7c3dc9d1baa82" ).open("wb") as f_out: f_out.write(b"hello") f_out.flush() it = res.stream() assert next(it) == b"hello" f_out.write(b" world") f_out.flush() assert next(it) == b" world" res.delete() # the length is unknown: an exception should be raised with pytest.raises(Exception, match="Resource was deleted and length is unknown"): next(it) def test_resource_stream_errors_4(db, monkeypatch, settings, tmpdir): monkeypatch.setattr(time, "sleep", lambda d: d) settings.DOWNLOAD_PATH = str(tmpdir) res = Resource.objects.create(url="https://example.com/kernel", content_length=13) (tmpdir / "76").mkdir() with ( tmpdir / "76/66828e5a43fe3e8c06c2e62ad216cc354c91da92f093d6d8a7c3dc9d1baa82" ).open("wb") as f_out: f_out.write(b"hello") f_out.flush() it = res.stream() assert next(it) == b"hello" f_out.write(b" world") f_out.flush() assert next(it) == b" world" res.delete() # the length is unknown: an exception should be raised with pytest.raises( Exception, match="Resource was deleted and streamed length is wrong: 11 vs 13" ): next(it) def test_resource_stream_errors_5(db, monkeypatch, settings, tmpdir): monkeypatch.setattr(time, "sleep", lambda d: d) settings.DOWNLOAD_PATH = str(tmpdir) res = Resource.objects.create(url="https://example.com/kernel", content_length=11) (tmpdir / "76").mkdir() with ( tmpdir / "76/66828e5a43fe3e8c06c2e62ad216cc354c91da92f093d6d8a7c3dc9d1baa82" ).open("wb") as f_out: f_out.write(b"hello") f_out.flush() it = res.stream() assert next(it) == b"hello" f_out.write(b" world") f_out.flush() assert next(it) == b" world" res.delete() # the length is good: no exception should be raised with pytest.raises(StopIteration): next(it)
32.262222
87
0.653396
917
7,259
5.045802
0.152672
0.027664
0.06354
0.072617
0.787119
0.780635
0.769397
0.731576
0.720553
0.720553
0
0.079359
0.21711
7,259
224
88
32.40625
0.734823
0.055242
0
0.720238
0
0
0.18235
0.075979
0
0
0
0
0.178571
1
0.065476
false
0
0.017857
0
0.083333
0
0
0
0
null
0
0
0
0
1
1
1
1
1
0
0
0
0
0
0
0
0
0
0
1
0
0
0
0
null
0
0
0
0
0
0
0
0
0
0
0
0
0
6
237cf8d677c370493bef079416fe4e3a6b86b1ed
49
py
Python
src/larksuiteoapi/api/response/__init__.py
keeperlibofan/oapi-sdk-python
5743dd34eb0bfc30693e9b6e6f5cf35ac82edb26
[ "Apache-2.0" ]
50
2021-04-11T05:24:10.000Z
2022-03-29T10:14:13.000Z
src/larksuiteoapi/api/response/__init__.py
keeperlibofan/oapi-sdk-python
5743dd34eb0bfc30693e9b6e6f5cf35ac82edb26
[ "Apache-2.0" ]
20
2021-04-07T15:17:44.000Z
2022-03-23T06:27:12.000Z
src/larksuiteoapi/api/response/__init__.py
keeperlibofan/oapi-sdk-python
5743dd34eb0bfc30693e9b6e6f5cf35ac82edb26
[ "Apache-2.0" ]
8
2021-04-25T15:02:17.000Z
2022-03-13T15:00:59.000Z
# -*- coding: UTF-8 -*- from .response import *
12.25
23
0.571429
6
49
4.666667
1
0
0
0
0
0
0
0
0
0
0
0.025641
0.204082
49
3
24
16.333333
0.692308
0.428571
0
0
0
0
0
0
0
0
0
0
0
1
0
true
0
1
0
1
0
1
1
0
null
0
0
0
0
0
0
0
0
0
0
0
0
0
1
0
0
0
0
0
0
0
0
0
0
null
0
0
0
0
0
0
1
0
1
0
1
0
0
6
88bb346440052826b7651c1b2bd9b57c6b6d23ee
3,715
py
Python
11/solution.py
Hegemege/advent-of-code-2021
e3ee5de81a03ef726baf638dd99ba85e85fd537a
[ "MIT" ]
null
null
null
11/solution.py
Hegemege/advent-of-code-2021
e3ee5de81a03ef726baf638dd99ba85e85fd537a
[ "MIT" ]
null
null
null
11/solution.py
Hegemege/advent-of-code-2021
e3ee5de81a03ef726baf638dd99ba85e85fd537a
[ "MIT" ]
null
null
null
class Octopus: def __init__(self, energy): self.flashed = False self.energy = energy self.neighbors = [] self.flashes = 0 def flash(self): if self.flashed: return self.flashed = True self.flashes += 1 for neighbor in self.neighbors: neighbor.energy += 1 if neighbor.energy > 9: neighbor.flash() def part1(input_data): height = len(input_data) width = len(input_data[0]) grid = [[Octopus(int(y)) for y in x] for x in input_data] for j in range(height): for i in range(width): cell = grid[j][i] if j > 0: cell.neighbors.append(grid[j - 1][i]) if j < height - 1: cell.neighbors.append(grid[j + 1][i]) if i > 0: cell.neighbors.append(grid[j][i - 1]) if i < width - 1: cell.neighbors.append(grid[j][i + 1]) if j > 0 and i > 0: cell.neighbors.append(grid[j - 1][i - 1]) if j < height - 1 and i > 0: cell.neighbors.append(grid[j + 1][i - 1]) if j > 0 and i < width - 1: cell.neighbors.append(grid[j - 1][i + 1]) if j < height - 1 and i < width - 1: cell.neighbors.append(grid[j + 1][i + 1]) for i in range(100): # Reset flashed for all octopuses and add 1 energy for row in grid: for octopus in row: octopus.flashed = False octopus.energy += 1 for row in grid: for octopus in row: if octopus.energy > 9: octopus.flash() for row in grid: for octopus in row: if octopus.flashed: octopus.energy = 0 return sum([sum([y.flashes for y in x]) for x in grid]) def part2(input_data): height = len(input_data) width = len(input_data[0]) grid = [[Octopus(int(y)) for y in x] for x in input_data] for j in range(height): for i in range(width): cell = grid[j][i] if j > 0: cell.neighbors.append(grid[j - 1][i]) if j < height - 1: cell.neighbors.append(grid[j + 1][i]) if i > 0: cell.neighbors.append(grid[j][i - 1]) if i < width - 1: cell.neighbors.append(grid[j][i + 1]) if j > 0 and i > 0: cell.neighbors.append(grid[j - 1][i - 1]) if j < height - 1 and i > 0: cell.neighbors.append(grid[j + 1][i - 1]) if j > 0 and i < width - 1: cell.neighbors.append(grid[j - 1][i + 1]) if j < height - 1 and i < width - 1: cell.neighbors.append(grid[j + 1][i + 1]) i = 0 while True: i += 1 # Reset flashed for all octopuses and add 1 energy for row in grid: for octopus in row: octopus.flashed = False octopus.energy += 1 for row in grid: for octopus in row: if octopus.energy > 9: octopus.flash() all_flashed = True for row in grid: for octopus in row: if octopus.flashed: octopus.energy = 0 else: all_flashed = False if all_flashed: return i if __name__ == "__main__": with open("input", "r") as input_file: input_data = list(map(lambda x: x.strip(), input_file.readlines())) print(part1(input_data)) print(part2(input_data))
31.752137
75
0.474563
495
3,715
3.505051
0.119192
0.051873
0.175216
0.212104
0.738329
0.738329
0.738329
0.730836
0.730836
0.730836
0
0.032825
0.417766
3,715
116
76
32.025862
0.769302
0.02611
0
0.68
0
0
0.003873
0
0
0
0
0
0
1
0.04
false
0
0
0
0.08
0.02
0
0
0
null
0
0
1
0
1
1
1
1
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
null
0
0
0
0
0
0
0
0
0
0
0
0
0
6
00397b0a764373c133aa03603627a896723055b9
12,961
py
Python
asn1PERser/test/per/encoder/test_per_encode_enumerated.py
erupikus/asn1PERser
11dc2985107a9fbba00bea83c1021d2665e8f193
[ "MIT" ]
3
2021-06-14T03:29:37.000Z
2021-11-15T09:45:11.000Z
asn1PERser/test/per/encoder/test_per_encode_enumerated.py
erupikus/asn1PERser
11dc2985107a9fbba00bea83c1021d2665e8f193
[ "MIT" ]
null
null
null
asn1PERser/test/per/encoder/test_per_encode_enumerated.py
erupikus/asn1PERser
11dc2985107a9fbba00bea83c1021d2665e8f193
[ "MIT" ]
null
null
null
import pytest from pyasn1.type.namedval import NamedValues from asn1PERser.codec.per.encoder import encode as per_encoder from asn1PERser.classes.data.builtin.EnumeratedType import EnumeratedType from asn1PERser.classes.types.constraint import ExtensionMarker def SCHEMA_my_enum(enumerationRoot_list, extensionMarker_value=False): class MyEnum(EnumeratedType): ''' MyEnum ::= ENUMERATED { e0, e1, . . . eN-1 eN } ''' subtypeSpec = ExtensionMarker(extensionMarker_value) enumerationRoot = NamedValues( *[(item, index) for index, item in enumerate(enumerationRoot_list)] ) extensionAddition = NamedValues( ) namedValues = enumerationRoot + extensionAddition return MyEnum def SCHEMA_my_ext_enum(enumerationRoot_list, extensionAddition_list, extensionMarker_value=False): class MyEnum(EnumeratedType): ''' MyEnum::= ENUMERATED { e0, e1, . . . eN - 1 eN, ..., eN+1 . . . eM-1, eM } ''' subtypeSpec = ExtensionMarker(extensionMarker_value) enumerationRoot = NamedValues( *[(item, index) for index, item in enumerate(enumerationRoot_list)] ) extensionAddition = NamedValues( *[(item, index) for index, item in enumerate(extensionAddition_list, start=len(enumerationRoot_list))] ) namedValues = enumerationRoot + extensionAddition return MyEnum def DATA_my_enum(enum, value): return enum(value) short_enum = ['a0', 'a1'] enumeration_list = ['e0', 'e1', 'e2', 'e3', 'e4', 'e5', 'e6', 'e7', 'e8', 'e9', 'e10', 'e11', 'e12', 'e13', 'e14', 'e15', 'e16', 'e17', 'e18', 'e19', 'e20', 'e21', 'e22', 'e23', 'e24', 'e25', 'e26', 'e27', 'e28', 'e29', 'e30', 'e31', 'e32', 'e33', 'e34', 'e35', 'e36', 'e37', 'e38', 'e39', 'e40', 'e41', 'e42', 'e43', 'e44', 'e45', 'e46', 'e47', 'e48', 'e49', 'e50', 'e51', 'e52', 'e53', 'e54', 'e55', 'e56', 'e57', 'e58', 'e59', 'e60', 'e61', 'e62', 'e63', 'e64', 'e65', 'e66', 'e67', 'e68', 'e69', 'e70', 'e71', 'e72', 'e73', 'e74', 'e75', 'e76', 'e77', 'e78', 'e79', 'e80', 'e81', 'e82', 'e83', 'e84', 'e85', 'e86', 'e87', 'e88', 'e89', 'e90', 'e91', 'e92', 'e93', 'e94', 'e95', 'e96', 'e97', 'e98', 'e99', 'e100', 'e101', 'e102', 'e103', 'e104', 'e105', 'e106', 'e107', 'e108', 'e109', 'e110', 'e111', 'e112', 'e113', 'e114', 'e115', 'e116', 'e117', 'e118', 'e119', 'e120', 'e121', 'e122', 'e123', 'e124', 'e125', 'e126', 'e127', 'e128', 'e129', 'e130', 'e131', 'e132', 'e133', 'e134', 'e135', 'e136', 'e137', 'e138', 'e139', 'e140', 'e141', 'e142', 'e143', 'e144', 'e145', 'e146', 'e147', 'e148', 'e149', 'e150', 'e151', 'e152', 'e153', 'e154', 'e155', 'e156', 'e157', 'e158', 'e159', 'e160', 'e161', 'e162', 'e163', 'e164', 'e165', 'e166', 'e167', 'e168', 'e169', 'e170', 'e171', 'e172', 'e173', 'e174', 'e175', 'e176', 'e177', 'e178', 'e179', 'e180', 'e181', 'e182', 'e183', 'e184', 'e185', 'e186', 'e187', 'e188', 'e189', 'e190', 'e191', 'e192', 'e193', 'e194', 'e195', 'e196', 'e197', 'e198', 'e199', 'e200', 'e201', 'e202', 'e203', 'e204', 'e205', 'e206', 'e207', 'e208', 'e209', 'e210', 'e211', 'e212', 'e213', 'e214', 'e215', 'e216', 'e217', 'e218', 'e219', 'e220', 'e221', 'e222', 'e223', 'e224', 'e225', 'e226', 'e227', 'e228', 'e229', 'e230', 'e231', 'e232', 'e233', 'e234', 'e235', 'e236', 'e237', 'e238', 'e239', 'e240', 'e241', 'e242', 'e243', 'e244', 'e245', 'e246', 'e247', 'e248', 'e249', 'e250', 'e251', 'e252', 'e253', 'e254', 'e255', 'e256', 'e257', 'e258', 'e259'] @pytest.mark.parametrize("enumerated, encoded", [ (DATA_my_enum(SCHEMA_my_enum(enumerationRoot_list=enumeration_list[0:2]), 'e0'), '00'), (DATA_my_enum(SCHEMA_my_enum(enumerationRoot_list=enumeration_list[0:2]), 'e1'), '80'), (DATA_my_enum(SCHEMA_my_enum(enumerationRoot_list=enumeration_list[0:10]), 'e9'), '90'), (DATA_my_enum(SCHEMA_my_enum(enumerationRoot_list=enumeration_list[0:17]), 'e9'), '48'), (DATA_my_enum(SCHEMA_my_enum(enumerationRoot_list=enumeration_list[0:33]), 'e9'), '24'), (DATA_my_enum(SCHEMA_my_enum(enumerationRoot_list=enumeration_list[0:33]), 'e32'), '80'), (DATA_my_enum(SCHEMA_my_enum(enumerationRoot_list=enumeration_list[0:100]), 'e98'), 'C4'), (DATA_my_enum(SCHEMA_my_enum(enumerationRoot_list=enumeration_list[0:130]), 'e126'), '7E'), (DATA_my_enum(SCHEMA_my_enum(enumerationRoot_list=enumeration_list[0:130]), 'e127'), '7F'), (DATA_my_enum(SCHEMA_my_enum(enumerationRoot_list=enumeration_list[0:130]), 'e128'), '80'), (DATA_my_enum(SCHEMA_my_enum(enumerationRoot_list=enumeration_list[0:260]), 'e128'), '0080'), (DATA_my_enum(SCHEMA_my_enum(enumerationRoot_list=enumeration_list[0:260]), 'e254'), '00FE'), (DATA_my_enum(SCHEMA_my_enum(enumerationRoot_list=enumeration_list[0:260]), 'e255'), '00FF'), (DATA_my_enum(SCHEMA_my_enum(enumerationRoot_list=enumeration_list[0:260]), 'e256'), '0100'), ]) def test_no_extension_marker_enumerated_can_be_encoded(enumerated, encoded): assert per_encoder(enumerated) == bytearray.fromhex(encoded) @pytest.mark.parametrize("enumerated, encoded", [ (DATA_my_enum(SCHEMA_my_enum(enumerationRoot_list=enumeration_list[0:2], extensionMarker_value=True), 'e0'), '00'), (DATA_my_enum(SCHEMA_my_enum(enumerationRoot_list=enumeration_list[0:2], extensionMarker_value=True), 'e1'), '40'), (DATA_my_enum(SCHEMA_my_enum(enumerationRoot_list=enumeration_list[0:10], extensionMarker_value=True), 'e9'), '48'), (DATA_my_enum(SCHEMA_my_enum(enumerationRoot_list=enumeration_list[0:17], extensionMarker_value=True), 'e9'), '24'), (DATA_my_enum(SCHEMA_my_enum(enumerationRoot_list=enumeration_list[0:33], extensionMarker_value=True), 'e9'), '12'), (DATA_my_enum(SCHEMA_my_enum(enumerationRoot_list=enumeration_list[0:33], extensionMarker_value=True), 'e32'), '40'), (DATA_my_enum(SCHEMA_my_enum(enumerationRoot_list=enumeration_list[0:100], extensionMarker_value=True), 'e98'), '62'), (DATA_my_enum(SCHEMA_my_enum(enumerationRoot_list=enumeration_list[0:130], extensionMarker_value=True), 'e126'), '3F00'), (DATA_my_enum(SCHEMA_my_enum(enumerationRoot_list=enumeration_list[0:130], extensionMarker_value=True), 'e127'), '3F80'), (DATA_my_enum(SCHEMA_my_enum(enumerationRoot_list=enumeration_list[0:130], extensionMarker_value=True), 'e128'), '4000'), (DATA_my_enum(SCHEMA_my_enum(enumerationRoot_list=enumeration_list[0:260], extensionMarker_value=True), 'e128'), '000080'), (DATA_my_enum(SCHEMA_my_enum(enumerationRoot_list=enumeration_list[0:260], extensionMarker_value=True), 'e254'), '0000FE'), (DATA_my_enum(SCHEMA_my_enum(enumerationRoot_list=enumeration_list[0:260], extensionMarker_value=True), 'e255'), '0000FF'), (DATA_my_enum(SCHEMA_my_enum(enumerationRoot_list=enumeration_list[0:260], extensionMarker_value=True), 'e256'), '000100'), ]) def test_extension_marker_is_present_and_extension_addition_is_empty_but_value_is_from_root_can_be_encoded(enumerated, encoded): assert per_encoder(enumerated) == bytearray.fromhex(encoded) @pytest.mark.parametrize("enumerated, encoded", [ (DATA_my_enum(SCHEMA_my_ext_enum(enumerationRoot_list=enumeration_list[0:2], extensionAddition_list=short_enum, extensionMarker_value=True), 'e0'), '00'), (DATA_my_enum(SCHEMA_my_ext_enum(enumerationRoot_list=enumeration_list[0:2], extensionAddition_list=short_enum, extensionMarker_value=True), 'e1'), '40'), (DATA_my_enum(SCHEMA_my_ext_enum(enumerationRoot_list=enumeration_list[0:10], extensionAddition_list=short_enum, extensionMarker_value=True), 'e9'), '48'), (DATA_my_enum(SCHEMA_my_ext_enum(enumerationRoot_list=enumeration_list[0:17], extensionAddition_list=short_enum, extensionMarker_value=True), 'e9'), '24'), (DATA_my_enum(SCHEMA_my_ext_enum(enumerationRoot_list=enumeration_list[0:33], extensionAddition_list=short_enum, extensionMarker_value=True), 'e9'), '12'), (DATA_my_enum(SCHEMA_my_ext_enum(enumerationRoot_list=enumeration_list[0:33], extensionAddition_list=short_enum, extensionMarker_value=True), 'e32'), '40'), (DATA_my_enum(SCHEMA_my_ext_enum(enumerationRoot_list=enumeration_list[0:100], extensionAddition_list=short_enum, extensionMarker_value=True), 'e98'), '62'), (DATA_my_enum(SCHEMA_my_ext_enum(enumerationRoot_list=enumeration_list[0:130], extensionAddition_list=short_enum, extensionMarker_value=True), 'e126'), '3F00'), (DATA_my_enum(SCHEMA_my_ext_enum(enumerationRoot_list=enumeration_list[0:130], extensionAddition_list=short_enum, extensionMarker_value=True), 'e127'), '3F80'), (DATA_my_enum(SCHEMA_my_ext_enum(enumerationRoot_list=enumeration_list[0:130], extensionAddition_list=short_enum, extensionMarker_value=True), 'e128'), '4000'), (DATA_my_enum(SCHEMA_my_ext_enum(enumerationRoot_list=enumeration_list[0:260], extensionAddition_list=short_enum, extensionMarker_value=True), 'e128'), '000080'), (DATA_my_enum(SCHEMA_my_ext_enum(enumerationRoot_list=enumeration_list[0:260], extensionAddition_list=short_enum, extensionMarker_value=True), 'e254'), '0000FE'), (DATA_my_enum(SCHEMA_my_ext_enum(enumerationRoot_list=enumeration_list[0:260], extensionAddition_list=short_enum, extensionMarker_value=True), 'e255'), '0000FF'), (DATA_my_enum(SCHEMA_my_ext_enum(enumerationRoot_list=enumeration_list[0:260], extensionAddition_list=short_enum, extensionMarker_value=True), 'e256'), '000100'), ]) def test_extension_marker_is_present_and_extension_addition_is_not_empty_but_value_is_from_root_can_be_encoded(enumerated, encoded): assert per_encoder(enumerated) == bytearray.fromhex(encoded) @pytest.mark.parametrize("enumerated, encoded", [ (DATA_my_enum(SCHEMA_my_ext_enum(enumerationRoot_list=short_enum, extensionAddition_list=enumeration_list[0:2], extensionMarker_value=True), 'e0'), '80'), (DATA_my_enum(SCHEMA_my_ext_enum(enumerationRoot_list=short_enum, extensionAddition_list=enumeration_list[0:2], extensionMarker_value=True), 'e1'), '81'), (DATA_my_enum(SCHEMA_my_ext_enum(enumerationRoot_list=short_enum, extensionAddition_list=enumeration_list[0:10], extensionMarker_value=True), 'e9'), '89'), (DATA_my_enum(SCHEMA_my_ext_enum(enumerationRoot_list=short_enum, extensionAddition_list=enumeration_list[0:17], extensionMarker_value=True), 'e9'), '89'), (DATA_my_enum(SCHEMA_my_ext_enum(enumerationRoot_list=short_enum, extensionAddition_list=enumeration_list[0:33], extensionMarker_value=True), 'e9'), '89'), (DATA_my_enum(SCHEMA_my_ext_enum(enumerationRoot_list=short_enum, extensionAddition_list=enumeration_list[0:33], extensionMarker_value=True), 'e32'), 'A0'), (DATA_my_enum(SCHEMA_my_ext_enum(enumerationRoot_list=short_enum, extensionAddition_list=enumeration_list[0:100], extensionMarker_value=True), 'e98'), 'C00162'), (DATA_my_enum(SCHEMA_my_ext_enum(enumerationRoot_list=short_enum, extensionAddition_list=enumeration_list[0:130], extensionMarker_value=True), 'e126'), 'C0017E'), (DATA_my_enum(SCHEMA_my_ext_enum(enumerationRoot_list=short_enum, extensionAddition_list=enumeration_list[0:130], extensionMarker_value=True), 'e127'), 'C0017F'), (DATA_my_enum(SCHEMA_my_ext_enum(enumerationRoot_list=short_enum, extensionAddition_list=enumeration_list[0:130], extensionMarker_value=True), 'e128'), 'C00180'), (DATA_my_enum(SCHEMA_my_ext_enum(enumerationRoot_list=short_enum, extensionAddition_list=enumeration_list[0:260], extensionMarker_value=True), 'e128'), 'C00180'), (DATA_my_enum(SCHEMA_my_ext_enum(enumerationRoot_list=short_enum, extensionAddition_list=enumeration_list[0:260], extensionMarker_value=True), 'e254'), 'C001FE'), (DATA_my_enum(SCHEMA_my_ext_enum(enumerationRoot_list=short_enum, extensionAddition_list=enumeration_list[0:260], extensionMarker_value=True), 'e255'), 'C001FF'), (DATA_my_enum(SCHEMA_my_ext_enum(enumerationRoot_list=short_enum, extensionAddition_list=enumeration_list[0:260], extensionMarker_value=True), 'e256'), 'C0020100'), ]) def test_extension_marker_is_present_and_value_is_from_extension_can_be_encoded(enumerated, encoded): assert per_encoder(enumerated) == bytearray.fromhex(encoded)
73.225989
168
0.682509
1,579
12,961
5.259658
0.233692
0.062131
0.160626
0.107887
0.824684
0.821433
0.803131
0.794582
0.783504
0.776159
0
0.105946
0.155235
12,961
176
169
73.642045
0.652571
0.015894
0
0.204724
0
0
0.110605
0
0
0
0
0
0.031496
1
0.055118
false
0
0.03937
0.007874
0.19685
0
0
0
0
null
0
0
0
1
1
1
1
1
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
null
0
0
0
0
0
0
0
0
0
0
0
0
0
6
0041a6d8129ee5f06d99b37cd61cca2482630a2f
84
py
Python
Chinese/HPS3D_SDK_ROS_Demo/devel/lib/python2.7/dist-packages/hps_camera/msg/__init__.py
hypersen/HPS3D_SDK
dcafdb0aac1a38db2c3424c6dbc0864e108cd7fc
[ "MIT" ]
13
2019-04-30T02:23:59.000Z
2021-11-12T04:05:21.000Z
English/HPS3D_SDK_ROS_Demo/devel/lib/python2.7/dist-packages/hps_camera/msg/__init__.py
hypersen/HPS3D_SDK
dcafdb0aac1a38db2c3424c6dbc0864e108cd7fc
[ "MIT" ]
3
2019-10-24T03:49:21.000Z
2020-03-09T01:33:45.000Z
Chinese/HPS3D_SDK_ROS_Demo/devel/lib/python2.7/dist-packages/hps_camera/msg/__init__.py
hypersen/HPS3D_SDK
dcafdb0aac1a38db2c3424c6dbc0864e108cd7fc
[ "MIT" ]
4
2019-10-23T02:06:02.000Z
2020-11-19T08:49:56.000Z
from ._PointCloudData import * from ._distance import * from ._measureData import *
21
30
0.785714
9
84
7
0.555556
0.31746
0
0
0
0
0
0
0
0
0
0
0.142857
84
3
31
28
0.875
0
0
0
0
0
0
0
0
0
0
0
0
1
0
true
0
1
0
1
0
1
0
0
null
1
0
0
0
0
0
0
0
0
0
0
0
0
1
0
0
0
0
0
0
0
0
0
0
null
0
0
0
0
0
0
1
0
1
0
1
0
0
6
cc4c1e54fba50bcdc91d167be088d9b7b84f2552
11,209
py
Python
day15_p1.py
venomousmoog/adventofcode2021
0111db027954ab38d6c17e0c8048df3449cb90d2
[ "Apache-2.0" ]
null
null
null
day15_p1.py
venomousmoog/adventofcode2021
0111db027954ab38d6c17e0c8048df3449cb90d2
[ "Apache-2.0" ]
null
null
null
day15_p1.py
venomousmoog/adventofcode2021
0111db027954ab38d6c17e0c8048df3449cb90d2
[ "Apache-2.0" ]
null
null
null
import heapq import sys def compute(data): map = [[int(e) for e in l] for l in data.split('\n')] w = len(map) h = len(map[0]) end = (w-1, h-1) # pq format is [cost, length, counter, position] q = [[0, 0, 0, (0,0)]] counter = 1 visited = set([(0,0)]) while len(q) > 0: cost, length, _, p = heapq.heappop(q) # print(f'{cost}, {length}, {_}, {p}') if p == end: print(cost) return # add neighbors if they aren't in the path already: neighbors = [(p[0], p[1]+1), (p[0], p[1]-1), (p[0]+1, p[1]), (p[0]-1, p[1])] for n in neighbors: if not n in visited and not (n[0] < 0 or n[0] >= w or n[1] < 0 or n[1] >= h): # print(f'n = ({n[0]}, {n[1]})') heapq.heappush(q, [cost + map[n[0]][n[1]], length+1, counter, n]) counter = counter + 1 visited.add(n) test_data = """1163751742 1381373672 2136511328 3694931569 7463417111 1319128137 1359912421 3125421639 1293138521 2311944581""" data="""4395194575929822238989941988598994946581953236424841813955769288219282998336161199274582725132193662 1715719228759138638397684864996679719167258159599658826174926447916886499139963731181569842792979836 5641957947399279962631596818774779918898868615738299911674929785663922472189972649893918935926989965 2585497851318911812329521892518876883669883794214786673934129871993567882759933254875129861732949942 6326121293629918828545199576444799485199997872984968987116189717399321966789925619859799917896971919 1197891193163157699998465137799499428622885997715629793728799611991922169771186415959393796833328797 9971941176236517711968176833694122359799994332972933319744917758263654615939671218999722759897946883 8999294422711677672138234871949951867361994331595339178487499997983949131794946775549222972399289896 3349291493887252933563637858998292429461181979119894978282958316785791165839546981395193797183659157 7189439835616936936452916284895714389978973983979946899115361688238479929831181859649911588342717174 9919687931991844963923118455824186376858799159986659568599889942949751127924998243532126861192227813 8556752119948211196297781958736978151712384292658126551391659754132796214991112228251319499881769877 1979947819698244184997611639891169294112917898297946132711657818979459522579998285949272941189651219 8526183359487314556663171586821716949298464911898919115161199393481771956882329857552411954641939441 1781919896684119688349391339192196799588645991242746996794955718159288456491121922268271789679196351 1197567977371916661139687299725917634957272938365923151889699976438687129398228799597921729929992714 4612932372899778339369954694952999219672973397661799332114944198582981641791452579999989699742756964 6999162799681597281641651777891979395397835152949992426916756338121612297639319849519239816897924832 2929523873329969919578959424699989299758674993329912629488597872529465316591581194999996221889681928 8228656689838938962979299798868965176111786181396381619674278311396838891887432267914997982584599249 3291189727977984366996998628998999313854947791298837533988923314799893553121114286295795551978824232 1969899739799949932911885277583879342673999999696225694755379718993111283179891261733382476218558941 4139678172235724118199726211119671191998665963518891164122317193835651793851195981494569791148964119 8491859444877458918921985959989568279219722914284989216186773895898218317795329987999133881714858193 2771894559749588998196893858679239272818243739928684589924781981773791798991892831999869587961311167 8698775892993989977451194464865721268484216875311866222111987933418291995941958137194897996649415669 9815831789813838789211849713941639192861814785979938811825669343313889446468439829866799197356199957 8391217969784868593822994733189558658223987532137877169778153978669662784849729448991221591737912928 1286923398138799667979629228969771916586553188988688124597199878412159468838995398755911831124947458 1114829212648462813962865127721383493959596596219921932831948169799141594693396881528179473168999246 8229274989319485131759119628887993878981894123939971871579472951958128273735938172877719459979616966 9499516139937388199431887411757519697113346973918231323926539878654177977781846978129796428916386862 4976998292388572314456265734789687366686748398788899297684913137779698579739992995231592719964862978 2298177775583527949898397959425767832825991552239939999392925878819892226485971811999876289184259875 3598947472448691635139959991352673979496318718231961399989962929352899269143994934946299795998128783 7112174898192377964819299748639161162263488897467958394886818188981289197818113459389985525596199819 9987787819769819287382267885519776534891123996871992292115788186562861498191537481789591841846186882 4932928968769839163293479931958989358947715254682158299764179952675896919281473293998826971956719781 9992216325832365211598714373826949876761198899344963795899592692291996816722739297999357184959969777 8299492186897712559157176181191385891631253997468944991976578985988414979191999779899999718894199893 9599634119932298479281989351167939998231691111219295175188529818284912884666292812879581588751975666 9893411889151989895121929229639869648431989868714855378743883971235628399646641369715828182779286514 8939515728674611191619883917891998789585382765378965697452669997798898499199181191539751395986113886 9985666981399318453128358762184119989474811319212718761249919671981988848392275694674398146181416198 8193892754125669889688695711759861961188261942984936153189888489199611811681269985959959968811384341 8299917437379188117917628771687562449889987984991225519931596159725913681979787939969976651741749698 8285297977988918992157859998969934917144295338397889967636236876746919995248975499929976279814914931 9129499129593186731916693856178488768855292651679735946159317969489119952269991769981967997489693511 7186637914671953873792124571983949693887419197239989992917386832793799278886872648567913786197639677 9667487981719871696217751899991188952177479933799965849967487849683858162517919957637748993181344613 4798696188279263112441176132921127173319858683256972916675925279917946959468161918992879929186429996 1875628214911419676889344457796569819463131975985822779517679476958819822619947289779578492991712138 9729987223699868162597477587276969892989969399943929635225993221991199187491492967948629623789668744 9916111911755127191948896779129983784992661981998299971599989198761289123181443629292169995715974949 1291917878889332658369889135368111113759781552671763529821597651871398558593277892399994199844188899 8857659891128611558849143993177991511814858869793389498556946631129988799922937638978992359857839357 9498927473319717382175369484488993971151116118963956979372884748999382475159478948297342397888172486 8838311993693897959989699851182958819758515849648216159982472145775919486496793748386329827875114795 2646323635456985931835993825299725819616464197571881778646919914938572377378887919941193912366189981 4192777568853894179559191115999836896832987112829422358328999616261299876112799681459689496973841216 4182522211326928934549829947681273461197958221628297222967289879895821718559188491763567998193425175 9941452899981779489899453416943116824565113896695891691999972969869313999989231351588275691638731173 4279199328962391513117193251941896142249199541185874189116658753849872967489875833815972485753775799 2692166517168484891439119972374885161996829937192277189246449949998287236914964598317589854294191818 9691899795175315938351268169518149836746199789392955191246577759192964575629739479919199793594669346 4928854341918568913973278223498427458884195453535861967991191927617293996995778496126372492999583688 1869735122593925853281477159999674511464912381748647211595414615939131393112325927225913832758726989 8673156999937894893938221988172251959669284384873549417558434149199712793826799147878341238872169799 3786244397665631994388328169996499172551393184212436839161983999116249888235795513969896377319987648 3299841254618376148274689819516491144697712179196959898422484829331951929556251191292922792943475111 8979685787892899891511168966657683893794989939899716589793811126757987574288699799754629917678927199 5291969299298572611431791117595444556315389932888323856938713114932929293397712995429591559999339269 5571919139695338299758473188558593632658195263118579497481394132986981877919799978847911917349971951 9447171299311825169951839995999391971743173914736767913282767941796338297879485196369168312316114619 8965937476731877998867589955999781971348978541526728915989299973637949395212351839999632681871119852 7154818129168364927991293583982982964961899491189199159915998987259614876919693993277919976424821339 5863889995599382179127198593932798869731787297368813494929776247986339942885147596969931861841289387 8291299218914728523912933158961272669279911995972979992183926289243118311811961558131192613197929186 8961913468988371188879695178682994979962878269287243998918854923819591848296141587688276923892888765 5496139281898589971291971391186884911787687869879279111147189911627194976288937484497924811159764722 9875395289318577859812192389977827241588661341589921792229379945659193616899945199691585158611997752 9897872534836989139768375684846127999667957297219249999952812149314798361868111441889987449192925623 9138263544984999193841859937147586599945426897796171621827994461911885818295944939999799882269659399 6914856489683269528879792799877759191976961973971938559173939387419513299922889959976555221521424697 1715191986151162997669282366919988483318991958172785998996643612786988727959277619145619891677993797 9942283447167676428491385853611565159691399722133269739927118911631657887991431834279716429273499866 4799972923699768188516165542947747617263791192642512198299894199889995551779128118616736724861699788 4958919625759529361425491889628879199991912868912939317496198948944989139197771291619455967185949537 2223977898998997958945226793679996855922957491361985987152262111657894546195945683493497719917994917 2169115388563391991925213886793982979499187969173993849967129291479453796965869487632218484794186428 8181979148789991463199414217818677797879614992639757619958818656897787992873919194129981917198598753 7298898662149861558411999137899133141939277162229327197891618169842134976193137994322715445297289799 3295636966178697931489122998118891198718116639897914658911799996899497168942241323161993721164174647 1198816571471558697411816978791898982893995992519493175459877178916533784561911924112689959897991892 5618962846185938989183714393155171999657459292691693826899689462277599981997875426218165946485993981 9347291669523992969899819288568678793199991148799181869131292289712895996712494789999957779656718174 1211541591292966678912459115993944851245448935997663676619889855226196181522818261837465192373166996 1797339189173753393939899772787971418172195729879466938989599928482964996915184691991154998224136189 3421551897114792849579376681776925441448992599913934985689149424792976946888488111919491919499858968 1971473988843177925911719936118862197889673997928889139314775919195258317837961344298715732432565457""" compute(data)
75.228188
108
0.940673
270
11,209
39.040741
0.592593
0.001138
0.000854
0.000759
0.001897
0.001897
0.001138
0
0
0
0
0.943059
0.041128
11,209
149
109
75.228188
0.037681
0.014631
0
0
0
0
0.924819
0.905797
0
1
0
0
0
1
0.007576
false
0
0.015152
0
0.030303
0.007576
0
0
1
null
0
0
0
0
0
0
0
0
0
0
1
0
0
0
0
0
1
0
0
0
0
0
1
1
null
1
0
0
0
0
0
0
0
0
0
0
0
0
6
cca6ce054f235573223e0acef42ab3b27c27d276
4,094
py
Python
tests/test_hotfix_class.py
wo1fsea/PyHotfixer
c80088618e0f469743335119c9451b84e42d3312
[ "MIT" ]
null
null
null
tests/test_hotfix_class.py
wo1fsea/PyHotfixer
c80088618e0f469743335119c9451b84e42d3312
[ "MIT" ]
1
2019-08-24T16:08:15.000Z
2019-08-24T16:08:15.000Z
tests/test_hotfix_class.py
wo1fsea/PyHotfixer
c80088618e0f469743335119c9451b84e42d3312
[ "MIT" ]
null
null
null
# -*- coding: utf-8 -*- """---------------------------------------------------------------------------- Author: Huang Quanyong [email protected] Date: 2019/8/19 Description: test_hotfix_class.py ----------------------------------------------------------------------------""" import unittest import os import sys import shutil from pyhotfixer import hotfix FILE_NAME = "class_test.py" FILE_NAME_V1 = "class_test_v1.py" FILE_NAME_V2 = "class_test_v2.py" class HotfixClassTestCase(unittest.TestCase): def setUp(self): cur_dir = os.path.dirname(os.path.abspath(__file__)) self.module_file = os.path.join(cur_dir, FILE_NAME) self.module_file_v1 = os.path.join(cur_dir, FILE_NAME_V1) self.module_file_v2 = os.path.join(cur_dir, FILE_NAME_V2) if os.path.exists(self.module_file): os.remove(self.module_file) def tearDown(self): if os.path.exists(self.module_file): os.remove(self.module_file) def test_hotfix_class(self): shutil.copy(self.module_file_v1, self.module_file) sys.modules.pop("class_test", None) import class_test hotfix_class_obj = class_test.HotfixClass() self.assertEqual(hotfix_class_obj.no_hotfix_data, 1) self.assertEqual(hotfix_class_obj.hotfix_data, 1) self.assertEqual(hotfix_class_obj.no_hotfix_method(), 1) self.assertEqual(hotfix_class_obj.hotfix_method(), 1) self.assertEqual(hotfix_class_obj.no_hotfix_classmethod(), 1) self.assertEqual(hotfix_class_obj.hotfix_classmethod(), 1) self.assertEqual(hotfix_class_obj.hotfix_property, 1) self.assertEqual(hotfix_class_obj.no_hotfix_property, 1) self.assertEqual(hotfix_class_obj.replace_data_with_func, 1) self.assertEqual(hotfix_class_obj.replace_data_with_static_method, 1) self.assertEqual(hotfix_class_obj.replace_data_with_class_method, 1) self.assertEqual(class_test.HotfixClass.InnerClass1.func(), 1) self.assertEqual(class_test.HotfixClass.InnerClass2.func(), 1) self.assertEqual(class_test.HotfixClass.InnerClass, class_test.HotfixClass.InnerClass1) no_hotfix_class_obj = class_test.NoHotfixClass() self.assertEqual(no_hotfix_class_obj.no_hotfix_data, 1) self.assertEqual(no_hotfix_class_obj.no_hotfix_method(), 1) another_no_hotfix_class_obj = class_test.AnotherNoHotfixClass() self.assertEqual(another_no_hotfix_class_obj.no_hotfix_data, 1) self.assertEqual(another_no_hotfix_class_obj.no_hotfix_method(), 1) shutil.copy(self.module_file_v2, self.module_file) hotfix(["class_test"]) self.assertEqual(hotfix_class_obj.no_hotfix_data, 1) self.assertEqual(hotfix_class_obj.hotfix_data, 2) self.assertEqual(hotfix_class_obj.no_hotfix_method(), 1) self.assertEqual(hotfix_class_obj.hotfix_method(), 2) self.assertEqual(hotfix_class_obj.no_hotfix_classmethod(), 1) self.assertEqual(hotfix_class_obj.hotfix_classmethod(), 2) self.assertEqual(hotfix_class_obj.no_hotfix_property, 1) self.assertEqual(hotfix_class_obj.hotfix_property, 2) self.assertEqual(hotfix_class_obj.replace_data_with_func(), 2) self.assertEqual(hotfix_class_obj.replace_data_with_static_method(), 2) self.assertEqual(hotfix_class_obj.replace_data_with_class_method(), 2) self.assertEqual(class_test.HotfixClass.InnerClass1.func(), 2) self.assertEqual(class_test.HotfixClass.InnerClass2.func(), 2) self.assertEqual(class_test.HotfixClass.InnerClass, class_test.HotfixClass.InnerClass2) no_hotfix_class_obj = class_test.NoHotfixClass() self.assertEqual(no_hotfix_class_obj.no_hotfix_data, 1) self.assertEqual(no_hotfix_class_obj.no_hotfix_method(), 1) another_no_hotfix_class_obj = class_test.AnotherNoHotfixClass() self.assertEqual(another_no_hotfix_class_obj.no_hotfix_data, 1) self.assertEqual(another_no_hotfix_class_obj.no_hotfix_method(), 1)
40.137255
95
0.711285
534
4,094
5.06367
0.129213
0.154586
0.181213
0.211538
0.807322
0.781065
0.780325
0.678254
0.667899
0.579882
0
0.01686
0.159746
4,094
102
96
40.137255
0.769186
0.072789
0
0.363636
0
0
0.017146
0
0
0
0
0
0.545455
1
0.045455
false
0
0.090909
0
0.151515
0
0
0
0
null
0
1
1
1
1
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
null
0
0
0
1
0
0
0
0
0
0
0
0
0
6
aea98b7c660918a200179398adca2ee696d030ce
69
py
Python
_ext/python/crawlab/client/__init__.py
crawlab-team/crawlab-python-sdk
35f83f8d76046d3ee2700d63e96624ed534c1ca5
[ "BSD-3-Clause" ]
null
null
null
_ext/python/crawlab/client/__init__.py
crawlab-team/crawlab-python-sdk
35f83f8d76046d3ee2700d63e96624ed534c1ca5
[ "BSD-3-Clause" ]
null
null
null
_ext/python/crawlab/client/__init__.py
crawlab-team/crawlab-python-sdk
35f83f8d76046d3ee2700d63e96624ed534c1ca5
[ "BSD-3-Clause" ]
null
null
null
from .request import * from .response import * from .client import *
17.25
23
0.73913
9
69
5.666667
0.555556
0.392157
0
0
0
0
0
0
0
0
0
0
0.173913
69
3
24
23
0.894737
0
0
0
0
0
0
0
0
0
0
0
0
1
0
true
0
1
0
1
0
1
0
0
null
1
0
0
0
0
0
0
0
0
0
0
0
0
1
0
0
0
0
0
0
0
0
0
0
null
0
0
0
0
0
0
1
0
1
0
1
0
0
6
aeb44b2e87a480204cd75439d61dcdeb9f902a63
44
py
Python
turbulenz_local/lib/__init__.py
turbulenz/turbulenz_local
3c96c1229514dcd4893b7055599f55ed185db95a
[ "MIT" ]
12
2015-01-26T16:15:30.000Z
2022-03-17T19:29:34.000Z
turbulenz_local/lib/__init__.py
mcanthony/turbulenz_local
3c96c1229514dcd4893b7055599f55ed185db95a
[ "MIT" ]
null
null
null
turbulenz_local/lib/__init__.py
mcanthony/turbulenz_local
3c96c1229514dcd4893b7055599f55ed185db95a
[ "MIT" ]
5
2015-02-23T13:39:14.000Z
2021-02-14T15:35:43.000Z
# Copyright (c) 2011,2013 Turbulenz Limited
22
43
0.772727
6
44
5.666667
1
0
0
0
0
0
0
0
0
0
0
0.210526
0.136364
44
1
44
44
0.684211
0.931818
0
null
0
null
0
0
null
0
0
0
null
1
null
true
0
0
null
null
null
1
1
0
null
0
0
0
0
0
0
0
0
0
0
1
0
0
1
0
0
0
1
0
0
0
0
0
0
null
0
0
0
0
0
0
1
0
0
0
0
0
0
6
4e1adb9dddcda20dec1e35de3a167c83ab5d7ef4
293
py
Python
grr/server/grr_response_server/check_lib/__init__.py
khanhgithead/grr
8ad8a4d2c5a93c92729206b7771af19d92d4f915
[ "Apache-2.0" ]
4,238
2015-01-01T15:34:50.000Z
2022-03-31T08:18:05.000Z
grr/server/grr_response_server/check_lib/__init__.py
khanhgithead/grr
8ad8a4d2c5a93c92729206b7771af19d92d4f915
[ "Apache-2.0" ]
787
2015-01-02T21:34:24.000Z
2022-03-02T13:26:38.000Z
grr/server/grr_response_server/check_lib/__init__.py
khanhgithead/grr
8ad8a4d2c5a93c92729206b7771af19d92d4f915
[ "Apache-2.0" ]
856
2015-01-02T02:50:11.000Z
2022-03-31T11:11:53.000Z
#!/usr/bin/env python """This is the check capabilities used to post-process host data.""" # pylint: disable=g-import-not-at-top,unused-import from grr_response_server.check_lib import checks from grr_response_server.check_lib import hints from grr_response_server.check_lib import triggers
32.555556
68
0.8157
48
293
4.791667
0.645833
0.091304
0.195652
0.273913
0.456522
0.456522
0.456522
0
0
0
0
0
0.098976
293
8
69
36.625
0.871212
0.453925
0
0
0
0
0
0
0
0
0
0
0
1
0
true
0
1
0
1
0
0
0
0
null
0
1
1
0
0
0
0
0
0
0
0
0
0
1
0
0
0
0
0
0
0
0
0
0
null
0
0
0
0
0
0
1
0
1
0
1
0
0
6
4e29f4a6ddaa3fbe68306b2d5b1a9c2d2b637e6e
52
py
Python
tests/test_foo.py
AlexDev-py/vkquick
ef21d71e03b92ac4a2da4b63b6cc13d0e12ab674
[ "MIT" ]
1
2021-05-27T10:13:50.000Z
2021-05-27T10:13:50.000Z
tests/test_foo.py
AlexDev-py/vkquick
ef21d71e03b92ac4a2da4b63b6cc13d0e12ab674
[ "MIT" ]
null
null
null
tests/test_foo.py
AlexDev-py/vkquick
ef21d71e03b92ac4a2da4b63b6cc13d0e12ab674
[ "MIT" ]
null
null
null
def test_run(): import vkquick assert True
10.4
18
0.653846
7
52
4.714286
1
0
0
0
0
0
0
0
0
0
0
0
0.288462
52
4
19
13
0.891892
0
0
0
0
0
0
0
0
0
0
0
0.333333
1
0.333333
true
0
0.333333
0
0.666667
0
1
0
0
null
0
0
0
0
0
0
0
0
0
0
0
0
0
1
0
0
0
0
0
0
0
0
0
0
null
0
0
0
0
0
1
1
0
1
0
1
0
0
6
9d62960a19296d3b6b3b3dc5c0021f2c5e0a5dc1
43
py
Python
joke teller.py
naitikvaru/python_joke_teller
d46817c3100db1a8bb8c720c37a8e23d2791e792
[ "Apache-2.0" ]
1
2021-01-25T09:30:05.000Z
2021-01-25T09:30:05.000Z
joke teller.py
naitikvaru/python_joke_teller
d46817c3100db1a8bb8c720c37a8e23d2791e792
[ "Apache-2.0" ]
null
null
null
joke teller.py
naitikvaru/python_joke_teller
d46817c3100db1a8bb8c720c37a8e23d2791e792
[ "Apache-2.0" ]
null
null
null
import pyjokes print(pyjokes.get_joke())
14.333333
26
0.767442
6
43
5.333333
0.833333
0
0
0
0
0
0
0
0
0
0
0
0.116279
43
2
27
21.5
0.842105
0
0
0
0
0
0
0
0
0
0
0
0
1
0
true
0
0.5
0
0.5
0.5
1
1
0
null
0
0
0
0
0
0
0
0
0
0
0
0
0
1
0
0
0
0
0
0
0
0
0
0
null
0
0
0
0
0
0
1
0
1
0
0
1
0
6
9dc180c8f96c452d5b34c28555523efd9495758d
92
py
Python
protopigeon/__init__.py
gregorynicholas/proto-pigeon
65a5d961e7a8506f3a968b21aaf68f625fd13190
[ "Apache-2.0" ]
null
null
null
protopigeon/__init__.py
gregorynicholas/proto-pigeon
65a5d961e7a8506f3a968b21aaf68f625fd13190
[ "Apache-2.0" ]
null
null
null
protopigeon/__init__.py
gregorynicholas/proto-pigeon
65a5d961e7a8506f3a968b21aaf68f625fd13190
[ "Apache-2.0" ]
null
null
null
from protorpc.messages import * from protorpc.protojson import * from .translators import *
23
32
0.804348
11
92
6.727273
0.545455
0.324324
0
0
0
0
0
0
0
0
0
0
0.130435
92
3
33
30.666667
0.925
0
0
0
0
0
0
0
0
0
0
0
0
1
0
true
0
1
0
1
0
1
0
0
null
1
0
0
0
0
0
0
0
0
0
0
0
0
1
0
0
0
0
0
0
0
0
0
0
null
0
0
0
0
0
0
1
0
1
0
1
0
0
6
9dc27fe56cbaefc95334e4f2be612f9a88fe50b5
722
py
Python
src/tests/test_inference.py
Islandora-Image-Segmentation/Newspaper-Navigator-API
99a47e8e43c42252d3e56ea2a6e8159ef8ef6ab9
[ "Unlicense" ]
null
null
null
src/tests/test_inference.py
Islandora-Image-Segmentation/Newspaper-Navigator-API
99a47e8e43c42252d3e56ea2a6e8159ef8ef6ab9
[ "Unlicense" ]
5
2021-02-03T22:21:09.000Z
2021-04-13T18:23:23.000Z
src/tests/test_inference.py
Islandora-Image-Segmentation/Newspaper-Navigator-API
99a47e8e43c42252d3e56ea2a6e8159ef8ef6ab9
[ "Unlicense" ]
1
2021-01-21T20:53:12.000Z
2021-01-21T20:53:12.000Z
import os from PIL import Image from inference import predict from . import TEST_ASSETS_DIR def test_inference_one(): """ Test for the segmentation ML model. This test requires the model weights `model_final.pth` to be present in src/resources. """ img = Image.open(os.path.join(TEST_ASSETS_DIR, "test_image_one.png")) result = predict(img) assert len(result.bounding_boxes) > 0 def test_inference_two(): """ Test for the segmentation ML model. This test requires the model weights `model_final.pth` to be present in src/resources. """ img = Image.open(os.path.join(TEST_ASSETS_DIR, "test_image_two.png")) result = predict(img) assert len(result.bounding_boxes) > 0
30.083333
91
0.716066
109
722
4.577982
0.366972
0.06012
0.078156
0.088176
0.761523
0.761523
0.761523
0.761523
0.761523
0.761523
0
0.003413
0.188366
722
23
92
31.391304
0.848123
0.342105
0
0.333333
0
0
0.081264
0
0
0
0
0
0.166667
1
0.166667
false
0
0.333333
0
0.5
0
0
0
0
null
0
0
0
0
1
1
1
1
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
null
0
0
0
0
0
0
0
0
1
0
0
0
0
6
9dfccceac3794b799a0a49e9d8a55e6c045cd319
231
py
Python
template/osi/__base__.py
clayne/syringe-1
4a431aa65c371a2018fca95145a3952ba802a609
[ "BSD-2-Clause" ]
25
2015-04-14T21:53:46.000Z
2022-03-30T19:15:24.000Z
template/osi/__base__.py
clayne/syringe-1
4a431aa65c371a2018fca95145a3952ba802a609
[ "BSD-2-Clause" ]
5
2020-03-23T20:19:59.000Z
2021-05-24T19:38:31.000Z
template/osi/__base__.py
clayne/syringe-1
4a431aa65c371a2018fca95145a3952ba802a609
[ "BSD-2-Clause" ]
7
2015-07-31T13:26:37.000Z
2021-03-05T19:35:37.000Z
from ptypes import ptype class stackable: def nextlayer(self): '''returns a tuple of (type,remaining)''' raise NotImplementedError class terminal(stackable): def nextlayer(self): return None, None
21
49
0.670996
26
231
5.961538
0.769231
0.154839
0.270968
0.322581
0
0
0
0
0
0
0
0
0.242424
231
10
50
23.1
0.885714
0.151515
0
0.285714
0
0
0
0
0
0
0
0
0
1
0.285714
false
0
0.142857
0.142857
0.857143
0
1
0
0
null
0
1
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
null
0
0
0
0
0
1
0
0
0
1
1
0
0
6
d1bfed058e2615e29f744e8f5f8be9cb60aa782d
28
py
Python
app/viewer/__init__.py
Dbrown411/py-oct
e5b56344f864a8c00fe9ec1a00adbacfe833d27e
[ "MIT" ]
null
null
null
app/viewer/__init__.py
Dbrown411/py-oct
e5b56344f864a8c00fe9ec1a00adbacfe833d27e
[ "MIT" ]
null
null
null
app/viewer/__init__.py
Dbrown411/py-oct
e5b56344f864a8c00fe9ec1a00adbacfe833d27e
[ "MIT" ]
null
null
null
from .viewer_panels import *
28
28
0.821429
4
28
5.5
1
0
0
0
0
0
0
0
0
0
0
0
0.107143
28
1
28
28
0.88
0
0
0
0
0
0
0
0
0
0
0
0
1
0
true
0
1
0
1
0
1
1
0
null
0
0
0
0
0
0
0
0
0
0
0
0
0
1
0
0
0
0
0
0
0
0
0
0
null
0
0
0
0
0
0
1
0
1
0
1
0
0
6
ae3b1822a80991fb2229b2bb27e0703919ff258a
171
py
Python
utility/__init__.py
Krishna10798/Multi-User-Blog
a7b177acc4f900bfa92d00435c94ffbde1570496
[ "MIT" ]
5
2016-06-03T17:25:31.000Z
2017-10-01T19:06:53.000Z
utility/__init__.py
Krishna10798/Multi-User-Blog
a7b177acc4f900bfa92d00435c94ffbde1570496
[ "MIT" ]
6
2017-01-22T20:13:22.000Z
2017-02-07T21:32:01.000Z
utility/__init__.py
Krishna10798/Multi-User-Blog
a7b177acc4f900bfa92d00435c94ffbde1570496
[ "MIT" ]
2
2017-04-05T10:45:35.000Z
2020-10-02T08:17:56.000Z
from utility import hash_str, check_secure_val, make_secure_val,\ valid_email, valid_username, valid_password from filters import filterKey, showCount
42.75
65
0.760234
22
171
5.545455
0.727273
0.147541
0
0
0
0
0
0
0
0
0
0
0.19883
171
3
66
57
0.890511
0
0
0
0
0
0
0
0
0
0
0
0
1
0
true
0.333333
0.666667
0
0.666667
0
1
0
0
null
0
0
0
0
0
0
0
0
0
0
0
0
0
1
0
0
0
0
0
0
0
0
0
0
null
0
0
0
0
0
0
1
1
1
0
1
0
0
6
882f2dbb562039181c8b403715d1e5532ef471d5
77
py
Python
footer/menus/__init__.py
AutomataRaven/azaharTEA
2d5a7d96b37bca9b3a914e305e493824a0f60207
[ "MIT" ]
5
2019-03-10T16:33:21.000Z
2021-04-07T17:24:32.000Z
footer/menus/__init__.py
Errantgod/azaharTEA
2d5a7d96b37bca9b3a914e305e493824a0f60207
[ "MIT" ]
8
2017-02-11T06:21:28.000Z
2017-02-22T05:50:35.000Z
footer/menus/__init__.py
Errantgod/azaharTEA
2d5a7d96b37bca9b3a914e305e493824a0f60207
[ "MIT" ]
2
2019-10-05T20:20:15.000Z
2020-06-28T18:46:58.000Z
__all__ = ['highlightmenu.HighlightMenu','highlightmenu.HighligthStyleMenu']
38.5
76
0.831169
5
77
12
0.6
0.866667
0
0
0
0
0
0
0
0
0
0
0.038961
77
1
77
77
0.810811
0
0
0
0
0
0.766234
0.766234
0
0
0
0
0
1
0
false
0
0
0
0
0
1
0
1
null
1
0
0
0
0
0
0
0
0
0
0
0
0
1
0
0
0
0
0
0
0
0
1
1
null
0
0
0
0
0
0
0
0
0
0
0
0
0
6
884fbbaaf1972040f6f08afa8a95355013cc1899
3,465
py
Python
test/test_apktool/test_repack.py
mehrdad-shokri/QT4A
d74a8a29e09df82e95158304ecfc05cd51e6ffa7
[ "BSD-3-Clause" ]
343
2016-09-27T11:20:53.000Z
2022-01-08T15:49:02.000Z
test/test_apktool/test_repack.py
mehrdad-shokri/QT4A
d74a8a29e09df82e95158304ecfc05cd51e6ffa7
[ "BSD-3-Clause" ]
51
2018-11-07T03:08:51.000Z
2021-12-29T06:37:20.000Z
test/test_apktool/test_repack.py
mehrdad-shokri/QT4A
d74a8a29e09df82e95158304ecfc05cd51e6ffa7
[ "BSD-3-Clause" ]
88
2016-09-28T04:32:12.000Z
2022-03-10T07:08:23.000Z
# -*- coding: UTF-8 -*- # # Tencent is pleased to support the open source community by making QTA available. # Copyright (C) 2016THL A29 Limited, a Tencent company. All rights reserved. # Licensed under the BSD 3-Clause License (the "License"); you may not use this # file except in compliance with the License. You may obtain a copy of the License at # # https://opensource.org/licenses/BSD-3-Clause # # Unless required by applicable law or agreed to in writing, software distributed # under the License is distributed on an "AS IS" basis, WITHOUT WARRANTIES OR CONDITIONS # OF ANY KIND, either express or implied. See the License for the specific language # governing permissions and limitations under the License. # '''repack.py unittest ''' try: from unittest import mock except: import mock import os import tempfile import unittest from qt4a.apktool import apkfile, repack class TestRepack(unittest.TestCase): def test_get_apk_signature(self): apk_path = os.path.join(os.path.dirname(os.path.dirname(os.path.dirname(os.path.abspath(__file__)))), 'qt4a', 'androiddriver', 'tools', 'QT4AHelper.apk') apk_file = apkfile.APKFile(apk_path) for it in apk_file.list_dir('META-INF'): if it.lower().endswith('.rsa'): tmp_rsa_path = tempfile.mkstemp('.rsa')[1] apk_file.extract_file('META-INF/%s' % it, tmp_rsa_path) orig_signature = repack.get_apk_signature(tmp_rsa_path).strip() self.assertEqual(orig_signature, '3082036f30820257a00302010202046d23394e300d06092a864886f70d01010b05003067310b300906035504061302383631123010060355040813094775616e67646f6e673111300f060355040713085368656e7a68656e3110300e060355040a130754656e63656e743110300e060355040b130754656e63656e74310d300b06035504031304515434413020170d3137303731383038303130335a180f32313136303632343038303130335a3067310b300906035504061302383631123010060355040813094775616e67646f6e673111300f060355040713085368656e7a68656e3110300e060355040a130754656e63656e743110300e060355040b130754656e63656e74310d300b060355040313045154344130820122300d06092a864886f70d01010105000382010f003082010a0282010100a05d7ca7768dd6a16098236ee3d670d139abbda479557bee2ce62e0a5ee9f825c986e8ba875decb4dec3fb13a933bbfc9434a70442b6cccc8d6d12db6e510cf915cc25c71bb4670876ddf15de880340a3af3d656e76cef452ccd2192879e4eef67aca9b203124dc5c978f57533c707e49abf0ca3f5691d3de9048587c7aa22ecf703d589236edcf1a0cadb26fbbb126326f200ce9b5573e36dd2d63363ad1c518df2a9550b7aede75bc74e44484fcb177c8c6515e7f2011af1a987c1bc11ddef1303bcaf04f7ea186ce66d96921021e3ebf7141801a7abe09663caae7386785b144a358b3bb877c190ee9ac0a8f313a48794ca2a3fb8c0e7e38afac4f0956cc50203010001a321301f301d0603551d0e041604144d974cc4e8bd5b5116ff0ef2676c4556ca4aa727300d06092a864886f70d01010b050003820101000fd165541ad15e729549fa497eae037893032f565fc55ceea2fbb8e77a283fbf23dab00afe1f6943056cbc62a567400879418abc6a3646bdc7bbf51f84741173d7f8386a07e89d7cd1228e387fbd727af8402231bf5834450799ba79251f3673c45fb523301a3791a279523c78af98c0932e17a365b3a28c59701a123e0b3df49ec9d1ef6203b4b92ce67b100d2f493c4de0376103b4b2f4b1f40ba09e5bc3329f184646af0d046968b3af2af7786fc060f3c0bfd757bf2d4a32d222fb701a7032fd19271bb6cffc06f37cc2921bec1e2f6ff5a58b4010e54b5c8d18a6394dd6ed715800fcc7fc47436345294e6eb791cf585bee38ab6079559d3a40802f9802') return else: raise RuntimeError('No signature file found in QT4AHelper.apk') if __name__ == '__main__': unittest.main()
70.714286
1,818
0.849639
236
3,465
12.338983
0.563559
0.020604
0.013393
0.015453
0.015453
0.015453
0.015453
0.015453
0
0
0
0.420495
0.101587
3,465
49
1,819
70.714286
0.514937
0.206061
0
0
0
0
0.687408
0.646413
0
1
0
0
0.043478
1
0.043478
false
0
0.26087
0
0.391304
0
0
0
1
null
0
0
0
0
0
0
0
0
0
0
1
0
0
0
1
0
0
0
0
0
0
0
1
1
null
1
0
0
0
0
0
0
0
0
0
0
0
0
6
88620e63502d6b10ac3da1f667be0aa99c61bea9
112
py
Python
src/DeepMatter/VAE_PFM/__init__.py
m3-learning/DeepMatter
54828a7972bf7912b848b0682b4e4452daa078cb
[ "BSD-3-Clause" ]
2
2021-06-13T21:47:37.000Z
2021-06-15T03:24:24.000Z
src/DeepMatter/VAE_PFM/__init__.py
m3-learning/DeepMatter
54828a7972bf7912b848b0682b4e4452daa078cb
[ "BSD-3-Clause" ]
null
null
null
src/DeepMatter/VAE_PFM/__init__.py
m3-learning/DeepMatter
54828a7972bf7912b848b0682b4e4452daa078cb
[ "BSD-3-Clause" ]
null
null
null
""" """ from . import core from . import file from . import machine_learning from . import dictionary_learning
14
33
0.741071
14
112
5.785714
0.5
0.493827
0
0
0
0
0
0
0
0
0
0
0.169643
112
8
33
14
0.870968
0
0
0
0
0
0
0
0
0
0
0
0
1
0
true
0
1
0
1
0
1
0
0
null
1
0
0
0
0
0
0
0
0
0
0
0
0
1
0
0
0
0
0
0
0
0
0
0
null
0
0
0
0
0
0
1
0
1
0
1
0
0
6
88758064ff8c543995f64f961cd108ca766b93aa
44
py
Python
scivision_treecrown_plugin/__init__.py
ots22/scivision-treecrown-plugin
4410b8fe6fc83461ff2fb83b93d89cbcd88176a9
[ "BSD-3-Clause" ]
null
null
null
scivision_treecrown_plugin/__init__.py
ots22/scivision-treecrown-plugin
4410b8fe6fc83461ff2fb83b93d89cbcd88176a9
[ "BSD-3-Clause" ]
null
null
null
scivision_treecrown_plugin/__init__.py
ots22/scivision-treecrown-plugin
4410b8fe6fc83461ff2fb83b93d89cbcd88176a9
[ "BSD-3-Clause" ]
1
2022-01-12T15:30:01.000Z
2022-01-12T15:30:01.000Z
from .model import DeepForest, DetectreeRGB
22
43
0.840909
5
44
7.4
1
0
0
0
0
0
0
0
0
0
0
0
0.113636
44
1
44
44
0.948718
0
0
0
0
0
0
0
0
0
0
0
0
1
0
true
0
1
0
1
0
1
1
0
null
0
0
0
0
0
0
0
0
0
0
0
0
0
1
0
0
0
0
0
0
0
0
0
0
null
0
0
0
0
0
0
1
0
1
0
1
0
0
6
889dabd7345e2e9f22c1a18cd7cf243e3da6a912
72
py
Python
timeseries/timeseries/models/__init__.py
takotab/timeseriesAI2
04740e576392adcf03766a158fb644b49458cecb
[ "Apache-2.0" ]
null
null
null
timeseries/timeseries/models/__init__.py
takotab/timeseriesAI2
04740e576392adcf03766a158fb644b49458cecb
[ "Apache-2.0" ]
null
null
null
timeseries/timeseries/models/__init__.py
takotab/timeseriesAI2
04740e576392adcf03766a158fb644b49458cecb
[ "Apache-2.0" ]
null
null
null
from .layers import * from .ResNet import * from .InceptionTime import *
24
28
0.763889
9
72
6.111111
0.555556
0.363636
0
0
0
0
0
0
0
0
0
0
0.152778
72
3
28
24
0.901639
0
0
0
0
0
0
0
0
0
0
0
0
1
0
true
0
1
0
1
0
1
0
0
null
1
0
0
0
0
0
0
0
0
0
0
0
0
1
0
0
0
0
0
0
0
0
0
0
null
0
0
0
0
0
0
1
0
1
0
1
0
0
6
88a87f23e8bf350873820e3c8955dd79655f4cf6
44
py
Python
code_icc/utils/__init__.py
ThmCuong/IIC-Python3
5a02b40ffa07b159fa7e89cf5b4ed781f4798ff1
[ "MIT" ]
null
null
null
code_icc/utils/__init__.py
ThmCuong/IIC-Python3
5a02b40ffa07b159fa7e89cf5b4ed781f4798ff1
[ "MIT" ]
null
null
null
code_icc/utils/__init__.py
ThmCuong/IIC-Python3
5a02b40ffa07b159fa7e89cf5b4ed781f4798ff1
[ "MIT" ]
null
null
null
from . import cluster, segmentation, semisup
44
44
0.818182
5
44
7.2
1
0
0
0
0
0
0
0
0
0
0
0
0.113636
44
1
44
44
0.923077
0
0
0
0
0
0
0
0
0
0
0
0
1
0
true
0
1
0
1
0
1
1
0
null
0
0
0
0
0
0
0
0
0
0
0
0
0
1
0
0
0
0
0
0
0
0
0
0
null
0
0
0
0
0
0
1
0
1
0
1
0
0
6
88b034f0dcdc50334e685f61a03bea54e7210f43
6,968
py
Python
screenpy/actions/select.py
pjbarbatsis/screenpy
523e536efc4185ba69d3a0df41d5ab883dd18a60
[ "MIT" ]
null
null
null
screenpy/actions/select.py
pjbarbatsis/screenpy
523e536efc4185ba69d3a0df41d5ab883dd18a60
[ "MIT" ]
null
null
null
screenpy/actions/select.py
pjbarbatsis/screenpy
523e536efc4185ba69d3a0df41d5ab883dd18a60
[ "MIT" ]
null
null
null
from typing import Union from selenium.webdriver.support.ui import Select as SelSelect from ..actor import Actor from ..pacing import beat, MINOR from ..target import Target class Select: """ Selects an option from a dropdown menu. This is a superclass that will create the correct specific Select action that will need to be used, depending on how the option needs to be selected. Some examples of invocations: Select.the_option_named("January").from_the(MONTH_DROPDOWN) Select.the_option_at_index(0).from_the(MONTH_DROPDOWN) Select.the_option_with_value("jan").from_the(MONTH_DROPDOWN) It can then be passed along to the |Actor| to perform the action. """ @staticmethod def the_option_named(text: str) -> "SelectByText": """ Instantiate a |SelectByText| class which will select the option with the given text. Args: text (str): The text of the option to select. Returns: |SelectByText| """ return SelectByText(text) @staticmethod def the_option_at_index(index: Union[int, str]) -> "SelectByIndex": """ Instantiate a |SelectByIndex| class which will select the option at the specified index. This index is 0-based. Args: index (Union[int, str]): The index (0-based) of the option to select. Returns: |SelectByIndex| """ return SelectByIndex(index) @staticmethod def the_option_with_value(value: str) -> "SelectByValue": """ Instantiate a |SelectByText| class which will select the option with the given text. Args: value (str): The text of the option to select. Returns: |SelectByText| """ return SelectByValue(value) class SelectByText: """ A specialized Select action that chooses the option by text. This class is meant to be accessed via the Select action's static |Select.the_option_named| method. A typical invocation might look like: Select.the_option_named("January").from_the(MONTH_DROPDOWN) It can then be passed along to the |Actor| to perform the action. """ def from_the(self, target: Target) -> "SelectByText": """ Provides the |Target| to select the option from. Args: target (Target): The |Target| describing the dropdown element to select from Returns: |SelectByText| """ self.target = target return self def from_(self, target: Target) -> "SelectByText": """Syntactic sugar for |SelectByText.from_the|.""" return self.from_the(target) @beat("{0} selects the option '{text}' from the {target}.", gravitas=MINOR) def perform_as(self, the_actor: Actor) -> None: """ Asks the actor to attempt to find the dropdown element described by the stored target, then performs the select action. Args: the_actor (Actor): The |Actor| who will perform the action. Raises: |UnableToPerformException|: if the actor does not have the ability to |BrowseTheWeb|. """ element = self.target.found_by(the_actor) select = SelSelect(element) select.select_by_visible_text(self.text) def __init__(self, text: str, target: Target = None) -> None: self.target = target self.text = text class SelectByIndex: """ A specialized |Select| action that chooses the option by its index. This class is meant to be accessed via the Select action's static |Select.the_option_at_index| method. A typical invocation might look like: Select.the_option_at_index(0).from_the(MONTH_DROPDOWN) It can then be passed along to the |Actor| to perform the action. """ def from_the(self, target: Target) -> "SelectByIndex": """ Provides the |Target| to select the option from. Args: target (Target): The |Target| describing the dropdown element to select from Returns: |SelectByIndex| """ self.target = target return self def from_(self, target: Target) -> "SelectByIndex": """Syntactic sugar for |SelectByIndex.from_the|.""" return self.from_the(target) @beat("{0} selects the option at index {index} from the {target}.", gravitas=MINOR) def perform_as(self, the_actor: Actor) -> None: """ Asks the actor to attempt to find the dropdown element described by the stored target, then performs the select action. Args: the_actor (Actor): The |Actor| who will perform the action. Raises: |UnableToPerformException|: if the actor does not have the ability to |BrowseTheWeb|. """ element = self.target.found_by(the_actor) select = SelSelect(element) select.select_by_index(self.index) def __init__(self, index: Union[int, str], target: Target = None) -> None: self.target = target self.index = str(index) class SelectByValue: """ A specialized Select action that chooses the option by its value. This class is meant to be accessed via the Select action's static |Select.the_option_with_value| method. A typical invocation might look like: Select.the_option_with_value("jan").from_the(MONTH_DROPDOWN) It can then be passed along to the |Actor| to perform the action. """ def from_the(self, target: Target) -> "SelectByValue": """ Provides the |Target| to select the option from. Args: target (Target): The |Target| describing the dropdown element to select from Returns: |SelectByValue| """ self.target = target return self def from_(self, target: Target) -> "SelectByValue": """Syntactic sugar for |SelectByValue.from_the|.""" return self.from_the(target) @beat( "{0} selects the option with value '{value}' from the {target}.", gravitas=MINOR ) def perform_as(self, the_actor: Actor) -> None: """ Asks the actor to attempt to find the dropdown element described by the stored target, then performs the select action. Args: the_actor (Actor): The |Actor| who will perform the action. Raises: |UnableToPerformException|: if the actor does not have the ability to |BrowseTheWeb|. """ element = self.target.found_by(the_actor) select = SelSelect(element) select.select_by_value(self.value) def __init__(self, value: Union[int, str], target: Target = None) -> None: self.target = target self.value = str(value)
30.968889
88
0.623565
852
6,968
4.994131
0.139671
0.059224
0.052879
0.028202
0.757932
0.73772
0.724794
0.724794
0.724794
0.690012
0
0.001418
0.291762
6,968
224
89
31.107143
0.86079
0.519661
0
0.40678
0
0
0.110248
0
0
0
0
0
0
1
0.254237
false
0
0.084746
0
0.559322
0
0
0
0
null
0
0
0
0
1
1
1
1
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
null
0
0
0
0
0
1
0
0
0
0
0
0
0
6
88b3a979c462adc0b16ff8e206dd1af0f2239eb5
32
py
Python
medial_axis/__init__.py
dipaco/cpma
76e24a231cbfa91fa145ed10ed24c4ca0110e2fc
[ "MIT" ]
2
2022-02-23T22:48:18.000Z
2022-02-24T11:37:07.000Z
medial_axis/__init__.py
dipaco/cpma
76e24a231cbfa91fa145ed10ed24c4ca0110e2fc
[ "MIT" ]
null
null
null
medial_axis/__init__.py
dipaco/cpma
76e24a231cbfa91fa145ed10ed24c4ca0110e2fc
[ "MIT" ]
null
null
null
from .cpma import cpma, cpma_3d
16
31
0.78125
6
32
4
0.666667
0
0
0
0
0
0
0
0
0
0
0.037037
0.15625
32
1
32
32
0.851852
0
0
0
0
0
0
0
0
0
0
0
0
1
0
true
0
1
0
1
0
1
1
0
null
0
0
0
0
0
0
0
0
0
0
0
0
0
1
0
0
0
0
0
0
0
0
0
0
null
0
0
0
0
0
0
1
0
1
0
1
0
0
6
ee36d364841eed8d9573c0dc610ef982b324709f
67
py
Python
snakewm/apps/system/exit snakewm/__init__.py
Admicos/snakeware
ee5992120a683d74b09e694265abc27425fee8a4
[ "MIT" ]
null
null
null
snakewm/apps/system/exit snakewm/__init__.py
Admicos/snakeware
ee5992120a683d74b09e694265abc27425fee8a4
[ "MIT" ]
null
null
null
snakewm/apps/system/exit snakewm/__init__.py
Admicos/snakeware
ee5992120a683d74b09e694265abc27425fee8a4
[ "MIT" ]
null
null
null
import pygame def load(manager, params): return pygame.quit()
13.4
26
0.716418
9
67
5.333333
0.888889
0
0
0
0
0
0
0
0
0
0
0
0.179104
67
4
27
16.75
0.872727
0
0
0
0
0
0
0
0
0
0
0
0
1
0.333333
false
0
0.333333
0.333333
1
0
1
0
0
null
0
0
0
0
0
0
0
0
0
0
0
0
0
1
0
0
0
0
0
0
0
0
0
0
null
0
0
0
0
0
1
0
0
1
1
1
0
0
6
ee51dba66bc87a3cf8ddd5830c99d95fa4f07c5b
50,450
py
Python
pmutt/tests/reaction/test_pmutt_reaction.py
wittregr/pMuTT
1678fd3d3a10d8ef5389c02970a7ebaa92fc7344
[ "MIT" ]
28
2018-10-29T17:44:30.000Z
2022-03-23T14:20:16.000Z
pmutt/tests/reaction/test_pmutt_reaction.py
wittregr/pMuTT
1678fd3d3a10d8ef5389c02970a7ebaa92fc7344
[ "MIT" ]
101
2018-10-18T19:49:30.000Z
2022-01-19T10:59:57.000Z
pmutt/tests/reaction/test_pmutt_reaction.py
wittregr/pMuTT
1678fd3d3a10d8ef5389c02970a7ebaa92fc7344
[ "MIT" ]
16
2018-12-15T17:01:21.000Z
2022-01-03T17:42:23.000Z
# -*- coding: utf-8 -*- """ pmutt.test_pmutt_model_reaction Tests for pmutt module """ import unittest import numpy as np from ase.build import molecule from pmutt import constants as c from pmutt import reaction as rxn from pmutt.empirical.nasa import Nasa from pmutt.statmech import StatMech, presets class TestReaction(unittest.TestCase): def setUp(self): '''Reactions using Nasa polynomial''' self.H2O_nasa = Nasa(name='H2O', T_low=200., T_mid=1000., T_high=3500., elements={ 'H': 2, 'O': 1 }, a_low=[ 4.19864056E+00, -2.03643410E-03, 6.52040211E-06, -5.48797062E-09, 1.77197817E-12, -3.02937267E+04, -8.49032208E-01 ], a_high=[ 3.03399249E+00, 2.17691804E-03, -1.64072518E-07, -9.70419870E-11, 1.68200992E-14, -3.00042971E+04, 4.96677010E+00 ]) self.H2_nasa = Nasa(name='H2', T_low=200., T_mid=1000., T_high=3500., elements={'H': 2}, a_low=[ 2.34433112E+00, 7.98052075E-03, -1.94781510E-05, 2.01572094E-08, -7.37611761E-12, -9.17935173E+02, 6.83010238E-01 ], a_high=[ 3.33727920E+00, -4.94024731E-05, 4.99456778E-07, -1.79566394E-10, 2.00255376E-14, -9.50158922E+02, -3.20502331E+00 ]) self.O2_nasa = Nasa(name='O2', T_low=200., T_mid=1000., T_high=3500., elements={'O': 2}, a_low=[ 3.78245636E+00, -2.99673416E-03, 9.84730201E-06, -9.68129509E-09, 3.24372837E-12, -1.06394356E+03, 3.65767573E+00 ], a_high=[ 3.28253784E+00, 1.48308754E-03, -7.57966669E-07, 2.09470555E-10, -2.16717794E-14, -1.08845772E+03, 5.45323129E+00 ]) self.rxn_nasa = rxn.Reaction(reactants=[self.H2_nasa, self.O2_nasa], reactants_stoich=[1., 0.5], products=[self.H2O_nasa], products_stoich=[1.]) self.rxn_nasa_dict = { 'class': "<class 'pmutt.reaction.Reaction'>", 'products': [{ 'T_high': 3500.0, 'T_low': 200.0, 'T_mid': 1000.0, 'a_high': [ 3.03399249, 0.00217691804, -1.64072518e-07, -9.7041987e-11, 1.68200992e-14, -30004.2971, 4.9667701 ], 'a_low': [ 4.19864056, -0.0020364341, 6.52040211e-06, -5.48797062e-09, 1.77197817e-12, -30293.7267, -0.849032208 ], 'class': "<class 'pmutt.empirical.nasa.Nasa'>", 'elements': { 'H': 2, 'O': 1 }, 'name': 'H2O', 'notes': None, 'phase': None, 'model': None, 'misc_models': None, 'cat_site': None, 'n_sites': None, 'smiles': None, 'type': 'nasa' }], 'products_stoich': [1.0], 'reactants': [{ 'T_high': 3500.0, 'T_low': 200.0, 'T_mid': 1000.0, 'a_high': [ 3.3372792, -4.94024731e-05, 4.99456778e-07, -1.79566394e-10, 2.00255376e-14, -950.158922, -3.20502331 ], 'a_low': [ 2.34433112, 0.00798052075, -1.9478151e-05, 2.01572094e-08, -7.37611761e-12, -917.935173, 0.683010238 ], 'class': "<class 'pmutt.empirical.nasa.Nasa'>", 'elements': { 'H': 2 }, 'name': 'H2', 'notes': None, 'phase': None, 'model': None, 'misc_models': None, 'cat_site': None, 'n_sites': None, 'smiles': None, 'type': 'nasa' }, { 'T_high': 3500.0, 'T_low': 200.0, 'T_mid': 1000.0, 'a_high': [ 3.28253784, 0.00148308754, -7.57966669e-07, 2.09470555e-10, -2.16717794e-14, -1088.45772, 5.45323129 ], 'a_low': [ 3.78245636, -0.00299673416, 9.84730201e-06, -9.68129509e-09, 3.24372837e-12, -1063.94356, 3.65767573 ], 'class': "<class 'pmutt.empirical.nasa.Nasa'>", 'elements': { 'O': 2 }, 'name': 'O2', 'notes': None, 'phase': None, 'model': None, 'misc_models': None, 'cat_site': None, 'n_sites': None, 'smiles': None, 'type': 'nasa' }], 'reactants_stoich': [1.0, 0.5], 'transition_state': None, 'transition_state_stoich': None, 'reaction_str': 'H2+0.50O2=H2O', } '''Reactions using StatMech''' ideal_gas_param = presets['idealgas'] self.H2O_sm = StatMech(name='H2O', atoms=molecule('H2O'), symmetrynumber=2, vib_wavenumbers=[3825.434, 3710.2642, 1582.432], potentialenergy=-6.7598, spin=0., **ideal_gas_param) self.H2_sm = StatMech(name='H2', atoms=molecule('H2'), symmetrynumber=2, vib_wavenumbers=[4306.1793], potentialenergy=-14.2209, spin=0., **ideal_gas_param) self.O2_sm = StatMech(name='O2', atoms=molecule('O2'), symmetrynumber=2, vib_wavenumbers=[1556.], potentialenergy=-9.862407, spin=1., **ideal_gas_param) # This is an arbitrary transition state for testing self.H2O_TS_sm = StatMech(name='H2O_TS', atoms=molecule('H2O'), symmetrynumber=1., vib_wavenumbers=[4000., 3900., 1600.], potentialenergy=-5.7598, spin=0., **ideal_gas_param) self.rxn_sm = rxn.Reaction(reactants=[self.H2_sm, self.O2_sm], reactants_stoich=[1., 0.5], products=[self.H2O_sm], products_stoich=[1.], transition_state=[self.H2O_TS_sm], transition_state_stoich=[1.]) self.species_dict = { 'H2O': self.H2O_sm, 'H2': self.H2_sm, 'O2': self.O2_sm, 'H2O_TS': self.H2O_TS_sm } self.maxDiff = None def test_compare_element_balance(self): self.assertIsNone(self.rxn_nasa.check_element_balance()) def test_get_species(self): self.assertDictEqual(self.rxn_sm.get_species(key='name'), self.species_dict) def test_get_q_state(self): exp_q_react = self.H2_sm.get_q(T=c.T0('K')) \ * self.O2_sm.get_q(T=c.T0('K'))**0.5 exp_q_prod = self.H2O_sm.get_q(T=c.T0('K')) exp_q_TS = self.H2O_TS_sm.get_q(T=c.T0('K')) self.assertAlmostEqual( self.rxn_sm.get_q_state(state='reactants', T=c.T0('K')), exp_q_react) self.assertAlmostEqual( self.rxn_sm.get_q_state(state='products', T=c.T0('K')), exp_q_prod) self.assertAlmostEqual( self.rxn_sm.get_q_state(state='transition state', T=c.T0('K')), exp_q_TS) def test_get_CvoR_state(self): exp_CvoR_react = self.H2_sm.get_CvoR(T=c.T0('K')) \ + self.O2_sm.get_CvoR(T=c.T0('K'))*0.5 exp_CvoR_prod = self.H2O_sm.get_CvoR(T=c.T0('K')) exp_CvoR_TS = self.H2O_TS_sm.get_CvoR(T=c.T0('K')) self.assertAlmostEqual( self.rxn_sm.get_CvoR_state(state='reactants', T=c.T0('K')), exp_CvoR_react) self.assertAlmostEqual( self.rxn_sm.get_CvoR_state(state='products', T=c.T0('K')), exp_CvoR_prod) self.assertAlmostEqual( self.rxn_sm.get_CvoR_state(state='transition state', T=c.T0('K')), exp_CvoR_TS) def test_get_Cv_state(self): units = 'J/mol/K' exp_Cv_react = self.H2_sm.get_Cv(T=c.T0('K'), units=units) \ + self.O2_sm.get_Cv(T=c.T0('K'), units=units)*0.5 exp_Cv_prod = self.H2O_sm.get_Cv(T=c.T0('K'), units=units) exp_Cv_TS = self.H2O_TS_sm.get_Cv(T=c.T0('K'), units=units) self.assertAlmostEqual( self.rxn_sm.get_Cv_state(state='reactants', T=c.T0('K'), units=units), exp_Cv_react) self.assertAlmostEqual( self.rxn_sm.get_Cv_state(state='products', T=c.T0('K'), units=units), exp_Cv_prod) self.assertAlmostEqual( self.rxn_sm.get_Cv_state(state='transition state', T=c.T0('K'), units=units), exp_Cv_TS) def test_get_CpoR_state(self): exp_CpoR_react = self.H2_sm.get_CpoR(T=c.T0('K')) \ + self.O2_sm.get_CpoR(T=c.T0('K'))*0.5 exp_CpoR_prod = self.H2O_sm.get_CpoR(T=c.T0('K')) exp_CpoR_TS = self.H2O_TS_sm.get_CpoR(T=c.T0('K')) self.assertAlmostEqual( self.rxn_sm.get_CpoR_state(state='reactants', T=c.T0('K')), exp_CpoR_react) self.assertAlmostEqual( self.rxn_sm.get_CpoR_state(state='products', T=c.T0('K')), exp_CpoR_prod) self.assertAlmostEqual( self.rxn_sm.get_CpoR_state(state='transition state', T=c.T0('K')), exp_CpoR_TS) def test_get_Cp_state(self): units = 'J/mol/K' exp_Cp_react = self.H2_sm.get_Cp(T=c.T0('K'), units=units) \ + self.O2_sm.get_Cp(T=c.T0('K'), units=units)*0.5 exp_Cp_prod = self.H2O_sm.get_Cp(T=c.T0('K'), units=units) exp_Cp_TS = self.H2O_TS_sm.get_Cp(T=c.T0('K'), units=units) self.assertAlmostEqual( self.rxn_sm.get_Cp_state(state='reactants', T=c.T0('K'), units=units), exp_Cp_react) self.assertAlmostEqual( self.rxn_sm.get_Cp_state(state='products', T=c.T0('K'), units=units), exp_Cp_prod) self.assertAlmostEqual( self.rxn_sm.get_Cp_state(state='transition state', T=c.T0('K'), units=units), exp_Cp_TS) def test_get_EoRT_state(self): exp_EoRT_react = self.H2_sm.get_EoRT(T=c.T0('K')) \ + self.O2_sm.get_EoRT(T=c.T0('K'))*0.5 exp_EoRT_prod = self.H2O_sm.get_EoRT(T=c.T0('K')) exp_EoRT_TS = self.H2O_TS_sm.get_EoRT(T=c.T0('K')) self.assertAlmostEqual( self.rxn_sm.get_EoRT_state(state='reactants', T=c.T0('K')), exp_EoRT_react) self.assertAlmostEqual( self.rxn_sm.get_EoRT_state(state='products', T=c.T0('K')), exp_EoRT_prod) self.assertAlmostEqual( self.rxn_sm.get_EoRT_state(state='transition state', T=c.T0('K')), exp_EoRT_TS) def test_get_E_state(self): units = 'J/mol' exp_E_react = self.H2_sm.get_E(T=c.T0('K'), units=units) \ + self.O2_sm.get_E(T=c.T0('K'), units=units)*0.5 exp_E_prod = self.H2O_sm.get_E(T=c.T0('K'), units=units) exp_E_TS = self.H2O_TS_sm.get_E(T=c.T0('K'), units=units) self.assertAlmostEqual( self.rxn_sm.get_E_state(state='reactants', T=c.T0('K'), units=units), exp_E_react) self.assertAlmostEqual( self.rxn_sm.get_E_state(state='products', T=c.T0('K'), units=units), exp_E_prod) self.assertAlmostEqual( self.rxn_sm.get_E_state(state='transition state', T=c.T0('K'), units=units), exp_E_TS) def test_get_UoRT_state(self): exp_UoRT_react = self.H2_sm.get_UoRT(T=c.T0('K')) \ + self.O2_sm.get_UoRT(T=c.T0('K'))*0.5 exp_UoRT_prod = self.H2O_sm.get_UoRT(T=c.T0('K')) exp_UoRT_TS = self.H2O_TS_sm.get_UoRT(T=c.T0('K')) self.assertAlmostEqual( self.rxn_sm.get_UoRT_state(state='reactants', T=c.T0('K')), exp_UoRT_react) self.assertAlmostEqual( self.rxn_sm.get_UoRT_state(state='products', T=c.T0('K')), exp_UoRT_prod) self.assertAlmostEqual( self.rxn_sm.get_UoRT_state(state='transition state', T=c.T0('K')), exp_UoRT_TS) def test_get_U_state(self): units = 'J/mol' exp_U_react = self.H2_sm.get_U(T=c.T0('K'), units=units) \ + self.O2_sm.get_U(T=c.T0('K'), units=units)*0.5 exp_U_prod = self.H2O_sm.get_U(T=c.T0('K'), units=units) exp_U_TS = self.H2O_TS_sm.get_U(T=c.T0('K'), units=units) self.assertAlmostEqual( self.rxn_sm.get_U_state(state='reactants', T=c.T0('K'), units=units), exp_U_react) self.assertAlmostEqual( self.rxn_sm.get_U_state(state='products', T=c.T0('K'), units=units), exp_U_prod) self.assertAlmostEqual( self.rxn_sm.get_U_state(state='transition state', T=c.T0('K'), units=units), exp_U_TS) def test_get_HoRT_state(self): exp_HoRT_react = self.H2_sm.get_HoRT(T=c.T0('K')) \ + self.O2_sm.get_HoRT(T=c.T0('K'))*0.5 exp_HoRT_prod = self.H2O_sm.get_HoRT(T=c.T0('K')) exp_HoRT_TS = self.H2O_TS_sm.get_HoRT(T=c.T0('K')) self.assertAlmostEqual( self.rxn_sm.get_HoRT_state(state='reactants', T=c.T0('K')), exp_HoRT_react) self.assertAlmostEqual( self.rxn_sm.get_HoRT_state(state='products', T=c.T0('K')), exp_HoRT_prod) self.assertAlmostEqual( self.rxn_sm.get_HoRT_state(state='transition state', T=c.T0('K')), exp_HoRT_TS) def test_get_H_state(self): units = 'J/mol' exp_H_react = self.H2_sm.get_H(T=c.T0('K'), units=units) \ + self.O2_sm.get_H(T=c.T0('K'), units=units)*0.5 exp_H_prod = self.H2O_sm.get_H(T=c.T0('K'), units=units) exp_H_TS = self.H2O_TS_sm.get_H(T=c.T0('K'), units=units) self.assertAlmostEqual( self.rxn_sm.get_H_state(state='reactants', T=c.T0('K'), units=units), exp_H_react) self.assertAlmostEqual( self.rxn_sm.get_H_state(state='products', T=c.T0('K'), units=units), exp_H_prod) self.assertAlmostEqual( self.rxn_sm.get_H_state(state='transition state', T=c.T0('K'), units=units), exp_H_TS) def test_get_SoR_state(self): exp_SoR_react = self.H2_sm.get_SoR(T=c.T0('K')) \ + self.O2_sm.get_SoR(T=c.T0('K'))*0.5 exp_SoR_prod = self.H2O_sm.get_SoR(T=c.T0('K')) exp_SoR_TS = self.H2O_TS_sm.get_SoR(T=c.T0('K')) self.assertAlmostEqual( self.rxn_sm.get_SoR_state(state='reactants', T=c.T0('K')), exp_SoR_react) self.assertAlmostEqual( self.rxn_sm.get_SoR_state(state='products', T=c.T0('K')), exp_SoR_prod) self.assertAlmostEqual( self.rxn_sm.get_SoR_state(state='transition state', T=c.T0('K')), exp_SoR_TS) def test_get_S_state(self): units = 'J/mol/K' exp_S_react = self.H2_sm.get_S(T=c.T0('K'), units=units) \ + self.O2_sm.get_S(T=c.T0('K'), units=units)*0.5 exp_S_prod = self.H2O_sm.get_S(T=c.T0('K'), units=units) exp_S_TS = self.H2O_TS_sm.get_S(T=c.T0('K'), units=units) self.assertAlmostEqual( self.rxn_sm.get_S_state(state='reactants', T=c.T0('K'), units=units), exp_S_react) self.assertAlmostEqual( self.rxn_sm.get_S_state(state='products', T=c.T0('K'), units=units), exp_S_prod) self.assertAlmostEqual( self.rxn_sm.get_S_state(state='transition state', T=c.T0('K'), units=units), exp_S_TS) def test_get_FoRT_state(self): exp_FoRT_react = self.H2_sm.get_FoRT(T=c.T0('K')) \ + self.O2_sm.get_FoRT(T=c.T0('K'))*0.5 exp_FoRT_prod = self.H2O_sm.get_FoRT(T=c.T0('K')) exp_FoRT_TS = self.H2O_TS_sm.get_FoRT(T=c.T0('K')) self.assertAlmostEqual( self.rxn_sm.get_FoRT_state(state='reactants', T=c.T0('K')), exp_FoRT_react) self.assertAlmostEqual( self.rxn_sm.get_FoRT_state(state='products', T=c.T0('K')), exp_FoRT_prod) self.assertAlmostEqual( self.rxn_sm.get_FoRT_state(state='transition state', T=c.T0('K')), exp_FoRT_TS) def test_get_F_state(self): units = 'J/mol' exp_F_react = self.H2_sm.get_F(T=c.T0('K'), units=units) \ + self.O2_sm.get_F(T=c.T0('K'), units=units)*0.5 exp_F_prod = self.H2O_sm.get_F(T=c.T0('K'), units=units) exp_F_TS = self.H2O_TS_sm.get_F(T=c.T0('K'), units=units) self.assertAlmostEqual( self.rxn_sm.get_F_state(state='reactants', T=c.T0('K'), units=units), exp_F_react) self.assertAlmostEqual( self.rxn_sm.get_F_state(state='products', T=c.T0('K'), units=units), exp_F_prod) self.assertAlmostEqual( self.rxn_sm.get_F_state(state='transition state', T=c.T0('K'), units=units), exp_F_TS) def test_get_GoRT_state(self): exp_GoRT_react = self.H2_sm.get_GoRT(T=c.T0('K')) \ + self.O2_sm.get_GoRT(T=c.T0('K'))*0.5 exp_GoRT_prod = self.H2O_sm.get_GoRT(T=c.T0('K')) exp_GoRT_TS = self.H2O_TS_sm.get_GoRT(T=c.T0('K')) self.assertAlmostEqual( self.rxn_sm.get_GoRT_state(state='reactants', T=c.T0('K')), exp_GoRT_react) self.assertAlmostEqual( self.rxn_sm.get_GoRT_state(state='products', T=c.T0('K')), exp_GoRT_prod) self.assertAlmostEqual( self.rxn_sm.get_GoRT_state(state='transition state', T=c.T0('K')), exp_GoRT_TS) def test_get_G_state(self): units = 'J/mol' exp_G_react = self.H2_sm.get_G(T=c.T0('K'), units=units) \ + self.O2_sm.get_G(T=c.T0('K'), units=units)*0.5 exp_G_prod = self.H2O_sm.get_G(T=c.T0('K'), units=units) exp_G_TS = self.H2O_TS_sm.get_G(T=c.T0('K'), units=units) self.assertAlmostEqual( self.rxn_sm.get_G_state(state='reactants', T=c.T0('K'), units=units), exp_G_react) self.assertAlmostEqual( self.rxn_sm.get_G_state(state='products', T=c.T0('K'), units=units), exp_G_prod) self.assertAlmostEqual( self.rxn_sm.get_G_state(state='transition state', T=c.T0('K'), units=units), exp_G_TS) def test_get_delta_CvoR(self): exp_sm_CvoR = self.H2O_sm.get_CvoR(T=c.T0('K')) \ - self.H2_sm.get_CvoR(T=c.T0('K')) \ - self.O2_sm.get_CvoR(T=c.T0('K'))*0.5 self.assertAlmostEqual(self.rxn_sm.get_delta_CvoR(T=c.T0('K')), exp_sm_CvoR) self.assertAlmostEqual( self.rxn_sm.get_delta_CvoR(T=c.T0('K'), rev=True), -exp_sm_CvoR) exp_sm_CvoR_TS = self.H2O_TS_sm.get_CvoR(T=c.T0('K')) \ - self.H2_sm.get_CvoR(T=c.T0('K')) \ - self.O2_sm.get_CvoR(T=c.T0('K'))*0.5 exp_sm_CvoR_rev_TS = self.H2O_TS_sm.get_CvoR(T=c.T0('K')) \ - self.H2O_sm.get_CvoR(T=c.T0('K')) self.assertAlmostEqual( self.rxn_sm.get_delta_CvoR(T=c.T0('K'), act=True), exp_sm_CvoR_TS) self.assertAlmostEqual( self.rxn_sm.get_delta_CvoR(T=c.T0('K'), rev=True, act=True), exp_sm_CvoR_rev_TS) self.assertAlmostEqual(self.rxn_sm.get_CvoR_act(T=c.T0('K'), rev=True), exp_sm_CvoR_rev_TS) def test_get_delta_Cv(self): units = 'J/mol/K' exp_sm_Cv = self.H2O_sm.get_Cv(T=c.T0('K'), units=units) \ - self.H2_sm.get_Cv(T=c.T0('K'), units=units) \ - self.O2_sm.get_Cv(T=c.T0('K'), units=units)*0.5 self.assertAlmostEqual( self.rxn_sm.get_delta_Cv(T=c.T0('K'), units=units), exp_sm_Cv) self.assertAlmostEqual( self.rxn_sm.get_delta_Cv(T=c.T0('K'), units=units, rev=True), -exp_sm_Cv) exp_sm_Cv_TS = self.H2O_TS_sm.get_Cv(T=c.T0('K'), units=units) \ - self.H2_sm.get_Cv(T=c.T0('K'), units=units) \ - self.O2_sm.get_Cv(T=c.T0('K'), units=units)*0.5 exp_sm_Cv_rev_TS = self.H2O_TS_sm.get_Cv(T=c.T0('K'), units=units) \ - self.H2O_sm.get_Cv(T=c.T0('K'), units=units) self.assertAlmostEqual( self.rxn_sm.get_delta_Cv(T=c.T0('K'), act=True, units=units), exp_sm_Cv_TS) self.assertAlmostEqual( self.rxn_sm.get_delta_Cv(T=c.T0('K'), rev=True, units=units, act=True), exp_sm_Cv_rev_TS) self.assertAlmostEqual( self.rxn_sm.get_Cv_act(T=c.T0('K'), rev=True, units=units), exp_sm_Cv_rev_TS) def test_get_delta_CpoR(self): exp_nasa_CpoR = self.H2O_nasa.get_CpoR(T=c.T0('K')) \ - self.H2_nasa.get_CpoR(T=c.T0('K')) \ - self.O2_nasa.get_CpoR(T=c.T0('K'))*0.5 exp_sm_CpoR = self.H2O_sm.get_CpoR(T=c.T0('K')) \ - self.H2_sm.get_CpoR(T=c.T0('K')) \ - self.O2_sm.get_CpoR(T=c.T0('K'))*0.5 self.assertAlmostEqual(self.rxn_nasa.get_delta_CpoR(T=c.T0('K')), exp_nasa_CpoR) self.assertAlmostEqual( self.rxn_nasa.get_delta_CpoR(T=c.T0('K'), rev=True), -exp_nasa_CpoR) self.assertAlmostEqual(self.rxn_sm.get_delta_CpoR(T=c.T0('K')), exp_sm_CpoR) self.assertAlmostEqual( self.rxn_sm.get_delta_CpoR(T=c.T0('K'), rev=True), -exp_sm_CpoR) exp_sm_CpoR_TS = self.H2O_TS_sm.get_CpoR(T=c.T0('K')) \ - self.H2_sm.get_CpoR(T=c.T0('K')) \ - self.O2_sm.get_CpoR(T=c.T0('K'))*0.5 exp_sm_CpoR_rev_TS = self.H2O_TS_sm.get_CpoR(T=c.T0('K')) \ - self.H2O_sm.get_CpoR(T=c.T0('K')) self.assertAlmostEqual( self.rxn_sm.get_delta_CpoR(T=c.T0('K'), act=True), exp_sm_CpoR_TS) self.assertAlmostEqual( self.rxn_sm.get_delta_CpoR(T=c.T0('K'), rev=True, act=True), exp_sm_CpoR_rev_TS) self.assertAlmostEqual(self.rxn_sm.get_CpoR_act(T=c.T0('K'), rev=True), exp_sm_CpoR_rev_TS) def test_get_delta_Cp(self): units = 'J/mol/K' exp_nasa_Cp = self.H2O_nasa.get_Cp(T=c.T0('K'), units=units) \ - self.H2_nasa.get_Cp(T=c.T0('K'), units=units) \ - self.O2_nasa.get_Cp(T=c.T0('K'), units=units)*0.5 exp_sm_Cp = self.H2O_sm.get_Cp(T=c.T0('K'), units=units) \ - self.H2_sm.get_Cp(T=c.T0('K'), units=units) \ - self.O2_sm.get_Cp(T=c.T0('K'), units=units)*0.5 self.assertAlmostEqual( self.rxn_nasa.get_delta_Cp(T=c.T0('K'), units=units), exp_nasa_Cp) self.assertAlmostEqual( self.rxn_nasa.get_delta_Cp(T=c.T0('K'), units=units, rev=True), -exp_nasa_Cp) self.assertAlmostEqual( self.rxn_sm.get_delta_Cp(T=c.T0('K'), units=units), exp_sm_Cp) self.assertAlmostEqual( self.rxn_sm.get_delta_Cp(T=c.T0('K'), units=units, rev=True), -exp_sm_Cp) exp_sm_Cp_TS = self.H2O_TS_sm.get_Cp(T=c.T0('K'), units=units) \ - self.H2_sm.get_Cp(T=c.T0('K'), units=units) \ - self.O2_sm.get_Cp(T=c.T0('K'), units=units)*0.5 exp_sm_Cp_rev_TS = self.H2O_TS_sm.get_Cp(T=c.T0('K'), units=units) \ - self.H2O_sm.get_Cp(T=c.T0('K'), units=units) self.assertAlmostEqual( self.rxn_sm.get_delta_Cp(T=c.T0('K'), act=True, units=units), exp_sm_Cp_TS) self.assertAlmostEqual( self.rxn_sm.get_delta_Cp(T=c.T0('K'), rev=True, act=True, units=units), exp_sm_Cp_rev_TS) self.assertAlmostEqual( self.rxn_sm.get_Cp_act(T=c.T0('K'), rev=True, units=units), exp_sm_Cp_rev_TS) def test_get_delta_EoRT(self): exp_sm_EoRT = self.H2O_sm.get_EoRT(T=c.T0('K')) \ - self.H2_sm.get_EoRT(T=c.T0('K')) \ - self.O2_sm.get_EoRT(T=c.T0('K'))*0.5 self.assertAlmostEqual(self.rxn_sm.get_delta_EoRT(T=c.T0('K')), exp_sm_EoRT) self.assertAlmostEqual( self.rxn_sm.get_delta_EoRT(T=c.T0('K'), rev=True), -exp_sm_EoRT) exp_sm_EoRT_TS = self.H2O_TS_sm.get_EoRT(T=c.T0('K')) \ - self.H2_sm.get_EoRT(T=c.T0('K')) \ - self.O2_sm.get_EoRT(T=c.T0('K'))*0.5 exp_sm_EoRT_rev_TS = self.H2O_TS_sm.get_EoRT(T=c.T0('K')) \ - self.H2O_sm.get_EoRT(T=c.T0('K')) self.assertAlmostEqual( self.rxn_sm.get_delta_EoRT(T=c.T0('K'), act=True), exp_sm_EoRT_TS) self.assertAlmostEqual( self.rxn_sm.get_delta_EoRT(T=c.T0('K'), rev=True, act=True), exp_sm_EoRT_rev_TS) def test_get_delta_E(self): units = 'J/mol' exp_sm_E = self.H2O_sm.get_E(T=c.T0('K'), units=units) \ - self.H2_sm.get_E(T=c.T0('K'), units=units) \ - self.O2_sm.get_E(T=c.T0('K'), units=units)*0.5 self.assertAlmostEqual( self.rxn_sm.get_delta_E(T=c.T0('K'), units=units), exp_sm_E) self.assertAlmostEqual( self.rxn_sm.get_delta_E(T=c.T0('K'), rev=True, units=units), -exp_sm_E) exp_sm_E_TS = self.H2O_TS_sm.get_E(T=c.T0('K'), units=units) \ - self.H2_sm.get_E(T=c.T0('K'), units=units) \ - self.O2_sm.get_E(T=c.T0('K'), units=units)*0.5 exp_sm_E_rev_TS = self.H2O_TS_sm.get_E(T=c.T0('K'), units=units) \ - self.H2O_sm.get_E(T=c.T0('K'), units=units) self.assertAlmostEqual( self.rxn_sm.get_delta_E(T=c.T0('K'), act=True, units=units), exp_sm_E_TS) self.assertAlmostEqual( self.rxn_sm.get_delta_E(T=c.T0('K'), rev=True, act=True, units=units), exp_sm_E_rev_TS) def test_get_delta_UoRT(self): exp_sm_UoRT = self.H2O_sm.get_UoRT(T=c.T0('K')) \ - self.H2_sm.get_UoRT(T=c.T0('K')) \ - self.O2_sm.get_UoRT(T=c.T0('K'))*0.5 self.assertAlmostEqual(self.rxn_sm.get_delta_UoRT(T=c.T0('K')), exp_sm_UoRT) self.assertAlmostEqual( self.rxn_sm.get_delta_UoRT(T=c.T0('K'), rev=True), -exp_sm_UoRT) exp_sm_UoRT_TS = self.H2O_TS_sm.get_UoRT(T=c.T0('K')) \ - self.H2_sm.get_UoRT(T=c.T0('K')) \ - self.O2_sm.get_UoRT(T=c.T0('K'))*0.5 exp_sm_UoRT_rev_TS = self.H2O_TS_sm.get_UoRT(T=c.T0('K')) \ - self.H2O_sm.get_UoRT(T=c.T0('K')) self.assertAlmostEqual( self.rxn_sm.get_delta_UoRT(T=c.T0('K'), act=True), exp_sm_UoRT_TS) self.assertAlmostEqual( self.rxn_sm.get_delta_UoRT(T=c.T0('K'), rev=True, act=True), exp_sm_UoRT_rev_TS) self.assertAlmostEqual(self.rxn_sm.get_UoRT_act(T=c.T0('K'), rev=True), exp_sm_UoRT_rev_TS) def test_get_delta_U(self): units = 'J/mol' exp_sm_U = self.H2O_sm.get_U(T=c.T0('K'), units=units) \ - self.H2_sm.get_U(T=c.T0('K'), units=units) \ - self.O2_sm.get_U(T=c.T0('K'), units=units)*0.5 self.assertAlmostEqual( self.rxn_sm.get_delta_U(T=c.T0('K'), units=units), exp_sm_U) self.assertAlmostEqual( self.rxn_sm.get_delta_U(T=c.T0('K'), rev=True, units=units), -exp_sm_U) exp_sm_U_TS = self.H2O_TS_sm.get_U(T=c.T0('K'), units=units) \ - self.H2_sm.get_U(T=c.T0('K'), units=units) \ - self.O2_sm.get_U(T=c.T0('K'), units=units)*0.5 exp_sm_U_rev_TS = self.H2O_TS_sm.get_U(T=c.T0('K'), units=units) \ - self.H2O_sm.get_U(T=c.T0('K'), units=units) self.assertAlmostEqual( self.rxn_sm.get_delta_U(T=c.T0('K'), act=True, units=units), exp_sm_U_TS) self.assertAlmostEqual( self.rxn_sm.get_delta_U(T=c.T0('K'), rev=True, act=True, units=units), exp_sm_U_rev_TS) self.assertAlmostEqual( self.rxn_sm.get_U_act(T=c.T0('K'), rev=True, units=units), exp_sm_U_rev_TS) def test_get_delta_HoRT(self): exp_nasa_HoRT = self.H2O_nasa.get_HoRT(T=c.T0('K')) \ - self.H2_nasa.get_HoRT(T=c.T0('K')) \ - self.O2_nasa.get_HoRT(T=c.T0('K'))*0.5 exp_sm_HoRT = self.H2O_sm.get_HoRT(T=c.T0('K')) \ - self.H2_sm.get_HoRT(T=c.T0('K')) \ - self.O2_sm.get_HoRT(T=c.T0('K'))*0.5 self.assertAlmostEqual(self.rxn_nasa.get_delta_HoRT(T=c.T0('K')), exp_nasa_HoRT) self.assertAlmostEqual( self.rxn_nasa.get_delta_HoRT(T=c.T0('K'), rev=True), -exp_nasa_HoRT) self.assertAlmostEqual(self.rxn_sm.get_delta_HoRT(T=c.T0('K')), exp_sm_HoRT) self.assertAlmostEqual( self.rxn_sm.get_delta_HoRT(T=c.T0('K'), rev=True), -exp_sm_HoRT) exp_sm_HoRT_TS = self.H2O_TS_sm.get_HoRT(T=c.T0('K')) \ - self.H2_sm.get_HoRT(T=c.T0('K')) \ - self.O2_sm.get_HoRT(T=c.T0('K'))*0.5 exp_sm_HoRT_rev_TS = self.H2O_TS_sm.get_HoRT(T=c.T0('K')) \ - self.H2O_sm.get_HoRT(T=c.T0('K')) self.assertAlmostEqual( self.rxn_sm.get_delta_HoRT(T=c.T0('K'), act=True), exp_sm_HoRT_TS) self.assertAlmostEqual( self.rxn_sm.get_delta_HoRT(T=c.T0('K'), rev=True, act=True), exp_sm_HoRT_rev_TS) self.assertAlmostEqual(self.rxn_sm.get_HoRT_act(T=c.T0('K'), rev=True), exp_sm_HoRT_rev_TS) def test_get_delta_H(self): units = 'J/mol' exp_nasa_H = self.H2O_nasa.get_H(T=c.T0('K'), units=units) \ - self.H2_nasa.get_H(T=c.T0('K'), units=units) \ - self.O2_nasa.get_H(T=c.T0('K'), units=units)*0.5 exp_sm_H = self.H2O_sm.get_H(T=c.T0('K'), units=units) \ - self.H2_sm.get_H(T=c.T0('K'), units=units) \ - self.O2_sm.get_H(T=c.T0('K'), units=units)*0.5 self.assertAlmostEqual( self.rxn_nasa.get_delta_H(T=c.T0('K'), units=units), exp_nasa_H) self.assertAlmostEqual( self.rxn_nasa.get_delta_H(T=c.T0('K'), units=units, rev=True), -exp_nasa_H) self.assertAlmostEqual( self.rxn_sm.get_delta_H(T=c.T0('K'), units=units), exp_sm_H) self.assertAlmostEqual( self.rxn_sm.get_delta_H(T=c.T0('K'), units=units, rev=True), -exp_sm_H) exp_sm_H_TS = self.H2O_TS_sm.get_H(T=c.T0('K'), units=units) \ - self.H2_sm.get_H(T=c.T0('K'), units=units) \ - self.O2_sm.get_H(T=c.T0('K'), units=units)*0.5 exp_sm_H_rev_TS = self.H2O_TS_sm.get_H(T=c.T0('K'), units=units) \ - self.H2O_sm.get_H(T=c.T0('K'), units=units) self.assertAlmostEqual( self.rxn_sm.get_delta_H(T=c.T0('K'), act=True, units=units), exp_sm_H_TS) self.assertAlmostEqual( self.rxn_sm.get_delta_H(T=c.T0('K'), rev=True, act=True, units=units), exp_sm_H_rev_TS) self.assertAlmostEqual( self.rxn_sm.get_H_act(T=c.T0('K'), rev=True, units=units), exp_sm_H_rev_TS) def test_get_delta_SoR(self): exp_nasa_SoR = self.H2O_nasa.get_SoR(T=c.T0('K')) \ - self.H2_nasa.get_SoR(T=c.T0('K')) \ - self.O2_nasa.get_SoR(T=c.T0('K'))*0.5 exp_sm_SoR = self.H2O_sm.get_SoR(T=c.T0('K')) \ - self.H2_sm.get_SoR(T=c.T0('K')) \ - self.O2_sm.get_SoR(T=c.T0('K'))*0.5 self.assertAlmostEqual(self.rxn_nasa.get_delta_SoR(T=c.T0('K')), exp_nasa_SoR) self.assertAlmostEqual( self.rxn_nasa.get_delta_SoR(T=c.T0('K'), rev=True), -exp_nasa_SoR) self.assertAlmostEqual(self.rxn_sm.get_delta_SoR(T=c.T0('K')), exp_sm_SoR) self.assertAlmostEqual( self.rxn_sm.get_delta_SoR(T=c.T0('K'), rev=True), -exp_sm_SoR) exp_sm_SoR_TS = self.H2O_TS_sm.get_SoR(T=c.T0('K')) \ - self.H2_sm.get_SoR(T=c.T0('K')) \ - self.O2_sm.get_SoR(T=c.T0('K'))*0.5 exp_sm_SoR_rev_TS = self.H2O_TS_sm.get_SoR(T=c.T0('K')) \ - self.H2O_sm.get_SoR(T=c.T0('K')) self.assertAlmostEqual( self.rxn_sm.get_delta_SoR(T=c.T0('K'), act=True), exp_sm_SoR_TS) self.assertAlmostEqual( self.rxn_sm.get_delta_SoR(T=c.T0('K'), rev=True, act=True), exp_sm_SoR_rev_TS) self.assertAlmostEqual(self.rxn_sm.get_SoR_act(T=c.T0('K'), rev=True), exp_sm_SoR_rev_TS) def test_get_delta_S(self): units = 'J/mol/K' exp_nasa_S = self.H2O_nasa.get_S(T=c.T0('K'), units=units) \ - self.H2_nasa.get_S(T=c.T0('K'), units=units) \ - self.O2_nasa.get_S(T=c.T0('K'), units=units)*0.5 exp_sm_S = self.H2O_sm.get_S(T=c.T0('K'), units=units) \ - self.H2_sm.get_S(T=c.T0('K'), units=units) \ - self.O2_sm.get_S(T=c.T0('K'), units=units)*0.5 self.assertAlmostEqual( self.rxn_nasa.get_delta_S(T=c.T0('K'), units=units), exp_nasa_S) self.assertAlmostEqual( self.rxn_nasa.get_delta_S(T=c.T0('K'), units=units, rev=True), -exp_nasa_S) self.assertAlmostEqual( self.rxn_sm.get_delta_S(T=c.T0('K'), units=units), exp_sm_S) self.assertAlmostEqual( self.rxn_sm.get_delta_S(T=c.T0('K'), rev=True, units=units), -exp_sm_S) exp_sm_S_TS = self.H2O_TS_sm.get_S(T=c.T0('K'), units=units) \ - self.H2_sm.get_S(T=c.T0('K'), units=units) \ - self.O2_sm.get_S(T=c.T0('K'), units=units)*0.5 exp_sm_S_rev_TS = self.H2O_TS_sm.get_S(T=c.T0('K'), units=units) \ - self.H2O_sm.get_S(T=c.T0('K'), units=units) self.assertAlmostEqual( self.rxn_sm.get_delta_S(T=c.T0('K'), act=True, units=units), exp_sm_S_TS) self.assertAlmostEqual( self.rxn_sm.get_delta_S(T=c.T0('K'), rev=True, act=True, units=units), exp_sm_S_rev_TS) self.assertAlmostEqual( self.rxn_sm.get_S_act(T=c.T0('K'), rev=True, units=units), exp_sm_S_rev_TS) def test_get_delta_FoRT(self): exp_sm_FoRT = self.H2O_sm.get_FoRT(T=c.T0('K')) \ - self.H2_sm.get_FoRT(T=c.T0('K')) \ - self.O2_sm.get_FoRT(T=c.T0('K'))*0.5 self.assertAlmostEqual(self.rxn_sm.get_delta_FoRT(T=c.T0('K')), exp_sm_FoRT) self.assertAlmostEqual( self.rxn_sm.get_delta_FoRT(T=c.T0('K'), rev=True), -exp_sm_FoRT) exp_sm_FoRT_TS = self.H2O_TS_sm.get_FoRT(T=c.T0('K')) \ - self.H2_sm.get_FoRT(T=c.T0('K')) \ - self.O2_sm.get_FoRT(T=c.T0('K'))*0.5 exp_sm_FoRT_rev_TS = self.H2O_TS_sm.get_FoRT(T=c.T0('K')) \ - self.H2O_sm.get_FoRT(T=c.T0('K')) self.assertAlmostEqual( self.rxn_sm.get_delta_FoRT(T=c.T0('K'), act=True), exp_sm_FoRT_TS) self.assertAlmostEqual( self.rxn_sm.get_delta_FoRT(T=c.T0('K'), rev=True, act=True), exp_sm_FoRT_rev_TS) self.assertAlmostEqual(self.rxn_sm.get_FoRT_act(T=c.T0('K'), rev=True), exp_sm_FoRT_rev_TS) def test_get_delta_F(self): units = 'J/mol' exp_sm_F = self.H2O_sm.get_F(T=c.T0('K'), units=units) \ - self.H2_sm.get_F(T=c.T0('K'), units=units) \ - self.O2_sm.get_F(T=c.T0('K'), units=units)*0.5 self.assertAlmostEqual( self.rxn_sm.get_delta_F(T=c.T0('K'), units=units), exp_sm_F) self.assertAlmostEqual( self.rxn_sm.get_delta_F(T=c.T0('K'), units=units, rev=True), -exp_sm_F) exp_sm_F_TS = self.H2O_TS_sm.get_F(T=c.T0('K'), units=units) \ - self.H2_sm.get_F(T=c.T0('K'), units=units) \ - self.O2_sm.get_F(T=c.T0('K'), units=units)*0.5 exp_sm_F_rev_TS = self.H2O_TS_sm.get_F(T=c.T0('K'), units=units) \ - self.H2O_sm.get_F(T=c.T0('K'), units=units) self.assertAlmostEqual( self.rxn_sm.get_delta_F(T=c.T0('K'), act=True, units=units), exp_sm_F_TS) self.assertAlmostEqual( self.rxn_sm.get_delta_F(T=c.T0('K'), rev=True, act=True, units=units), exp_sm_F_rev_TS) self.assertAlmostEqual( self.rxn_sm.get_F_act(T=c.T0('K'), rev=True, units=units), exp_sm_F_rev_TS) def test_get_delta_GoRT(self): exp_nasa_GoRT = self.H2O_nasa.get_GoRT(T=c.T0('K')) \ - self.H2_nasa.get_GoRT(T=c.T0('K')) \ - self.O2_nasa.get_GoRT(T=c.T0('K'))*0.5 exp_sm_GoRT = self.H2O_sm.get_GoRT(T=c.T0('K')) \ - self.H2_sm.get_GoRT(T=c.T0('K')) \ - self.O2_sm.get_GoRT(T=c.T0('K'))*0.5 self.assertAlmostEqual(self.rxn_nasa.get_delta_GoRT(T=c.T0('K')), exp_nasa_GoRT) self.assertAlmostEqual( self.rxn_nasa.get_delta_GoRT(T=c.T0('K'), rev=True), -exp_nasa_GoRT) self.assertAlmostEqual(self.rxn_sm.get_delta_GoRT(T=c.T0('K')), exp_sm_GoRT) self.assertAlmostEqual( self.rxn_sm.get_delta_GoRT(T=c.T0('K'), rev=True), -exp_sm_GoRT) exp_sm_GoRT_TS = self.H2O_TS_sm.get_GoRT(T=c.T0('K')) \ - self.H2_sm.get_GoRT(T=c.T0('K')) \ - self.O2_sm.get_GoRT(T=c.T0('K'))*0.5 exp_sm_GoRT_rev_TS = self.H2O_TS_sm.get_GoRT(T=c.T0('K')) \ - self.H2O_sm.get_GoRT(T=c.T0('K')) self.assertAlmostEqual( self.rxn_sm.get_delta_GoRT(T=c.T0('K'), act=True), exp_sm_GoRT_TS) self.assertAlmostEqual( self.rxn_sm.get_delta_GoRT(T=c.T0('K'), rev=True, act=True), exp_sm_GoRT_rev_TS) self.assertAlmostEqual(self.rxn_sm.get_GoRT_act(T=c.T0('K'), rev=True), exp_sm_GoRT_rev_TS) def test_get_delta_G(self): units = 'J/mol' exp_nasa_G = self.H2O_nasa.get_G(T=c.T0('K'), units=units) \ - self.H2_nasa.get_G(T=c.T0('K'), units=units) \ - self.O2_nasa.get_G(T=c.T0('K'), units=units)*0.5 exp_sm_G = self.H2O_sm.get_G(T=c.T0('K'), units=units) \ - self.H2_sm.get_G(T=c.T0('K'), units=units) \ - self.O2_sm.get_G(T=c.T0('K'), units=units)*0.5 self.assertAlmostEqual( self.rxn_nasa.get_delta_G(T=c.T0('K'), units=units), exp_nasa_G) self.assertAlmostEqual( self.rxn_nasa.get_delta_G(T=c.T0('K'), rev=True, units=units), -exp_nasa_G) self.assertAlmostEqual( self.rxn_sm.get_delta_G(T=c.T0('K'), units=units), exp_sm_G) self.assertAlmostEqual( self.rxn_sm.get_delta_G(T=c.T0('K'), rev=True, units=units), -exp_sm_G) exp_sm_G_TS = self.H2O_TS_sm.get_G(T=c.T0('K'), units=units) \ - self.H2_sm.get_G(T=c.T0('K'), units=units) \ - self.O2_sm.get_G(T=c.T0('K'), units=units)*0.5 exp_sm_G_rev_TS = self.H2O_TS_sm.get_G(T=c.T0('K'), units=units) \ - self.H2O_sm.get_G(T=c.T0('K'), units=units) self.assertAlmostEqual( self.rxn_sm.get_delta_G(T=c.T0('K'), act=True, units=units), exp_sm_G_TS) self.assertAlmostEqual( self.rxn_sm.get_delta_G(T=c.T0('K'), rev=True, act=True, units=units), exp_sm_G_rev_TS) self.assertAlmostEqual( self.rxn_sm.get_G_act(T=c.T0('K'), rev=True, units=units), exp_sm_G_rev_TS) def test_get_EoRT_act(self): exp_sm_EoRT = self.H2O_TS_sm.get_HoRT(T=c.T0('K')) \ - self.H2_sm.get_HoRT(T=c.T0('K')) \ - self.O2_sm.get_HoRT(T=c.T0('K'))*0.5 exp_sm_EoRT_rev = self.H2O_TS_sm.get_HoRT(T=c.T0('K')) \ - self.H2O_sm.get_HoRT(T=c.T0('K')) self.assertAlmostEqual(self.rxn_sm.get_EoRT_act(T=c.T0('K')), exp_sm_EoRT) self.assertAlmostEqual(self.rxn_sm.get_EoRT_act(T=c.T0('K'), rev=True), exp_sm_EoRT_rev) def test_get_E_act(self): units = 'J/mol' exp_sm_E = self.H2O_TS_sm.get_H(T=c.T0('K'), units=units) \ - self.H2_sm.get_H(T=c.T0('K'), units=units) \ - self.O2_sm.get_H(T=c.T0('K'), units=units)*0.5 exp_sm_E_rev = self.H2O_TS_sm.get_H(T=c.T0('K'), units=units) \ - self.H2O_sm.get_H(T=c.T0('K'), units=units) self.assertAlmostEqual(self.rxn_sm.get_E_act(T=c.T0('K'), units=units), exp_sm_E) self.assertAlmostEqual( self.rxn_sm.get_E_act(T=c.T0('K'), rev=True, units=units), exp_sm_E_rev) def test_get_A(self): # Testing partition function method exp_sm_q = self.H2O_TS_sm.get_q(T=c.T0('K'), include_ZPE=False) \ / self.H2_sm.get_q(T=c.T0('K'), include_ZPE=False) \ / self.O2_sm.get_q(T=c.T0('K'), include_ZPE=False)**0.5 exp_sm_A = c.kb('J/K') * c.T0('K') / c.h('J s') * exp_sm_q exp_sm_q_rev = self.H2O_TS_sm.get_q(T=c.T0('K'), include_ZPE=False) \ / self.H2O_sm.get_q(T=c.T0('K'), include_ZPE=False) exp_sm_A_rev = c.kb('J/K') * c.T0('K') / c.h('J s') * exp_sm_q_rev np.testing.assert_almost_equal(self.rxn_sm.get_A(T=c.T0('K')), exp_sm_A, decimal=0) np.testing.assert_almost_equal(self.rxn_sm.get_A(T=c.T0('K'), rev=True), exp_sm_A_rev, decimal=0) # Testing entropy method exp_sm_SoR = self.H2O_TS_sm.get_SoR(T=c.T0('K')) \ - self.H2_sm.get_SoR(T=c.T0('K')) \ - self.O2_sm.get_SoR(T=c.T0('K'))*0.5 exp_sm_A = c.kb('J/K') * c.T0('K') / c.h('J s') * np.exp(exp_sm_SoR) exp_sm_SoR_rev = self.H2O_TS_sm.get_SoR(T=c.T0('K')) \ - self.H2O_sm.get_SoR(T=c.T0('K')) exp_sm_A_rev = c.kb('J/K')*c.T0('K')/c.h('J s') \ * np.exp(exp_sm_SoR_rev) np.testing.assert_almost_equal(self.rxn_sm.get_A(T=c.T0('K'), use_q=False), exp_sm_A, decimal=0) np.testing.assert_almost_equal(self.rxn_sm.get_A(T=c.T0('K'), rev=True, use_q=False), exp_sm_A_rev, decimal=0) def test_from_string(self): reaction_str = 'H2+0.5O2=H2O_TS=H2O' self.assertEqual( rxn.Reaction.from_string(reaction_str=reaction_str, species=self.species_dict), self.rxn_sm) def test_to_dict(self): self.assertEqual(self.rxn_nasa.to_dict(), self.rxn_nasa_dict) def test_from_dict(self): self.assertEqual(rxn.Reaction.from_dict(self.rxn_nasa_dict), self.rxn_nasa) class TestHelperReaction(unittest.TestCase): def test__parse_reaction(self): reaction_str = 'H2+0.5O2=H2O' expected_output = (['H2', 'O2'], [1., 0.5], ['H2O'], [1.], None, None) self.assertTupleEqual(rxn._parse_reaction(reaction_str=reaction_str), expected_output) reaction_str = ' H2 + 0.5 O2 = H2O ' expected_output = (['H2', 'O2'], [1., 0.5], ['H2O'], [1.], None, None) self.assertTupleEqual(rxn._parse_reaction(reaction_str=reaction_str), expected_output) reaction_str = ' H2 + 0.5 O2 = H2O_TS = H2O ' expected_output = (['H2', 'O2'], [1., 0.5], ['H2O'], [1.], ['H2O_TS'], [1.]) self.assertTupleEqual(rxn._parse_reaction(reaction_str=reaction_str), expected_output) def test__parse_reaction_state(self): reaction_str = 'H2+0.5O2' expected_output = (['H2', 'O2'], [1., 0.5]) self.assertTupleEqual( rxn._parse_reaction_state(reaction_str=reaction_str), expected_output) if __name__ == '__main__': unittest.main()
45.368705
79
0.493102
7,127
50,450
3.213133
0.036481
0.052009
0.069345
0.085808
0.869258
0.845459
0.811397
0.781572
0.721004
0.608996
0
0.059797
0.361903
50,450
1,111
80
45.409541
0.651559
0.004281
0
0.422812
0
0
0.036383
0.00265
0
0
0
0
0.159292
1
0.043265
false
0
0.006883
0
0.052114
0
0
0
0
null
0
0
0
1
1
1
1
1
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
null
0
0
0
0
0
0
0
0
0
0
0
0
0
6
c9c4340717c089c14afaf955660c897b8a591ed7
888
py
Python
leetcode/0525 Duplicate Zeros.py
jaredliw/python-question-bank
9c8c246623d8d171f875700b57772df0afcbdcdf
[ "MIT" ]
1
2021-04-08T07:49:15.000Z
2021-04-08T07:49:15.000Z
leetcode/0525 Duplicate Zeros.py
jaredliw/leetcode-solutions
9c8c246623d8d171f875700b57772df0afcbdcdf
[ "MIT" ]
null
null
null
leetcode/0525 Duplicate Zeros.py
jaredliw/leetcode-solutions
9c8c246623d8d171f875700b57772df0afcbdcdf
[ "MIT" ]
1
2022-01-23T02:12:24.000Z
2022-01-23T02:12:24.000Z
class Solution(object): def duplicateZeros(self, arr): """ :type arr: List[int] :rtype: None Do not return anything, modify arr in-place instead. """ # Runtime: 1116 ms # Memory: 13.8 MB idx = 0 while idx < len(arr): if arr[idx] == 0: for ptr in range(len(arr) - 1, idx, -1): arr[ptr] = arr[ptr - 1] idx += 1 idx += 1 class Solution(object): def duplicateZeros(self, arr): """ :type arr: List[int] :rtype: None Do not return anything, modify arr in-place instead. """ # Runtime: 52 ms # Memory: 13.6 MB idx = 0 while idx < len(arr): if arr[idx] == 0: arr.pop() arr.insert(idx + 1, 0) idx += 1 idx += 1
26.909091
73
0.438063
107
888
3.635514
0.373832
0.061697
0.051414
0.113111
0.74036
0.74036
0.74036
0.74036
0.74036
0.74036
0
0.050607
0.443694
888
32
74
27.75
0.736842
0.268018
0
0.777778
0
0
0
0
0
0
0
0
0
1
0.111111
false
0
0
0
0.222222
0
0
0
0
null
0
0
0
0
1
1
1
1
1
0
0
0
0
0
0
0
0
0
0
1
0
0
0
0
null
0
0
0
0
0
0
0
0
0
0
0
0
0
6
c9ebe1a4995c10230f4b07090310d96859c733ea
34
py
Python
BOJ/05000~05999/5800~5899/5893.py
shinkeonkim/today-ps
f3e5e38c5215f19579bb0422f303a9c18c626afa
[ "Apache-2.0" ]
2
2020-01-29T06:54:41.000Z
2021-11-07T13:23:27.000Z
BOJ/05000~05999/5800~5899/5893.py
shinkeonkim/Today_PS
bb0cda0ee1b9c57e1cfa38355e29d0f1c6167a44
[ "Apache-2.0" ]
null
null
null
BOJ/05000~05999/5800~5899/5893.py
shinkeonkim/Today_PS
bb0cda0ee1b9c57e1cfa38355e29d0f1c6167a44
[ "Apache-2.0" ]
null
null
null
print(bin(int(input(),2)*17)[2:])
17
33
0.588235
7
34
2.857143
0.857143
0
0
0
0
0
0
0
0
0
0
0.121212
0.029412
34
1
34
34
0.484848
0
0
0
0
0
0
0
0
0
0
0
0
1
0
true
0
0
0
0
1
1
1
0
null
0
0
0
0
0
0
0
0
0
0
0
0
0
1
0
0
1
0
0
0
0
0
0
0
null
0
0
0
0
0
0
1
0
0
0
0
1
0
6
c9ed639e46e39e69c8c56c39a9d2538e17b38213
137
py
Python
tests/fixtures/submodels.py
pashashocky/xsdata
1cd681598d2235626d0e21716fc9fb885d26e351
[ "MIT" ]
null
null
null
tests/fixtures/submodels.py
pashashocky/xsdata
1cd681598d2235626d0e21716fc9fb885d26e351
[ "MIT" ]
null
null
null
tests/fixtures/submodels.py
pashashocky/xsdata
1cd681598d2235626d0e21716fc9fb885d26e351
[ "MIT" ]
null
null
null
from dataclasses import dataclass from tests.fixtures.models import ChoiceType @dataclass class ChoiceTypeChild(ChoiceType): pass
15.222222
44
0.817518
15
137
7.466667
0.733333
0
0
0
0
0
0
0
0
0
0
0
0.138686
137
8
45
17.125
0.949153
0
0
0
0
0
0
0
0
0
0
0
0
1
0
true
0.2
0.4
0
0.6
0
1
0
0
null
0
0
0
0
0
0
0
0
0
0
0
0
0
1
0
0
0
0
0
0
0
0
0
0
null
0
0
0
0
0
0
1
1
1
0
1
0
0
6
c9fd05b42d2b6ad20ef495b96ef65927a85ba566
49
py
Python
popgen/utils/__init__.py
linzwatt/PopGen
f4162ef0284960f6a1d599904171383efd9ee232
[ "MIT" ]
58
2020-05-18T02:44:59.000Z
2022-02-11T02:44:55.000Z
popgen/utils/__init__.py
linzwatt/PopGen
f4162ef0284960f6a1d599904171383efd9ee232
[ "MIT" ]
null
null
null
popgen/utils/__init__.py
linzwatt/PopGen
f4162ef0284960f6a1d599904171383efd9ee232
[ "MIT" ]
2
2020-05-19T03:11:33.000Z
2021-10-07T08:44:47.000Z
from .sigmoid_annealing import sigmoid_annealing
24.5
48
0.897959
6
49
7
0.666667
0.761905
0
0
0
0
0
0
0
0
0
0
0.081633
49
1
49
49
0.933333
0
0
0
0
0
0
0
0
0
0
0
0
1
0
true
0
1
0
1
0
1
1
0
null
1
0
0
0
0
0
0
0
0
0
0
0
0
1
0
0
0
0
0
0
0
0
0
0
null
0
0
0
0
0
0
1
0
1
0
0
0
0
6
a01433f8f21f3eb4499439d7b6f08ce5c77bb94b
136
py
Python
util.py
sharpvik/fin
9afec321dc5f404f296fd7ba55914f298396b68f
[ "MIT" ]
null
null
null
util.py
sharpvik/fin
9afec321dc5f404f296fd7ba55914f298396b68f
[ "MIT" ]
null
null
null
util.py
sharpvik/fin
9afec321dc5f404f296fd7ba55914f298396b68f
[ "MIT" ]
null
null
null
import numpy as np import pandas as pd def sma(price: np.ndarray, period: int) -> np.ndarray: return price.rolling(period).mean()
19.428571
54
0.713235
22
136
4.409091
0.681818
0.185567
0
0
0
0
0
0
0
0
0
0
0.169118
136
6
55
22.666667
0.858407
0
0
0
0
0
0
0
0
0
0
0
0
1
0.25
false
0
0.5
0.25
1
0
1
0
0
null
0
0
0
0
0
0
0
0
0
0
0
0
0
1
0
0
0
0
0
0
0
0
0
0
null
0
0
0
0
0
1
0
0
1
1
1
0
0
6
a01a07ee474a76e542f569c64b64ab6845b8a8a6
26,100
py
Python
tests/test_neoschema_data_import.py
BrainAnnex/brain-annex
07701ba0309c448e9030a19a10dca4d73c155afe
[ "MIT" ]
null
null
null
tests/test_neoschema_data_import.py
BrainAnnex/brain-annex
07701ba0309c448e9030a19a10dca4d73c155afe
[ "MIT" ]
3
2021-12-19T03:58:42.000Z
2022-02-11T07:40:46.000Z
tests/test_neoschema_data_import.py
BrainAnnex/brain-annex
07701ba0309c448e9030a19a10dca4d73c155afe
[ "MIT" ]
null
null
null
# Testing of Schema-based Data Import # *** CAUTION! *** The database gets cleared out during some of the tests! # NOTES: - some tests require APOC # - some tests may fail their date check if done close to midnight, server time import pytest from BrainAnnex.modules.neo_access import neo_access from BrainAnnex.modules.utilities.comparisons import compare_recordsets from BrainAnnex.modules.neo_schema.neo_schema import NeoSchema from tests.test_neoschema import create_sample_schema_1, create_sample_schema_2 # Provide a database connection that can be used by the various tests that need it @pytest.fixture(scope="module") def db(): neo_obj = neo_access.NeoAccess(debug=False) NeoSchema.set_database(neo_obj) yield neo_obj def test_create_data_nodes_from_python_data_1(db): db.empty_dbase() # Set up the Schema sch_1 = NeoSchema.new_class_with_properties(class_name="Import Data", property_list=["source", "date"]) sch_2 = NeoSchema.new_class_with_properties(class_name="my_class_1", property_list=["legit", "other"]) NeoSchema.create_class_relationship(from_id=sch_1, to_id=sch_2, rel_name="imported_data") # 1-layer dictionary, with a key in the Schema and one not data = {"legit": 123, "unexpected": 456} # Import step node_id_list = NeoSchema.create_data_nodes_from_python_data(data, class_name="my_class_1") assert len(node_id_list) == 1 root_id = node_id_list[0] q = ''' MATCH (c1:CLASS {name:"Import Data"})<-[:SCHEMA]- (n1:`Import Data`)-[:imported_data]->(n2:my_class_1) -[:SCHEMA]->(c2:CLASS {name:"my_class_1"}) WHERE id(n2) = $item_id RETURN n2 ''' root_node = db.query(q, data_binding={"item_id": root_id}, single_row=True) root_record = root_node["n2"] assert root_record["legit"] == 123 assert "item_id" in root_record assert "unexpected" not in root_record # Only the key in the Schema gets imported def test_create_data_nodes_from_python_data_2(db): db.empty_dbase() # Set up the Schema. Nothing in it yet, other than the "Import Data" node NeoSchema.new_class_with_properties(class_name="Import Data", property_list=["source", "date"]) data = {"arbitrary": "Doesn't matter"} # Import step with pytest.raises(Exception): NeoSchema.create_data_nodes_from_python_data(data, class_name="non_existent_class") # Even though the import got aborted and raised an Exception, the `Import Data` is left behind; # locate it by its date stamp q = ''' MATCH (n:`Import Data` {date: date()}) RETURN n ''' result = db.query(q) assert len(result) == 1 def test_create_data_nodes_from_python_data_3(db): db.empty_dbase() # Set up Schema that only contains parts of the attributes in the data - and lacks the "result" relationship sch_1 = NeoSchema.new_class_with_properties(class_name="Import Data", property_list=["source", "date"]) sch_2 = NeoSchema.new_class_with_properties(class_name="patient", property_list=["age", "balance"]) NeoSchema.create_class_relationship(from_id=sch_1, to_id=sch_2, rel_name="imported_data") data = { "name": "Stephanie", "age": 23, "referred by": None, "result": { "biomarker": "insulin", "value": 123. }, "balance": 150.25, "extraneous": "I don't belong", "insurance": False } # Import node_id_list = NeoSchema.create_data_nodes_from_python_data(data, class_name="patient") assert len(node_id_list) == 1 root_id = node_id_list[0] q = ''' MATCH (c1:CLASS {name:"Import Data"})<-[:SCHEMA]- (n1:`Import Data`)-[:imported_data]->(n2:patient) -[:SCHEMA]->(c2:CLASS {name:"patient"}) WHERE id(n2) = $item_id RETURN n2 ''' root_node = db.query(q, data_binding={"item_id": root_id}, single_row=True) # Only the keys in the Schema gets imported; the relationship "result" is not in the Schema, either root_record = root_node["n2"] assert root_record["age"] == 23 assert root_record["balance"] == 150.25 assert "item_id" in root_record assert len(root_record) == 3 # Only the keys in the Schema gets imported q = '''MATCH (n:patient)-[:result]-(m) RETURN n, m''' res = db.query(q) assert len(res) == 0 # "result" is not in the Schema def test_create_data_nodes_from_python_data_4(db): db.empty_dbase() sch_info = create_sample_schema_1() # Schema with patient/result/doctor # Add to the Schema the "Import Data" node, and a link to the Class of the import's root sch_import = NeoSchema.new_class_with_properties(class_name="Import Data", property_list=["source", "date"]) NeoSchema.create_class_relationship(from_id=sch_import, to_id=sch_info["patient"], rel_name="imported_data") data = { "name": "Stephanie", "age": 23, "referred by": None, "result": { # Note: this doesn't match the "HAS_RESULT" in the Schema "biomarker": "insulin", "value": 123. }, "balance": 150.25, "extraneous": "I don't belong", "insurance": False } # Import node_id_list = NeoSchema.create_data_nodes_from_python_data(data, class_name="patient") assert len(node_id_list) == 1 root_id = node_id_list[0] q = ''' MATCH (c1:CLASS {name:"Import Data"})<-[:SCHEMA]- (n1:`Import Data`)-[:imported_data]->(n2:patient) -[:SCHEMA]->(c2:CLASS {name:"patient"}) WHERE id(n2) = $root_id RETURN n2 ''' root_node = db.query(q, data_binding={"root_id": root_id}, single_row=True) # Only the keys in the Schema gets imported; the relationship "result" is not in the Schema, either root_record = root_node["n2"] assert root_record["name"] == "Stephanie" assert root_record["age"] == 23 assert root_record["balance"] == 150.25 assert "item_id" in root_record assert len(root_record) == 4 # Only the keys in the Schema gets imported q = '''MATCH (n:patient)-[:result]-(m) RETURN n, m''' res = db.query(q) assert len(res) == 0 # the relationship "result" is not in the Schema # Count the links from the "patient" data node (the root) assert db.count_links(match=root_id, rel_name="SCHEMA", rel_dir="OUT", neighbor_labels="CLASS") == 1 assert db.count_links(match=root_id, rel_name="imported_data", rel_dir="IN", neighbor_labels="Import Data") == 1 assert db.count_links(match=root_id, rel_name="result", rel_dir="BOTH") == 0 def test_create_data_nodes_from_python_data_5(db): db.empty_dbase() sch_info = create_sample_schema_1() # Schema with patient/result/doctor # Add to the Schema the "Import Data" node, and a link to the Class of the import's root sch_import = NeoSchema.new_class_with_properties(class_name="Import Data", property_list=["source", "date"]) NeoSchema.create_class_relationship(from_id=sch_import, to_id=sch_info["patient"], rel_name="imported_data") data = { "name": "Stephanie", "age": 23, "referred by": None, "HAS_RESULT": { "biomarker": "insulin", "value": 123., "intruder": "the schema doesn't know me" }, "balance": 150.25, "extraneous": "I don't belong", "WRONG_LINK_TO_DOCTOR" : { "name": "Dr. Kane", "hospital": "Mt. Zion", "specialty": "OB/GYN" }, "insurance": False } # Import node_id_list = NeoSchema.create_data_nodes_from_python_data(data, class_name="patient") assert len(node_id_list) == 1 root_id = node_id_list[0] # Traverse a loop in the graph, from the patient data node, back to itself, # and finally to the `Import Data` node - going thru data and schema nodes q = ''' MATCH (p:patient {name: "Stephanie", age: 23, balance: 150.25})-[:HAS_RESULT]-> (r:result {biomarker:"insulin", value: 123.0})-[:SCHEMA]->(cl_r:CLASS {name:"result"}) <-[:HAS_RESULT]-(cl_p:CLASS {name:"patient"})<-[:SCHEMA]-(p)<-[:imported_data]-(i: `Import Data`) WHERE i.date = date() AND id(p) = $root_id RETURN p, r, cl_r, cl_p, i ''' result = db.query(q, data_binding={"root_id": root_id}) #print(result) # Only the keys in the Schema gets imported; the relationship "HAS_RESULT" is in the Schema assert len(result) == 1 # The relationship "WRONG_LINK_TO_DOCTOR" is not in the Schema q = '''MATCH (n:patient)-[:WRONG_LINK_TO_DOCTOR]-(m) RETURN n, m''' result = db.query(q) assert len(result) == 0 # Count the links from the "patient" data node (the root) assert db.count_links(match=root_id, rel_name="HAS_RESULT", rel_dir="OUT", neighbor_labels="result") == 1 assert db.count_links(match=root_id, rel_name="SCHEMA", rel_dir="OUT", neighbor_labels="CLASS") == 1 assert db.count_links(match=root_id, rel_name="imported_data", rel_dir="IN", neighbor_labels="Import Data") == 1 assert db.count_links(match=root_id, rel_name="WRONG_LINK_TO_DOCTOR", rel_dir="BOTH") == 0 # Locate the "result" data node, and count the links in/out of it match = db.find(labels="result") assert db.count_links(match=match, rel_name="HAS_RESULT", rel_dir="IN", neighbor_labels="patient") == 1 assert db.count_links(match=match, rel_name="SCHEMA", rel_dir="OUT", neighbor_labels="CLASS") == 1 def test_create_data_nodes_from_python_data_6(db): db.empty_dbase() sch_info = create_sample_schema_1() # Schema with patient/result/doctor # Add to the Schema the "Import Data" node, and a link to the Class of the import's root sch_import = NeoSchema.new_class_with_properties(class_name="Import Data", property_list=["source", "date"]) NeoSchema.create_class_relationship(from_id=sch_import, to_id=sch_info["patient"], rel_name="imported_data") data = { "name": "Stephanie", "age": 23, "referred by": None, "HAS_RESULT": { "biomarker": "insulin", "value": 123., "intruder": "the schema doesn't know me" }, "balance": 150.25, "extraneous": "I don't belong", "IS_ATTENDED_BY" : { "name": "Dr. Kane", "hospital": "Mt. Zion", "specialty": "OB/GYN" }, "insurance": False } # Import node_id_list = NeoSchema.create_data_nodes_from_python_data(data, class_name="patient") assert len(node_id_list) == 1 root_id = node_id_list[0] # Traverse a loop in the graph, from the patient data node, back to itself, # and finally to the `Import Data` node - going thru data and schema nodes q = ''' MATCH (p:patient {name: "Stephanie", age: 23, balance: 150.25})-[:HAS_RESULT]-> (r:result {biomarker:"insulin", value: 123.0})-[:SCHEMA]->(cl_r:CLASS {name:"result"}) <-[:HAS_RESULT]-(cl_p:CLASS {name:"patient"})<-[:SCHEMA]-(p)<-[:imported_data]-(i: `Import Data`) WHERE i.date = date() AND id(p) = $root_id RETURN p, r, cl_r, cl_p, i ''' result = db.query(q, data_binding={"root_id": root_id}) #print(result) assert len(result) == 1 # Again, traverse a loop in the graph, from the patient data node, back to itself, # but this time going thru the `doctor` data and schema nodes q = ''' MATCH (p:patient {name: "Stephanie", age: 23, balance: 150.25})-[:IS_ATTENDED_BY]-> (d:doctor {name:"Dr. Kane", specialty: "OB/GYN"})-[:SCHEMA]->(cl_d:CLASS {name:"doctor"}) <-[:IS_ATTENDED_BY]-(cl_p:CLASS {name:"patient"})<-[:SCHEMA]-(p) WHERE id(p) = $root_id RETURN p, d, cl_d, cl_p ''' result = db.query(q, data_binding={"root_id": root_id}) #print(result) assert len(result) == 1 # Count the links from the "patient" data node (the root) assert db.count_links(match=root_id, rel_name="HAS_RESULT", rel_dir="OUT", neighbor_labels="result") == 1 assert db.count_links(match=root_id, rel_name="IS_ATTENDED_BY", rel_dir="OUT", neighbor_labels="doctor") == 1 assert db.count_links(match=root_id, rel_name="SCHEMA", rel_dir="OUT", neighbor_labels="CLASS") == 1 assert db.count_links(match=root_id, rel_name="imported_data", rel_dir="IN", neighbor_labels="Import Data") == 1 # Locate the "result" data node, and count the links in/out of it match = db.find(labels="result") assert db.count_links(match=match, rel_name="HAS_RESULT", rel_dir="IN", neighbor_labels="patient") == 1 assert db.count_links(match=match, rel_name="SCHEMA", rel_dir="OUT", neighbor_labels="CLASS") == 1 # Locate the "doctor" data node, and count the links in/out of it match = db.find(labels="doctor") assert db.count_links(match=match, rel_name="IS_ATTENDED_BY", rel_dir="IN", neighbor_labels="patient") == 1 assert db.count_links(match=match, rel_name="SCHEMA", rel_dir="OUT", neighbor_labels="CLASS") == 1 # Locate the "Import Data" data node, and count the links in/out of it match = db.find(labels="Import Data") assert db.count_links(match=match, rel_name="imported_data", rel_dir="OUT", neighbor_labels="patient") == 1 assert db.count_links(match=match, rel_name="SCHEMA", rel_dir="OUT", neighbor_labels="CLASS") == 1 def test_create_data_nodes_from_python_data_7(db): db.empty_dbase() sch_info = create_sample_schema_2() # Class "quotes" with relationship "in_category" to class "Categories" # Add to the Schema the "Import Data" node, and a link to the Class of the import's root sch_import = NeoSchema.new_class_with_properties(class_name="Import Data", property_list=["source", "date"]) NeoSchema.create_class_relationship(from_id=sch_import, to_id=sch_info["quotes"], rel_name="imported_data") data = [ { "quote": "I wasn't kissing her. I was whispering in her mouth", "attribution": "Chico Marx" } ] # Import node_id_list = NeoSchema.create_data_nodes_from_python_data(data, class_name="quotes") print("node_id_list: ", node_id_list) assert len(node_id_list) == 1 root_id = node_id_list[0] # Traverse a loop in the graph, from the `quotes` data node, back to itself, # going thru the data and schema nodes q = ''' MATCH (q :quotes {attribution: "Chico Marx", quote: "I wasn't kissing her. I was whispering in her mouth"}) -[:SCHEMA]->(cl_q :CLASS {name:"quotes"}) <-[:imported_data]-(cl_i :CLASS {name:"Import Data"})<-[:SCHEMA]-(i: `Import Data`) -[:imported_data]->(q) WHERE i.date = date() AND id(q) = $quote_id RETURN q, cl_q, cl_i ''' result = db.query(q, data_binding={"quote_id": root_id}) #print(result) assert len(result) == 1 # Locate the "Import Data" data node, and count the links in/out of it match = db.find(labels="Import Data") assert db.count_links(match=match, rel_name="imported_data", rel_dir="OUT", neighbor_labels="quotes") == 1 assert db.count_links(match=match, rel_name="SCHEMA", rel_dir="OUT", neighbor_labels="CLASS") == 1 # Locate the "quotes" data node (the root), and count the links in/out of it assert db.count_links(match=root_id, rel_name="SCHEMA", rel_dir="OUT", neighbor_labels="CLASS") == 1 assert db.count_links(match=root_id, rel_name="imported_data", rel_dir="IN", neighbor_labels="Import Data") == 1 def test_create_data_nodes_from_python_data_8(db): # Similar to test_create_data_nodes_from_python_data_8, but importing 2 quotes instead of 1, # and introducing non-Schema data db.empty_dbase() sch_info = create_sample_schema_2() # Class "quotes" with relationship "in_category" to class "Categories" # Add to the Schema the "Import Data" node, and a link to the Class of the import's root sch_import = NeoSchema.new_class_with_properties(class_name="Import Data", property_list=["source", "date"]) NeoSchema.create_class_relationship(from_id=sch_import, to_id=sch_info["quotes"], rel_name="imported_data") data = [ { "quote": "I wasn't kissing her. I was whispering in her mouth", "attribution": "Chico Marx" }, { "quote": "Inspiration exists, but it has to find us working", "attribution": "Pablo Picasso", "extraneous": "I don't belong in the Schema" }, { "junk": "This whole record has no place in the Schema" } ] # Import node_id_list = NeoSchema.create_data_nodes_from_python_data(data, class_name="quotes") print("node_id_list: ", node_id_list) assert len(node_id_list) == 2 # Locate the "Import Data" data node match = db.find(labels="Import Data") assert db.count_links(match=match, rel_name="imported_data", rel_dir="OUT", neighbor_labels="quotes") == 2 assert db.count_links(match=match, rel_name="SCHEMA", rel_dir="OUT", neighbor_labels="CLASS") == 1 for root_id in node_id_list: # Traverse a loop in the graph, from the `quotes` data node, back to itself, # going thru the data and schema nodes q = ''' MATCH (q :quotes) -[:SCHEMA]->(cl_q :CLASS {name:"quotes"}) <-[:imported_data]-(cl_i :CLASS {name:"Import Data"})<-[:SCHEMA]-(i: `Import Data`) -[:imported_data]->(q) WHERE i.date = date() AND id(q) = $quote_id RETURN q, cl_q, cl_i ''' result = db.query(q, data_binding={"quote_id": root_id}) print(result) assert len(result) == 1 # Locate the "quotes" data node, and count the links in/out of it assert db.count_links(match=root_id, rel_name="SCHEMA", rel_dir="OUT", neighbor_labels="CLASS") == 1 assert db.count_links(match=root_id, rel_name="imported_data", rel_dir="IN", neighbor_labels="Import Data") == 1 def test_create_data_nodes_from_python_data_9(db): # Similar to test_create_data_nodes_from_python_data_8, but also using the class "Categories" db.empty_dbase() sch_info = create_sample_schema_2() # Class "quotes" with relationship "in_category" to class "Categories" # Add to the Schema the "Import Data" node, and a link to the Class of the import's root sch_import = NeoSchema.new_class_with_properties(class_name="Import Data", property_list=["source", "date"]) NeoSchema.create_class_relationship(from_id=sch_import, to_id=sch_info["quotes"], rel_name="imported_data") data = [ { "quote": "I wasn't kissing her. I was whispering in her mouth", "attribution": "Chico Marx", "in_category": { "name": "Literature", "remarks": "English only", "junk": "trying to sneak in" } }, { "quote": "Inspiration exists, but it has to find us working", "attribution": "Pablo Picasso", "in_category": { "name": "Famous Quotes" } } ] # Import node_id_list = NeoSchema.create_data_nodes_from_python_data(data, class_name="quotes") print("node_id_list: ", node_id_list) assert len(node_id_list) == 2 # Locate the "Import Data" data node match = db.find(labels="Import Data") assert db.count_links(match=match, rel_name="imported_data", rel_dir="OUT", neighbor_labels="quotes") == 2 assert db.count_links(match=match, rel_name="SCHEMA", rel_dir="OUT", neighbor_labels="CLASS") == 1 for root_id in node_id_list: # Locate the "quotes" data node, and count the links in/out of it assert db.count_links(match=root_id, rel_name="SCHEMA", rel_dir="OUT", neighbor_labels="CLASS") == 1 assert db.count_links(match=root_id, rel_name="imported_data", rel_dir="IN", neighbor_labels="Import Data") == 1 assert db.count_links(match=root_id, rel_name="in_category", rel_dir="OUT", neighbor_labels="Categories") == 1 # Traverse a loop in the graph, from the `quotes` data node, back to itself, # going thru the data and schema nodes q = ''' MATCH (q :quotes) -[:SCHEMA]->(cl_q :CLASS {name:"quotes"}) <-[:imported_data]-(cl_i :CLASS {name:"Import Data"})<-[:SCHEMA]-(i: `Import Data`) -[:imported_data]->(q) WHERE i.date = date() AND id(q) = $quote_id RETURN q, cl_q, cl_i ''' result = db.query(q, data_binding={"quote_id": root_id}) #print(result) assert len(result) == 1 # Traverse a longer loop in the graph, again from the `quotes` data node to itself, # but this time also passing thru the category data and schema nodes q = ''' MATCH (q :quotes)-[:in_category]->(cat :Categories) -[:SCHEMA]->(cl_c :CLASS {name:"Categories"})<-[:in_category]- (cl_q :CLASS {name:"quotes"}) <-[:imported_data]-(cl_i :CLASS {name:"Import Data"})<-[:SCHEMA]-(i: `Import Data`) -[:imported_data]->(q) WHERE i.date = date() AND id(q) = $quote_id RETURN q, cat, cl_q, cl_i ''' result = db.query(q, data_binding={"quote_id": root_id}) #print(result) assert len(result) == 1 record = result[0] author = record["q"]["attribution"] assert author == 'Chico Marx' or author == 'Pablo Picasso' if author == 'Chico Marx': assert record["cat"]["name"] == "Literature" assert record["q"]["quote"] == "I wasn't kissing her. I was whispering in her mouth" else: assert record["cat"]["name"] == "Famous Quotes" assert record["q"]["quote"] == "Inspiration exists, but it has to find us working" # END of for loop # Add an extra quote, connected to 2 categories data = { "quote": "My destination is no longer a place, rather a new way of seeing", "attribution": "Proust", "in_category": [ { "name": "French Literature" } , { "name": "Philosophy" } ], "verified": False } # Import new_node_id_list = NeoSchema.create_data_nodes_from_python_data(data, class_name="quotes") #print("new_node_id_list: ", new_node_id_list) assert len(new_node_id_list) == 1 new_root_id = new_node_id_list[0] # Locate the latest "quotes" data node, and count the links in/out of it assert db.count_links(match=new_root_id, rel_name="imported_data", rel_dir="IN", neighbor_labels="Import Data") == 1 assert db.count_links(match=new_root_id, rel_name="in_category", rel_dir="OUT", neighbor_labels="Categories") == 2 assert db.count_links(match=new_root_id, rel_name="SCHEMA", rel_dir="OUT", neighbor_labels="CLASS") == 1 # Traverse a loop in the graph, from the `quotes` data node back to itself, # going thru the 2 category data nodes and their shared Schema node q = ''' MATCH (q :quotes)-[:in_category]->(cat1 :Categories {name: "French Literature"}) -[:SCHEMA]->(cl_c :CLASS {name:"Categories"}) <-[:SCHEMA]-(cat2 :Categories {name: "Philosophy"}) <-[:in_category]-(q) WHERE id(q) = $quote_id RETURN q, cat1, cl_c, cat2 ''' result = db.query(q, data_binding={"quote_id": new_root_id}) #print(result) assert len(result) == 1 record = result[0] assert record["q"]["attribution"] == "Proust" assert record["q"]["quote"] == "My destination is no longer a place, rather a new way of seeing" assert record["q"]["verified"] == False # Locate the data node for the Class "Import Data", and count the links in/out of it match = db.find(labels="CLASS", key_name="name", key_value="Import Data") assert db.count_links(match=match, rel_name="SCHEMA", rel_dir="IN", neighbor_labels="Import Data") == 2 assert db.count_links(match=match, rel_name="imported_data", rel_dir="OUT", neighbor_labels="CLASS") == 1 # Verify the data types q = ''' MATCH (n) WHERE id(n) = $quote_id RETURN apoc.meta.cypher.types(n) AS data_types ''' data_types = db.query(q, data_binding={"quote_id": new_root_id}, single_cell="data_types") #print(data_types) assert data_types == {'verified': 'BOOLEAN', 'attribution': 'STRING', 'quote': 'STRING', 'item_id': 'INTEGER'}
44.463373
120
0.605479
3,534
26,100
4.254103
0.081494
0.035919
0.031994
0.0443
0.824465
0.812492
0.800652
0.788945
0.765931
0.763004
0
0.011599
0.266667
26,100
586
121
44.539249
0.773877
0.177701
0
0.65736
0
0.022843
0.333053
0.051235
0
0
0
0
0.200508
1
0.025381
false
0
0.14467
0
0.170051
0.010152
0
0
0
null
0
0
0
1
1
1
1
1
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
null
0
0
0
0
0
0
0
0
0
0
0
0
0
6
4e51921e5b118fffffcbc443b9ecf21dc41de5d2
225
py
Python
ontquery/__init__.py
tmsincomb/ontquery
aff90a66437559ddc7a0dd8ed8d42c13d535361f
[ "MIT" ]
1
2021-11-28T23:51:22.000Z
2021-11-28T23:51:22.000Z
ontquery/__init__.py
tmsincomb/ontquery
aff90a66437559ddc7a0dd8ed8d42c13d535361f
[ "MIT" ]
25
2018-03-22T00:39:06.000Z
2021-08-05T20:35:32.000Z
ontquery/__init__.py
tmsincomb/ontquery
aff90a66437559ddc7a0dd8ed8d42c13d535361f
[ "MIT" ]
1
2018-11-08T23:16:55.000Z
2018-11-08T23:16:55.000Z
from ontquery.query import OntQuery, OntQueryCli from ontquery.terms import OntCuries, OntId, OntTerm from ontquery import plugin __all__ = ['OntCuries', 'OntId', 'OntTerm', 'OntQuery', 'OntQueryCli'] __version__ = '0.2.8'
28.125
70
0.76
27
225
6.037037
0.555556
0.220859
0.257669
0
0
0
0
0
0
0
0
0.015152
0.12
225
7
71
32.142857
0.808081
0
0
0
0
0
0.2
0
0
0
0
0
0
1
0
false
0
0.6
0
0.6
0
1
0
0
null
1
1
0
0
0
0
0
0
0
0
0
0
0
1
0
0
0
0
0
0
0
0
0
0
null
0
0
0
0
0
0
0
0
1
0
1
0
0
6
4e68b61fd0f5bf90a0d85e3610556a48c748c1dd
29
py
Python
code/dpp/centers/splines/__init__.py
bsouhaib/qf-tpp
a5adf3f7203b920528c1c397329c4afd9039c3b4
[ "MIT" ]
null
null
null
code/dpp/centers/splines/__init__.py
bsouhaib/qf-tpp
a5adf3f7203b920528c1c397329c4afd9039c3b4
[ "MIT" ]
null
null
null
code/dpp/centers/splines/__init__.py
bsouhaib/qf-tpp
a5adf3f7203b920528c1c397329c4afd9039c3b4
[ "MIT" ]
null
null
null
from .splines_utils import *
14.5
28
0.793103
4
29
5.5
1
0
0
0
0
0
0
0
0
0
0
0
0.137931
29
1
29
29
0.88
0
0
0
0
0
0
0
0
0
0
0
0
1
0
true
0
1
0
1
0
1
1
0
null
0
0
0
0
0
0
0
0
0
0
0
0
0
1
0
0
0
0
0
0
0
0
0
0
null
0
0
0
0
0
0
1
0
1
0
1
0
0
6
4e8b22e8f1306c05ef156e89e39585a504ea8c29
31
py
Python
farm_management/users/views/__init__.py
alexanders0/farm-management
53ed821bbbed312848cf331f8f961ef16c59fb99
[ "MIT" ]
1
2021-07-11T23:26:10.000Z
2021-07-11T23:26:10.000Z
farm_management/users/views/__init__.py
alexanders0/farm-management
53ed821bbbed312848cf331f8f961ef16c59fb99
[ "MIT" ]
1
2021-07-13T02:09:37.000Z
2021-07-17T09:30:15.000Z
farm_management/users/views/__init__.py
alexanders0/farm-management
53ed821bbbed312848cf331f8f961ef16c59fb99
[ "MIT" ]
null
null
null
from .users import UserViewSet
15.5
30
0.83871
4
31
6.5
1
0
0
0
0
0
0
0
0
0
0
0
0.129032
31
1
31
31
0.962963
0
0
0
0
0
0
0
0
0
0
0
0
1
0
true
0
1
0
1
0
1
1
0
null
0
0
0
0
0
0
0
0
0
0
0
0
0
1
0
0
0
0
0
0
0
0
0
0
null
0
0
0
0
0
0
1
0
1
0
1
0
0
6
4ead5749dcb225ee8bbc27e19af1a7455dcd288e
360
py
Python
utils.py
jroivas/klapi
786f614d1bf0c40b6186501ef7fd8e1855d2a811
[ "MIT" ]
3
2018-02-21T17:54:14.000Z
2019-08-31T21:34:14.000Z
utils.py
jroivas/klapi
786f614d1bf0c40b6186501ef7fd8e1855d2a811
[ "MIT" ]
null
null
null
utils.py
jroivas/klapi
786f614d1bf0c40b6186501ef7fd8e1855d2a811
[ "MIT" ]
4
2018-02-21T21:50:23.000Z
2021-11-25T06:56:33.000Z
import random import string import uuid def generatePassword(characters=8): # Disabling 0 and O to prevent misreadings return ''.join(random.SystemRandom().choice(string.letters.replace('O','') + string.digits.replace('0','')) for _ in range(characters)) def generateID(): return str(uuid.uuid4()) def generateApiKey(): return generateID()
24
139
0.716667
44
360
5.840909
0.659091
0
0
0
0
0
0
0
0
0
0
0.012987
0.144444
360
14
140
25.714286
0.821429
0.111111
0
0
1
0
0.006309
0
0
0
0
0
0
1
0.333333
false
0.111111
0.333333
0.333333
1
0
0
0
0
null
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
0
0
0
null
0
0
0
0
0
1
0
1
1
1
1
0
0
6
4ed09b86ee8fee898c014e6a5e644dac64447c46
96
py
Python
venv/lib/python3.8/site-packages/cffi/cparser.py
Retraces/UkraineBot
3d5d7f8aaa58fa0cb8b98733b8808e5dfbdb8b71
[ "MIT" ]
2
2022-03-13T01:58:52.000Z
2022-03-31T06:07:54.000Z
venv/lib/python3.8/site-packages/cffi/cparser.py
DesmoSearch/Desmobot
b70b45df3485351f471080deb5c785c4bc5c4beb
[ "MIT" ]
19
2021-11-20T04:09:18.000Z
2022-03-23T15:05:55.000Z
venv/lib/python3.8/site-packages/cffi/cparser.py
DesmoSearch/Desmobot
b70b45df3485351f471080deb5c785c4bc5c4beb
[ "MIT" ]
null
null
null
/home/runner/.cache/pip/pool/ac/ef/f5/a442d1c35808d431359b8822da293924c7e9c68b800022d7a513e55440
96
96
0.895833
9
96
9.555556
1
0
0
0
0
0
0
0
0
0
0
0.46875
0
96
1
96
96
0.427083
0
0
0
0
0
0
0
0
1
0
0
0
0
null
null
0
0
null
null
0
1
0
0
null
0
0
0
0
0
0
0
0
0
0
1
0
0
1
0
0
1
0
0
0
0
0
0
0
null
1
0
0
0
1
0
0
0
0
0
0
0
0
6
14f8f3b64dae2bee5ae5872ffbfcb6c6724b53f4
22
py
Python
signalr/hubs/__init__.py
talboren/signalr-client-py
bc41ab6602348258140372a5d78dc0e4f8f6205d
[ "Apache-2.0" ]
58
2015-08-28T18:45:54.000Z
2022-01-21T17:53:43.000Z
signalr/hubs/__init__.py
talboren/signalr-client-py
bc41ab6602348258140372a5d78dc0e4f8f6205d
[ "Apache-2.0" ]
48
2015-08-29T18:19:59.000Z
2021-07-13T07:32:40.000Z
signalr/hubs/__init__.py
talboren/signalr-client-py
bc41ab6602348258140372a5d78dc0e4f8f6205d
[ "Apache-2.0" ]
67
2015-08-28T22:44:47.000Z
2022-03-03T12:37:14.000Z
from ._hub import Hub
11
21
0.772727
4
22
4
0.75
0
0
0
0
0
0
0
0
0
0
0
0.181818
22
1
22
22
0.888889
0
0
0
0
0
0
0
0
0
0
0
0
1
0
true
0
1
0
1
0
1
1
0
null
0
0
0
0
0
0
0
0
0
0
0
0
0
1
0
0
0
0
0
0
0
0
0
0
null
0
0
0
0
0
0
1
0
1
0
1
0
0
6
09181bda01b879cac99a828ce93251a3f19decd3
2,001
py
Python
test/test_user_reset_password_requests_api.py
Apteco/apteco-api
7440c98ab10ea6d8a5997187f6fc739ce1c75d2b
[ "Apache-2.0" ]
2
2020-05-21T14:24:16.000Z
2020-12-03T19:56:34.000Z
test/test_user_reset_password_requests_api.py
Apteco/apteco-api
7440c98ab10ea6d8a5997187f6fc739ce1c75d2b
[ "Apache-2.0" ]
null
null
null
test/test_user_reset_password_requests_api.py
Apteco/apteco-api
7440c98ab10ea6d8a5997187f6fc739ce1c75d2b
[ "Apache-2.0" ]
null
null
null
# coding: utf-8 """ Apteco API An API to allow access to Apteco Marketing Suite resources # noqa: E501 The version of the OpenAPI document: v2 Contact: [email protected] Generated by: https://openapi-generator.tech """ from __future__ import absolute_import import unittest import apteco_api from apteco_api.api.user_reset_password_requests_api import UserResetPasswordRequestsApi # noqa: E501 from apteco_api.rest import ApiException class TestUserResetPasswordRequestsApi(unittest.TestCase): """UserResetPasswordRequestsApi unit test stubs""" def setUp(self): self.api = apteco_api.api.user_reset_password_requests_api.UserResetPasswordRequestsApi() # noqa: E501 def tearDown(self): pass def test_user_reset_password_requests_confirm_reset_password_request(self): """Test case for user_reset_password_requests_confirm_reset_password_request Confirms a given reset password request and changes the password # noqa: E501 """ pass def test_user_reset_password_requests_create_reset_password_request(self): """Test case for user_reset_password_requests_create_reset_password_request Creates a new reset password requests, which will check that the provided email address exists and then issue a confirmation notification # noqa: E501 """ pass def test_user_reset_password_requests_get_reset_password_request(self): """Test case for user_reset_password_requests_get_reset_password_request Requires OrbitAdmin: Returns details for a given reset password request # noqa: E501 """ pass def test_user_reset_password_requests_get_reset_password_requests(self): """Test case for user_reset_password_requests_get_reset_password_requests Requires OrbitAdmin: Returns all the current reset password requests in the system. # noqa: E501 """ pass if __name__ == '__main__': unittest.main()
31.761905
159
0.749625
249
2,001
5.682731
0.349398
0.20212
0.207774
0.176678
0.466431
0.429682
0.429682
0.421908
0.284806
0.25371
0
0.014312
0.196902
2,001
62
160
32.274194
0.86621
0.493253
0
0.25
0
0
0.008979
0
0
0
0
0
0
1
0.3
false
0.6
0.25
0
0.6
0
0
0
0
null
1
1
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
null
0
0
0
0
0
1
0
1
0
0
1
0
0
6
119da60e693c246bbdc5e969411cea8dcd3424df
219
py
Python
manim_rubikscube/__init__.py
WampyCakes/manim-rubikscube
890cc853e3492e6afa338cfadb72e4df1e4aa632
[ "MIT" ]
20
2020-12-15T01:38:46.000Z
2022-02-25T02:56:50.000Z
manim_rubikscube/__init__.py
WampyCakes/manim-rubikscube
890cc853e3492e6afa338cfadb72e4df1e4aa632
[ "MIT" ]
6
2021-08-07T00:22:04.000Z
2021-11-08T10:49:02.000Z
manim_rubikscube/__init__.py
WampyCakes/manim-rubikscube
890cc853e3492e6afa338cfadb72e4df1e4aa632
[ "MIT" ]
4
2021-05-03T16:11:31.000Z
2021-10-05T12:55:37.000Z
from .cube import * from .cube_animations import * try: import importlib.metadata as importlib_metadata except ModuleNotFoundError: import importlib_metadata __version__ = importlib_metadata.version(__name__)
21.9
51
0.812785
24
219
6.916667
0.5
0.409639
0.277108
0
0
0
0
0
0
0
0
0
0.136986
219
9
52
24.333333
0.878307
0
0
0
0
0
0
0
0
0
0
0
0
1
0
false
0
0.714286
0
0.714286
0
1
0
0
null
1
1
0
0
0
0
0
0
0
0
0
0
0
1
0
0
0
0
0
0
0
0
0
0
null
0
0
0
0
0
0
0
0
1
0
1
0
0
6
e120e8b38359a048db23721f886eb24137bb5457
16,775
py
Python
tests/test_key.py
dajiaji/pyseto
6e3f1259bd1a1671cccd75cb557bb63182f9e01a
[ "MIT" ]
25
2021-09-06T08:53:45.000Z
2022-02-19T20:17:23.000Z
tests/test_key.py
dajiaji/pyseto
6e3f1259bd1a1671cccd75cb557bb63182f9e01a
[ "MIT" ]
124
2021-09-05T05:44:05.000Z
2022-03-27T05:57:25.000Z
tests/test_key.py
dajiaji/pyseto
6e3f1259bd1a1671cccd75cb557bb63182f9e01a
[ "MIT" ]
3
2021-09-11T02:37:09.000Z
2022-01-06T10:49:14.000Z
from secrets import token_bytes import pytest from pyseto import DecryptError, Key, NotSupportedError from pyseto.key_interface import KeyInterface from pyseto.utils import base64url_decode from .utils import load_jwk, load_key class TestKey: """ Tests for Key. """ @pytest.mark.parametrize( "version, purpose, key", [ (1, "local", token_bytes(32)), (2, "local", token_bytes(32)), (3, "local", token_bytes(32)), (4, "local", token_bytes(32)), ], ) def test_key_new_local(self, version, purpose, key): k = Key.new(version, purpose, key) assert isinstance(k, KeyInterface) assert k.version == version assert k.purpose == purpose with pytest.raises(NotSupportedError) as err: k.sign(b"Hello world!") pytest.fail("Key.sign() should fail.") assert "A key for local does not have sign()." in str(err.value) with pytest.raises(NotSupportedError) as err: k.verify(b"xxxxxx") pytest.fail("Key.verify() should fail.") assert "A key for local does not have verify()." in str(err.value) @pytest.mark.parametrize( "version, purpose, key", [ (1, "public", load_key("keys/private_key_rsa.pem")), (1, "public", load_key("keys/public_key_rsa.pem")), (2, "public", load_key("keys/private_key_ed25519.pem")), (2, "public", load_key("keys/public_key_ed25519.pem")), (3, "public", load_key("keys/private_key_ecdsa_p384.pem")), (3, "public", load_key("keys/public_key_ecdsa_p384.pem")), (4, "public", load_key("keys/private_key_ed25519.pem")), (4, "public", load_key("keys/public_key_ed25519.pem")), ], ) def test_key_new_public(self, version, purpose, key): k = Key.new(version, purpose, key) assert isinstance(k, KeyInterface) assert k.version == version assert k.purpose == purpose with pytest.raises(NotSupportedError) as err: k.encrypt(b"Hello world!") pytest.fail("Key.sign() should fail.") assert "A key for public does not have encrypt()." in str(err.value) with pytest.raises(NotSupportedError) as err: k.decrypt(b"xxxxxx") pytest.fail("Key.verify() should fail.") assert "A key for public does not have decrypt()." in str(err.value) @pytest.mark.parametrize( "version, key, msg", [ (1, load_key("keys/private_key_ed25519.pem"), "The key is not RSA key."), (1, load_key("keys/public_key_ed25519.pem"), "The key is not RSA key."), ( 1, load_key("keys/private_key_ecdsa_p384.pem"), "The key is not RSA key.", ), ( 1, load_key("keys/public_key_ecdsa_p384.pem"), "The key is not RSA key.", ), (2, load_key("keys/private_key_rsa.pem"), "The key is not Ed25519 key."), (2, load_key("keys/public_key_rsa.pem"), "The key is not Ed25519 key."), ( 2, load_key("keys/private_key_ecdsa_p384.pem"), "The key is not Ed25519 key.", ), ( 2, load_key("keys/public_key_ecdsa_p384.pem"), "The key is not Ed25519 key.", ), ( 3, load_key("keys/private_key_ed25519.pem"), "The key is not ECDSA key.", ), ( 3, load_key("keys/public_key_ed25519.pem"), "The key is not ECDSA key.", ), (3, load_key("keys/private_key_rsa.pem"), "The key is not ECDSA key."), (3, load_key("keys/public_key_rsa.pem"), "The key is not ECDSA key."), (4, load_key("keys/private_key_rsa.pem"), "The key is not Ed25519 key."), (4, load_key("keys/public_key_rsa.pem"), "The key is not Ed25519 key."), ( 4, load_key("keys/private_key_ecdsa_p384.pem"), "The key is not Ed25519 key.", ), ( 4, load_key("keys/public_key_ecdsa_p384.pem"), "The key is not Ed25519 key.", ), ], ) def test_key_new_public_with_wrong_key(self, version, key, msg): with pytest.raises(ValueError) as err: Key.new(version, "public", key) pytest.fail("Key.new should fail.") assert msg in str(err.value) @pytest.mark.parametrize( "version, purpose, key, msg", [ ("v*", "local", token_bytes(32), "Invalid version: v*."), ("v0", "local", token_bytes(32), "Invalid version: v0."), (0, "local", token_bytes(32), "Invalid version: 0."), ( "v*", "public", load_key("keys/private_key_rsa.pem"), "Invalid version: v*.", ), ( "v0", "public", load_key("keys/private_key_rsa.pem"), "Invalid version: v0.", ), ( 0, "public", load_key("keys/private_key_rsa.pem"), "Invalid version: 0.", ), (1, "xxx", token_bytes(32), "Invalid purpose: xxx."), (1, "public", "-----BEGIN BAD", "Invalid or unsupported PEM format."), ], ) def test_key_new_with_invalid_arg(self, version, purpose, key, msg): with pytest.raises(ValueError) as err: Key.new(version, purpose, key) pytest.fail("Key.new should fail.") assert msg in str(err.value) @pytest.mark.parametrize( "version, key", [ # (1, load_jwk("keys/private_key_rsa.json")), # (1, load_jwk("keys/public_key_rsa.json")), (2, load_jwk("keys/private_key_ed25519.json")), (2, load_jwk("keys/public_key_ed25519.json")), (3, load_jwk("keys/private_key_ecdsa_p384.json")), (3, load_jwk("keys/public_key_ecdsa_p384.json")), (4, load_jwk("keys/private_key_ed25519.json")), (4, load_jwk("keys/public_key_ed25519.json")), ], ) def test_key_from_asymmetric_params(self, version, key): k = Key.from_asymmetric_key_params(version, x=key["x"], y=key["y"], d=key["d"]) assert isinstance(k, KeyInterface) assert k.version == version assert k.purpose == "public" @pytest.mark.parametrize( "paserk", [ "k1.local.AAAAAAAAAAAAAAAA", "k1.public.AAAAAAAAAAAAAAAA", "k2.local.AAAAAAAAAAAAAAAA", "k2.public.AAAAAAAAAAAAAAAA", "k3.local.AAAAAAAAAAAAAAAA", "k3.public.AAAAAAAAAAAAAAAA", "k4.local.AAAAAAAAAAAAAAAA", "k4.public.AAAAAAAAAAAAAAAA", ], ) def test_key_from_paserk_with_wrapping_key_and_password(self, paserk): with pytest.raises(ValueError) as err: Key.from_paserk(paserk, wrapping_key="xxx", password="yyy") pytest.fail("Key.from_paserk should fail.") assert "Only one of wrapping_key or password should be specified." in str(err.value) @pytest.mark.parametrize( "paserk, msg", [ ("k1.local.AAAAAAAAAAAAAAAA", "Invalid PASERK type: local."), ("k1.public.AAAAAAAAAAAAAAAA", "Invalid PASERK type: public."), ("k2.local.AAAAAAAAAAAAAAAA", "Invalid PASERK type: local."), ("k2.public.AAAAAAAAAAAAAAAA", "Invalid PASERK type: public."), ("k3.local.AAAAAAAAAAAAAAAA", "Invalid PASERK type: local."), ("k3.public.AAAAAAAAAAAAAAAA", "Invalid PASERK type: public."), ("k4.local.AAAAAAAAAAAAAAAA", "Invalid PASERK type: local."), ("k4.public.AAAAAAAAAAAAAAAA", "Invalid PASERK type: public."), ], ) def test_key_from_paserk_with_password_for_wrong_paserk(self, paserk, msg): with pytest.raises(ValueError) as err: Key.from_paserk(paserk, password="yyy") pytest.fail("Key.from_paserk should fail.") assert msg in str(err.value) @pytest.mark.parametrize( "paserk, msg", [ ("v1.local.AAAAAAAAAAAAAAAA", "Invalid PASERK version: v1."), ("*.local.AAAAAAAAAAAAAAAA", "Invalid PASERK version: *."), ("k1.xxx.AAAAAAAAAAAAAAAA", "Invalid PASERK key type: xxx."), ], ) def test_key_from_paserk_with_invalid_args(self, paserk, msg): with pytest.raises(ValueError) as err: Key.from_paserk(paserk) pytest.fail("Key.from_paserk should fail.") assert msg in str(err.value) @pytest.mark.parametrize( "version", [ 1, 2, 3, 4, ], ) def test_key_from_paserk_for_local_with_wrong_wrapping_key(self, version): k = Key.new(version, "local", token_bytes(32)) wk1 = token_bytes(32) wk2 = token_bytes(32) wpk = k.to_paserk(wrapping_key=wk1) with pytest.raises(DecryptError) as err: Key.from_paserk(wpk, wrapping_key=wk2) pytest.fail("Key.from_paserk() should fail.") assert "Failed to unwrap a key." in str(err.value) @pytest.mark.parametrize( "version", [ 1, 2, 3, 4, ], ) def test_key_from_paserk_for_local_with_wrong_password(self, version): k = Key.new(version, "local", token_bytes(32)) wk1 = token_bytes(32) wk2 = token_bytes(32) wpk = k.to_paserk(password=wk1) with pytest.raises(DecryptError) as err: Key.from_paserk(wpk, password=wk2) pytest.fail("Key.from_paserk() should fail.") assert "Failed to unwrap a key." in str(err.value) @pytest.mark.parametrize( "version, key", [ (1, load_key("keys/private_key_rsa.pem")), (2, load_key("keys/private_key_ed25519.pem")), (3, load_key("keys/private_key_ecdsa_p384.pem")), (4, load_key("keys/private_key_ed25519.pem")), ], ) def test_key_from_paserk_for_private_key_with_wrong_wrapping_key(self, version, key): k = Key.new(version, "public", key) wk1 = token_bytes(32) wk2 = token_bytes(32) wpk = k.to_paserk(wrapping_key=wk1) with pytest.raises(DecryptError) as err: Key.from_paserk(wpk, wrapping_key=wk2) pytest.fail("Key.from_paserk() should fail.") assert "Failed to unwrap a key." in str(err.value) @pytest.mark.parametrize( "version, key", [ (1, load_key("keys/public_key_rsa.pem")), (2, load_key("keys/public_key_ed25519.pem")), (3, load_key("keys/public_key_ecdsa_p384.pem")), (4, load_key("keys/public_key_ed25519.pem")), ], ) def test_key_from_paserk_for_public_key_with_wrapping_key(self, version, key): k = Key.new(version, "public", key) wk = token_bytes(32) with pytest.raises(ValueError) as err: k.to_paserk(wrapping_key=wk) pytest.fail("to_paserk() should fail.") assert "Public key cannot be wrapped." in str(err.value) @pytest.mark.parametrize( "version, key", [ (1, load_key("keys/public_key_rsa.pem")), (2, load_key("keys/public_key_ed25519.pem")), (3, load_key("keys/public_key_ecdsa_p384.pem")), (4, load_key("keys/public_key_ed25519.pem")), ], ) def test_key_from_paserk_for_public_key_with_password(self, version, key): k = Key.new(version, "public", key) wk = token_bytes(32) with pytest.raises(ValueError) as err: k.to_paserk(password=wk) pytest.fail("to_paserk() should fail.") assert "Public key cannot be wrapped." in str(err.value) @pytest.mark.parametrize( "version, key, msg", [ ( 1, load_jwk("keys/private_key_rsa.json"), "v1.public is not supported on from_key_parameters.", ), (999, load_jwk("keys/private_key_ed25519.json"), "Invalid version: 999."), (0, load_jwk("keys/private_key_ed25519.json"), "Invalid version: 0."), ( 2, {"x": b"xxx", "y": b"", "d": b"ddd"}, "Only one of x or d should be set for v2.public.", ), (2, {"x": b"xxx", "y": b"", "d": b""}, "Failed to load key."), (2, {"x": b"", "y": b"", "d": b"ddd"}, "Failed to load key."), ( 2, {"x": b"", "y": b"", "d": b""}, "x or d should be set for v2.public.", ), ( 3, {"x": b"xxx", "y": b"", "d": b"ddd"}, "x and y (and d) should be set for v3.public.", ), ( 3, {"x": b"", "y": b"yyy", "d": b"ddd"}, "x and y (and d) should be set for v3.public.", ), (3, {"x": b"xxx", "y": b"yyy", "d": b""}, "Failed to load key."), ( 3, { "x": base64url_decode("_XyN9woHaS0mPimSW-etwJMEDSzxIMjp4PjezavU8SHJoClz1bQrcmPb1ZJxHxhI"), "y": base64url_decode("GCNfc32p9sRotx7u2oDGJ3Eqz6q5zPHLdizNn83oRsUTN31eCWfGLHWRury3xF50"), "d": b"ddd", }, "Failed to load key.", ), ( 4, {"x": b"xxx", "y": b"", "d": b"ddd"}, "Only one of x or d should be set for v4.public.", ), (4, {"x": b"xxx", "y": b"", "d": b""}, "Failed to load key."), (4, {"x": b"", "y": b"", "d": b"ddd"}, "Failed to load key."), ( 4, {"x": b"", "y": b"", "d": b""}, "x or d should be set for v4.public.", ), ], ) def test_key_from_asymmetric_params_with_invalid_arg(self, version, key, msg): with pytest.raises(ValueError) as err: Key.from_asymmetric_key_params(version, x=key["x"], y=key["y"], d=key["d"]) pytest.fail("Key.from_asymmetric_key_params() should fail.") assert msg in str(err.value) @pytest.mark.parametrize( "version, purpose, key", [ (1, "public", load_key("keys/public_key_rsa.pem")), (2, "public", load_key("keys/public_key_ed25519.pem")), (3, "public", load_key("keys/public_key_ecdsa_p384.pem")), (4, "public", load_key("keys/public_key_ed25519.pem")), ], ) def test_key_to_paserk_public(self, version, purpose, key): k = Key.new(version, purpose, key) assert k.to_paserk().startswith(f"k{k.version}.public.") @pytest.mark.parametrize( "version, purpose, key", [ (1, "public", load_key("keys/private_key_rsa.pem")), (2, "public", load_key("keys/private_key_ed25519.pem")), (3, "public", load_key("keys/private_key_ecdsa_p384.pem")), (4, "public", load_key("keys/private_key_ed25519.pem")), ], ) def test_key_to_paserk_secret(self, version, purpose, key): k = Key.new(version, purpose, key) assert k.to_paserk().startswith(f"k{k.version}.secret.") @pytest.mark.parametrize( "version, purpose, key", [ (1, "local", token_bytes(32)), (2, "local", token_bytes(32)), (3, "local", token_bytes(32)), (4, "local", token_bytes(32)), (1, "public", load_key("keys/private_key_rsa.pem")), (2, "public", load_key("keys/private_key_ed25519.pem")), (3, "public", load_key("keys/private_key_ecdsa_p384.pem")), (4, "public", load_key("keys/private_key_ed25519.pem")), ], ) def test_key_to_paserk_secret_with_wrapping_key_and_password(self, version, purpose, key): k = Key.new(version, purpose, key) with pytest.raises(ValueError) as err: k.to_paserk(wrapping_key="xxx", password="yyy") pytest.fail("to_paserk() should fail.") assert "Only one of wrapping_key or password should be specified." in str(err.value)
38.652074
110
0.536095
2,018
16,775
4.265114
0.064916
0.047171
0.06518
0.056466
0.882305
0.856745
0.769374
0.753456
0.73568
0.710352
0
0.037802
0.321908
16,775
433
111
38.741339
0.718857
0.00608
0
0.568579
0
0
0.306676
0.136768
0
0
0
0
0.067332
1
0.042394
false
0.032419
0.014963
0
0.05985
0
0
0
0
null
0
0
0
1
1
1
1
1
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
null
0
0
0
0
0
0
0
0
0
0
0
0
0
6
012e1de5dd6d5c0f6de8094bdd072d509d7efa1d
257,269
py
Python
instances/passenger_demand/pas-20210422-1717-int8e-1/29.py
LHcau/scheduling-shared-passenger-and-freight-transport-on-a-fixed-infrastructure
bba1e6af5bc8d9deaa2dc3b83f6fe9ddf15d2a11
[ "BSD-3-Clause" ]
null
null
null
instances/passenger_demand/pas-20210422-1717-int8e-1/29.py
LHcau/scheduling-shared-passenger-and-freight-transport-on-a-fixed-infrastructure
bba1e6af5bc8d9deaa2dc3b83f6fe9ddf15d2a11
[ "BSD-3-Clause" ]
null
null
null
instances/passenger_demand/pas-20210422-1717-int8e-1/29.py
LHcau/scheduling-shared-passenger-and-freight-transport-on-a-fixed-infrastructure
bba1e6af5bc8d9deaa2dc3b83f6fe9ddf15d2a11
[ "BSD-3-Clause" ]
null
null
null
""" PASSENGERS """ numPassengers = 15114 passenger_arriving = ( (7, 3, 2, 4, 5, 2, 1, 3, 1, 0, 0, 0, 0, 7, 5, 1, 2, 3, 1, 2, 0, 3, 2, 3, 1, 0), # 0 (3, 3, 3, 6, 3, 2, 1, 5, 3, 2, 0, 0, 0, 4, 4, 3, 2, 7, 3, 4, 0, 0, 2, 1, 1, 0), # 1 (7, 4, 1, 1, 4, 1, 0, 4, 1, 1, 0, 0, 0, 4, 4, 4, 3, 4, 1, 1, 2, 2, 5, 0, 0, 0), # 2 (4, 4, 3, 3, 0, 0, 2, 1, 1, 4, 0, 1, 0, 6, 4, 6, 3, 4, 3, 3, 2, 3, 0, 1, 0, 0), # 3 (8, 6, 7, 3, 6, 2, 0, 3, 1, 1, 0, 1, 0, 4, 0, 6, 0, 2, 2, 1, 1, 5, 4, 2, 1, 0), # 4 (2, 3, 8, 3, 3, 2, 3, 2, 0, 1, 2, 0, 0, 3, 4, 5, 1, 8, 3, 2, 1, 4, 1, 0, 0, 0), # 5 (6, 12, 3, 5, 1, 1, 1, 1, 2, 2, 1, 0, 0, 7, 4, 1, 6, 1, 3, 3, 2, 2, 1, 1, 0, 0), # 6 (6, 7, 4, 2, 3, 4, 3, 2, 2, 0, 2, 1, 0, 5, 3, 3, 4, 5, 4, 0, 4, 2, 1, 0, 1, 0), # 7 (6, 4, 8, 4, 8, 1, 1, 2, 2, 0, 1, 0, 0, 7, 6, 5, 6, 5, 2, 4, 4, 1, 1, 0, 3, 0), # 8 (7, 10, 8, 3, 4, 3, 5, 5, 2, 1, 0, 0, 0, 9, 9, 4, 2, 3, 2, 2, 1, 1, 3, 3, 0, 0), # 9 (2, 8, 6, 5, 5, 4, 4, 2, 2, 0, 2, 0, 0, 8, 6, 4, 4, 10, 4, 6, 0, 2, 1, 3, 0, 0), # 10 (7, 3, 7, 8, 4, 3, 2, 2, 0, 1, 2, 0, 0, 7, 6, 3, 1, 1, 4, 3, 0, 4, 0, 3, 1, 0), # 11 (6, 4, 8, 7, 3, 4, 3, 2, 5, 0, 2, 1, 0, 4, 8, 6, 6, 2, 5, 4, 0, 4, 1, 1, 1, 0), # 12 (5, 11, 5, 7, 0, 3, 0, 2, 5, 3, 1, 0, 0, 6, 7, 3, 4, 8, 6, 5, 3, 3, 1, 1, 1, 0), # 13 (11, 6, 3, 9, 6, 0, 6, 9, 6, 0, 0, 0, 0, 9, 4, 3, 4, 8, 0, 1, 0, 2, 5, 0, 1, 0), # 14 (7, 5, 3, 13, 4, 1, 2, 5, 0, 2, 1, 0, 0, 5, 6, 3, 2, 4, 5, 5, 1, 1, 2, 1, 0, 0), # 15 (4, 6, 9, 3, 5, 4, 3, 1, 1, 3, 0, 0, 0, 4, 5, 4, 5, 9, 3, 2, 2, 6, 2, 1, 0, 0), # 16 (9, 7, 5, 5, 5, 0, 1, 0, 2, 2, 1, 1, 0, 7, 11, 7, 2, 2, 3, 5, 4, 2, 3, 1, 1, 0), # 17 (4, 12, 2, 6, 4, 2, 3, 4, 6, 1, 2, 0, 0, 6, 11, 5, 8, 6, 3, 2, 2, 3, 3, 2, 0, 0), # 18 (10, 8, 8, 6, 5, 0, 1, 1, 3, 1, 1, 0, 0, 3, 3, 1, 7, 7, 9, 1, 0, 1, 5, 1, 1, 0), # 19 (8, 7, 4, 4, 9, 3, 3, 6, 3, 0, 1, 0, 0, 8, 7, 9, 5, 12, 5, 1, 4, 4, 1, 3, 1, 0), # 20 (10, 13, 5, 11, 6, 4, 4, 1, 2, 0, 3, 1, 0, 6, 7, 6, 6, 7, 3, 4, 3, 2, 0, 1, 0, 0), # 21 (12, 6, 4, 8, 7, 4, 2, 7, 0, 2, 3, 0, 0, 10, 3, 6, 1, 9, 9, 0, 2, 8, 1, 1, 0, 0), # 22 (8, 9, 6, 7, 7, 4, 2, 5, 2, 2, 1, 2, 0, 12, 6, 1, 7, 6, 5, 2, 1, 3, 1, 2, 0, 0), # 23 (11, 6, 7, 7, 8, 3, 3, 2, 2, 3, 0, 0, 0, 9, 10, 5, 5, 6, 5, 5, 2, 3, 1, 0, 1, 0), # 24 (10, 2, 9, 3, 4, 2, 5, 4, 6, 2, 0, 1, 0, 10, 4, 5, 1, 6, 2, 4, 5, 5, 6, 0, 0, 0), # 25 (13, 8, 10, 10, 5, 3, 4, 2, 1, 1, 1, 0, 0, 11, 4, 5, 6, 5, 4, 5, 1, 2, 4, 0, 0, 0), # 26 (7, 10, 10, 3, 3, 3, 3, 1, 1, 1, 1, 0, 0, 11, 4, 4, 8, 9, 3, 6, 0, 3, 3, 0, 2, 0), # 27 (10, 10, 7, 8, 8, 4, 1, 3, 4, 0, 3, 0, 0, 11, 4, 9, 3, 10, 5, 4, 4, 3, 4, 1, 1, 0), # 28 (8, 5, 9, 6, 6, 5, 3, 0, 8, 1, 1, 0, 0, 9, 6, 4, 5, 5, 3, 3, 1, 2, 3, 1, 1, 0), # 29 (8, 6, 6, 8, 2, 1, 8, 1, 5, 0, 2, 0, 0, 11, 7, 1, 4, 5, 2, 2, 1, 3, 0, 1, 1, 0), # 30 (8, 9, 9, 8, 6, 4, 2, 5, 4, 3, 1, 1, 0, 6, 4, 4, 7, 8, 4, 0, 2, 1, 4, 3, 2, 0), # 31 (6, 5, 12, 7, 8, 3, 3, 2, 1, 2, 1, 0, 0, 8, 2, 2, 6, 6, 6, 3, 2, 6, 2, 3, 0, 0), # 32 (5, 6, 8, 6, 8, 2, 0, 1, 1, 2, 0, 0, 0, 9, 11, 9, 0, 8, 6, 2, 5, 5, 1, 0, 1, 0), # 33 (4, 6, 5, 9, 7, 4, 3, 0, 3, 1, 1, 1, 0, 12, 4, 5, 4, 6, 9, 5, 2, 2, 4, 2, 0, 0), # 34 (11, 4, 8, 7, 6, 4, 2, 1, 1, 1, 1, 0, 0, 7, 9, 4, 7, 3, 1, 4, 4, 3, 4, 2, 1, 0), # 35 (5, 10, 8, 7, 14, 2, 3, 1, 1, 0, 2, 0, 0, 11, 9, 6, 4, 7, 2, 1, 5, 1, 4, 1, 1, 0), # 36 (12, 7, 9, 9, 6, 1, 2, 2, 5, 2, 2, 0, 0, 9, 8, 6, 4, 4, 3, 3, 1, 3, 1, 3, 0, 0), # 37 (11, 6, 5, 11, 2, 2, 2, 2, 4, 1, 1, 0, 0, 11, 5, 4, 5, 5, 2, 2, 2, 1, 2, 2, 2, 0), # 38 (11, 5, 7, 6, 7, 1, 3, 5, 3, 2, 1, 0, 0, 11, 11, 6, 3, 7, 3, 0, 5, 5, 2, 0, 0, 0), # 39 (8, 5, 6, 5, 8, 6, 3, 4, 5, 2, 2, 1, 0, 7, 13, 7, 2, 5, 9, 3, 2, 2, 1, 1, 0, 0), # 40 (4, 10, 8, 12, 6, 1, 1, 2, 1, 1, 0, 0, 0, 10, 3, 1, 6, 14, 3, 6, 2, 3, 2, 0, 2, 0), # 41 (3, 12, 6, 8, 7, 2, 3, 4, 1, 2, 1, 2, 0, 6, 7, 6, 1, 6, 2, 2, 0, 2, 1, 3, 0, 0), # 42 (6, 6, 7, 1, 7, 2, 3, 1, 4, 1, 0, 0, 0, 10, 8, 2, 2, 5, 5, 4, 1, 5, 1, 1, 1, 0), # 43 (5, 10, 4, 4, 1, 4, 2, 3, 2, 2, 3, 1, 0, 15, 5, 1, 7, 0, 4, 2, 1, 2, 1, 1, 0, 0), # 44 (10, 7, 4, 9, 9, 1, 2, 5, 3, 2, 1, 0, 0, 10, 8, 6, 3, 2, 4, 4, 0, 5, 4, 2, 1, 0), # 45 (12, 5, 9, 8, 5, 2, 2, 2, 3, 3, 2, 0, 0, 10, 5, 7, 8, 7, 6, 3, 0, 5, 5, 0, 0, 0), # 46 (11, 6, 11, 12, 7, 1, 4, 3, 4, 0, 2, 2, 0, 14, 5, 4, 4, 9, 3, 4, 6, 2, 3, 2, 0, 0), # 47 (10, 11, 6, 7, 6, 2, 1, 2, 1, 3, 1, 0, 0, 13, 11, 7, 4, 4, 4, 5, 1, 4, 3, 1, 0, 0), # 48 (5, 9, 3, 8, 0, 3, 6, 6, 1, 0, 1, 0, 0, 6, 4, 2, 7, 8, 6, 2, 2, 1, 10, 3, 1, 0), # 49 (8, 10, 7, 8, 10, 3, 3, 4, 2, 1, 1, 2, 0, 7, 11, 6, 1, 13, 3, 5, 0, 0, 0, 0, 1, 0), # 50 (4, 7, 5, 8, 12, 3, 3, 3, 4, 1, 1, 0, 0, 6, 7, 4, 5, 6, 4, 3, 2, 1, 1, 1, 1, 0), # 51 (9, 6, 6, 3, 6, 1, 5, 1, 4, 2, 1, 0, 0, 4, 4, 6, 4, 6, 3, 3, 2, 4, 0, 2, 2, 0), # 52 (13, 7, 2, 3, 7, 2, 6, 5, 4, 0, 0, 2, 0, 12, 6, 6, 4, 7, 2, 2, 2, 4, 5, 1, 0, 0), # 53 (5, 12, 8, 5, 7, 7, 2, 3, 3, 1, 2, 0, 0, 6, 7, 9, 2, 6, 3, 1, 2, 7, 4, 1, 0, 0), # 54 (5, 8, 9, 5, 3, 1, 1, 2, 4, 1, 1, 0, 0, 10, 6, 6, 5, 10, 3, 5, 2, 2, 3, 0, 2, 0), # 55 (10, 8, 5, 10, 5, 4, 4, 1, 2, 1, 2, 0, 0, 3, 3, 5, 5, 5, 4, 3, 2, 2, 2, 1, 1, 0), # 56 (4, 6, 8, 5, 4, 2, 2, 3, 3, 3, 2, 0, 0, 9, 6, 5, 3, 9, 5, 4, 1, 5, 2, 0, 0, 0), # 57 (13, 13, 8, 10, 4, 4, 3, 0, 4, 2, 1, 1, 0, 9, 4, 4, 2, 6, 2, 5, 4, 0, 5, 0, 0, 0), # 58 (9, 5, 7, 12, 6, 3, 2, 4, 5, 2, 3, 2, 0, 9, 9, 2, 4, 8, 5, 2, 2, 2, 4, 0, 0, 0), # 59 (10, 6, 4, 4, 4, 3, 4, 11, 6, 2, 0, 0, 0, 5, 7, 4, 6, 5, 6, 8, 1, 2, 2, 1, 0, 0), # 60 (7, 7, 6, 10, 5, 3, 3, 3, 4, 1, 1, 1, 0, 4, 10, 5, 4, 6, 7, 4, 2, 2, 1, 4, 1, 0), # 61 (10, 3, 6, 5, 3, 2, 2, 3, 1, 2, 2, 0, 0, 6, 6, 1, 2, 5, 2, 1, 1, 1, 2, 2, 1, 0), # 62 (9, 12, 5, 7, 4, 2, 2, 1, 2, 3, 1, 0, 0, 8, 5, 2, 8, 5, 4, 2, 1, 3, 5, 0, 2, 0), # 63 (8, 13, 3, 8, 6, 2, 3, 1, 2, 1, 0, 1, 0, 10, 3, 3, 3, 8, 5, 1, 2, 0, 5, 2, 1, 0), # 64 (9, 8, 4, 5, 8, 7, 7, 3, 1, 1, 2, 2, 0, 15, 7, 4, 8, 3, 4, 2, 0, 3, 3, 3, 0, 0), # 65 (13, 5, 2, 7, 9, 0, 1, 4, 2, 3, 1, 0, 0, 8, 6, 6, 3, 4, 2, 4, 6, 6, 6, 1, 2, 0), # 66 (11, 3, 8, 11, 7, 5, 4, 2, 4, 2, 1, 4, 0, 1, 7, 3, 6, 4, 0, 2, 2, 4, 5, 1, 1, 0), # 67 (5, 7, 6, 3, 6, 3, 2, 3, 4, 3, 1, 0, 0, 6, 7, 5, 4, 5, 4, 4, 3, 3, 1, 3, 1, 0), # 68 (8, 11, 8, 8, 3, 2, 1, 1, 5, 0, 3, 1, 0, 12, 10, 6, 5, 7, 7, 1, 1, 4, 0, 2, 1, 0), # 69 (2, 8, 4, 4, 5, 2, 3, 4, 5, 2, 2, 1, 0, 6, 4, 5, 2, 6, 3, 4, 2, 2, 0, 1, 0, 0), # 70 (6, 11, 4, 12, 8, 3, 7, 0, 1, 0, 0, 0, 0, 8, 9, 5, 0, 9, 3, 2, 3, 3, 3, 0, 1, 0), # 71 (10, 10, 7, 5, 9, 0, 2, 3, 4, 2, 1, 0, 0, 5, 8, 3, 2, 13, 1, 2, 1, 5, 2, 0, 0, 0), # 72 (9, 9, 7, 4, 4, 10, 2, 2, 7, 2, 0, 1, 0, 6, 3, 5, 1, 8, 4, 2, 0, 0, 3, 6, 0, 0), # 73 (7, 8, 1, 1, 12, 2, 1, 1, 5, 2, 1, 1, 0, 6, 4, 6, 2, 3, 2, 2, 4, 3, 0, 2, 0, 0), # 74 (10, 9, 7, 7, 7, 4, 2, 4, 4, 2, 2, 1, 0, 6, 4, 6, 3, 8, 2, 4, 4, 5, 4, 3, 0, 0), # 75 (11, 9, 8, 4, 5, 4, 3, 4, 1, 2, 3, 0, 0, 6, 2, 7, 2, 7, 3, 3, 2, 1, 2, 1, 2, 0), # 76 (6, 6, 5, 6, 6, 1, 2, 3, 1, 0, 0, 1, 0, 7, 9, 4, 4, 2, 3, 4, 0, 2, 5, 1, 1, 0), # 77 (11, 8, 12, 6, 14, 1, 0, 1, 2, 0, 0, 1, 0, 16, 9, 4, 2, 8, 2, 3, 6, 0, 4, 2, 0, 0), # 78 (4, 6, 3, 8, 6, 6, 4, 3, 2, 3, 0, 0, 0, 8, 5, 2, 5, 7, 4, 7, 2, 4, 2, 0, 1, 0), # 79 (12, 7, 5, 7, 6, 2, 0, 4, 2, 1, 0, 2, 0, 4, 5, 7, 5, 7, 2, 5, 2, 4, 2, 1, 0, 0), # 80 (9, 8, 6, 6, 7, 4, 0, 1, 4, 3, 0, 0, 0, 4, 4, 7, 7, 5, 5, 4, 0, 4, 1, 2, 1, 0), # 81 (8, 10, 3, 9, 3, 3, 3, 2, 3, 1, 0, 1, 0, 10, 5, 5, 3, 5, 0, 5, 0, 4, 2, 2, 1, 0), # 82 (5, 3, 7, 7, 3, 1, 1, 5, 0, 3, 0, 0, 0, 8, 10, 5, 3, 9, 3, 3, 2, 4, 3, 1, 0, 0), # 83 (12, 10, 4, 4, 11, 2, 6, 3, 6, 2, 0, 0, 0, 3, 5, 9, 1, 6, 5, 5, 2, 2, 2, 0, 0, 0), # 84 (13, 9, 10, 6, 5, 3, 2, 3, 4, 3, 0, 1, 0, 7, 8, 9, 3, 4, 4, 2, 2, 6, 2, 0, 1, 0), # 85 (6, 5, 10, 5, 2, 6, 1, 3, 5, 1, 0, 1, 0, 13, 6, 3, 1, 3, 5, 1, 2, 0, 2, 0, 3, 0), # 86 (5, 5, 5, 7, 8, 4, 5, 1, 5, 0, 1, 0, 0, 13, 3, 5, 3, 9, 1, 5, 1, 1, 3, 0, 0, 0), # 87 (10, 11, 4, 9, 4, 5, 4, 3, 2, 1, 1, 1, 0, 4, 9, 4, 4, 3, 4, 1, 6, 3, 0, 1, 1, 0), # 88 (9, 7, 3, 3, 7, 1, 2, 1, 6, 2, 2, 0, 0, 11, 9, 4, 9, 8, 8, 0, 2, 1, 2, 2, 0, 0), # 89 (5, 11, 8, 6, 5, 0, 6, 4, 2, 1, 2, 2, 0, 13, 9, 4, 4, 3, 3, 4, 4, 3, 1, 0, 0, 0), # 90 (7, 11, 6, 7, 5, 1, 6, 1, 1, 1, 0, 0, 0, 5, 10, 5, 4, 6, 1, 4, 2, 2, 1, 0, 0, 0), # 91 (6, 4, 3, 10, 5, 3, 2, 1, 3, 1, 1, 0, 0, 12, 8, 1, 4, 6, 0, 3, 0, 4, 4, 3, 1, 0), # 92 (9, 9, 7, 9, 7, 3, 1, 2, 1, 0, 1, 0, 0, 9, 10, 2, 4, 5, 3, 3, 0, 2, 1, 1, 2, 0), # 93 (8, 10, 6, 6, 7, 4, 3, 2, 5, 3, 2, 0, 0, 1, 7, 8, 6, 3, 1, 5, 2, 1, 6, 0, 2, 0), # 94 (8, 12, 9, 5, 12, 3, 4, 2, 3, 1, 2, 0, 0, 4, 5, 7, 7, 6, 3, 4, 3, 2, 2, 1, 0, 0), # 95 (5, 8, 3, 4, 10, 6, 2, 0, 8, 2, 2, 0, 0, 8, 8, 4, 4, 3, 4, 2, 2, 2, 2, 4, 2, 0), # 96 (8, 6, 10, 6, 5, 1, 1, 2, 4, 0, 1, 0, 0, 5, 9, 3, 4, 4, 1, 3, 4, 0, 4, 1, 1, 0), # 97 (5, 8, 7, 6, 8, 4, 2, 1, 5, 0, 3, 1, 0, 15, 4, 6, 4, 12, 6, 2, 2, 1, 2, 2, 0, 0), # 98 (7, 10, 6, 10, 10, 0, 0, 1, 2, 0, 1, 1, 0, 6, 9, 7, 5, 5, 2, 1, 1, 2, 4, 1, 0, 0), # 99 (6, 1, 3, 2, 4, 4, 3, 0, 0, 1, 1, 2, 0, 10, 10, 5, 3, 4, 4, 2, 0, 0, 1, 1, 0, 0), # 100 (7, 9, 9, 5, 5, 2, 4, 4, 3, 1, 0, 0, 0, 7, 5, 3, 2, 13, 3, 3, 2, 2, 1, 2, 1, 0), # 101 (5, 4, 5, 5, 9, 5, 1, 0, 4, 0, 2, 1, 0, 7, 2, 5, 2, 3, 4, 2, 0, 1, 0, 1, 1, 0), # 102 (3, 7, 4, 9, 4, 6, 1, 2, 4, 4, 0, 0, 0, 11, 11, 4, 1, 7, 4, 5, 1, 3, 2, 0, 0, 0), # 103 (4, 9, 2, 11, 4, 3, 1, 1, 1, 0, 1, 0, 0, 18, 6, 9, 3, 10, 4, 0, 1, 1, 3, 1, 0, 0), # 104 (7, 3, 8, 7, 7, 6, 4, 3, 4, 1, 1, 1, 0, 7, 6, 3, 2, 9, 3, 1, 1, 5, 3, 1, 3, 0), # 105 (7, 9, 5, 10, 4, 2, 2, 2, 4, 2, 1, 1, 0, 7, 6, 7, 1, 5, 4, 1, 4, 9, 0, 0, 0, 0), # 106 (2, 7, 7, 10, 4, 2, 4, 0, 4, 0, 2, 1, 0, 7, 4, 4, 6, 5, 2, 4, 2, 0, 2, 2, 0, 0), # 107 (8, 7, 6, 8, 6, 1, 6, 4, 7, 2, 2, 1, 0, 6, 4, 1, 3, 10, 3, 2, 4, 4, 2, 0, 0, 0), # 108 (6, 10, 6, 7, 5, 6, 2, 4, 2, 0, 1, 0, 0, 6, 9, 3, 1, 4, 4, 3, 1, 0, 3, 0, 2, 0), # 109 (3, 6, 6, 7, 5, 5, 0, 3, 2, 0, 0, 1, 0, 9, 3, 7, 2, 7, 1, 3, 4, 2, 0, 1, 1, 0), # 110 (7, 6, 11, 11, 2, 1, 0, 3, 1, 0, 0, 1, 0, 9, 1, 5, 3, 7, 2, 3, 1, 2, 2, 1, 0, 0), # 111 (11, 6, 2, 7, 5, 3, 3, 1, 5, 0, 2, 2, 0, 4, 11, 3, 5, 3, 3, 4, 0, 2, 4, 1, 2, 0), # 112 (7, 12, 4, 6, 5, 0, 3, 0, 4, 1, 2, 1, 0, 8, 7, 5, 2, 4, 2, 3, 3, 1, 5, 1, 1, 0), # 113 (7, 7, 6, 6, 6, 5, 2, 0, 3, 1, 1, 0, 0, 9, 4, 6, 0, 6, 4, 4, 4, 6, 0, 0, 1, 0), # 114 (4, 7, 3, 4, 5, 2, 5, 0, 1, 0, 1, 0, 0, 3, 9, 5, 6, 7, 3, 1, 3, 2, 2, 1, 0, 0), # 115 (9, 4, 5, 12, 4, 7, 2, 1, 3, 3, 0, 0, 0, 6, 4, 3, 6, 7, 4, 2, 4, 3, 2, 0, 0, 0), # 116 (9, 7, 9, 4, 8, 3, 6, 2, 3, 0, 0, 0, 0, 10, 5, 2, 2, 7, 7, 4, 4, 1, 1, 3, 1, 0), # 117 (6, 12, 11, 3, 5, 4, 5, 4, 4, 0, 1, 2, 0, 5, 10, 3, 5, 3, 2, 0, 6, 3, 1, 3, 0, 0), # 118 (7, 6, 9, 8, 8, 4, 2, 1, 5, 0, 1, 1, 0, 2, 8, 6, 6, 4, 3, 2, 1, 3, 1, 1, 0, 0), # 119 (6, 7, 8, 5, 7, 2, 1, 4, 2, 1, 1, 0, 0, 7, 4, 6, 2, 4, 4, 3, 0, 9, 0, 2, 0, 0), # 120 (8, 6, 5, 10, 6, 5, 4, 7, 2, 0, 2, 1, 0, 11, 11, 6, 3, 1, 2, 2, 5, 3, 4, 2, 1, 0), # 121 (5, 3, 5, 7, 5, 4, 1, 1, 2, 1, 0, 1, 0, 5, 9, 6, 2, 4, 1, 4, 0, 2, 1, 1, 3, 0), # 122 (7, 2, 5, 5, 3, 2, 0, 2, 2, 2, 1, 1, 0, 6, 4, 2, 2, 6, 2, 3, 2, 1, 0, 2, 0, 0), # 123 (10, 3, 6, 6, 9, 4, 0, 1, 3, 2, 1, 0, 0, 8, 4, 4, 2, 4, 1, 1, 3, 1, 0, 0, 1, 0), # 124 (5, 3, 3, 8, 2, 2, 0, 3, 0, 1, 3, 0, 0, 11, 6, 4, 2, 6, 3, 4, 0, 2, 3, 3, 1, 0), # 125 (7, 5, 6, 8, 4, 2, 2, 3, 3, 2, 1, 0, 0, 12, 6, 3, 4, 6, 3, 4, 4, 2, 2, 2, 2, 0), # 126 (7, 6, 8, 12, 5, 2, 5, 2, 0, 0, 1, 0, 0, 5, 7, 7, 2, 2, 2, 1, 4, 0, 3, 0, 0, 0), # 127 (8, 7, 3, 5, 3, 0, 6, 2, 4, 3, 0, 1, 0, 9, 7, 3, 2, 7, 3, 1, 4, 0, 1, 1, 0, 0), # 128 (9, 6, 7, 10, 3, 2, 3, 0, 3, 1, 1, 0, 0, 8, 6, 8, 1, 2, 3, 3, 2, 1, 1, 0, 0, 0), # 129 (4, 5, 11, 8, 5, 1, 2, 1, 1, 1, 2, 1, 0, 7, 6, 5, 3, 4, 2, 4, 5, 3, 2, 3, 0, 0), # 130 (11, 4, 7, 6, 6, 3, 1, 4, 1, 3, 2, 0, 0, 5, 4, 3, 5, 7, 3, 1, 2, 2, 1, 2, 1, 0), # 131 (7, 6, 2, 9, 7, 2, 2, 2, 4, 0, 1, 0, 0, 13, 5, 3, 6, 3, 3, 1, 1, 1, 3, 1, 0, 0), # 132 (9, 7, 8, 4, 4, 1, 1, 3, 2, 1, 3, 0, 0, 9, 5, 6, 5, 4, 3, 2, 4, 3, 3, 0, 1, 0), # 133 (4, 5, 3, 5, 8, 2, 3, 4, 3, 0, 0, 0, 0, 12, 7, 3, 4, 4, 4, 3, 3, 3, 5, 1, 0, 0), # 134 (11, 7, 2, 4, 5, 3, 3, 2, 2, 0, 1, 0, 0, 9, 4, 0, 5, 3, 3, 3, 0, 2, 2, 1, 0, 0), # 135 (9, 5, 5, 10, 6, 1, 0, 1, 4, 1, 0, 0, 0, 6, 4, 6, 8, 5, 2, 2, 1, 1, 2, 0, 0, 0), # 136 (6, 7, 0, 3, 7, 3, 4, 2, 3, 0, 0, 1, 0, 5, 6, 9, 6, 9, 4, 3, 1, 4, 0, 1, 1, 0), # 137 (7, 3, 4, 8, 6, 1, 2, 5, 8, 1, 2, 1, 0, 8, 5, 2, 1, 7, 2, 4, 0, 6, 2, 0, 0, 0), # 138 (4, 4, 4, 9, 3, 4, 3, 4, 1, 0, 0, 0, 0, 7, 5, 4, 3, 9, 3, 3, 1, 3, 1, 0, 0, 0), # 139 (9, 4, 2, 6, 8, 2, 1, 2, 2, 2, 1, 2, 0, 4, 8, 0, 6, 6, 3, 2, 1, 7, 1, 2, 0, 0), # 140 (3, 5, 5, 7, 4, 1, 0, 3, 2, 1, 2, 0, 0, 6, 2, 7, 2, 7, 4, 3, 3, 2, 1, 0, 1, 0), # 141 (6, 5, 4, 5, 2, 3, 2, 1, 2, 0, 2, 0, 0, 9, 7, 1, 0, 4, 1, 2, 1, 1, 5, 1, 1, 0), # 142 (2, 8, 3, 5, 6, 2, 3, 1, 4, 0, 0, 1, 0, 12, 4, 1, 3, 6, 3, 1, 3, 8, 2, 2, 0, 0), # 143 (7, 4, 6, 9, 5, 4, 1, 6, 6, 0, 2, 1, 0, 6, 6, 1, 3, 3, 6, 3, 2, 2, 3, 0, 0, 0), # 144 (8, 5, 7, 11, 5, 3, 2, 1, 2, 1, 1, 0, 0, 7, 3, 6, 2, 3, 1, 2, 3, 3, 0, 0, 0, 0), # 145 (7, 3, 7, 3, 5, 3, 1, 1, 1, 2, 1, 0, 0, 7, 4, 1, 3, 5, 2, 3, 2, 1, 4, 2, 0, 0), # 146 (4, 11, 6, 6, 8, 3, 2, 1, 5, 0, 0, 1, 0, 5, 9, 2, 4, 3, 0, 2, 0, 4, 2, 0, 0, 0), # 147 (3, 5, 0, 2, 4, 0, 0, 2, 2, 0, 1, 1, 0, 8, 4, 5, 2, 6, 3, 4, 1, 3, 4, 2, 1, 0), # 148 (9, 2, 10, 4, 6, 1, 3, 0, 5, 2, 2, 0, 0, 4, 4, 2, 2, 5, 1, 1, 2, 2, 1, 0, 1, 0), # 149 (4, 3, 7, 6, 4, 0, 1, 1, 2, 0, 1, 0, 0, 6, 3, 6, 1, 6, 1, 3, 2, 2, 2, 2, 0, 0), # 150 (4, 6, 1, 1, 3, 3, 2, 1, 2, 1, 2, 1, 0, 7, 7, 5, 6, 4, 1, 2, 2, 1, 0, 0, 0, 0), # 151 (8, 5, 4, 2, 4, 2, 2, 2, 0, 1, 0, 0, 0, 6, 4, 5, 1, 7, 3, 2, 0, 3, 5, 0, 0, 0), # 152 (5, 3, 6, 7, 2, 3, 2, 3, 2, 0, 1, 1, 0, 6, 7, 5, 2, 5, 4, 3, 2, 2, 1, 2, 0, 0), # 153 (5, 2, 3, 3, 2, 2, 1, 2, 2, 2, 1, 1, 0, 8, 3, 5, 5, 1, 1, 1, 1, 3, 1, 0, 0, 0), # 154 (6, 6, 7, 3, 3, 1, 2, 3, 7, 0, 2, 0, 0, 4, 5, 2, 1, 9, 4, 2, 0, 1, 4, 2, 2, 0), # 155 (5, 3, 3, 5, 5, 1, 2, 2, 0, 1, 1, 0, 0, 6, 5, 4, 3, 6, 5, 2, 1, 1, 1, 0, 0, 0), # 156 (7, 3, 5, 5, 3, 2, 2, 1, 3, 0, 1, 1, 0, 9, 4, 5, 5, 7, 1, 2, 5, 2, 5, 0, 0, 0), # 157 (3, 2, 4, 5, 9, 1, 0, 1, 4, 0, 0, 0, 0, 7, 8, 4, 4, 5, 3, 5, 1, 4, 1, 3, 0, 0), # 158 (1, 5, 7, 8, 3, 4, 1, 1, 3, 3, 1, 0, 0, 4, 9, 4, 5, 4, 1, 3, 3, 7, 2, 1, 0, 0), # 159 (6, 8, 6, 3, 7, 2, 0, 3, 4, 0, 0, 0, 0, 14, 5, 5, 2, 4, 2, 3, 1, 3, 1, 1, 0, 0), # 160 (4, 8, 2, 6, 5, 2, 1, 0, 2, 1, 0, 0, 0, 0, 1, 5, 3, 3, 2, 1, 1, 2, 2, 2, 0, 0), # 161 (2, 7, 11, 8, 3, 1, 2, 1, 1, 0, 1, 0, 0, 5, 9, 7, 4, 7, 2, 1, 0, 4, 1, 1, 1, 0), # 162 (7, 3, 1, 4, 4, 3, 1, 2, 0, 2, 0, 0, 0, 10, 4, 2, 3, 5, 5, 1, 2, 0, 2, 2, 1, 0), # 163 (0, 3, 7, 3, 4, 2, 1, 0, 3, 0, 0, 0, 0, 7, 6, 1, 6, 4, 2, 3, 1, 2, 2, 1, 0, 0), # 164 (4, 3, 2, 5, 2, 4, 1, 1, 2, 1, 0, 1, 0, 7, 8, 1, 3, 3, 5, 4, 1, 4, 1, 2, 1, 0), # 165 (5, 6, 3, 3, 7, 4, 3, 2, 2, 0, 0, 0, 0, 4, 7, 1, 5, 2, 1, 4, 1, 4, 0, 1, 0, 0), # 166 (3, 3, 5, 7, 3, 1, 1, 1, 0, 3, 1, 2, 0, 2, 3, 4, 0, 3, 0, 0, 0, 3, 2, 3, 0, 0), # 167 (6, 5, 3, 5, 6, 0, 1, 2, 2, 0, 1, 0, 0, 4, 5, 3, 2, 9, 2, 1, 4, 0, 1, 1, 0, 0), # 168 (4, 4, 3, 3, 6, 0, 1, 1, 2, 0, 0, 0, 0, 6, 4, 1, 6, 6, 1, 3, 1, 3, 2, 2, 1, 0), # 169 (5, 5, 8, 3, 0, 3, 3, 1, 3, 0, 1, 1, 0, 8, 4, 0, 3, 3, 1, 1, 0, 3, 1, 0, 0, 0), # 170 (6, 2, 4, 11, 5, 0, 1, 1, 3, 1, 0, 0, 0, 3, 7, 2, 2, 5, 1, 3, 2, 6, 0, 2, 0, 0), # 171 (2, 3, 1, 3, 3, 2, 1, 2, 0, 0, 1, 0, 0, 6, 5, 3, 3, 3, 5, 1, 1, 3, 2, 0, 0, 0), # 172 (5, 6, 4, 2, 3, 4, 1, 1, 3, 0, 0, 0, 0, 4, 6, 0, 0, 2, 1, 0, 0, 0, 0, 1, 0, 0), # 173 (8, 2, 3, 1, 2, 2, 0, 0, 2, 1, 1, 0, 0, 4, 1, 4, 2, 2, 1, 1, 0, 3, 2, 1, 1, 0), # 174 (1, 3, 4, 3, 1, 1, 1, 0, 1, 1, 0, 0, 0, 4, 6, 2, 2, 5, 3, 1, 2, 3, 2, 1, 1, 0), # 175 (3, 5, 1, 5, 2, 0, 0, 1, 2, 1, 0, 0, 0, 7, 3, 2, 3, 4, 1, 1, 1, 2, 0, 0, 0, 0), # 176 (4, 3, 3, 2, 2, 2, 2, 0, 1, 0, 0, 0, 0, 3, 1, 5, 0, 1, 3, 1, 1, 0, 2, 1, 1, 0), # 177 (6, 2, 4, 2, 4, 3, 1, 2, 2, 0, 0, 0, 0, 5, 5, 2, 1, 3, 2, 0, 1, 2, 1, 0, 1, 0), # 178 (0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0), # 179 ) station_arriving_intensity = ( (4.0166924626974145, 4.420230847754533, 4.169026583690005, 4.971734219090746, 4.4437484860876895, 2.5109239456298713, 3.3168284922991322, 3.7225409383835384, 4.872079249734406, 3.166412012417896, 3.3642121311084825, 3.918332062644939, 4.067104170062691), # 0 (4.283461721615979, 4.712048555315807, 4.444277273064122, 5.3001154026212935, 4.737992269979389, 2.6767868672340445, 3.535575153010955, 3.9676109783245668, 5.1937962610663275, 3.37518455382172, 3.5864769087649053, 4.176973328651484, 4.3358333179518835), # 1 (4.549378407183785, 5.0027081367127835, 4.718433828437931, 5.627190163731836, 5.0311703789997955, 2.841988091609956, 3.7534548063685635, 4.211700198323536, 5.514229445502039, 3.583131020016437, 3.8078585190210505, 4.434586121642444, 4.603491862567752), # 2 (4.81340623451725, 5.291056401549158, 4.9904086954558835, 5.951661126025659, 5.322129340801522, 3.0058724980680904, 3.9696029133183646, 4.453840925995606, 5.832108128736874, 3.7894261587409446, 4.027478729461906, 4.690148547944369, 4.869018245003381), # 3 (5.074508918732786, 5.57594015942862, 5.259114319762429, 6.272230913106056, 5.609715683037194, 3.1677849659189343, 4.183154934806767, 4.6930654889559325, 6.146161636466166, 3.993244717734143, 4.24445930767246, 4.942638713883811, 5.131350906351854), # 4 (5.331650174946809, 5.856206219954871, 5.523463147002015, 6.587602148576315, 5.892775933359424, 3.3270703744729717, 4.393246331780179, 4.928406214819674, 6.455119294385248, 4.193761444734931, 4.457922021237706, 5.191034725787318, 5.389428287706262), # 5 (5.583793718275733, 6.130701392731601, 5.782367622819093, 6.896477456039722, 6.170156619420835, 3.4830736030406912, 4.59901256518501, 5.158895431201991, 6.757710428189452, 4.390151087482207, 4.666988637742626, 5.434314689981447, 5.642188830159686), # 6 (5.829903263835975, 6.398272487362505, 6.034740192858108, 7.19755945909957, 6.440704268874043, 3.6351395309325767, 4.799589095967668, 5.383565465718042, 7.052664363574116, 4.58158839371487, 4.870780924772215, 5.671456712792743, 5.888570974805216), # 7 (6.068942526743948, 6.65776631345128, 6.279493302763517, 7.489550781359142, 6.703265409371669, 3.782613037459112, 4.994111385074558, 5.60144864598298, 7.338710426234565, 4.76724811117182, 5.068420649911457, 5.901438900547762, 6.127513162735934), # 8 (6.299875222116068, 6.908029680601619, 6.515539398179763, 7.771154046421735, 6.956686568566328, 3.924839001930787, 5.181714893452096, 5.811577299611971, 7.6145779418661395, 4.946304987591954, 5.259029580745342, 6.123239359573051, 6.35795383504493), # 9 (6.5216650650687455, 7.147909398417212, 6.7417909247512995, 8.04107187789063, 7.199814274110641, 4.061162303658086, 5.361535082046684, 6.012983754220169, 7.878996236164172, 5.117933770714171, 5.441729484858859, 6.335836196195162, 6.578831432825289), # 10 (6.7332757707184046, 7.3762522765017655, 6.957160328122573, 8.298006899369119, 7.431495053657227, 4.190927821951495, 5.532707411804733, 6.204700337422732, 8.130694634823994, 5.281309208277375, 5.615642129836999, 6.538207516740648, 6.78908439717009), # 11 (6.93367105418145, 7.591905124458958, 7.160560053938032, 8.54066173446049, 7.650575434858702, 4.313480436121496, 5.694367343672649, 6.385759376834817, 8.368402463540944, 5.435606048020458, 5.7798892832647475, 6.729331427536055, 6.987651169172428), # 12 (7.121814630574301, 7.793714751892496, 7.3509025478421295, 8.767739006768036, 7.855901945367681, 4.428165025478579, 5.845650338596845, 6.555193200071585, 8.590849048010346, 5.579999037682324, 5.933592712727095, 6.908186034907937, 7.173470189925388), # 13 (7.296670215013373, 7.980527968406071, 7.527100255479318, 8.977941339895034, 8.046321112836791, 4.5343264693332275, 5.9856918575237295, 6.7120341347481975, 8.796763713927538, 5.713662925001867, 6.0758741858090275, 7.073749445182848, 7.345479900522051), # 14 (7.457201522615084, 8.151191583603374, 7.688065622494034, 9.169971357444789, 8.220679464918646, 4.63130964699593, 6.1136273613997005, 6.855314508479805, 8.984875786987855, 5.835772457717993, 6.2058554700955355, 7.224999764687337, 7.502618742055505), # 15 (7.602372268495841, 8.304552407088106, 7.83271109453074, 9.342531683020573, 8.377823529265866, 4.718459437777168, 6.228592311171181, 6.984066648881569, 9.153914592886629, 5.945502383569597, 6.32265833317161, 7.360915099747952, 7.643825155618837), # 16 (7.73114616777206, 8.439457248463958, 7.959949117233882, 9.49432494022569, 8.516599833531071, 4.795120720987429, 6.329722167784569, 7.097322883568655, 9.302609457319187, 6.042027450295574, 6.425404542622239, 7.480473556691244, 7.768037582305133), # 17 (7.842486935560164, 8.55475291733462, 8.068692136247904, 9.624053752663423, 8.635854905366871, 4.860638375937203, 6.416152392186281, 7.194115540156209, 9.429689705980877, 6.1245224056348295, 6.513215866032407, 7.582653241843772, 7.874194463207477), # 18 (7.935358286976559, 8.649286223303795, 8.157852597217262, 9.730420743937053, 8.734435272425893, 4.914357281936967, 6.4870184453227155, 7.273476946259397, 9.533884664567024, 6.192161997326263, 6.585214070987103, 7.666432261532077, 7.961234239418957), # 19 (8.008723937137665, 8.72190397597517, 8.226342945786403, 9.812128537649883, 8.811187462360754, 4.955622318297215, 6.54145578814029, 7.334439429493374, 9.61392365877296, 6.2441209731087675, 6.64052092507132, 7.730788722082713, 8.02809535203266), # 20 (8.061547601159893, 8.771452984952447, 8.273075627599775, 9.86787975740519, 8.864958002824071, 4.983778364328429, 6.578599881585408, 7.376035317473299, 9.668536014294018, 6.279574080721244, 6.678258195870048, 7.774700729822235, 8.073716242141662), # 21 (8.092792994159664, 8.796780059839316, 8.296963088301828, 9.89637702680627, 8.89459342146846, 4.998170299341094, 6.59758618660448, 7.397296937814332, 9.696451056825532, 6.297696067902594, 6.697547650968272, 7.797146391077192, 8.097035350839063), # 22 (8.104314690674112, 8.799778875171468, 8.299938545953362, 9.899944650205763, 8.902185644826078, 5.0, 6.599843201807471, 7.399595061728395, 9.699940987654323, 6.299833818015546, 6.699966429729392, 7.799918061271147, 8.1), # 23 (8.112809930427323, 8.79802962962963, 8.299451851851853, 9.899505555555557, 8.906486090891882, 5.0, 6.598603050108934, 7.3964, 9.699473333333334, 6.29852049382716, 6.699699663299665, 7.799269135802469, 8.1), # 24 (8.121125784169264, 8.794581618655693, 8.29849108367627, 9.898636831275722, 8.910691956475603, 5.0, 6.596159122085048, 7.390123456790125, 9.69854938271605, 6.295935070873343, 6.69917071954109, 7.797988111568358, 8.1), # 25 (8.129261615238427, 8.789487517146778, 8.297069410150893, 9.897348353909464, 8.914803094736884, 5.0, 6.592549374646977, 7.380883950617285, 9.69718098765432, 6.29212056698674, 6.698384387080684, 7.7960925468678575, 8.1), # 26 (8.13721678697331, 8.7828, 8.2952, 9.89565, 8.918819358835371, 5.0, 6.587811764705883, 7.3688, 9.69538, 6.28712, 6.697345454545455, 7.793600000000001, 8.1), # 27 (8.1449906627124, 8.774571742112483, 8.292896021947874, 9.893551646090536, 8.922740601930721, 5.0, 6.581984249172921, 7.353990123456791, 9.693158271604938, 6.2809763877457705, 6.696058710562415, 7.790528029263832, 8.1), # 28 (8.1525826057942, 8.764855418381345, 8.290170644718794, 9.89106316872428, 8.926566677182576, 5.0, 6.575104784959253, 7.3365728395061724, 9.690527654320988, 6.273732748056699, 6.6945289437585735, 7.78689419295839, 8.1), # 29 (8.159991979557198, 8.753703703703705, 8.287037037037036, 9.888194444444444, 8.930297437750589, 5.0, 6.567211328976035, 7.316666666666666, 9.6875, 6.265432098765433, 6.692760942760943, 7.782716049382715, 8.1), # 30 (8.167218147339886, 8.741169272976682, 8.283508367626887, 9.88495534979424, 8.933932736794407, 5.0, 6.558341838134432, 7.2943901234567905, 9.684087160493828, 6.256117457704619, 6.6907594961965335, 7.778011156835849, 8.1), # 31 (8.174260472480764, 8.727304801097395, 8.27959780521262, 9.881355761316874, 8.937472427473677, 5.0, 6.548534269345599, 7.269861728395063, 9.680300987654322, 6.245831842706905, 6.688529392692356, 7.772797073616828, 8.1), # 32 (8.181118318318317, 8.712162962962962, 8.27531851851852, 9.877405555555555, 8.94091636294805, 5.0, 6.537826579520697, 7.243200000000001, 9.676153333333334, 6.234618271604939, 6.6860754208754205, 7.7670913580246905, 8.1), # 33 (8.187791048191048, 8.695796433470507, 8.270683676268861, 9.873114609053498, 8.944264396377173, 5.0, 6.526256725570888, 7.214523456790123, 9.671656049382719, 6.222519762231368, 6.68340236937274, 7.760911568358482, 8.1), # 34 (8.194278025437447, 8.678257887517146, 8.26570644718793, 9.868492798353909, 8.947516380920696, 5.0, 6.513862664407327, 7.183950617283951, 9.666820987654322, 6.209579332418839, 6.680515026811323, 7.754275262917239, 8.1), # 35 (8.200578613396004, 8.6596, 8.2604, 9.86355, 8.950672169738269, 5.0, 6.500682352941176, 7.151600000000001, 9.66166, 6.1958400000000005, 6.677418181818182, 7.747200000000001, 8.1), # 36 (8.20669217540522, 8.639875445816186, 8.254777503429356, 9.85829609053498, 8.953731615989538, 5.0, 6.486753748083595, 7.11759012345679, 9.656184938271606, 6.1813447828075, 6.674116623020328, 7.739703337905808, 8.1), # 37 (8.212618074803581, 8.619136899862827, 8.248852126200275, 9.85274094650206, 8.956694572834152, 5.0, 6.4721148067457435, 7.0820395061728405, 9.650407654320988, 6.166136698673983, 6.670615139044769, 7.7318028349337, 8.1), # 38 (8.218355674929589, 8.597437037037038, 8.242637037037039, 9.846894444444445, 8.959560893431762, 5.0, 6.456803485838781, 7.045066666666667, 9.644340000000001, 6.150258765432099, 6.666918518518519, 7.723516049382716, 8.1), # 39 (8.22390433912173, 8.574828532235939, 8.236145404663922, 9.84076646090535, 8.962330430942016, 5.0, 6.440857742273865, 7.006790123456792, 9.637993827160495, 6.133754000914496, 6.663031550068587, 7.714860539551899, 8.1), # 40 (8.229263430718502, 8.551364060356653, 8.229390397805213, 9.834366872427985, 8.965003038524562, 5.0, 6.424315532962156, 6.967328395061729, 9.631380987654321, 6.116665422953818, 6.658959022321986, 7.705853863740284, 8.1), # 41 (8.2344323130584, 8.527096296296298, 8.222385185185187, 9.827705555555557, 8.967578569339047, 5.0, 6.4072148148148145, 6.9268, 9.624513333333335, 6.0990360493827165, 6.654705723905725, 7.696513580246914, 8.1), # 42 (8.239410349479915, 8.50207791495199, 8.215142935528121, 9.820792386831277, 8.970056876545122, 5.0, 6.389593544743001, 6.8853234567901245, 9.617402716049384, 6.080908898033837, 6.650276443446813, 7.6868572473708285, 8.1), # 43 (8.244196903321543, 8.47636159122085, 8.2076768175583, 9.813637242798356, 8.972437813302436, 5.0, 6.371489679657872, 6.843017283950619, 9.610060987654322, 6.062326986739826, 6.645675969572266, 7.676902423411066, 8.1), # 44 (8.248791337921773, 8.450000000000001, 8.200000000000001, 9.80625, 8.974721232770637, 5.0, 6.352941176470589, 6.800000000000001, 9.6025, 6.043333333333334, 6.640909090909091, 7.666666666666666, 8.1), # 45 (8.253193016619106, 8.423045816186557, 8.192125651577504, 9.798640534979425, 8.976906988109373, 5.0, 6.333985992092311, 6.756390123456791, 9.594731604938271, 6.023970955647005, 6.635980596084299, 7.656167535436672, 8.1), # 46 (8.257401302752028, 8.39555171467764, 8.18406694101509, 9.790818724279836, 8.978994932478294, 5.0, 6.3146620834341975, 6.712306172839506, 9.586767654320989, 6.004282871513489, 6.630895273724903, 7.64542258802012, 8.1), # 47 (8.261415559659037, 8.367570370370371, 8.175837037037038, 9.782794444444447, 8.980984919037049, 5.0, 6.295007407407407, 6.667866666666668, 9.57862, 5.984312098765432, 6.625657912457912, 7.634449382716049, 8.1), # 48 (8.26523515067863, 8.339154458161865, 8.167449108367627, 9.774577572016462, 8.982876800945286, 5.0, 6.275059920923102, 6.623190123456791, 9.57030049382716, 5.964101655235483, 6.6202733009103385, 7.623265477823503, 8.1), # 49 (8.268859439149294, 8.310356652949247, 8.15891632373114, 9.766177983539094, 8.984670431362652, 5.0, 6.25485758089244, 6.578395061728395, 9.56182098765432, 5.943694558756287, 6.61474622770919, 7.611888431641519, 8.1), # 50 (8.272287788409528, 8.28122962962963, 8.150251851851852, 9.757605555555557, 8.9863656634488, 5.0, 6.23443834422658, 6.5336, 9.553193333333335, 5.923133827160494, 6.609081481481482, 7.600335802469137, 8.1), # 51 (8.275519561797823, 8.251826063100138, 8.141468861454047, 9.748870164609054, 8.987962350363372, 5.0, 6.213840167836683, 6.488923456790123, 9.54442938271605, 5.90246247828075, 6.603283850854222, 7.588625148605397, 8.1), # 52 (8.278554122652675, 8.222198628257889, 8.132580521262005, 9.739981687242798, 8.989460345266023, 5.0, 6.1931010086339064, 6.444483950617284, 9.535540987654322, 5.881723529949703, 6.597358124454421, 7.576774028349337, 8.1), # 53 (8.281390834312573, 8.192400000000001, 8.1236, 9.73095, 8.990859501316402, 5.0, 6.172258823529412, 6.400399999999999, 9.52654, 5.86096, 6.59130909090909, 7.5648, 8.1), # 54 (8.284029060116017, 8.162482853223594, 8.114540466392318, 9.721784979423868, 8.992159671674152, 5.0, 6.151351569434358, 6.35679012345679, 9.517438271604938, 5.84021490626429, 6.585141538845242, 7.552720621856425, 8.1), # 55 (8.286468163401498, 8.132499862825789, 8.105415089163237, 9.712496502057613, 8.993360709498928, 5.0, 6.130417203259905, 6.313772839506173, 9.508247654320988, 5.819531266575218, 6.578860256889887, 7.54055345221765, 8.1), # 56 (8.288707507507507, 8.102503703703704, 8.096237037037039, 9.703094444444446, 8.994462467950374, 5.0, 6.109493681917211, 6.271466666666668, 9.498980000000001, 5.798952098765433, 6.572470033670034, 7.528316049382716, 8.1), # 57 (8.290746455772544, 8.072547050754459, 8.087019478737998, 9.693588683127572, 8.99546480018814, 5.0, 6.088618962317438, 6.2299901234567905, 9.489647160493828, 5.778520420667582, 6.565975657812697, 7.516025971650663, 8.1), # 58 (8.292584371535098, 8.042682578875171, 8.077775582990398, 9.683989094650206, 8.996367559371876, 5.0, 6.067831001371743, 6.189461728395062, 9.480260987654322, 5.758279250114313, 6.55938191794488, 7.503700777320531, 8.1), # 59 (8.294220618133663, 8.012962962962964, 8.068518518518518, 9.674305555555556, 8.99717059866123, 5.0, 6.0471677559912855, 6.15, 9.470833333333335, 5.738271604938272, 6.552693602693603, 7.491358024691358, 8.1), # 60 (8.295654558906731, 7.983440877914953, 8.05926145404664, 9.664547942386832, 8.997873771215849, 5.0, 6.026667183087227, 6.1117234567901235, 9.461376049382716, 5.718540502972108, 6.545915500685871, 7.4790152720621865, 8.1), # 61 (8.296885557192804, 7.954168998628258, 8.050017558299041, 9.654726131687244, 8.998476930195388, 5.0, 6.006367239570725, 6.074750617283951, 9.451900987654321, 5.699128962048469, 6.539052400548697, 7.4666900777320535, 8.1), # 62 (8.297912976330368, 7.9252, 8.0408, 9.644850000000002, 8.998979928759486, 5.0, 5.986305882352941, 6.039200000000001, 9.44242, 5.68008, 6.532109090909092, 7.4544, 8.1), # 63 (8.298736179657919, 7.896586556927298, 8.0316219478738, 9.634929423868314, 8.999382620067799, 5.0, 5.966521068345034, 6.005190123456791, 9.432944938271605, 5.661436634659351, 6.5250903603940635, 7.442162597165067, 8.1), # 64 (8.29935453051395, 7.86838134430727, 8.02249657064472, 9.624974279835392, 8.999684857279973, 5.0, 5.947050754458163, 5.972839506172839, 9.423487654320988, 5.643241883859168, 6.518000997630629, 7.429995427526291, 8.1), # 65 (8.299767392236957, 7.840637037037038, 8.013437037037038, 9.614994444444445, 8.999886493555659, 5.0, 5.927932897603486, 5.942266666666668, 9.414060000000001, 5.625538765432099, 6.510845791245791, 7.417916049382717, 8.1), # 66 (8.299974128165434, 7.813406310013717, 8.004456515775034, 9.604999794238683, 8.999987382054504, 5.0, 5.909205454692165, 5.913590123456792, 9.404673827160494, 5.608370297210792, 6.5036295298665685, 7.405942021033379, 8.1), # 67 (8.29983329158466, 7.786598911456259, 7.9955247599451305, 9.594913392377887, 8.999902364237876, 4.99990720926688, 5.890812155863717, 5.88667508001829, 9.395270278920897, 5.591696353317733, 6.496228790832301, 7.394024017519794, 8.099900120027435), # 68 (8.298513365539453, 7.75939641577061, 7.98639074074074, 9.584226811594203, 8.99912854030501, 4.999173662551441, 5.872214545077291, 5.860079012345679, 9.385438271604938, 5.575045112563544, 6.487890271132376, 7.38177517868746, 8.099108796296298), # 69 (8.295908630047116, 7.731673967874684, 7.977014746227709, 9.572869699409555, 8.997599451303154, 4.9977290047248895, 5.853328107649096, 5.833561957018748, 9.375122313671698, 5.558335619570188, 6.478519109220864, 7.369138209034247, 8.097545867626888), # 70 (8.292055728514343, 7.703448134873224, 7.967400068587105, 9.560858803005905, 8.995334463003308, 4.995596646852614, 5.8341613276311906, 5.807132693187015, 9.364337768632831, 5.541568287474112, 6.468149896627089, 7.356122349770172, 8.095231910150892), # 71 (8.286991304347827, 7.674735483870967, 7.9575499999999995, 9.548210869565217, 8.99235294117647, 4.992800000000001, 5.81472268907563, 5.7808, 9.353100000000001, 5.524743529411765, 6.456817224880384, 7.342736842105264, 8.0921875), # 72 (8.280752000954257, 7.6455525819726535, 7.947467832647462, 9.534942646269458, 8.988674251593642, 4.989362475232434, 5.795020676034474, 5.754572656607225, 9.341424371284866, 5.507861758519595, 6.444555685510071, 7.328990927249535, 8.0884332133059), # 73 (8.273374461740323, 7.615915996283022, 7.937156858710562, 9.52107088030059, 8.98431776002582, 4.985307483615303, 5.775063772559778, 5.728459442158208, 9.329326245999086, 5.49092338793405, 6.431399870045485, 7.314893846413014, 8.083989626200276), # 74 (8.26489533011272, 7.5858422939068095, 7.92662037037037, 9.50661231884058, 8.97930283224401, 4.980658436213993, 5.754860462703601, 5.7024691358024695, 9.31682098765432, 5.473928830791576, 6.417384370015949, 7.300454840805718, 8.078877314814816), # 75 (8.255351249478142, 7.55534804194876, 7.915861659807956, 9.49158370907139, 8.973648834019205, 4.975438744093889, 5.734419230517997, 5.6766105166895295, 9.303923959762232, 5.4568785002286235, 6.402543776950793, 7.2856831516376666, 8.073116855281206), # 76 (8.244778863243274, 7.524449807513609, 7.904884019204388, 9.476001798174986, 8.967375131122408, 4.9696718183203785, 5.7137485600550235, 5.650892363968908, 9.290650525834478, 5.43977280938164, 6.38691268237935, 7.270588020118885, 8.06672882373114), # 77 (8.233214814814815, 7.493164157706095, 7.893690740740741, 9.459883333333334, 8.96050108932462, 4.963381069958848, 5.69285693536674, 5.625323456790124, 9.277016049382715, 5.422612171387073, 6.370525677830941, 7.255178687459391, 8.059733796296298), # 78 (8.220695747599452, 7.461507659630958, 7.88228511659808, 9.443245061728396, 8.953046074396838, 4.956589910074683, 5.671752840505201, 5.5999125743026985, 9.26303589391861, 5.405396999381371, 6.353417354834898, 7.239464394869204, 8.052152349108367), # 79 (8.207258305003878, 7.429496880392938, 7.870670438957475, 9.426103730542136, 8.945029452110063, 4.949321749733272, 5.650444759522465, 5.574668495656151, 9.248725422953818, 5.388127706500981, 6.335622304920551, 7.223454383558348, 8.04400505829904), # 80 (8.192939130434784, 7.397148387096775, 7.85885, 9.408476086956524, 8.936470588235293, 4.9416, 5.628941176470589, 5.549600000000001, 9.2341, 5.370804705882353, 6.317175119617225, 7.207157894736842, 8.0353125), # 81 (8.177774867298861, 7.364478746847206, 7.8468270919067225, 9.390378878153516, 8.927388848543533, 4.933448071940254, 5.607250575401629, 5.524715866483768, 9.219174988568815, 5.353428410661933, 6.298110390454251, 7.190584169614709, 8.026095250342937), # 82 (8.161802159002804, 7.331504526748971, 7.834605006858711, 9.371828851315083, 8.917803598805778, 4.924889376619419, 5.585381440367643, 5.500024874256973, 9.203965752171925, 5.335999233976169, 6.278462708960955, 7.17374244940197, 8.016373885459535), # 83 (8.145057648953301, 7.29824229390681, 7.822187037037037, 9.35284275362319, 8.907734204793028, 4.915947325102881, 5.563342255420687, 5.475535802469135, 9.188487654320987, 5.3185175889615115, 6.258266666666667, 7.156641975308642, 8.006168981481482), # 84 (8.127577980557048, 7.264708615425461, 7.80957647462277, 9.333437332259797, 8.897200032276286, 4.906645328456029, 5.54114150461282, 5.451257430269777, 9.172756058527662, 5.300983888754405, 6.237556855100715, 7.13929198854475, 7.995501114540467), # 85 (8.10939979722073, 7.230920058409665, 7.796776611796983, 9.313629334406873, 8.886220447026547, 4.897006797744247, 5.518787671996097, 5.4271985368084135, 9.156786328303614, 5.283398546491299, 6.216367865792428, 7.121701730320315, 7.984390860768176), # 86 (8.090559742351045, 7.1968931899641575, 7.7837907407407405, 9.293435507246377, 8.874814814814817, 4.887055144032922, 5.496289241622575, 5.403367901234568, 9.140593827160496, 5.265761975308642, 6.194734290271132, 7.103880441845354, 7.972858796296297), # 87 (8.071094459354686, 7.162644577193681, 7.7706221536351165, 9.27287259796028, 8.863002501412089, 4.876813778387441, 5.473654697544313, 5.37977430269776, 9.124193918609969, 5.248074588342881, 6.172690720066159, 7.085837364329892, 7.960925497256517), # 88 (8.051040591638339, 7.128190787202974, 7.75727414266118, 9.251957353730543, 8.850802872589366, 4.8663061118731905, 5.4508925238133665, 5.356426520347508, 9.107601966163696, 5.230336798730466, 6.150271746706835, 7.067581738983948, 7.948611539780521), # 89 (8.030434782608696, 7.093548387096774, 7.74375, 9.230706521739132, 8.838235294117649, 4.855555555555556, 5.428011204481793, 5.333333333333333, 9.090833333333334, 5.2125490196078434, 6.1275119617224885, 7.049122807017544, 7.9359375000000005), # 90 (8.00931367567245, 7.058733943979822, 7.730053017832647, 9.20913684916801, 8.825319131767932, 4.8445855204999235, 5.405019223601649, 5.3105035208047555, 9.073903383630546, 5.194711664111461, 6.104445956642448, 7.0304698096406995, 7.922923954046638), # 91 (7.9877139142362985, 7.023764024956858, 7.716186488340192, 9.187265083199142, 8.812073751311223, 4.833419417771681, 5.381925065224994, 5.287945861911295, 9.056827480566987, 5.176825145377768, 6.081108322996043, 7.011631988063439, 7.909591478052126), # 92 (7.965672141706924, 6.988655197132617, 7.702153703703704, 9.165107971014494, 8.798518518518518, 4.822080658436214, 5.358737213403881, 5.26566913580247, 9.039620987654322, 5.15888987654321, 6.0575336523126, 6.992618583495776, 7.895960648148147), # 93 (7.943225001491024, 6.953424027611842, 7.6879579561042535, 9.142682259796029, 8.784672799160816, 4.810592653558909, 5.335464152190369, 5.243682121627802, 9.022299268404208, 5.140906270744238, 6.033756536121448, 6.973438837147739, 7.882052040466393), # 94 (7.920409136995288, 6.9180870834992705, 7.673602537722909, 9.120004696725712, 8.770555959009119, 4.798978814205152, 5.312114365636515, 5.221993598536809, 9.004877686328305, 5.122874741117297, 6.009811565951917, 6.954101990229344, 7.867886231138546), # 95 (7.89726119162641, 6.882660931899643, 7.659090740740742, 9.097092028985507, 8.756187363834423, 4.787262551440329, 5.288696337794377, 5.200612345679013, 8.987371604938271, 5.104795700798839, 5.985733333333334, 6.934617283950619, 7.853483796296297), # 96 (7.873817808791078, 6.847162139917697, 7.64442585733882, 9.07396100375738, 8.741586379407732, 4.775467276329827, 5.265218552716011, 5.179547142203933, 8.969796387745772, 5.086669562925308, 5.961556429795026, 6.914993959521576, 7.838865312071332), # 97 (7.850115631895988, 6.811607274658171, 7.629611179698216, 9.050628368223297, 8.726772371500042, 4.763616399939035, 5.241689494453475, 5.158806767261089, 8.952167398262459, 5.068496740633154, 5.937315446866325, 6.895241258152239, 7.824051354595337), # 98 (7.826191304347827, 6.776012903225807, 7.614650000000001, 9.027110869565218, 8.711764705882354, 4.751733333333333, 5.218117647058825, 5.138400000000001, 8.9345, 5.050277647058824, 5.913044976076556, 6.875368421052632, 7.8090625000000005), # 99 (7.80208146955329, 6.740395592725341, 7.59954561042524, 9.00342525496511, 8.696582748325667, 4.739841487578113, 5.194511494584116, 5.118335619570188, 8.916809556470051, 5.032012695338767, 5.888779608955048, 6.855384689432774, 7.79391932441701), # 100 (7.777822770919068, 6.704771910261517, 7.584301303155008, 8.979588271604939, 8.681245864600985, 4.727964273738759, 5.17087952108141, 5.09862240512117, 8.899111431184272, 5.013702298609431, 5.86455393703113, 6.835299304502683, 7.7786424039780515), # 101 (7.753451851851853, 6.669158422939069, 7.56892037037037, 8.955616666666668, 8.665773420479303, 4.7161251028806594, 5.1472302106027605, 5.07926913580247, 8.881420987654321, 4.995346870007263, 5.840402551834131, 6.815121507472385, 7.763252314814816), # 102 (7.729005355758336, 6.633571697862738, 7.5534061042524, 8.93152718733226, 8.650184781731623, 4.704347386069197, 5.123572047200224, 5.060284590763604, 8.86375358939186, 4.976946822668712, 5.816360044893379, 6.794860539551898, 7.747769633058984), # 103 (7.704519926045208, 6.598028302137263, 7.537761796982167, 8.907336580783683, 8.634499314128943, 4.692654534369761, 5.099913514925861, 5.041677549154093, 8.846124599908551, 4.958502569730225, 5.792461007738201, 6.774525641951243, 7.732214934842251), # 104 (7.680032206119162, 6.562544802867383, 7.5219907407407405, 8.883061594202898, 8.618736383442267, 4.681069958847737, 5.076263097831727, 5.023456790123458, 8.82854938271605, 4.940014524328251, 5.768740031897927, 6.754126055880443, 7.716608796296296), # 105 (7.655578839386891, 6.527137767157839, 7.5060962277091905, 8.858718974771874, 8.602915355442589, 4.669617070568511, 5.052629279969876, 5.005631092821217, 8.811043301326016, 4.921483099599236, 5.745231708901884, 6.733671022549515, 7.700971793552812), # 106 (7.631196469255085, 6.491823762113369, 7.490081550068588, 8.83432546967257, 8.587055595900912, 4.65831928059747, 5.0290205453923695, 4.988209236396892, 8.793621719250115, 4.9029087086796315, 5.721970630279402, 6.713169783168484, 7.685324502743484), # 107 (7.606921739130435, 6.456619354838711, 7.473950000000001, 8.809897826086958, 8.571176470588235, 4.647200000000001, 5.0054453781512604, 4.9712000000000005, 8.7763, 4.884291764705883, 5.698991387559809, 6.69263157894737, 7.669687500000001), # 108 (7.582791292419635, 6.421541112438604, 7.4577048696845, 8.785452791196994, 8.55529734527556, 4.636282639841488, 4.98191226229861, 4.954612162780065, 8.759093507087334, 4.865632680814438, 5.676328572272432, 6.67206565109619, 7.654081361454047), # 109 (7.558841772529373, 6.38660560201779, 7.441349451303157, 8.761007112184648, 8.539437585733884, 4.625590611187319, 4.9584296818864715, 4.938454503886603, 8.742017604023777, 4.846931870141747, 5.654016775946601, 6.651481240824971, 7.638526663237312), # 110 (7.535109822866345, 6.351829390681004, 7.424887037037038, 8.736577536231884, 8.523616557734206, 4.615147325102881, 4.935006120966905, 4.922735802469136, 8.725087654320989, 4.828189745824256, 5.632090590111643, 6.630887589343731, 7.623043981481482), # 111 (7.51163208683724, 6.317229045532987, 7.408320919067217, 8.712180810520666, 8.507853627047528, 4.6049761926535595, 4.911650063591967, 4.907464837677184, 8.708319021490626, 4.809406720998413, 5.610584606296888, 6.6102939378624885, 7.607653892318244), # 112 (7.488403378962436, 6.282878895028762, 7.391694262601655, 8.687867105993632, 8.492140544138964, 4.595095815371611, 4.888420770925416, 4.892682055024485, 8.691770249006897, 4.790643789290184, 5.589539124922293, 6.589754349203543, 7.592355120674577), # 113 (7.465184718320052, 6.249117746820429, 7.375236540017295, 8.663831537021869, 8.476314683653062, 4.585483686823921, 4.865614566728464, 4.878569007604096, 8.675695228570449, 4.772252134330226, 5.568995469690558, 6.56952973769038, 7.577020331328028), # 114 (7.441907922403196, 6.215957758946438, 7.358957546165854, 8.640067604145424, 8.460326142310882, 4.576114809999011, 4.84324772015325, 4.865122123422967, 8.660099982935032, 4.754260262390462, 5.548923609141675, 6.549630066047081, 7.561605305328301), # 115 (7.418543898590108, 6.183350625033362, 7.342825751987099, 8.616532920213123, 8.444150821107023, 4.566967101829678, 4.821283854022315, 4.852304250319195, 8.644945071382265, 4.736634686759638, 5.529284745017185, 6.530018557989877, 7.546085807804713), # 116 (7.395063554259018, 6.151248038707777, 7.326809628420789, 8.593185098073794, 8.427764621036088, 4.558018479248712, 4.799686591158202, 4.840078236130868, 8.630191053193762, 4.719341920726503, 5.510040079058626, 6.5106584372350005, 7.53043760388658), # 117 (7.371437796788169, 6.119601693596259, 7.310877646406694, 8.569981750576266, 8.411143443092675, 4.549246859188911, 4.7784195543834524, 4.828406928696078, 8.615798487651148, 4.7023484775798075, 5.49115081300754, 6.49151292749868, 7.51463645870322), # 118 (7.347637533555794, 6.088363283325384, 7.294998276884579, 8.546880490569364, 8.394263188271378, 4.540630158583066, 4.757446366520605, 4.817253175852916, 8.601727934036035, 4.685620870608298, 5.4725781486054625, 6.472545252497148, 7.498658137383946), # 119 (7.323633671940129, 6.057484501521727, 7.27913999079421, 8.523838930901915, 8.377099757566798, 4.532146294363972, 4.736730650392203, 4.806579825439474, 8.587939951630046, 4.669125613100724, 5.454283287593933, 6.453718635946638, 7.482478405058078), # 120 (7.299397119319415, 6.026917041811863, 7.26327125907535, 8.500814684422748, 8.359629051973535, 4.523773183464424, 4.716236028820784, 4.796349725293846, 8.574395099714799, 4.652829218345837, 5.436227431714493, 6.434996301563378, 7.466073026854929), # 121 (7.274898783071883, 5.996612597822369, 7.247360552667769, 8.477765363980685, 8.341826972486187, 4.515488742817215, 4.695926124628894, 4.786525723254119, 8.561053937571911, 4.636698199632382, 5.4183717827086815, 6.416341473063601, 7.4494177679038165), # 122 (7.250109570575775, 5.9665228631798195, 7.231376342511229, 8.454648582424555, 8.323669420099353, 4.50727088935514, 4.675764560639071, 4.7770706671583865, 8.547877024483004, 4.62069907024911, 5.400677542318036, 6.397717374163538, 7.432488393334058), # 123 (7.225000389209324, 5.93659953151079, 7.215287099545496, 8.43142195260319, 8.30513229580763, 4.499097540010991, 4.655714959673856, 4.767947404844741, 8.534824919729692, 4.604798343484769, 5.383105912284096, 6.3790872285794205, 7.4152606682749695), # 124 (7.199542146350767, 5.9067942964418565, 7.199061294710339, 8.408043087365408, 8.286191500605618, 4.490946611717565, 4.635740944555791, 4.759118784151273, 8.521858182593595, 4.588962532628107, 5.3656180943484015, 6.360414260027479, 7.397710357855863), # 125 (7.1737057493783425, 5.877058851599596, 7.182667398945519, 8.384469599560044, 8.266822935487914, 4.482796021407654, 4.615806138107416, 4.750547652916074, 8.508937372356334, 4.573158150967874, 5.348175290252491, 6.341661692223948, 7.379813227206063), # 126 (7.147462105670289, 5.84734489061058, 7.166073883190804, 8.36065910203592, 8.247002501449119, 4.474623686014052, 4.595874163151275, 4.742196858977237, 8.496023048299525, 4.557351711792819, 5.3307387017379035, 6.322792748885053, 7.361545041454879), # 127 (7.120782122604837, 5.817604107101388, 7.14924921838596, 8.336569207641865, 8.226706099483833, 4.466407522469555, 4.575908642509906, 4.73402925017285, 8.483075769704788, 4.5415097283916905, 5.3132695305461795, 6.303770653727031, 7.34288156573163), # 128 (7.093636707560226, 5.787788194698593, 7.132161875470752, 8.312157529226706, 8.20590963058665, 4.458125447706956, 4.555873199005851, 4.726007674341008, 8.47005609585374, 4.5255987140532365, 5.2957289784188575, 6.284558630466109, 7.323798565165631), # 129 (7.065996767914694, 5.757848847028773, 7.1147803253849435, 8.28738167963927, 8.18458899575217, 4.449755378659047, 4.53573145546165, 4.7180949793198, 8.456924586028, 4.509585182066206, 5.278078247097476, 6.2651199028185225, 7.3042718048861985), # 130 (7.037833211046475, 5.727737757718502, 7.097073039068305, 8.262199271728381, 8.162720095974995, 4.441275232258625, 4.515447034699847, 4.71025401294732, 8.443641799509189, 4.493435645719348, 5.260278538323575, 6.2454176945004996, 7.2842770500226495), # 131 (7.009116944333808, 5.697406620394355, 7.079008487460597, 8.23656791834287, 8.140278832249724, 4.432662925438482, 4.49498355954298, 4.7024476230616585, 8.430168295578923, 4.4771166183014115, 5.2422910538386915, 6.225415229228274, 7.263790065704301), # 132 (6.979818875154931, 5.666807128682908, 7.060555141501587, 8.210445232331562, 8.11724110557095, 4.423896375131413, 4.474304652813592, 4.694638657500906, 8.416464633518821, 4.460594613101146, 5.224076995384369, 6.205075730718074, 7.242786617060469), # 133 (6.949909910888076, 5.635890976210739, 7.041681472131043, 8.183788826543283, 8.093582816933274, 4.414953498270212, 4.453373937334223, 4.686789964103155, 8.402491372610504, 4.443836143407299, 5.205597564702143, 6.184362422686133, 7.221242469220467), # 134 (6.919360958911483, 5.604609856604419, 7.022355950288727, 8.156556313826863, 8.069279867331296, 4.405812211787674, 4.432155035927415, 4.678864390706496, 8.388209072135584, 4.426807722508621, 5.186813963533554, 6.163238528848682, 7.199133387313616), # 135 (6.888142926603388, 5.572915463490528, 7.002547046914407, 8.128705307031124, 8.044308157759614, 4.396450432616592, 4.410611571415708, 4.670824785149022, 8.373578291375685, 4.409475863693858, 5.167687393620142, 6.1416672729219535, 7.176435136469229), # 136 (6.856226721342027, 5.540759490495638, 6.982223232947849, 8.100193419004901, 8.018643589212827, 4.386846077689759, 4.388707166621645, 4.662633995268823, 8.358559589612426, 4.391807080251762, 5.1481790567034444, 6.119611878622176, 7.153123481816621), # 137 (6.823583250505639, 5.508093631246327, 6.961352979328814, 8.070978262597011, 7.992262062685535, 4.376977063939971, 4.366405444367763, 4.654254868903992, 8.343113526127425, 4.373767885471078, 5.128250154525002, 6.097035569665582, 7.129174188485113), # 138 (6.790183421472455, 5.4748695793691695, 6.939904756997072, 8.041017450656287, 7.965139479172333, 4.366821308300021, 4.343670027476608, 4.64565025389262, 8.327200660202298, 4.355324792640558, 5.107861888826353, 6.073901569768405, 7.104563021604015), # 139 (6.755998141620719, 5.44103902849074, 6.91784703689239, 8.010268596031556, 7.937251739667824, 4.356356727702703, 4.320464538770717, 4.636782998072797, 8.310781551118666, 4.336444315048949, 5.086975461349035, 6.050173102646873, 7.079265746302652), # 140 (6.720998318328665, 5.406553672237617, 6.895148289954529, 7.978689311571642, 7.908574745166603, 4.345561239080812, 4.296752601072636, 4.6276159492826165, 8.293816758158144, 4.317092965985001, 5.065552073834591, 6.02581339201722, 7.053258127710331), # 141 (6.685154858974525, 5.371365204236373, 6.871776987123257, 7.946237210125377, 7.87908439666327, 4.334412759367142, 4.272497837204901, 4.6181119553601695, 8.276266840602354, 4.2972372587374625, 5.043552928024558, 6.000785661595676, 7.026515930956373), # 142 (6.64843867093654, 5.335425318113585, 6.8477015993383406, 7.91286990454158, 7.848756595152423, 4.322889205494485, 4.247663869990055, 4.608233864143545, 8.258092357732918, 4.276843706595082, 5.020939225660475, 5.975053135098472, 6.999014921170094), # 143 (6.610820661592948, 5.298685707495829, 6.822890597539542, 7.878545007669086, 7.817567241628663, 4.310968494395637, 4.222214322250639, 4.597944523470839, 8.239253868831447, 4.255878822846608, 4.997672168483881, 5.948579036241839, 6.970730863480812), # 144 (6.572271738321982, 5.26109806600968, 6.797312452666631, 7.843220132356716, 7.785492237086586, 4.298628543003392, 4.196112816809195, 4.587206781180141, 8.219711933179564, 4.23430912078079, 4.973712958236316, 5.921326588742011, 6.94163952301784), # 145 (6.5327628085018805, 5.2226140872817135, 6.770935635659374, 7.806852891453301, 7.7525074825207945, 4.285847268250545, 4.169322976488264, 4.575983485109542, 8.199427110058885, 4.212101113686376, 4.949022796659319, 5.893259016315216, 6.911716664910495), # 146 (6.49226477951088, 5.1831854649385045, 6.743728617457528, 7.769400897807664, 7.718588878925882, 4.272602587069886, 4.141808424110385, 4.564237483097132, 8.178359958751033, 4.189221314852117, 4.923562885494429, 5.864339542677689, 6.8809380542880945), # 147 (6.450748558727217, 5.142763892606631, 6.715659869000866, 7.730821764268637, 7.683712327296449, 4.258872416394214, 4.113532782498101, 4.551931622981006, 8.156471038537623, 4.1656362375667575, 4.897294426483186, 5.8345313915456565, 6.8492794562799535), # 148 (6.40818505352913, 5.101301063912665, 6.686697861229155, 7.691073103685042, 7.647853728627097, 4.24463467315632, 4.084459674473953, 4.539028752599253, 8.13372090870027, 4.1413123951190505, 4.870178621367128, 5.803797786635354, 6.81671663601539), # 149 (6.364545171294852, 5.058748672483183, 6.656811065082156, 7.65011252890571, 7.610988983912421, 4.229867274288999, 4.054552722860481, 4.525491719789965, 8.110070128520602, 4.116216300797741, 4.8421766718877945, 5.772101951663011, 6.783225358623717), # 150 (6.31979981940262, 5.015058411944763, 6.625967951499634, 7.607897652779464, 7.573093994147022, 4.214548136725044, 4.023775550480226, 4.511283372391235, 8.085479257280232, 4.090314467891583, 4.813249779786724, 5.739407110344858, 6.748781389234255), # 151 (6.273919905230675, 4.970181975923978, 6.594136991421362, 7.5643860881551355, 7.534144660325495, 4.198655177397251, 3.992091780155732, 4.496366558241153, 8.059908854260776, 4.06357340968932, 4.7833591468054575, 5.705676486397127, 6.713360492976318), # 152 (6.226876336157249, 4.924071058047406, 6.561286655787095, 7.519535447881546, 7.4941168834424445, 4.182166313238413, 3.9594650347095355, 4.48070412517781, 8.03331947874386, 4.035959639479703, 4.752465974685533, 5.670873303536052, 6.676938434979222), # 153 (6.178640019560583, 4.87667735194162, 6.527385415536607, 7.473303344807528, 7.452986564492464, 4.165059461181324, 3.9258589369641825, 4.464258921039298, 8.005671690011093, 4.0074396705514825, 4.72053146516849, 5.63496078547786, 6.639490980372286), # 154 (6.129181862818909, 4.827952551233196, 6.492401741609661, 7.425647391781903, 7.410729604470157, 4.147312538158777, 3.891237109742209, 4.446993793663709, 7.976926047344103, 3.9779800161934036, 4.687516819995866, 5.597902155938786, 6.600993894284821), # 155 (6.078472773310465, 4.7778483495487105, 6.456304104946021, 7.3765252016535, 7.367321904370119, 4.128903461103569, 3.85556317586616, 4.428871590889135, 7.947043110024501, 3.9475471896942183, 4.6533832409092035, 5.559660638635059, 6.561422941846148), # 156 (6.02648365841349, 4.726316440514739, 6.419060976485454, 7.32589438727115, 7.322739365186948, 4.109810146948491, 3.8188007581585754, 4.409855160553666, 7.915983437333911, 3.9161077043426733, 4.618091929650039, 5.52019945728291, 6.520753888185581), # 157 (5.971744757124192, 4.672362496617807, 6.378873563121885, 7.271815665320995, 7.274944884696798, 4.088819581053688, 3.780085376742286, 4.388637561879498, 7.881329673279279, 3.882692733032915, 4.580476602031154, 5.478079651355472, 6.477188687532276), # 158 (5.9058294135827225, 4.610452255679582, 6.32539025472239, 7.203181727030763, 7.212153047825303, 4.058951718405683, 3.734570210708573, 4.357770826211506, 7.829141808977716, 3.8418247952789963, 4.533933548495195, 5.425090018946487, 6.420342117536156), # 159 (5.827897675923448, 4.540077382832571, 6.257536766364711, 7.118862008327088, 7.133136105077437, 4.019473036838147, 3.6817949987070273, 4.316479351621878, 7.757940181782921, 3.792964521490315, 4.477807606887632, 5.360401559110278, 6.349136487114865), # 160 (5.738577643668768, 4.461696694464375, 6.1760375775282474, 7.019658003005382, 7.038714499425691, 3.970861793256251, 3.622145156805501, 4.265280426487824, 7.668663813599214, 3.7365265545367503, 4.412593323679766, 5.284613975126057, 6.264299235855278), # 161 (5.638497416341085, 4.375769006962591, 6.0816171676923965, 6.9063712048610615, 6.929708673842564, 3.9135962445651646, 3.5560061010718473, 4.204691339186562, 7.56225172633091, 3.6729255372881853, 4.338785245342897, 5.198326970273035, 6.166557803344267), # 162 (5.528285093462799, 4.2827531367148195, 5.975000016336562, 6.779803107689547, 6.806939071300551, 3.848154647670058, 3.4837632475739206, 4.1352293780953, 7.439642941882325, 3.6025761126145, 4.2568779183483265, 5.102140247830427, 6.0566396291687035), # 163 (5.408568774556308, 4.183107900108657, 5.856910602940141, 6.640755205286254, 6.6712261347721515, 3.7750152594761035, 3.405802012379573, 4.0574118315912555, 7.301776482157779, 3.525892923385575, 4.167365889167357, 4.996653511077443, 5.935272152915463), # 164 (5.279976559144014, 4.077292113531706, 5.728073406982535, 6.490028991446602, 6.523390307229859, 3.6946563368884693, 3.3225078115566578, 3.971755988051637, 7.149591369061584, 3.4432906124712908, 4.0707437042712895, 4.882466463293296, 5.803182814171416), # 165 (5.143136546748318, 3.9657645933715635, 5.589212907943143, 6.328425959966001, 6.3642520316461715, 3.607556136812327, 3.234266061173029, 3.878779135853662, 6.984026624498059, 3.35518382274153, 3.9675059101314236, 4.760178807757201, 5.661099052523436), # 166 (4.998676836891619, 3.8489841560158298, 5.441053585301364, 6.156747604639875, 6.194631750993584, 3.514192916152847, 3.14146217729654, 3.7789985633745413, 6.80602127037152, 3.2619871970661714, 3.858147053219062, 4.630390247748367, 5.509748307558397), # 167 (4.847225529096317, 3.727409617852103, 5.284319918536599, 5.975795419263637, 6.015349908244594, 3.415044931815199, 3.0444815759950434, 3.672931558991488, 6.616514328586284, 3.1641153783150977, 3.743161680005505, 4.493700486546009, 5.34985801886317), # 168 (4.689410722884812, 3.6014997952679835, 5.119736387128247, 5.786370897632707, 5.827226946371696, 3.310590440704556, 2.9437096733363934, 3.561095411081716, 6.416444821046671, 3.0619830093581895, 3.623044336962055, 4.350709227429338, 5.182155626024628), # 169 (4.525860517779507, 3.47171350465107, 4.948027470555708, 5.589275533542496, 5.631083308347387, 3.2013076997260854, 2.8395318853884426, 3.444007408022438, 6.206751769656991, 2.9560047330653263, 3.498289570560013, 4.202016173677567, 5.007368568629644), # 170 (4.3572030133028, 3.3385095623889605, 4.7699176482983825, 5.385310820788429, 5.427739437144165, 3.087674965784959, 2.7323336282190445, 3.3221848381908665, 5.9883741963215655, 2.846595192306391, 3.3693919272706787, 4.048221028569909, 4.826224286265092), # 171 (4.184066308977092, 3.2023467848692557, 4.586131399835669, 5.175278253165917, 5.218015775734523, 2.970170495786347, 2.6225003178960526, 3.1961449899642167, 5.762251122944709, 2.734169029951264, 3.2368459535653553, 3.889923495385577, 4.639450218517843), # 172 (4.007078504324784, 3.063683988479554, 4.39739320464697, 4.959979324470381, 5.002732767090961, 2.84927254663542, 2.51041737048732, 3.066405151719699, 5.529321571430739, 2.6191408888698255, 3.1011461959153426, 3.72772327740378, 4.44777380497477), # 173 (3.8268676988682753, 2.9229799896074544, 4.204427542211682, 4.740215528497233, 4.782710854185973, 2.725459375237348, 2.3964702020607005, 2.9334826118345285, 5.290524563683971, 2.5019254119319574, 2.9627872007919422, 3.5622200779037345, 4.251922485222747), # 174 (3.6440619921299646, 2.7806936046405557, 4.007958892009206, 4.516788359041894, 4.558770479992055, 2.599209238497303, 2.2810442286840464, 2.797894658685917, 5.046799121608725, 2.3829372420075394, 2.8222635146664556, 3.3940136001646515, 4.052623698848646), # 175 (3.459289483632255, 2.6372836499664585, 3.8087117335189427, 4.29049930989978, 4.331732087481704, 2.4710003933204536, 2.164524866425212, 2.6601585806510792, 4.799084267109314, 2.2625910219664536, 2.680069684010184, 3.2237035474657434, 3.8506048854393393), # 176 (3.273178272897546, 2.493208941972761, 3.607410546220291, 4.062149874866306, 4.102416119627419, 2.3413110966119706, 2.0472975313520503, 2.5207916661072263, 4.548319022090056, 2.1413013946785795, 2.536700255294429, 3.051889623086223, 3.6465934845817), # 177 (3.0863564594482376, 2.348928297047063, 3.404779809592651, 3.832541547736893, 3.871643019401691, 2.210619605277026, 1.929747639532414, 2.3803112034315723, 4.295442408455268, 2.0194830030138, 2.39264977499049, 2.879171530305302, 3.4413169358626017), # 178 (0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0), # 179 ) passenger_arriving_acc = ( (7, 3, 2, 4, 5, 2, 1, 3, 1, 0, 0, 0, 0, 7, 5, 1, 2, 3, 1, 2, 0, 3, 2, 3, 1, 0), # 0 (10, 6, 5, 10, 8, 4, 2, 8, 4, 2, 0, 0, 0, 11, 9, 4, 4, 10, 4, 6, 0, 3, 4, 4, 2, 0), # 1 (17, 10, 6, 11, 12, 5, 2, 12, 5, 3, 0, 0, 0, 15, 13, 8, 7, 14, 5, 7, 2, 5, 9, 4, 2, 0), # 2 (21, 14, 9, 14, 12, 5, 4, 13, 6, 7, 0, 1, 0, 21, 17, 14, 10, 18, 8, 10, 4, 8, 9, 5, 2, 0), # 3 (29, 20, 16, 17, 18, 7, 4, 16, 7, 8, 0, 2, 0, 25, 17, 20, 10, 20, 10, 11, 5, 13, 13, 7, 3, 0), # 4 (31, 23, 24, 20, 21, 9, 7, 18, 7, 9, 2, 2, 0, 28, 21, 25, 11, 28, 13, 13, 6, 17, 14, 7, 3, 0), # 5 (37, 35, 27, 25, 22, 10, 8, 19, 9, 11, 3, 2, 0, 35, 25, 26, 17, 29, 16, 16, 8, 19, 15, 8, 3, 0), # 6 (43, 42, 31, 27, 25, 14, 11, 21, 11, 11, 5, 3, 0, 40, 28, 29, 21, 34, 20, 16, 12, 21, 16, 8, 4, 0), # 7 (49, 46, 39, 31, 33, 15, 12, 23, 13, 11, 6, 3, 0, 47, 34, 34, 27, 39, 22, 20, 16, 22, 17, 8, 7, 0), # 8 (56, 56, 47, 34, 37, 18, 17, 28, 15, 12, 6, 3, 0, 56, 43, 38, 29, 42, 24, 22, 17, 23, 20, 11, 7, 0), # 9 (58, 64, 53, 39, 42, 22, 21, 30, 17, 12, 8, 3, 0, 64, 49, 42, 33, 52, 28, 28, 17, 25, 21, 14, 7, 0), # 10 (65, 67, 60, 47, 46, 25, 23, 32, 17, 13, 10, 3, 0, 71, 55, 45, 34, 53, 32, 31, 17, 29, 21, 17, 8, 0), # 11 (71, 71, 68, 54, 49, 29, 26, 34, 22, 13, 12, 4, 0, 75, 63, 51, 40, 55, 37, 35, 17, 33, 22, 18, 9, 0), # 12 (76, 82, 73, 61, 49, 32, 26, 36, 27, 16, 13, 4, 0, 81, 70, 54, 44, 63, 43, 40, 20, 36, 23, 19, 10, 0), # 13 (87, 88, 76, 70, 55, 32, 32, 45, 33, 16, 13, 4, 0, 90, 74, 57, 48, 71, 43, 41, 20, 38, 28, 19, 11, 0), # 14 (94, 93, 79, 83, 59, 33, 34, 50, 33, 18, 14, 4, 0, 95, 80, 60, 50, 75, 48, 46, 21, 39, 30, 20, 11, 0), # 15 (98, 99, 88, 86, 64, 37, 37, 51, 34, 21, 14, 4, 0, 99, 85, 64, 55, 84, 51, 48, 23, 45, 32, 21, 11, 0), # 16 (107, 106, 93, 91, 69, 37, 38, 51, 36, 23, 15, 5, 0, 106, 96, 71, 57, 86, 54, 53, 27, 47, 35, 22, 12, 0), # 17 (111, 118, 95, 97, 73, 39, 41, 55, 42, 24, 17, 5, 0, 112, 107, 76, 65, 92, 57, 55, 29, 50, 38, 24, 12, 0), # 18 (121, 126, 103, 103, 78, 39, 42, 56, 45, 25, 18, 5, 0, 115, 110, 77, 72, 99, 66, 56, 29, 51, 43, 25, 13, 0), # 19 (129, 133, 107, 107, 87, 42, 45, 62, 48, 25, 19, 5, 0, 123, 117, 86, 77, 111, 71, 57, 33, 55, 44, 28, 14, 0), # 20 (139, 146, 112, 118, 93, 46, 49, 63, 50, 25, 22, 6, 0, 129, 124, 92, 83, 118, 74, 61, 36, 57, 44, 29, 14, 0), # 21 (151, 152, 116, 126, 100, 50, 51, 70, 50, 27, 25, 6, 0, 139, 127, 98, 84, 127, 83, 61, 38, 65, 45, 30, 14, 0), # 22 (159, 161, 122, 133, 107, 54, 53, 75, 52, 29, 26, 8, 0, 151, 133, 99, 91, 133, 88, 63, 39, 68, 46, 32, 14, 0), # 23 (170, 167, 129, 140, 115, 57, 56, 77, 54, 32, 26, 8, 0, 160, 143, 104, 96, 139, 93, 68, 41, 71, 47, 32, 15, 0), # 24 (180, 169, 138, 143, 119, 59, 61, 81, 60, 34, 26, 9, 0, 170, 147, 109, 97, 145, 95, 72, 46, 76, 53, 32, 15, 0), # 25 (193, 177, 148, 153, 124, 62, 65, 83, 61, 35, 27, 9, 0, 181, 151, 114, 103, 150, 99, 77, 47, 78, 57, 32, 15, 0), # 26 (200, 187, 158, 156, 127, 65, 68, 84, 62, 36, 28, 9, 0, 192, 155, 118, 111, 159, 102, 83, 47, 81, 60, 32, 17, 0), # 27 (210, 197, 165, 164, 135, 69, 69, 87, 66, 36, 31, 9, 0, 203, 159, 127, 114, 169, 107, 87, 51, 84, 64, 33, 18, 0), # 28 (218, 202, 174, 170, 141, 74, 72, 87, 74, 37, 32, 9, 0, 212, 165, 131, 119, 174, 110, 90, 52, 86, 67, 34, 19, 0), # 29 (226, 208, 180, 178, 143, 75, 80, 88, 79, 37, 34, 9, 0, 223, 172, 132, 123, 179, 112, 92, 53, 89, 67, 35, 20, 0), # 30 (234, 217, 189, 186, 149, 79, 82, 93, 83, 40, 35, 10, 0, 229, 176, 136, 130, 187, 116, 92, 55, 90, 71, 38, 22, 0), # 31 (240, 222, 201, 193, 157, 82, 85, 95, 84, 42, 36, 10, 0, 237, 178, 138, 136, 193, 122, 95, 57, 96, 73, 41, 22, 0), # 32 (245, 228, 209, 199, 165, 84, 85, 96, 85, 44, 36, 10, 0, 246, 189, 147, 136, 201, 128, 97, 62, 101, 74, 41, 23, 0), # 33 (249, 234, 214, 208, 172, 88, 88, 96, 88, 45, 37, 11, 0, 258, 193, 152, 140, 207, 137, 102, 64, 103, 78, 43, 23, 0), # 34 (260, 238, 222, 215, 178, 92, 90, 97, 89, 46, 38, 11, 0, 265, 202, 156, 147, 210, 138, 106, 68, 106, 82, 45, 24, 0), # 35 (265, 248, 230, 222, 192, 94, 93, 98, 90, 46, 40, 11, 0, 276, 211, 162, 151, 217, 140, 107, 73, 107, 86, 46, 25, 0), # 36 (277, 255, 239, 231, 198, 95, 95, 100, 95, 48, 42, 11, 0, 285, 219, 168, 155, 221, 143, 110, 74, 110, 87, 49, 25, 0), # 37 (288, 261, 244, 242, 200, 97, 97, 102, 99, 49, 43, 11, 0, 296, 224, 172, 160, 226, 145, 112, 76, 111, 89, 51, 27, 0), # 38 (299, 266, 251, 248, 207, 98, 100, 107, 102, 51, 44, 11, 0, 307, 235, 178, 163, 233, 148, 112, 81, 116, 91, 51, 27, 0), # 39 (307, 271, 257, 253, 215, 104, 103, 111, 107, 53, 46, 12, 0, 314, 248, 185, 165, 238, 157, 115, 83, 118, 92, 52, 27, 0), # 40 (311, 281, 265, 265, 221, 105, 104, 113, 108, 54, 46, 12, 0, 324, 251, 186, 171, 252, 160, 121, 85, 121, 94, 52, 29, 0), # 41 (314, 293, 271, 273, 228, 107, 107, 117, 109, 56, 47, 14, 0, 330, 258, 192, 172, 258, 162, 123, 85, 123, 95, 55, 29, 0), # 42 (320, 299, 278, 274, 235, 109, 110, 118, 113, 57, 47, 14, 0, 340, 266, 194, 174, 263, 167, 127, 86, 128, 96, 56, 30, 0), # 43 (325, 309, 282, 278, 236, 113, 112, 121, 115, 59, 50, 15, 0, 355, 271, 195, 181, 263, 171, 129, 87, 130, 97, 57, 30, 0), # 44 (335, 316, 286, 287, 245, 114, 114, 126, 118, 61, 51, 15, 0, 365, 279, 201, 184, 265, 175, 133, 87, 135, 101, 59, 31, 0), # 45 (347, 321, 295, 295, 250, 116, 116, 128, 121, 64, 53, 15, 0, 375, 284, 208, 192, 272, 181, 136, 87, 140, 106, 59, 31, 0), # 46 (358, 327, 306, 307, 257, 117, 120, 131, 125, 64, 55, 17, 0, 389, 289, 212, 196, 281, 184, 140, 93, 142, 109, 61, 31, 0), # 47 (368, 338, 312, 314, 263, 119, 121, 133, 126, 67, 56, 17, 0, 402, 300, 219, 200, 285, 188, 145, 94, 146, 112, 62, 31, 0), # 48 (373, 347, 315, 322, 263, 122, 127, 139, 127, 67, 57, 17, 0, 408, 304, 221, 207, 293, 194, 147, 96, 147, 122, 65, 32, 0), # 49 (381, 357, 322, 330, 273, 125, 130, 143, 129, 68, 58, 19, 0, 415, 315, 227, 208, 306, 197, 152, 96, 147, 122, 65, 33, 0), # 50 (385, 364, 327, 338, 285, 128, 133, 146, 133, 69, 59, 19, 0, 421, 322, 231, 213, 312, 201, 155, 98, 148, 123, 66, 34, 0), # 51 (394, 370, 333, 341, 291, 129, 138, 147, 137, 71, 60, 19, 0, 425, 326, 237, 217, 318, 204, 158, 100, 152, 123, 68, 36, 0), # 52 (407, 377, 335, 344, 298, 131, 144, 152, 141, 71, 60, 21, 0, 437, 332, 243, 221, 325, 206, 160, 102, 156, 128, 69, 36, 0), # 53 (412, 389, 343, 349, 305, 138, 146, 155, 144, 72, 62, 21, 0, 443, 339, 252, 223, 331, 209, 161, 104, 163, 132, 70, 36, 0), # 54 (417, 397, 352, 354, 308, 139, 147, 157, 148, 73, 63, 21, 0, 453, 345, 258, 228, 341, 212, 166, 106, 165, 135, 70, 38, 0), # 55 (427, 405, 357, 364, 313, 143, 151, 158, 150, 74, 65, 21, 0, 456, 348, 263, 233, 346, 216, 169, 108, 167, 137, 71, 39, 0), # 56 (431, 411, 365, 369, 317, 145, 153, 161, 153, 77, 67, 21, 0, 465, 354, 268, 236, 355, 221, 173, 109, 172, 139, 71, 39, 0), # 57 (444, 424, 373, 379, 321, 149, 156, 161, 157, 79, 68, 22, 0, 474, 358, 272, 238, 361, 223, 178, 113, 172, 144, 71, 39, 0), # 58 (453, 429, 380, 391, 327, 152, 158, 165, 162, 81, 71, 24, 0, 483, 367, 274, 242, 369, 228, 180, 115, 174, 148, 71, 39, 0), # 59 (463, 435, 384, 395, 331, 155, 162, 176, 168, 83, 71, 24, 0, 488, 374, 278, 248, 374, 234, 188, 116, 176, 150, 72, 39, 0), # 60 (470, 442, 390, 405, 336, 158, 165, 179, 172, 84, 72, 25, 0, 492, 384, 283, 252, 380, 241, 192, 118, 178, 151, 76, 40, 0), # 61 (480, 445, 396, 410, 339, 160, 167, 182, 173, 86, 74, 25, 0, 498, 390, 284, 254, 385, 243, 193, 119, 179, 153, 78, 41, 0), # 62 (489, 457, 401, 417, 343, 162, 169, 183, 175, 89, 75, 25, 0, 506, 395, 286, 262, 390, 247, 195, 120, 182, 158, 78, 43, 0), # 63 (497, 470, 404, 425, 349, 164, 172, 184, 177, 90, 75, 26, 0, 516, 398, 289, 265, 398, 252, 196, 122, 182, 163, 80, 44, 0), # 64 (506, 478, 408, 430, 357, 171, 179, 187, 178, 91, 77, 28, 0, 531, 405, 293, 273, 401, 256, 198, 122, 185, 166, 83, 44, 0), # 65 (519, 483, 410, 437, 366, 171, 180, 191, 180, 94, 78, 28, 0, 539, 411, 299, 276, 405, 258, 202, 128, 191, 172, 84, 46, 0), # 66 (530, 486, 418, 448, 373, 176, 184, 193, 184, 96, 79, 32, 0, 540, 418, 302, 282, 409, 258, 204, 130, 195, 177, 85, 47, 0), # 67 (535, 493, 424, 451, 379, 179, 186, 196, 188, 99, 80, 32, 0, 546, 425, 307, 286, 414, 262, 208, 133, 198, 178, 88, 48, 0), # 68 (543, 504, 432, 459, 382, 181, 187, 197, 193, 99, 83, 33, 0, 558, 435, 313, 291, 421, 269, 209, 134, 202, 178, 90, 49, 0), # 69 (545, 512, 436, 463, 387, 183, 190, 201, 198, 101, 85, 34, 0, 564, 439, 318, 293, 427, 272, 213, 136, 204, 178, 91, 49, 0), # 70 (551, 523, 440, 475, 395, 186, 197, 201, 199, 101, 85, 34, 0, 572, 448, 323, 293, 436, 275, 215, 139, 207, 181, 91, 50, 0), # 71 (561, 533, 447, 480, 404, 186, 199, 204, 203, 103, 86, 34, 0, 577, 456, 326, 295, 449, 276, 217, 140, 212, 183, 91, 50, 0), # 72 (570, 542, 454, 484, 408, 196, 201, 206, 210, 105, 86, 35, 0, 583, 459, 331, 296, 457, 280, 219, 140, 212, 186, 97, 50, 0), # 73 (577, 550, 455, 485, 420, 198, 202, 207, 215, 107, 87, 36, 0, 589, 463, 337, 298, 460, 282, 221, 144, 215, 186, 99, 50, 0), # 74 (587, 559, 462, 492, 427, 202, 204, 211, 219, 109, 89, 37, 0, 595, 467, 343, 301, 468, 284, 225, 148, 220, 190, 102, 50, 0), # 75 (598, 568, 470, 496, 432, 206, 207, 215, 220, 111, 92, 37, 0, 601, 469, 350, 303, 475, 287, 228, 150, 221, 192, 103, 52, 0), # 76 (604, 574, 475, 502, 438, 207, 209, 218, 221, 111, 92, 38, 0, 608, 478, 354, 307, 477, 290, 232, 150, 223, 197, 104, 53, 0), # 77 (615, 582, 487, 508, 452, 208, 209, 219, 223, 111, 92, 39, 0, 624, 487, 358, 309, 485, 292, 235, 156, 223, 201, 106, 53, 0), # 78 (619, 588, 490, 516, 458, 214, 213, 222, 225, 114, 92, 39, 0, 632, 492, 360, 314, 492, 296, 242, 158, 227, 203, 106, 54, 0), # 79 (631, 595, 495, 523, 464, 216, 213, 226, 227, 115, 92, 41, 0, 636, 497, 367, 319, 499, 298, 247, 160, 231, 205, 107, 54, 0), # 80 (640, 603, 501, 529, 471, 220, 213, 227, 231, 118, 92, 41, 0, 640, 501, 374, 326, 504, 303, 251, 160, 235, 206, 109, 55, 0), # 81 (648, 613, 504, 538, 474, 223, 216, 229, 234, 119, 92, 42, 0, 650, 506, 379, 329, 509, 303, 256, 160, 239, 208, 111, 56, 0), # 82 (653, 616, 511, 545, 477, 224, 217, 234, 234, 122, 92, 42, 0, 658, 516, 384, 332, 518, 306, 259, 162, 243, 211, 112, 56, 0), # 83 (665, 626, 515, 549, 488, 226, 223, 237, 240, 124, 92, 42, 0, 661, 521, 393, 333, 524, 311, 264, 164, 245, 213, 112, 56, 0), # 84 (678, 635, 525, 555, 493, 229, 225, 240, 244, 127, 92, 43, 0, 668, 529, 402, 336, 528, 315, 266, 166, 251, 215, 112, 57, 0), # 85 (684, 640, 535, 560, 495, 235, 226, 243, 249, 128, 92, 44, 0, 681, 535, 405, 337, 531, 320, 267, 168, 251, 217, 112, 60, 0), # 86 (689, 645, 540, 567, 503, 239, 231, 244, 254, 128, 93, 44, 0, 694, 538, 410, 340, 540, 321, 272, 169, 252, 220, 112, 60, 0), # 87 (699, 656, 544, 576, 507, 244, 235, 247, 256, 129, 94, 45, 0, 698, 547, 414, 344, 543, 325, 273, 175, 255, 220, 113, 61, 0), # 88 (708, 663, 547, 579, 514, 245, 237, 248, 262, 131, 96, 45, 0, 709, 556, 418, 353, 551, 333, 273, 177, 256, 222, 115, 61, 0), # 89 (713, 674, 555, 585, 519, 245, 243, 252, 264, 132, 98, 47, 0, 722, 565, 422, 357, 554, 336, 277, 181, 259, 223, 115, 61, 0), # 90 (720, 685, 561, 592, 524, 246, 249, 253, 265, 133, 98, 47, 0, 727, 575, 427, 361, 560, 337, 281, 183, 261, 224, 115, 61, 0), # 91 (726, 689, 564, 602, 529, 249, 251, 254, 268, 134, 99, 47, 0, 739, 583, 428, 365, 566, 337, 284, 183, 265, 228, 118, 62, 0), # 92 (735, 698, 571, 611, 536, 252, 252, 256, 269, 134, 100, 47, 0, 748, 593, 430, 369, 571, 340, 287, 183, 267, 229, 119, 64, 0), # 93 (743, 708, 577, 617, 543, 256, 255, 258, 274, 137, 102, 47, 0, 749, 600, 438, 375, 574, 341, 292, 185, 268, 235, 119, 66, 0), # 94 (751, 720, 586, 622, 555, 259, 259, 260, 277, 138, 104, 47, 0, 753, 605, 445, 382, 580, 344, 296, 188, 270, 237, 120, 66, 0), # 95 (756, 728, 589, 626, 565, 265, 261, 260, 285, 140, 106, 47, 0, 761, 613, 449, 386, 583, 348, 298, 190, 272, 239, 124, 68, 0), # 96 (764, 734, 599, 632, 570, 266, 262, 262, 289, 140, 107, 47, 0, 766, 622, 452, 390, 587, 349, 301, 194, 272, 243, 125, 69, 0), # 97 (769, 742, 606, 638, 578, 270, 264, 263, 294, 140, 110, 48, 0, 781, 626, 458, 394, 599, 355, 303, 196, 273, 245, 127, 69, 0), # 98 (776, 752, 612, 648, 588, 270, 264, 264, 296, 140, 111, 49, 0, 787, 635, 465, 399, 604, 357, 304, 197, 275, 249, 128, 69, 0), # 99 (782, 753, 615, 650, 592, 274, 267, 264, 296, 141, 112, 51, 0, 797, 645, 470, 402, 608, 361, 306, 197, 275, 250, 129, 69, 0), # 100 (789, 762, 624, 655, 597, 276, 271, 268, 299, 142, 112, 51, 0, 804, 650, 473, 404, 621, 364, 309, 199, 277, 251, 131, 70, 0), # 101 (794, 766, 629, 660, 606, 281, 272, 268, 303, 142, 114, 52, 0, 811, 652, 478, 406, 624, 368, 311, 199, 278, 251, 132, 71, 0), # 102 (797, 773, 633, 669, 610, 287, 273, 270, 307, 146, 114, 52, 0, 822, 663, 482, 407, 631, 372, 316, 200, 281, 253, 132, 71, 0), # 103 (801, 782, 635, 680, 614, 290, 274, 271, 308, 146, 115, 52, 0, 840, 669, 491, 410, 641, 376, 316, 201, 282, 256, 133, 71, 0), # 104 (808, 785, 643, 687, 621, 296, 278, 274, 312, 147, 116, 53, 0, 847, 675, 494, 412, 650, 379, 317, 202, 287, 259, 134, 74, 0), # 105 (815, 794, 648, 697, 625, 298, 280, 276, 316, 149, 117, 54, 0, 854, 681, 501, 413, 655, 383, 318, 206, 296, 259, 134, 74, 0), # 106 (817, 801, 655, 707, 629, 300, 284, 276, 320, 149, 119, 55, 0, 861, 685, 505, 419, 660, 385, 322, 208, 296, 261, 136, 74, 0), # 107 (825, 808, 661, 715, 635, 301, 290, 280, 327, 151, 121, 56, 0, 867, 689, 506, 422, 670, 388, 324, 212, 300, 263, 136, 74, 0), # 108 (831, 818, 667, 722, 640, 307, 292, 284, 329, 151, 122, 56, 0, 873, 698, 509, 423, 674, 392, 327, 213, 300, 266, 136, 76, 0), # 109 (834, 824, 673, 729, 645, 312, 292, 287, 331, 151, 122, 57, 0, 882, 701, 516, 425, 681, 393, 330, 217, 302, 266, 137, 77, 0), # 110 (841, 830, 684, 740, 647, 313, 292, 290, 332, 151, 122, 58, 0, 891, 702, 521, 428, 688, 395, 333, 218, 304, 268, 138, 77, 0), # 111 (852, 836, 686, 747, 652, 316, 295, 291, 337, 151, 124, 60, 0, 895, 713, 524, 433, 691, 398, 337, 218, 306, 272, 139, 79, 0), # 112 (859, 848, 690, 753, 657, 316, 298, 291, 341, 152, 126, 61, 0, 903, 720, 529, 435, 695, 400, 340, 221, 307, 277, 140, 80, 0), # 113 (866, 855, 696, 759, 663, 321, 300, 291, 344, 153, 127, 61, 0, 912, 724, 535, 435, 701, 404, 344, 225, 313, 277, 140, 81, 0), # 114 (870, 862, 699, 763, 668, 323, 305, 291, 345, 153, 128, 61, 0, 915, 733, 540, 441, 708, 407, 345, 228, 315, 279, 141, 81, 0), # 115 (879, 866, 704, 775, 672, 330, 307, 292, 348, 156, 128, 61, 0, 921, 737, 543, 447, 715, 411, 347, 232, 318, 281, 141, 81, 0), # 116 (888, 873, 713, 779, 680, 333, 313, 294, 351, 156, 128, 61, 0, 931, 742, 545, 449, 722, 418, 351, 236, 319, 282, 144, 82, 0), # 117 (894, 885, 724, 782, 685, 337, 318, 298, 355, 156, 129, 63, 0, 936, 752, 548, 454, 725, 420, 351, 242, 322, 283, 147, 82, 0), # 118 (901, 891, 733, 790, 693, 341, 320, 299, 360, 156, 130, 64, 0, 938, 760, 554, 460, 729, 423, 353, 243, 325, 284, 148, 82, 0), # 119 (907, 898, 741, 795, 700, 343, 321, 303, 362, 157, 131, 64, 0, 945, 764, 560, 462, 733, 427, 356, 243, 334, 284, 150, 82, 0), # 120 (915, 904, 746, 805, 706, 348, 325, 310, 364, 157, 133, 65, 0, 956, 775, 566, 465, 734, 429, 358, 248, 337, 288, 152, 83, 0), # 121 (920, 907, 751, 812, 711, 352, 326, 311, 366, 158, 133, 66, 0, 961, 784, 572, 467, 738, 430, 362, 248, 339, 289, 153, 86, 0), # 122 (927, 909, 756, 817, 714, 354, 326, 313, 368, 160, 134, 67, 0, 967, 788, 574, 469, 744, 432, 365, 250, 340, 289, 155, 86, 0), # 123 (937, 912, 762, 823, 723, 358, 326, 314, 371, 162, 135, 67, 0, 975, 792, 578, 471, 748, 433, 366, 253, 341, 289, 155, 87, 0), # 124 (942, 915, 765, 831, 725, 360, 326, 317, 371, 163, 138, 67, 0, 986, 798, 582, 473, 754, 436, 370, 253, 343, 292, 158, 88, 0), # 125 (949, 920, 771, 839, 729, 362, 328, 320, 374, 165, 139, 67, 0, 998, 804, 585, 477, 760, 439, 374, 257, 345, 294, 160, 90, 0), # 126 (956, 926, 779, 851, 734, 364, 333, 322, 374, 165, 140, 67, 0, 1003, 811, 592, 479, 762, 441, 375, 261, 345, 297, 160, 90, 0), # 127 (964, 933, 782, 856, 737, 364, 339, 324, 378, 168, 140, 68, 0, 1012, 818, 595, 481, 769, 444, 376, 265, 345, 298, 161, 90, 0), # 128 (973, 939, 789, 866, 740, 366, 342, 324, 381, 169, 141, 68, 0, 1020, 824, 603, 482, 771, 447, 379, 267, 346, 299, 161, 90, 0), # 129 (977, 944, 800, 874, 745, 367, 344, 325, 382, 170, 143, 69, 0, 1027, 830, 608, 485, 775, 449, 383, 272, 349, 301, 164, 90, 0), # 130 (988, 948, 807, 880, 751, 370, 345, 329, 383, 173, 145, 69, 0, 1032, 834, 611, 490, 782, 452, 384, 274, 351, 302, 166, 91, 0), # 131 (995, 954, 809, 889, 758, 372, 347, 331, 387, 173, 146, 69, 0, 1045, 839, 614, 496, 785, 455, 385, 275, 352, 305, 167, 91, 0), # 132 (1004, 961, 817, 893, 762, 373, 348, 334, 389, 174, 149, 69, 0, 1054, 844, 620, 501, 789, 458, 387, 279, 355, 308, 167, 92, 0), # 133 (1008, 966, 820, 898, 770, 375, 351, 338, 392, 174, 149, 69, 0, 1066, 851, 623, 505, 793, 462, 390, 282, 358, 313, 168, 92, 0), # 134 (1019, 973, 822, 902, 775, 378, 354, 340, 394, 174, 150, 69, 0, 1075, 855, 623, 510, 796, 465, 393, 282, 360, 315, 169, 92, 0), # 135 (1028, 978, 827, 912, 781, 379, 354, 341, 398, 175, 150, 69, 0, 1081, 859, 629, 518, 801, 467, 395, 283, 361, 317, 169, 92, 0), # 136 (1034, 985, 827, 915, 788, 382, 358, 343, 401, 175, 150, 70, 0, 1086, 865, 638, 524, 810, 471, 398, 284, 365, 317, 170, 93, 0), # 137 (1041, 988, 831, 923, 794, 383, 360, 348, 409, 176, 152, 71, 0, 1094, 870, 640, 525, 817, 473, 402, 284, 371, 319, 170, 93, 0), # 138 (1045, 992, 835, 932, 797, 387, 363, 352, 410, 176, 152, 71, 0, 1101, 875, 644, 528, 826, 476, 405, 285, 374, 320, 170, 93, 0), # 139 (1054, 996, 837, 938, 805, 389, 364, 354, 412, 178, 153, 73, 0, 1105, 883, 644, 534, 832, 479, 407, 286, 381, 321, 172, 93, 0), # 140 (1057, 1001, 842, 945, 809, 390, 364, 357, 414, 179, 155, 73, 0, 1111, 885, 651, 536, 839, 483, 410, 289, 383, 322, 172, 94, 0), # 141 (1063, 1006, 846, 950, 811, 393, 366, 358, 416, 179, 157, 73, 0, 1120, 892, 652, 536, 843, 484, 412, 290, 384, 327, 173, 95, 0), # 142 (1065, 1014, 849, 955, 817, 395, 369, 359, 420, 179, 157, 74, 0, 1132, 896, 653, 539, 849, 487, 413, 293, 392, 329, 175, 95, 0), # 143 (1072, 1018, 855, 964, 822, 399, 370, 365, 426, 179, 159, 75, 0, 1138, 902, 654, 542, 852, 493, 416, 295, 394, 332, 175, 95, 0), # 144 (1080, 1023, 862, 975, 827, 402, 372, 366, 428, 180, 160, 75, 0, 1145, 905, 660, 544, 855, 494, 418, 298, 397, 332, 175, 95, 0), # 145 (1087, 1026, 869, 978, 832, 405, 373, 367, 429, 182, 161, 75, 0, 1152, 909, 661, 547, 860, 496, 421, 300, 398, 336, 177, 95, 0), # 146 (1091, 1037, 875, 984, 840, 408, 375, 368, 434, 182, 161, 76, 0, 1157, 918, 663, 551, 863, 496, 423, 300, 402, 338, 177, 95, 0), # 147 (1094, 1042, 875, 986, 844, 408, 375, 370, 436, 182, 162, 77, 0, 1165, 922, 668, 553, 869, 499, 427, 301, 405, 342, 179, 96, 0), # 148 (1103, 1044, 885, 990, 850, 409, 378, 370, 441, 184, 164, 77, 0, 1169, 926, 670, 555, 874, 500, 428, 303, 407, 343, 179, 97, 0), # 149 (1107, 1047, 892, 996, 854, 409, 379, 371, 443, 184, 165, 77, 0, 1175, 929, 676, 556, 880, 501, 431, 305, 409, 345, 181, 97, 0), # 150 (1111, 1053, 893, 997, 857, 412, 381, 372, 445, 185, 167, 78, 0, 1182, 936, 681, 562, 884, 502, 433, 307, 410, 345, 181, 97, 0), # 151 (1119, 1058, 897, 999, 861, 414, 383, 374, 445, 186, 167, 78, 0, 1188, 940, 686, 563, 891, 505, 435, 307, 413, 350, 181, 97, 0), # 152 (1124, 1061, 903, 1006, 863, 417, 385, 377, 447, 186, 168, 79, 0, 1194, 947, 691, 565, 896, 509, 438, 309, 415, 351, 183, 97, 0), # 153 (1129, 1063, 906, 1009, 865, 419, 386, 379, 449, 188, 169, 80, 0, 1202, 950, 696, 570, 897, 510, 439, 310, 418, 352, 183, 97, 0), # 154 (1135, 1069, 913, 1012, 868, 420, 388, 382, 456, 188, 171, 80, 0, 1206, 955, 698, 571, 906, 514, 441, 310, 419, 356, 185, 99, 0), # 155 (1140, 1072, 916, 1017, 873, 421, 390, 384, 456, 189, 172, 80, 0, 1212, 960, 702, 574, 912, 519, 443, 311, 420, 357, 185, 99, 0), # 156 (1147, 1075, 921, 1022, 876, 423, 392, 385, 459, 189, 173, 81, 0, 1221, 964, 707, 579, 919, 520, 445, 316, 422, 362, 185, 99, 0), # 157 (1150, 1077, 925, 1027, 885, 424, 392, 386, 463, 189, 173, 81, 0, 1228, 972, 711, 583, 924, 523, 450, 317, 426, 363, 188, 99, 0), # 158 (1151, 1082, 932, 1035, 888, 428, 393, 387, 466, 192, 174, 81, 0, 1232, 981, 715, 588, 928, 524, 453, 320, 433, 365, 189, 99, 0), # 159 (1157, 1090, 938, 1038, 895, 430, 393, 390, 470, 192, 174, 81, 0, 1246, 986, 720, 590, 932, 526, 456, 321, 436, 366, 190, 99, 0), # 160 (1161, 1098, 940, 1044, 900, 432, 394, 390, 472, 193, 174, 81, 0, 1246, 987, 725, 593, 935, 528, 457, 322, 438, 368, 192, 99, 0), # 161 (1163, 1105, 951, 1052, 903, 433, 396, 391, 473, 193, 175, 81, 0, 1251, 996, 732, 597, 942, 530, 458, 322, 442, 369, 193, 100, 0), # 162 (1170, 1108, 952, 1056, 907, 436, 397, 393, 473, 195, 175, 81, 0, 1261, 1000, 734, 600, 947, 535, 459, 324, 442, 371, 195, 101, 0), # 163 (1170, 1111, 959, 1059, 911, 438, 398, 393, 476, 195, 175, 81, 0, 1268, 1006, 735, 606, 951, 537, 462, 325, 444, 373, 196, 101, 0), # 164 (1174, 1114, 961, 1064, 913, 442, 399, 394, 478, 196, 175, 82, 0, 1275, 1014, 736, 609, 954, 542, 466, 326, 448, 374, 198, 102, 0), # 165 (1179, 1120, 964, 1067, 920, 446, 402, 396, 480, 196, 175, 82, 0, 1279, 1021, 737, 614, 956, 543, 470, 327, 452, 374, 199, 102, 0), # 166 (1182, 1123, 969, 1074, 923, 447, 403, 397, 480, 199, 176, 84, 0, 1281, 1024, 741, 614, 959, 543, 470, 327, 455, 376, 202, 102, 0), # 167 (1188, 1128, 972, 1079, 929, 447, 404, 399, 482, 199, 177, 84, 0, 1285, 1029, 744, 616, 968, 545, 471, 331, 455, 377, 203, 102, 0), # 168 (1192, 1132, 975, 1082, 935, 447, 405, 400, 484, 199, 177, 84, 0, 1291, 1033, 745, 622, 974, 546, 474, 332, 458, 379, 205, 103, 0), # 169 (1197, 1137, 983, 1085, 935, 450, 408, 401, 487, 199, 178, 85, 0, 1299, 1037, 745, 625, 977, 547, 475, 332, 461, 380, 205, 103, 0), # 170 (1203, 1139, 987, 1096, 940, 450, 409, 402, 490, 200, 178, 85, 0, 1302, 1044, 747, 627, 982, 548, 478, 334, 467, 380, 207, 103, 0), # 171 (1205, 1142, 988, 1099, 943, 452, 410, 404, 490, 200, 179, 85, 0, 1308, 1049, 750, 630, 985, 553, 479, 335, 470, 382, 207, 103, 0), # 172 (1210, 1148, 992, 1101, 946, 456, 411, 405, 493, 200, 179, 85, 0, 1312, 1055, 750, 630, 987, 554, 479, 335, 470, 382, 208, 103, 0), # 173 (1218, 1150, 995, 1102, 948, 458, 411, 405, 495, 201, 180, 85, 0, 1316, 1056, 754, 632, 989, 555, 480, 335, 473, 384, 209, 104, 0), # 174 (1219, 1153, 999, 1105, 949, 459, 412, 405, 496, 202, 180, 85, 0, 1320, 1062, 756, 634, 994, 558, 481, 337, 476, 386, 210, 105, 0), # 175 (1222, 1158, 1000, 1110, 951, 459, 412, 406, 498, 203, 180, 85, 0, 1327, 1065, 758, 637, 998, 559, 482, 338, 478, 386, 210, 105, 0), # 176 (1226, 1161, 1003, 1112, 953, 461, 414, 406, 499, 203, 180, 85, 0, 1330, 1066, 763, 637, 999, 562, 483, 339, 478, 388, 211, 106, 0), # 177 (1232, 1163, 1007, 1114, 957, 464, 415, 408, 501, 203, 180, 85, 0, 1335, 1071, 765, 638, 1002, 564, 483, 340, 480, 389, 211, 107, 0), # 178 (1232, 1163, 1007, 1114, 957, 464, 415, 408, 501, 203, 180, 85, 0, 1335, 1071, 765, 638, 1002, 564, 483, 340, 480, 389, 211, 107, 0), # 179 ) passenger_arriving_rate = ( (4.0166924626974145, 4.051878277108322, 3.4741888197416713, 3.72880066431806, 2.962498990725126, 1.4647056349507583, 1.6584142461495661, 1.5510587243264744, 1.6240264165781353, 0.7916030031044742, 0.5607020218514138, 0.32652767188707826, 0.0, 4.067104170062691, 3.5918043907578605, 2.803510109257069, 2.374809009313422, 3.2480528331562706, 2.171482214057064, 1.6584142461495661, 1.0462183106791132, 1.481249495362563, 1.2429335547726867, 0.6948377639483343, 0.36835257064621113, 0.0), # 0 (4.283461721615979, 4.319377842372822, 3.703564394220102, 3.97508655196597, 3.1586615133195926, 1.561459005886526, 1.7677875765054776, 1.6531712409685695, 1.7312654203554425, 0.8437961384554302, 0.5977461514608177, 0.34808111072095704, 0.0, 4.3358333179518835, 3.8288922179305267, 2.9887307573040878, 2.53138841536629, 3.462530840710885, 2.3144397373559973, 1.7677875765054776, 1.1153278613475186, 1.5793307566597963, 1.3250288506553236, 0.7407128788440204, 0.39267071294298395, 0.0), # 1 (4.549378407183785, 4.585815791986718, 3.9320281903649423, 4.220392622798877, 3.3541135859998636, 1.6578263867724743, 1.8767274031842818, 1.7548750826348067, 1.838076481834013, 0.8957827550041094, 0.6346430865035085, 0.3695488434702037, 0.0, 4.603491862567752, 4.06503727817224, 3.173215432517542, 2.6873482650123277, 3.676152963668026, 2.4568251156887295, 1.8767274031842818, 1.1841617048374817, 1.6770567929999318, 1.4067975409329592, 0.7864056380729886, 0.41689234472606534, 0.0), # 2 (4.81340623451725, 4.850135034753395, 4.1586739128799035, 4.463745844519244, 3.548086227201014, 1.7534256238730528, 1.9848014566591823, 1.8557670524981693, 1.9440360429122914, 0.9473565396852364, 0.6712464549103178, 0.3908457123286974, 0.0, 4.869018245003381, 4.299302835615671, 3.356232274551589, 2.8420696190557084, 3.8880720858245827, 2.598073873497437, 1.9848014566591823, 1.2524468741950376, 1.774043113600507, 1.487915281506415, 0.8317347825759807, 0.4409213667957632, 0.0), # 3 (5.074508918732786, 5.111278479476234, 4.382595266468691, 4.704173184829542, 3.7398104553581293, 1.8478745634527118, 2.0915774674033836, 1.9554439537316386, 2.048720545488722, 0.998311179433536, 0.7074098846120768, 0.41188655949031766, 0.0, 5.131350906351854, 4.530752154393493, 3.5370494230603833, 2.9949335383006073, 4.097441090977444, 2.737621535224294, 2.0915774674033836, 1.3199104024662227, 1.8699052276790646, 1.5680577282765145, 0.8765190532937384, 0.46466167995238505, 0.0), # 4 (5.331650174946809, 5.368189034958631, 4.602885955835013, 4.940701611432236, 3.9285172889062823, 1.9407910517759004, 2.1966231658900894, 2.0535025895081978, 2.151706431461749, 1.048440361183733, 0.7429870035396177, 0.43258622714894324, 0.0, 5.389428287706262, 4.758448498638375, 3.7149350176980884, 3.145321083551198, 4.303412862923498, 2.8749036253114766, 2.1966231658900894, 1.3862793226970715, 1.9642586444531411, 1.6469005371440792, 0.9205771911670025, 0.48801718499623925, 0.0), # 5 (5.583793718275733, 5.619809610003967, 4.8186396856825775, 5.172358092029792, 4.113437746280557, 2.03179293510707, 2.299506282592505, 2.1495397630008295, 2.2525701427298173, 1.097537771870552, 0.777831439623771, 0.45285955749845397, 0.0, 5.642188830159686, 4.981455132482993, 3.889157198118855, 3.2926133156116553, 4.5051402854596345, 3.0093556682011613, 2.299506282592505, 1.4512806679336214, 2.0567188731402783, 1.724119364009931, 0.9637279371365156, 0.5108917827276335, 0.0), # 6 (5.829903263835975, 5.86508311341563, 5.02895016071509, 5.398169594324678, 4.293802845916028, 2.1204980597106697, 2.399794547983834, 2.2431522773825177, 2.350888121191372, 1.1453970984287176, 0.8117968207953693, 0.47262139273272863, 0.0, 5.888570974805216, 5.198835320060014, 4.058984103976846, 3.436191295286152, 4.701776242382744, 3.1404131883355246, 2.399794547983834, 1.514641471221907, 2.146901422958014, 1.799389864774893, 1.0057900321430182, 0.5331893739468755, 0.0), # 7 (6.068942526743948, 6.102952453997006, 5.232911085636264, 5.617163086019357, 4.468843606247779, 2.2065242718511486, 2.497055692537279, 2.333936935826242, 2.446236808744855, 1.1918120277929551, 0.8447367749852429, 0.49178657504564693, 0.0, 6.127513162735934, 5.409652325502115, 4.223683874926214, 3.5754360833788645, 4.89247361748971, 3.2675117101567386, 2.497055692537279, 1.5760887656079634, 2.2344218031238894, 1.872387695339786, 1.046582217127253, 0.5548138594542734, 0.0), # 8 (6.299875222116068, 6.332360540551483, 5.429616165149803, 5.828365534816301, 4.637791045710885, 2.2894894177929594, 2.590857446726048, 2.421490541504988, 2.538192647288713, 1.2365762468979886, 0.8765049301242238, 0.5102699466310877, 0.0, 6.35795383504493, 5.612969412941963, 4.382524650621119, 3.709728740693965, 5.076385294577426, 3.390086758106983, 2.590857446726048, 1.635349584137828, 2.3188955228554424, 1.9427885116054342, 1.0859232330299606, 0.5756691400501349, 0.0), # 9 (6.5216650650687455, 6.552250281882444, 5.6181591039594165, 6.0308039084179725, 4.799876182740427, 2.3690113438005502, 2.680767541023342, 2.505409897591737, 2.6263320787213904, 1.279483442678543, 0.9069549141431433, 0.5279863496829302, 0.0, 6.578831432825289, 5.807849846512232, 4.534774570715716, 3.838450328035629, 5.252664157442781, 3.5075738566284325, 2.680767541023342, 1.6921509598575357, 2.3999380913702133, 2.010267969472658, 1.1236318207918834, 0.5956591165347678, 0.0), # 10 (6.7332757707184046, 6.761564586793285, 5.797633606768811, 6.223505174526839, 4.954330035771484, 2.444707896138372, 2.7663537059023664, 2.585291807259472, 2.7102315449413314, 1.320327302069344, 0.9359403549728333, 0.5448506263950541, 0.0, 6.78908439717009, 5.993356890345594, 4.679701774864166, 3.9609819062080316, 5.420463089882663, 3.619408530163261, 2.7663537059023664, 1.7462199258131228, 2.477165017885742, 2.07450172484228, 1.1595267213537623, 0.6146876897084805, 0.0), # 11 (6.93367105418145, 6.959246364087378, 5.9671333782816935, 6.405496300845368, 5.100383623239134, 2.516196921070873, 2.8471836718363246, 2.6607330736811736, 2.789467487846981, 1.3589015120051147, 0.9633148805441247, 0.5607776189613379, 0.0, 6.987651169172428, 6.168553808574717, 4.816574402720623, 4.0767045360153435, 5.578934975693962, 3.7250263031536432, 2.8471836718363246, 1.7972835150506232, 2.550191811619567, 2.135165433615123, 1.1934266756563388, 0.63265876037158, 0.0), # 12 (7.121814630574301, 7.144238522568122, 6.125752123201774, 6.575804255076027, 5.237267963578454, 2.5830962648625047, 2.9228251692984224, 2.731330500029827, 2.863616349336782, 1.3949997594205812, 0.9889321187878493, 0.5756821695756614, 0.0, 7.173470189925388, 6.332503865332275, 4.944660593939246, 4.184999278261743, 5.727232698673564, 3.8238627000417584, 2.9228251692984224, 1.8450687606160747, 2.618633981789227, 2.1919347516920094, 1.225150424640355, 0.6494762293243748, 0.0), # 13 (7.296670215013373, 7.315483971038899, 6.272583546232765, 6.733456004921276, 5.3642140752245275, 2.6450237737777162, 2.9928459287618647, 2.7966808894784156, 2.932254571309179, 1.428415731250467, 1.0126456976348381, 0.5894791204319041, 0.0, 7.345479900522051, 6.484270324750944, 5.06322848817419, 4.285247193751401, 5.864509142618358, 3.9153532452697823, 2.9928459287618647, 1.8893026955555114, 2.6821070376122638, 2.244485334973759, 1.254516709246553, 0.6650439973671727, 0.0), # 14 (7.457201522615084, 7.471925618303093, 6.406721352078362, 6.877478518083592, 5.480452976612431, 2.701597294080959, 3.0568136806998503, 2.8563810451999188, 2.9949585956626184, 1.4589431144294984, 1.0343092450159228, 0.6020833137239449, 0.0, 7.502618742055505, 6.622916450963392, 5.171546225079613, 4.376829343288494, 5.989917191325237, 3.9989334632798865, 3.0568136806998503, 1.9297123529149707, 2.7402264883062153, 2.2924928393611976, 1.2813442704156726, 0.6792659653002813, 0.0), # 15 (7.602372268495841, 7.612506373164098, 6.527259245442284, 7.006898762265429, 5.585215686177244, 2.7524346720366815, 3.1142961555855906, 2.9100277703673205, 3.0513048642955427, 1.4863755958923994, 1.0537763888619351, 0.6134095916456628, 0.0, 7.643825155618837, 6.747505508102289, 5.268881944309675, 4.459126787677198, 6.102609728591085, 4.074038878514249, 3.1142961555855906, 1.9660247657404866, 2.792607843088622, 2.3356329207551436, 1.3054518490884568, 0.692046033924009, 0.0), # 16 (7.73114616777206, 7.736169144425294, 6.6332909310282355, 7.120743705169268, 5.677733222354047, 2.7971537539093334, 3.1648610838922844, 2.9572178681536063, 3.1008698191063955, 1.510506862573894, 1.0709007571037066, 0.6233727963909371, 0.0, 7.768037582305133, 6.857100760300307, 5.354503785518533, 4.531520587721681, 6.201739638212791, 4.140105015415049, 3.1648610838922844, 1.9979669670780953, 2.8388666111770235, 2.373581235056423, 1.3266581862056472, 0.7032881040386633, 0.0), # 17 (7.842486935560164, 7.841856840890068, 6.723910113539921, 7.218040314497568, 5.757236603577914, 2.8353723859633684, 3.2080761960931405, 2.9975481417317535, 3.1432299019936254, 1.5311306014087078, 1.085535977672068, 0.6318877701536477, 0.0, 7.874194463207477, 6.950765471690124, 5.427679888360339, 4.593391804226123, 6.286459803987251, 4.196567398424455, 3.2080761960931405, 2.0252659899738346, 2.878618301788957, 2.406013438165856, 1.344782022707984, 0.7128960764445517, 0.0), # 18 (7.935358286976559, 7.928512371361812, 6.798210497681052, 7.29781555795279, 5.822956848283928, 2.866708414463231, 3.2435092226613578, 3.030615394274749, 3.1779615548556746, 1.5480404993315662, 1.0975356784978507, 0.6388693551276732, 0.0, 7.961234239418957, 7.027562906404404, 5.4876783924892525, 4.644121497994697, 6.355923109711349, 4.242861551984649, 3.2435092226613578, 2.0476488674737365, 2.911478424141964, 2.4326051859842637, 1.3596420995362106, 0.720773851941983, 0.0), # 19 (8.008723937137665, 7.995078644643906, 6.855285788155336, 7.359096403237412, 5.874124974907169, 2.8907796856733756, 3.270727894070145, 3.0560164289555725, 3.2046412195909864, 1.5610302432771923, 1.106753487511887, 0.6442323935068929, 0.0, 8.02809535203266, 7.08655632857582, 5.533767437559434, 4.683090729831576, 6.409282439181973, 4.278423000537802, 3.270727894070145, 2.0648426326238396, 2.9370624874535847, 2.4530321344124713, 1.3710571576310673, 0.7268253313312643, 0.0), # 20 (8.061547601159893, 8.040498569539743, 6.89422968966648, 7.400909818053892, 5.909972001882714, 2.90720404585825, 3.289299940792704, 3.0733480489472083, 3.222845338098006, 1.5698935201803115, 1.113043032645008, 0.6478917274851863, 0.0, 8.073716242141662, 7.1268090023370485, 5.56521516322504, 4.709680560540933, 6.445690676196012, 4.302687268526092, 3.289299940792704, 2.0765743184701786, 2.954986000941357, 2.466969939351298, 1.378845937933296, 0.730954415412704, 0.0), # 21 (8.092792994159664, 8.063715054852706, 6.91413590691819, 7.422282770104703, 5.92972894764564, 2.915599341282305, 3.29879309330224, 3.0822070574226386, 3.2321503522751773, 1.574424016975649, 1.1162579418280456, 0.6497621992564327, 0.0, 8.097035350839063, 7.147384191820759, 5.581289709140227, 4.723272050926946, 6.464300704550355, 4.315089880391694, 3.29879309330224, 2.0825709580587892, 2.96486447382282, 2.474094256701568, 1.3828271813836381, 0.7330650049866098, 0.0), # 22 (8.104314690674112, 8.066463968907179, 6.916615454961135, 7.424958487654322, 5.9347904298840515, 2.916666666666667, 3.2999216009037355, 3.0831646090534983, 3.2333136625514407, 1.574958454503887, 1.1166610716215655, 0.6499931717725956, 0.0, 8.1, 7.149924889498552, 5.583305358107827, 4.72487536351166, 6.466627325102881, 4.316430452674898, 3.2999216009037355, 2.0833333333333335, 2.9673952149420257, 2.474986162551441, 1.3833230909922272, 0.7333149062642891, 0.0), # 23 (8.112809930427323, 8.06486049382716, 6.916209876543211, 7.4246291666666675, 5.937657393927921, 2.916666666666667, 3.299301525054467, 3.0818333333333334, 3.2331577777777776, 1.5746301234567905, 1.1166166105499442, 0.6499390946502058, 0.0, 8.1, 7.149330041152263, 5.583083052749721, 4.72389037037037, 6.466315555555555, 4.314566666666667, 3.299301525054467, 2.0833333333333335, 2.9688286969639606, 2.4748763888888896, 1.3832419753086422, 0.7331691358024692, 0.0), # 24 (8.121125784169264, 8.06169981710105, 6.915409236396892, 7.423977623456791, 5.940461304317068, 2.916666666666667, 3.298079561042524, 3.0792181069958855, 3.2328497942386836, 1.5739837677183361, 1.1165284532568485, 0.6498323426306966, 0.0, 8.1, 7.148155768937661, 5.5826422662842425, 4.7219513031550076, 6.465699588477367, 4.31090534979424, 3.298079561042524, 2.0833333333333335, 2.970230652158534, 2.474659207818931, 1.3830818472793784, 0.7328818015546411, 0.0), # 25 (8.129261615238427, 8.057030224051212, 6.914224508459078, 7.423011265432098, 5.943202063157923, 2.916666666666667, 3.2962746873234887, 3.0753683127572025, 3.23239366255144, 1.5730301417466854, 1.1163973978467807, 0.6496743789056548, 0.0, 8.1, 7.146418167962202, 5.581986989233903, 4.719090425240055, 6.46478732510288, 4.305515637860084, 3.2962746873234887, 2.0833333333333335, 2.9716010315789614, 2.4743370884773666, 1.3828449016918156, 0.732457293095565, 0.0), # 26 (8.13721678697331, 8.0509, 6.9126666666666665, 7.4217375, 5.945879572556914, 2.916666666666667, 3.2939058823529415, 3.0703333333333336, 3.231793333333333, 1.5717800000000004, 1.1162242424242426, 0.6494666666666669, 0.0, 8.1, 7.144133333333334, 5.581121212121213, 4.715339999999999, 6.463586666666666, 4.298466666666667, 3.2939058823529415, 2.0833333333333335, 2.972939786278457, 2.4739125000000004, 1.3825333333333334, 0.7319000000000001, 0.0), # 27 (8.1449906627124, 8.043357430269776, 6.910746684956561, 7.420163734567902, 5.948493734620481, 2.916666666666667, 3.2909921245864604, 3.06416255144033, 3.231052757201646, 1.570244096936443, 1.116009785093736, 0.6492106691053194, 0.0, 8.1, 7.141317360158513, 5.580048925468679, 4.710732290809328, 6.462105514403292, 4.289827572016462, 3.2909921245864604, 2.0833333333333335, 2.9742468673102405, 2.4733879115226345, 1.3821493369913125, 0.731214311842707, 0.0), # 28 (8.1525826057942, 8.0344508001829, 6.908475537265661, 7.41829737654321, 5.951044451455051, 2.916666666666667, 3.2875523924796264, 3.0569053497942384, 3.2301758847736624, 1.5684331870141752, 1.1157548239597623, 0.6489078494131992, 0.0, 8.1, 7.13798634354519, 5.578774119798812, 4.705299561042525, 6.460351769547325, 4.279667489711934, 3.2875523924796264, 2.0833333333333335, 2.9755222257275253, 2.4727657921810704, 1.3816951074531325, 0.7304046181984455, 0.0), # 29 (8.159991979557198, 8.02422839506173, 6.905864197530864, 7.416145833333333, 5.953531625167059, 2.916666666666667, 3.2836056644880176, 3.048611111111111, 3.2291666666666665, 1.5663580246913587, 1.115460157126824, 0.648559670781893, 0.0, 8.1, 7.134156378600823, 5.57730078563412, 4.699074074074074, 6.458333333333333, 4.268055555555556, 3.2836056644880176, 2.0833333333333335, 2.9767658125835297, 2.4720486111111115, 1.3811728395061729, 0.7294753086419755, 0.0), # 30 (8.167218147339886, 8.012738500228625, 6.902923639689073, 7.41371651234568, 5.955955157862938, 2.916666666666667, 3.279170919067216, 3.039329218106996, 3.2280290534979423, 1.5640293644261551, 1.1151265826994223, 0.6481675964029875, 0.0, 8.1, 7.129843560432862, 5.575632913497111, 4.692088093278464, 6.456058106995885, 4.2550609053497945, 3.279170919067216, 2.0833333333333335, 2.977977578931469, 2.4712388374485603, 1.3805847279378145, 0.7284307727480569, 0.0), # 31 (8.174260472480764, 8.000029401005945, 6.899664837677183, 7.411016820987655, 5.958314951649118, 2.916666666666667, 3.2742671346727996, 3.029109053497943, 3.226766995884774, 1.5614579606767267, 1.1147548987820595, 0.6477330894680691, 0.0, 8.1, 7.125063984148759, 5.573774493910297, 4.684373882030179, 6.453533991769548, 4.24075267489712, 3.2742671346727996, 2.0833333333333335, 2.979157475824559, 2.470338940329219, 1.3799329675354366, 0.7272754000914496, 0.0), # 32 (8.181118318318317, 7.986149382716048, 6.896098765432099, 7.408054166666666, 5.960610908632033, 2.916666666666667, 3.2689132897603486, 3.0180000000000002, 3.2253844444444444, 1.5586545679012351, 1.114345903479237, 0.6472576131687243, 0.0, 8.1, 7.119833744855966, 5.571729517396184, 4.6759637037037045, 6.450768888888889, 4.225200000000001, 3.2689132897603486, 2.0833333333333335, 2.9803054543160163, 2.469351388888889, 1.37921975308642, 0.7260135802469135, 0.0), # 33 (8.187791048191048, 7.971146730681298, 6.892236396890718, 7.404835956790124, 5.962842930918115, 2.916666666666667, 3.263128362785444, 3.006051440329218, 3.2238853497942395, 1.5556299405578424, 1.1139003948954567, 0.6467426306965403, 0.0, 8.1, 7.114168937661942, 5.569501974477284, 4.666889821673526, 6.447770699588479, 4.208472016460905, 3.263128362785444, 2.0833333333333335, 2.9814214654590576, 2.468278652263375, 1.3784472793781437, 0.724649702789209, 0.0), # 34 (8.194278025437447, 7.95506973022405, 6.888088705989941, 7.401369598765432, 5.965010920613797, 2.916666666666667, 3.2569313322036635, 2.9933127572016467, 3.2222736625514408, 1.5523948331047102, 1.1134191711352206, 0.6461896052431033, 0.0, 8.1, 7.108085657674136, 5.5670958556761025, 4.657184499314129, 6.4445473251028815, 4.1906378600823055, 3.2569313322036635, 2.0833333333333335, 2.9825054603068986, 2.4671231995884777, 1.3776177411979884, 0.7231881572930956, 0.0), # 35 (8.200578613396004, 7.937966666666665, 6.8836666666666675, 7.3976625, 5.967114779825512, 2.916666666666667, 3.250341176470588, 2.979833333333334, 3.220553333333333, 1.5489600000000006, 1.1129030303030305, 0.6456000000000002, 0.0, 8.1, 7.101600000000001, 5.564515151515152, 4.64688, 6.441106666666666, 4.1717666666666675, 3.250341176470588, 2.0833333333333335, 2.983557389912756, 2.4658875000000005, 1.3767333333333336, 0.7216333333333333, 0.0), # 36 (8.20669217540522, 7.919885825331503, 6.8789812528577965, 7.393722067901235, 5.969154410659692, 2.916666666666667, 3.2433768740417976, 2.9656625514403294, 3.218728312757202, 1.5453361957018754, 1.1123527705033882, 0.6449752781588174, 0.0, 8.1, 7.09472805974699, 5.561763852516941, 4.636008587105625, 6.437456625514404, 4.1519275720164615, 3.2433768740417976, 2.0833333333333335, 2.984577205329846, 2.4645740226337454, 1.3757962505715595, 0.7199896204846822, 0.0), # 37 (8.212618074803581, 7.9008754915409245, 6.874043438500229, 7.389555709876545, 5.971129715222768, 2.916666666666667, 3.2360574033728717, 2.9508497942386835, 3.2168025514403293, 1.5415341746684963, 1.111769189840795, 0.6443169029111417, 0.0, 8.1, 7.087485932022558, 5.558845949203975, 4.624602524005487, 6.433605102880659, 4.131189711934157, 3.2360574033728717, 2.0833333333333335, 2.985564857611384, 2.4631852366255154, 1.3748086877000458, 0.7182614083219023, 0.0), # 38 (8.218355674929589, 7.880983950617284, 6.868864197530866, 7.3851708333333335, 5.973040595621175, 2.916666666666667, 3.2284017429193903, 2.9354444444444447, 3.21478, 1.5375646913580252, 1.1111530864197532, 0.6436263374485597, 0.0, 8.1, 7.079889711934156, 5.555765432098766, 4.612694074074074, 6.42956, 4.109622222222223, 3.2284017429193903, 2.0833333333333335, 2.9865202978105874, 2.4617236111111116, 1.3737728395061732, 0.7164530864197532, 0.0), # 39 (8.22390433912173, 7.860259487882944, 6.863454503886603, 7.380574845679012, 5.974886953961343, 2.916666666666667, 3.2204288711369324, 2.9194958847736636, 3.212664609053498, 1.5334385002286244, 1.1105052583447648, 0.6429050449626583, 0.0, 8.1, 7.071955494589241, 5.552526291723823, 4.600315500685872, 6.425329218106996, 4.087294238683129, 3.2204288711369324, 2.0833333333333335, 2.9874434769806717, 2.460191615226338, 1.3726909007773205, 0.714569044352995, 0.0), # 40 (8.229263430718502, 7.838750388660264, 6.857825331504345, 7.375775154320989, 5.976668692349708, 2.916666666666667, 3.212157766481078, 2.903053497942387, 3.210460329218107, 1.529166355738455, 1.1098265037203312, 0.6421544886450238, 0.0, 8.1, 7.06369937509526, 5.549132518601655, 4.587499067215363, 6.420920658436214, 4.0642748971193425, 3.212157766481078, 2.0833333333333335, 2.988334346174854, 2.4585917181069967, 1.371565066300869, 0.7126136716963878, 0.0), # 41 (8.2344323130584, 7.816504938271606, 6.85198765432099, 7.370779166666668, 5.978385712892697, 2.916666666666667, 3.2036074074074072, 2.886166666666667, 3.2081711111111115, 1.5247590123456796, 1.1091176206509543, 0.641376131687243, 0.0, 8.1, 7.0551374485596705, 5.5455881032547705, 4.574277037037037, 6.416342222222223, 4.040633333333334, 3.2036074074074072, 2.0833333333333335, 2.9891928564463486, 2.4569263888888897, 1.370397530864198, 0.7105913580246915, 0.0), # 42 (8.239410349479915, 7.7935714220393235, 6.845952446273435, 7.3655942901234575, 5.980037917696748, 2.916666666666667, 3.1947967723715003, 2.868884773662552, 3.2058009053497942, 1.5202272245084596, 1.1083794072411357, 0.6405714372809025, 0.0, 8.1, 7.046285810089926, 5.541897036205678, 4.5606816735253775, 6.4116018106995885, 4.016438683127573, 3.1947967723715003, 2.0833333333333335, 2.990018958848374, 2.4551980967078197, 1.369190489254687, 0.7085064929126659, 0.0), # 43 (8.244196903321543, 7.769998125285779, 6.839730681298583, 7.360227932098766, 5.981625208868291, 2.916666666666667, 3.185744839828936, 2.8512572016460913, 3.2033536625514403, 1.515581746684957, 1.1076126615953779, 0.639741868617589, 0.0, 8.1, 7.037160554793477, 5.538063307976889, 4.54674524005487, 6.4067073251028805, 3.9917600823045283, 3.185744839828936, 2.0833333333333335, 2.9908126044341454, 2.4534093106995893, 1.3679461362597167, 0.7063634659350709, 0.0), # 44 (8.248791337921773, 7.745833333333334, 6.833333333333335, 7.354687500000001, 5.983147488513758, 2.916666666666667, 3.1764705882352944, 2.833333333333334, 3.2008333333333328, 1.510833333333334, 1.106818181818182, 0.638888888888889, 0.0, 8.1, 7.027777777777777, 5.534090909090909, 4.532500000000001, 6.4016666666666655, 3.9666666666666672, 3.1764705882352944, 2.0833333333333335, 2.991573744256879, 2.4515625000000005, 1.366666666666667, 0.7041666666666668, 0.0), # 45 (8.253193016619106, 7.721125331504343, 6.8267713763145865, 7.348980401234568, 5.984604658739582, 2.916666666666667, 3.1669929960461554, 2.81516255144033, 3.198243868312757, 1.5059927389117518, 1.10599676601405, 0.6380139612863894, 0.0, 8.1, 7.018153574150282, 5.5299838300702495, 4.517978216735254, 6.396487736625514, 3.941227572016462, 3.1669929960461554, 2.0833333333333335, 2.992302329369791, 2.4496601337448567, 1.3653542752629175, 0.7019204846822131, 0.0), # 46 (8.257401302752028, 7.695922405121171, 6.8200557841792415, 7.3431140432098765, 5.985996621652196, 2.916666666666667, 3.1573310417170988, 2.7967942386831277, 3.195589218106996, 1.5010707178783727, 1.105149212287484, 0.6371185490016767, 0.0, 8.1, 7.008304039018443, 5.525746061437419, 4.503212153635117, 6.391178436213992, 3.915511934156379, 3.1573310417170988, 2.0833333333333335, 2.992998310826098, 2.4477046810699594, 1.3640111568358484, 0.6996293095564702, 0.0), # 47 (8.261415559659037, 7.670272839506174, 6.8131975308641985, 7.3370958333333345, 5.987323279358032, 2.916666666666667, 3.1475037037037037, 2.7782777777777783, 3.1928733333333335, 1.4960780246913583, 1.1042763187429856, 0.6362041152263375, 0.0, 8.1, 6.998245267489711, 5.521381593714927, 4.488234074074074, 6.385746666666667, 3.88958888888889, 3.1475037037037037, 2.0833333333333335, 2.993661639679016, 2.445698611111112, 1.3626395061728398, 0.6972975308641977, 0.0), # 48 (8.26523515067863, 7.644224919981709, 6.806207590306356, 7.330933179012346, 5.9885845339635235, 2.916666666666667, 3.137529960461551, 2.7596625514403295, 3.190100164609053, 1.491025413808871, 1.1033788834850566, 0.6352721231519587, 0.0, 8.1, 6.987993354671545, 5.5168944174252825, 4.473076241426613, 6.380200329218106, 3.8635275720164617, 3.137529960461551, 2.0833333333333335, 2.9942922669817618, 2.443644393004116, 1.3612415180612714, 0.6949295381801555, 0.0), # 49 (8.268859439149294, 7.617826931870143, 6.799096936442616, 7.324633487654321, 5.989780287575101, 2.916666666666667, 3.12742879044622, 2.7409979423868314, 3.1872736625514397, 1.485923639689072, 1.1024577046181985, 0.6343240359701267, 0.0, 8.1, 6.977564395671393, 5.512288523090993, 4.457770919067215, 6.3745473251028795, 3.8373971193415644, 3.12742879044622, 2.0833333333333335, 2.9948901437875506, 2.441544495884774, 1.3598193872885234, 0.692529721079104, 0.0), # 50 (8.272287788409528, 7.591127160493827, 6.791876543209877, 7.318204166666668, 5.9909104422991994, 2.916666666666667, 3.11721917211329, 2.7223333333333333, 3.184397777777778, 1.4807834567901237, 1.1015135802469138, 0.6333613168724281, 0.0, 8.1, 6.966974485596708, 5.507567901234569, 4.44235037037037, 6.368795555555556, 3.811266666666667, 3.11721917211329, 2.0833333333333335, 2.9954552211495997, 2.4394013888888897, 1.3583753086419754, 0.6901024691358025, 0.0), # 51 (8.275519561797823, 7.564173891175126, 6.78455738454504, 7.311652623456791, 5.991974900242248, 2.916666666666667, 3.1069200839183413, 2.7037181069958844, 3.18147646090535, 1.4756156195701877, 1.1005473084757038, 0.6323854290504498, 0.0, 8.1, 6.956239719554947, 5.502736542378519, 4.4268468587105625, 6.3629529218107, 3.7852053497942384, 3.1069200839183413, 2.0833333333333335, 2.995987450121124, 2.437217541152264, 1.356911476909008, 0.6876521719250116, 0.0), # 52 (8.278554122652675, 7.537015409236398, 6.777150434385004, 7.304986265432099, 5.992973563510682, 2.916666666666667, 3.0965505043169532, 2.6852016460905355, 3.1785136625514405, 1.470430882487426, 1.0995596874090703, 0.6313978356957782, 0.0, 8.1, 6.945376192653559, 5.4977984370453505, 4.411292647462277, 6.357027325102881, 3.7592823045267494, 3.0965505043169532, 2.0833333333333335, 2.996486781755341, 2.4349954218107, 1.355430086877001, 0.6851832190214908, 0.0), # 53 (8.281390834312573, 7.5097000000000005, 6.769666666666667, 7.2982125, 5.993906334210934, 2.916666666666667, 3.086129411764706, 2.6668333333333334, 3.1755133333333334, 1.4652400000000003, 1.098551515151515, 0.6304000000000001, 0.0, 8.1, 6.9344, 5.492757575757575, 4.395720000000001, 6.351026666666667, 3.7335666666666665, 3.086129411764706, 2.0833333333333335, 2.996953167105467, 2.4327375000000004, 1.3539333333333334, 0.6827000000000002, 0.0), # 54 (8.284029060116017, 7.482275948788294, 6.762117055326932, 7.291338734567901, 5.994773114449434, 2.916666666666667, 3.075675784717179, 2.6486625514403292, 3.1724794238683125, 1.4600537265660727, 1.0975235898075406, 0.6293933851547021, 0.0, 8.1, 6.923327236701723, 5.487617949037702, 4.380161179698217, 6.344958847736625, 3.708127572016461, 3.075675784717179, 2.0833333333333335, 2.997386557224717, 2.4304462448559674, 1.3524234110653865, 0.6802069044352995, 0.0), # 55 (8.286468163401498, 7.454791540923639, 6.754512574302698, 7.28437237654321, 5.995573806332619, 2.916666666666667, 3.0652086016299527, 2.6307386831275723, 3.169415884773662, 1.4548828166438048, 1.0964767094816479, 0.6283794543514709, 0.0, 8.1, 6.912173997866179, 5.482383547408239, 4.364648449931414, 6.338831769547324, 3.6830341563786013, 3.0652086016299527, 2.0833333333333335, 2.9977869031663094, 2.4281241255144037, 1.3509025148605398, 0.6777083219021491, 0.0), # 56 (8.288707507507507, 7.427295061728395, 6.746864197530866, 7.277320833333334, 5.996308311966915, 2.916666666666667, 3.0547468409586056, 2.613111111111112, 3.166326666666667, 1.4497380246913585, 1.0954116722783391, 0.627359670781893, 0.0, 8.1, 6.900956378600823, 5.477058361391695, 4.349214074074075, 6.332653333333334, 3.6583555555555565, 3.0547468409586056, 2.0833333333333335, 2.9981541559834577, 2.425773611111112, 1.3493728395061733, 0.6752086419753087, 0.0), # 57 (8.290746455772544, 7.39983479652492, 6.739182898948332, 7.270191512345679, 5.99697653345876, 2.916666666666667, 3.044309481158719, 2.595829218106996, 3.163215720164609, 1.4446301051668957, 1.0943292763021162, 0.6263354976375554, 0.0, 8.1, 6.889690474013108, 5.471646381510581, 4.333890315500686, 6.326431440329218, 3.6341609053497947, 3.044309481158719, 2.0833333333333335, 2.99848826672938, 2.4233971707818935, 1.3478365797896665, 0.6727122542295383, 0.0), # 58 (8.292584371535098, 7.372459030635573, 6.731479652491998, 7.262991820987654, 5.9975783729145835, 2.916666666666667, 3.0339155006858713, 2.578942386831276, 3.160086995884774, 1.4395698125285785, 1.0932303196574802, 0.6253083981100444, 0.0, 8.1, 6.878392379210486, 5.4661515982874, 4.318709437585735, 6.320173991769548, 3.6105193415637866, 3.0339155006858713, 2.0833333333333335, 2.9987891864572918, 2.420997273662552, 1.3462959304984, 0.6702235482395976, 0.0), # 59 (8.294220618133663, 7.345216049382717, 6.723765432098765, 7.255729166666667, 5.998113732440819, 2.916666666666667, 3.0235838779956428, 2.5625000000000004, 3.156944444444445, 1.4345679012345682, 1.092115600448934, 0.6242798353909466, 0.0, 8.1, 6.867078189300411, 5.460578002244669, 4.303703703703704, 6.31388888888889, 3.5875000000000004, 3.0235838779956428, 2.0833333333333335, 2.9990568662204096, 2.4185763888888894, 1.3447530864197532, 0.6677469135802471, 0.0), # 60 (8.295654558906731, 7.3181541380887065, 6.716051211705533, 7.248410956790124, 5.998582514143899, 2.916666666666667, 3.0133335915436135, 2.5465514403292184, 3.1537920164609052, 1.4296351257430273, 1.0909859167809788, 0.623251272671849, 0.0, 8.1, 6.855763999390337, 5.454929583904893, 4.2889053772290815, 6.3075840329218105, 3.5651720164609055, 3.0133335915436135, 2.0833333333333335, 2.9992912570719494, 2.4161369855967085, 1.3432102423411068, 0.6652867398262462, 0.0), # 61 (8.296885557192804, 7.291321582075903, 6.708347965249201, 7.241044598765433, 5.998984620130258, 2.916666666666667, 3.0031836197853625, 2.5311460905349796, 3.1506336625514404, 1.4247822405121175, 1.0898420667581163, 0.6222241731443379, 0.0, 8.1, 6.844465904587715, 5.449210333790581, 4.274346721536352, 6.301267325102881, 3.5436045267489718, 3.0031836197853625, 2.0833333333333335, 2.999492310065129, 2.4136815329218115, 1.3416695930498403, 0.6628474165523549, 0.0), # 62 (8.297912976330368, 7.264766666666667, 6.700666666666668, 7.233637500000001, 5.999319952506323, 2.916666666666667, 2.9931529411764703, 2.5163333333333338, 3.147473333333333, 1.4200200000000003, 1.0886848484848488, 0.6212000000000001, 0.0, 8.1, 6.8332, 5.443424242424244, 4.26006, 6.294946666666666, 3.5228666666666677, 2.9931529411764703, 2.0833333333333335, 2.9996599762531617, 2.411212500000001, 1.3401333333333336, 0.6604333333333334, 0.0), # 63 (8.298736179657919, 7.2385376771833565, 6.693018289894834, 7.226197067901236, 5.999588413378532, 2.916666666666667, 2.983260534172517, 2.5021625514403296, 3.1443149794238683, 1.415359158664838, 1.0875150600656773, 0.6201802164304223, 0.0, 8.1, 6.821982380734645, 5.437575300328387, 4.246077475994513, 6.288629958847737, 3.5030275720164616, 2.983260534172517, 2.0833333333333335, 2.999794206689266, 2.408732355967079, 1.3386036579789669, 0.6580488797439416, 0.0), # 64 (8.29935453051395, 7.212682898948331, 6.685413808870599, 7.218730709876544, 5.999789904853316, 2.916666666666667, 2.9735253772290813, 2.4886831275720165, 3.1411625514403294, 1.4108104709647922, 1.0863334996051048, 0.619166285627191, 0.0, 8.1, 6.8108291418991, 5.431667498025524, 4.232431412894376, 6.282325102880659, 3.484156378600823, 2.9735253772290813, 2.0833333333333335, 2.999894952426658, 2.4062435699588485, 1.33708276177412, 0.6556984453589393, 0.0), # 65 (8.299767392236957, 7.187250617283952, 6.677864197530865, 7.211245833333334, 5.999924329037105, 2.916666666666667, 2.963966448801743, 2.475944444444445, 3.13802, 1.406384691358025, 1.085140965207632, 0.6181596707818932, 0.0, 8.1, 6.799756378600824, 5.425704826038159, 4.2191540740740745, 6.27604, 3.466322222222223, 2.963966448801743, 2.0833333333333335, 2.9999621645185526, 2.4037486111111117, 1.3355728395061732, 0.6533864197530866, 0.0), # 66 (8.299974128165434, 7.162289117512574, 6.670380429812529, 7.203749845679012, 5.999991588036336, 2.916666666666667, 2.9546027273460824, 2.4639958847736634, 3.1348912757201646, 1.4020925743026982, 1.0839382549777616, 0.617161835086115, 0.0, 8.1, 6.788780185947264, 5.419691274888807, 4.206277722908094, 6.269782551440329, 3.4495942386831286, 2.9546027273460824, 2.0833333333333335, 2.999995794018168, 2.401249948559671, 1.3340760859625058, 0.6511171925011432, 0.0), # 67 (8.29983329158466, 7.137715668834903, 6.662937299954276, 7.196185044283415, 5.999934909491917, 2.916612538739013, 2.9454060779318585, 2.452781283340954, 3.131756759640299, 1.3979240883294335, 1.0827047984720504, 0.6161686681266496, 0.0, 8.099900120027435, 6.777855349393144, 5.413523992360251, 4.1937722649883, 6.263513519280598, 3.433893796677336, 2.9454060779318585, 2.0832946705278665, 2.9999674547459585, 2.398728348094472, 1.3325874599908551, 0.648883242621355, 0.0), # 68 (8.298513365539453, 7.112780047789725, 6.655325617283951, 7.188170108695652, 5.999419026870006, 2.916184636488341, 2.9361072725386457, 2.4416995884773662, 3.1284794238683125, 1.3937612781408861, 1.0813150451887295, 0.6151479315572884, 0.0, 8.099108796296298, 6.766627247130171, 5.406575225943647, 4.181283834422658, 6.256958847736625, 3.4183794238683127, 2.9361072725386457, 2.0829890260631005, 2.999709513435003, 2.396056702898551, 1.33106512345679, 0.6466163679808842, 0.0), # 69 (8.295908630047116, 7.087367803885127, 6.647512288523091, 7.179652274557166, 5.998399634202102, 2.9153419194228523, 2.926664053824548, 2.4306508154244786, 3.1250407712238992, 1.3895839048925471, 1.079753184870144, 0.614094850752854, 0.0, 8.097545867626888, 6.755043358281393, 5.3987659243507204, 4.168751714677641, 6.2500815424477985, 3.40291114159427, 2.926664053824548, 2.082387085302037, 2.999199817101051, 2.393217424852389, 1.3295024577046182, 0.6443061639895571, 0.0), # 70 (8.292055728514343, 7.061494123633789, 6.639500057155922, 7.170644102254428, 5.9968896420022055, 2.9140980439973583, 2.9170806638155953, 2.4196386221612562, 3.1214459228776104, 1.3853920718685282, 1.0780249827711816, 0.613010195814181, 0.0, 8.095231910150892, 6.743112153955991, 5.390124913855908, 4.1561762156055835, 6.242891845755221, 3.387494071025759, 2.9170806638155953, 2.081498602855256, 2.9984448210011028, 2.3902147007514767, 1.3279000114311843, 0.6419540112394354, 0.0), # 71 (8.286991304347827, 7.035174193548387, 6.631291666666667, 7.161158152173913, 5.994901960784313, 2.9124666666666674, 2.907361344537815, 2.408666666666667, 3.1177, 1.3811858823529415, 1.0761362041467308, 0.6118947368421054, 0.0, 8.0921875, 6.730842105263158, 5.380681020733653, 4.143557647058824, 6.2354, 3.3721333333333336, 2.907361344537815, 2.080333333333334, 2.9974509803921565, 2.3870527173913048, 1.3262583333333333, 0.6395612903225807, 0.0), # 72 (8.280752000954257, 7.008423200141599, 6.622889860539551, 7.151206984702094, 5.992449501062428, 2.9104614438855867, 2.897510338017237, 2.397738606919677, 3.113808123761622, 1.376965439629899, 1.0740926142516787, 0.6107492439374613, 0.0, 8.0884332133059, 6.7182416833120735, 5.370463071258393, 4.130896318889696, 6.227616247523244, 3.356834049687548, 2.897510338017237, 2.0789010313468475, 2.996224750531214, 2.383735661567365, 1.3245779721079105, 0.6371293818310545, 0.0), # 73 (8.273374461740323, 6.981256329926103, 6.614297382258802, 7.140803160225442, 5.989545173350547, 2.908096032108927, 2.887531886279889, 2.3868581008992535, 3.1097754153330284, 1.3727308469835127, 1.0718999783409144, 0.6095744872010845, 0.0, 8.083989626200276, 6.705319359211929, 5.359499891704571, 4.118192540950537, 6.219550830666057, 3.3416013412589547, 2.887531886279889, 2.0772114515063764, 2.9947725866752735, 2.380267720075148, 1.3228594764517605, 0.6346596663569185, 0.0), # 74 (8.26489533011272, 6.953688769414575, 6.605516975308642, 7.129959239130434, 5.986201888162673, 2.905384087791496, 2.8774302313518003, 2.376028806584362, 3.1056069958847736, 1.3684822076978942, 1.069564061669325, 0.6083712367338099, 0.0, 8.078877314814816, 6.692083604071907, 5.347820308346624, 4.105446623093682, 6.211213991769547, 3.3264403292181073, 2.8774302313518003, 2.0752743484224974, 2.9931009440813363, 2.3766530797101453, 1.3211033950617284, 0.6321535244922342, 0.0), # 75 (8.255351249478142, 6.925735705119696, 6.596551383173297, 7.118687781803542, 5.982432556012803, 2.9023392673881023, 2.8672096152589983, 2.365254381953971, 3.1013079865874102, 1.364219625057156, 1.067090629491799, 0.6071402626364722, 0.0, 8.073116855281206, 6.678542889001194, 5.335453147458995, 4.092658875171468, 6.2026159731748205, 3.311356134735559, 2.8672096152589983, 2.0730994767057873, 2.9912162780064016, 2.372895927267848, 1.3193102766346596, 0.6296123368290635, 0.0), # 76 (8.244778863243274, 6.897412323554141, 6.587403349336991, 7.10700134863124, 5.9782500874149385, 2.8989752273535543, 2.8568742800275118, 2.354538484987045, 3.0968835086114925, 1.3599432023454103, 1.0644854470632252, 0.6058823350099072, 0.0, 8.06672882373114, 6.664705685108978, 5.322427235316125, 4.07982960703623, 6.193767017222985, 3.296353878981863, 2.8568742800275118, 2.0706965909668247, 2.9891250437074692, 2.369000449543747, 1.3174806698673982, 0.6270374839594675, 0.0), # 77 (8.233214814814815, 6.8687338112305865, 6.578075617283951, 7.0949125, 5.97366739288308, 2.895305624142661, 2.84642846768337, 2.343884773662552, 3.092338683127571, 1.3556530428467686, 1.0617542796384905, 0.6045982239549493, 0.0, 8.059733796296298, 6.650580463504441, 5.308771398192452, 4.066959128540305, 6.184677366255142, 3.2814386831275724, 2.84642846768337, 2.0680754458161865, 2.98683369644154, 2.364970833333334, 1.3156151234567903, 0.624430346475508, 0.0), # 78 (8.220695747599452, 6.8397153546617115, 6.5685709304984, 7.082433796296296, 5.968697382931225, 2.891344114210232, 2.8358764202526006, 2.333296905959458, 3.0876786313062032, 1.351349249845343, 1.058902892472483, 0.6032886995724337, 0.0, 8.052152349108367, 6.63617569529677, 5.294514462362415, 4.0540477495360285, 6.1753572626124065, 3.266615668343241, 2.8358764202526006, 2.0652457958644517, 2.9843486914656125, 2.3608112654320994, 1.3137141860996802, 0.6217923049692465, 0.0), # 79 (8.207258305003878, 6.810372140360193, 6.558892032464563, 7.069577797906602, 5.963352968073375, 2.8871043540110755, 2.8252223797612324, 2.3227785398567296, 3.0829084743179394, 1.3470319266252455, 1.055937050820092, 0.6019545319631957, 0.0, 8.04400505829904, 6.621499851595152, 5.2796852541004595, 4.041095779875736, 6.165816948635879, 3.2518899557994216, 2.8252223797612324, 2.0622173957221968, 2.9816764840366874, 2.3565259326355346, 1.3117784064929128, 0.619124740032745, 0.0), # 80 (8.192939130434784, 6.78071935483871, 6.5490416666666675, 7.056357065217393, 5.957647058823529, 2.8826000000000005, 2.8144705882352943, 2.3123333333333336, 3.078033333333333, 1.3427011764705885, 1.0528625199362043, 0.6005964912280702, 0.0, 8.0353125, 6.606561403508772, 5.264312599681022, 4.028103529411765, 6.156066666666666, 3.237266666666667, 2.8144705882352943, 2.059, 2.9788235294117644, 2.3521190217391315, 1.3098083333333335, 0.6164290322580647, 0.0), # 81 (8.177774867298861, 6.750772184609939, 6.539022576588936, 7.042784158615137, 5.951592565695688, 2.877844708631815, 2.8036252877008145, 2.301964944368237, 3.0730583295229383, 1.3383571026654835, 1.0496850650757086, 0.5992153474678925, 0.0, 8.026095250342937, 6.5913688221468165, 5.248425325378542, 4.0150713079964495, 6.146116659045877, 3.2227509221155315, 2.8036252877008145, 2.0556033633084394, 2.975796282847844, 2.3475947195383795, 1.3078045153177873, 0.6137065622372673, 0.0), # 82 (8.161802159002804, 6.720545816186557, 6.528837505715592, 7.028871638486312, 5.945202399203851, 2.8728521363613275, 2.7926907201838214, 2.2916770309404058, 3.067988584057308, 1.3339998084940425, 1.0464104514934927, 0.5978118707834975, 0.0, 8.016373885459535, 6.575930578618472, 5.232052257467463, 4.001999425482127, 6.135977168114616, 3.208347843316568, 2.7926907201838214, 2.052037240258091, 2.9726011996019257, 2.3429572128287712, 1.3057675011431187, 0.6109587105624144, 0.0), # 83 (8.145057648953301, 6.690055436081242, 6.518489197530864, 7.014632065217392, 5.938489469862018, 2.867635939643347, 2.7816711277103434, 2.2814732510288067, 3.0628292181069954, 1.329629397240378, 1.0430444444444447, 0.5963868312757202, 0.0, 8.006168981481482, 6.560255144032922, 5.215222222222223, 3.9888881917211334, 6.125658436213991, 3.194062551440329, 2.7816711277103434, 2.0483113854595336, 2.969244734931009, 2.338210688405798, 1.303697839506173, 0.6081868578255676, 0.0), # 84 (8.127577980557048, 6.659316230806673, 6.507980395518976, 7.000077999194847, 5.931466688184191, 2.862209774932684, 2.77057075230641, 2.2713572626124074, 3.057585352842554, 1.3252459721886014, 1.0395928091834528, 0.5949409990453959, 0.0, 7.995501114540467, 6.544350989499354, 5.197964045917263, 3.9757379165658033, 6.115170705685108, 3.17990016765737, 2.77057075230641, 2.0444355535233454, 2.9657333440920954, 2.3333593330649496, 1.3015960791037953, 0.6053923846187885, 0.0), # 85 (8.10939979722073, 6.6283433868755255, 6.497313843164153, 6.985222000805154, 5.924146964684365, 2.8565872986841443, 2.7593938359980483, 2.2613327236701726, 3.0522621094345377, 1.320849636622825, 1.0360613109654049, 0.5934751441933597, 0.0, 7.984390860768176, 6.528226586126955, 5.180306554827023, 3.9625489098684747, 6.104524218869075, 3.1658658131382413, 2.7593938359980483, 2.040419499060103, 2.9620734823421824, 2.3284073336017186, 1.2994627686328306, 0.6025766715341389, 0.0), # 86 (8.090559742351045, 6.597152090800478, 6.486492283950617, 6.970076630434782, 5.9165432098765445, 2.8507821673525378, 2.7481446208112876, 2.2514032921810703, 3.0468646090534985, 1.3164404938271608, 1.0324557150451887, 0.5919900368204463, 0.0, 7.972858796296297, 6.511890405024908, 5.162278575225944, 3.9493214814814817, 6.093729218106997, 3.1519646090534983, 2.7481446208112876, 2.036272976680384, 2.9582716049382722, 2.3233588768115947, 1.2972984567901236, 0.5997410991636799, 0.0), # 87 (8.071094459354686, 6.565757529094207, 6.475518461362597, 6.95465444847021, 5.908668334274726, 2.8448080373926743, 2.7368273487721564, 2.2415726261240665, 3.0413979728699894, 1.3120186470857205, 1.0287817866776934, 0.5904864470274911, 0.0, 7.960925497256517, 6.495350917302401, 5.143908933388466, 3.9360559412571607, 6.082795945739979, 3.138201676573693, 2.7368273487721564, 2.032005740994767, 2.954334167137363, 2.3182181494900704, 1.2951036922725196, 0.5968870480994735, 0.0), # 88 (8.051040591638339, 6.534174888269392, 6.464395118884317, 6.938968015297907, 5.90053524839291, 2.8386785652593614, 2.7254462619066833, 2.2318443834781285, 3.035867322054565, 1.3075841996826167, 1.025045291117806, 0.5889651449153291, 0.0, 7.948611539780521, 6.478616594068619, 5.125226455589029, 3.9227525990478496, 6.07173464410913, 3.12458213686938, 2.7254462619066833, 2.0276275466138296, 2.950267624196455, 2.312989338432636, 1.2928790237768635, 0.5940158989335812, 0.0), # 89 (8.030434782608696, 6.502419354838709, 6.453125000000001, 6.923029891304349, 5.892156862745098, 2.8324074074074077, 2.7140056022408965, 2.2222222222222223, 3.030277777777778, 1.303137254901961, 1.021251993620415, 0.5874269005847954, 0.0, 7.9359375000000005, 6.461695906432748, 5.106259968102074, 3.9094117647058826, 6.060555555555556, 3.111111111111111, 2.7140056022408965, 2.0231481481481484, 2.946078431372549, 2.3076766304347833, 1.2906250000000001, 0.5911290322580646, 0.0), # 90 (8.00931367567245, 6.470506115314836, 6.441710848193873, 6.906852636876007, 5.883546087845287, 2.826008220291622, 2.7025096118008247, 2.2127098003353147, 3.024634461210182, 1.2986779160278654, 1.0174076594404082, 0.585872484136725, 0.0, 7.922923954046638, 6.444597325503974, 5.0870382972020405, 3.8960337480835956, 6.049268922420364, 3.097793720469441, 2.7025096118008247, 2.0185773002083014, 2.9417730439226437, 2.302284212292003, 1.2883421696387747, 0.5882278286649852, 0.0), # 91 (7.9877139142362985, 6.438450356210453, 6.43015540695016, 6.890448812399356, 5.874715834207482, 2.8194946603668143, 2.690962532612497, 2.203310775796373, 3.018942493522329, 1.2942062863444421, 1.013518053832674, 0.5843026656719533, 0.0, 7.909591478052126, 6.427329322391485, 5.067590269163369, 3.8826188590333257, 6.037884987044658, 3.0846350861149223, 2.690962532612497, 2.0139247574048675, 2.937357917103741, 2.296816270799786, 1.2860310813900322, 0.5853136687464049, 0.0), # 92 (7.965672141706924, 6.406267264038233, 6.418461419753087, 6.873830978260871, 5.865679012345678, 2.8128803840877916, 2.6793686067019404, 2.1940288065843623, 3.013206995884774, 1.2897224691358027, 1.0095889420521, 0.5827182152913147, 0.0, 7.895960648148147, 6.409900368204461, 5.0479447102605, 3.8691674074074074, 6.026413991769548, 3.0716403292181074, 2.6793686067019404, 2.0092002743484225, 2.932839506172839, 2.291276992753624, 1.2836922839506175, 0.5823879330943849, 0.0), # 93 (7.943225001491024, 6.373972025310855, 6.406631630086878, 6.857011694847022, 5.856448532773877, 2.806179047909364, 2.6677320760951844, 2.1848675506782507, 3.007433089468069, 1.2852265676860597, 1.005626089353575, 0.581119903095645, 0.0, 7.882052040466393, 6.392318934052094, 5.028130446767873, 3.855679703058178, 6.014866178936138, 3.058814570949551, 2.6677320760951844, 2.0044136056495456, 2.9282242663869384, 2.2856705649490077, 1.2813263260173757, 0.5794520023009869, 0.0), # 94 (7.920409136995288, 6.341579826540998, 6.394668781435757, 6.840003522544284, 5.847037306006079, 2.799404308286339, 2.6560571828182575, 2.1758306660570037, 3.001625895442768, 1.2807186852793244, 1.0016352609919863, 0.5795084991857787, 0.0, 7.867886231138546, 6.374593491043566, 5.008176304959932, 3.8421560558379726, 6.003251790885536, 3.046162932479805, 2.6560571828182575, 1.9995745059188135, 2.9235186530030397, 2.2800011741814283, 1.2789337562871517, 0.5765072569582727, 0.0), # 95 (7.89726119162641, 6.30910585424134, 6.382575617283951, 6.8228190217391305, 5.8374582425562815, 2.7925698216735255, 2.6443481688971886, 2.1669218106995887, 2.995790534979424, 1.27619892519971, 0.9976222222222224, 0.5778847736625516, 0.0, 7.853483796296297, 6.356732510288067, 4.988111111111112, 3.828596775599129, 5.991581069958848, 3.0336905349794243, 2.6443481688971886, 1.9946927297668038, 2.9187291212781408, 2.2742730072463773, 1.2765151234567904, 0.5735550776583037, 0.0), # 96 (7.873817808791078, 6.276565294924556, 6.370354881115684, 6.805470752818035, 5.827724252938488, 2.7856892445257326, 2.6326092763580053, 2.1581446425849724, 2.9899321292485905, 1.2716673907313272, 0.9935927382991712, 0.576249496626798, 0.0, 7.838865312071332, 6.338744462894778, 4.967963691495855, 3.8150021721939806, 5.979864258497181, 3.0214024996189615, 2.6326092763580053, 1.9897780318040947, 2.913862126469244, 2.2684902509393456, 1.2740709762231368, 0.5705968449931414, 0.0), # 97 (7.850115631895988, 6.243973335103323, 6.35800931641518, 6.787971276167473, 5.817848247666694, 2.7787762332977706, 2.6208447472267373, 2.1495028196921204, 2.9840557994208194, 1.2671241851582886, 0.9895525744777209, 0.5746034381793533, 0.0, 7.824051354595337, 6.320637819972885, 4.947762872388605, 3.801372555474865, 5.968111598841639, 3.0093039475689687, 2.6208447472267373, 1.9848401666412645, 2.908924123833347, 2.2626570920558247, 1.2716018632830361, 0.5676339395548476, 0.0), # 98 (7.826191304347827, 6.211345161290323, 6.3455416666666675, 6.770333152173913, 5.807843137254903, 2.7718444444444446, 2.6090588235294123, 2.1410000000000005, 2.9781666666666666, 1.2625694117647062, 0.9855074960127594, 0.5729473684210528, 0.0, 7.8090625000000005, 6.302421052631579, 4.927537480063797, 3.787708235294118, 5.956333333333333, 2.9974000000000007, 2.6090588235294123, 1.9798888888888888, 2.9039215686274513, 2.256777717391305, 1.2691083333333337, 0.564667741935484, 0.0), # 99 (7.80208146955329, 6.178695959998229, 6.332954675354367, 6.752568941223833, 5.797721832217111, 2.764907534420566, 2.597255747292058, 2.1326398414875785, 2.9722698521566837, 1.258003173834692, 0.9814632681591747, 0.5712820574527312, 0.0, 7.79391932441701, 6.284102631980042, 4.907316340795873, 3.774009521504075, 5.944539704313367, 2.98569577808261, 2.597255747292058, 1.9749339531575472, 2.8988609161085557, 2.250856313741278, 1.2665909350708735, 0.5616996327271119, 0.0), # 100 (7.777822770919068, 6.1460409177397235, 6.320251085962506, 6.734691203703704, 5.787497243067323, 2.757979159680943, 2.585439760540705, 2.124426002133821, 2.9663704770614236, 1.253425574652358, 0.9774256561718551, 0.5696082753752236, 0.0, 7.7786424039780515, 6.265691029127459, 4.887128280859275, 3.760276723957073, 5.932740954122847, 2.9741964029873493, 2.585439760540705, 1.9699851140578162, 2.8937486215336614, 2.244897067901235, 1.2640502171925014, 0.5587309925217931, 0.0), # 101 (7.753451851851853, 6.11339522102748, 6.307433641975309, 6.716712500000001, 5.7771822803195345, 2.7510729766803848, 2.5736151053013803, 2.1163621399176957, 2.9604736625514403, 1.248836717501816, 0.9734004253056887, 0.5679267922893655, 0.0, 7.763252314814816, 6.24719471518302, 4.867002126528443, 3.746510152505447, 5.920947325102881, 2.962906995884774, 2.5736151053013803, 1.965052126200275, 2.8885911401597673, 2.2389041666666674, 1.261486728395062, 0.5557632019115891, 0.0), # 102 (7.729005355758336, 6.080774056374176, 6.294505086877001, 6.698645390499196, 5.766789854487748, 2.7442026418736987, 2.561786023600112, 2.1084519128181682, 2.9545845297972866, 1.2442367056671781, 0.9693933408155633, 0.5662383782959916, 0.0, 7.747769633058984, 6.228622161255906, 4.846966704077817, 3.7327101170015338, 5.909169059594573, 2.951832677945436, 2.561786023600112, 1.960144744195499, 2.883394927243874, 2.2328817968330656, 1.2589010173754003, 0.5527976414885616, 0.0), # 103 (7.704519926045208, 6.048192610292491, 6.281468164151806, 6.680502435587762, 5.756332876085962, 2.7373818117156943, 2.5499567574629305, 2.1006989788142056, 2.948708199969517, 1.2396256424325565, 0.9654101679563669, 0.564543803495937, 0.0, 7.732214934842251, 6.209981838455306, 4.827050839781834, 3.7188769272976687, 5.897416399939034, 2.9409785703398876, 2.5499567574629305, 1.9552727226540672, 2.878166438042981, 2.2268341451959213, 1.2562936328303613, 0.549835691844772, 0.0), # 104 (7.680032206119162, 6.015666069295101, 6.268325617283951, 6.662296195652173, 5.745824255628177, 2.7306241426611804, 2.5381315489158633, 2.0931069958847743, 2.942849794238683, 1.235003631082063, 0.961456671982988, 0.562843837990037, 0.0, 7.716608796296296, 6.1912822178904054, 4.80728335991494, 3.705010893246188, 5.885699588477366, 2.930349794238684, 2.5381315489158633, 1.9504458161865572, 2.8729121278140886, 2.220765398550725, 1.2536651234567902, 0.546878733572282, 0.0), # 105 (7.655578839386891, 5.983209619894685, 6.255080189757659, 6.644039231078905, 5.735276903628392, 2.723943291164965, 2.526314639984938, 2.0856796220088403, 2.9370144337753388, 1.2303707748998092, 0.9575386181503142, 0.5611392518791264, 0.0, 7.700971793552812, 6.172531770670389, 4.787693090751571, 3.691112324699427, 5.8740288675506775, 2.9199514708123764, 2.526314639984938, 1.9456737794035461, 2.867638451814196, 2.214679743692969, 1.2510160379515318, 0.5439281472631533, 0.0), # 106 (7.631196469255085, 5.950838448603921, 6.241734625057157, 6.625744102254428, 5.724703730600607, 2.7173529136818577, 2.5145102726961848, 2.0784205151653716, 2.931207239750038, 1.225727177169908, 0.9536617717132337, 0.5594308152640404, 0.0, 7.685324502743484, 6.153738967904443, 4.768308858566169, 3.6771815315097234, 5.862414479500076, 2.9097887212315205, 2.5145102726961848, 1.9409663669156128, 2.8623518653003037, 2.208581367418143, 1.2483469250114314, 0.5409853135094475, 0.0), # 107 (7.606921739130435, 5.918567741935485, 6.228291666666668, 6.607423369565218, 5.714117647058822, 2.7108666666666674, 2.5027226890756302, 2.0713333333333335, 2.9254333333333333, 1.221072941176471, 0.9498318979266349, 0.5577192982456142, 0.0, 7.669687500000001, 6.134912280701755, 4.749159489633174, 3.6632188235294123, 5.850866666666667, 2.899866666666667, 2.5027226890756302, 1.9363333333333337, 2.857058823529411, 2.20247445652174, 1.2456583333333338, 0.538051612903226, 0.0), # 108 (7.582791292419635, 5.886412686402053, 6.214754058070417, 6.589089593397745, 5.70353156351704, 2.7044982065742014, 2.490956131149305, 2.064421734491694, 2.9196978356957777, 1.2164081702036098, 0.9460547620454054, 0.5560054709246826, 0.0, 7.654081361454047, 6.116060180171507, 4.730273810227027, 3.6492245106108285, 5.839395671391555, 2.8901904282883715, 2.490956131149305, 1.9317844332672867, 2.85176578175852, 2.196363197799249, 1.2429508116140835, 0.5351284260365504, 0.0), # 109 (7.558841772529373, 5.854388468516307, 6.201124542752631, 6.570755334138486, 5.692958390489256, 2.6982611898592697, 2.4792148409432357, 2.0576893766194178, 2.9140058680079255, 1.211732967535437, 0.9423361293244336, 0.554290103402081, 0.0, 7.638526663237312, 6.0971911374228895, 4.711680646622168, 3.63519890260631, 5.828011736015851, 2.880765127267185, 2.4792148409432357, 1.9273294213280499, 2.846479195244628, 2.1902517780461626, 1.2402249085505264, 0.5322171335014826, 0.0), # 110 (7.535109822866345, 5.82251027479092, 6.187405864197532, 6.552433152173913, 5.68241103848947, 2.6921692729766806, 2.4675030604834527, 2.0511399176954734, 2.9083625514403293, 1.2070474364560642, 0.9386817650186072, 0.5525739657786443, 0.0, 7.623043981481482, 6.078313623565086, 4.693408825093036, 3.621142309368192, 5.816725102880659, 2.871595884773663, 2.4675030604834527, 1.9229780521262005, 2.841205519244735, 2.1841443840579715, 1.2374811728395065, 0.5293191158900837, 0.0), # 111 (7.51163208683724, 5.790793291738572, 6.173600765889348, 6.5341356078905, 5.671902418031685, 2.686236112381243, 2.4558250317959835, 2.0447770156988265, 2.9027730071635416, 1.2023516802496035, 0.9350974343828147, 0.5508578281552075, 0.0, 7.607653892318244, 6.059436109707281, 4.675487171914074, 3.6070550407488096, 5.805546014327083, 2.862687821978357, 2.4558250317959835, 1.9187400802723165, 2.8359512090158425, 2.178045202630167, 1.2347201531778695, 0.5264357537944157, 0.0), # 112 (7.488403378962436, 5.759305653776365, 6.159745218834713, 6.515900329495224, 5.661427029425976, 2.6804725589667733, 2.444210385462708, 2.038617522926869, 2.8972567496689656, 1.1976609473225461, 0.9315898541537156, 0.549146195766962, 0.0, 7.592355120674577, 6.0406081534365805, 4.657949270768578, 3.592982841967638, 5.794513499337931, 2.8540645320976163, 2.444210385462708, 1.914623256404838, 2.830713514712988, 2.1719667764984085, 1.2319490437669427, 0.5235732412523969, 0.0), # 113 (7.465184718320052, 5.728357934585393, 6.146030450014413, 6.497873652766401, 5.6508764557687075, 2.674865483980621, 2.432807283364232, 2.0327370865017067, 2.891898409523483, 1.1930630335825567, 0.9281659116150931, 0.5474608114741984, 0.0, 7.577020331328028, 6.022068926216181, 4.640829558075465, 3.5791891007476693, 5.783796819046966, 2.8458319211023895, 2.432807283364232, 1.9106182028433005, 2.8254382278843537, 2.1659578842554676, 1.2292060900028827, 0.5207598122350358, 0.0), # 114 (7.441907922403196, 5.697961279034234, 6.132464621804878, 6.480050703109068, 5.640217428207254, 2.669400305832757, 2.421623860076625, 2.027134218092903, 2.886699994311677, 1.1885650655976157, 0.9248206015236127, 0.5458025055039235, 0.0, 7.561605305328301, 6.003827560543158, 4.6241030076180625, 3.5656951967928463, 5.773399988623354, 2.8379879053300643, 2.421623860076625, 1.9067145041662548, 2.820108714103627, 2.1600169010363564, 1.226492924360976, 0.5179964799122032, 0.0), # 115 (7.418543898590108, 5.668071406280581, 6.119021459989249, 6.462399690159842, 5.629433880738015, 2.664064142733979, 2.4106419270111576, 2.021793437632998, 2.8816483571274216, 1.1841586716899097, 0.9215474575028644, 0.5441682131658231, 0.0, 7.546085807804713, 5.985850344824053, 4.607737287514321, 3.5524760150697285, 5.763296714254843, 2.8305108126861973, 2.4106419270111576, 1.9029029590956992, 2.8147169403690073, 2.154133230053281, 1.22380429199785, 0.5152792187527803, 0.0), # 116 (7.395063554259018, 5.638644035482129, 6.105674690350658, 6.444888823555345, 5.6185097473573915, 2.6588441128950824, 2.399843295579101, 2.0166992650545286, 2.8767303510645874, 1.179835480181626, 0.9183400131764379, 0.5425548697695834, 0.0, 7.53043760388658, 5.968103567465417, 4.591700065882189, 3.5395064405448773, 5.753460702129175, 2.8233789710763397, 2.399843295579101, 1.8991743663536302, 2.8092548736786958, 2.148296274518449, 1.2211349380701317, 0.5126040032256481, 0.0), # 117 (7.371437796788169, 5.60963488579657, 6.092398038672245, 6.427486312932199, 5.607428962061783, 2.6537273345268653, 2.3892097771917262, 2.0118362202900326, 2.871932829217049, 1.175587119394952, 0.9151918021679234, 0.5409594106248901, 0.0, 7.51463645870322, 5.950553516873789, 4.575959010839616, 3.5267613581848556, 5.743865658434098, 2.8165707084060454, 2.3892097771917262, 1.8955195246620464, 2.8037144810308914, 2.142495437644067, 1.218479607734449, 0.5099668077996883, 0.0), # 118 (7.347637533555794, 5.580999676381602, 6.079165230737149, 6.410160367927023, 5.5961754588475845, 2.648700925840122, 2.3787231832603024, 2.0071888232720485, 2.867242644678678, 1.1714052176520746, 0.9120963581009105, 0.5393787710414291, 0.0, 7.498658137383946, 5.933166481455719, 4.560481790504553, 3.5142156529562234, 5.734485289357356, 2.810064352580868, 2.3787231832603024, 1.8919292327429442, 2.7980877294237922, 2.1367201226423416, 1.21583304614743, 0.507363606943782, 0.0), # 119 (7.323633671940129, 5.552694126394916, 6.065949992328509, 6.392879198176436, 5.584733171711198, 2.6437520050456507, 2.3683653251961014, 2.0027415939331146, 2.8626466505433488, 1.1672814032751813, 0.909047214598989, 0.5378098863288866, 0.0, 7.482478405058078, 5.915908749617751, 4.545236072994944, 3.501844209825543, 5.7252933010866975, 2.80383823150636, 2.3683653251961014, 1.8883942893183219, 2.792366585855599, 2.1309597327254792, 1.2131899984657017, 0.5047903751268107, 0.0), # 120 (7.299397119319415, 5.524673954994208, 6.052726049229459, 6.3756110133170605, 5.573086034649023, 2.638867690354248, 2.358118014410392, 1.9984790522057692, 2.858131699904933, 1.1632073045864595, 0.906037905285749, 0.5362496917969483, 0.0, 7.466073026854929, 5.898746609766429, 4.530189526428744, 3.489621913759378, 5.716263399809866, 2.797870673088077, 2.358118014410392, 1.884905493110177, 2.7865430173245116, 2.1252036711056874, 1.2105452098458918, 0.5022430868176554, 0.0), # 121 (7.274898783071883, 5.496894881337171, 6.039467127223141, 6.358324022985514, 5.561217981657458, 2.634035099976709, 2.347963062314447, 1.9943857180225497, 2.8536846458573035, 1.1591745499080957, 0.9030619637847803, 0.5346951227553002, 0.0, 7.4494177679038165, 5.8816463503083005, 4.515309818923901, 3.4775236497242865, 5.707369291714607, 2.7921400052315697, 2.347963062314447, 1.8814536428405064, 2.780608990828729, 2.119441340995172, 1.2078934254446283, 0.49971771648519747, 0.0), # 122 (7.250109570575775, 5.469312624581501, 6.026146952092692, 6.340986436818417, 5.549112946732902, 2.629241352123832, 2.3378822803195356, 1.9904461113159944, 2.8492923414943343, 1.1551747675622777, 0.9001129237196728, 0.5331431145136282, 0.0, 7.432488393334058, 5.864574259649909, 4.500564618598363, 3.4655243026868323, 5.698584682988669, 2.7866245558423923, 2.3378822803195356, 1.8780295372313083, 2.774556473366451, 2.1136621456061393, 1.2052293904185383, 0.49721023859831837, 0.0), # 123 (7.225000389209324, 5.441882903884891, 6.012739249621247, 6.323566464452393, 5.536754863871753, 2.624473565006412, 2.327857479836928, 1.9866447520186423, 2.844941639909897, 1.1511995858711925, 0.897184318714016, 0.5315906023816185, 0.0, 7.4152606682749695, 5.847496626197802, 4.4859215935700805, 3.4535987576135767, 5.689883279819794, 2.781302652826099, 2.327857479836928, 1.87462397500458, 2.7683774319358765, 2.107855488150798, 1.2025478499242495, 0.49471662762589924, 0.0), # 124 (7.199542146350767, 5.414561438405035, 5.99921774559195, 6.306032315524057, 5.524127667070411, 2.619718856835246, 2.3178704722778956, 1.9829661600630304, 2.840619394197865, 1.147240633157027, 0.8942696823914004, 0.5300345216689567, 0.0, 7.397710357855863, 5.8303797383585225, 4.471348411957002, 3.4417218994710805, 5.68123878839573, 2.7761526240882426, 2.3178704722778956, 1.8712277548823186, 2.7620638335352057, 2.1020107718413525, 1.19984354911839, 0.49223285803682143, 0.0), # 125 (7.1737057493783425, 5.387303947299629, 5.985556165787933, 6.288352199670033, 5.511215290325276, 2.614964345821132, 2.307903069053708, 1.9793948553816976, 2.8363124574521112, 1.1432895377419687, 0.8913625483754153, 0.5284718076853291, 0.0, 7.379813227206063, 5.813189884538619, 4.4568127418770755, 3.4298686132259055, 5.6726249149042225, 2.7711527975343766, 2.307903069053708, 1.8678316755865225, 2.755607645162638, 2.0961173998900113, 1.1971112331575866, 0.4897549042999664, 0.0), # 126 (7.147462105670289, 5.360066149726364, 5.9717282359923365, 6.27049432652694, 5.498001667632746, 2.610197150174864, 2.2979370815756375, 1.975915357907182, 2.832007682766508, 1.139337927948205, 0.8884564502896507, 0.5268993957404212, 0.0, 7.361545041454879, 5.795893353144632, 4.442282251448253, 3.4180137838446143, 5.664015365533016, 2.766281501070055, 2.2979370815756375, 1.8644265358391885, 2.749000833816373, 2.0901647755089803, 1.1943456471984675, 0.487278740884215, 0.0), # 127 (7.120782122604837, 5.332803764842939, 5.957707681988301, 6.252426905731399, 5.484470732989221, 2.6054043881072406, 2.287954321254953, 1.9725121875720208, 2.827691923234929, 1.1353774320979229, 0.8855449217576967, 0.5253142211439193, 0.0, 7.34288156573163, 5.778456432583111, 4.427724608788483, 3.4061322962937677, 5.655383846469858, 2.7615170626008294, 2.287954321254953, 1.8610031343623146, 2.7422353664946106, 2.084142301910467, 1.1915415363976603, 0.4848003422584491, 0.0), # 128 (7.093636707560226, 5.305472511807044, 5.9434682295589605, 6.2341181469200295, 5.4706064203911, 2.600573177829058, 2.2779365995029255, 1.9691698643087534, 2.823352031951247, 1.1313996785133094, 0.882621496403143, 0.5237132192055092, 0.0, 7.323798565165631, 5.7608454112606, 4.413107482015715, 3.3941990355399274, 5.646704063902494, 2.756837810032255, 2.2779365995029255, 1.8575522698778983, 2.73530321019555, 2.078039382306677, 1.188693645911792, 0.48231568289154947, 0.0), # 129 (7.065996767914694, 5.2780281097763755, 5.9289836044874535, 6.215536259729452, 5.45639266383478, 2.595690637551111, 2.267865727730825, 1.9658729080499169, 2.818974862009333, 1.1273962955165517, 0.8796797078495794, 0.522093325234877, 0.0, 7.3042718048861985, 5.743026577583645, 4.398398539247896, 3.3821888865496543, 5.637949724018666, 2.7522220712698835, 2.267865727730825, 1.8540647411079363, 2.72819633191739, 2.0718454199098177, 1.1857967208974907, 0.4798207372523978, 0.0), # 130 (7.037833211046475, 5.250426277908626, 5.914227532556921, 6.196649453796286, 5.441813397316663, 2.590743885484198, 2.2577235173499237, 1.9626058387280498, 2.814547266503063, 1.1233589114298372, 0.8767130897205959, 0.5204514745417084, 0.0, 7.2842770500226495, 5.724966219958791, 4.383565448602979, 3.370076734289511, 5.629094533006126, 2.74764817421927, 2.2577235173499237, 1.850531346774427, 2.7209066986583315, 2.0655498179320957, 1.1828455065113843, 0.4773114798098752, 0.0), # 131 (7.009116944333808, 5.222622735361492, 5.8991737395504975, 6.1774259387571515, 5.4268525548331485, 2.5857200398391145, 2.24749177977149, 1.959353176275691, 2.8100560985263074, 1.119279154575353, 0.8737151756397821, 0.5187846024356896, 0.0, 7.263790065704301, 5.706630626792584, 4.36857587819891, 3.3578374637260584, 5.620112197052615, 2.7430944467859675, 2.24749177977149, 1.8469428855993675, 2.7134262774165743, 2.0591419795857178, 1.1798347479100997, 0.474783885032863, 0.0), # 132 (6.979818875154931, 5.194573201292665, 5.883795951251323, 6.1578339242486715, 5.411494070380632, 2.5806062188266576, 2.237152326406796, 1.9560994406253773, 2.80548821117294, 1.1151486532752868, 0.8706794992307283, 0.5170896442265063, 0.0, 7.242786617060469, 5.687986086491568, 4.353397496153641, 3.3454459598258595, 5.61097642234588, 2.7385392168755285, 2.237152326406796, 1.8432901563047555, 2.705747035190316, 2.052611308082891, 1.1767591902502648, 0.4722339273902424, 0.0), # 133 (6.949909910888076, 5.166233394859844, 5.868067893442536, 6.137841619907462, 5.395721877955516, 2.575389540657624, 2.2266869686671114, 1.9528291517096479, 2.8008304575368346, 1.1109590358518249, 0.8675995941170239, 0.5153635352238445, 0.0, 7.221242469220467, 5.668998887462289, 4.3379979705851195, 3.3328771075554737, 5.601660915073669, 2.7339608123935073, 2.2266869686671114, 1.8395639576125886, 2.697860938977758, 2.0459472066358213, 1.1736135786885074, 0.46965758135089497, 0.0), # 134 (6.919360958911483, 5.137559035220717, 5.851963291907273, 6.117417235370148, 5.379519911554198, 2.57005712354281, 2.2160775179637073, 1.9495268294610402, 2.796069690711861, 1.1067019306271555, 0.8644689939222592, 0.5136032107373902, 0.0, 7.199133387313616, 5.649635318111292, 4.322344969611295, 3.320105791881466, 5.592139381423722, 2.7293375612454565, 2.2160775179637073, 1.835755088244864, 2.689759955777099, 2.0391390784567163, 1.1703926583814546, 0.4670508213837017, 0.0), # 135 (6.888142926603388, 5.108505841532984, 5.835455872428673, 6.096528980273343, 5.362872105173076, 2.564596085693012, 2.205305785707854, 1.9461769938120925, 2.7911927637918947, 1.1023689659234648, 0.8612812322700237, 0.5118056060768296, 0.0, 7.176435136469229, 5.629861666845124, 4.306406161350118, 3.3071068977703937, 5.5823855275837895, 2.72464779133693, 2.205305785707854, 1.8318543469235802, 2.681436052586538, 2.0321763267577815, 1.1670911744857346, 0.46440962195754404, 0.0), # 136 (6.856226721342027, 5.079029532954335, 5.818519360789875, 6.075145064253675, 5.345762392808551, 2.558993545319026, 2.1943535833108223, 1.942764164695343, 2.7861865298708084, 1.0979517700629406, 0.8580298427839075, 0.5099676565518481, 0.0, 7.153123481816621, 5.609644222070328, 4.290149213919538, 3.293855310188821, 5.572373059741617, 2.7198698305734803, 2.1943535833108223, 1.8278525323707329, 2.6728811964042754, 2.0250483547512257, 1.1637038721579749, 0.46172995754130325, 0.0), # 137 (6.823583250505639, 5.0490858286424665, 5.801127482774012, 6.053233696947759, 5.3281747084570235, 2.5532366206316497, 2.1832027221838817, 1.9392728620433302, 2.781037842042475, 1.0934419713677697, 0.8547083590875004, 0.508086297472132, 0.0, 7.129174188485113, 5.58894927219345, 4.273541795437502, 3.280325914103308, 5.56207568408495, 2.7149820068606623, 2.1832027221838817, 1.8237404433083213, 2.6640873542285117, 2.017744565649253, 1.1602254965548024, 0.45900780260386065, 0.0), # 138 (6.790183421472455, 5.018630447755072, 5.783253964164227, 6.030763087992216, 5.3100929861148884, 2.547312429841679, 2.171835013738304, 1.9356876057885917, 2.775733553400766, 1.0888311981601397, 0.8513103148043922, 0.5061584641473672, 0.0, 7.104563021604015, 5.567743105621037, 4.256551574021961, 3.2664935944804183, 5.551467106801532, 2.709962648104028, 2.171835013738304, 1.8195088784583422, 2.6550464930574442, 2.0102543626640723, 1.1566507928328456, 0.4562391316140975, 0.0), # 139 (6.755998141620719, 4.987619109449845, 5.764872530743658, 6.007701447023667, 5.291501159778549, 2.5412080911599104, 2.1602322693853586, 1.9319929158636655, 2.770260517039555, 1.0841110787622374, 0.8478292435581727, 0.5041810918872395, 0.0, 7.079265746302652, 5.545992010759633, 4.2391462177908625, 3.2523332362867117, 5.54052103407911, 2.704790082209132, 2.1602322693853586, 1.8151486365427931, 2.6457505798892744, 2.0025671490078896, 1.1529745061487318, 0.45341991904089507, 0.0), # 140 (6.720998318328665, 4.956007532884482, 5.745956908295441, 5.984016983678732, 5.272383163444402, 2.5349107227971404, 2.148376300536318, 1.9281733122010902, 2.7646055860527143, 1.0792732414962505, 0.844258678972432, 0.502151116001435, 0.0, 7.053258127710331, 5.523662276015784, 4.221293394862159, 3.2378197244887508, 5.529211172105429, 2.6994426370815265, 2.148376300536318, 1.8106505162836717, 2.636191581722201, 1.994672327892911, 1.1491913816590882, 0.4505461393531348, 0.0), # 141 (6.685154858974525, 4.923751437216675, 5.726480822602714, 5.959677907594033, 5.252722931108846, 2.5284074429641663, 2.1362489186024507, 1.924213314733404, 2.7587556135341176, 1.0743093146843659, 0.8405921546707598, 0.5000654717996397, 0.0, 7.026515930956373, 5.500720189796036, 4.202960773353798, 3.222927944053097, 5.517511227068235, 2.6938986406267658, 2.1362489186024507, 1.806005316402976, 2.626361465554423, 1.9865593025313446, 1.1452961645205428, 0.4476137670196978, 0.0), # 142 (6.64843867093654, 4.890806541604119, 5.706417999448617, 5.934652428406185, 5.232504396768282, 2.521685369871783, 2.1238319349950276, 1.920097443393144, 2.7526974525776393, 1.0692109266487708, 0.8368232042767458, 0.4979210945915394, 0.0, 6.999014921170094, 5.477132040506932, 4.184116021383729, 3.207632779946312, 5.505394905155279, 2.6881364207504017, 2.1238319349950276, 1.8012038356227023, 2.616252198384141, 1.9782174761353954, 1.1412835998897235, 0.44461877650946546, 0.0), # 143 (6.610820661592948, 4.857128565204509, 5.685742164616285, 5.908908755751814, 5.2117114944191085, 2.5147316217307885, 2.1111071611253194, 1.9158102181128498, 2.746417956277149, 1.0639697057116522, 0.8329453614139802, 0.49571491968682, 0.0, 6.970730863480812, 5.452864116555019, 4.164726807069901, 3.191909117134956, 5.492835912554298, 2.6821343053579896, 2.1111071611253194, 1.796236872664849, 2.6058557472095543, 1.9696362519172719, 1.1371484329232573, 0.44155714229131915, 0.0), # 144 (6.572271738321982, 4.82267322717554, 5.6644270438888595, 5.882415099267537, 5.190328158057724, 2.507533316751979, 2.0980564084045974, 1.9113361588250588, 2.739903977726521, 1.0585772801951978, 0.8289521597060527, 0.4934438823951677, 0.0, 6.94163952301784, 5.4278827063468436, 4.144760798530264, 3.175731840585593, 5.479807955453042, 2.6758706223550823, 2.0980564084045974, 1.7910952262514135, 2.595164079028862, 1.9608050330891795, 1.132885408777772, 0.4384248388341401, 0.0), # 145 (6.5327628085018805, 4.787396246674904, 5.642446363049478, 5.855139668589976, 5.16833832168053, 2.5000775731461515, 2.084661488244132, 1.906659785462309, 2.7331423700196282, 1.0530252784215943, 0.8248371327765532, 0.4911049180262681, 0.0, 6.911716664910495, 5.402154098288948, 4.124185663882766, 3.1590758352647823, 5.4662847400392565, 2.669323699647233, 2.084661488244132, 1.7857696951043938, 2.584169160840265, 1.9517132228633256, 1.1284892726098958, 0.4352178406068095, 0.0), # 146 (6.49226477951088, 4.751253342860296, 5.619773847881273, 5.827050673355748, 5.145725919283921, 2.4923515091241004, 2.0709042120551926, 1.9017656179571385, 2.7261199862503442, 1.0473053287130294, 0.8205938142490716, 0.48869496188980743, 0.0, 6.8809380542880945, 5.375644580787881, 4.102969071245358, 3.1419159861390877, 5.4522399725006885, 2.662471865139994, 2.0709042120551926, 1.7802510779457859, 2.5728629596419603, 1.9423502244519164, 1.1239547695762548, 0.43193212207820875, 0.0), # 147 (6.450748558727217, 4.714200234889411, 5.596383224167389, 5.798116323201478, 5.1224748848643, 2.4843422428966253, 2.0567663912490506, 1.8966381762420859, 2.718823679512541, 1.0414090593916896, 0.8162157377471978, 0.48621094929547143, 0.0, 6.8492794562799535, 5.348320442250185, 4.081078688735989, 3.124227178175068, 5.437647359025082, 2.6552934467389204, 2.0567663912490506, 1.7745301734975893, 2.56123744243215, 1.9327054410671598, 1.1192766448334779, 0.42856365771721927, 0.0), # 148 (6.40818505352913, 4.676192641919942, 5.572248217690963, 5.768304827763782, 5.098569152418064, 2.4760368926745198, 2.0422298372369765, 1.8912619802496888, 2.71124030290009, 1.0353280987797628, 0.8116964368945213, 0.48364981555294617, 0.0, 6.81671663601539, 5.320147971082407, 4.058482184472607, 3.1059842963392876, 5.42248060580018, 2.6477667723495646, 2.0422298372369765, 1.7685977804817998, 2.549284576209032, 1.922768275921261, 1.1144496435381928, 0.42510842199272214, 0.0), # 149 (6.364545171294852, 4.6371862831095845, 5.54734255423513, 5.737584396679283, 5.0739926559416135, 2.467422576668583, 2.0272763614302405, 1.8856215499124855, 2.7033567095068674, 1.0290540751994355, 0.8070294453146325, 0.48100849597191764, 0.0, 6.783225358623717, 5.291093455691093, 4.035147226573162, 3.0871622255983056, 5.406713419013735, 2.63987016987748, 2.0272763614302405, 1.7624446976204164, 2.5369963279708068, 1.912528132226428, 1.1094685108470261, 0.4215623893735987, 0.0), # 150 (6.31979981940262, 4.597136877616033, 5.521639959583029, 5.705923239584598, 5.048729329431348, 2.4584864130896094, 2.011887775240113, 1.8797014051630145, 2.695159752426744, 1.0225786169728959, 0.8022082966311207, 0.4782839258620715, 0.0, 6.748781389234255, 5.261123184482786, 4.011041483155603, 3.067735850918687, 5.390319504853488, 2.6315819672282204, 2.011887775240113, 1.7560617236354352, 2.524364664715674, 1.9019744131948664, 1.1043279919166058, 0.41792153432873036, 0.0), # 151 (6.273919905230675, 4.55600014459698, 5.495114159517802, 5.673289566116352, 5.022763106883663, 2.4492155201483965, 1.996045890077866, 1.8734860659338137, 2.686636284753592, 1.0158933524223301, 0.7972265244675764, 0.475473040533094, 0.0, 6.713360492976318, 5.230203445864033, 3.9861326223378812, 3.04768005726699, 5.373272569507184, 2.622880492307339, 1.996045890077866, 1.7494396572488546, 2.5113815534418316, 1.8910965220387843, 1.0990228319035604, 0.4141818313269982, 0.0), # 152 (6.226876336157249, 4.5137318032101215, 5.467738879822579, 5.63965158591116, 4.996077922294963, 2.4395970160557408, 1.9797325173547677, 1.8669600521574208, 2.677773159581286, 1.008989909869926, 0.7920776624475889, 0.472572775294671, 0.0, 6.676938434979222, 5.19830052824138, 3.9603883122379444, 3.0269697296097773, 5.355546319162572, 2.6137440730203894, 1.9797325173547677, 1.742569297182672, 2.4980389611474814, 1.879883861970387, 1.093547775964516, 0.41033925483728384, 0.0), # 153 (6.178640019560583, 4.4702875726131515, 5.439487846280506, 5.604977508605646, 4.968657709661643, 2.429618019022439, 1.9629294684820913, 1.8601078837663743, 2.6685572300036977, 1.0018599176378709, 0.7867552441947484, 0.4695800654564884, 0.0, 6.639490980372286, 5.165380720021371, 3.9337762209737415, 3.005579752913612, 5.337114460007395, 2.604151037272924, 1.9629294684820913, 1.7354414421588849, 2.4843288548308213, 1.8683258362018824, 1.0878975692561013, 0.40638977932846837, 0.0), # 154 (6.129181862818909, 4.425623171963762, 5.410334784674718, 5.569235543836427, 4.940486402980104, 2.419265647259287, 1.9456185548711045, 1.852914080693212, 2.6589753491147006, 0.9944950040483511, 0.7812528033326445, 0.4664918463282322, 0.0, 6.600993894284821, 5.131410309610554, 3.906264016663222, 2.983485012145053, 5.317950698229401, 2.594079712970497, 1.9456185548711045, 1.7280468908994906, 2.470243201490052, 1.856411847945476, 1.0820669569349437, 0.402329379269433, 0.0), # 155 (6.078472773310465, 4.3796943204196515, 5.3802534207883514, 5.532393901240125, 4.911547936246746, 2.408527018977082, 1.92778158793308, 1.845363162870473, 2.649014370008167, 0.9868867974235548, 0.7755638734848673, 0.46330505321958826, 0.0, 6.561422941846148, 5.09635558541547, 3.8778193674243364, 2.960660392270664, 5.298028740016334, 2.5835084280186624, 1.92778158793308, 1.720376442126487, 2.455773968123373, 1.8441313004133755, 1.0760506841576702, 0.39815402912905923, 0.0), # 156 (6.02648365841349, 4.332456737138511, 5.349217480404546, 5.494420790453363, 4.881826243457965, 2.39738925238662, 1.9094003790792877, 1.8374396502306942, 2.63866114577797, 0.9790269260856685, 0.7696819882750067, 0.4600166214402426, 0.0, 6.520753888185581, 5.060182835842667, 3.848409941375033, 2.937080778257005, 5.27732229155594, 2.5724155103229718, 1.9094003790792877, 1.7124208945618713, 2.4409131217289826, 1.831473596817788, 1.0698434960809091, 0.3938597033762283, 0.0), # 157 (5.971744757124192, 4.28299895523299, 5.315727969268237, 5.453861748990747, 4.849963256464532, 2.3851447556146512, 1.890042688371143, 1.8285989841164574, 2.6271098910930926, 0.9706731832582289, 0.7634127670051923, 0.45650663761295607, 0.0, 6.477188687532276, 5.021573013742516, 3.817063835025962, 2.912019549774686, 5.254219782186185, 2.5600385777630406, 1.890042688371143, 1.7036748254390366, 2.424981628232266, 1.8179539163302492, 1.0631455938536476, 0.38936354138481727, 0.0), # 158 (5.9058294135827225, 4.226247901039617, 5.271158545601992, 5.402386295273073, 4.808102031883535, 2.3677218357366487, 1.8672851053542865, 1.8157378442547942, 2.609713936325905, 0.9604561988197493, 0.7556555914158659, 0.4520908349122073, 0.0, 6.420342117536156, 4.97299918403428, 3.7782779570793297, 2.8813685964592475, 5.21942787265181, 2.542032981956712, 1.8672851053542865, 1.6912298826690346, 2.4040510159417674, 1.8007954317576913, 1.0542317091203985, 0.3842043546399652, 0.0), # 159 (5.827897675923448, 4.161737600929857, 5.214613971970593, 5.339146506245316, 4.755424070051625, 2.344692604822253, 1.8408974993535137, 1.7985330631757823, 2.5859800605943066, 0.948241130372579, 0.7463012678146054, 0.4467001299258565, 0.0, 6.349136487114865, 4.913701429184421, 3.731506339073027, 2.844723391117736, 5.171960121188613, 2.5179462884460952, 1.8408974993535137, 1.6747804320158948, 2.3777120350258123, 1.7797155020817725, 1.0429227943941186, 0.3783397819027143, 0.0), # 160 (5.738577643668768, 4.0898886365923435, 5.146697981273539, 5.264743502254037, 4.69247633295046, 2.3163360460661466, 1.8110725784027506, 1.7772001777032602, 2.556221271199738, 0.9341316386341878, 0.7354322206132944, 0.44038449792717144, 0.0, 6.264299235855278, 4.844229477198885, 3.6771611030664717, 2.8023949159025627, 5.112442542399476, 2.4880802487845646, 1.8110725784027506, 1.6545257471901047, 2.34623816647523, 1.754914500751346, 1.029339596254708, 0.37180805787203125, 0.0), # 161 (5.638497416341085, 4.011121589715708, 5.068014306410331, 5.179778403645797, 4.619805782561709, 2.282931142663013, 1.7780030505359237, 1.7519547246610676, 2.5207505754436363, 0.9182313843220465, 0.7231308742238162, 0.43319391418941966, 0.0, 6.166557803344267, 4.765133056083616, 3.615654371119081, 2.754694152966139, 5.041501150887273, 2.4527366145254947, 1.7780030505359237, 1.630665101902152, 2.3099028912808546, 1.7265928012152658, 1.0136028612820662, 0.36464741724688265, 0.0), # 162 (5.528285093462799, 3.9258570419885843, 4.979166680280469, 5.084852330767161, 4.537959380867034, 2.244756877807534, 1.7418816237869603, 1.7230122408730417, 2.4798809806274416, 0.9006440281536252, 0.7094796530580545, 0.42517835398586895, 0.0, 6.0566396291687035, 4.676961893844558, 3.5473982652902722, 2.701932084460875, 4.959761961254883, 2.4122171372222585, 1.7418816237869603, 1.6033977698625244, 2.268979690433517, 1.6949507769223873, 0.9958333360560938, 0.356896094726235, 0.0), # 163 (5.408568774556308, 3.834515575099602, 4.8807588357834515, 4.980566403964691, 4.447484089848101, 2.2020922346943936, 1.7029010061897865, 1.6905882631630231, 2.433925494052593, 0.881473230846394, 0.6945609815278929, 0.4163877925897869, 0.0, 5.935272152915463, 4.580265718487656, 3.472804907639464, 2.644419692539181, 4.867850988105186, 2.3668235684282326, 1.7029010061897865, 1.5729230247817099, 2.2237420449240504, 1.660188801321564, 0.9761517671566904, 0.34859232500905474, 0.0), # 164 (5.279976559144014, 3.7375177707373965, 4.773394505818779, 4.867521743584952, 4.348926871486572, 2.155216196518274, 1.6612539057783289, 1.6548983283548488, 2.383197123020528, 0.8608226531178229, 0.678457284045215, 0.4068722052744414, 0.0, 5.803182814171416, 4.475594258018854, 3.3922864202260747, 2.582467959353468, 4.766394246041056, 2.3168576596967885, 1.6612539057783289, 1.5394401403701956, 2.174463435743286, 1.622507247861651, 0.954678901163756, 0.33977434279430885, 0.0), # 165 (5.143136546748318, 3.6352842105905996, 4.657677423285953, 4.746319469974501, 4.242834687764114, 2.1044077464738575, 1.6171330305865146, 1.6161579732723592, 2.328008874832686, 0.8387959556853827, 0.661250985021904, 0.39668156731310017, 0.0, 5.661099052523436, 4.363497240444101, 3.3062549251095197, 2.5163878670561473, 4.656017749665372, 2.262621162581303, 1.6171330305865146, 1.5031483903384697, 2.121417343882057, 1.5821064899915007, 0.9315354846571906, 0.33048038278096364, 0.0), # 166 (4.998676836891619, 3.528235476347844, 4.53421132108447, 4.617560703479906, 4.129754500662389, 2.0499458677558273, 1.57073108864827, 1.5745827347393924, 2.2686737567905064, 0.8154967992665431, 0.6430245088698437, 0.3858658539790306, 0.0, 5.509748307558397, 4.244524393769336, 3.215122544349218, 2.4464903977996286, 4.537347513581013, 2.2044158286351494, 1.57073108864827, 1.4642470483970196, 2.0648772503311945, 1.5391869011599693, 0.9068422642168941, 0.32074867966798587, 0.0), # 167 (4.847225529096317, 3.416792149697761, 4.403599932113832, 4.481846564447728, 4.010233272163062, 1.9921095435588663, 1.5222407879975217, 1.5303881495797866, 2.205504776195428, 0.7910288445787746, 0.6238602800009175, 0.3744750405455008, 0.0, 5.34985801886317, 4.119225446000509, 3.1193014000045878, 2.3730865337363234, 4.411009552390856, 2.1425434094117013, 1.5222407879975217, 1.4229353882563331, 2.005116636081531, 1.4939488548159094, 0.8807199864227666, 0.31061746815434194, 0.0), # 168 (4.689410722884812, 3.3013748123289846, 4.26644698927354, 4.33977817322453, 3.884817964247797, 1.9311777570776578, 1.4718548366681967, 1.4837897546173817, 2.1388149403488903, 0.7654957523395476, 0.6038407228270092, 0.3625591022857782, 0.0, 5.182155626024628, 3.9881501251435596, 3.019203614135046, 2.296487257018642, 4.277629880697781, 2.0773056564643344, 1.4718548366681967, 1.3794126836268983, 1.9424089821238986, 1.4465927244081769, 0.853289397854708, 0.30012498293899864, 0.0), # 169 (4.525860517779507, 3.1824040459301473, 4.12335622546309, 4.191956650156872, 3.7540555388982577, 1.8674294915068832, 1.4197659426942213, 1.435003086676016, 2.0689172565523304, 0.7390011832663317, 0.5830482617600022, 0.3501680144731306, 0.0, 5.007368568629644, 3.8518481592044362, 2.9152413088000113, 2.217003549798995, 4.137834513104661, 2.0090043213464224, 1.4197659426942213, 1.3338782082192022, 1.8770277694491289, 1.3973188833856243, 0.824671245092618, 0.28930945872092256, 0.0), # 170 (4.3572030133028, 3.06030043218988, 3.9749313735819856, 4.038983115591321, 3.61849295809611, 1.801143730041226, 1.3661668141095222, 1.3842436825795277, 1.9961247321071884, 0.7116487980765979, 0.5615653212117798, 0.33735175238082576, 0.0, 4.826224286265092, 3.710869276189083, 2.807826606058899, 2.134946394229793, 3.992249464214377, 1.9379411556113388, 1.3661668141095222, 1.2865312357437328, 1.809246479048055, 1.3463277051971074, 0.7949862747163972, 0.27820913019908006, 0.0), # 171 (4.184066308977092, 2.9354845527968174, 3.8217761665297245, 3.881458689874438, 3.4786771838230153, 1.7325994558753692, 1.3112501589480263, 1.331727079151757, 1.9207503743149028, 0.6835422574878162, 0.5394743255942259, 0.3241602912821315, 0.0, 4.639450218517843, 3.5657632041034453, 2.6973716279711297, 2.050626772463448, 3.8415007486298056, 1.8644179108124599, 1.3112501589480263, 1.237571039910978, 1.7393385919115076, 1.2938195632914795, 0.764355233305945, 0.26686223207243803, 0.0), # 172 (4.007078504324784, 2.808376989439591, 3.664494337205808, 3.7199844933527855, 3.3351551780606408, 1.6620756522039952, 1.25520868524366, 1.2776688132165412, 1.8431071904769127, 0.6547852222174565, 0.5168576993192239, 0.310643606450315, 0.0, 4.44777380497477, 3.417079670953465, 2.584288496596119, 1.9643556666523692, 3.6862143809538255, 1.7887363385031578, 1.25520868524366, 1.187196894431425, 1.6675775890303204, 1.2399948311175955, 0.7328988674411617, 0.25530699903996285, 0.0), # 173 (3.8268676988682753, 2.6793983238068333, 3.503689618509735, 3.5551616463729245, 3.1884739027906486, 1.5898513022217866, 1.1982351010303502, 1.2222844215977202, 1.763508187894657, 0.6254813529829895, 0.4937978667986571, 0.2968516731586446, 0.0, 4.251922485222747, 3.26536840474509, 2.468989333993285, 1.8764440589489682, 3.527016375789314, 1.7111981902368083, 1.1982351010303502, 1.1356080730155618, 1.5942369513953243, 1.1850538821243084, 0.700737923701947, 0.24358166580062124, 0.0), # 174 (3.6440619921299646, 2.548969137587176, 3.3399657433410055, 3.3875912692814207, 3.039180319994703, 1.5162053891234268, 1.1405221143420232, 1.165789441119132, 1.682266373869575, 0.595734310501885, 0.4703772524444093, 0.28283446668038764, 0.0, 4.052623698848646, 3.1111791334842636, 2.3518862622220467, 1.7872029315056546, 3.36453274773915, 1.632105217566785, 1.1405221143420232, 1.0830038493738763, 1.5195901599973516, 1.1291970897604737, 0.6679931486682011, 0.23172446705337968, 0.0), # 175 (3.459289483632255, 2.4175100124692537, 3.173926444599119, 3.2178744824248353, 2.8878213916544695, 1.441416896103598, 1.082262433212606, 1.1083994086046165, 1.5996947557031045, 0.5656477554916135, 0.44667828066836407, 0.268641962288812, 0.0, 3.8506048854393393, 2.9550615851769315, 2.23339140334182, 1.69694326647484, 3.199389511406209, 1.551759172046463, 1.082262433212606, 1.0295834972168558, 1.4439106958272347, 1.0726248274749453, 0.6347852889198239, 0.2197736374972049, 0.0), # 176 (3.273178272897546, 2.2854415301416977, 3.006175455183576, 3.0466124061497295, 2.7349440797516125, 1.365764806356983, 1.0236487656760251, 1.050329860878011, 1.5161063406966853, 0.535325348669645, 0.4227833758824049, 0.2543241352571853, 0.0, 3.6465934845817, 2.7975654878290377, 2.113916879412024, 1.6059760460089345, 3.0322126813933705, 1.4704618052292153, 1.0236487656760251, 0.9755462902549877, 1.3674720398758062, 1.0155374687165768, 0.6012350910367152, 0.20776741183106345, 0.0), # 177 (3.0863564594482376, 2.153184272293141, 2.8373165079938762, 2.87440616080267, 2.581095346267794, 1.2895281030782653, 0.964873819766207, 0.9917963347631552, 1.431814136151756, 0.5048707507534501, 0.39877496249841504, 0.2399309608587752, 0.0, 3.4413169358626017, 2.6392405694465264, 1.993874812492075, 1.51461225226035, 2.863628272303512, 1.3885148686684172, 0.964873819766207, 0.9210915021987609, 1.290547673133897, 0.9581353869342235, 0.5674633015987752, 0.1957440247539219, 0.0), # 178 (0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0), # 179 ) passenger_allighting_rate = ( (0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1, 0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1), # 0 (0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1, 0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1), # 1 (0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1, 0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1), # 2 (0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1, 0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1), # 3 (0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1, 0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1), # 4 (0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1, 0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1), # 5 (0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1, 0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1), # 6 (0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1, 0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1), # 7 (0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1, 0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1), # 8 (0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1, 0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1), # 9 (0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1, 0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1), # 10 (0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1, 0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1), # 11 (0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1, 0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1), # 12 (0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1, 0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1), # 13 (0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1, 0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1), # 14 (0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1, 0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1), # 15 (0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1, 0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1), # 16 (0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1, 0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1), # 17 (0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1, 0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1), # 18 (0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1, 0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1), # 19 (0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1, 0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1), # 20 (0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1, 0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1), # 21 (0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1, 0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1), # 22 (0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1, 0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1), # 23 (0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1, 0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1), # 24 (0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1, 0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1), # 25 (0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1, 0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1), # 26 (0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1, 0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1), # 27 (0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1, 0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1), # 28 (0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1, 0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1), # 29 (0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1, 0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1), # 30 (0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1, 0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1), # 31 (0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1, 0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1), # 32 (0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1, 0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1), # 33 (0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1, 0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1), # 34 (0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1, 0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1), # 35 (0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1, 0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1), # 36 (0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1, 0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1), # 37 (0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1, 0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1), # 38 (0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1, 0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1), # 39 (0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1, 0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1), # 40 (0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1, 0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1), # 41 (0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1, 0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1), # 42 (0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1, 0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1), # 43 (0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1, 0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1), # 44 (0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1, 0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1), # 45 (0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1, 0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1), # 46 (0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1, 0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1), # 47 (0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1, 0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1), # 48 (0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1, 0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1), # 49 (0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1, 0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1), # 50 (0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1, 0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1), # 51 (0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1, 0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1), # 52 (0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1, 0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1), # 53 (0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1, 0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1), # 54 (0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1, 0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1), # 55 (0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1, 0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1), # 56 (0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1, 0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1), # 57 (0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1, 0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1), # 58 (0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1, 0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1), # 59 (0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1, 0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1), # 60 (0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1, 0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1), # 61 (0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1, 0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1), # 62 (0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1, 0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1), # 63 (0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1, 0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1), # 64 (0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1, 0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1), # 65 (0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1, 0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1), # 66 (0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1, 0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1), # 67 (0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1, 0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1), # 68 (0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1, 0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1), # 69 (0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1, 0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1), # 70 (0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1, 0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1), # 71 (0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1, 0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1), # 72 (0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1, 0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1), # 73 (0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1, 0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1), # 74 (0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1, 0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1), # 75 (0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1, 0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1), # 76 (0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1, 0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1), # 77 (0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1, 0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1), # 78 (0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1, 0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1), # 79 (0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1, 0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1), # 80 (0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1, 0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1), # 81 (0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1, 0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1), # 82 (0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1, 0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1), # 83 (0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1, 0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1), # 84 (0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1, 0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1), # 85 (0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1, 0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1), # 86 (0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1, 0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1), # 87 (0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1, 0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1), # 88 (0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1, 0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1), # 89 (0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1, 0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1), # 90 (0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1, 0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1), # 91 (0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1, 0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1), # 92 (0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1, 0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1), # 93 (0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1, 0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1), # 94 (0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1, 0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1), # 95 (0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1, 0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1), # 96 (0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1, 0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1), # 97 (0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1, 0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1), # 98 (0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1, 0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1), # 99 (0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1, 0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1), # 100 (0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1, 0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1), # 101 (0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1, 0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1), # 102 (0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1, 0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1), # 103 (0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1, 0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1), # 104 (0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1, 0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1), # 105 (0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1, 0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1), # 106 (0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1, 0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1), # 107 (0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1, 0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1), # 108 (0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1, 0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1), # 109 (0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1, 0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1), # 110 (0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1, 0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1), # 111 (0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1, 0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1), # 112 (0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1, 0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1), # 113 (0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1, 0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1), # 114 (0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1, 0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1), # 115 (0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1, 0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1), # 116 (0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1, 0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1), # 117 (0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1, 0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1), # 118 (0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1, 0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1), # 119 (0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1, 0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1), # 120 (0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1, 0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1), # 121 (0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1, 0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1), # 122 (0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1, 0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1), # 123 (0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1, 0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1), # 124 (0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1, 0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1), # 125 (0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1, 0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1), # 126 (0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1, 0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1), # 127 (0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1, 0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1), # 128 (0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1, 0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1), # 129 (0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1, 0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1), # 130 (0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1, 0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1), # 131 (0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1, 0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1), # 132 (0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1, 0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1), # 133 (0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1, 0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1), # 134 (0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1, 0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1), # 135 (0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1, 0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1), # 136 (0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1, 0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1), # 137 (0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1, 0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1), # 138 (0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1, 0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1), # 139 (0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1, 0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1), # 140 (0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1, 0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1), # 141 (0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1, 0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1), # 142 (0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1, 0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1), # 143 (0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1, 0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1), # 144 (0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1, 0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1), # 145 (0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1, 0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1), # 146 (0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1, 0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1), # 147 (0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1, 0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1), # 148 (0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1, 0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1), # 149 (0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1, 0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1), # 150 (0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1, 0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1), # 151 (0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1, 0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1), # 152 (0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1, 0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1), # 153 (0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1, 0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1), # 154 (0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1, 0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1), # 155 (0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1, 0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1), # 156 (0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1, 0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1), # 157 (0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1, 0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1), # 158 (0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1, 0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1), # 159 (0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1, 0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1), # 160 (0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1, 0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1), # 161 (0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1, 0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1), # 162 (0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1, 0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1), # 163 (0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1, 0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1), # 164 (0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1, 0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1), # 165 (0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1, 0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1), # 166 (0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1, 0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1), # 167 (0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1, 0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1), # 168 (0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1, 0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1), # 169 (0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1, 0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1), # 170 (0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1, 0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1), # 171 (0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1, 0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1), # 172 (0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1, 0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1), # 173 (0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1, 0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1), # 174 (0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1, 0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1), # 175 (0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1, 0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1), # 176 (0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1, 0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1), # 177 (0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1, 0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1), # 178 (0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1, 0, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 0.07692307692307693, 1), # 179 ) """ parameters for reproducibiliy. More information: https://numpy.org/doc/stable/reference/random/parallel.html """ #initial entropy entropy = 8991598675325360468762009371570610170 #index for seed sequence child child_seed_index = ( 1, # 0 28, # 1 )
275.154011
493
0.768631
32,987
257,269
5.994301
0.21175
0.360484
0.345919
0.655426
0.38044
0.372364
0.368101
0.366422
0.365936
0.365936
0
0.849141
0.096141
257,269
934
494
275.448608
0.0012
0.015591
0
0.200873
0
0
0
0
0
0
0
0
0
1
0
false
0.005459
0
0
0
0
0
0
0
null
1
1
1
0
0
0
0
0
0
0
1
0
0
0
0
1
1
0
0
0
0
0
0
0
null
0
0
0
0
0
0
0
0
0
0
0
0
0
6
015025fdf2e87c9c574357746f35501754b41457
128
py
Python
humanlikehearing/library/__init__.py
neural-reckoning/HumanlikeHearing
c73bb8418cb2214fdc74ed88fabba76fae20fbab
[ "BSD-3-Clause" ]
6
2021-05-21T14:47:47.000Z
2021-11-03T09:07:26.000Z
humanlikehearing/library/__init__.py
neural-reckoning/HumanlikeHearing
c73bb8418cb2214fdc74ed88fabba76fae20fbab
[ "BSD-3-Clause" ]
null
null
null
humanlikehearing/library/__init__.py
neural-reckoning/HumanlikeHearing
c73bb8418cb2214fdc74ed88fabba76fae20fbab
[ "BSD-3-Clause" ]
1
2021-05-20T08:34:25.000Z
2021-05-20T08:34:25.000Z
from . import a_weighting from . import audio_format from . import speech_voltmeter_svp56 from . import voice_activity_detection
32
38
0.851563
18
128
5.722222
0.666667
0.38835
0
0
0
0
0
0
0
0
0
0.017699
0.117188
128
4
38
32
0.893805
0
0
0
0
0
0
0
0
0
0
0
0
1
0
true
0
1
0
1
0
1
0
0
null
1
0
0
0
0
0
0
0
0
0
0
0
0
1
0
0
0
0
0
0
0
0
0
0
null
0
0
0
0
0
0
1
0
1
0
1
0
0
6
0157c0b566db787c1e7a34afa73ebd6dd84b1ea5
234
py
Python
module10-packages/deepcloudlabs/hr.py
deepcloudlabs/dcl160-2021-jul-05
0162afb24a5b89633531dbb1c195898d5066077a
[ "MIT" ]
null
null
null
module10-packages/deepcloudlabs/hr.py
deepcloudlabs/dcl160-2021-jul-05
0162afb24a5b89633531dbb1c195898d5066077a
[ "MIT" ]
null
null
null
module10-packages/deepcloudlabs/hr.py
deepcloudlabs/dcl160-2021-jul-05
0162afb24a5b89633531dbb1c195898d5066077a
[ "MIT" ]
null
null
null
class Employee: def __init__(self, fullname, email, salary): self.fullname = fullname self.email = email self.salary = salary def __str__(self): return f"employee (full name: {self.fullname})"
26
55
0.623932
27
234
5.111111
0.481481
0.26087
0
0
0
0
0
0
0
0
0
0
0.273504
234
8
56
29.25
0.811765
0
0
0
0
0
0.15812
0
0
0
0
0
0
1
0.285714
false
0
0
0.142857
0.571429
0
1
0
0
null
1
0
0
0
0
0
0
0
0
0
0
0
0
1
0
0
0
0
0
0
0
0
0
0
null
0
0
0
0
0
1
0
0
0
1
1
0
0
6
6d6c5997630f689944c394d8a9c06c73275708a7
57
py
Python
pynq_chainer/overlays/__init__.py
tkat0/pynq-chainer
30ffed5d08cd37207841623fcdaae4328d6e26eb
[ "MIT" ]
6
2017-08-20T10:23:57.000Z
2020-02-06T18:35:06.000Z
pynq_chainer/overlays/__init__.py
tkat0/pynq-chainer
30ffed5d08cd37207841623fcdaae4328d6e26eb
[ "MIT" ]
null
null
null
pynq_chainer/overlays/__init__.py
tkat0/pynq-chainer
30ffed5d08cd37207841623fcdaae4328d6e26eb
[ "MIT" ]
null
null
null
from .mmult import Mmult from .bin_mmult import BinMmult
19
31
0.824561
9
57
5.111111
0.555556
0.478261
0
0
0
0
0
0
0
0
0
0
0.140351
57
2
32
28.5
0.938776
0
0
0
0
0
0
0
0
0
0
0
0
1
0
true
0
1
0
1
0
1
0
0
null
1
0
0
0
0
0
0
0
0
0
0
0
0
1
0
0
0
0
0
0
0
0
0
0
null
0
0
0
0
0
0
1
0
1
0
1
0
0
6
6d95a31307d990df2f369a1de094bbb25dab1383
21
py
Python
register/util/signals/__init__.py
kws/building-register
f9bdd4580481e5453320e721a988b74f0f4e6354
[ "MIT" ]
null
null
null
register/util/signals/__init__.py
kws/building-register
f9bdd4580481e5453320e721a988b74f0f4e6354
[ "MIT" ]
2
2021-11-09T10:27:49.000Z
2021-11-17T10:53:01.000Z
register/util/signals/__init__.py
kws/building-register
f9bdd4580481e5453320e721a988b74f0f4e6354
[ "MIT" ]
1
2021-11-09T10:28:22.000Z
2021-11-09T10:28:22.000Z
from .slack import *
10.5
20
0.714286
3
21
5
1
0
0
0
0
0
0
0
0
0
0
0
0.190476
21
1
21
21
0.882353
0
0
0
0
0
0
0
0
0
0
0
0
1
0
true
0
1
0
1
0
1
1
0
null
0
0
0
0
0
0
0
0
0
0
0
0
0
1
0
0
0
0
0
0
0
0
0
0
null
0
0
0
0
0
0
1
0
1
0
1
0
0
6
6db4ec4822c4a826863782f209c4e2bac4be99e3
1,670
py
Python
django_migration_utils/rename_table.py
mcldev/django-migration-utils
deccb0a6e1dfc3b4c5e786cfe5c45445894f8daa
[ "MIT" ]
null
null
null
django_migration_utils/rename_table.py
mcldev/django-migration-utils
deccb0a6e1dfc3b4c5e786cfe5c45445894f8daa
[ "MIT" ]
null
null
null
django_migration_utils/rename_table.py
mcldev/django-migration-utils
deccb0a6e1dfc3b4c5e786cfe5c45445894f8daa
[ "MIT" ]
null
null
null
def fwd_rename_app(apps, schema_editor, apps_to_rename): for old_appname, new_appname in apps_to_rename: # Renaming model from 'Foo' to 'Bar' schema_editor.execute("UPDATE django_migrations SET app_name = %s WHERE app_name = %s", [new_appname, old_appname]) schema_editor.execute("UPDATE django_content_type SET app_label = %s WHERE app_label = %s", [new_appname, old_appname]) new_app = apps.get_app_config(new_appname) app_models = new_app.get_models(include_auto_created=True) for model in app_models: if model._meta.proxy == True: continue new_table_name = model._meta.db_table old_table_name = old_appname + new_table_name[len(new_appname):] schema_editor.alter_db_table(old_table_name, new_table_name) def back_rename_app(apps, schema_editor, apps_to_rename): for old_appname, new_appname in apps_to_rename: # Renaming model back from 'Bar' to 'Foo' schema_editor.execute("UPDATE django_migrations SET app_name = %s WHERE app_name = %s", [old_appname, new_appname]) schema_editor.execute("UPDATE django_content_type SET app_label = %s WHERE app_label = %s", [old_appname, new_appname]) new_app = apps.get_app_config(new_appname) app_models = new_app.get_models(include_auto_created=True) for model in app_models: if model._meta.proxy == True: continue old_table_name = model._meta.db_table new_table_name = old_appname + old_table_name[len(new_appname):] schema_editor.alter_db_table(old_table_name, new_table_name)
38.837209
127
0.692814
241
1,670
4.385892
0.186722
0.094607
0.073794
0.075686
0.919584
0.859035
0.811731
0.811731
0.811731
0.811731
0
0
0.226946
1,670
42
128
39.761905
0.818745
0.044311
0
0.583333
0
0
0.161108
0
0
0
0
0
0
1
0.083333
false
0
0
0
0.083333
0
0
0
0
null
0
0
0
1
1
1
1
1
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
null
0
0
0
0
0
0
0
0
0
0
0
0
0
6
09851e19dc80a219351bd82c39fe59cda99f0943
505
py
Python
common/test_input_validation.py
lbozarth/exercise-toes
25aed0949ae57a04fb738c2bf6c2a7ade0eece2b
[ "MIT" ]
4
2019-09-18T03:32:25.000Z
2020-04-27T14:08:16.000Z
common/test_input_validation.py
lbozarth/exercise-toes
25aed0949ae57a04fb738c2bf6c2a7ade0eece2b
[ "MIT" ]
3
2019-07-02T02:37:44.000Z
2019-08-24T05:12:08.000Z
common/test_input_validation.py
lbozarth/exercise-toes
25aed0949ae57a04fb738c2bf6c2a7ade0eece2b
[ "MIT" ]
13
2019-07-02T00:37:47.000Z
2020-09-28T20:30:28.000Z
from common.input_validation import ( extract_phone_number, ) def test_extract_phone_number(): assert extract_phone_number('510501622') == None assert extract_phone_number('5105016227') == '15105016227' assert extract_phone_number('15105016227') == '15105016227' assert extract_phone_number('+15105016227') == '15105016227' assert extract_phone_number('My number is 510 501 6227') == '15105016227' assert extract_phone_number('My number is (510) 501-6227.') == '15105016227'
38.846154
80
0.744554
59
505
6.067797
0.338983
0.268156
0.402235
0.402235
0.594972
0.594972
0.594972
0.594972
0.594972
0.594972
0
0.267281
0.140594
505
12
81
42.083333
0.557604
0
0
0
0
0
0.29703
0
0
0
0
0
0.6
1
0.1
true
0
0.1
0
0.2
0
0
0
0
null
1
1
1
0
0
0
0
0
0
0
1
0
0
0
0
0
0
0
0
0
0
0
0
0
null
0
0
0
1
0
0
1
0
0
0
0
0
0
6
09903cb3b4510862bc3ddebafa79c5bd9b3ab96e
26
py
Python
PartSongSet/__init__.py
jcksnvllxr80/MidiController
de6d3c983cd27408e88a744a0a4d3c887efa3d54
[ "MIT" ]
1
2021-06-06T15:36:27.000Z
2021-06-06T15:36:27.000Z
PartSongSet/__init__.py
jcksnvllxr80/MidiController
de6d3c983cd27408e88a744a0a4d3c887efa3d54
[ "MIT" ]
1
2021-06-06T15:37:42.000Z
2021-06-06T15:37:42.000Z
PartSongSet/__init__.py
jcksnvllxr80/MidiController
de6d3c983cd27408e88a744a0a4d3c887efa3d54
[ "MIT" ]
null
null
null
from PartSongSet import *
13
25
0.807692
3
26
7
1
0
0
0
0
0
0
0
0
0
0
0
0.153846
26
1
26
26
0.954545
0
0
0
0
0
0
0
0
0
0
0
0
1
0
true
0
1
0
1
0
1
1
0
null
0
0
0
0
0
0
0
0
0
0
0
0
0
1
0
0
0
0
0
0
0
0
0
0
null
0
0
0
0
0
0
1
0
1
0
1
0
0
6
09a5bcdf9e4eed883b56ec4fc1779c06f61b9301
3,210
py
Python
tests/unit/test_process.py
tholom/pake
6777d63255eb3e4e834b77c9a1504b72dd2ed296
[ "BSD-3-Clause" ]
3
2019-08-28T21:54:30.000Z
2021-10-13T22:00:59.000Z
tests/unit/test_process.py
tholom/pake
6777d63255eb3e4e834b77c9a1504b72dd2ed296
[ "BSD-3-Clause" ]
1
2021-01-05T01:37:57.000Z
2021-01-05T14:10:17.000Z
tests/unit/test_process.py
tholom/pake
6777d63255eb3e4e834b77c9a1504b72dd2ed296
[ "BSD-3-Clause" ]
1
2021-01-16T18:44:36.000Z
2021-01-16T18:44:36.000Z
import sys import unittest import os script_dir = os.path.dirname(os.path.realpath(__file__)) sys.path.insert(1, os.path.abspath( os.path.join(script_dir, os.path.join('..', '..')))) from pake import process import pake.program import pake class ProcessTest(unittest.TestCase): def test_call(self): cmd = [sys.executable, os.path.join(script_dir, 'timeout.py')] with self.assertRaises(process.TimeoutExpired) as exc: process.call(*cmd, timeout=0.1, stderr=process.DEVNULL, stdout=process.DEVNULL) self.assertSequenceEqual((cmd, 0.1), exc.exception.cmd) self.assertNotEqual(process.call(sys.executable, os.path.join(script_dir, 'throw.py'), stderr=process.DEVNULL, stdout=process.DEVNULL), 0) self.assertNotEqual(process.call(sys.executable, os.path.join(script_dir, 'killself.py'), stderr=process.DEVNULL, stdout=process.DEVNULL), 0) def test_check_call(self): cmd = [sys.executable, os.path.join(script_dir, 'timeout.py')] with self.assertRaises(process.TimeoutExpired) as exc: process.check_call(cmd, timeout=0.1, stderr=process.DEVNULL, stdout=process.DEVNULL) self.assertSequenceEqual((cmd, 0.1), exc.exception.cmd) _ = str(exc.exception) # just test for serialization exceptions cmd = [sys.executable, os.path.join(script_dir, 'throw.py')] with self.assertRaises(process.CalledProcessException) as exc: process.check_call(cmd, stderr=process.DEVNULL, stdout=process.DEVNULL) self.assertListEqual(cmd, exc.exception.cmd) _ = str(exc.exception) # just test for serialization exceptions # Check pake propagates the exception correctly pake.de_init(clear_conf=False) pk = pake.init() @pk.task def dummy(ctx): process.check_call(cmd, stderr=process.DEVNULL, stdout=process.DEVNULL) with self.assertRaises(pake.TaskException) as exc: pk.run(tasks=dummy) self.assertEqual(type(exc.exception.exception), process.CalledProcessException) def test_check_output(self): cmd = [sys.executable, os.path.join(script_dir, 'timeout.py')] with self.assertRaises(process.TimeoutExpired) as exc: process.check_output(*cmd, timeout=0.1, stderr=process.DEVNULL) _ = str(exc.exception) # just test for serialization exceptions cmd = [sys.executable, os.path.join(script_dir, 'throw.py')] with self.assertRaises(process.CalledProcessException) as exc: process.check_output(cmd, stderr=process.DEVNULL) _ = str(exc.exception) # just test for serialization exceptions # Check pake propagates the exception correctly pake.de_init(clear_conf=False) pk = pake.init() @pk.task def dummy(ctx): process.check_output(cmd, stderr=process.DEVNULL) with self.assertRaises(pake.TaskException) as exc: pk.run(tasks=dummy) self.assertEqual(type(exc.exception.exception), process.CalledProcessException)
33.4375
97
0.658255
383
3,210
5.43342
0.180157
0.100913
0.043248
0.061509
0.879385
0.870255
0.867371
0.84815
0.807785
0.804421
0
0.005255
0.229283
3,210
95
98
33.789474
0.835893
0.076947
0
0.642857
0
0
0.023342
0
0
0
0
0
0.25
1
0.089286
false
0
0.107143
0
0.214286
0
0
0
0
null
0
0
0
1
1
1
1
1
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
null
0
0
0
0
0
0
0
0
0
0
0
0
0
6
09fe26b416f8f39b1bc3594cc62188984305284f
8,296
py
Python
test/test_npu/test_network_ops/test_not_equal.py
Ascend/pytorch
39849cf72dafe8d2fb68bd1679d8fd54ad60fcfc
[ "BSD-3-Clause" ]
1
2021-12-02T03:07:35.000Z
2021-12-02T03:07:35.000Z
test/test_npu/test_network_ops/test_not_equal.py
Ascend/pytorch
39849cf72dafe8d2fb68bd1679d8fd54ad60fcfc
[ "BSD-3-Clause" ]
1
2021-11-12T07:23:03.000Z
2021-11-12T08:28:13.000Z
test/test_npu/test_network_ops/test_not_equal.py
Ascend/pytorch
39849cf72dafe8d2fb68bd1679d8fd54ad60fcfc
[ "BSD-3-Clause" ]
null
null
null
# Copyright (c) 2020, Huawei Technologies.All rights reserved. # # Licensed under the BSD 3-Clause License (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # https://opensource.org/licenses/BSD-3-Clause # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import torch import numpy as np import copy from common_utils import TestCase, run_tests from common_device_type import dtypes, instantiate_device_type_tests from util_test import create_common_tensor class TestNotEqual(TestCase): def cpu_op_exec(self, input1, input2): output = torch.ne(input1, input2) output = output.numpy().astype(np.int32) return output def npu_op_exec(self, input1, input2): output = torch.ne(input1, input2) output = output.to("cpu") output = output.numpy().astype(np.int32) return output def cpu_op_inplace_exec(self, input1, input2): input1.ne_(input2) output = input1.numpy().astype(np.int32) return output def npu_op_inplace_exec(self, input1, input2): input1.ne_(input2) output = input1.to("cpu") output = output.numpy().astype(np.int32) return output def npu_op_exec_out(self, input1, input2, out): torch.ne(input1, input2, out=out) output = out.to("cpu") output = output.numpy().astype(np.int32) return output def not_equal_scalar_result(self, shape_format): for item in shape_format: scalar = np.random.uniform(0, 100) cpu_input1, npu_input1 = create_common_tensor(item[0], 0, 100) npu_input3 = copy.deepcopy(cpu_input1).to("npu").to(torch.bool) if cpu_input1.dtype == torch.float16: cpu_input1 = cpu_input1.to(torch.float32) cpu_output = self.cpu_op_exec(cpu_input1, scalar) npu_output = self.npu_op_exec(npu_input1, scalar) npu_output_out = self.npu_op_exec_out(npu_input1, scalar, npu_input3) cpu_output_inp = self.cpu_op_inplace_exec(cpu_input1, scalar) npu_output_inp = self.npu_op_inplace_exec(npu_input1, scalar) self.assertRtolEqual(cpu_output, npu_output) self.assertRtolEqual(cpu_output, npu_output_out) self.assertRtolEqual(cpu_output_inp, npu_output_inp) def not_equal_result(self, shape_format): for item in shape_format: cpu_input1, npu_input1 = create_common_tensor(item[0], 0, 100) cpu_input2, npu_input2 = create_common_tensor(item[1], 0, 100) npu_input3 = copy.deepcopy(cpu_input1).to("npu").to(torch.bool) if cpu_input1.dtype == torch.float16: cpu_input1 = cpu_input1.to(torch.float32) cpu_input2 = cpu_input2.to(torch.float32) cpu_output = self.cpu_op_exec(cpu_input1, cpu_input2) npu_output = self.npu_op_exec(npu_input1, npu_input2) npu_output_out = self.npu_op_exec_out(npu_input1, npu_input2, npu_input3) cpu_output_inp = self.cpu_op_inplace_exec(cpu_input1, cpu_input2) npu_output_inp = self.npu_op_inplace_exec(npu_input1, npu_input2) self.assertRtolEqual(cpu_output, npu_output) self.assertRtolEqual(cpu_output, npu_output_out) self.assertRtolEqual(cpu_output_inp, npu_output_inp) def test_not_equal_shape_format_fp16_1d(self, device): format_list = [-1, 0] shape_format = [[[np.float16, i, [16]], [np.float16, i, [16]]] for i in format_list] self.not_equal_result(shape_format) def test_not_equal_shape_format_fp32_1d(self, device): format_list = [-1, 0] shape_format = [[[np.float32, i, [16]], [np.float32, i, [16]]] for i in format_list] self.not_equal_result(shape_format) def test_not_equal_shape_format_fp16_2d(self, device): format_list = [-1, 0] shape_format = [[[np.float16, i, [448, 1]], [np.float16, i, [448, 1]]] for i in format_list] self.not_equal_result(shape_format) def test_not_equal_shape_format_fp32_2d(self, device): format_list = [-1, 0] shape_format = [[[np.float32, i, [448, 1]], [np.float32, i, [448, 1]]] for i in format_list] self.not_equal_result(shape_format) def test_not_equal_shape_format_fp16_3d(self, device): format_list = [-1, 0] shape_format = [[[np.float16, i, [16, 640, 640]], [np.float16, i, [16, 640, 640]]] for i in format_list] self.not_equal_result(shape_format) def test_not_equal_shape_format_fp32_3d(self, device): format_list = [-1, 0, 3] shape_format = [[[np.float32, i, [16, 640, 640]], [np.float32, i, [16, 640, 640]]] for i in format_list] self.not_equal_result(shape_format) def test_not_equal_shape_format_fp16_4d(self, device): format_list = [-1, 0, 3] shape_format = [[[np.float16, i, [32, 3, 3, 3]], [np.float16, i, [32, 3, 3, 3]]] for i in format_list] self.not_equal_result(shape_format) def test_not_equal_shape_format_fp32_4d(self, device): format_list = [-1, 0, 3] shape_format = [[[np.float32, i, [32, 3, 3, 3]], [np.float32, i, [32, 3, 3, 3]]] for i in format_list] self.not_equal_result(shape_format) # scala----------------------------------------------------------------- def test_not_equal_scalar_shape_format_fp16_1d(self, device): format_list = [-1, 0, 3] shape_format = [[[np.float16, i, 18]] for i in format_list] self.not_equal_scalar_result(shape_format) def test_not_equal_scalar_shape_format_fp32_1d(self, device): format_list = [-1, 0, 3] shape_format = [[[np.float32, i, [18]]] for i in format_list] self.not_equal_scalar_result(shape_format) def test_not_equal_scalar_shape_format_fp16_2d(self, device): format_list = [-1, 0] shape_format = [[[np.float16, i, [64, 7]]] for i in format_list] self.not_equal_scalar_result(shape_format) def test_not_equal_scalar_shape_format_fp32_2d(self, device): format_list = [-1, 0] shape_format = [[[np.float32, i, [64, 7]]] for i in format_list] self.not_equal_scalar_result(shape_format) def test_not_equal_scalar_shape_format_fp32_3d(self, device): format_list = [-1, 0] shape_format = [[[np.float32, i, [64, 24, 38]]] for i in format_list] self.not_equal_scalar_result(shape_format) def test_not_equal_scalar_shape_format_fp16_4d(self, device): format_list = [-1, 0] shape_format = [[[np.float16, i, [32, 3, 3, 3]]] for i in format_list] self.not_equal_scalar_result(shape_format) def test_not_equal_scalar_shape_format_fp32_4d(self, device): format_list = [-1, 0] shape_format = [[[np.float32, i, [32, 3, 3, 3]]] for i in format_list] self.not_equal_scalar_result(shape_format) def test_not_equal_shape_format_int32_1d(self, device): format_list = [-1, 0] shape_format = [[[np.int32, i, [16]], [np.int32, i, [16]]] for i in format_list] self.not_equal_result(shape_format) def test_not_equal_shape_format_int32_2d(self, device): format_list = [-1, 0] shape_format = [[[np.int32, i, [448, 1]], [np.int32, i, [448, 1]]] for i in format_list] self.not_equal_result(shape_format) def test_not_equal_shape_format_int32_3d(self, device): format_list = [-1, 0] shape_format = [[[np.int32, i, [16, 640, 640]], [np.int32, i, [16, 640, 640]]] for i in format_list] self.not_equal_result(shape_format) def test_not_equal_shape_format_int32_4d(self, device): format_list = [-1, 0] shape_format = [[[np.int32, i, [32, 3, 3, 3]], [np.int32, i, [32, 3, 3, 3]]] for i in format_list] self.not_equal_result(shape_format) instantiate_device_type_tests(TestNotEqual, globals(), except_for="cpu") if __name__ == "__main__": run_tests()
43.434555
112
0.659595
1,229
8,296
4.135069
0.115541
0.132035
0.037387
0.05608
0.813066
0.800472
0.788863
0.780598
0.764266
0.739079
0
0.062413
0.219744
8,296
190
113
43.663158
0.722694
0.077748
0
0.478571
0
0
0.003405
0
0
0
0
0
0.042857
1
0.185714
false
0
0.042857
0
0.271429
0
0
0
0
null
0
0
0
1
1
1
1
1
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
null
0
0
0
0
0
0
0
0
0
0
0
0
0
6
61d42e66ae0c1adfd19e78af91bc948fbb48ddbb
124
py
Python
tests/missing_data/test_missing_data_air_passengers_None_None.py
shaido987/pyaf
b9afd089557bed6b90b246d3712c481ae26a1957
[ "BSD-3-Clause" ]
377
2016-10-13T20:52:44.000Z
2022-03-29T18:04:14.000Z
tests/missing_data/test_missing_data_air_passengers_None_None.py
ysdede/pyaf
b5541b8249d5a1cfdc01f27fdfd99b6580ed680b
[ "BSD-3-Clause" ]
160
2016-10-13T16:11:53.000Z
2022-03-28T04:21:34.000Z
tests/missing_data/test_missing_data_air_passengers_None_None.py
ysdede/pyaf
b5541b8249d5a1cfdc01f27fdfd99b6580ed680b
[ "BSD-3-Clause" ]
63
2017-03-09T14:51:18.000Z
2022-03-27T20:52:57.000Z
import tests.missing_data.test_missing_data_air_passengers_generic as gen gen.test_air_passengers_missing_data(None, None)
31
73
0.895161
20
124
5.05
0.55
0.326733
0
0
0
0
0
0
0
0
0
0
0.056452
124
3
74
41.333333
0.863248
0
0
0
0
0
0
0
0
0
0
0
0
1
0
true
1
0.5
0
0.5
0
1
0
0
null
1
0
0
0
0
0
0
0
0
0
0
0
0
1
0
0
0
0
0
0
0
0
0
0
null
0
0
0
0
0
0
1
1
1
0
0
0
0
6
febb379b1fadcfc13939427c562a9743628bb217
290
py
Python
packages/watchmen-auth/src/watchmen_auth/__init__.py
Indexical-Metrics-Measure-Advisory/watchmen
c54ec54d9f91034a38e51fd339ba66453d2c7a6d
[ "MIT" ]
null
null
null
packages/watchmen-auth/src/watchmen_auth/__init__.py
Indexical-Metrics-Measure-Advisory/watchmen
c54ec54d9f91034a38e51fd339ba66453d2c7a6d
[ "MIT" ]
null
null
null
packages/watchmen-auth/src/watchmen_auth/__init__.py
Indexical-Metrics-Measure-Advisory/watchmen
c54ec54d9f91034a38e51fd339ba66453d2c7a6d
[ "MIT" ]
null
null
null
from .auth_helper import authorize, authorize_token from .authentication import AuthenticationDetails, AuthenticationManager, AuthenticationProvider, AuthenticationScheme from .authorization import AuthFailOn401, AuthFailOn403, Authorization from .principal_service import PrincipalService
58
118
0.889655
25
290
10.2
0.68
0
0
0
0
0
0
0
0
0
0
0.022388
0.075862
290
4
119
72.5
0.929104
0
0
0
0
0
0
0
0
0
0
0
0
1
0
true
0
1
0
1
0
1
0
1
null
0
0
0
0
0
0
0
0
0
0
0
0
0
1
0
0
0
0
0
0
0
0
0
0
null
0
0
0
0
0
0
1
0
1
0
1
0
0
6
3a0932e5c800ae98fd8480d1b623bc123ef3f697
14,281
py
Python
Gui/Images/title_icons.py
marioharper182/OptionsPricing
0212a1e421380e7a903439aaef93d99373e71fc6
[ "Apache-2.0" ]
null
null
null
Gui/Images/title_icons.py
marioharper182/OptionsPricing
0212a1e421380e7a903439aaef93d99373e71fc6
[ "Apache-2.0" ]
null
null
null
Gui/Images/title_icons.py
marioharper182/OptionsPricing
0212a1e421380e7a903439aaef93d99373e71fc6
[ "Apache-2.0" ]
null
null
null
#---------------------------------------------------------------------- # This file was generated by img2py.py # from wx.lib.embeddedimage import PyEmbeddedImage AmericanOption = PyEmbeddedImage( "iVBORw0KGgoAAAANSUhEUgAAAEAAAABACAYAAACqaXHeAAAABHNCSVQICAgIfAhkiAAAAAlw" "SFlzAAAHIQAAByEBauL93wAAABl0RVh0U29mdHdhcmUAd3d3Lmlua3NjYXBlLm9yZ5vuPBoA" "AAcESURBVHic7ZpbaB1VFIa/ld7S1t7UYmq8JDWpWOut0lqLiCCCPgjewBel9EEpiAiC2Bcf" "fFFBvIEoivgkIihFQQShUhBbsGhbtWrTS1Jr29TWS7SX2Jhk+bD2zpmzz5w5M3MmmVbzw2LP" "mbNn7bXX7HXbe1BVVBVgBvAI8AOgwCDwNrDM9/kvkrjJIyIPAW9Si16gW1VHY/4769ESuX64" "Tp/FwO0TIEspmBq5PpnQ7+/xFiQtRGQBcKGjRY5aMBkHI+0g8CuwTVXryh9VwEvAamBa0OcL" "RxMGEZkFXAEsA6507RKgHWjNyG5IRL4GNntS1WNjY3kf4AZeDzwbMDgP6ATWAFuALap6IKMQ" "sYhMdGmErnTjtSQ82iy2q+pyqF4BAAMxnU8BC4FHHSEih3DKAL7BzCe6/Hx7DpXlGqWLsYlf" "CkgDYUeAXcAeYB+wN9L2A6OOFFBVHRWReUAX0O3IX18PTMf8miEaEoB1nlGEWjEnGN4fDxoF" "eoB3gMcwk5xVVMgDdrhxBvy9cAWUjftV9f2JHPBMU8A/SX+KyEzMP1yGLeNFwBRHLZHrv4Dd" "nlT1aD2eZ5oCxiAiXcBKR8sxO26jsc+I4/UnpozO8L8iFPAz5tTqQYGjwAUpeK0RkXXACuDc" "AmTzmOd4RmUCmlPAaaxW2AC8gHn1MIf4DfgM+BRYC9zUgOddde4PAfuxtLwXiwK9WBQYcTQa" "uZ6L5Q1R6gZmh4ybUcAMYKGqbhSRjcDVMX0UU85+4NWUfEeA74GtEdqpqiMZ5fsy+kNEBAvZ" "VxExo2ZNYImI7MLeRBzOx3KHDmA4Bb8ngNdVNSktzwVVVRGpKeiaVYB/65cn9Hkg5t4G4B7s" "bU+J3N8TTl5Epjj+XZjnX0zGKBCh0ETHJQoMAx8C99X570Xgecw3vBL8LyLSQcX7r8Syt1kZ" "ZfBOb0WjjkUroB/LJrdi6XD49qdiE1qGTS4c/11gZsqxfiHZCcY6vRBFK2ARNrkTwB11+nQB" "mzBBQ4ST/xtLX7dhub+PAr1p/ISItFMdCdYCC6J9ilDAINWCrwfmYEWUxxBWhIAVQFBt+x69" "wOdUvP+3qpqYHSZBVQ8BhzCFIyK3UqACTgNfAR9gewkec1zr7XYf8AlwJxYNkvC4qn6UVgAR" "aSXeCZ5Q1VNJz3o0mwfsUNWXRUQxxxZ62R7gXsxW02yr1aS5bgfoOuKjwPw6fFREDmMl9B7M" "fPZQcCIElge8gdl+TYjBwtfdbuC2FPxmiMgqqqNAdw65BNs9agduSerYrAJuc23SjvHTpN/d" "eS/j+McwRzmEVZK+nYb5mnl1niukFogiaYLNbm0dp5LI9ERod6NIICLzsQqww9GTWFFWWCpc" "FEaweqFqgkCPqh7Oy1RVB4DtjhCRNQRVaR4F/OzadrK/3V8JJuhon6oOZWEkInOwt9qKhdhp" "kfYf4Cfgp6QtccingNdU9TkRmY7Z2WJsmbVjthXa41herqq/ZxnI1QGdmDNd4lpPi1KwUBE5" "gq2u/U7GKuQ2AffGfJhpCiKykNoJLsHC3fSERxuypnJ4cmNchzwKWCoiK7B09LfUkljS0kX1" "BP31goRHQwxjGeNuoI/kKNCBraBLsbylBnkU8KAjROS4E6YPSzmFWnv0uzOXkM1nHCXGKWKK" "z5Qeu82QNiwlrirdm40Cc4BrHOXBIGZCoVPsUdU/m5RtDGqHAv0iUuMQ8yjgY+BHKs4vKSUF" "c4wHiInjwAGNns01gIhMc+N5E+qkfhToc+QryP1xPPMoYLOqPhcINp/6UeBEo1AUQkTaiHeK" "i3PKDJXTpyoUkgi5hCPuXLEu3MFoN/FOcW4RcoVDElNs5VHAWhHppuL8eoE+Vf0FxmJ3nBMM" "3+hFcQIloJ9aE0qKAp1UTNSb680Emy55FOAnUwURGca8fDO5/0kqviLqM3ar6vGMvP7AdpKi" "Mu4gcNhF1gJpeY1iDimuuDlYoDypkEcBT2Gbl9EokCoVxia6V1VPZxlQRFqwZCZ0ilmiQB8F" "bYgMq6pnWihE5FzinWIXdTK5OphK5YuThh0nFK6I6iI+zJ2fg+UAlQ85Wsl4epxHAc+IyKME" "UYDGqbCfcAfxO8JxGMZMZ6dr+yN0BDgS5hgiMgPz9DMxhd6AfWmympgTrLQK6Mc86tXuGf+t" "T6PT3rQYwRS5EzsY9W1P1rzf+ZfT2MroB74D3gIQkfOwqvBa3z/8Smwd8HrAc6bXsojMxjYq" "vUZXkf4cfwQrcPqBg9gnuX6yu7Jmi0Uhkwm4PbhNVA4aBPs4Yja25FqD9iSVJXvsTPzctikn" "6AqZQr4ZLAvj+THiWYFJBZQtQNmYVEDZApSNSQWULUDZmFRA2QKUjUkFlC1A2ZhUQNkClI1J" "BZQtQNmYVEDZApSN/70C/gVDTFLx+fxz1wAAAABJRU5ErkJggg==") #---------------------------------------------------------------------- AsianOption = PyEmbeddedImage( "iVBORw0KGgoAAAANSUhEUgAAAEAAAABACAMAAACdt4HsAAAAA3NCSVQICAjb4U/gAAAACXBI" "WXMAABIFAAASBQEoPImrAAAAGXRFWHRTb2Z0d2FyZQB3d3cuaW5rc2NhcGUub3Jnm+48GgAA" "ArJQTFRF////AAAAAAAAAAAAAAAAMzMzKysrJCQkICAgHBwcGhoaFxcXFRUVFBQUJCQSIiIi" "ICAgHh4eHBwcGxsbGBgYISEWICAVHR0dHBwcGxsbGhoaGhoaIRkZICAYHx8XHh4XHR0dHBwc" "HBwcGxsbGhoaIBoaHx8ZHh4YHh4YHR0XHBwcGxsbGxsbHxoaHh4ZHR0ZHR0YHBwcHBwcGxsb" "GxsbHxoaHhoaHh4aHR0ZHR0ZHBwcGxsbHxsbHhsbHhoaHh4aHR0aHR0ZHBwYHBwcHxsbHhsb" "HhoaHR0aHR0aHBwZHBwZHBwZHhsbHhsbHhsbHR0aHR0aHR0aHBwaHBwZHBwZHhsZHhsbHR0b" "HR0aHR0aHBwaHBwaHBwZHhwZHhsbHRsbHR0bHR0aHR0aHBwaHhwZHhsZHR0bHR0bHR0aHBwa" "HBwaHhwaHhwaHhsZHRsZHR0bHR0bHBwaHBwaHhwaHhwaHRsaHRsZHRsZHR0bHBwaHBwaHhwa" "HhwaHRwaHRsaHRsZHR0ZHR0bHBwbHBwaHRwaHRsaHRsaHR0ZHR0ZHBwbHhwaHhwaHRwaHRwa" "HRsaHRsaHR0aHR0ZHBwbHhwbHhwaHRwaHRsaHRsaHR0aHR0aHBwZHhwbHRwbHRwaHRwaHRwa" "HRsaHR0aHBwaHBwaHhwZHRwbHRwaHRwaHRwaHRsaHR0aHBwaHBwaHhwaHRwbHRwaHRwaHRsa" "HR0aHhwaHRwaHRwaHRwZHRwaHR0aHBwaHhwaHRwaHRwaHRwbHRwaHhwaHRwaHRwaHRwaHRwa" "HRwbHRwaHRsaHBwaHRwaHRwaHRwaHRwaHRwaHRwaHRsaHBwaHRwaHRwaHRwaHRwaHRwaHRwa" "HRwaHRwaHhwaHRwaHRwaHRwaHRwaHRwaHRwaHRwaHRwaHRwaHRwaHRwaHRwaHRwaDWpeAgAA" "AOV0Uk5TAAECAwQFBgcICQoLDA0ODxAREhMVFxgaGxwdHh8gISIjJCUmJygpKissLS8wMTM0" "NTY3ODk6Ozw9PkBBQkNERUZHSUpLTE1PUFFSU1RVVldYWVpbXF1fYGFiY2RlZmdoaWprbW9w" "cnN0dXZ3eHl6e3x+f4CBgoOEhYeIiYqLjI2Oj5CRk5WWl5iZmpucnZ6foKGio6Smp6ipqqus" "ra6vsLGys7S1tre4ubq7vL2+wMHCw8TGx8jJzM3Oz9HS09XY2drb3N3e3+Di4+Tl5ufo6err" "7O3u7/Dx8vP09fb3+Pn6+/z9/uypTYUAAAP/SURBVBgZ7cH7f811AMfx99lmRtkQR3UYG5my" "Qke5pCJtmS0lCdMypkVpK0lRGUbYEllaipKIXLcIa7kucskUErlszvb6P/p8D99l53xnzE8e" "D8+ndNutL0Q3pcWEPN2ErvPOka4GikrOPwx80kwN4Hoou/gSfkm6QS37jJ275RQ1Fuh6udze" "1FnrjxFgt6Rps8b1jw6VM5e7W1LGh0uLD1biqFTSCoyKPasWzZmWPX7UkJSXxk6cMmPekuVr" "i0v2HqngWkqzPJKSaZhdkzvL4j5IQ1QN1xWbaZBtsjXuN3ziN9ywSbpa5MubuC7VpT988fH7" "E0enPN5MtUVVU6eS6a+PTh62H2OQ6rQfS2UllvIpowb3S9mH32b5dffBKtUt5onuHVs3Udgi" "jARZEvEbrsu+g9mqX/RFWCG/u/DrIL8JGG+7JYXH9n9lXKTqEHkAdkXJ7wRGdVMZrT7lsoPF" "h6swMuUsfD3GpvZSWPME/IrmF67dXkGAqQpwX95n+XNn5h7gslMXuLYhCjCL6+I7UbZj/Vf5" "H70QqgBPEej88bJfilYX5uW881ra0IQ+aT44Eq+6dXnu2ZTkpJTvgR0DunhahCnAT5Cr+rUB" "BspJMcxQ/VoCXjkpgTmqnwfwysleWKH6xQFe1dLymTcmTeitI7BTdfKkpKU+30FSD8Crq6VX" "Yll4Gs6GKiZjweKC9EYKMLgayxKX+gHe6Jw1q5aNiZJfaC5GWcdLQHy381jeVKCn9wBFbikR" "8M7HUhwhv5AiqIoLx0jXYyeBneEK4vZRfoekoYA3ZCmwuImumAaVaodRIKUAAxUsCXweSXnA" "q3oUKhrJVgB88C3GmbbhOXAuVMEKAd+Ggm0YVesOAbGybaBGxUngpBz8RaDBsm2ltj/lYCOB" "hsm2DLhQhd8F4JgcZMDZ5NjOn2OsHlgAxMo2A+iZimVtxEdwVA56wNeSojFa6U4475ItE2ga" "jSVDT8IhOXgAlktyY0jycU41xgEtPFgy1Qt+l4NYWCfJjSHpIpdUIw1ofQ+WbHWD3+TgXtgq" "yY0h6V9wyTYS8NyNZaruh31y0Ap2SXJjhEhnIEK2F4GYNlhmKAbK5CAaTkt6BKOtGgMxso0E" "uruxzFUPqAxTsCFAV0XMxFjwcBYwQLb3gBEPYikJyQQ6Klguxu7T/C9LtkLAdxy/coxEBSsl" "UJ5s2wiQqmD5XGX/UWC8bD8SoKeCJQJvteu0EuNURAwQL9t04PC7ZzGq4nKAWAWLg79DpD4Y" "P0sXwSNbNpClhRjligc6KVgX+ENSe4yV0uR/vlSNEUBvJVQDG+Xawq9hChayvXq2jEkb1izq" "pNrCBo3pLal93769wiVFuuSouW67Zf0HmwyT/NCKhBoAAAAASUVORK5CYII=") #---------------------------------------------------------------------- EuropeanOption = PyEmbeddedImage( "iVBORw0KGgoAAAANSUhEUgAAAEAAAABACAYAAACqaXHeAAAABHNCSVQICAgIfAhkiAAAAAlw" "SFlzAAAwfQAAMH0BS0BPwgAAABl0RVh0U29mdHdhcmUAd3d3Lmlua3NjYXBlLm9yZ5vuPBoA" "AALNSURBVHic7Zs9axRRFIafExfcBGFVNCiBoIKsCGpEiHaKlZUfoJjSwkp/gZ1dLFMGK0GE" "BAQFFQKCHxBBKz8KXUWyq5WiYgISVyQei5mNN9fBmN2ZOca5DwwsZ+fcee+7c+7cuTMrqkqR" "6bIWYE2p9UFENgMnDbXkybiq1iE2QER2A/uBYUtVOdIUkbuq+pR4DGgAWrCtpqrzY8DHjvxc" "nnwCEFVFRFYDn40F5c0aVZ0u/FUgGGAtwJpggLUAawpvQCm+BFashRhQEREEmAReu18Ag8Bt" "L+EwcAuYc2IDwAxQd2Jr4/gdL/8YcM2L7QE+AG+9/B3A/Tbz1wNVon65HAeuerFBgFOqSmsD" "tgETbiyOPwHKXuw8MOTFBoDrCfm1hNgF4GhC/lgH+fuASwn7NhJiI4UfAwS4THTKtVgJ9AFT" "3r5V4BXRjUSLDUATmHZi3XHcLQuIzqyaF9sIzBKVkZvfC7xpM78HWMfCsgDYDjz3Yg2I6qCJ" "/d1Z3lsT2CmtJTERcX/ZItCtqs3CjwHBAGsB1gQDjI//FfhidGwFZ1k8J74BF4EHwDOiecUP" "YAuwC9gLnAFW5aBFANxpYdbX3Qlgqz8dTZie9gHjOegpq2puBpxerOMJRhwBvv8PBgwvtfOO" "prPL3YCbQFe7BsS6RrM0IMupsAKbVNW/KVkSItIDvCf9gTHzqfBkp50HUNVZfl8ISY0sDbjy" "j7a1kIzGgEdApZPa98aBFcDDlDWW1Xk4mjZ1VZ1ZfLe/Q1XniBcv0sZ6KmxOMMBagDXBAGsB" "1gQDrAVYEwywFmBNMMBagDXBAGsB1gQDrAVYEwywFmBNMMBagDXBAGsB1hTegFL8j7Fqyu32" "i8gQcE9V33XSkIj0AgeB/lSU/eKEiLwAGCG7J7CHUngociBDfaOFL4HCG1ACbgAd1ekfeJlC" "G1PAuRTaSeLx/PsBRaXwJfAT3BK6v9OwyUMAAAAASUVORK5CYII=") #---------------------------------------------------------------------- ImpliedVol = PyEmbeddedImage( "iVBORw0KGgoAAAANSUhEUgAAAEAAAABACAYAAACqaXHeAAAABHNCSVQICAgIfAhkiAAAAAlw" "SFlzAAAdmwAAHZsBHYZu2AAAABl0RVh0U29mdHdhcmUAd3d3Lmlua3NjYXBlLm9yZ5vuPBoA" "AAWcSURBVHic7ZpdiFVVFMd/a2Y0dWZ0orRGRtRJy1FzRkELKjA1oSkjCKqHoogICguKHgr1" "IaSHPh8Ci3roGwPLosKi0oIoAoV0FGf8oqYya2pmSBud0VFXD3tfOXM9n/fsc08D9w+Lc8+9" "+6z9P/+79t7rrH1EVSkFInIp8B2wTlXfK8nJ/wBVKa5tAC4DNorIFhGZKSLjCuaIX+ZII4AX" "7cBPwGDBROQ+R74zhSsBinEE2JyRb6dII8DtIb89rKpHU/guG6SUSVBEWoBdwFifnz9X1fa0" "xMqFxBEgIgK8hv/NA+xPxajMqCnxml+AXnteBdwAjHdFqpxILICqDgN3eb8TkVnAq8AyQNxQ" "Kw9Ch4CIzBKRt0SkLqydqh5S1eXAPcAWlwQzh6r6GvAQcBxQYHZQu7gGNKT1kYXViMgkoBEz" "hicAtcDjmHFdgIvM7oCIdALfAFOBNaraG3FNWfAV5l8Os8UOIqDT468fqMv731dVqoA1wOkI" "kVJFgIhcAszwfPW+qg6k8ekKVaq6HXg6ot0DKfu5GRgD9NjzSSn9uYMNzxpgO+HD4LaUQ6DG" "Hm8EVuUd+gU7lwqLyN3A2yFa9QLzVbUnpM2ogzcPOBHR9mLgqQy5nIOITBWRDSKyVUResnNI" "JvBmgsUCbAXexDzfn7DHfVkRKUBEGoGdwBT71XLgDhFZoap7nHfoGaNLMWP9OLAa+6QYc3xf" "A4x3MSaB5y2PQ8BjQJc9/xu40vUc4O14OvAxCbM+YCZwEljvSIAP7A2vt+eTgd1ZiZCW7AXA" "h5bcANDiQIC11l8PMCdrEdIQvQXoZuRSOQxsAMam8FuLmWsU+CNEhAV5C/AMcJbz84X9wJSU" "UdAEHAwQ4YhLEdKG60JG5virsQlPamI+ImAe0rxipxbBBdFllswmFzceIsI/PtGmmAStZBFc" "EV0LzHAtgI8IQdYLtJbiv6SqcLkhIk2YOsKskGZ9wHJV7UjiO6uNEadQ1cPA9ZjkKAgXAdtE" "pDWJ71EhAGQnwqgRABKL0BbHp7M5QESqgXofG4d5vvi3yAa0xM5jzgn9mDlhV6ivJBzstvc8" "oBVYYI9zMBWepBsjhQevPmAv0IHJ9DqAA6p6JoKLExEiBbChdD9mvb8cqA69wDwYHQWO2eMg" "JhImYoSaSPSGzBBGlE+A123o+3GLK8IKVd3p+2vA2luPqQPuIHjtPQ18DbyA2RBZBEyIubY3" "ANcCDwIvAz9G9PMpsAqoLjFP6AMWxkqEgKuAv0Kc9WAqQ9McJzxtwCuYiAnqewfQ6FKEYkdj" "MPl1kJNBoC2LjM/D4d6IG/kiRcZ4ngjFTi7EjOEgB91AfcYCzANOhXDYHXJtYhH8nDyB/2Nu" "wT4D5mVw44JZ47tC+h4A2iP8xBGhH1jkK4B1shL4EjMBBTn5AXgEuI4SNz4xe5IrgXWY5Cao" "r+PARmBuTL9xI6EpdBm0Fdo7Me8DLApsaPAbppLTT/QyOBmYj8nagnAG2Aa8C3ykCbfSYi6R" "b8ROhETkCuBqzBida4/TcfNCxDDmH+u0thf4VlX/TOM0hgh7UqXCIlILtGC2u/3S4LBUuGA/" "AwfVvHniHBEibE4SAc3ArZgw3wd0q+pZh0THWpJzrD2rqlG71nF9N2GSttmer08CS5IIsBSj" "ZAFDmLDdB/yKfcDxWOH8JObFizpr9Z7PE4FmzA03MzLNHq+qQ/FvM5J/PfAksBj4HXhOVfem" "ESBrOBUgCKOqHpAFKgLkTSBvVATIm0DeqAiQN4G8UREgbwJ5oyJA3gTyRkWAvAnkjYoACdo6" "KU7ExFlrmSOJAN8Dm7IiUoRHVfVUWXpKWMauAW4C3sFUfcPKzkntMPAisCTLjZdiK7koamt4" "hfpdiz1OY2TJqw7zNukJRpbLjmGKoV2YkloXcEjTVGhLxH+OUEeDxifcOAAAAABJRU5ErkJg" "gg==") #---------------------------------------------------------------------- LookBackOption = PyEmbeddedImage( "iVBORw0KGgoAAAANSUhEUgAAAEAAAABACAMAAACdt4HsAAAAA3NCSVQICAjb4U/gAAAACXBI" "WXMAAAGcAAABnAH6gGQJAAAAGXRFWHRTb2Z0d2FyZQB3d3cuaW5rc2NhcGUub3Jnm+48GgAA" "AaFQTFRF////AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA" "AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA" "AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA" "AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA" "AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA" "AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA" "AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA" "AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAxZP4DgAAAIp0" "Uk5TAAECAwQFBwgJDQ4PEBIUFhcZGhscHh8iIyYnKCorLTM0Njc6PEZJTE1OT1BRU1VWXF5f" "ZGdpamxtbnBxdHV3eH2AgYKGiImKjI+QkpSWnJ2en6GjpaanqaqrrK2xuLm6vr/Aw8XGx8jJ" "y8zQ0dTX2Nna3N3e4OLj6Onq6+zu7/L09fb3+fr7/P3+brfoEQAAAnpJREFUWMPtV2lD00AQ" "HVraKlYqHlW8UBAVUPFWVFRUsIp4n2BVPFFQEW21gAeUo+RX285u0t1kj0m/6vuUvJn3kmxm" "d2cB/oOCRDpVV6N0defQ6KdfjuMs5t+OXGmLhFOvO/9y0ZFQuNW5iixvujbvKDDTEyPJU4NF" "R4OpboK+/YdjwNgOizzWvyKkL+THnmYnCiL1e7958N5Vxc9OpvkfrN91edzjSxcM+saPbtr3" "Yw1yKN3vDez9uE6/1n3Oz95EMLrh5jIP39Xo17znCcNJdcLOSZ7Qq44/YdGVi9riTWb5OOxT" "Rbv5MHd4TH0fw2GPiWZ40nZF/cywWJcwk/gbZ4W0QUaNBg2GWeQGmA2izxm3169vZfx43GIA" "STaSE/7p+RDpP1vBZgAtrDCPyPqNS8geBbsB/1vfZHIAyQ9AMdjGCqpF5CKzyJ0jGcBtZC9J" "NcZKaBPNYA8bb5E6gdRroBlEppFOC9QDZHqIBnAH6eMCk8cKb6IaHEB6AK7mXCCx7N3mHkVF" "gyJnz7gGzUjfg8Qrzcr3NSW9gYs+16ABb1+UV5BJpX62GcwGMFe5/Vy+2FxQ6IttYDOYwjld" "udo9F9CXDkIIA+go+Q3Ogt3A+4QyTvmyroPdwBtEREZKGhHmeTwnI/AbGeoeC/o3pC3YLST3" "Tavl8KWRtP/6S9krh+ktJH1wMvFymG+l9Q+K6YzlUOqi6VULCpbDaaJetaRVyiFD1KsXVYBD" "1HZOvazTodtYqNBubVToN1fa8w3bO+n7jQ2GHbYWxwJ7k2UEqc3Tgd5oKrA+XKurmDkhm22z" "Aand1xtQDxxqg1BHHtmgpkNXFbGaj33/Bv4C7Cs45u1y0kgAAAAASUVORK5CYII=") #---------------------------------------------------------------------- VanillaOption = PyEmbeddedImage( "iVBORw0KGgoAAAANSUhEUgAAAEAAAABACAMAAACdt4HsAAAAA3NCSVQICAjb4U/gAAAACXBI" "WXMAAAJbAAACWwFBeK9IAAAAGXRFWHRTb2Z0d2FyZQB3d3cuaW5rc2NhcGUub3Jnm+48GgAA" "AddQTFRF////AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA" "AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA" "AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA" "AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA" "AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA" "AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA" "AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA" "AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA" "AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAJ/rhuQAAAJx0" "Uk5TAAECAwUGBwgJCgsNDhAREhMXGBkbHh8gISIjJCYoKisuMDEzNTY3ODs+P0FCQ0RISU1O" "UVNUVVZXWV1eX2BhYmNkZWZoam9ydnh6fH6BgoOEhYaHiImLlZeYmZudoqOlpqipqq2ur7Cx" "tbe4ubq7vL/Cw8XHyMzP0NHS09fY2dvc4OHj5OXm5+jp6+zt7u/w8vP09vf4+fr7/P3+JuId" "/QAAAqhJREFUGBnlwftbk2UAx+Hvkm1SjlQ0wMwsRS2ygwyNskCRxHPTICrJNA3MbNraMipC" "MFFpE1cy4P38sT7oLq6xPe/eQz9235KrdZ1fZCaLxcnMl/tfVHDbLiywYuny6wpm/TcOq13Z" "oAA67lD2sEDZvXfk2wdLGE763P4tEbV1nb3uYDiH5VNyEePPN7Viz+8YzofyZUcJWBxcqwqx" "T0vA4h750PAr8M9uVdlRBP6Iy9txjCOq0YNxRp7is8BlLdvZoUqXgEKjvPQCU02SNl5w5l9Q" "hcRt4LC8ZIFeSYnfgC5V6gUy8hArAW2SrmOcU6U2YD6m+nYBU5LexrjYrFWmgN2q7zQwIikN" "fKUqI0BK9UTOYvRIDfMwt1ZVPsZIReQqOsayl6XXgG9V7SWWjUblZgij0CXpEHBKNd4vYAzJ" "xV4HSG+S9MoUMKBam9KAs1d240A2JumNPMZHsohlgXFZtQOFZkmNf2PcaJJNcwFol80wMCij" "H1g6s0Z2g8CwbHLAZhkpKHTIzWYgJ5v7kJcPebgvi6gDOfmQAycqi1mYkA8TMCuba1CKylO0" "BNdkkwL65KkPSMmmE7i7XR623wU6ZRO/BRSTqitZBG7FZbV1DnCu9rfKRWv/VQeY2yoX3TxT" "unfbYqbEM91ydXAaT9MHVUd8IE9d+YG46kskj52/OfPYYubm+WPJhP4fvvthbNRiLP29/PkZ" "Fz/Jn/dw8a78iYxj9Yv86sbqgPxaM4nFxHPyrQ+LHvkX/Ysa0w0K4Cg1PlEQz89S5UGjAjlJ" "lRMKpukRq8wlFNAQq3ymoJofU+HfDQpsmAqfK7jWBVYstCiEr1kxojBedShztimUUcquKJx2" "ynYqpDRP/aiw3uKpDoWWxcgqvH0Y+xReJAOZiP6DllyuRXU9AXB3E/FsJnLpAAAAAElFTkSu" "QmCC")
72.492386
78
0.861494
442
14,281
27.834842
0.932127
0.128749
0.15801
0.163862
0.085833
0.085833
0.07998
0
0
0
0
0.108767
0.063931
14,281
196
79
72.862245
0.811565
0.032001
0
0.104972
1
0
0.892653
0.892074
0
1
0
0
0
1
0
false
0
0.005525
0
0.005525
0
0
0
1
null
0
0
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
0
1
1
null
1
0
0
0
0
0
0
0
0
0
0
0
0
6
3a14903ea7bd0b540425e0813e50ee827bf95f35
4,431
py
Python
tests/core/validation/test_transaction_validation.py
dbfreem/py-evm
02a1f6f38884b1f7a89640c2095ea5b0f20687c3
[ "MIT" ]
1,641
2017-11-24T04:24:22.000Z
2022-03-31T14:59:30.000Z
tests/core/validation/test_transaction_validation.py
UniqueMR/py-evm
026ee20f8d9b70d7c1b6a4fb9484d5489d425e54
[ "MIT" ]
1,347
2017-11-23T10:37:36.000Z
2022-03-20T16:31:44.000Z
tests/core/validation/test_transaction_validation.py
UniqueMR/py-evm
026ee20f8d9b70d7c1b6a4fb9484d5489d425e54
[ "MIT" ]
567
2017-11-22T18:03:27.000Z
2022-03-28T17:49:08.000Z
import pytest from eth.vm.forks.london.transactions import UnsignedDynamicFeeTransaction from eth.vm.forks.berlin.transactions import UnsignedAccessListTransaction from eth_utils import ValidationError @pytest.mark.parametrize( "unsigned_access_list_transaction,is_valid", ( # While ethereum tests do not yet have Berlin or London transaction tests, # this adds a few tests to test some obvious cases, especially positive test cases. (UnsignedAccessListTransaction( chain_id=123456789, nonce=0, gas_price=1000000000, gas=40000, to=b'\xf0' * 20, value=0, data=b'', access_list=((b'\xf0' * 20, (1, 2)),), ), True), (UnsignedAccessListTransaction( chain_id=0, nonce=0, gas_price=0, gas=0, to=b'\xf0' * 20, value=0, data=b'', access_list=(), ), True), (UnsignedAccessListTransaction( chain_id=123456789, nonce=0, gas_price=1000000000, gas=40000, to=b'\xf0' * 20, value=0, data=b'', access_list=((b'\xf0' * 20, ()),), ), True), (UnsignedAccessListTransaction( chain_id=123456789, nonce=0, gas_price=1000000000, gas=40000, to=b'\xf0' * 20, value=0, data=b'', access_list=((b'\xf0' * 19, (1,)),), # access_list address fails validation ), False), (UnsignedAccessListTransaction( chain_id='1', # chain_id fails validation nonce=0, gas_price=0, gas=0, to=b'\xf0' * 20, value=0, data=b'', access_list=(), ), False), ) ) def test_validate_unsigned_access_list_transaction(unsigned_access_list_transaction, is_valid): if is_valid: unsigned_access_list_transaction.validate() else: with pytest.raises(ValidationError): unsigned_access_list_transaction.validate() @pytest.mark.parametrize( "unsigned_dynamic_fee_transaction,is_valid", ( # While ethereum tests do not yet have Berlin or London transaction tests, # this adds a few tests to test some obvious cases, especially positive test cases. (UnsignedDynamicFeeTransaction( chain_id=123456789, nonce=0, max_fee_per_gas=1000000000, max_priority_fee_per_gas=1000000000, gas=40000, to=b'\xf0' * 20, value=0, data=b'', access_list=((b'\xf0' * 20, (1, 2)),), ), True), (UnsignedDynamicFeeTransaction( chain_id=0, nonce=0, max_fee_per_gas=0, max_priority_fee_per_gas=0, gas=0, to=b'\xf0' * 20, value=0, data=b'', access_list=(), ), True), (UnsignedDynamicFeeTransaction( chain_id=123456789, nonce=0, max_fee_per_gas=1000000000, max_priority_fee_per_gas=1000000000, gas=40000, to=b'\xf0' * 20, value=0, data=b'', access_list=((b'\xf0' * 20, ()),), ), True), (UnsignedDynamicFeeTransaction( chain_id=123456789, nonce=0, max_fee_per_gas=1000000000, max_priority_fee_per_gas=1000000000, gas=40000, to=b'\xf0' * 20, value=0, data=b'', access_list=((b'\xf0' * 19, (1,)),), # access_list address fails validation ), False), (UnsignedDynamicFeeTransaction( chain_id='1', # chain_id fails validation nonce=0, max_fee_per_gas=1000000000, max_priority_fee_per_gas=1000000000, gas=0, to=b'\xf0' * 20, value=0, data=b'', access_list=(), ), False), ) ) def test_validate_unsigned_dynamic_fee_transaction(unsigned_dynamic_fee_transaction, is_valid): if is_valid: unsigned_dynamic_fee_transaction.validate() else: with pytest.raises(ValidationError): unsigned_dynamic_fee_transaction.validate()
31.204225
95
0.538479
457
4,431
4.991247
0.159737
0.074529
0.036826
0.035072
0.833406
0.783428
0.743972
0.713284
0.658922
0.632617
0
0.098592
0.359061
4,431
141
96
31.425532
0.704577
0.098172
0
0.877863
0
0
0.037121
0.020567
0
0
0
0
0
1
0.015267
false
0
0.030534
0
0.045802
0
0
0
0
null
0
0
0
1
1
1
1
0
1
0
0
0
0
0
0
0
0
0
0
1
0
0
0
0
null
0
0
0
0
0
0
0
0
0
0
0
0
0
6
3a37fecb08f7c959192857aa8caa64a101fca251
88
py
Python
src/apps/trainings/managers/network_pandas_queryset.py
sanderland/katago-server
6414fab080d007c05068a06ff4f25907b92848bd
[ "MIT" ]
27
2020-05-03T11:01:27.000Z
2022-03-17T05:33:10.000Z
src/apps/trainings/managers/network_pandas_queryset.py
sanderland/katago-server
6414fab080d007c05068a06ff4f25907b92848bd
[ "MIT" ]
54
2020-05-09T01:18:41.000Z
2022-01-22T10:31:15.000Z
src/apps/trainings/managers/network_pandas_queryset.py
sanderland/katago-server
6414fab080d007c05068a06ff4f25907b92848bd
[ "MIT" ]
9
2020-09-29T11:31:32.000Z
2022-03-09T01:37:50.000Z
from django.db.models import QuerySet class NetworkPandasQuerySet(QuerySet): pass
14.666667
38
0.795455
10
88
7
0.9
0
0
0
0
0
0
0
0
0
0
0
0.147727
88
5
39
17.6
0.933333
0
0
0
0
0
0
0
0
0
0
0
0
1
0
true
0.333333
0.333333
0
0.666667
0
1
0
0
null
0
0
0
0
0
0
0
0
0
0
0
0
0
1
0
0
0
0
0
0
0
0
0
0
null
0
0
0
0
0
0
1
1
1
0
1
0
0
6
28b93ab00455aaf88ae61353248e105753ebd46c
39
py
Python
pyhumio/__init__.py
dsb-automation/pyhumio
25ba7955659c4d12219f0d107858609c572fcfc9
[ "MIT" ]
null
null
null
pyhumio/__init__.py
dsb-automation/pyhumio
25ba7955659c4d12219f0d107858609c572fcfc9
[ "MIT" ]
4
2020-01-03T13:57:22.000Z
2020-01-09T06:56:12.000Z
pyhumio/__init__.py
dsb-automation/pyhumio
25ba7955659c4d12219f0d107858609c572fcfc9
[ "MIT" ]
null
null
null
from .humio_handler import HumioHandler
39
39
0.897436
5
39
6.8
1
0
0
0
0
0
0
0
0
0
0
0
0.076923
39
1
39
39
0.944444
0
0
0
0
0
0
0
0
0
0
0
0
1
0
true
0
1
0
1
0
1
1
0
null
0
0
0
0
0
0
0
0
0
0
0
0
0
1
0
0
0
0
0
0
0
0
0
0
null
0
0
0
0
0
0
1
0
1
0
1
0
0
6
28d071e92ce6f962f5bd2401eae1b192a2314d6c
53
py
Python
sdk/exception/validation_failed_exception.py
CLG0125/elemesdk
344466398bad7cf026e082e47c77d3ca98621ef3
[ "MIT" ]
1
2021-04-03T05:11:29.000Z
2021-04-03T05:11:29.000Z
sdk/exception/validation_failed_exception.py
CLG0125/elemesdk
344466398bad7cf026e082e47c77d3ca98621ef3
[ "MIT" ]
null
null
null
sdk/exception/validation_failed_exception.py
CLG0125/elemesdk
344466398bad7cf026e082e47c77d3ca98621ef3
[ "MIT" ]
null
null
null
class ValidationFailedException(Exception):pass
17.666667
47
0.811321
4
53
10.75
1
0
0
0
0
0
0
0
0
0
0
0
0.132075
53
3
48
17.666667
0.934783
0
0
0
0
0
0
0
0
0
0
0
0
1
0
true
1
0
0
1
0
1
0
1
null
0
0
0
0
0
0
0
0
0
0
0
0
0
1
0
0
0
0
0
0
0
0
0
0
null
0
0
0
0
0
0
1
1
0
0
1
0
0
6
e921e1cf8ba174583d008a8bc6e545b14fa1daff
21
py
Python
calabro/widgets/__init__.py
CarlosGabaldon/calabro
11aec7fc30517ccc8a0b9f7468a803508ec56cf7
[ "MIT" ]
2
2015-12-03T16:38:26.000Z
2016-05-08T08:34:36.000Z
calabro/widgets/__init__.py
CarlosGabaldon/calabro
11aec7fc30517ccc8a0b9f7468a803508ec56cf7
[ "MIT" ]
null
null
null
calabro/widgets/__init__.py
CarlosGabaldon/calabro
11aec7fc30517ccc8a0b9f7468a803508ec56cf7
[ "MIT" ]
2
2020-10-27T05:26:11.000Z
2021-03-24T18:10:20.000Z
from widgets import *
21
21
0.809524
3
21
5.666667
1
0
0
0
0
0
0
0
0
0
0
0
0.142857
21
1
21
21
0.944444
0
0
0
0
0
0
0
0
0
0
0
0
1
0
true
0
1
0
1
0
1
1
0
null
0
0
0
0
0
0
0
0
0
0
0
0
0
1
0
0
0
0
0
0
0
0
0
0
null
0
0
0
0
0
0
1
0
1
0
1
0
0
6
3a7570710b5a36e6b5ff9f11a6ff0fe0b03b1d9b
146
py
Python
racing_rl/training/utils.py
luigiberducci/racing-rl
37b265d16eda4313a0b30550222ed731131829ab
[ "MIT" ]
5
2021-12-08T17:25:38.000Z
2022-02-08T09:36:14.000Z
racing_rl/training/utils.py
luigiberducci/racing-rl
37b265d16eda4313a0b30550222ed731131829ab
[ "MIT" ]
null
null
null
racing_rl/training/utils.py
luigiberducci/racing-rl
37b265d16eda4313a0b30550222ed731131829ab
[ "MIT" ]
null
null
null
import numpy as np import random import torch def seeding(seed: int): np.random.seed(seed) random.seed(seed) torch.manual_seed(seed)
16.222222
27
0.719178
23
146
4.521739
0.478261
0.230769
0.269231
0
0
0
0
0
0
0
0
0
0.184932
146
9
27
16.222222
0.87395
0
0
0
0
0
0
0
0
0
0
0
0
1
0.142857
false
0
0.428571
0
0.571429
0
1
0
0
null
1
1
0
0
0
0
0
0
0
0
0
0
0
1
0
0
0
0
0
0
0
0
0
0
null
0
0
0
0
0
0
0
0
1
0
1
0
0
6
3aa32962d64e1eacf24c70a96b03b8b8ae9ab2a7
83
py
Python
applitools/target.py
applitools/eyes.selenium.python
3a09a3372a3a8915b3c97ee54fc223580c45c0a3
[ "Apache-2.0" ]
11
2016-04-20T21:21:37.000Z
2020-04-27T19:46:56.000Z
applitools/target.py
applitools/eyes.selenium.python
3a09a3372a3a8915b3c97ee54fc223580c45c0a3
[ "Apache-2.0" ]
15
2017-01-11T04:58:31.000Z
2019-09-13T18:00:35.000Z
applitools/target.py
applitools/eyes.selenium.python
3a09a3372a3a8915b3c97ee54fc223580c45c0a3
[ "Apache-2.0" ]
15
2016-03-23T22:06:39.000Z
2020-06-14T09:11:58.000Z
from applitools.selenium.target import * # noqa from applitools.core import logger
27.666667
47
0.819277
11
83
6.181818
0.727273
0.411765
0
0
0
0
0
0
0
0
0
0
0.120482
83
2
48
41.5
0.931507
0.048193
0
0
0
0
0
0
0
0
0
0
0
1
0
true
0
1
0
1
0
1
0
0
null
1
0
0
0
0
0
0
0
0
0
0
0
0
1
0
0
0
0
0
0
0
0
0
0
null
0
0
0
0
0
0
1
0
1
0
1
0
0
6
3af1d8e881bccb47a8d735f192d06cfc668b7e78
103
py
Python
toolbox/metrics/metrics_base.py
ML-Dashboard/ML-ToolBox
c724a5f2705262737c4d0456fb6087851d3aa656
[ "MIT" ]
null
null
null
toolbox/metrics/metrics_base.py
ML-Dashboard/ML-ToolBox
c724a5f2705262737c4d0456fb6087851d3aa656
[ "MIT" ]
null
null
null
toolbox/metrics/metrics_base.py
ML-Dashboard/ML-ToolBox
c724a5f2705262737c4d0456fb6087851d3aa656
[ "MIT" ]
null
null
null
from abc import ABC from toolbox.trackable import Trackable class Metrics(Trackable, ABC): pass
12.875
39
0.76699
14
103
5.642857
0.571429
0
0
0
0
0
0
0
0
0
0
0
0.184466
103
7
40
14.714286
0.940476
0
0
0
0
0
0
0
0
0
0
0
0
1
0
true
0.25
0.5
0
0.75
0
1
0
0
null
0
0
0
0
0
0
0
0
0
0
0
0
0
1
0
0
0
0
0
0
0
0
0
0
null
0
0
0
0
0
0
1
1
1
0
1
0
0
6
c91659e395352cdd02a8e67c10713c2c817ca195
120
py
Python
barcoderegression/__init__.py
jacksonloper/barcoderegression
6c819c7dfe5996e73bc61590af5a744f913ddd02
[ "MIT" ]
1
2020-03-19T17:34:43.000Z
2020-03-19T17:34:43.000Z
barcoderegression/__init__.py
jacksonloper/barcoderegression
6c819c7dfe5996e73bc61590af5a744f913ddd02
[ "MIT" ]
null
null
null
barcoderegression/__init__.py
jacksonloper/barcoderegression
6c819c7dfe5996e73bc61590af5a744f913ddd02
[ "MIT" ]
null
null
null
from . import parameters from . import helpers from . import updates from . import simulations from . import training
15
25
0.775
15
120
6.2
0.466667
0.537634
0
0
0
0
0
0
0
0
0
0
0.183333
120
7
26
17.142857
0.94898
0
0
0
0
0
0
0
0
0
0
0
0
1
0
true
0
1
0
1
0
1
0
0
null
1
0
0
0
0
0
0
0
0
0
0
0
0
1
0
0
0
0
0
0
0
0
0
0
null
0
0
0
0
0
0
1
0
1
0
1
0
0
6
a3936acfb6f62187fd8f9bdfd876ce1491d2035a
3,532
py
Python
src/preprocessing/minmax.py
kjhall01/xcast
17edfd8c79c5163b004800170bbcf21302e8c792
[ "MIT" ]
11
2021-11-01T21:38:17.000Z
2022-03-30T11:46:32.000Z
src/preprocessing/minmax.py
kjhall01/xcast
17edfd8c79c5163b004800170bbcf21302e8c792
[ "MIT" ]
7
2021-10-30T16:55:47.000Z
2021-12-04T18:51:50.000Z
src/preprocessing/minmax.py
kjhall01/xcast
17edfd8c79c5163b004800170bbcf21302e8c792
[ "MIT" ]
1
2021-11-18T10:35:29.000Z
2021-11-18T10:35:29.000Z
from ..core.utilities import * class MinMax: def __init__(self, min=-1, max=1): self.range_min, self.range_max = min, max self.range = max - min self.min, self.max, self.x_range = None, None, None def fit(self, X, x_lat_dim=None, x_lon_dim=None, x_sample_dim=None, x_feature_dim=None): x_lat_dim, x_lon_dim, x_sample_dim, x_feature_dim = guess_coords(X, x_lat_dim, x_lon_dim, x_sample_dim, x_feature_dim) check_all(X, x_lat_dim, x_lon_dim, x_sample_dim, x_feature_dim) self.sample_dim, self.lat_dim, self.lon_dim, self.feature_dim = x_sample_dim, x_lat_dim, x_lon_dim, x_feature_dim X1 = X.isel() self.min = X1.min(x_sample_dim) self.max = X1.max(x_sample_dim) self.x_range = self.max - self.min self.x_range = self.x_range.where(self.x_range != 0, other=1) def transform(self, X, x_lat_dim=None, x_lon_dim=None, x_sample_dim=None, x_feature_dim=None): x_lat_dim, x_lon_dim, x_sample_dim, x_feature_dim = guess_coords(X, x_lat_dim, x_lon_dim, x_sample_dim, x_feature_dim) check_all(X, x_lat_dim, x_lon_dim, x_sample_dim, x_feature_dim) #X1 = X.rename({x_lat_dim: self.lat_dim, x_lon_dim: self.lon_dim, x_sample_dim: self.sample_dim}) self.min = self.min.rename({ self.lat_dim:x_lat_dim, self.lon_dim:x_lon_dim, self.feature_dim:x_feature_dim}) self.max = self.max.rename({ self.lat_dim:x_lat_dim, self.lon_dim:x_lon_dim, self.feature_dim:x_feature_dim}) self.x_range = self.max.rename({ self.lat_dim:x_lat_dim, self.lon_dim:x_lon_dim, self.feature_dim:x_feature_dim}) self.sample_dim, self.lat_dim, self.lon_dim, self.feature_dim = x_sample_dim, x_lat_dim, x_lon_dim, x_feature_dim assert self.min is not None and self.max is not None, '{} Must Fit MinMaxScaler before transform'.format(dt.datetime.now()) r = ((X - self.min) / self.x_range) * self.range + self.range_min r.attrs['generated_by'] = r.attrs['generated_by'] + '\n XCAST MinMax Transform' if 'generated_by' in r.attrs.keys() else '\n XCAST MinMax Transform' return r def inverse_transform(self, X, x_lat_dim=None, x_lon_dim=None, x_sample_dim=None, x_feature_dim=None): x_lat_dim, x_lon_dim, x_sample_dim, x_feature_dim = guess_coords(X, x_lat_dim, x_lon_dim, x_sample_dim, x_feature_dim) check_all(X, x_lat_dim, x_lon_dim, x_sample_dim, x_feature_dim) assert self.min is not None and self.max is not None, '{} Must Fit MinMaxScaler before inverse transform'.format(dt.datetime.now()) self.min = self.min.rename({ self.lat_dim:x_lat_dim, self.lon_dim:x_lon_dim, self.feature_dim:x_feature_dim}) self.max = self.max.rename({ self.lat_dim:x_lat_dim, self.lon_dim:x_lon_dim, self.feature_dim:x_feature_dim}) self.x_range = self.max.rename({ self.lat_dim:x_lat_dim, self.lon_dim:x_lon_dim, self.feature_dim:x_feature_dim}) self.sample_dim, self.lat_dim, self.lon_dim, self.feature_dim = x_sample_dim, x_lat_dim, x_lon_dim, x_feature_dim ret = [] for i in range(X.shape[list(X.dims).index(self.feature_dim)]): sd = {x_feature_dim: i} self.max.coords[self.feature_dim] = [X.coords[self.feature_dim].values[i]] self.min.coords[self.feature_dim] = [X.coords[self.feature_dim].values[i]] self.x_range.coords[self.feature_dim] = [X.coords[self.feature_dim].values[i]] ret.append(((X.isel(**sd) - self.range_min) / self.range) * self.x_range + self.min) r = xr.concat(ret, self.feature_dim) r.attrs['generated_by'] = r.attrs['generated_by'] + '\n XCAST MinMax Inverse Transform' if 'generated_by' in r.attrs.keys() else '\n XCAST MinMax Inverse Transform' return r
66.641509
169
0.75
682
3,532
3.532258
0.09824
0.102947
0.063927
0.078871
0.830635
0.761312
0.733084
0.733084
0.733084
0.733084
0
0.002567
0.11778
3,532
52
170
67.923077
0.770539
0.02718
0
0.386364
0
0
0.082702
0
0
0
0
0
0.045455
1
0.090909
false
0
0.022727
0
0.181818
0
0
0
0
null
0
0
0
1
1
1
1
1
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
null
0
0
0
0
0
0
0
0
0
0
0
0
0
6
6e6e39e9a16da5cc73e65182a05f39d6f1b647b4
3,078
py
Python
tests/test_PerCarRaceStatusData.py
jdamiani27/PyRaceView
9c62861e2b659407948c77a780f47c95482cdfbf
[ "MIT" ]
4
2019-09-10T18:14:53.000Z
2022-01-08T02:01:01.000Z
tests/test_PerCarRaceStatusData.py
jdamiani27/pyraceview
9c62861e2b659407948c77a780f47c95482cdfbf
[ "MIT" ]
null
null
null
tests/test_PerCarRaceStatusData.py
jdamiani27/pyraceview
9c62861e2b659407948c77a780f47c95482cdfbf
[ "MIT" ]
null
null
null
import pytest from pyraceview.messages import MsgRaceStatus raw = ( b"\xab\xcd*T\x02Cs\x04\x90\x90[3\x10\xcc\x89\xb8V\x00\x00" b"\x00\x05q\xe0\x03 \x00y\x86\xb9\x00\x00$\x00\x10\x10\x06" b"\x0e\xe8\x00\x06\x0f\x91k\xe5\x00\x00&\x00\x15\xce\x05\xb9x" b"\x00\x07\t\x8d^\x8d\x00\x00\x16\x00\x1c\xc2\x05\xcb\xa1\x90" b"\x05\xdd\x91L\xb3\x00\x00\x04\x00!\xece\xb1\xf9\x90\x07\x9f" b"\x91@\xe5\x00\x00(\x00%R\x05P\xc8\x00\x05G\x8d2a\x00\x00\x0c" b"\x00'\xe8\x05d\x01\x90\x07;\x911i\x00\x00\x08\x00+z\x05'!" b"\x90\x07m\x91&S\x00\x00\x12\x005\x08\x05\x1ba\x90\x07m\x91" b"\x00\xb5\x00\x00T\x006\xaa\x05\x00\xa8\x00\x07\xd1\x90\xfaC" b"\x00\x00`\x00<\x1c\x05\xa9q\x90\t/\x8c\xe8g\x00\x00\x1c\x00=>" b'\x053\xf1\x90\x08\x99\x90\xe2\xd3\x00\x00"\x00?(\x05jh\x00\ta' b"\x8c\xdb\xcf\x00\x00\x18\x00@\xa6\xe0\x00\x01\x90\x08g\x90\xd6" b"\xe7\x00\x00\x02\x00A\xec\xe0\x00\x00\x00\x08\x03\x8c\xd3\xc9" b"\x00\x00R\x00E\xde\x00\x00\x01\x90\ta\x90\xc3\xa3\x00\x00\xbe" b"\x00If\x00\x00\x00\x00\x08\x99\x8c\xb9\x9f\x00\x00\x14\x00p$" b"\x00\x00\x01\x90\x08\x99\x8c\x16\xdb\x00\x00D\x00\xbeD\x05\x95!" b"\x90\x07\x9e~\x04Q\x00\x00,\x00\xc1\xde\x05\xaf\xd9\x90\x084}" b"\xf7\xd9\x00\x00L\x00\xdc\x88\x04\x8e`\x00\x06@i\x97\x9b\x00" b"\x000\x10\x00\x02\x05\x8d\xa8\x00\x08\x98~\x15\x0b\x00\x00\xb0" b"\x10\x00\x02\x05\xda\x91\x90\x08\x98}\xf1\xc7\x00\x00\x06\x10" b"\x00\x02\x05\xc3\x10\x00\x05\xaa}\xeb\x9b\x00\x00\x1a\x10\x00" b"\x02\x85\xb4!\x90\t\xc4}\xe0\xa1\x00\x00H\x10\x00\x02\x05\xb9y" b"\x90\n(}\xd9\xa3\x00\x00@\x10\x00\x02\x05\xb0\xe9\x90\x08\x02m" b"\xca\xe7\x00\x00*\x10\x00\x02\x06\x1b\xb9\x90\t\x92}\xc0\xc7\x00" b"\x00\x10\x10\x00\x02\x04\x8b1\x90\x07:}\xaaE\x00\x00\x01\x10\x00" b"\x02\x04\xa5\xe0\x00\x06@m\x9es\x00\x00^\x10\x00\x04\x06\x02\x18" b"\x00\t`n\x0e{\x00\x00J\x10\x00\x04\x05\xb8a\x90\t.q\xc6\x9f\x00" b"\x00f\x10\x00\x06\x04\xfbY\x90\x07:}\xb2\xc3\x00\x00h\x10\x00\x08" b"\x04\xaeq\x93&\xa4q\xa9\xb9\x00\x00j\x10\x00\n\x05\xb9x\x00\x07" b"\xd0u\xfcm\x00\x006\x10\x00\x0c\x05\x7f\xc8\x00\t\xc4u\xd0\xb7" b"\x00\x00\x9a\x10\x00\x0c\x04\x98\x00\x00\x06@u\x8b\xdd\x00\x00" b"\x1e\x10\x00J\x04\xa5\xe0\x00\x04~\xc5\x92\x1d\x00\x00" ) @pytest.fixture def status(): return MsgRaceStatus(raw).car_data[-1] def test_car_id(status): assert status.car_id == 30 def test_status(status): assert status.status == 0 def test_tol_type(status): assert status.tol_type == 1 def test_time_off_leader(status): assert status.time_off_leader == 37.0 def test_event(status): assert status.event == 0 def test_speed(status): assert status.speed == 38.076 def test_throttle(status): assert status.throttle == 0 def test_brake(status): assert status.brake == 0 def test_rpm(status): assert status.rpm == 2300 def test_fuel(status): assert status.fuel == 49 def test_steer_angle(status): assert status.steer_angle == 0 def test_lap_fraction(status): assert status.lap_fraction == 0.5147
33.456522
72
0.677063
630
3,078
3.268254
0.320635
0.119475
0.104905
0.023312
0.01457
0
0
0
0
0
0
0.28
0.106563
3,078
91
73
33.824176
0.468727
0
0
0
0
0.507937
0.630604
0.624756
0
0
0
0
0.190476
1
0.206349
false
0
0.031746
0.015873
0.253968
0
0
0
0
null
0
0
0
0
0
0
0
0
0
0
1
0
0
0
0
0
1
0
0
0
0
1
1
1
null
0
0
0
0
0
1
0
0
0
0
0
0
0
6
42d7eadf9caf3c559e38e0388f54bfdb1cc28385
359
py
Python
9_Lesson9/exceptions/example4-else.py
turovod/Otus
57433c6944bca155177b07ff361139ff30f7f692
[ "MIT" ]
null
null
null
9_Lesson9/exceptions/example4-else.py
turovod/Otus
57433c6944bca155177b07ff361139ff30f7f692
[ "MIT" ]
null
null
null
9_Lesson9/exceptions/example4-else.py
turovod/Otus
57433c6944bca155177b07ff361139ff30f7f692
[ "MIT" ]
null
null
null
my_dict = {"a": 1, "b": 2, "c": 3} # Without finally try: value = my_dict["a"] except KeyError: print("A KeyError occurred!") else: print("No error occurred!") # With finally try: value = my_dict["a"] except KeyError: print("A KeyError occurred!") else: print("No error occurred!") finally: print("The finally statement ran!")
16.318182
39
0.623955
50
359
4.42
0.46
0.081448
0.095023
0.153846
0.742081
0.742081
0.742081
0.742081
0.742081
0.742081
0
0.010638
0.214485
359
21
40
17.095238
0.77305
0.077994
0
0.8
0
0
0.32622
0
0
0
0
0
0
1
0
false
0
0
0
0
0.333333
0
0
0
null
0
0
0
0
1
1
1
1
1
0
0
0
0
0
0
0
0
0
0
1
0
0
0
0
null
0
0
0
0
0
0
0
0
0
0
0
0
0
6
6e20205fbd1c98e8f2cf3708b6365082d71f74ab
7,100
py
Python
chess/ChessConstants.py
vinoo999/alpha-zero-general
01bd6ac40d7b1fed97a84e37f7a549be8d50f668
[ "MIT" ]
2
2018-04-01T05:08:44.000Z
2018-04-20T01:58:46.000Z
chess/ChessConstants.py
vinoo999/alpha-zero-general
01bd6ac40d7b1fed97a84e37f7a549be8d50f668
[ "MIT" ]
null
null
null
chess/ChessConstants.py
vinoo999/alpha-zero-general
01bd6ac40d7b1fed97a84e37f7a549be8d50f668
[ "MIT" ]
null
null
null
####################################################### # BOARD CONSTANTS ####################################################### BLACK = 'b' WHITE = 'w' EMPTY = -1 PAWN = 'p' KNIGHT = 'n' BISHOP = 'b' ROOK = 'r' QUEEN = 'q' KING = 'k' SYMBOLS = 'pnbrqkPNBRQK' DEFAULT_POSITION = 'rnbqkbnr/pppppppp/8/8/8/8/PPPPPPPP/RNBQKBNR w KQkq - 0 1' POSSIBLE_RESULTS = ['1-0', '0-1', '1/2-1/2', '*'] # Directions pawns can move: forward 1, forward 2, right (capture), left (capture) PAWN_OFFSETS = { 'b': [16, 32, 17, 15], 'w': [-16, -32, -17, -15] } # Directions different pieces can move PIECE_OFFSETS = { 'n': [-18, -33, -31, -14, 18, 33, 31, 14], 'b': [-17, -15, 17, 15], 'r': [-16, 1, 16, -1], 'q': [-17, -16, -15, 1, 17, 16, 15, -1], 'k': [-17, -16, -15, 1, 17, 16, 15, -1] } MCTS_MAPPING = { 'p' : 1, 'n' : 2, 'b' : 3, 'r' : 4, 'q' : 5, 'k' : 6, } MCTS_DECODER = { 1 : 'p', 2 : 'n', 3 : 'b', 4 : 'r', 5 : 'q', 6 : 'k' } MCTS_COLOR_MAP = { 'w' : 1, 'b' : -1 } ATTACKS = [ 20,0, 0, 0, 0, 0, 0, 24, 0, 0, 0, 0, 0, 0,20, 0, 0, 20,0, 0, 0, 0, 0, 24, 0, 0, 0, 0, 0,20, 0, 0, 0, 0, 20, 0, 0, 0, 0, 24, 0, 0, 0, 0,20, 0, 0, 0, 0, 0, 0,20, 0, 0, 0, 24, 0, 0, 0,20, 0, 0, 0, 0, 0, 0, 0, 0,20, 0, 0, 24, 0, 0,20, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,20, 2, 24, 2,20, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2,53, 56, 53, 2, 0, 0, 0, 0, 0, 0, 24,24,24,24,24,24,56, 0, 56,24,24,24,24,24,24, 0, 0, 0, 0, 0, 0, 2,53, 56, 53, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,20, 2, 24, 2,20, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,20, 0, 0, 24, 0, 0,20, 0, 0, 0, 0, 0, 0, 0, 0,20, 0, 0, 0, 24, 0, 0, 0,20, 0, 0, 0, 0, 0, 0, 20, 0, 0, 0, 0, 24, 0, 0, 0, 0,20, 0, 0, 0, 0, 20,0, 0, 0, 0, 0, 24, 0, 0, 0, 0, 0,20, 0, 0, 20,0, 0, 0, 0, 0, 0, 24, 0, 0, 0, 0, 0, 0,20 ] RAYS = [ 17, 0, 0, 0, 0, 0, 0, 16, 0, 0, 0, 0, 0, 0, 15, 0, 0, 17, 0, 0, 0, 0, 0, 16, 0, 0, 0, 0, 0, 15, 0, 0, 0, 0, 17, 0, 0, 0, 0, 16, 0, 0, 0, 0, 15, 0, 0, 0, 0, 0, 0, 17, 0, 0, 0, 16, 0, 0, 0, 15, 0, 0, 0, 0, 0, 0, 0, 0, 17, 0, 0, 16, 0, 0, 15, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 17, 0, 16, 0, 15, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 17, 16, 15, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 0, -1, -1, -1,-1, -1, -1, -1, 0, 0, 0, 0, 0, 0, 0,-15,-16,-17, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,-15, 0,-16, 0,-17, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,-15, 0, 0,-16, 0, 0,-17, 0, 0, 0, 0, 0, 0, 0, 0,-15, 0, 0, 0,-16, 0, 0, 0,-17, 0, 0, 0, 0, 0, 0,-15, 0, 0, 0, 0,-16, 0, 0, 0, 0,-17, 0, 0, 0, 0,-15, 0, 0, 0, 0, 0,-16, 0, 0, 0, 0, 0,-17, 0, 0, -15, 0, 0, 0, 0, 0, 0,-16, 0, 0, 0, 0, 0, 0,-17 ] SHIFTS = { 'p': 0, 'n': 1, 'b': 2, 'r': 3, 'q': 4, 'k': 5 } FLAGS = { 'NORMAL': 'n', 'CAPTURE': 'c', 'BIG_PAWN': 'b', 'EP_CAPTURE': 'e', 'PROMOTION': 'p', 'KSIDE_CASTLE': 'k', 'QSIDE_CASTLE': 'q' } BITS = { 'NORMAL': 1, 'CAPTURE': 2, 'BIG_PAWN': 4, 'EP_CAPTURE': 8, 'PROMOTION': 16, 'KSIDE_CASTLE': 32, 'QSIDE_CASTLE': 64 } RANK_1 = 7 RANK_2 = 6 RANK_3 = 5 RANK_4 = 4 RANK_5 = 3 RANK_6 = 2 RANK_7 = 1 RANK_8 = 0 SQUARES = { 'a8': 0, 'b8': 1, 'c8': 2, 'd8': 3, 'e8': 4, 'f8': 5, 'g8': 6, 'h8': 7, 'a7': 16, 'b7': 17, 'c7': 18, 'd7': 19, 'e7': 20, 'f7': 21, 'g7': 22, 'h7': 23, 'a6': 32, 'b6': 33, 'c6': 34, 'd6': 35, 'e6': 36, 'f6': 37, 'g6': 38, 'h6': 39, 'a5': 48, 'b5': 49, 'c5': 50, 'd5': 51, 'e5': 52, 'f5': 53, 'g5': 54, 'h5': 55, 'a4': 64, 'b4': 65, 'c4': 66, 'd4': 67, 'e4': 68, 'f4': 69, 'g4': 70, 'h4': 71, 'a3': 80, 'b3': 81, 'c3': 82, 'd3': 83, 'e3': 84, 'f3': 85, 'g3': 86, 'h3': 87, 'a2': 96, 'b2': 97, 'c2': 98, 'd2': 99, 'e2': 100, 'f2': 101, 'g2': 102, 'h2': 103, 'a1': 112, 'b1': 113, 'c1': 114, 'd1': 115, 'e1': 116, 'f1': 117, 'g1': 118, 'h1': 119 } ROOKS = { 'w': [{'square': SQUARES['a1'], 'flag': BITS['QSIDE_CASTLE']}, {'square': SQUARES['h1'], 'flag': BITS['KSIDE_CASTLE']}], 'b': [{'square': SQUARES['a8'], 'flag': BITS['QSIDE_CASTLE']}, {'square': SQUARES['h8'], 'flag': BITS['KSIDE_CASTLE']}] } KING_EVAL = [ [ -3.0, -4.0, -4.0, -5.0, -5.0, -4.0, -4.0, -3.0], [ -3.0, -4.0, -4.0, -5.0, -5.0, -4.0, -4.0, -3.0], [ -3.0, -4.0, -4.0, -5.0, -5.0, -4.0, -4.0, -3.0], [ -3.0, -4.0, -4.0, -5.0, -5.0, -4.0, -4.0, -3.0], [ -2.0, -3.0, -3.0, -4.0, -4.0, -3.0, -3.0, -2.0], [ -1.0, -2.0, -2.0, -2.0, -2.0, -2.0, -2.0, -1.0], [ 2.0, 2.0, 0.0, 0.0, 0.0, 0.0, 2.0, 2.0 ], [ 2.0, 3.0, 1.0, 0.0, 0.0, 1.0, 3.0, 2.0 ] ] QUEEN_EVAL = [ [ -2.0, -1.0, -1.0, -0.5, -0.5, -1.0, -1.0, -2.0], [ -1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, -1.0], [ -1.0, 0.0, 0.5, 0.5, 0.5, 0.5, 0.0, -1.0], [ -0.5, 0.0, 0.5, 0.5, 0.5, 0.5, 0.0, -0.5], [ 0.0, 0.0, 0.5, 0.5, 0.5, 0.5, 0.0, -0.5], [ -1.0, 0.5, 0.5, 0.5, 0.5, 0.5, 0.0, -1.0], [ -1.0, 0.0, 0.5, 0.0, 0.0, 0.0, 0.0, -1.0], [ -2.0, -1.0, -1.0, -0.5, -0.5, -1.0, -1.0, -2.0] ] ROOK_EVAL = [ [ 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0], [ 0.5, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 0.5], [ -0.5, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, -0.5], [ -0.5, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, -0.5], [ -0.5, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, -0.5], [ -0.5, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, -0.5], [ -0.5, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, -0.5], [ 0.0, 0.0, 0.0, 0.5, 0.5, 0.0, 0.0, 0.0] ] BISHOP_EVAL = [ [ -2.0, -1.0, -1.0, -1.0, -1.0, -1.0, -1.0, -2.0], [ -1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, -1.0], [ -1.0, 0.0, 0.5, 1.0, 1.0, 0.5, 0.0, -1.0], [ -1.0, 0.5, 0.5, 1.0, 1.0, 0.5, 0.5, -1.0], [ -1.0, 0.0, 1.0, 1.0, 1.0, 1.0, 0.0, -1.0], [ -1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, -1.0], [ -1.0, 0.5, 0.0, 0.0, 0.0, 0.0, 0.5, -1.0], [ -2.0, -1.0, -1.0, -1.0, -1.0, -1.0, -1.0, -2.0] ] KNIGHT_EVAL = [ [-5.0, -4.0, -3.0, -3.0, -3.0, -3.0, -4.0, -5.0], [-4.0, -2.0, 0.0, 0.0, 0.0, 0.0, -2.0, -4.0], [-3.0, 0.0, 1.0, 1.5, 1.5, 1.0, 0.0, -3.0], [-3.0, 0.5, 1.5, 2.0, 2.0, 1.5, 0.5, -3.0], [-3.0, 0.0, 1.5, 2.0, 2.0, 1.5, 0.0, -3.0], [-3.0, 0.5, 1.0, 1.5, 1.5, 1.0, 0.5, -3.0], [-4.0, -2.0, 0.0, 0.5, 0.5, 0.0, -2.0, -4.0], [-5.0, -4.0, -3.0, -3.0, -3.0, -3.0, -4.0, -5.0] ] PAWN_EVAL = [ [0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0], [5.0, 5.0, 5.0, 5.0, 5.0, 5.0, 5.0, 5.0], [1.0, 1.0, 2.0, 3.0, 3.0, 2.0, 1.0, 1.0], [0.5, 0.5, 1.0, 2.5, 2.5, 1.0, 0.5, 0.5], [0.0, 0.0, 0.0, 2.0, 2.0, 0.0, 0.0, 0.0], [0.5, -0.5, -1.0, 0.0, 0.0, -1.0, -0.5, 0.5], [0.5, 1.0, 1.0, -2.0, -2.0, 1.0, 1.0, 0.5], [0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0] ]
34.299517
91
0.350704
1,644
7,100
1.493917
0.120438
0.431596
0.49715
0.517915
0.584283
0.579397
0.540309
0.52728
0.495928
0.439739
0
0.348683
0.320986
7,100
206
92
34.466019
0.160755
0.018732
0
0.141243
0
0
0.06975
0.006275
0
0
0
0
0
1
0
false
0
0
0
0
0
0
0
1
null
1
1
1
0
0
0
0
0
0
0
1
0
0
0
0
0
1
0
0
0
0
0
0
0
null
0
0
0
0
0
0
0
0
0
0
0
0
0
6
6e3c5a9ddf06276d103c81ac8ad94fb0fb6514a5
118
py
Python
HW9/YuliiaKutsyk/task_9_3_adam_and_eve.py
kolyasalubov/Lv-677.PythonCore
c9f9107c734a61e398154a90b8a3e249276c2704
[ "MIT" ]
null
null
null
HW9/YuliiaKutsyk/task_9_3_adam_and_eve.py
kolyasalubov/Lv-677.PythonCore
c9f9107c734a61e398154a90b8a3e249276c2704
[ "MIT" ]
null
null
null
HW9/YuliiaKutsyk/task_9_3_adam_and_eve.py
kolyasalubov/Lv-677.PythonCore
c9f9107c734a61e398154a90b8a3e249276c2704
[ "MIT" ]
6
2022-02-22T22:30:49.000Z
2022-03-28T12:51:19.000Z
def God(): return[Man(), Woman()] class Human: pass class Man(Human): pass class Woman(Human): pass
10.727273
26
0.59322
16
118
4.375
0.5
0.385714
0.4
0
0
0
0
0
0
0
0
0
0.262712
118
11
27
10.727273
0.804598
0
0
0.375
0
0
0
0
0
0
0
0
0
1
0.125
true
0.375
0
0.125
0.5
0
1
0
0
null
1
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
null
0
0
0
0
0
0
1
1
0
1
0
0
0
6
281cb4af9b2a8025dc33a240eb0ab8b2185baf9e
79
py
Python
dev/frontend/controllers/__init__.py
frederikgram/describe
5c21edcf9b35811d34a9446eda34d5a92974c8e9
[ "MIT" ]
2
2021-03-05T20:49:08.000Z
2021-03-10T01:32:19.000Z
prod/frontend/controllers/__init__.py
frederikgram/describe
5c21edcf9b35811d34a9446eda34d5a92974c8e9
[ "MIT" ]
1
2020-03-24T19:54:42.000Z
2020-03-24T19:54:42.000Z
prod/frontend/controllers/__init__.py
frederikgram/describe
5c21edcf9b35811d34a9446eda34d5a92974c8e9
[ "MIT" ]
null
null
null
from .template_builders import * from .actions import * from .startup import *
19.75
32
0.772152
10
79
6
0.6
0.333333
0
0
0
0
0
0
0
0
0
0
0.151899
79
3
33
26.333333
0.895522
0
0
0
0
0
0
0
0
0
0
0
0
1
0
true
0
1
0
1
0
1
0
0
null
1
0
0
0
0
0
0
0
0
0
0
0
0
1
0
0
0
0
0
0
0
0
0
0
null
0
0
0
0
0
0
1
0
1
0
1
0
0
6
28399693cca3a1d8ecb762bf723d2265891d81b3
531
py
Python
tests/conftest.py
zillow/aiographite
9597d55a0610df6e27579f2aa19d96089e68e1dc
[ "MIT" ]
14
2016-08-20T08:36:50.000Z
2018-01-05T21:11:40.000Z
tests/conftest.py
zillow/aiographite
9597d55a0610df6e27579f2aa19d96089e68e1dc
[ "MIT" ]
28
2016-08-23T20:23:29.000Z
2017-09-11T19:22:43.000Z
tests/conftest.py
zillow/aiographite
9597d55a0610df6e27579f2aa19d96089e68e1dc
[ "MIT" ]
5
2016-11-14T22:30:16.000Z
2021-01-14T08:37:24.000Z
import pytest @pytest.fixture def metric_parts(): return ['sproc performance', '[email protected]', '::EH12'] @pytest.fixture def timestamp(): return 1471640923 @pytest.fixture def metric_value_tuple_list(): return [ ('zillow', 124), ('trulia', 223), ('hotpad', 53534), ('streeteasy', 13424)] @pytest.fixture def metric_value_timestamp_list(): return [ ('zillow', 124, 1471640958), ('trulia', 223, 1471640923), ('hotpad', 53534, 1471640943), ('streeteasy', 13424, 1471640989)]
20.423077
73
0.644068
56
531
5.982143
0.5
0.155224
0.191045
0.197015
0.161194
0
0
0
0
0
0
0.195349
0.190207
531
25
74
21.24
0.583721
0
0
0.352941
0
0
0.177024
0
0
0
0
0
0
1
0.235294
true
0
0.058824
0.235294
0.529412
0
0
0
0
null
0
1
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
null
0
0
0
0
0
1
1
0
0
1
1
0
0
6
28705f35215e5e57d817eb86b61bc419951baa0d
26
py
Python
routely/__init__.py
jhags/routely
975c1fc4acdc916014b6cf9bd6ff64ad00fdec6b
[ "MIT" ]
1
2020-11-24T17:59:49.000Z
2020-11-24T17:59:49.000Z
routely/__init__.py
jhags/routely
975c1fc4acdc916014b6cf9bd6ff64ad00fdec6b
[ "MIT" ]
null
null
null
routely/__init__.py
jhags/routely
975c1fc4acdc916014b6cf9bd6ff64ad00fdec6b
[ "MIT" ]
null
null
null
from .routely import Route
26
26
0.846154
4
26
5.5
1
0
0
0
0
0
0
0
0
0
0
0
0.115385
26
1
26
26
0.956522
0
0
0
0
0
0
0
0
0
0
0
0
1
0
true
0
1
0
1
0
1
1
0
null
0
0
0
0
0
0
0
0
0
0
0
0
0
1
0
0
0
0
0
0
0
0
0
0
null
0
0
0
0
0
0
1
0
1
0
1
0
0
6
287bfc19d47e9525ab44fd369cb133542a7224d5
23,359
py
Python
MCMC_plotting.py
jlindsey1/MappingExoplanets
008028562805ea81b91b044f0ef5bdfed55b858c
[ "MIT" ]
null
null
null
MCMC_plotting.py
jlindsey1/MappingExoplanets
008028562805ea81b91b044f0ef5bdfed55b858c
[ "MIT" ]
null
null
null
MCMC_plotting.py
jlindsey1/MappingExoplanets
008028562805ea81b91b044f0ef5bdfed55b858c
[ "MIT" ]
null
null
null
#!/usr/bin/env python2 # -*- coding: utf-8 -*- """ Created on Wed Nov 15 21:12:41 2017 @author: Jordan """ # The following plots several figures from the MCMC. Not all are relevant, but the code has been kept in this single file # for simplicity. print "Start..." # Import modules import numpy as np import matplotlib.pyplot as plt from lmfit.models import SkewedGaussianModel import matplotlib.ticker as mticker from mpl_toolkits.axes_grid1.inset_locator import inset_axes # Import MCMC results with open('hist_values1.txt') as f: hist_values1 = f.read().splitlines() with open('hist_values2.txt') as f: hist_values2 = f.read().splitlines() with open('hist_values3.txt') as f: hist_values3 = f.read().splitlines() with open('hist_values4.txt') as f: hist_values4 = f.read().splitlines() with open('hist_values5.txt') as f: hist_values5 = f.read().splitlines() hist_values1=[float(i) for i in hist_values1] hist_values2=[float(i) for i in hist_values2] hist_values3=[float(i) for i in hist_values3] hist_values4=[float(i) for i in hist_values4] hist_values5=[float(i) for i in hist_values5] # Double Ttot and Tfull as only half values were used in the MCMC (to simplify maths) hist_values2=np.array(hist_values2)*2 hist_values5=np.array(hist_values5)*2 include_middle=True if include_middle==True: inputfile='generated_data1' if include_middle==False: inputfile='generated_data_nomid' chi2file=np.genfromtxt(str(inputfile)+'.txt', names=True, delimiter=';',dtype=None) modeldata1=np.genfromtxt('uniformingress1.txt', names=True, delimiter=';',dtype=None) #Uniform model modeldata2=np.genfromtxt('uniformegress1.txt', names=True, delimiter=';',dtype=None) #modeldata1=np.genfromtxt('nolimbingress1.txt', names=True, delimiter=';',dtype=None) #No-limb model #modeldata2=np.genfromtxt('nolimbgress1.txt', names=True, delimiter=';',dtype=None) # Import graph specifications graphspecs=np.genfromtxt('graph_specs.txt', names=True, delimiter=';',dtype=None) P_total,P_full,P,flux_star,t_occultation,Initial,Length,Nslices=graphspecs['P_total'],graphspecs['P_full'],graphspecs['P'],graphspecs['flux_star'],graphspecs['t_occultation'],graphspecs['Initial'],graphspecs['Length'],graphspecs['Nslices'] print P_total,P_full,P,flux_star,t_occultation,Initial,Length,Nslices P_total_initial=P_total*2 P_full_initial=P_full*2 Initial_initial=Initial savefigures=False sigma_value=35*1e-6 #SD per point mean=np.mean(hist_values1) median=np.median(hist_values1) standard_dev=np.std(hist_values1) mean2=np.mean(hist_values2) median2=np.median(hist_values2) standard_dev2=np.std(hist_values2) mean3=np.mean(hist_values5) median3=np.median(hist_values5) standard_dev3=np.std(hist_values5) print "mean: ", mean, "SD: ", standard_dev, "Median: ", median print "mean2: ", mean2, "SD2: ", standard_dev2, "Median2: ", median2 print "mean3: ", mean3, "SD3: ", standard_dev3, "Median3: ", median3 # Defines the model generation function def generate_model(full,tot,mid,verbose): Initial=mid P_full=full P_total=tot if verbose==True: print "Details: ", Initial, P_full, P_total, Length plotrange=np.linspace(-P_total+Initial,-P_full+Initial, num=Nslices) plotrange2=np.linspace(P_full+Initial,P_total+Initial, num=Nslices) stepdifference=np.abs(plotrange[0]-plotrange[1]) rangedifference=np.abs(plotrange2[0]-plotrange[-1]) Nsteps_needed=int(round(rangedifference/stepdifference)) plotrange3=np.linspace(plotrange[-1]+stepdifference,plotrange2[0]-stepdifference,num=Nsteps_needed) uniform_curve_x,uniform_curve_y=[],[] total_amount = np.sum(modeldata1['bin_values']) for i in range(Nslices): total_amount = total_amount - modeldata1['bin_values'][i] fractional_flux = (total_amount+flux_star)/(flux_star) uniform_curve_x.append(plotrange[i]) uniform_curve_y.append(fractional_flux) if include_middle==True: for i in range(len(plotrange3)): uniform_curve_x.append(plotrange3[i]) uniform_curve_y.append(1.) total_amount = 0 for i in range(Nslices): total_amount = total_amount + modeldata2['bin_values'][Nslices-i-1] fractional_flux = (total_amount+flux_star)/(flux_star) uniform_curve_x.append(plotrange2[i]) uniform_curve_y.append(fractional_flux) maxvalue=np.max(uniform_curve_y) uniform_curve_x.append(1) uniform_curve_y.append(maxvalue) uniform_curve_x.insert(0,0) uniform_curve_y.insert(0,maxvalue) return uniform_curve_x,uniform_curve_y interpolation_datax,interpolation_dataf=generate_model(0.00730,0.0080,0.50035,verbose=False) plt.plot(interpolation_datax,interpolation_dataf) plt.scatter(chi2file['x_values'],chi2file['flux_values'],c='b',s=8,lw=0)#,zorder=2) if sigma_value!=0: plt.errorbar(chi2file['x_values'],chi2file['flux_values'],yerr=sigma_value,c='#696969',lw=1,ls='none') plt.xlim(0.47,0.53) plt.ylim(np.min(chi2file['flux_values']),np.max(chi2file['flux_values'])) plt.xlabel('Phase') plt.ylabel('$F(t)/F$') if savefigures==True: plt.savefig('final-mcmc-lightcurve1.pdf') plt.show() heatmap, xedges, yedges = np.histogram2d(hist_values1, hist_values3, bins=(100,100),normed=True) extent = [xedges[0], xedges[-1], yedges[0], yedges[-1]] fig, ((ax1, ax2), (ax3, ax4)) = plt.subplots(2, 2, sharex='col', sharey='row') contourplot=ax3.imshow(heatmap.T, extent=extent, origin='lower', cmap='Greys') ax2.axis('off') ax1.hist(hist_values1,bins=100,normed=1,edgecolor="black",facecolor="black",histtype="step") ax4.hist(hist_values3,bins=100,normed=1,edgecolor="black",facecolor="black",histtype="step", orientation="horizontal") ax3.axis('tight') ax3.ticklabel_format(useOffset=False) #myLocator = mticker.MultipleLocator(0.00) #ax3.xaxis.set_major_locator(myLocator) ax3.set_xlabel('Midpoint Phase Position') ax3.set_ylabel('Chi-Squared Value') ax1.set_ylabel('PDF') ax4.set_xlabel('PDF') ax3.set_xlim(np.min(hist_values1),np.max(hist_values1)) ax3.set_ylim(np.min(hist_values3)*0.95,np.max(hist_values3)) if savefigures==True: plt.savefig('chisquared-corner1.pdf') plt.show() plt.hist2d(hist_values1,hist_values3, bins=100) plt.xlabel('Midpoint Phase Position') plt.ylabel('Chi-Squared') if savefigures==True: plt.savefig('chisquared-hist1.pdf') plt.show() plt.hist2d(hist_values2,hist_values3, bins=100) plt.xlabel('Total Duration Phase') plt.ylabel('Chi-Squared') if savefigures==True: plt.savefig('chisquared-hist2.pdf') plt.show() plt.hist2d(hist_values1,hist_values3, bins=200) plt.xlabel('Midpoint Phase Position') plt.ylabel('Chi-Squared') if savefigures==True: plt.savefig('chisquared-hist3.pdf') plt.show() plt.hist2d(hist_values2,hist_values3, bins=200) plt.xlabel('Total Duration Phase') plt.ylabel('Chi-Squared') if savefigures==True: plt.savefig('chisquared-hist4.pdf') plt.show() plt.hist2d(hist_values5,hist_values3, bins=200) plt.xlabel('Full Duration Phase') plt.ylabel('Chi-Squared') if savefigures==True: plt.savefig('chisquared-hist5.pdf') plt.show() heatmap, xedges, yedges = np.histogram2d(hist_values2, hist_values3, bins=(100,100),normed=True) extent = [xedges[0], xedges[-1], yedges[0], yedges[-1]] fig, ((ax1, ax2), (ax3, ax4)) = plt.subplots(2, 2, sharex='col', sharey='row') contourplot=ax3.imshow(heatmap.T, extent=extent, origin='lower', cmap='Greys') ax2.axis('off') ax1.hist(hist_values2,bins=100,normed=1,edgecolor="black",facecolor="black",histtype="step") ax4.hist(hist_values3,bins=100,normed=1,edgecolor="black",facecolor="black",histtype="step", orientation="horizontal") ax3.axis('tight') ax3.ticklabel_format(useOffset=False) #myLocator = mticker.MultipleLocator(0.00) #ax3.xaxis.set_major_locator(myLocator) ax3.set_xlabel('Total Duration Phase') ax3.set_ylabel('Chi-Squared Value') ax1.set_ylabel('Marginalised Chi-Squared PDF') ax4.set_xlabel('Marginalised Chi-Squared PDF') ax3.set_xlim(np.min(hist_values2),np.max(hist_values2)) ax3.set_ylim(np.min(hist_values3)*0.95,np.max(hist_values3)) if savefigures==True: plt.savefig('chisquared-corner2.pdf') plt.show() y,x,_=plt.hist(hist_values1,bins=100,normed=1,edgecolor="black",facecolor="black",histtype="step",label="PDF") plt.axvline(x=Initial_initial,c='k',lw=2,label='Origin') plt.xlabel('Midpoint Phase Position') plt.ylabel('Marginalised Chi-Squared PDF') plt.ylim(0,y.max()*(1.05)) plt.vlines(x=(mean), ymin=0, ymax=y.max()*(1.05), color='g', label='Mean') plt.vlines(x=(mean-standard_dev), ymin=0, ymax=y.max()*(1.05), color='r', label='$\sigma_-$') plt.vlines(x=(mean-standard_dev*2), ymin=0, ymax=y.max()*(1.05), color='m', label='$2\sigma_-$') plt.vlines(x=(mean+standard_dev), ymin=0, ymax=y.max()*(1.05), color='b', label='$\sigma_+$') plt.vlines(x=(mean+standard_dev*2), ymin=0, ymax=y.max()*(1.05), color='c', label='$2\sigma_+$') plt.legend() if savefigures==True: plt.savefig('PDF1-modified.pdf') plt.show() n_hist, b_hist, patches_hist = plt.hist(hist_values1,bins=200,normed=1,edgecolor="black",facecolor="black",histtype="step",label="PDF") plt.hist(hist_values1,bins=200,normed=1,facecolor="black",edgecolor='None',alpha=0.1,label="PDF") plt.xlabel('Midpoint Phase Position') plt.ylabel('Normalised PDF') if savefigures == True: plt.savefig('plottemp.pdf') bin_max = np.where(n_hist == n_hist.max()) print "Mode:", b_hist[bin_max][0] ### CONFIDENCE INTERVAL SELECTOR: ######################################## bin_heights, bin_borders, _ = n_hist, b_hist, patches_hist bin_center = bin_borders[:-1] + np.diff(bin_borders) / 2 xvals, yvals = bin_center, bin_heights model = SkewedGaussianModel() params = model.guess(yvals, x=xvals) result = model.fit(yvals, params, x=xvals) print result.fit_report() plt.plot(xvals, result.best_fit,c='c',lw=2) #Mode Finder: maxval=0 maxvalx=0 for i in range(len(xvals)): if result.best_fit[i]>maxval: maxval=result.best_fit[i] maxvalx=xvals[i] print "Curve Mode:", maxvalx area = np.trapz(result.best_fit, x=xvals)#, dx=5) print "area =", area summation1=0 summation2=0 prev_highest=[0] prev_highest_position=[1e9] i=0 newx1=[] newy1=[] newx2=[] newy2=[] while i < len(xvals): position1=result.best_fit[i] newx1.append(xvals[i]) newy1.append(position1) summation1=np.trapz(newy1,x=newx1) found = False for j in range(len(xvals)): loc=len(xvals)-1-j if loc==-1: raise Exception("Array error.") position2=result.best_fit[loc] if (position2>=position1) and (found==False) and (xvals[loc]<=prev_highest_position[-1]) and (position2 >= prev_highest[-1]): if (position2>1e3*position1) and (position1!=0): raise Exception("Corresponding position for probability=({}) not correctly found. E1".format(position1)) found = True prev_highest.append(position2) prev_highest_position.append(xvals[loc]) #plt.axvline(xvals[loc],c='m') if j>=len(n_hist) and found==False: raise Exception("Corresponding position for probability=({}) not found. E2".format(position1)) if found == True: newx2.append(xvals[loc]) newy2.append(position2) break summation2=np.abs(np.trapz(newy2,x=newx2)) testcondition=1-(summation1+summation2) if testcondition<0.69: plt.axvline(Initial_initial,c='r') plt.axvline(maxvalx,c='k') plt.axvline(newx1[-1],c='#505050') plt.axvline(newx2[-1],c='#505050') print "Lower: ", np.abs(maxvalx-newx1[-1]) print "Upper: ", np.abs(maxvalx-newx2[-1]) break else: i+=1 #plt.axvline(xvals[i],c='b') print testcondition if savefigures == True: plt.savefig('asymmetric1.pdf') plt.show() ### y,x,_=plt.hist(hist_values2,bins=100,normed=1,edgecolor="black",facecolor="black",histtype="step",label="PDF") plt.axvline(x=P_total_initial,c='k',lw=2,label='Origin') plt.xlabel('Total Duration Phase') plt.ylabel('Marginalised Chi-Squared PDF') plt.ylim(0,y.max()*(1.05)) plt.vlines(x=(mean2), ymin=0, ymax=y.max()*(1.05), color='g', label='Mean') plt.vlines(x=(mean2-standard_dev2), ymin=0, ymax=y.max()*(1.05), color='r', label='$\sigma_-$') plt.vlines(x=(mean2-standard_dev2*2), ymin=0, ymax=y.max()*(1.05), color='m', label='$2\sigma_-$') plt.vlines(x=(mean2+standard_dev2), ymin=0, ymax=y.max()*(1.05), color='b', label='$\sigma_+$') plt.vlines(x=(mean2+standard_dev2*2), ymin=0, ymax=y.max()*(1.05), color='c', label='$2\sigma_+$') plt.legend() if savefigures==True: plt.savefig('PDF2-modified.pdf') plt.show() n_hist, b_hist, patches_hist = plt.hist(hist_values2,bins=200,normed=1,edgecolor="black",facecolor="black",histtype="step",label="PDF") plt.hist(hist_values2,bins=200,normed=1,facecolor="black",edgecolor='None',alpha=0.1,label="PDF") plt.xlabel('Total Occultation Duration') plt.ylabel('Normalised PDF') if savefigures == True: plt.savefig('plottemp2.pdf') bin_max = np.where(n_hist == n_hist.max()) print "Mode:", b_hist[bin_max][0] ### CONFIDENCE INTERVAL SELECTOR: ######################################## bin_heights, bin_borders, _ = n_hist, b_hist, patches_hist bin_center = bin_borders[:-1] + np.diff(bin_borders) / 2 xvals, yvals = bin_center, bin_heights model = SkewedGaussianModel() params = model.guess(yvals, x=xvals) result = model.fit(yvals, params, x=xvals) print result.fit_report() plt.plot(xvals, result.best_fit,c='c',lw=2) #Mode Finder: maxval=0 maxvalx=0 for i in range(len(xvals)): if result.best_fit[i]>maxval: maxval=result.best_fit[i] maxvalx=xvals[i] print "Curve Mode:", maxvalx area = np.trapz(result.best_fit, x=xvals)#, dx=5) print "area =", area summation1=0 summation2=0 prev_highest=[0] prev_highest_position=[1e9] i=0 newx1=[] newy1=[] newx2=[] newy2=[] while i < len(xvals): position1=result.best_fit[i] newx1.append(xvals[i]) newy1.append(position1) summation1=np.trapz(newy1,x=newx1) found = False for j in range(len(xvals)): loc=len(xvals)-1-j if loc==-1: raise Exception("Array error.") position2=result.best_fit[loc] if (position2>=position1) and (found==False) and (xvals[loc]<=prev_highest_position[-1]) and (position2 >= prev_highest[-1]): if (position2>1e3*position1) and (position1!=0): raise Exception("Corresponding position for probability=({}) not correctly found. E1".format(position1)) found = True prev_highest.append(position2) prev_highest_position.append(xvals[loc]) #plt.axvline(xvals[loc],c='m') if j>=len(n_hist) and found==False: raise Exception("Corresponding position for probability=({}) not found. E2".format(position1)) if found == True: newx2.append(xvals[loc]) newy2.append(position2) break summation2=np.abs(np.trapz(newy2,x=newx2)) testcondition=1-(summation1+summation2) if testcondition<0.69: plt.axvline(maxvalx,c='k') plt.axvline(P_total_initial,c='r') plt.axvline(newx1[-1],c='#505050') plt.axvline(newx2[-1],c='#505050') print "Lower: ", np.abs(maxvalx-newx1[-1]) print "Upper: ", np.abs(maxvalx-newx2[-1]) break else: i+=1 print testcondition if savefigures == True: plt.savefig('asymmetric2.pdf') plt.show() ### y,x,_=plt.hist(hist_values5,bins=100,normed=1,edgecolor="black",facecolor="black",histtype="step",label="PDF") plt.axvline(x=P_full_initial,c='k',lw=2,label='Origin') plt.xlabel('Full Duration Phase') plt.ylabel('Marginalised Chi-Squared PDF') plt.ylim(0,y.max()*(1.05)) plt.vlines(x=(mean3), ymin=0, ymax=y.max()*(1.05), color='g', label='Mean') plt.vlines(x=(mean3-standard_dev3), ymin=0, ymax=y.max()*(1.05), color='r', label='$\sigma_-$') plt.vlines(x=(mean3-standard_dev3*2), ymin=0, ymax=y.max()*(1.05), color='m', label='$2\sigma_-$') plt.vlines(x=(mean3+standard_dev3), ymin=0, ymax=y.max()*(1.05), color='b', label='$\sigma_+$') plt.vlines(x=(mean3+standard_dev3*2), ymin=0, ymax=y.max()*(1.05), color='c', label='$2\sigma_+$') plt.legend() if savefigures==True: plt.savefig('PDF3-modified.pdf') plt.show() n_hist, b_hist, patches_hist = plt.hist(hist_values5,bins=200,normed=1,edgecolor="black",facecolor="black",histtype="step",label="PDF") plt.hist(hist_values5,bins=200,normed=1,facecolor="black",edgecolor='None',alpha=0.1,label="PDF") plt.xlabel('Full Occultation Duration') plt.ylabel('Normalised PDF') if savefigures == True: plt.savefig('plottemp3.pdf') bin_max = np.where(n_hist == n_hist.max()) print "Mode:", b_hist[bin_max][0] ### CONFIDENCE INTERVAL SELECTOR: ######################################## bin_heights, bin_borders, _ = n_hist, b_hist, patches_hist bin_center = bin_borders[:-1] + np.diff(bin_borders) / 2 xvals, yvals = bin_center, bin_heights model = SkewedGaussianModel() params = model.guess(yvals, x=xvals) result = model.fit(yvals, params, x=xvals) print result.fit_report() plt.plot(xvals, result.best_fit,c='c',lw=2) #Mode Finder: maxval=0 maxvalx=0 for i in range(len(xvals)): if result.best_fit[i]>maxval: maxval=result.best_fit[i] maxvalx=xvals[i] print "Curve Mode:", maxvalx area = np.trapz(result.best_fit, x=xvals)#, dx=5) print "area =", area summation1=0 summation2=0 prev_highest=[0] prev_highest_position=[1e9] i=0 newx1=[] newy1=[] newx2=[] newy2=[] while i < len(xvals): position1=result.best_fit[i] newx1.append(xvals[i]) newy1.append(position1) summation1=np.trapz(newy1,x=newx1) found = False for j in range(len(xvals)): loc=len(xvals)-1-j if loc==-1: raise Exception("Array error.") position2=result.best_fit[loc] if (position2>=position1) and (found==False) and (xvals[loc]<=prev_highest_position[-1]) and (position2 >= prev_highest[-1]): if (position2>1e3*position1) and (position1!=0): raise Exception("Corresponding position for probability=({}) not correctly found. E1".format(position1)) found = True prev_highest.append(position2) prev_highest_position.append(xvals[loc]) #plt.axvline(xvals[loc],c='m') if j>=len(n_hist) and found==False: raise Exception("Corresponding position for probability=({}) not found. E2".format(position1)) if found == True: newx2.append(xvals[loc]) newy2.append(position2) break summation2=np.abs(np.trapz(newy2,x=newx2)) testcondition=1-(summation1+summation2) if testcondition<0.69: plt.axvline(maxvalx,c='k') plt.axvline(P_full_initial,c='r') plt.axvline(newx1[-1],c='#505050') plt.axvline(newx2[-1],c='#505050') print "Lower: ", np.abs(maxvalx-newx1[-1]) print "Upper: ", np.abs(maxvalx-newx2[-1]) break else: i+=1 print testcondition if savefigures == True: plt.savefig('asymmetric3.pdf') plt.show() ### xpoints1=np.linspace(0,len(hist_values1),num=len(hist_values1)) xpoints2=np.linspace(0,len(hist_values2),num=len(hist_values2)) plt.scatter(xpoints1,hist_values1,c='r',s=3) plt.xlabel('Number of Samples') plt.ylabel('Midpoint Phase Position') if savefigures==True: plt.savefig('parameter-variation1.pdf') plt.show() plt.scatter(xpoints2,hist_values2,c='b',s=3) plt.xlabel('Number of Samples') plt.ylabel('Total Duration Phase') if savefigures==True: plt.savefig('parameter-variation2.pdf') plt.show() plt.scatter(xpoints2,hist_values5,c='b',s=3) plt.xlabel('Number of Samples') plt.ylabel('Full Duration Phase') if savefigures==True: plt.savefig('parameter-variation3.pdf') plt.show() plt.scatter(xpoints2,hist_values4,c='m',s=3) plt.xlabel('Number of Samples') plt.ylabel('Reduced Chi Squared') if savefigures==True: plt.savefig('parameter-variation3.pdf') plt.show() heatmap, xedges, yedges = np.histogram2d(hist_values1, hist_values2, bins=(100,100),normed=True) extent = [xedges[0], xedges[-1], yedges[0], yedges[-1]] fig, ((ax1, ax2), (ax3, ax4)) = plt.subplots(2, 2, sharex='col', sharey='row') contourplot=ax3.imshow(heatmap.T, extent=extent, origin='lower', cmap='Greys') axins1 = inset_axes(ax3, width="5%", height="92.5%", loc=1) plt.colorbar(contourplot, cax=axins1, orientation="vertical") ax2.axis('off') ax1.hist(hist_values1,bins=100,normed=1,edgecolor="black",facecolor="black",histtype="step") ax4.hist(hist_values2,bins=100,normed=1,edgecolor="black",facecolor="black",histtype="step", orientation="horizontal") ax3.axis('tight') ax3.ticklabel_format(useOffset=False) myLocator = mticker.MultipleLocator(0.0003) ax3.xaxis.set_major_locator(myLocator) ax3.set_xlabel('Midpoint Position') ax3.set_ylabel('Total Duration') ax1.set_ylabel('Marginalised PDF') ax4.set_xlabel('Marginalised PDF') ax3.set_xlim(np.min(hist_values1),np.max(hist_values1)) ax3.set_ylim(np.min(hist_values2),np.max(hist_values2)) if savefigures==True: plt.savefig('corner-modified.pdf') plt.show() heatmap, xedges, yedges = np.histogram2d(hist_values1, hist_values5, bins=(100,100),normed=True) extent = [xedges[0], xedges[-1], yedges[0], yedges[-1]] fig, ((ax1, ax2), (ax3, ax4)) = plt.subplots(2, 2, sharex='col', sharey='row') contourplot=ax3.imshow(heatmap.T, extent=extent, origin='lower', cmap='Greys') axins1 = inset_axes(ax3, width="5%", height="92.5%", loc=1) plt.colorbar(contourplot, cax=axins1, orientation="vertical")#, ticks=[1, 2, 3]) #plt.colorbar(contourplot,ax=ax3) ax2.axis('off') ax1.hist(hist_values1,bins=100,normed=1,edgecolor="black",facecolor="black",histtype="step") ax4.hist(hist_values5,bins=100,normed=1,edgecolor="black",facecolor="black",histtype="step", orientation="horizontal") ax3.axis('tight') ax3.ticklabel_format(useOffset=False) myLocator = mticker.MultipleLocator(0.0003) ax3.xaxis.set_major_locator(myLocator) ax3.set_xlabel('Midpoint Position') ax3.set_ylabel('Full Duration') ax1.set_ylabel('Marginalised PDF') ax4.set_xlabel('Marginalised PDF') ax3.set_xlim(np.min(hist_values1),np.max(hist_values1)) ax3.set_ylim(np.min(hist_values5),np.max(hist_values5)) if savefigures==True: plt.savefig('corner-modified2.pdf') plt.show() heatmap, xedges, yedges = np.histogram2d(hist_values2, hist_values5, bins=(100,100),normed=True) extent = [xedges[0], xedges[-1], yedges[0], yedges[-1]] fig, ((ax1, ax2), (ax3, ax4)) = plt.subplots(2, 2, sharex='col', sharey='row') contourplot=ax3.imshow(heatmap.T, extent=extent, origin='lower', cmap='Greys') axins1 = inset_axes(ax3, width="5%", height="92.5%", loc=1) plt.colorbar(contourplot, cax=axins1, orientation="vertical") ax2.axis('off') ax1.hist(hist_values2,bins=100,normed=1,edgecolor="black",facecolor="black",histtype="step") ax4.hist(hist_values5,bins=100,normed=1,edgecolor="black",facecolor="black",histtype="step", orientation="horizontal") ax3.axis('tight') ax3.ticklabel_format(useOffset=False) #myLocator = mticker.MultipleLocator(0.00) #ax3.xaxis.set_major_locator(myLocator) ax3.set_xlabel('Total Duration') ax3.set_ylabel('Full Duration') ax1.set_ylabel('Marginalised PDF') ax4.set_xlabel('Marginalised PDF') ax3.set_xlim(np.min(hist_values2),np.max(hist_values2)) ax3.set_ylim(np.min(hist_values5),np.max(hist_values5)) if savefigures==True: plt.savefig('corner-modified3.pdf') plt.show() ######################################## print "Done."
39.861775
239
0.70414
3,480
23,359
4.610345
0.110345
0.012341
0.02543
0.029918
0.798554
0.788831
0.754675
0.736475
0.725754
0.696023
0
0.043215
0.116358
23,359
585
240
39.929915
0.734073
0.048375
0
0.658385
0
0
0.137496
0.00756
0
0
0
0
0
0
null
null
0
0.010352
null
null
0.057971
0
0
0
null
0
0
0
0
1
1
1
1
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
null
0
0
0
0
1
0
0
0
0
0
0
0
0
6
289f797580cc0c2b3ee620c50ae7da1a504e304d
17,485
py
Python
Phenotyping/Phenotyping.py
lsymuyu/Digital-Plant-Phenotyping-Platform
ca94a918061103d3032ca2e891c2c9a7cffe33e0
[ "MIT" ]
10
2019-01-26T04:47:49.000Z
2020-10-01T04:14:49.000Z
Phenotyping/Phenotyping.py
lsymuyu/Digital-Plant-Phenotyping-Platform
ca94a918061103d3032ca2e891c2c9a7cffe33e0
[ "MIT" ]
null
null
null
Phenotyping/Phenotyping.py
lsymuyu/Digital-Plant-Phenotyping-Platform
ca94a918061103d3032ca2e891c2c9a7cffe33e0
[ "MIT" ]
3
2019-03-06T00:04:04.000Z
2022-01-07T08:18:01.000Z
''' The main function to conduct phenotyping experiments 11/09/2017 Shouyang Liu ''' import os from adel import AdelR from adel.geometric_elements import Leaves from adel.AdelR import R_xydb, R_srdb, genGeoLeaf import pandas as pd from adel.plantgen import plantgen_interface import numpy as np from adel.astk_interface import AdelWheat from adel.stand.Generate_canopy import get_exposed_areas from adel.postprocessing import axis_statistics_simple, plot_statistics_simple, plot_statistics_simple_filter, axis_statistics_simple_filter from adel.povray.povray_ind import povray_Green from pyDOE import * from scipy.stats import uniform from openalea.core.path import path from adel.ADEL_OPT.Adel_OPT_Ind import Adel_Leaves, Adel_development import prosail from adel.ADEL_OPT.Adel_OPT_Ind import plot_LAI from adel.macro.povray_pixels_several_colors import set_color_metamers_organs from adel.povray.FAPAR import Sampling_diagnal, Hemispherical_IM, Sampling_GF, Hemispherical_IM_Sun from adel.povray.GF_RGB import Green_Fract, Pov_Scene from adel.povray.Canray import duplicate_scene, Optical_canopy, Optical_soil, povray_RF def Phenotyping_Wheat(Param, Ind, thermals, Canopy, Adel_output, LAI = False,save_scene = False, GF = False, GF_camera = [], FAPAR = False, Sunlit_TT = [], Sunlit_Ang = [], Multi_spectral = False, Ray_camera = [], Ray_light = []): try: # Adel parameters development_parameters = Adel_development(N_phytomer_potential = float(Param['N_leaf']), a_cohort = float(Param['a_cohort']), TT_hs_0 = float(Param['T_cohort']), TT_flag_ligulation = float(Param['TT_flag_ligulation']), n0 = float(Param['n0']), n1 = float(Param['n1']), n2 = float(Param['n2']), number_tillers = float(Param['number_tillers']), Lamina_L1 = float(Param['Lamina_L1']), N2 = float(Param['N2']), incl1 = float(Param['incl1']), incl2 = float(Param['incl2']), N_elg = float(Param['N_elg']), density = float(Param['Density'])) wheat_leaves = Adel_Leaves(incline = float(Param['incl_leaf']), dev_Az_Leaf = float(Param['dev_Az_Leaf'])) # canopy configuration sim_width = float(Canopy['width']) # m, generate three rows dup_length = float(Canopy['length']) Row_spacing = float(Param['Row_spacing']) run_adel_pars = {'senescence_leaf_shrink': 0.01, 'leafDuration': 2, 'fracLeaf': 0.2, 'stemDuration': 2. / 1.2, 'dHS_col': 0.2, 'dHS_en': 0, 'epsillon': 1e-6, 'HSstart_inclination_tiller': 1, 'rate_inclination_tiller': float(Param['rate_Tiller']), 'drop_empty': True} # build the distribution pattern table to interpolate the density Wheat_Adel = AdelWheat(density = float(Param['Density']), duplicate = 40, devT = development_parameters, leaves = wheat_leaves, pattern='regular', run_adel_pars = run_adel_pars, incT = float(Param['Deta_Incl_Tiller']), ibmM = float(Param['incl_main']), depMin = float(Param['min_Tiller']), dep = float(Param['max_Tiller']), inter_row = Row_spacing, width = sim_width, length = dup_length) del development_parameters, wheat_leaves domain = Wheat_Adel.domain domain_area = Wheat_Adel.domain_area nplants = Wheat_Adel.nplants for TT in thermals: Canopy_Adel = Wheat_Adel.setup_canopy(age=TT) plantgl_scene = set_color_metamers_organs(Canopy_Adel)[0] # Summary LAI if LAI: new_plot_df = plot_LAI(Canopy_Adel, TT, domain_area, nplants, Adel_output, Ind) if 'plot_df' in locals(): plot_df = pd.concat([plot_df,new_plot_df]) else: plot_df = new_plot_df del Canopy_Adel # Save geometry file name_canopy = '%s%s%s%s.bgeom'%('Ind_',Ind,'_TT_',TT) if save_scene: plantgl_scene.save(Adel_output + '/' + name_canopy, 'BGEOM') # Green fraction if GF: sampling_times = GF_camera['Times_sampling'] cameras = Sampling_GF(domain, sampling_times, Azimuth = GF_camera['azimuth'], Zenith = GF_camera['zenith'], Row_spacing = Row_spacing, fov = GF_camera['fov'])[0] povfile_mesh, povfile_box, z_top = Pov_Scene(plantgl_scene, domain, output_directory = Adel_output, thermal = TT, Ind = Ind) povfile_scene, new_df = Green_Fract(povfile_mesh, povfile_box, thermal = TT, Ind = Ind, cameras = cameras, image_height = GF_camera['image_height'], image_width = GF_camera['image_width'], relative_height = GF_camera['distance'], z_top = 0, output_directory = Adel_output) if 'result_df' in locals(): result_df = pd.concat([result_df,new_df]) else: result_df = new_df # Fisheye for FAPAR if FAPAR: Azimuth_fisheye = [0] Zenith_fisheye = [0] sampling_times = 7 dup_width = 8.0 New_canopy, New_nplants, New_domain, New_area = duplicate_scene(plantgl_scene, nplants, canopy_width = dup_width, canopy_length = dup_length, sim_width = sim_width, Row_spacing = Row_spacing) domain = New_domain del plantgl_scene cameras_fisheye = Sampling_diagnal(New_domain, sampling_times, Azimuth_fisheye, Zenith_fisheye, Row_spacing, fov_fisheye)[0] povfile_mesh_new, povfile_box_new, z_top_new = Pov_Scene(New_canopy, New_domain, output_directory = Adel_output, thermal = TT, Ind = Ind) del New_canopy povray_image_fisheye = Hemispherical_IM(povfile_mesh = povfile_mesh_new, z_top = z_top_new, cameras = cameras_fisheye, image_height = 2000, image_width = 2000, relative_height = relative_height, output_directory = Adel_output) if TT in Sunlit_TT: for A_sun in Sunlit_Ang: povray_image_fisheye = Hemispherical_IM_Sun(povfile_mesh = povfile_mesh_new, z_top = z_top_new, cameras = cameras_fisheye, A_sun = A_sun, image_height = 2000, image_width = 2000, relative_height = relative_height, output_directory = Adel_output) # Simulate BRDF (need large scene) if Multi_spectral: # Setting of prosail RT = prosail.prospect_5b(n = Param['N'], cab = Param['Cab'], car = Param['Car'], cbrown = Param['Cbrown'], cw = Param['Cw'], cm = Param['Cm']) Full_wave = range(400, 2501) R = RT[:,0] T = RT[:,1] for wave in Ray_camera['Waves']: Plant_optical = Optical_canopy(wave=wave, Full_wave=Full_wave, R=R, T=T) soil_ref = Optical_soil(wave, brightness=Param['brightness']) Output_file = povray_RF(Ray_light=Ray_light, Ray_camera=Ray_camera, Plant_optical=Plant_optical, soil_ref=soil_ref, domain=domain, povfile_scene=povfile_mesh, wave=wave, soil_type = Param['soil_type'], dict=Adel_output) if not os.path.exists(Output_file): Output_file = povray_RF(Ray_light=Ray_light, Ray_camera=Ray_camera, Plant_optical=Plant_optical, soil_ref=soil_ref, domain=domain, povfile_scene=povfile_mesh, wave=wave,soil_type = Param['soil_type'], dict=Adel_output) if 'plot_df' in locals(): result_plot_path = path(os.path.join(Adel_output, '%s%s%s'%('plot_LAI_',Ind,'.csv'))) plot_df.to_csv(result_plot_path, index=False) if 'result_df' in locals(): result_df_path = path(os.path.join(Adel_output, '%s%s%s'%('Fraction_',Ind,'.csv'))) result_df.to_csv(result_df_path, index=False) except TypeError: print 'Pass it and move forward!!!***' result_df_path = [] pass return Adel_output def Phenotyping_Wheat_TT(Param, Ind, TT, Adel_output, Ray_light = [], Ray_camera = [], Zenith_GF = [], FAPAR = True, GF = True, Multi_spectral = False, save_scene = False): try: # Adel parameters Row_spacing = float(Param['Row_spacing']) sim_width = 1.0 dup_length = 12.0 development_parameters = Adel_development(N_phytomer_potential = float(Param['N_leaf']), a_cohort = float(Param['a_cohort']), TT_hs_0 = float(Param['T_cohort']), TT_flag_ligulation = float(Param['TT_flag_ligulation']), n0 = float(Param['n0']), n1 = float(Param['n1']), n2 = float(Param['n2']), number_tillers = float(Param['number_tillers']), Lamina_L1 = float(Param['Lamina_L1']), N2 = float(Param['N2']), incl1 = float(Param['incl1']), incl2 = float(Param['incl2']), N_elg = float(Param['N_elg']), density = float(Param['Density'])) wheat_leaves = Adel_Leaves(incline = float(Param['incl_leaf']), dev_Az_Leaf = float(Param['dev_Az_Leaf'])) run_adel_pars = {'senescence_leaf_shrink': 0.01, 'leafDuration': 2, 'fracLeaf': 0.2, 'stemDuration': 2. / 1.2, 'dHS_col': 0.2, 'dHS_en': 0, 'epsillon': 1e-6, 'HSstart_inclination_tiller': 1, 'rate_inclination_tiller': float(Param['rate_Tiller']), 'drop_empty': True} # build the distribution pattern table to interpolate the density Wheat_Adel = AdelWheat(density = float(Param['Density']), duplicate = 20, devT = development_parameters, leaves = wheat_leaves, pattern='regular', run_adel_pars = run_adel_pars, incT = float(Param['Deta_Incl_Tiller']), ibmM = float(Param['incl_main']), depMin = float(Param['min_Tiller']), dep = float(Param['max_Tiller']), inter_row = Row_spacing, width = sim_width, length = dup_length) del Param, development_parameters, wheat_leaves domain = Wheat_Adel.domain domain_area = Wheat_Adel.domain_area nplants = Wheat_Adel.nplants Canopy_Adel = Wheat_Adel.setup_canopy(age=TT) del Wheat_Adel plantgl_scene = set_color_metamers_organs(Canopy_Adel)[0] # Summary LAI plot_df = plot_LAI(Canopy_Adel, TT, domain_area, nplants, Adel_output, Ind) result_plot_path = path(os.path.join(Adel_output, '%s%s%s%s%s'%('plot_LAI_',Ind,'_TT_',TT,'.csv'))) plot_df.to_csv(result_plot_path, index=False) del plot_df, Canopy_Adel # Save geometry file name_canopy = '%s%s%s%s.bgeom'%('Ind_',Ind,'_TT_',TT) if save_scene: plantgl_scene.save(Adel_output + '/' + name_canopy, 'BGEOM') # Common setting relative_height = 200 # camera above the canopy # Green fraction if GF: Azimuth = [0] fov = [10] sampling_times = 4 cameras = Sampling_GF(domain, sampling_times, Azimuth, Zenith_GF, Row_spacing, fov)[0] povfile_mesh, povfile_box, z_top = Pov_Scene(plantgl_scene, domain, output_directory = Adel_output, thermal = TT, Ind = Ind) povfile_scene, result_df = Green_Fract(povfile_mesh, povfile_box, thermal = TT, Ind = Ind, cameras = cameras, image_height = 1000, image_width = 1000, relative_height = relative_height, z_top = z_top, output_directory = Adel_output) result_df_path = path(os.path.join(Adel_output, '%s%s%s%s%s'%('Fraction_',Ind,'_TT_',TT,'.csv'))) result_df.to_csv(result_df_path, index=False) # Fisheye for FAPAR if FAPAR: Azimuth_fisheye = [0] Zenith_fisheye = [0] fov_fisheye = [120] dup_width = 12.0 sampling_times = 7 New_canopy, New_nplants, New_domain, New_area = duplicate_scene(plantgl_scene, nplants, canopy_width = dup_width, canopy_length = dup_length, sim_width = sim_width, Row_spacing = Row_spacing) del plantgl_scene cameras_fisheye = Sampling_diagnal(New_domain, sampling_times, Azimuth_fisheye, Zenith_fisheye, Row_spacing, fov_fisheye)[0] povfile_mesh_new, povfile_box_new, z_top_new = Pov_Scene(New_canopy, New_domain, output_directory = Adel_output, thermal = TT, Ind = Ind) del New_canopy povray_image_fisheye = Hemispherical_IM(povfile_mesh = povfile_mesh_new, z_top = z_top_new, cameras = cameras_fisheye, image_height = 2000, image_width = 2000, relative_height = relative_height, output_directory = Adel_output) # Simulate BRDF (need large scene) if Multi_spectral: # Setting of prosail RT = prosail.prospect_5b(n = Param['N'], cab = Param['Cab'], car = Param['Car'], cbrown = Param['Cbrown'], cw = Param['Cw'], cm = Param['Cm']) Full_wave = range(400, 2501) R = RT[:,0] T = RT[:,1] for wave in Waves_camera: Plant_optical = Optical_canopy(wave=wave, Full_wave=Full_wave, R=R, T=T) soil_ref = Optical_soil(wave, brightness=Param['brightness']) Output_file = povray_RF(Ray_light=Ray_light, Ray_camera=Ray_camera, Plant_optical=Plant_optical, soil_ref=soil_ref, domain=New_domain, povfile_scene=povfile_scene, wave=wave, dict=Adel_output) if not os.path.exists(Output_file): Output_file = povray_RF(Ray_light=Ray_light, Ray_camera=Ray_camera, Plant_optical=Plant_optical, soil_ref=soil_ref, domain=New_domain, povfile_scene=povfile_scene, wave=wave, dict=Adel_output) except TypeError: print 'Pass it and move forward!!!***' result_df_path = [] pass return Adel_output
57.327869
173
0.509122
1,801
17,485
4.622987
0.148251
0.055249
0.004324
0.027024
0.774802
0.751021
0.741412
0.725799
0.709945
0.709945
0
0.015112
0.405834
17,485
305
174
57.327869
0.786312
0.027109
0
0.646809
0
0
0.061816
0.0084
0
0
0
0
0
0
null
null
0.017021
0.089362
null
null
0.008511
0
0
0
null
0
0
0
0
1
1
1
1
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
null
0
0
0
0
1
0
0
0
0
0
0
0
0
6
95594f3fa1667e6fd47d1aa58e6c4955b0c3c4cb
42
py
Python
ini2.py
lmartinho/rosalind-solutions
b29f9aa25095ddc88a0b50505206acab00f490a0
[ "MIT" ]
null
null
null
ini2.py
lmartinho/rosalind-solutions
b29f9aa25095ddc88a0b50505206acab00f490a0
[ "MIT" ]
null
null
null
ini2.py
lmartinho/rosalind-solutions
b29f9aa25095ddc88a0b50505206acab00f490a0
[ "MIT" ]
null
null
null
a=807 b=905 #a=3 #b=5 c=a*a+b*b print(c)
5.25
9
0.547619
15
42
1.533333
0.533333
0
0
0
0
0
0
0
0
0
0
0.228571
0.166667
42
7
10
6
0.428571
0.142857
0
0
0
0
0
0
0
0
0
0
0
1
0
false
0
0
0
0
0.25
1
1
1
null
0
0
0
0
0
0
0
0
0
0
1
0
0
1
0
0
1
0
0
0
0
0
0
0
null
0
0
0
0
0
0
0
0
0
0
0
0
0
6
957ed5e04776cf8ef2caf46b88ed0f837a9bba94
85
py
Python
05-Inheritance/problem-5-Restaurant/project/beverage/hot_beverage.py
Beshkov/OOP
297edadb3e7801dfeee5752a20aae6aead8da610
[ "MIT" ]
1
2021-05-24T17:51:53.000Z
2021-05-24T17:51:53.000Z
05-Inheritance/problem-5-Restaurant/project/beverage/hot_beverage.py
Beshkov/Python_OOP
297edadb3e7801dfeee5752a20aae6aead8da610
[ "MIT" ]
null
null
null
05-Inheritance/problem-5-Restaurant/project/beverage/hot_beverage.py
Beshkov/Python_OOP
297edadb3e7801dfeee5752a20aae6aead8da610
[ "MIT" ]
null
null
null
from project.beverage.beverage import Beverage class HotBeverage(Beverage): pass
21.25
46
0.811765
10
85
6.9
0.7
0
0
0
0
0
0
0
0
0
0
0
0.129412
85
4
47
21.25
0.932432
0
0
0
0
0
0
0
0
0
0
0
0
1
0
true
0.333333
0.333333
0
0.666667
0
1
0
0
null
0
0
0
0
0
0
0
0
0
0
0
0
0
1
0
0
0
0
0
0
0
0
0
0
null
0
0
0
0
0
0
1
1
1
0
1
0
0
6
95851e8b11992cb1ca7532138883ea0ffb258740
14,797
py
Python
tests/unittests/test_folder.py
ZPascal/grafana_api_sdk
97c347790200e8e9a2aafd47e322297aa97b964c
[ "Apache-2.0" ]
2
2022-02-01T20:18:48.000Z
2022-02-02T01:22:14.000Z
tests/unittests/test_folder.py
ZPascal/grafana_api_sdk
97c347790200e8e9a2aafd47e322297aa97b964c
[ "Apache-2.0" ]
5
2022-01-12T06:55:54.000Z
2022-03-26T13:35:50.000Z
tests/unittests/test_folder.py
ZPascal/grafana_api_sdk
97c347790200e8e9a2aafd47e322297aa97b964c
[ "Apache-2.0" ]
null
null
null
from unittest import TestCase from unittest.mock import MagicMock, Mock, patch from src.grafana_api.model import APIModel from src.grafana_api.folder import Folder class FolderTestCase(TestCase): @patch("src.grafana_api.api.Api.call_the_api") def test_get_folders(self, call_the_api_mock): model: APIModel = APIModel(host=MagicMock(), token=MagicMock()) folder: Folder = Folder(grafana_api_model=model) mock: Mock = Mock() mock.json = Mock(return_value=list([{"title": None, "id": 12}])) call_the_api_mock.return_value = mock self.assertEqual(list([{"title": None, "id": 12}]), folder.get_folders()) @patch("src.grafana_api.api.Api.call_the_api") def test_get_folders_error_response(self, call_the_api_mock): model: APIModel = APIModel(host=MagicMock(), token=MagicMock()) folder: Folder = Folder(grafana_api_model=model) mock: Mock = Mock() mock.json = Mock(return_value=list()) call_the_api_mock.return_value = mock with self.assertRaises(Exception): folder.get_folders() @patch("src.grafana_api.api.Api.call_the_api") def test_get_folder_by_uid(self, call_the_api_mock): model: APIModel = APIModel(host=MagicMock(), token=MagicMock()) folder: Folder = Folder(grafana_api_model=model) mock: Mock = Mock() mock.json = Mock(return_value=dict({"title": None, "id": 12})) call_the_api_mock.return_value = mock self.assertEqual( dict({"title": None, "id": 12}), folder.get_folder_by_uid("xty13y") ) @patch("src.grafana_api.api.Api.call_the_api") def test_get_folder_by_uid_no_uid(self, call_the_api_mock): model: APIModel = APIModel(host=MagicMock(), token=MagicMock()) folder: Folder = Folder(grafana_api_model=model) mock: Mock = Mock() mock.json = Mock(return_value=dict()) call_the_api_mock.return_value = mock with self.assertRaises(ValueError): folder.get_folder_by_uid("") @patch("src.grafana_api.api.Api.call_the_api") def test_get_folder_by_uid_error_response(self, call_the_api_mock): model: APIModel = APIModel(host=MagicMock(), token=MagicMock()) folder: Folder = Folder(grafana_api_model=model) mock: Mock = Mock() mock.json = Mock(return_value=dict()) call_the_api_mock.return_value = mock with self.assertRaises(Exception): folder.get_folder_by_uid("xty13y") @patch("src.grafana_api.api.Api.call_the_api") def test_get_folder_by_id(self, call_the_api_mock): model: APIModel = APIModel(host=MagicMock(), token=MagicMock()) folder: Folder = Folder(grafana_api_model=model) mock: Mock = Mock() mock.json = Mock(return_value=dict({"title": None, "id": 12})) call_the_api_mock.return_value = mock self.assertEqual(dict({"title": None, "id": 12}), folder.get_folder_by_id(12)) @patch("src.grafana_api.api.Api.call_the_api") def test_get_folder_by_id_no_id(self, call_the_api_mock): model: APIModel = APIModel(host=MagicMock(), token=MagicMock()) folder: Folder = Folder(grafana_api_model=model) mock: Mock = Mock() mock.json = Mock(return_value=dict()) call_the_api_mock.return_value = mock with self.assertRaises(ValueError): folder.get_folder_by_id(0) @patch("src.grafana_api.api.Api.call_the_api") def test_get_folder_by_id_error_response(self, call_the_api_mock): model: APIModel = APIModel(host=MagicMock(), token=MagicMock()) folder: Folder = Folder(grafana_api_model=model) mock: Mock = Mock() mock.json = Mock(return_value=dict()) call_the_api_mock.return_value = mock with self.assertRaises(Exception): folder.get_folder_by_id(10) @patch("src.grafana_api.api.Api.call_the_api") def test_create_folder(self, call_the_api_mock): model: APIModel = APIModel(host=MagicMock(), token=MagicMock()) folder: Folder = Folder(grafana_api_model=model) mock: Mock = Mock() mock.json = Mock(return_value=dict({"title": None, "id": 12})) call_the_api_mock.return_value = mock self.assertEqual(dict({"title": None, "id": 12}), folder.create_folder("test")) @patch("src.grafana_api.api.Api.call_the_api") def test_create_folder_specified_uid(self, call_the_api_mock): model: APIModel = APIModel(host=MagicMock(), token=MagicMock()) folder: Folder = Folder(grafana_api_model=model) mock: Mock = Mock() mock.json = Mock(return_value=dict({"title": None, "id": 12, "uid": "test"})) call_the_api_mock.return_value = mock self.assertEqual( dict({"title": None, "id": 12, "uid": "test"}), folder.create_folder("test", "test"), ) @patch("src.grafana_api.api.Api.call_the_api") def test_create_folder_no_title(self, call_the_api_mock): model: APIModel = APIModel(host=MagicMock(), token=MagicMock()) folder: Folder = Folder(grafana_api_model=model) mock: Mock = Mock() mock.json = Mock(return_value=dict()) call_the_api_mock.return_value = mock with self.assertRaises(ValueError): folder.create_folder(MagicMock()) @patch("src.grafana_api.api.Api.call_the_api") def test_create_folder_error_response(self, call_the_api_mock): model: APIModel = APIModel(host=MagicMock(), token=MagicMock()) folder: Folder = Folder(grafana_api_model=model) mock: Mock = Mock() mock.json = Mock(return_value=dict()) call_the_api_mock.return_value = mock with self.assertRaises(Exception): folder.create_folder("test") @patch("src.grafana_api.api.Api.call_the_api") def test_update_folder(self, call_the_api_mock): model: APIModel = APIModel(host=MagicMock(), token=MagicMock()) folder: Folder = Folder(grafana_api_model=model) mock: Mock = Mock() mock.json = Mock(return_value=dict({"title": "test1", "id": 12})) call_the_api_mock.return_value = mock self.assertEqual( dict({"title": "test1", "id": 12}), folder.update_folder("test", "test1", 10), ) @patch("src.grafana_api.api.Api.call_the_api") def test_update_folder_no_uid(self, call_the_api_mock): model: APIModel = APIModel(host=MagicMock(), token=MagicMock()) folder: Folder = Folder(grafana_api_model=model) mock: Mock = Mock() mock.json = Mock(return_value=dict({"title": "test", "id": 12})) call_the_api_mock.return_value = mock self.assertEqual( dict({"title": "test", "id": 12}), folder.update_folder("test", overwrite=True), ) @patch("src.grafana_api.api.Api.call_the_api") def test_update_folder_overwrite_true(self, call_the_api_mock): model: APIModel = APIModel(host=MagicMock(), token=MagicMock()) folder: Folder = Folder(grafana_api_model=model) mock: Mock = Mock() mock.json = Mock(return_value=dict({"title": "test", "id": 12})) call_the_api_mock.return_value = mock self.assertEqual( dict({"title": "test", "id": 12}), folder.update_folder("test", "test", overwrite=True), ) @patch("src.grafana_api.api.Api.call_the_api") def test_update_folder_no_title(self, call_the_api_mock): model: APIModel = APIModel(host=MagicMock(), token=MagicMock()) folder: Folder = Folder(grafana_api_model=model) mock: Mock = Mock() mock.json = Mock(return_value=dict()) call_the_api_mock.return_value = mock with self.assertRaises(ValueError): folder.update_folder(MagicMock(), MagicMock()) @patch("src.grafana_api.api.Api.call_the_api") def test_update_folder_error_response(self, call_the_api_mock): model: APIModel = APIModel(host=MagicMock(), token=MagicMock()) folder: Folder = Folder(grafana_api_model=model) mock: Mock = Mock() mock.json = Mock(return_value=dict()) call_the_api_mock.return_value = mock with self.assertRaises(Exception): folder.update_folder("test", "test", 10) @patch("src.grafana_api.api.Api.call_the_api") def test_delete_folder(self, call_the_api_mock): model: APIModel = APIModel(host=MagicMock(), token=MagicMock()) folder: Folder = Folder(grafana_api_model=model) mock: Mock = Mock() mock.json = Mock(return_value=dict({"message": "Folder deleted"})) call_the_api_mock.return_value = mock self.assertEqual(None, folder.delete_folder("test")) @patch("src.grafana_api.api.Api.call_the_api") def test_delete_folder_no_uid(self, call_the_api_mock): model: APIModel = APIModel(host=MagicMock(), token=MagicMock()) folder: Folder = Folder(grafana_api_model=model) mock: Mock = Mock() mock.json = Mock(return_value=dict()) call_the_api_mock.return_value = mock with self.assertRaises(ValueError): folder.delete_folder("") @patch("src.grafana_api.api.Api.call_the_api") def test_delete_folder_error_response(self, call_the_api_mock): model: APIModel = APIModel(host=MagicMock(), token=MagicMock()) folder: Folder = Folder(grafana_api_model=model) mock: Mock = Mock() mock.json = Mock(return_value=dict({"message": "error"})) call_the_api_mock.return_value = mock with self.assertRaises(Exception): folder.delete_folder("test") @patch("src.grafana_api.api.Api.call_the_api") def test_get_folder_permissions(self, call_the_api_mock): model: APIModel = APIModel(host=MagicMock(), token=MagicMock()) folder: Folder = Folder(grafana_api_model=model) mock: Mock = Mock() mock.json = Mock(return_value=list([{"id": "test"}])) call_the_api_mock.return_value = mock self.assertEqual(list([{"id": "test"}]), folder.get_folder_permissions("test")) @patch("src.grafana_api.api.Api.call_the_api") def test_get_folder_permissions_no_uid(self, call_the_api_mock): model: APIModel = APIModel(host=MagicMock(), token=MagicMock()) folder: Folder = Folder(grafana_api_model=model) call_the_api_mock.return_value = list() with self.assertRaises(ValueError): folder.get_folder_permissions("") @patch("src.grafana_api.api.Api.call_the_api") def test_get_folder_permissions_error_response(self, call_the_api_mock): model: APIModel = APIModel(host=MagicMock(), token=MagicMock()) folder: Folder = Folder(grafana_api_model=model) mock: Mock = Mock() mock.json = Mock(return_value=list([{"test": "test"}])) call_the_api_mock.return_value = mock with self.assertRaises(Exception): folder.get_folder_permissions("test") @patch("src.grafana_api.api.Api.call_the_api") def test_update_folder_permissions(self, call_the_api_mock): model: APIModel = APIModel(host=MagicMock(), token=MagicMock()) folder: Folder = Folder(grafana_api_model=model) mock: Mock = Mock() mock.json = Mock(return_value=dict({"message": "Folder permissions updated"})) call_the_api_mock.return_value = mock self.assertEqual( None, folder.update_folder_permissions("test", dict({"test": "test"})) ) @patch("src.grafana_api.api.Api.call_the_api") def test_update_folder_permissions_no_uid(self, call_the_api_mock): model: APIModel = APIModel(host=MagicMock(), token=MagicMock()) folder: Folder = Folder(grafana_api_model=model) call_the_api_mock.return_value = dict() with self.assertRaises(ValueError): folder.update_folder_permissions("", dict()) @patch("src.grafana_api.api.Api.call_the_api") def test_update_folder_permissions_error_response(self, call_the_api_mock): model: APIModel = APIModel(host=MagicMock(), token=MagicMock()) folder: Folder = Folder(grafana_api_model=model) mock: Mock = Mock() mock.json = Mock(return_value=dict({"message": "test"})) call_the_api_mock.return_value = mock with self.assertRaises(Exception): folder.update_folder_permissions("test", dict({"test": "test"})) @patch("src.grafana_api.folder.Folder.get_all_folder_ids_and_names") def test_get_folder_id_by_dashboard_path(self, all_folder_ids_and_names_mock): model: APIModel = APIModel(host=MagicMock(), token=MagicMock()) folder: Folder = Folder(grafana_api_model=model) all_folder_ids_and_names_mock.return_value = list([{"title": "test", "id": 12}]) self.assertEqual( 12, folder.get_folder_id_by_dashboard_path(dashboard_path="test") ) def test_get_folder_id_by_dashboard_path_general_path(self): model: APIModel = APIModel(host=MagicMock(), token=MagicMock()) folder: Folder = Folder(grafana_api_model=model) self.assertEqual( 0, folder.get_folder_id_by_dashboard_path(dashboard_path="General") ) def test_get_folder_id_by_dashboard_path_no_dashboard_path_defined(self): model: APIModel = APIModel(host=MagicMock(), token=MagicMock()) folder: Folder = Folder(grafana_api_model=model) with self.assertRaises(ValueError): folder.get_folder_id_by_dashboard_path(dashboard_path="") @patch("src.grafana_api.folder.Folder.get_all_folder_ids_and_names") def test_get_folder_id_by_dashboard_path_no_title_match( self, all_folder_ids_and_names_mock ): model: APIModel = APIModel(host=MagicMock(), token=MagicMock()) folder: Folder = Folder(grafana_api_model=model) all_folder_ids_and_names_mock.return_value = list( [{"title": None, "id": "xty13y"}] ) with self.assertRaises(Exception): folder.get_folder_id_by_dashboard_path(dashboard_path="test") @patch("src.grafana_api.api.Api.call_the_api") def test_get_all_folder_ids_and_names(self, call_the_api_mock): model: APIModel = APIModel(host=MagicMock(), token=MagicMock()) folder: Folder = Folder(grafana_api_model=model) mock: Mock = Mock() mock.json = Mock( return_value=list([{"title": "test", "id": 12, "test": "test"}]) ) call_the_api_mock.return_value = mock self.assertEqual( list([{"title": "test", "id": 12}]), folder.get_all_folder_ids_and_names() )
37.27204
88
0.666013
1,912
14,797
4.834728
0.034519
0.061337
0.087624
0.081783
0.95608
0.952293
0.946452
0.923842
0.918542
0.903938
0
0.005039
0.208691
14,797
396
89
37.366162
0.784439
0
0
0.648936
0
0
0.101575
0.073528
0
0
0
0
0.109929
1
0.109929
false
0
0.014184
0
0.12766
0
0
0
0
null
0
0
0
1
1
1
1
1
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
null
0
0
0
0
0
0
0
0
0
0
0
0
0
6
250134cc0bb723243fb93d037d86132674af522e
30
py
Python
options/__init__.py
kwshh/ImageDeconvlution
561468463372a5727b553efa0330fc75901e29fc
[ "MIT" ]
25
2019-05-10T13:51:25.000Z
2021-10-13T01:35:43.000Z
options/__init__.py
kwshh/ImageDeconvlution
561468463372a5727b553efa0330fc75901e29fc
[ "MIT" ]
8
2019-05-10T13:51:07.000Z
2021-06-03T07:13:28.000Z
options/__init__.py
kwshh/ImageDeconvlution
561468463372a5727b553efa0330fc75901e29fc
[ "MIT" ]
7
2020-08-15T09:16:11.000Z
2021-07-06T21:54:20.000Z
from .running_options import *
30
30
0.833333
4
30
6
1
0
0
0
0
0
0
0
0
0
0
0
0.1
30
1
30
30
0.888889
0
0
0
0
0
0
0
0
0
0
0
0
1
0
true
0
1
0
1
0
1
1
0
null
0
0
0
0
0
0
0
0
0
0
0
0
0
1
0
0
0
0
0
0
0
0
0
0
null
0
0
0
0
0
0
1
0
1
0
1
0
0
6
252ba86e61e67a1ee61878dd74bc3c6a8fc40da6
38,070
py
Python
instances/passenger_demand/pas-20210421-2109-int16e/42.py
LHcau/scheduling-shared-passenger-and-freight-transport-on-a-fixed-infrastructure
bba1e6af5bc8d9deaa2dc3b83f6fe9ddf15d2a11
[ "BSD-3-Clause" ]
null
null
null
instances/passenger_demand/pas-20210421-2109-int16e/42.py
LHcau/scheduling-shared-passenger-and-freight-transport-on-a-fixed-infrastructure
bba1e6af5bc8d9deaa2dc3b83f6fe9ddf15d2a11
[ "BSD-3-Clause" ]
null
null
null
instances/passenger_demand/pas-20210421-2109-int16e/42.py
LHcau/scheduling-shared-passenger-and-freight-transport-on-a-fixed-infrastructure
bba1e6af5bc8d9deaa2dc3b83f6fe9ddf15d2a11
[ "BSD-3-Clause" ]
null
null
null
""" PASSENGERS """ numPassengers = 3556 passenger_arriving = ( (4, 10, 7, 6, 3, 0, 9, 9, 3, 9, 4, 0), # 0 (4, 11, 9, 0, 1, 0, 9, 10, 7, 7, 1, 0), # 1 (8, 9, 8, 4, 4, 0, 6, 13, 7, 3, 4, 0), # 2 (2, 13, 5, 6, 0, 0, 8, 14, 6, 5, 6, 0), # 3 (5, 5, 8, 4, 6, 0, 8, 3, 7, 7, 4, 0), # 4 (2, 12, 7, 4, 2, 0, 4, 6, 3, 4, 0, 0), # 5 (6, 17, 11, 3, 0, 0, 8, 12, 6, 8, 4, 0), # 6 (1, 6, 9, 1, 6, 0, 7, 11, 8, 9, 0, 0), # 7 (8, 9, 9, 6, 2, 0, 10, 9, 5, 3, 2, 0), # 8 (3, 15, 8, 5, 5, 0, 5, 10, 9, 9, 3, 0), # 9 (4, 11, 2, 5, 4, 0, 9, 8, 4, 10, 2, 0), # 10 (7, 4, 7, 1, 3, 0, 1, 10, 7, 3, 2, 0), # 11 (3, 13, 7, 2, 2, 0, 11, 12, 4, 8, 1, 0), # 12 (0, 9, 9, 4, 1, 0, 5, 9, 5, 4, 2, 0), # 13 (6, 12, 15, 5, 3, 0, 2, 10, 5, 3, 1, 0), # 14 (6, 22, 11, 2, 3, 0, 3, 12, 5, 9, 3, 0), # 15 (2, 7, 10, 5, 3, 0, 5, 11, 6, 1, 3, 0), # 16 (7, 6, 8, 3, 1, 0, 7, 11, 7, 7, 1, 0), # 17 (3, 8, 15, 4, 2, 0, 6, 15, 5, 4, 0, 0), # 18 (6, 10, 4, 4, 2, 0, 9, 9, 7, 3, 2, 0), # 19 (8, 13, 6, 5, 5, 0, 9, 10, 3, 6, 5, 0), # 20 (4, 10, 8, 4, 1, 0, 2, 12, 5, 1, 3, 0), # 21 (6, 11, 5, 0, 4, 0, 8, 7, 5, 1, 1, 0), # 22 (3, 9, 5, 6, 3, 0, 10, 8, 10, 10, 1, 0), # 23 (4, 7, 9, 3, 0, 0, 6, 13, 7, 7, 5, 0), # 24 (4, 8, 5, 4, 2, 0, 7, 4, 7, 4, 5, 0), # 25 (8, 4, 4, 4, 3, 0, 9, 6, 5, 9, 4, 0), # 26 (5, 10, 6, 9, 1, 0, 9, 9, 8, 5, 4, 0), # 27 (2, 13, 5, 3, 3, 0, 12, 10, 5, 7, 5, 0), # 28 (9, 6, 10, 6, 3, 0, 10, 3, 7, 10, 1, 0), # 29 (4, 9, 7, 6, 4, 0, 4, 16, 9, 7, 3, 0), # 30 (3, 6, 9, 6, 4, 0, 10, 7, 6, 1, 2, 0), # 31 (3, 11, 11, 4, 2, 0, 7, 7, 1, 4, 6, 0), # 32 (4, 14, 9, 3, 4, 0, 8, 7, 7, 4, 4, 0), # 33 (5, 8, 9, 5, 2, 0, 6, 11, 6, 12, 3, 0), # 34 (4, 13, 7, 7, 2, 0, 6, 7, 8, 4, 2, 0), # 35 (6, 11, 7, 6, 5, 0, 10, 8, 5, 4, 0, 0), # 36 (9, 6, 5, 4, 2, 0, 9, 9, 6, 5, 1, 0), # 37 (7, 7, 3, 6, 0, 0, 11, 3, 5, 2, 1, 0), # 38 (7, 5, 12, 6, 4, 0, 7, 10, 7, 8, 1, 0), # 39 (12, 10, 9, 3, 2, 0, 6, 14, 4, 4, 3, 0), # 40 (7, 8, 7, 2, 3, 0, 5, 11, 7, 5, 4, 0), # 41 (5, 10, 8, 5, 6, 0, 6, 15, 9, 5, 3, 0), # 42 (8, 8, 5, 1, 0, 0, 5, 9, 6, 6, 2, 0), # 43 (2, 10, 6, 4, 2, 0, 7, 11, 1, 10, 4, 0), # 44 (4, 18, 9, 9, 0, 0, 10, 10, 8, 5, 4, 0), # 45 (8, 11, 4, 4, 6, 0, 4, 8, 4, 6, 1, 0), # 46 (2, 14, 11, 5, 4, 0, 5, 8, 4, 6, 5, 0), # 47 (4, 5, 3, 4, 3, 0, 9, 8, 5, 6, 4, 0), # 48 (5, 14, 8, 3, 1, 0, 5, 9, 6, 4, 3, 0), # 49 (6, 13, 6, 4, 4, 0, 9, 12, 11, 4, 6, 0), # 50 (11, 9, 9, 3, 1, 0, 7, 12, 9, 6, 4, 0), # 51 (4, 9, 5, 9, 1, 0, 7, 12, 4, 2, 0, 0), # 52 (7, 9, 8, 8, 0, 0, 3, 11, 6, 8, 3, 0), # 53 (6, 12, 11, 1, 0, 0, 7, 9, 3, 5, 3, 0), # 54 (3, 10, 7, 3, 4, 0, 7, 6, 5, 4, 3, 0), # 55 (9, 2, 6, 3, 3, 0, 6, 9, 8, 5, 1, 0), # 56 (8, 7, 7, 6, 2, 0, 4, 7, 10, 6, 4, 0), # 57 (4, 16, 8, 1, 1, 0, 4, 14, 3, 9, 0, 0), # 58 (0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0), # 59 ) station_arriving_intensity = ( (4.239442493415277, 10.874337121212122, 12.79077763496144, 10.138043478260869, 11.428846153846154, 7.610869565217392), # 0 (4.27923521607648, 10.995266557940518, 12.859864860039991, 10.194503019323673, 11.51450641025641, 7.608275422705315), # 1 (4.318573563554774, 11.114402244668911, 12.927312196515281, 10.249719806763286, 11.598358974358975, 7.60560193236715), # 2 (4.357424143985952, 11.231615625000002, 12.993070372750644, 10.303646739130434, 11.680326923076926, 7.60284945652174), # 3 (4.395753565505805, 11.346778142536477, 13.057090117109396, 10.356236714975847, 11.760333333333335, 7.600018357487922), # 4 (4.433528436250122, 11.459761240881035, 13.11932215795487, 10.407442632850241, 11.838301282051281, 7.597108997584541), # 5 (4.470715364354698, 11.570436363636365, 13.179717223650389, 10.457217391304349, 11.914153846153846, 7.594121739130435), # 6 (4.507280957955322, 11.678674954405162, 13.238226042559269, 10.50551388888889, 11.987814102564105, 7.591056944444445), # 7 (4.543191825187787, 11.784348456790122, 13.294799343044847, 10.552285024154589, 12.059205128205129, 7.587914975845411), # 8 (4.578414574187884, 11.88732831439394, 13.34938785347044, 10.597483695652175, 12.12825, 7.584696195652175), # 9 (4.612915813091406, 11.987485970819305, 13.401942302199371, 10.64106280193237, 12.194871794871796, 7.581400966183574), # 10 (4.646662150034143, 12.084692869668913, 13.452413417594972, 10.682975241545895, 12.25899358974359, 7.578029649758455), # 11 (4.679620193151888, 12.178820454545454, 13.500751928020566, 10.723173913043478, 12.320538461538462, 7.574582608695652), # 12 (4.71175655058043, 12.26974016905163, 13.546908561839473, 10.761611714975846, 12.37942948717949, 7.5710602053140095), # 13 (4.743037830455566, 12.357323456790127, 13.590834047415022, 10.798241545893719, 12.435589743589743, 7.567462801932367), # 14 (4.773430640913081, 12.441441761363635, 13.632479113110538, 10.833016304347826, 12.488942307692309, 7.563790760869566), # 15 (4.802901590088772, 12.521966526374861, 13.671794487289347, 10.86588888888889, 12.539410256410257, 7.560044444444445), # 16 (4.831417286118428, 12.598769195426486, 13.708730898314768, 10.896812198067634, 12.586916666666667, 7.556224214975846), # 17 (4.8589443371378405, 12.671721212121213, 13.74323907455013, 10.925739130434785, 12.631384615384619, 7.552330434782609), # 18 (4.8854493512828014, 12.740694020061728, 13.775269744358756, 10.952622584541063, 12.67273717948718, 7.5483634661835755), # 19 (4.910898936689104, 12.805559062850728, 13.804773636103969, 10.9774154589372, 12.710897435897436, 7.544323671497584), # 20 (4.935259701492538, 12.866187784090906, 13.831701478149103, 11.000070652173914, 12.74578846153846, 7.540211413043479), # 21 (4.958498253828894, 12.922451627384962, 13.856003998857469, 11.020541062801932, 12.777333333333331, 7.5360270531400975), # 22 (4.980581201833967, 12.97422203633558, 13.877631926592404, 11.038779589371982, 12.805455128205129, 7.531770954106282), # 23 (5.001475153643547, 13.021370454545455, 13.896535989717222, 11.054739130434783, 12.830076923076923, 7.52744347826087), # 24 (5.0211467173934246, 13.063768325617284, 13.91266691659526, 11.068372584541065, 12.851121794871794, 7.523044987922706), # 25 (5.039562501219393, 13.101287093153758, 13.925975435589832, 11.079632850241545, 12.86851282051282, 7.518575845410628), # 26 (5.056689113257243, 13.133798200757575, 13.936412275064265, 11.088472826086958, 12.88217307692308, 7.514036413043479), # 27 (5.072493161642767, 13.161173092031426, 13.943928163381893, 11.09484541062802, 12.89202564102564, 7.509427053140097), # 28 (5.086941254511755, 13.183283210578004, 13.948473828906026, 11.09870350241546, 12.89799358974359, 7.504748128019324), # 29 (5.1000000000000005, 13.200000000000001, 13.950000000000001, 11.100000000000001, 12.9, 7.5), # 30 (5.112219245524297, 13.213886079545453, 13.948855917874395, 11.099765849673204, 12.89926985815603, 7.4934020156588375), # 31 (5.124174680306906, 13.227588636363638, 13.945456038647343, 11.099067973856208, 12.897095035460993, 7.483239613526571), # 32 (5.135871675191815, 13.241105965909092, 13.93984891304348, 11.097913235294119, 12.893498936170213, 7.469612293853072), # 33 (5.147315601023018, 13.254436363636366, 13.93208309178744, 11.096308496732028, 12.888504964539008, 7.452619556888223), # 34 (5.158511828644501, 13.267578124999998, 13.922207125603865, 11.094260620915033, 12.882136524822696, 7.432360902881893), # 35 (5.169465728900256, 13.280529545454549, 13.91026956521739, 11.091776470588236, 12.874417021276598, 7.408935832083959), # 36 (5.180182672634271, 13.293288920454547, 13.896318961352657, 11.088862908496733, 12.865369858156027, 7.382443844744294), # 37 (5.190668030690537, 13.305854545454546, 13.8804038647343, 11.08552679738562, 12.855018439716313, 7.352984441112776), # 38 (5.200927173913044, 13.318224715909091, 13.862572826086955, 11.081775, 12.843386170212765, 7.32065712143928), # 39 (5.21096547314578, 13.330397727272729, 13.842874396135267, 11.077614379084968, 12.830496453900707, 7.285561385973679), # 40 (5.220788299232737, 13.342371874999998, 13.821357125603866, 11.073051797385622, 12.816372695035462, 7.247796734965852), # 41 (5.230401023017903, 13.354145454545458, 13.798069565217393, 11.068094117647059, 12.801038297872342, 7.207462668665667), # 42 (5.239809015345269, 13.365716761363636, 13.773060265700483, 11.06274820261438, 12.784516666666667, 7.164658687323005), # 43 (5.249017647058824, 13.377084090909092, 13.746377777777779, 11.05702091503268, 12.76683120567376, 7.119484291187739), # 44 (5.258032289002557, 13.388245738636364, 13.718070652173916, 11.050919117647059, 12.748005319148938, 7.072038980509745), # 45 (5.266858312020461, 13.399200000000002, 13.688187439613529, 11.044449673202614, 12.72806241134752, 7.022422255538898), # 46 (5.275501086956522, 13.409945170454547, 13.656776690821255, 11.037619444444445, 12.707025886524825, 6.970733616525071), # 47 (5.283965984654732, 13.420479545454548, 13.623886956521739, 11.030435294117646, 12.68491914893617, 6.9170725637181425), # 48 (5.292258375959079, 13.430801420454543, 13.589566787439615, 11.022904084967323, 12.66176560283688, 6.861538597367982), # 49 (5.300383631713555, 13.440909090909088, 13.553864734299518, 11.015032679738564, 12.63758865248227, 6.804231217724471), # 50 (5.308347122762149, 13.450800852272728, 13.516829347826087, 11.006827941176471, 12.612411702127659, 6.7452499250374816), # 51 (5.316154219948849, 13.460475, 13.47850917874396, 10.998296732026144, 12.58625815602837, 6.684694219556889), # 52 (5.3238102941176475, 13.469929829545457, 13.438952777777779, 10.98944591503268, 12.559151418439718, 6.622663601532567), # 53 (5.331320716112533, 13.479163636363635, 13.398208695652173, 10.980282352941177, 12.531114893617023, 6.559257571214393), # 54 (5.338690856777493, 13.488174715909091, 13.356325483091787, 10.970812908496733, 12.502171985815604, 6.494575628852241), # 55 (5.3459260869565215, 13.496961363636363, 13.313351690821257, 10.961044444444445, 12.472346099290782, 6.428717274695986), # 56 (5.353031777493607, 13.505521875000003, 13.269335869565218, 10.950983823529413, 12.441660638297872, 6.361782008995502), # 57 (5.360013299232737, 13.513854545454544, 13.224326570048309, 10.940637908496733, 12.410139007092198, 6.293869332000667), # 58 (0.0, 0.0, 0.0, 0.0, 0.0, 0.0), # 59 ) passenger_arriving_acc = ( (4, 10, 7, 6, 3, 0, 9, 9, 3, 9, 4, 0), # 0 (8, 21, 16, 6, 4, 0, 18, 19, 10, 16, 5, 0), # 1 (16, 30, 24, 10, 8, 0, 24, 32, 17, 19, 9, 0), # 2 (18, 43, 29, 16, 8, 0, 32, 46, 23, 24, 15, 0), # 3 (23, 48, 37, 20, 14, 0, 40, 49, 30, 31, 19, 0), # 4 (25, 60, 44, 24, 16, 0, 44, 55, 33, 35, 19, 0), # 5 (31, 77, 55, 27, 16, 0, 52, 67, 39, 43, 23, 0), # 6 (32, 83, 64, 28, 22, 0, 59, 78, 47, 52, 23, 0), # 7 (40, 92, 73, 34, 24, 0, 69, 87, 52, 55, 25, 0), # 8 (43, 107, 81, 39, 29, 0, 74, 97, 61, 64, 28, 0), # 9 (47, 118, 83, 44, 33, 0, 83, 105, 65, 74, 30, 0), # 10 (54, 122, 90, 45, 36, 0, 84, 115, 72, 77, 32, 0), # 11 (57, 135, 97, 47, 38, 0, 95, 127, 76, 85, 33, 0), # 12 (57, 144, 106, 51, 39, 0, 100, 136, 81, 89, 35, 0), # 13 (63, 156, 121, 56, 42, 0, 102, 146, 86, 92, 36, 0), # 14 (69, 178, 132, 58, 45, 0, 105, 158, 91, 101, 39, 0), # 15 (71, 185, 142, 63, 48, 0, 110, 169, 97, 102, 42, 0), # 16 (78, 191, 150, 66, 49, 0, 117, 180, 104, 109, 43, 0), # 17 (81, 199, 165, 70, 51, 0, 123, 195, 109, 113, 43, 0), # 18 (87, 209, 169, 74, 53, 0, 132, 204, 116, 116, 45, 0), # 19 (95, 222, 175, 79, 58, 0, 141, 214, 119, 122, 50, 0), # 20 (99, 232, 183, 83, 59, 0, 143, 226, 124, 123, 53, 0), # 21 (105, 243, 188, 83, 63, 0, 151, 233, 129, 124, 54, 0), # 22 (108, 252, 193, 89, 66, 0, 161, 241, 139, 134, 55, 0), # 23 (112, 259, 202, 92, 66, 0, 167, 254, 146, 141, 60, 0), # 24 (116, 267, 207, 96, 68, 0, 174, 258, 153, 145, 65, 0), # 25 (124, 271, 211, 100, 71, 0, 183, 264, 158, 154, 69, 0), # 26 (129, 281, 217, 109, 72, 0, 192, 273, 166, 159, 73, 0), # 27 (131, 294, 222, 112, 75, 0, 204, 283, 171, 166, 78, 0), # 28 (140, 300, 232, 118, 78, 0, 214, 286, 178, 176, 79, 0), # 29 (144, 309, 239, 124, 82, 0, 218, 302, 187, 183, 82, 0), # 30 (147, 315, 248, 130, 86, 0, 228, 309, 193, 184, 84, 0), # 31 (150, 326, 259, 134, 88, 0, 235, 316, 194, 188, 90, 0), # 32 (154, 340, 268, 137, 92, 0, 243, 323, 201, 192, 94, 0), # 33 (159, 348, 277, 142, 94, 0, 249, 334, 207, 204, 97, 0), # 34 (163, 361, 284, 149, 96, 0, 255, 341, 215, 208, 99, 0), # 35 (169, 372, 291, 155, 101, 0, 265, 349, 220, 212, 99, 0), # 36 (178, 378, 296, 159, 103, 0, 274, 358, 226, 217, 100, 0), # 37 (185, 385, 299, 165, 103, 0, 285, 361, 231, 219, 101, 0), # 38 (192, 390, 311, 171, 107, 0, 292, 371, 238, 227, 102, 0), # 39 (204, 400, 320, 174, 109, 0, 298, 385, 242, 231, 105, 0), # 40 (211, 408, 327, 176, 112, 0, 303, 396, 249, 236, 109, 0), # 41 (216, 418, 335, 181, 118, 0, 309, 411, 258, 241, 112, 0), # 42 (224, 426, 340, 182, 118, 0, 314, 420, 264, 247, 114, 0), # 43 (226, 436, 346, 186, 120, 0, 321, 431, 265, 257, 118, 0), # 44 (230, 454, 355, 195, 120, 0, 331, 441, 273, 262, 122, 0), # 45 (238, 465, 359, 199, 126, 0, 335, 449, 277, 268, 123, 0), # 46 (240, 479, 370, 204, 130, 0, 340, 457, 281, 274, 128, 0), # 47 (244, 484, 373, 208, 133, 0, 349, 465, 286, 280, 132, 0), # 48 (249, 498, 381, 211, 134, 0, 354, 474, 292, 284, 135, 0), # 49 (255, 511, 387, 215, 138, 0, 363, 486, 303, 288, 141, 0), # 50 (266, 520, 396, 218, 139, 0, 370, 498, 312, 294, 145, 0), # 51 (270, 529, 401, 227, 140, 0, 377, 510, 316, 296, 145, 0), # 52 (277, 538, 409, 235, 140, 0, 380, 521, 322, 304, 148, 0), # 53 (283, 550, 420, 236, 140, 0, 387, 530, 325, 309, 151, 0), # 54 (286, 560, 427, 239, 144, 0, 394, 536, 330, 313, 154, 0), # 55 (295, 562, 433, 242, 147, 0, 400, 545, 338, 318, 155, 0), # 56 (303, 569, 440, 248, 149, 0, 404, 552, 348, 324, 159, 0), # 57 (307, 585, 448, 249, 150, 0, 408, 566, 351, 333, 159, 0), # 58 (307, 585, 448, 249, 150, 0, 408, 566, 351, 333, 159, 0), # 59 ) passenger_arriving_rate = ( (4.239442493415277, 8.699469696969697, 7.674466580976864, 4.055217391304347, 2.2857692307692306, 0.0, 7.610869565217392, 9.143076923076922, 6.082826086956521, 5.1163110539845755, 2.174867424242424, 0.0), # 0 (4.27923521607648, 8.796213246352414, 7.715918916023995, 4.077801207729468, 2.3029012820512818, 0.0, 7.608275422705315, 9.211605128205127, 6.116701811594203, 5.1439459440159965, 2.1990533115881035, 0.0), # 1 (4.318573563554774, 8.891521795735128, 7.7563873179091685, 4.099887922705314, 2.3196717948717946, 0.0, 7.60560193236715, 9.278687179487179, 6.1498318840579715, 5.170924878606112, 2.222880448933782, 0.0), # 2 (4.357424143985952, 8.9852925, 7.795842223650386, 4.121458695652173, 2.336065384615385, 0.0, 7.60284945652174, 9.34426153846154, 6.18218804347826, 5.197228149100257, 2.246323125, 0.0), # 3 (4.395753565505805, 9.07742251402918, 7.834254070265637, 4.142494685990338, 2.352066666666667, 0.0, 7.600018357487922, 9.408266666666668, 6.213742028985508, 5.222836046843758, 2.269355628507295, 0.0), # 4 (4.433528436250122, 9.167808992704828, 7.8715932947729215, 4.1629770531400965, 2.367660256410256, 0.0, 7.597108997584541, 9.470641025641024, 6.244465579710145, 5.247728863181948, 2.291952248176207, 0.0), # 5 (4.470715364354698, 9.25634909090909, 7.907830334190233, 4.182886956521739, 2.382830769230769, 0.0, 7.594121739130435, 9.531323076923076, 6.274330434782609, 5.271886889460156, 2.3140872727272725, 0.0), # 6 (4.507280957955322, 9.34293996352413, 7.942935625535561, 4.2022055555555555, 2.397562820512821, 0.0, 7.591056944444445, 9.590251282051284, 6.303308333333334, 5.295290417023708, 2.3357349908810323, 0.0), # 7 (4.543191825187787, 9.427478765432097, 7.976879605826908, 4.220914009661835, 2.4118410256410256, 0.0, 7.587914975845411, 9.647364102564103, 6.3313710144927535, 5.317919737217938, 2.3568696913580243, 0.0), # 8 (4.578414574187884, 9.509862651515151, 8.009632712082263, 4.23899347826087, 2.4256499999999996, 0.0, 7.584696195652175, 9.702599999999999, 6.358490217391305, 5.339755141388175, 2.377465662878788, 0.0), # 9 (4.612915813091406, 9.589988776655444, 8.041165381319622, 4.256425120772947, 2.438974358974359, 0.0, 7.581400966183574, 9.755897435897436, 6.384637681159421, 5.360776920879748, 2.397497194163861, 0.0), # 10 (4.646662150034143, 9.66775429573513, 8.071448050556983, 4.273190096618357, 2.4517987179487175, 0.0, 7.578029649758455, 9.80719487179487, 6.409785144927537, 5.380965367037988, 2.4169385739337823, 0.0), # 11 (4.679620193151888, 9.743056363636363, 8.100451156812339, 4.289269565217391, 2.4641076923076923, 0.0, 7.574582608695652, 9.85643076923077, 6.433904347826087, 5.400300771208226, 2.4357640909090907, 0.0), # 12 (4.71175655058043, 9.815792135241303, 8.128145137103683, 4.304644685990338, 2.475885897435898, 0.0, 7.5710602053140095, 9.903543589743592, 6.456967028985507, 5.418763424735789, 2.4539480338103257, 0.0), # 13 (4.743037830455566, 9.8858587654321, 8.154500428449014, 4.3192966183574875, 2.4871179487179482, 0.0, 7.567462801932367, 9.948471794871793, 6.478944927536231, 5.4363336189660085, 2.471464691358025, 0.0), # 14 (4.773430640913081, 9.953153409090907, 8.179487467866322, 4.33320652173913, 2.4977884615384616, 0.0, 7.563790760869566, 9.991153846153846, 6.499809782608695, 5.452991645244214, 2.488288352272727, 0.0), # 15 (4.802901590088772, 10.017573221099887, 8.203076692373608, 4.346355555555555, 2.507882051282051, 0.0, 7.560044444444445, 10.031528205128204, 6.519533333333333, 5.468717794915738, 2.504393305274972, 0.0), # 16 (4.831417286118428, 10.079015356341188, 8.22523853898886, 4.358724879227053, 2.517383333333333, 0.0, 7.556224214975846, 10.069533333333332, 6.538087318840581, 5.483492359325907, 2.519753839085297, 0.0), # 17 (4.8589443371378405, 10.13737696969697, 8.245943444730077, 4.370295652173914, 2.5262769230769235, 0.0, 7.552330434782609, 10.105107692307694, 6.55544347826087, 5.4972956298200515, 2.5343442424242424, 0.0), # 18 (4.8854493512828014, 10.192555216049382, 8.265161846615253, 4.381049033816424, 2.534547435897436, 0.0, 7.5483634661835755, 10.138189743589743, 6.571573550724637, 5.510107897743501, 2.5481388040123454, 0.0), # 19 (4.910898936689104, 10.244447250280581, 8.282864181662381, 4.3909661835748794, 2.542179487179487, 0.0, 7.544323671497584, 10.168717948717948, 6.58644927536232, 5.5219094544415865, 2.5611118125701453, 0.0), # 20 (4.935259701492538, 10.292950227272724, 8.299020886889462, 4.400028260869565, 2.5491576923076917, 0.0, 7.540211413043479, 10.196630769230767, 6.600042391304348, 5.53268059125964, 2.573237556818181, 0.0), # 21 (4.958498253828894, 10.337961301907969, 8.313602399314481, 4.408216425120773, 2.555466666666666, 0.0, 7.5360270531400975, 10.221866666666664, 6.6123246376811595, 5.542401599542987, 2.584490325476992, 0.0), # 22 (4.980581201833967, 10.379377629068463, 8.326579155955441, 4.415511835748792, 2.5610910256410255, 0.0, 7.531770954106282, 10.244364102564102, 6.623267753623189, 5.551052770636961, 2.5948444072671157, 0.0), # 23 (5.001475153643547, 10.417096363636363, 8.337921593830332, 4.421895652173912, 2.5660153846153846, 0.0, 7.52744347826087, 10.264061538461538, 6.632843478260869, 5.558614395886888, 2.6042740909090907, 0.0), # 24 (5.0211467173934246, 10.451014660493826, 8.347600149957156, 4.427349033816426, 2.5702243589743587, 0.0, 7.523044987922706, 10.280897435897435, 6.641023550724639, 5.565066766638103, 2.6127536651234564, 0.0), # 25 (5.039562501219393, 10.481029674523006, 8.355585261353898, 4.431853140096617, 2.5737025641025637, 0.0, 7.518575845410628, 10.294810256410255, 6.647779710144927, 5.570390174235932, 2.6202574186307515, 0.0), # 26 (5.056689113257243, 10.507038560606059, 8.361847365038559, 4.435389130434783, 2.5764346153846156, 0.0, 7.514036413043479, 10.305738461538462, 6.653083695652175, 5.574564910025706, 2.6267596401515148, 0.0), # 27 (5.072493161642767, 10.52893847362514, 8.366356898029135, 4.437938164251207, 2.578405128205128, 0.0, 7.509427053140097, 10.313620512820512, 6.656907246376812, 5.5775712653527565, 2.632234618406285, 0.0), # 28 (5.086941254511755, 10.546626568462402, 8.369084297343615, 4.439481400966184, 2.579598717948718, 0.0, 7.504748128019324, 10.318394871794872, 6.659222101449276, 5.57938953156241, 2.6366566421156006, 0.0), # 29 (5.1000000000000005, 10.56, 8.370000000000001, 4.44, 2.58, 0.0, 7.5, 10.32, 6.660000000000001, 5.58, 2.64, 0.0), # 30 (5.112219245524297, 10.571108863636361, 8.369313550724637, 4.439906339869282, 2.5798539716312057, 0.0, 7.4934020156588375, 10.319415886524823, 6.659859509803923, 5.579542367149758, 2.6427772159090903, 0.0), # 31 (5.124174680306906, 10.582070909090909, 8.367273623188405, 4.439627189542483, 2.5794190070921985, 0.0, 7.483239613526571, 10.317676028368794, 6.659440784313724, 5.578182415458937, 2.6455177272727273, 0.0), # 32 (5.135871675191815, 10.592884772727274, 8.363909347826088, 4.439165294117647, 2.5786997872340423, 0.0, 7.469612293853072, 10.314799148936169, 6.658747941176471, 5.575939565217392, 2.6482211931818185, 0.0), # 33 (5.147315601023018, 10.603549090909091, 8.359249855072465, 4.438523398692811, 2.5777009929078014, 0.0, 7.452619556888223, 10.310803971631206, 6.657785098039217, 5.572833236714976, 2.6508872727272728, 0.0), # 34 (5.158511828644501, 10.614062499999998, 8.353324275362318, 4.437704248366013, 2.576427304964539, 0.0, 7.432360902881893, 10.305709219858157, 6.65655637254902, 5.568882850241546, 2.6535156249999994, 0.0), # 35 (5.169465728900256, 10.624423636363638, 8.346161739130434, 4.436710588235294, 2.5748834042553193, 0.0, 7.408935832083959, 10.299533617021277, 6.655065882352941, 5.564107826086956, 2.6561059090909094, 0.0), # 36 (5.180182672634271, 10.634631136363637, 8.337791376811595, 4.435545163398693, 2.573073971631205, 0.0, 7.382443844744294, 10.29229588652482, 6.65331774509804, 5.558527584541062, 2.6586577840909094, 0.0), # 37 (5.190668030690537, 10.644683636363636, 8.32824231884058, 4.4342107189542475, 2.5710036879432625, 0.0, 7.352984441112776, 10.28401475177305, 6.651316078431372, 5.5521615458937195, 2.661170909090909, 0.0), # 38 (5.200927173913044, 10.654579772727272, 8.317543695652173, 4.43271, 2.568677234042553, 0.0, 7.32065712143928, 10.274708936170212, 6.649065, 5.545029130434782, 2.663644943181818, 0.0), # 39 (5.21096547314578, 10.664318181818182, 8.305724637681159, 4.431045751633987, 2.566099290780141, 0.0, 7.285561385973679, 10.264397163120565, 6.646568627450981, 5.537149758454106, 2.6660795454545454, 0.0), # 40 (5.220788299232737, 10.673897499999997, 8.29281427536232, 4.429220718954248, 2.563274539007092, 0.0, 7.247796734965852, 10.253098156028368, 6.643831078431373, 5.5285428502415455, 2.6684743749999993, 0.0), # 41 (5.230401023017903, 10.683316363636365, 8.278841739130435, 4.427237647058823, 2.560207659574468, 0.0, 7.207462668665667, 10.240830638297872, 6.640856470588235, 5.519227826086957, 2.6708290909090913, 0.0), # 42 (5.239809015345269, 10.692573409090908, 8.26383615942029, 4.4250992810457515, 2.556903333333333, 0.0, 7.164658687323005, 10.227613333333332, 6.637648921568627, 5.509224106280192, 2.673143352272727, 0.0), # 43 (5.249017647058824, 10.701667272727272, 8.247826666666667, 4.422808366013072, 2.5533662411347517, 0.0, 7.119484291187739, 10.213464964539007, 6.634212549019608, 5.498551111111111, 2.675416818181818, 0.0), # 44 (5.258032289002557, 10.71059659090909, 8.23084239130435, 4.420367647058823, 2.5496010638297872, 0.0, 7.072038980509745, 10.198404255319149, 6.630551470588235, 5.487228260869566, 2.6776491477272724, 0.0), # 45 (5.266858312020461, 10.71936, 8.212912463768117, 4.417779869281045, 2.5456124822695037, 0.0, 7.022422255538898, 10.182449929078015, 6.626669803921568, 5.475274975845411, 2.67984, 0.0), # 46 (5.275501086956522, 10.727956136363636, 8.194066014492753, 4.415047777777778, 2.5414051773049646, 0.0, 6.970733616525071, 10.165620709219858, 6.6225716666666665, 5.462710676328501, 2.681989034090909, 0.0), # 47 (5.283965984654732, 10.736383636363637, 8.174332173913044, 4.412174117647059, 2.536983829787234, 0.0, 6.9170725637181425, 10.147935319148935, 6.618261176470588, 5.449554782608695, 2.6840959090909093, 0.0), # 48 (5.292258375959079, 10.744641136363633, 8.15374007246377, 4.409161633986929, 2.5323531205673757, 0.0, 6.861538597367982, 10.129412482269503, 6.613742450980394, 5.435826714975845, 2.6861602840909082, 0.0), # 49 (5.300383631713555, 10.752727272727268, 8.13231884057971, 4.406013071895425, 2.527517730496454, 0.0, 6.804231217724471, 10.110070921985816, 6.6090196078431385, 5.421545893719807, 2.688181818181817, 0.0), # 50 (5.308347122762149, 10.760640681818181, 8.110097608695652, 4.4027311764705885, 2.5224823404255314, 0.0, 6.7452499250374816, 10.089929361702126, 6.604096764705883, 5.406731739130435, 2.6901601704545453, 0.0), # 51 (5.316154219948849, 10.768379999999999, 8.087105507246376, 4.399318692810457, 2.517251631205674, 0.0, 6.684694219556889, 10.069006524822695, 6.5989780392156865, 5.391403671497584, 2.6920949999999997, 0.0), # 52 (5.3238102941176475, 10.775943863636364, 8.063371666666667, 4.395778366013072, 2.5118302836879436, 0.0, 6.622663601532567, 10.047321134751774, 6.593667549019608, 5.375581111111111, 2.693985965909091, 0.0), # 53 (5.331320716112533, 10.783330909090907, 8.038925217391304, 4.392112941176471, 2.5062229787234043, 0.0, 6.559257571214393, 10.024891914893617, 6.5881694117647065, 5.359283478260869, 2.6958327272727267, 0.0), # 54 (5.338690856777493, 10.790539772727271, 8.013795289855072, 4.388325163398693, 2.5004343971631204, 0.0, 6.494575628852241, 10.001737588652482, 6.58248774509804, 5.342530193236715, 2.697634943181818, 0.0), # 55 (5.3459260869565215, 10.79756909090909, 7.988011014492754, 4.384417777777777, 2.494469219858156, 0.0, 6.428717274695986, 9.977876879432625, 6.576626666666667, 5.325340676328502, 2.6993922727272723, 0.0), # 56 (5.353031777493607, 10.804417500000001, 7.96160152173913, 4.380393529411765, 2.4883321276595742, 0.0, 6.361782008995502, 9.953328510638297, 6.570590294117648, 5.307734347826087, 2.7011043750000003, 0.0), # 57 (5.360013299232737, 10.811083636363634, 7.934595942028984, 4.376255163398692, 2.4820278014184396, 0.0, 6.293869332000667, 9.928111205673758, 6.564382745098039, 5.289730628019323, 2.7027709090909084, 0.0), # 58 (0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0), # 59 ) passenger_allighting_rate = ( (0, 0.16666666666666666, 0.16666666666666666, 0.16666666666666666, 0.16666666666666666, 1, 0, 0.16666666666666666, 0.16666666666666666, 0.16666666666666666, 0.16666666666666666, 1), # 0 (0, 0.16666666666666666, 0.16666666666666666, 0.16666666666666666, 0.16666666666666666, 1, 0, 0.16666666666666666, 0.16666666666666666, 0.16666666666666666, 0.16666666666666666, 1), # 1 (0, 0.16666666666666666, 0.16666666666666666, 0.16666666666666666, 0.16666666666666666, 1, 0, 0.16666666666666666, 0.16666666666666666, 0.16666666666666666, 0.16666666666666666, 1), # 2 (0, 0.16666666666666666, 0.16666666666666666, 0.16666666666666666, 0.16666666666666666, 1, 0, 0.16666666666666666, 0.16666666666666666, 0.16666666666666666, 0.16666666666666666, 1), # 3 (0, 0.16666666666666666, 0.16666666666666666, 0.16666666666666666, 0.16666666666666666, 1, 0, 0.16666666666666666, 0.16666666666666666, 0.16666666666666666, 0.16666666666666666, 1), # 4 (0, 0.16666666666666666, 0.16666666666666666, 0.16666666666666666, 0.16666666666666666, 1, 0, 0.16666666666666666, 0.16666666666666666, 0.16666666666666666, 0.16666666666666666, 1), # 5 (0, 0.16666666666666666, 0.16666666666666666, 0.16666666666666666, 0.16666666666666666, 1, 0, 0.16666666666666666, 0.16666666666666666, 0.16666666666666666, 0.16666666666666666, 1), # 6 (0, 0.16666666666666666, 0.16666666666666666, 0.16666666666666666, 0.16666666666666666, 1, 0, 0.16666666666666666, 0.16666666666666666, 0.16666666666666666, 0.16666666666666666, 1), # 7 (0, 0.16666666666666666, 0.16666666666666666, 0.16666666666666666, 0.16666666666666666, 1, 0, 0.16666666666666666, 0.16666666666666666, 0.16666666666666666, 0.16666666666666666, 1), # 8 (0, 0.16666666666666666, 0.16666666666666666, 0.16666666666666666, 0.16666666666666666, 1, 0, 0.16666666666666666, 0.16666666666666666, 0.16666666666666666, 0.16666666666666666, 1), # 9 (0, 0.16666666666666666, 0.16666666666666666, 0.16666666666666666, 0.16666666666666666, 1, 0, 0.16666666666666666, 0.16666666666666666, 0.16666666666666666, 0.16666666666666666, 1), # 10 (0, 0.16666666666666666, 0.16666666666666666, 0.16666666666666666, 0.16666666666666666, 1, 0, 0.16666666666666666, 0.16666666666666666, 0.16666666666666666, 0.16666666666666666, 1), # 11 (0, 0.16666666666666666, 0.16666666666666666, 0.16666666666666666, 0.16666666666666666, 1, 0, 0.16666666666666666, 0.16666666666666666, 0.16666666666666666, 0.16666666666666666, 1), # 12 (0, 0.16666666666666666, 0.16666666666666666, 0.16666666666666666, 0.16666666666666666, 1, 0, 0.16666666666666666, 0.16666666666666666, 0.16666666666666666, 0.16666666666666666, 1), # 13 (0, 0.16666666666666666, 0.16666666666666666, 0.16666666666666666, 0.16666666666666666, 1, 0, 0.16666666666666666, 0.16666666666666666, 0.16666666666666666, 0.16666666666666666, 1), # 14 (0, 0.16666666666666666, 0.16666666666666666, 0.16666666666666666, 0.16666666666666666, 1, 0, 0.16666666666666666, 0.16666666666666666, 0.16666666666666666, 0.16666666666666666, 1), # 15 (0, 0.16666666666666666, 0.16666666666666666, 0.16666666666666666, 0.16666666666666666, 1, 0, 0.16666666666666666, 0.16666666666666666, 0.16666666666666666, 0.16666666666666666, 1), # 16 (0, 0.16666666666666666, 0.16666666666666666, 0.16666666666666666, 0.16666666666666666, 1, 0, 0.16666666666666666, 0.16666666666666666, 0.16666666666666666, 0.16666666666666666, 1), # 17 (0, 0.16666666666666666, 0.16666666666666666, 0.16666666666666666, 0.16666666666666666, 1, 0, 0.16666666666666666, 0.16666666666666666, 0.16666666666666666, 0.16666666666666666, 1), # 18 (0, 0.16666666666666666, 0.16666666666666666, 0.16666666666666666, 0.16666666666666666, 1, 0, 0.16666666666666666, 0.16666666666666666, 0.16666666666666666, 0.16666666666666666, 1), # 19 (0, 0.16666666666666666, 0.16666666666666666, 0.16666666666666666, 0.16666666666666666, 1, 0, 0.16666666666666666, 0.16666666666666666, 0.16666666666666666, 0.16666666666666666, 1), # 20 (0, 0.16666666666666666, 0.16666666666666666, 0.16666666666666666, 0.16666666666666666, 1, 0, 0.16666666666666666, 0.16666666666666666, 0.16666666666666666, 0.16666666666666666, 1), # 21 (0, 0.16666666666666666, 0.16666666666666666, 0.16666666666666666, 0.16666666666666666, 1, 0, 0.16666666666666666, 0.16666666666666666, 0.16666666666666666, 0.16666666666666666, 1), # 22 (0, 0.16666666666666666, 0.16666666666666666, 0.16666666666666666, 0.16666666666666666, 1, 0, 0.16666666666666666, 0.16666666666666666, 0.16666666666666666, 0.16666666666666666, 1), # 23 (0, 0.16666666666666666, 0.16666666666666666, 0.16666666666666666, 0.16666666666666666, 1, 0, 0.16666666666666666, 0.16666666666666666, 0.16666666666666666, 0.16666666666666666, 1), # 24 (0, 0.16666666666666666, 0.16666666666666666, 0.16666666666666666, 0.16666666666666666, 1, 0, 0.16666666666666666, 0.16666666666666666, 0.16666666666666666, 0.16666666666666666, 1), # 25 (0, 0.16666666666666666, 0.16666666666666666, 0.16666666666666666, 0.16666666666666666, 1, 0, 0.16666666666666666, 0.16666666666666666, 0.16666666666666666, 0.16666666666666666, 1), # 26 (0, 0.16666666666666666, 0.16666666666666666, 0.16666666666666666, 0.16666666666666666, 1, 0, 0.16666666666666666, 0.16666666666666666, 0.16666666666666666, 0.16666666666666666, 1), # 27 (0, 0.16666666666666666, 0.16666666666666666, 0.16666666666666666, 0.16666666666666666, 1, 0, 0.16666666666666666, 0.16666666666666666, 0.16666666666666666, 0.16666666666666666, 1), # 28 (0, 0.16666666666666666, 0.16666666666666666, 0.16666666666666666, 0.16666666666666666, 1, 0, 0.16666666666666666, 0.16666666666666666, 0.16666666666666666, 0.16666666666666666, 1), # 29 (0, 0.16666666666666666, 0.16666666666666666, 0.16666666666666666, 0.16666666666666666, 1, 0, 0.16666666666666666, 0.16666666666666666, 0.16666666666666666, 0.16666666666666666, 1), # 30 (0, 0.16666666666666666, 0.16666666666666666, 0.16666666666666666, 0.16666666666666666, 1, 0, 0.16666666666666666, 0.16666666666666666, 0.16666666666666666, 0.16666666666666666, 1), # 31 (0, 0.16666666666666666, 0.16666666666666666, 0.16666666666666666, 0.16666666666666666, 1, 0, 0.16666666666666666, 0.16666666666666666, 0.16666666666666666, 0.16666666666666666, 1), # 32 (0, 0.16666666666666666, 0.16666666666666666, 0.16666666666666666, 0.16666666666666666, 1, 0, 0.16666666666666666, 0.16666666666666666, 0.16666666666666666, 0.16666666666666666, 1), # 33 (0, 0.16666666666666666, 0.16666666666666666, 0.16666666666666666, 0.16666666666666666, 1, 0, 0.16666666666666666, 0.16666666666666666, 0.16666666666666666, 0.16666666666666666, 1), # 34 (0, 0.16666666666666666, 0.16666666666666666, 0.16666666666666666, 0.16666666666666666, 1, 0, 0.16666666666666666, 0.16666666666666666, 0.16666666666666666, 0.16666666666666666, 1), # 35 (0, 0.16666666666666666, 0.16666666666666666, 0.16666666666666666, 0.16666666666666666, 1, 0, 0.16666666666666666, 0.16666666666666666, 0.16666666666666666, 0.16666666666666666, 1), # 36 (0, 0.16666666666666666, 0.16666666666666666, 0.16666666666666666, 0.16666666666666666, 1, 0, 0.16666666666666666, 0.16666666666666666, 0.16666666666666666, 0.16666666666666666, 1), # 37 (0, 0.16666666666666666, 0.16666666666666666, 0.16666666666666666, 0.16666666666666666, 1, 0, 0.16666666666666666, 0.16666666666666666, 0.16666666666666666, 0.16666666666666666, 1), # 38 (0, 0.16666666666666666, 0.16666666666666666, 0.16666666666666666, 0.16666666666666666, 1, 0, 0.16666666666666666, 0.16666666666666666, 0.16666666666666666, 0.16666666666666666, 1), # 39 (0, 0.16666666666666666, 0.16666666666666666, 0.16666666666666666, 0.16666666666666666, 1, 0, 0.16666666666666666, 0.16666666666666666, 0.16666666666666666, 0.16666666666666666, 1), # 40 (0, 0.16666666666666666, 0.16666666666666666, 0.16666666666666666, 0.16666666666666666, 1, 0, 0.16666666666666666, 0.16666666666666666, 0.16666666666666666, 0.16666666666666666, 1), # 41 (0, 0.16666666666666666, 0.16666666666666666, 0.16666666666666666, 0.16666666666666666, 1, 0, 0.16666666666666666, 0.16666666666666666, 0.16666666666666666, 0.16666666666666666, 1), # 42 (0, 0.16666666666666666, 0.16666666666666666, 0.16666666666666666, 0.16666666666666666, 1, 0, 0.16666666666666666, 0.16666666666666666, 0.16666666666666666, 0.16666666666666666, 1), # 43 (0, 0.16666666666666666, 0.16666666666666666, 0.16666666666666666, 0.16666666666666666, 1, 0, 0.16666666666666666, 0.16666666666666666, 0.16666666666666666, 0.16666666666666666, 1), # 44 (0, 0.16666666666666666, 0.16666666666666666, 0.16666666666666666, 0.16666666666666666, 1, 0, 0.16666666666666666, 0.16666666666666666, 0.16666666666666666, 0.16666666666666666, 1), # 45 (0, 0.16666666666666666, 0.16666666666666666, 0.16666666666666666, 0.16666666666666666, 1, 0, 0.16666666666666666, 0.16666666666666666, 0.16666666666666666, 0.16666666666666666, 1), # 46 (0, 0.16666666666666666, 0.16666666666666666, 0.16666666666666666, 0.16666666666666666, 1, 0, 0.16666666666666666, 0.16666666666666666, 0.16666666666666666, 0.16666666666666666, 1), # 47 (0, 0.16666666666666666, 0.16666666666666666, 0.16666666666666666, 0.16666666666666666, 1, 0, 0.16666666666666666, 0.16666666666666666, 0.16666666666666666, 0.16666666666666666, 1), # 48 (0, 0.16666666666666666, 0.16666666666666666, 0.16666666666666666, 0.16666666666666666, 1, 0, 0.16666666666666666, 0.16666666666666666, 0.16666666666666666, 0.16666666666666666, 1), # 49 (0, 0.16666666666666666, 0.16666666666666666, 0.16666666666666666, 0.16666666666666666, 1, 0, 0.16666666666666666, 0.16666666666666666, 0.16666666666666666, 0.16666666666666666, 1), # 50 (0, 0.16666666666666666, 0.16666666666666666, 0.16666666666666666, 0.16666666666666666, 1, 0, 0.16666666666666666, 0.16666666666666666, 0.16666666666666666, 0.16666666666666666, 1), # 51 (0, 0.16666666666666666, 0.16666666666666666, 0.16666666666666666, 0.16666666666666666, 1, 0, 0.16666666666666666, 0.16666666666666666, 0.16666666666666666, 0.16666666666666666, 1), # 52 (0, 0.16666666666666666, 0.16666666666666666, 0.16666666666666666, 0.16666666666666666, 1, 0, 0.16666666666666666, 0.16666666666666666, 0.16666666666666666, 0.16666666666666666, 1), # 53 (0, 0.16666666666666666, 0.16666666666666666, 0.16666666666666666, 0.16666666666666666, 1, 0, 0.16666666666666666, 0.16666666666666666, 0.16666666666666666, 0.16666666666666666, 1), # 54 (0, 0.16666666666666666, 0.16666666666666666, 0.16666666666666666, 0.16666666666666666, 1, 0, 0.16666666666666666, 0.16666666666666666, 0.16666666666666666, 0.16666666666666666, 1), # 55 (0, 0.16666666666666666, 0.16666666666666666, 0.16666666666666666, 0.16666666666666666, 1, 0, 0.16666666666666666, 0.16666666666666666, 0.16666666666666666, 0.16666666666666666, 1), # 56 (0, 0.16666666666666666, 0.16666666666666666, 0.16666666666666666, 0.16666666666666666, 1, 0, 0.16666666666666666, 0.16666666666666666, 0.16666666666666666, 0.16666666666666666, 1), # 57 (0, 0.16666666666666666, 0.16666666666666666, 0.16666666666666666, 0.16666666666666666, 1, 0, 0.16666666666666666, 0.16666666666666666, 0.16666666666666666, 0.16666666666666666, 1), # 58 (0, 0.16666666666666666, 0.16666666666666666, 0.16666666666666666, 0.16666666666666666, 1, 0, 0.16666666666666666, 0.16666666666666666, 0.16666666666666666, 0.16666666666666666, 1), # 59 ) """ parameters for reproducibiliy. More information: https://numpy.org/doc/stable/reference/random/parallel.html """ #initial entropy entropy = 258194110137029475889902652135037600173 #index for seed sequence child child_seed_index = ( 1, # 0 41, # 1 )
113.641791
214
0.730391
5,147
38,070
5.400233
0.230814
0.310847
0.246087
0.466271
0.326606
0.325814
0.325814
0.325814
0.325814
0.325814
0
0.820002
0.118571
38,070
334
215
113.982036
0.008314
0.03181
0
0.202532
0
0
0
0
0
0
0
0
0
1
0
false
0.015823
0
0
0
0
0
0
0
null
1
1
1
0
0
0
0
0
0
0
1
0
0
0
0
1
1
0
0
0
0
0
0
0
null
0
0
0
0
0
0
0
0
0
0
0
0
0
6