hexsha
string
size
int64
ext
string
lang
string
max_stars_repo_path
string
max_stars_repo_name
string
max_stars_repo_head_hexsha
string
max_stars_repo_licenses
list
max_stars_count
int64
max_stars_repo_stars_event_min_datetime
string
max_stars_repo_stars_event_max_datetime
string
max_issues_repo_path
string
max_issues_repo_name
string
max_issues_repo_head_hexsha
string
max_issues_repo_licenses
list
max_issues_count
int64
max_issues_repo_issues_event_min_datetime
string
max_issues_repo_issues_event_max_datetime
string
max_forks_repo_path
string
max_forks_repo_name
string
max_forks_repo_head_hexsha
string
max_forks_repo_licenses
list
max_forks_count
int64
max_forks_repo_forks_event_min_datetime
string
max_forks_repo_forks_event_max_datetime
string
content
string
avg_line_length
float64
max_line_length
int64
alphanum_fraction
float64
qsc_code_num_words_quality_signal
int64
qsc_code_num_chars_quality_signal
float64
qsc_code_mean_word_length_quality_signal
float64
qsc_code_frac_words_unique_quality_signal
float64
qsc_code_frac_chars_top_2grams_quality_signal
float64
qsc_code_frac_chars_top_3grams_quality_signal
float64
qsc_code_frac_chars_top_4grams_quality_signal
float64
qsc_code_frac_chars_dupe_5grams_quality_signal
float64
qsc_code_frac_chars_dupe_6grams_quality_signal
float64
qsc_code_frac_chars_dupe_7grams_quality_signal
float64
qsc_code_frac_chars_dupe_8grams_quality_signal
float64
qsc_code_frac_chars_dupe_9grams_quality_signal
float64
qsc_code_frac_chars_dupe_10grams_quality_signal
float64
qsc_code_frac_chars_replacement_symbols_quality_signal
float64
qsc_code_frac_chars_digital_quality_signal
float64
qsc_code_frac_chars_whitespace_quality_signal
float64
qsc_code_size_file_byte_quality_signal
float64
qsc_code_num_lines_quality_signal
float64
qsc_code_num_chars_line_max_quality_signal
float64
qsc_code_num_chars_line_mean_quality_signal
float64
qsc_code_frac_chars_alphabet_quality_signal
float64
qsc_code_frac_chars_comments_quality_signal
float64
qsc_code_cate_xml_start_quality_signal
float64
qsc_code_frac_lines_dupe_lines_quality_signal
float64
qsc_code_cate_autogen_quality_signal
float64
qsc_code_frac_lines_long_string_quality_signal
float64
qsc_code_frac_chars_string_length_quality_signal
float64
qsc_code_frac_chars_long_word_length_quality_signal
float64
qsc_code_frac_lines_string_concat_quality_signal
float64
qsc_code_cate_encoded_data_quality_signal
float64
qsc_code_frac_chars_hex_words_quality_signal
float64
qsc_code_frac_lines_prompt_comments_quality_signal
float64
qsc_code_frac_lines_assert_quality_signal
float64
qsc_codepython_cate_ast_quality_signal
float64
qsc_codepython_frac_lines_func_ratio_quality_signal
float64
qsc_codepython_cate_var_zero_quality_signal
bool
qsc_codepython_frac_lines_pass_quality_signal
float64
qsc_codepython_frac_lines_import_quality_signal
float64
qsc_codepython_frac_lines_simplefunc_quality_signal
float64
qsc_codepython_score_lines_no_logic_quality_signal
float64
qsc_codepython_frac_lines_print_quality_signal
float64
qsc_code_num_words
int64
qsc_code_num_chars
int64
qsc_code_mean_word_length
int64
qsc_code_frac_words_unique
null
qsc_code_frac_chars_top_2grams
int64
qsc_code_frac_chars_top_3grams
int64
qsc_code_frac_chars_top_4grams
int64
qsc_code_frac_chars_dupe_5grams
int64
qsc_code_frac_chars_dupe_6grams
int64
qsc_code_frac_chars_dupe_7grams
int64
qsc_code_frac_chars_dupe_8grams
int64
qsc_code_frac_chars_dupe_9grams
int64
qsc_code_frac_chars_dupe_10grams
int64
qsc_code_frac_chars_replacement_symbols
int64
qsc_code_frac_chars_digital
int64
qsc_code_frac_chars_whitespace
int64
qsc_code_size_file_byte
int64
qsc_code_num_lines
int64
qsc_code_num_chars_line_max
int64
qsc_code_num_chars_line_mean
int64
qsc_code_frac_chars_alphabet
int64
qsc_code_frac_chars_comments
int64
qsc_code_cate_xml_start
int64
qsc_code_frac_lines_dupe_lines
int64
qsc_code_cate_autogen
int64
qsc_code_frac_lines_long_string
int64
qsc_code_frac_chars_string_length
int64
qsc_code_frac_chars_long_word_length
int64
qsc_code_frac_lines_string_concat
null
qsc_code_cate_encoded_data
int64
qsc_code_frac_chars_hex_words
int64
qsc_code_frac_lines_prompt_comments
int64
qsc_code_frac_lines_assert
int64
qsc_codepython_cate_ast
int64
qsc_codepython_frac_lines_func_ratio
int64
qsc_codepython_cate_var_zero
int64
qsc_codepython_frac_lines_pass
int64
qsc_codepython_frac_lines_import
int64
qsc_codepython_frac_lines_simplefunc
int64
qsc_codepython_score_lines_no_logic
int64
qsc_codepython_frac_lines_print
int64
effective
string
hits
int64
c4a3b7fd35e583f4df4df37c10b28021b5e84c76
184
py
Python
tensorboard/acceptance/__init__.py
DeepLearnI/atlas
8aca652d7e647b4e88530b93e265b536de7055ed
[ "Apache-2.0" ]
296
2020-03-16T19:55:00.000Z
2022-01-10T19:46:05.000Z
tensorboard/acceptance/__init__.py
DeepLearnI/atlas
8aca652d7e647b4e88530b93e265b536de7055ed
[ "Apache-2.0" ]
57
2020-03-17T11:15:57.000Z
2021-07-10T14:42:27.000Z
tensorboard/acceptance/__init__.py
DeepLearnI/atlas
8aca652d7e647b4e88530b93e265b536de7055ed
[ "Apache-2.0" ]
38
2020-03-17T21:06:05.000Z
2022-02-08T03:19:34.000Z
from .test_tensorboard_rest_api import TestTensorboardRestAPI from .test_tensorboard_server import TestTensorboardServer from .test_tensorboard_endpoints import TestTensorboardEndpoint
61.333333
63
0.923913
19
184
8.578947
0.578947
0.147239
0.349693
0
0
0
0
0
0
0
0
0
0.059783
184
3
63
61.333333
0.942197
0
0
0
0
0
0
0
0
0
0
0
0
1
0
true
0
1
0
1
0
1
0
0
null
0
1
0
0
0
0
0
0
0
0
0
0
0
1
0
0
0
0
0
0
0
0
0
0
null
0
0
0
0
0
0
1
0
1
0
0
0
0
5
c4b0cff3a089b5a105c23dc4c0935c7ecd2fb0ae
70
py
Python
checkout/orders/__init__.py
accelero-cloud/tutorials
9a9580e60bc216bf45ec0011f6d9b6b14d5a8d03
[ "Apache-2.0" ]
2
2019-08-09T16:15:40.000Z
2020-01-12T09:46:28.000Z
checkout/orders/__init__.py
accelero-cloud/tutorials
9a9580e60bc216bf45ec0011f6d9b6b14d5a8d03
[ "Apache-2.0" ]
2
2021-03-31T18:48:41.000Z
2021-12-13T19:49:46.000Z
checkout/orders/__init__.py
accelero-cloud/tutorials
9a9580e60bc216bf45ec0011f6d9b6b14d5a8d03
[ "Apache-2.0" ]
null
null
null
from checkout.orders.order_service import Order, AuthorisationRequest
35
69
0.885714
8
70
7.625
0.875
0
0
0
0
0
0
0
0
0
0
0
0.071429
70
1
70
70
0.938462
0
0
0
0
0
0
0
0
0
0
0
0
1
0
true
0
1
0
1
0
1
0
0
null
0
0
0
0
0
0
0
0
0
0
0
0
0
1
0
0
0
0
0
0
0
0
0
0
null
0
0
0
0
0
0
1
0
1
0
1
0
0
5
c4daf560e5af757855362756ff7ad96e183b2138
11,798
py
Python
pystratis/api/node/tests/test_node.py
TjadenFroyda/pyStratis
9cc7620d7506637f8a2b84003d931eceb36ac5f2
[ "MIT" ]
8
2021-06-30T20:44:22.000Z
2021-12-07T14:42:22.000Z
pystratis/api/node/tests/test_node.py
TjadenFroyda/pyStratis
9cc7620d7506637f8a2b84003d931eceb36ac5f2
[ "MIT" ]
2
2021-07-01T11:50:18.000Z
2022-01-25T18:39:49.000Z
pystratis/api/node/tests/test_node.py
TjadenFroyda/pyStratis
9cc7620d7506637f8a2b84003d931eceb36ac5f2
[ "MIT" ]
4
2021-07-01T04:36:42.000Z
2021-09-17T10:54:19.000Z
import pytest import ast from pytest_mock import MockerFixture from pystratis.api.node import Node from pystratis.api.node.responsemodels import * from pystratis.api import FullNodeState, FeatureInitializationState, LogRule from pystratis.core.networks import StraxMain, CirrusMain @pytest.mark.parametrize('network', [StraxMain(), CirrusMain()], ids=['StraxMain', 'CirrusMain']) def test_status_no_publish(mocker: MockerFixture, network): data = { 'agent': 'nodeagent', 'version': 'nodeversion', 'externalAddress': '[::0.0.0.0]', 'network': network.name, 'coin_ticker': 'STRAX' if 'Strax' in network.name else 'CRS', 'processId': '0', 'consensusHeight': 10, 'blockStoreHeight': 10, 'bestPeerHeight': 10, 'inboundPeers': [ { 'version': 1, 'remoteSocketEndpoint': '[::0.0.0.0]', 'tipHeight': 10 } ], 'outboundPeers': [ { 'version': 1, 'remoteSocketEndpoint': '[::0.0.0.0]', 'tipHeight': 10 } ], 'featuresData': [ { 'namespace': 'node.feature', 'state': FeatureInitializationState.Initialized } ], 'dataDirectoryPath': '/my/data/dir', 'runningTime': 'a long time', 'difficulty': 100000.0000, 'protocolVersion': 123, 'testnet': False, 'relayFee': 0, 'state': FullNodeState.Initialized, 'inIbd': False, 'headerHeight': 1 } mocker.patch.object(Node, 'get', return_value=data) node = Node(network=network, baseuri=mocker.MagicMock()) response = node.status(publish=False) assert response == StatusModel(**data) # noinspection PyUnresolvedReferences node.get.assert_called_once() @pytest.mark.parametrize('network', [StraxMain(), CirrusMain()], ids=['StraxMain', 'CirrusMain']) def test_status_publish(mocker: MockerFixture, network): data = { 'agent': 'nodeagent', 'version': 'nodeversion', 'externalAddress': '[::0.0.0.0]', 'network': network.name, 'coin_ticker': 'STRAX' if 'Strax' in network.name else 'CRS', 'processId': '0', 'consensusHeight': 10, 'blockStoreHeight': 10, 'bestPeerHeight': 10, 'inboundPeers': [ { 'version': 1, 'remoteSocketEndpoint': '[::0.0.0.0]', 'tipHeight': 10 } ], 'outboundPeers': [ { 'version': 1, 'remoteSocketEndpoint': '[::0.0.0.0]', 'tipHeight': 10 } ], 'featuresData': [ { 'namespace': 'node.feature', 'state': FeatureInitializationState.Initialized } ], 'dataDirectoryPath': '/my/data/dir', 'runningTime': 'a long time', 'difficulty': 100000.0000, 'protocolVersion': 123, 'testnet': False, 'relayFee': 0, 'state': FullNodeState.Initialized, 'inIbd': False, 'headerHeight': 1 } mocker.patch.object(Node, 'get', return_value=data) node = Node(network=network, baseuri=mocker.MagicMock()) response = node.status(publish=True) assert response == StatusModel(**data) # noinspection PyUnresolvedReferences node.get.assert_called_once() @pytest.mark.parametrize('network', [StraxMain(), CirrusMain()], ids=['StraxMain', 'CirrusMain']) def test_get_blockheader(mocker: MockerFixture, network, generate_uint256): data = { 'version': 1, 'merkleroot': generate_uint256, 'nonce': 0, 'bits': 'bits', 'previousblockhash': generate_uint256, 'time': 1, } mocker.patch.object(Node, 'get', return_value=data) node = Node(network=network, baseuri=mocker.MagicMock()) response = node.get_blockheader( block_hash=generate_uint256, is_json_format=True ) assert response == BlockHeaderModel(**data) # noinspection PyUnresolvedReferences node.get.assert_called_once() @pytest.mark.parametrize('network', [StraxMain(), CirrusMain()], ids=['StraxMain', 'CirrusMain']) def test_get_raw_transaction_verbose(mocker: MockerFixture, network, generate_coinbase_transaction, generate_uint256): trxid = generate_uint256 data = generate_coinbase_transaction(trxid) mocker.patch.object(Node, 'get', return_value=data) node = Node(network=network, baseuri=mocker.MagicMock()) response = node.get_raw_transaction(trxid=trxid, verbose=True) assert response == TransactionModel(**data) # noinspection PyUnresolvedReferences node.get.assert_called_once() @pytest.mark.parametrize('network', [StraxMain(), CirrusMain()], ids=['StraxMain', 'CirrusMain']) def test_get_raw_transaction_nonverbose(mocker: MockerFixture, network, generate_coinbase_transaction, generate_uint256): trxid = generate_uint256 data = generate_coinbase_transaction(trxid) hexified_data = bytes(str(data), 'ascii').hex() mocker.patch.object(Node, 'get', return_value=hexified_data) node = Node(network=network, baseuri=mocker.MagicMock()) response = node.get_raw_transaction(trxid=trxid, verbose=False) assert response == hexified_data unserialized_response = ast.literal_eval(bytes.fromhex(hexified_data).decode('ascii')) assert data == unserialized_response # noinspection PyUnresolvedReferences node.get.assert_called_once() @pytest.mark.parametrize('network', [StraxMain(), CirrusMain()], ids=['StraxMain', 'CirrusMain']) def test_decode_raw_transaction(mocker: MockerFixture, network, generate_uint256, generate_coinbase_transaction): trxid = generate_uint256 data = generate_coinbase_transaction(trxid) hexified_data = bytes(str(data), 'ascii').hex() mocker.patch.object(Node, 'post', return_value=data) node = Node(network=network, baseuri=mocker.MagicMock()) response = node.decode_raw_transaction(raw_hex=hexified_data) assert response == TransactionModel(**data) # noinspection PyUnresolvedReferences node.post.assert_called_once() @pytest.mark.parametrize('network', [StraxMain(), CirrusMain()], ids=['StraxMain', 'CirrusMain']) def test_validate_address(mocker: MockerFixture, network, generate_p2pkh_address): address = generate_p2pkh_address(network=network) data = { 'isvalid': True, 'address': address, 'scriptPubKey': 'a scriptPubKey', 'isscript': False, 'iswitness': False } mocker.patch.object(Node, 'get', return_value=data) node = Node(network=network, baseuri=mocker.MagicMock()) response = node.validate_address(address=address) assert response == ValidateAddressModel(**data) # noinspection PyUnresolvedReferences node.get.assert_called_once() @pytest.mark.parametrize('network', [StraxMain(), CirrusMain()], ids=['StraxMain', 'CirrusMain']) def test_get_txout(mocker: MockerFixture, network, generate_uint256, generate_hexstring, generate_p2pkh_address): data = { 'bestblock': generate_uint256, 'confirmations': 1, 'value': 5, 'scriptPubKey': { 'asm': generate_hexstring(128), 'hex': generate_hexstring(128), 'type': 'pubkey', 'reqSigs': 1, "addresses": [ generate_p2pkh_address(network=network) ] }, 'coinbase': False } mocker.patch.object(Node, 'get', return_value=data) node = Node(network=network, baseuri=mocker.MagicMock()) response = node.get_txout(trxid=generate_uint256, vout=0, include_mempool=False) assert response == GetTxOutModel(**data) # noinspection PyUnresolvedReferences node.get.assert_called_once() @pytest.mark.parametrize('network', [StraxMain(), CirrusMain()], ids=['StraxMain', 'CirrusMain']) def test_get_txout_proof(mocker: MockerFixture, network, generate_uint256, generate_hexstring): data = generate_hexstring(128) mocker.patch.object(Node, 'get', return_value=data) node = Node(network=network, baseuri=mocker.MagicMock()) response = node.get_txout_proof( txids=[ generate_uint256, generate_uint256 ], block_hash=generate_uint256 ) assert response == data # noinspection PyUnresolvedReferences node.get.assert_called_once() @pytest.mark.parametrize('network', [StraxMain(), CirrusMain()], ids=['StraxMain', 'CirrusMain']) def test_shutdown(mocker: MockerFixture, network): data = None mocker.patch.object(Node, 'post', return_value=data) node = Node(network=network, baseuri=mocker.MagicMock()) node.shutdown() # noinspection PyUnresolvedReferences node.post.assert_called_once() @pytest.mark.parametrize('network', [StraxMain(), CirrusMain()], ids=['StraxMain', 'CirrusMain']) def test_stop(mocker: MockerFixture, network): data = None mocker.patch.object(Node, 'post', return_value=data) node = Node(network=network, baseuri=mocker.MagicMock()) node.stop() # noinspection PyUnresolvedReferences node.post.assert_called_once() @pytest.mark.parametrize('network', [StraxMain(), CirrusMain()], ids=['StraxMain', 'CirrusMain']) def test_log_levels(mocker: MockerFixture, network): data = None mocker.patch.object(Node, 'put', return_value=data) node = Node(network=network, baseuri=mocker.MagicMock()) node.log_levels(log_rules=[LogRule(rule_name='TestRule', log_level='Debug', filename='filename')]) # noinspection PyUnresolvedReferences node.put.assert_called_once() @pytest.mark.parametrize('network', [StraxMain(), CirrusMain()], ids=['StraxMain', 'CirrusMain']) def test_log_rules(mocker: MockerFixture, network): data = [ { 'ruleName': 'TestRule', 'logLevel': 'Debug', 'filename': 'filename' } ] mocker.patch.object(Node, 'get', return_value=data) node = Node(network=network, baseuri=mocker.MagicMock()) response = node.log_rules() assert response == [LogRule(**x) for x in data] # noinspection PyUnresolvedReferences node.get.assert_called_once() @pytest.mark.parametrize('network', [StraxMain(), CirrusMain()], ids=['StraxMain', 'CirrusMain']) def test_async_loops(mocker: MockerFixture, network): data = [ { 'loopName': 'Loop1', 'status': 'Running' } ] mocker.patch.object(Node, 'get', return_value=data) node = Node(network=network, baseuri=mocker.MagicMock()) response = node.async_loops() assert response == [AsyncLoopsModel(**x) for x in data] # noinspection PyUnresolvedReferences node.get.assert_called_once() @pytest.mark.parametrize('network', [StraxMain(), CirrusMain()], ids=['StraxMain', 'CirrusMain']) def test_rewind(mocker: MockerFixture, network): data = "Rewind flag set, please restart the node." mocker.patch.object(Node, 'put', return_value=data) node = Node(network=network, baseuri=mocker.MagicMock()) response = node.rewind(height=2) assert isinstance(response, str) # noinspection PyUnresolvedReferences node.put.assert_called_once() @pytest.mark.parametrize('network', [StraxMain(), CirrusMain()], ids=['StraxMain', 'CirrusMain']) def test_delete_datafolder_chain(mocker: MockerFixture, network): data = None mocker.patch.object(Node, 'delete', return_value=data) node = Node(network=network, baseuri=mocker.MagicMock()) node.delete_datafolder_chain() # noinspection PyUnresolvedReferences node.delete.assert_called_once()
34.296512
121
0.653416
1,162
11,798
6.493115
0.154045
0.083101
0.044533
0.059377
0.768854
0.754407
0.747913
0.7222
0.7222
0.710404
0
0.016446
0.211477
11,798
343
122
34.396501
0.794582
0.048737
0
0.568182
0
0
0.145726
0
0
0
0
0
0.109848
1
0.060606
false
0
0.026515
0
0.087121
0
0
0
0
null
0
0
0
0
1
1
1
1
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
null
0
0
0
0
0
0
0
0
0
0
0
0
0
5
c4e9c3ba14a1425fb2bb7e78afee5ef252184d66
3,704
py
Python
pycoax/examples/40_eab.py
lowobservable/coax
9714fdfb418dff56357b9a35d2da3a91b8a60ffe
[ "0BSD" ]
21
2020-05-11T19:46:29.000Z
2022-02-09T01:32:41.000Z
pycoax/examples/40_eab.py
lowobservable/coax-interface
614f8a5f448b1f7e8298ced2585c178f4d7f435d
[ "0BSD" ]
null
null
null
pycoax/examples/40_eab.py
lowobservable/coax-interface
614f8a5f448b1f7e8298ced2585c178f4d7f435d
[ "0BSD" ]
5
2020-07-20T08:05:10.000Z
2022-01-30T13:57:05.000Z
#!/usr/bin/env python import sys from itertools import chain from common import open_example_serial_interface from coax import read_feature_ids, parse_features, Feature, LoadAddressCounterHi, LoadAddressCounterLo, WriteData, EABWriteAlternate, EABLoadMask def get_features(interface): commands = read_feature_ids() ids = interface.execute(commands) return parse_features(ids, commands) def eab_alternate_zip(regen_buffer, eab_buffer): return bytes(chain(*zip(regen_buffer, eab_buffer))) with open_example_serial_interface() as interface: features = get_features(interface) if Feature.EAB not in features: sys.exit('No EAB feature found.') eab_address = features[Feature.EAB] print(f'EAB feature found at address {eab_address}') # Protected Normal interface.execute([LoadAddressCounterHi(0), LoadAddressCounterLo(80)]) regen_buffer = bytes.fromhex('e0 08 00 af 91 8e 93 84 82 93 84 83 00 ad 8e 91 8c 80 8b 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 09') interface.execute(WriteData(regen_buffer)) # Protected Intense interface.execute([LoadAddressCounterHi(0), LoadAddressCounterLo(160)]) regen_buffer = bytes.fromhex('e8 08 00 af 91 8e 93 84 82 93 84 83 00 a8 8d 93 84 8d 92 84 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 09') interface.execute(WriteData(regen_buffer)) # Normal EFA interface.execute([LoadAddressCounterHi(1), LoadAddressCounterLo(64)]) regen_buffer = bytes.fromhex('e0 08 00 ad 8e 91 8c 80 8b 00 a4 a5 a0 00 00 00 00 00 00 00 00 00 00 b7 bf 00 a1 bf 00 b1 bf 00 ac bf 00 a6 bf 00 a2 bf 00 b8 bf 00 b6 bf 00 00 09 e0') eab_buffer = bytes.fromhex('00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 08 00 00 10 00 00 18 00 00 20 00 00 28 00 00 30 00 00 38 00 00 00 00 00') interface.execute(EABWriteAlternate(eab_address, eab_alternate_zip(regen_buffer, eab_buffer))) # Blink EFA interface.execute([LoadAddressCounterHi(1), LoadAddressCounterLo(144)]) regen_buffer = bytes.fromhex('e0 08 00 a1 8b 88 8d 8a 00 a4 a5 a0 00 00 00 00 00 00 00 00 00 00 00 b7 bf 00 a1 bf 00 b1 bf 00 ac bf 00 a6 bf 00 a2 bf 00 b8 bf 00 b6 bf 00 00 09 e0') eab_buffer = bytes.fromhex('40 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 08 00 00 10 00 00 18 00 00 20 00 00 28 00 00 30 00 00 38 00 00 00 00 00') interface.execute(EABWriteAlternate(eab_address, eab_alternate_zip(regen_buffer, eab_buffer))) # Reverse EFA interface.execute([LoadAddressCounterHi(1), LoadAddressCounterLo(224)]) regen_buffer = bytes.fromhex('e0 08 00 b1 84 95 84 91 92 84 00 a4 a5 a0 00 00 00 00 00 00 00 00 00 b7 bf 00 a1 bf 00 b1 bf 00 ac bf 00 a6 bf 00 a2 bf 00 b8 bf 00 b6 bf 00 00 09 e0') eab_buffer = bytes.fromhex('80 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 08 00 00 10 00 00 18 00 00 20 00 00 28 00 00 30 00 00 38 00 00 00 00 00') interface.execute(EABWriteAlternate(eab_address, eab_alternate_zip(regen_buffer, eab_buffer))) # Underline EFA interface.execute([LoadAddressCounterHi(2), LoadAddressCounterLo(48)]) regen_buffer = bytes.fromhex('e0 08 00 b4 8d 83 84 91 8b 88 8d 84 00 a4 a5 a0 00 00 00 00 00 00 00 b7 bf 00 a1 bf 00 b1 bf 00 ac bf 00 a6 bf 00 a2 bf 00 b8 bf 00 b6 bf 00 00 09 e0') eab_buffer = bytes.fromhex('c0 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 08 00 00 10 00 00 18 00 00 20 00 00 28 00 00 30 00 00 38 00 00 00 00 00') interface.execute(EABWriteAlternate(eab_address, eab_alternate_zip(regen_buffer, eab_buffer)))
49.386667
185
0.718952
745
3,704
3.502013
0.143624
0.351092
0.43005
0.530471
0.717133
0.664622
0.595631
0.528938
0.518973
0.518973
0
0.299033
0.218143
3,704
74
186
50.054054
0.601865
0.027538
0
0.157895
0
0.263158
0.43032
0
0
0
0
0
0
1
0.052632
false
0
0.105263
0.026316
0.210526
0.026316
0
0
0
null
1
1
1
0
0
0
0
0
0
0
1
0
0
0
0
0
0
0
0
0
0
1
0
0
null
0
0
0
0
0
0
0
0
0
0
0
0
0
5
c4fab5fadfd556ed33d5c8cd6a4689c230aa1b08
54
py
Python
src/client/__init__.py
kyehyukahn/scp-prototype
4e92b47ab82068a154c407c22e8c396196a31942
[ "Apache-2.0" ]
1
2018-04-10T11:00:59.000Z
2018-04-10T11:00:59.000Z
src/client/__init__.py
kyehyukahn/scp-prototype
4e92b47ab82068a154c407c22e8c396196a31942
[ "Apache-2.0" ]
null
null
null
src/client/__init__.py
kyehyukahn/scp-prototype
4e92b47ab82068a154c407c22e8c396196a31942
[ "Apache-2.0" ]
null
null
null
from .client import send_message, MessageInfo # noqa
27
53
0.796296
7
54
6
1
0
0
0
0
0
0
0
0
0
0
0
0.148148
54
1
54
54
0.913043
0.074074
0
0
0
0
0
0
0
0
0
0
0
1
0
true
0
1
0
1
0
1
0
0
null
0
0
0
0
0
0
0
0
0
0
0
0
0
1
0
0
0
0
0
0
0
0
0
0
null
0
0
0
0
0
0
1
0
1
0
1
0
0
5
f21c03303c0e86780d94fa0daa72a6287b00df39
3,721
py
Python
stubs/workspaces.py
claytonbrown/troposphere
bf0f1e48b14f578de0221d50f711467ad716ca87
[ "BSD-2-Clause" ]
null
null
null
stubs/workspaces.py
claytonbrown/troposphere
bf0f1e48b14f578de0221d50f711467ad716ca87
[ "BSD-2-Clause" ]
null
null
null
stubs/workspaces.py
claytonbrown/troposphere
bf0f1e48b14f578de0221d50f711467ad716ca87
[ "BSD-2-Clause" ]
null
null
null
from . import AWSObject, AWSProperty from .validators import * from .constants import * # ------------------------------------------- class WorkSpacesWorkspace(AWSObject): """# AWS::WorkSpaces::Workspace - CloudFormationResourceSpecification version: 1.4.0 { "Documentation": "http://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-resource-workspaces-workspace.html", "Properties": { "BundleId": { "Documentation": "http://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-resource-workspaces-workspace.html#cfn-workspaces-workspace-bundleid", "PrimitiveType": "String", "Required": true, "UpdateType": "Conditional" }, "DirectoryId": { "Documentation": "http://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-resource-workspaces-workspace.html#cfn-workspaces-workspace-directoryid", "PrimitiveType": "String", "Required": true, "UpdateType": "Conditional" }, "RootVolumeEncryptionEnabled": { "Documentation": "http://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-resource-workspaces-workspace.html#cfn-workspaces-workspace-rootvolumeencryptionenabled", "PrimitiveType": "Boolean", "Required": false, "UpdateType": "Conditional" }, "UserName": { "Documentation": "http://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-resource-workspaces-workspace.html#cfn-workspaces-workspace-username", "PrimitiveType": "String", "Required": true, "UpdateType": "Immutable" }, "UserVolumeEncryptionEnabled": { "Documentation": "http://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-resource-workspaces-workspace.html#cfn-workspaces-workspace-uservolumeencryptionenabled", "PrimitiveType": "Boolean", "Required": false, "UpdateType": "Conditional" }, "VolumeEncryptionKey": { "Documentation": "http://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-resource-workspaces-workspace.html#cfn-workspaces-workspace-volumeencryptionkey", "PrimitiveType": "String", "Required": false, "UpdateType": "Conditional" } } } """ resource_type = "AWS::WorkSpaces::Workspace" props = { 'BundleId': (basestring, True, 'Conditional', 'http://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-resource-workspaces-workspace.html#cfn-workspaces-workspace-bundleid'), 'DirectoryId': (basestring, True, 'Conditional', 'http://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-resource-workspaces-workspace.html#cfn-workspaces-workspace-directoryid'), 'RootVolumeEncryptionEnabled': (boolean, False, 'Conditional', 'http://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-resource-workspaces-workspace.html#cfn-workspaces-workspace-rootvolumeencryptionenabled'), 'UserName': (basestring, True, 'Immutable', 'http://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-resource-workspaces-workspace.html#cfn-workspaces-workspace-username'), 'UserVolumeEncryptionEnabled': (boolean, False, 'Conditional', 'http://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-resource-workspaces-workspace.html#cfn-workspaces-workspace-uservolumeencryptionenabled'), 'VolumeEncryptionKey': (basestring, False, 'Conditional', 'http://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-resource-workspaces-workspace.html#cfn-workspaces-workspace-volumeencryptionkey') }
56.378788
228
0.685837
318
3,721
8.022013
0.144654
0.201098
0.056056
0.086633
0.798902
0.78283
0.699726
0.699726
0.699726
0.699726
0
0.000964
0.163934
3,721
65
229
57.246154
0.819029
0.604945
0
0
0
0.461538
0.715458
0.05472
0
0
0
0
0
1
0
false
0
0.230769
0
0.461538
0
0
0
0
null
1
0
0
0
1
0
0
0
1
0
0
0
0
0
0
0
0
0
0
0
0
1
1
0
null
0
0
0
0
0
0
0
0
0
0
0
0
0
5
4807de81e5cd93efaec1325cded4f4d3e15bd5c9
93
py
Python
aaem_summaries/components/transmission/__init__.py
gina-alaska/alaska_affordable_energy_model
96fed0137152985ce280ea37e0affec131e3087f
[ "MIT-feh" ]
1
2022-01-23T07:18:36.000Z
2022-01-23T07:18:36.000Z
aaem_summaries/components/transmission/__init__.py
gina-alaska/alaska_affordable_energy_model
96fed0137152985ce280ea37e0affec131e3087f
[ "MIT-feh" ]
5
2017-07-14T21:56:46.000Z
2017-07-14T21:59:15.000Z
aaem_summaries/components/transmission/__init__.py
gina-alaska/alaska_affordable_energy_model
96fed0137152985ce280ea37e0affec131e3087f
[ "MIT-feh" ]
2
2020-04-28T18:12:55.000Z
2021-01-13T01:56:57.000Z
""" __init__.py summary for Transmission Line in a community """ from summary import *
11.625
32
0.698925
12
93
5.083333
0.916667
0
0
0
0
0
0
0
0
0
0
0
0.215054
93
7
33
13.285714
0.835616
0.666667
0
0
0
0
0
0
0
0
0
0
0
1
0
true
0
1
0
1
0
1
0
0
null
0
0
0
0
0
0
0
0
0
0
0
0
0
1
0
0
0
0
0
0
0
0
0
0
null
0
0
0
0
0
0
1
0
1
0
1
0
0
5
4818f40bb2961d309e93cce19f1650592ac0d462
123
py
Python
src/aceinna/bootstrap/__init__.py
lihaiyong827/python-openimu
f1c536ba4182aaeabd87b63c08ebd92f97e8dbb4
[ "Apache-2.0" ]
41
2018-07-20T17:30:33.000Z
2022-02-24T08:17:39.000Z
src/aceinna/bootstrap/__init__.py
lihaiyong827/python-openimu
f1c536ba4182aaeabd87b63c08ebd92f97e8dbb4
[ "Apache-2.0" ]
52
2018-06-25T22:15:14.000Z
2022-03-10T07:30:56.000Z
src/aceinna/bootstrap/__init__.py
lihaiyong827/python-openimu
f1c536ba4182aaeabd87b63c08ebd92f97e8dbb4
[ "Apache-2.0" ]
31
2018-12-19T00:10:08.000Z
2022-03-19T02:14:03.000Z
import sys import os import traceback from .default import Default from .cli import CommandLine from .loader import Loader
17.571429
28
0.829268
18
123
5.666667
0.5
0
0
0
0
0
0
0
0
0
0
0
0.146341
123
7
29
17.571429
0.971429
0
0
0
0
0
0
0
0
0
0
0
0
1
0
true
0
1
0
1
0
1
0
0
null
0
0
0
0
0
0
0
0
0
0
0
0
0
1
0
0
0
0
0
0
0
0
0
0
null
0
0
0
0
0
0
1
0
1
0
1
0
0
5
482f35fcca776fd3b82f536d756e301830e31fbf
83
py
Python
libs/models/__init__.py
tonyngjichun/pspnet-pytorch
75297aa4fdb4f7a712ef9185be1ec805044f8328
[ "MIT" ]
56
2017-12-07T12:29:14.000Z
2021-05-14T16:45:59.000Z
libs/models/__init__.py
tonyngjichun/pspnet-pytorch
75297aa4fdb4f7a712ef9185be1ec805044f8328
[ "MIT" ]
7
2017-12-26T09:00:23.000Z
2019-01-14T03:55:56.000Z
libs/models/__init__.py
tonyngjichun/pspnet-pytorch
75297aa4fdb4f7a712ef9185be1ec805044f8328
[ "MIT" ]
16
2017-12-20T00:36:51.000Z
2020-12-31T07:41:06.000Z
from __future__ import absolute_import from .resnet import * from .pspnet import *
20.75
38
0.807229
11
83
5.636364
0.545455
0.322581
0
0
0
0
0
0
0
0
0
0
0.144578
83
3
39
27.666667
0.873239
0
0
0
0
0
0
0
0
0
0
0
0
1
0
true
0
1
0
1
0
1
0
0
null
1
0
0
0
0
0
0
0
0
0
0
0
0
1
0
0
0
0
0
0
0
0
0
0
null
0
0
0
0
0
0
1
0
1
0
0
0
0
5
4866676df99cb56da6528e0c45d5fc2aef3aec92
13,162
py
Python
tools/harness/tests/compiler-rt_builtins.py
Harvard-PRINCESS/barrelfish-trunk-mirror
1c98195d123046d985bb3952a591297c2ef6fdf9
[ "MIT" ]
4
2017-09-16T01:23:48.000Z
2017-09-22T08:02:47.000Z
tools/harness/tests/compiler-rt_builtins.py
Harvard-PRINCESS/barrelfish-trunk-mirror
1c98195d123046d985bb3952a591297c2ef6fdf9
[ "MIT" ]
null
null
null
tools/harness/tests/compiler-rt_builtins.py
Harvard-PRINCESS/barrelfish-trunk-mirror
1c98195d123046d985bb3952a591297c2ef6fdf9
[ "MIT" ]
1
2020-03-06T15:48:10.000Z
2020-03-06T15:48:10.000Z
########################################################################## # Copyright (c) 2009, ETH Zurich. # All rights reserved. # # This file is distributed under the terms in the attached LICENSE file. # If you do not find this file, copies can be found by writing to: # ETH Zurich D-INFK, Haldeneggsteig 4, CH-8092 Zurich. Attn: Systems Group. ########################################################################## import tests from common import TestCommon from results import PassFailMultiResult class CompilerRTBuiltinsAbstract(TestCommon): def get_finish_string(self): return "usleeptest_done" def process_data(self, testdir, rawiter): # the test passed if no error occurred errors = [] for line in rawiter: if "error in" in line: errors.append(line) if line.startswith("Assertion failed on core"): errors.append(line) return PassFailMultiResult(self.name, errors) # lists of tests to run for compiler-rt vector_fp_tests = [ "compiler-rt/test/builtins/Unit/adddf3vfp_test", "compiler-rt/test/builtins/Unit/addsf3vfp_test", "compiler-rt/test/builtins/Unit/divdf3vfp_test", "compiler-rt/test/builtins/Unit/divsf3vfp_test", "compiler-rt/test/builtins/Unit/eqdf2vfp_test", "compiler-rt/test/builtins/Unit/eqsf2vfp_test", "compiler-rt/test/builtins/Unit/extebdsfdf2vfp_test", "compiler-rt/test/builtins/Unit/fixdfsivfp_test", "compiler-rt/test/builtins/Unit/fixsfsivfp_test", "compiler-rt/test/builtins/Unit/fixunsdfsivfp_test", "compiler-rt/test/builtins/Unit/fixunssfsivfp_test", "compiler-rt/test/builtins/Unit/floatsidfvfp_test", "compiler-rt/test/builtins/Unit/floatsisfvfp_test", "compiler-rt/test/builtins/Unit/floatunssidfvfp_test", "compiler-rt/test/builtins/Unit/floatunssisfvfp_test", "compiler-rt/test/builtins/Unit/gedf2vfp_test", "compiler-rt/test/builtins/Unit/gesf2vfp_test", "compiler-rt/test/builtins/Unit/gtdf2vfp_test", "compiler-rt/test/builtins/Unit/gtsf2vfp_test", "compiler-rt/test/builtins/Unit/ledf2vfp_test", "compiler-rt/test/builtins/Unit/lesf2vfp_test", "compiler-rt/test/builtins/Unit/ltdf2vfp_test", "compiler-rt/test/builtins/Unit/ltsf2vfp_test", "compiler-rt/test/builtins/Unit/muldf3vfp_test", "compiler-rt/test/builtins/Unit/mulsf3vfp_test", "compiler-rt/test/builtins/Unit/nedf2vfp_test", "compiler-rt/test/builtins/Unit/negdf2vfp_test", "compiler-rt/test/builtins/Unit/negsf2vfp_test", "compiler-rt/test/builtins/Unit/nesf2vfp_test", "compiler-rt/test/builtins/Unit/subdf3vfp_test", "compiler-rt/test/builtins/Unit/subsf3vfp_test", "compiler-rt/test/builtins/Unit/truncdfsf2vfp_test", "compiler-rt/test/builtins/Unit/unorddf2vfp_test", "compiler-rt/test/builtins/Unit/unordsf2vfp_test", ] @tests.add_test class CompilerRTBuiltinsVfp(CompilerRTBuiltinsAbstract): name = 'compiler-rt-vfp' def get_modules(self, build, machine): modules = super(CompilerRTBuiltinsVfp, self).get_modules(build, machine) for m in vector_fp_tests: modules.add_module(m) modules.add_module("usleeptest", [ "5" ]) return modules fp_tests = [ "compiler-rt/test/builtins/Unit/absvdi2_test", "compiler-rt/test/builtins/Unit/absvsi2_test", "compiler-rt/test/builtins/Unit/absvti2_test", "compiler-rt/test/builtins/Unit/addtf3_test", "compiler-rt/test/builtins/Unit/addvdi3_test", "compiler-rt/test/builtins/Unit/addvsi3_test", "compiler-rt/test/builtins/Unit/addvti3_test", "compiler-rt/test/builtins/Unit/ashldi3_test", "compiler-rt/test/builtins/Unit/ashlti3_test", "compiler-rt/test/builtins/Unit/ashrdi3_test", "compiler-rt/test/builtins/Unit/ashrti3_test", "compiler-rt/test/builtins/Unit/bswapdi2_test", "compiler-rt/test/builtins/Unit/bswapsi2_test", # "compiler-rt/test/builtins/Unit/clear_cache_test", "compiler-rt/test/builtins/Unit/clzdi2_test", "compiler-rt/test/builtins/Unit/clzsi2_test", "compiler-rt/test/builtins/Unit/clzti2_test", "compiler-rt/test/builtins/Unit/cmpdi2_test", "compiler-rt/test/builtins/Unit/cmpti2_test", "compiler-rt/test/builtins/Unit/comparedf2_test", "compiler-rt/test/builtins/Unit/comparesf2_test", "compiler-rt/test/builtins/Unit/ctzdi2_test", "compiler-rt/test/builtins/Unit/ctzsi2_test", "compiler-rt/test/builtins/Unit/ctzti2_test", "compiler-rt/test/builtins/Unit/divdc3_test", "compiler-rt/test/builtins/Unit/divdi3_test", "compiler-rt/test/builtins/Unit/divmodsi4_test", "compiler-rt/test/builtins/Unit/divsc3_test", "compiler-rt/test/builtins/Unit/divsi3_test", # "compiler-rt/test/builtins/Unit/divtc3_test", "compiler-rt/test/builtins/Unit/divtf3_test", "compiler-rt/test/builtins/Unit/divti3_test", "compiler-rt/test/builtins/Unit/divxc3_test", # "compiler-rt/test/builtins/Unit/enable_execute_stack_test", "compiler-rt/test/builtins/Unit/eqtf2_test", "compiler-rt/test/builtins/Unit/extenddftf2_test", # "compiler-rt/test/builtins/Unit/extendhfsf2_test", "compiler-rt/test/builtins/Unit/extendsftf2_test", "compiler-rt/test/builtins/Unit/ffsdi2_test", "compiler-rt/test/builtins/Unit/ffsti2_test", "compiler-rt/test/builtins/Unit/fixdfdi_test", "compiler-rt/test/builtins/Unit/fixdfti_test", "compiler-rt/test/builtins/Unit/fixsfdi_test", "compiler-rt/test/builtins/Unit/fixsfti_test", "compiler-rt/test/builtins/Unit/fixtfdi_test", "compiler-rt/test/builtins/Unit/fixtfsi_test", "compiler-rt/test/builtins/Unit/fixtfti_test", # this errors on 0X1P+64 #"compiler-rt/test/builtins/Unit/fixunsdfdi_test", "compiler-rt/test/builtins/Unit/fixunsdfsi_test", "compiler-rt/test/builtins/Unit/fixunsdfti_test", # this errors on 0X1P+64 #"compiler-rt/test/builtins/Unit/fixunssfdi_test", "compiler-rt/test/builtins/Unit/fixunssfsi_test", "compiler-rt/test/builtins/Unit/fixunssfti_test", "compiler-rt/test/builtins/Unit/fixunstfdi_test", "compiler-rt/test/builtins/Unit/fixunstfsi_test", "compiler-rt/test/builtins/Unit/fixunstfti_test", "compiler-rt/test/builtins/Unit/fixunsxfdi_test", "compiler-rt/test/builtins/Unit/fixunsxfsi_test", "compiler-rt/test/builtins/Unit/fixunsxfti_test", "compiler-rt/test/builtins/Unit/fixxfdi_test", "compiler-rt/test/builtins/Unit/fixxfti_test", "compiler-rt/test/builtins/Unit/floatdidf_test", "compiler-rt/test/builtins/Unit/floatdisf_test", "compiler-rt/test/builtins/Unit/floatditf_test", "compiler-rt/test/builtins/Unit/floatdixf_test", "compiler-rt/test/builtins/Unit/floatsitf_test", "compiler-rt/test/builtins/Unit/floattidf_test", "compiler-rt/test/builtins/Unit/floattisf_test", "compiler-rt/test/builtins/Unit/floattixf_test", "compiler-rt/test/builtins/Unit/floatundidf_test", "compiler-rt/test/builtins/Unit/floatundisf_test", "compiler-rt/test/builtins/Unit/floatunditf_test", "compiler-rt/test/builtins/Unit/floatundixf_test", "compiler-rt/test/builtins/Unit/floatunsitf_test", "compiler-rt/test/builtins/Unit/floatuntidf_test", "compiler-rt/test/builtins/Unit/floatuntisf_test", "compiler-rt/test/builtins/Unit/floatuntixf_test", # "compiler-rt/test/builtins/Unit/gcc_personality_test", "compiler-rt/test/builtins/Unit/getf2_test", "compiler-rt/test/builtins/Unit/gttf2_test", "compiler-rt/test/builtins/Unit/letf2_test", "compiler-rt/test/builtins/Unit/lshrdi3_test", "compiler-rt/test/builtins/Unit/lshrti3_test", "compiler-rt/test/builtins/Unit/lttf2_test", "compiler-rt/test/builtins/Unit/moddi3_test", "compiler-rt/test/builtins/Unit/modsi3_test", "compiler-rt/test/builtins/Unit/modti3_test", "compiler-rt/test/builtins/Unit/muldc3_test", "compiler-rt/test/builtins/Unit/muldi3_test", "compiler-rt/test/builtins/Unit/mulodi4_test", "compiler-rt/test/builtins/Unit/mulosi4_test", "compiler-rt/test/builtins/Unit/muloti4_test", "compiler-rt/test/builtins/Unit/mulsc3_test", "compiler-rt/test/builtins/Unit/multc3_test", "compiler-rt/test/builtins/Unit/multf3_test", "compiler-rt/test/builtins/Unit/multi3_test", "compiler-rt/test/builtins/Unit/mulvdi3_test", "compiler-rt/test/builtins/Unit/mulvsi3_test", "compiler-rt/test/builtins/Unit/mulvti3_test", "compiler-rt/test/builtins/Unit/mulxc3_test", "compiler-rt/test/builtins/Unit/negdi2_test", "compiler-rt/test/builtins/Unit/negti2_test", "compiler-rt/test/builtins/Unit/negvdi2_test", "compiler-rt/test/builtins/Unit/negvsi2_test", "compiler-rt/test/builtins/Unit/negvti2_test", "compiler-rt/test/builtins/Unit/netf2_test", "compiler-rt/test/builtins/Unit/paritydi2_test", "compiler-rt/test/builtins/Unit/paritysi2_test", "compiler-rt/test/builtins/Unit/parityti2_test", "compiler-rt/test/builtins/Unit/popcountdi2_test", "compiler-rt/test/builtins/Unit/popcountsi2_test", "compiler-rt/test/builtins/Unit/popcountti2_test", "compiler-rt/test/builtins/Unit/powidf2_test", "compiler-rt/test/builtins/Unit/powisf2_test", "compiler-rt/test/builtins/Unit/powitf2_test", "compiler-rt/test/builtins/Unit/powixf2_test", "compiler-rt/test/builtins/Unit/subtf3_test", "compiler-rt/test/builtins/Unit/subvdi3_test", "compiler-rt/test/builtins/Unit/subvsi3_test", "compiler-rt/test/builtins/Unit/subvti3_test", # "compiler-rt/test/builtins/Unit/trampoline_setup_test", # "compiler-rt/test/builtins/Unit/truncdfhf2_test", "compiler-rt/test/builtins/Unit/truncdfsf2_test", # "compiler-rt/test/builtins/Unit/truncsfhf2_test", "compiler-rt/test/builtins/Unit/trunctfdf2_test", "compiler-rt/test/builtins/Unit/trunctfsf2_test", "compiler-rt/test/builtins/Unit/ucmpdi2_test", "compiler-rt/test/builtins/Unit/ucmpti2_test", "compiler-rt/test/builtins/Unit/udivdi3_test", "compiler-rt/test/builtins/Unit/udivmoddi4_test", "compiler-rt/test/builtins/Unit/udivmodsi4_test", "compiler-rt/test/builtins/Unit/udivmodti4_test", "compiler-rt/test/builtins/Unit/udivsi3_test", "compiler-rt/test/builtins/Unit/udivti3_test", "compiler-rt/test/builtins/Unit/umoddi3_test", "compiler-rt/test/builtins/Unit/umodsi3_test", "compiler-rt/test/builtins/Unit/umodti3_test", "compiler-rt/test/builtins/Unit/unordtf2_test", ] def get_modules_tpl(ts, self, build, machine): '''Function template for get_modules() for each compiler-rt test case''' modules = super(CompilerRTBuiltinsAbstract, self).get_modules(build, machine) for m in ts: if machine.name.startswith("panda") and \ (m.endswith("floatdisf_test") or m.endswith("floatdidf_test")): # Skip failing test on pandaboard continue modules.add_module(m) modules.add_module("usleeptest", [ "5" ]) return modules def chunker(seq, size): '''Helper function: this takes a sequence `seq` and splits it up into `size`-sized chunks, except for the last chunk which is just the <= size long remainder of the sequence''' return (seq[pos:pos+size] for pos in xrange(0, len(seq), size)) # generate test-cases with <=CHUNK_SIZE compiler-rt tests each CHUNK_SIZE=35 # array just to keep the class objects somewhere compiler_rt_tests_classes = [] for i, ts in enumerate(chunker(fp_tests, CHUNK_SIZE)): # append new class to our array compiler_rt_tests_classes.append( # this is essentially the decorator @tests.add_test tests.add_test( # type is the (built-in) base-class for python classes, here we # construct classes by calling its constructor # signature of type constructor: # type(classname, baseclass tuple, dict with methods/attributes) type('CompilerRTBuiltins%d' % (i+1), (CompilerRTBuiltinsAbstract,), { 'name': 'compiler-rt-fp%d' % (i+1), # partially bind the get_modules() template to select the # right set of tests. Note the ts=ts in the lambda # arguments, this prevents python's default late-binding # for closure arguments. 'get_modules': lambda s, b, m, ts=ts: get_modules_tpl(ts, s, b, m)})))
50.429119
81
0.677557
1,637
13,162
5.316433
0.219914
0.205676
0.278295
0.434793
0.618178
0.618178
0.039067
0.031483
0.02413
0.02413
0
0.013682
0.183711
13,162
260
82
50.623077
0.796351
0.136226
0
0.038095
0
0
0.655416
0.640376
0
0
0
0
0.004762
1
0.02381
false
0.009524
0.014286
0.004762
0.07619
0
0
0
0
null
1
1
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
1
null
0
0
0
0
0
0
0
0
0
0
0
0
0
5
6f801ba5e156e09ae80a405057d4699d1492e731
7,182
py
Python
barry/convert.py
jyotiska/barry
53f3b3f8c070cbc5b2d9dcadebe9f776d170b6ed
[ "MIT" ]
null
null
null
barry/convert.py
jyotiska/barry
53f3b3f8c070cbc5b2d9dcadebe9f776d170b6ed
[ "MIT" ]
null
null
null
barry/convert.py
jyotiska/barry
53f3b3f8c070cbc5b2d9dcadebe9f776d170b6ed
[ "MIT" ]
null
null
null
from exceptions import BarryFileException, BarryConversionException, BarryExportException, BarryDFException import pandas as pd import requests from StringIO import StringIO def detect_file_extension(filename): """Extract and return the extension of a file given a filename. Args: filename (str): name of the file Returns: str: extension of the file Raises: BarryFileException: if extension not present in filename """ if filename is None: raise BarryFileException("Input file name cannot be None") split_filename = filename.split(".") if len(split_filename) > 1: return str(split_filename[-1]).lower() else: raise BarryFileException("Could not determine input file type from file extension") def xls_to_df(filename, skip_rows, skip_header, columns): """Converts a XLS file to Pandas dataframe. Args: filename (str): name of the file skip_rows (int): number of rows to skip from top skip_header (bool): whether to skip header columns (list or None): list of column names Returns: dataframe: a pandas dataframe Raises: BarryConversionException: if file cannot be converted to dataframe """ try: # Check if columns names has been passed if columns is not None and len(columns) > 0: skip_header = 0 # Check if header needs to be skipped if skip_header is True: skip_header = None else: skip_header = 0 return pd.read_excel(filename, skiprows=skip_rows, header=skip_header, names=columns) except Exception as e: raise BarryConversionException("Could not convert file %s to dataframe" % (filename)) def xlsx_to_df(filename, skip_rows, skip_header, columns): """Converts a XLSX file to Pandas dataframe. Args: filename (str): name of the file skip_rows (int): number of rows to skip from top skip_header (bool): whether to skip header columns (list or None): list of column names Returns: dataframe: a pandas dataframe Raises: BarryConversionException: if file cannot be converted to dataframe """ try: # Check if columns names has been passed if columns is not None and len(columns) > 0: skip_header = 0 # Check if header needs to be skipped if skip_header is True: skip_header = None else: skip_header = 0 return pd.read_excel(filename, skiprows=skip_rows, header=skip_header, names=columns) except Exception as e: raise BarryConversionException("Could not convert file %s to dataframe" % (filename)) def csv_to_df(filename, skip_rows, skip_header, columns): """Converts a CSV file to Pandas dataframe. Args: filename (str): name of the file skip_rows (int): number of rows to skip from top skip_header (bool): whether to skip header columns (list or None): list of column names Returns: dataframe: a pandas dataframe Raises: BarryConversionException: if file cannot be converted to dataframe """ try: # Check if columns names has been passed if columns is not None and len(columns) > 0: skip_header = 0 # Check if header needs to be skipped if skip_header is True: skip_header = None else: skip_header = 0 return pd.read_csv(filename, skiprows=skip_rows, header=skip_header, names=columns) except Exception as e: raise BarryConversionException("Could not convert file %s to dataframe" % (filename)) def url_to_df(url, skip_rows, skip_header, columns): """Converts a CSV from HTTP URL to Pandas dataframe. Args: url (str): http url of the csv skip_rows (int): number of rows to skip from top skip_header (bool): whether to skip header columns (list or None): list of column names Returns: dataframe: a pandas dataframe Raises: BarryConversionException: if file cannot be converted to dataframe """ try: # Check if columns names has been passed if columns is not None and len(columns) > 0: skip_header = 0 # Check if header needs to be skipped if skip_header is True: skip_header = None else: skip_header = 0 url_content = requests.get(url).content return pd.read_csv(StringIO(url_content), skiprows=skip_rows, header=skip_header, names=columns) except Exception as e: raise BarryConversionException("Could not convert file %s to dataframe" % (filename)) def df_to_xls(df, out_filename): """Writes a Pandas dataframe to a XLS file. Args: df (dataframe): dataframe to be written to file filename (str): name of the file Raises: BarryExportException: if file cannot be converted to dataframe """ try: df.to_excel(out_filename) except Exception as e: raise BarryExportException("Could not write dataframe to file %s" % (out_filename)) def df_to_xlsx(df, out_filename): """Writes a Pandas dataframe to a XLS file. Args: df (dataframe): dataframe to be written to file filename (str): name of the file Raises: BarryExportException: if file cannot be converted to dataframe """ try: df.to_excel(out_filename) except Exception as e: raise BarryExportException("Could not write dataframe to file %s" % (out_filename)) def df_to_json(df, out_filename): """Writes a Pandas dataframe to a JSON file. Args: df (dataframe): dataframe to be written to file filename (str): name of the file Raises: BarryExportException: if file cannot be converted to dataframe """ try: df.to_json(out_filename) except Exception as e: raise BarryExportException("Could not write dataframe to file %s" % (out_filename)) def df_to_csv(df, out_filename): """Writes a Pandas dataframe to a CSV file. Args: df (dataframe): dataframe to be written to file filename (str): name of the file Raises: BarryExportException: if file cannot be converted to dataframe """ try: df.to_csv(out_filename) except Exception as e: raise BarryExportException("Could not write dataframe to file %s" % (out_filename)) def sort_df(df, sort_column, ascending): """Sort a DataFrame with the column name passed in ascending/descending order. Args: df (dataframe): dataframe that needs to be sorted sort_column (str): column to be sorted on ascending (bool): sort order, ascending if True, descending if False Returns: dataframe: a pandas dataframe Raises: BarryDFException: if there is any error while sorting the dataframe """ try: return df.sort(columns=sort_column, ascending=ascending) except Exception as e: raise BarryDFException("Could not sort dataframe on columns %s" % (sort_column))
31.362445
107
0.657059
946
7,182
4.895349
0.114165
0.0691
0.017491
0.034982
0.764414
0.759447
0.751242
0.745195
0.736558
0.720147
0
0.002696
0.276942
7,182
228
108
31.5
0.889081
0.441938
0
0.670732
0
0
0.116022
0
0
0
0
0
0
1
0.121951
false
0
0.04878
0
0.243902
0
0
0
0
null
0
0
0
0
1
1
1
1
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
null
0
0
0
0
0
0
0
0
0
0
0
0
0
5
6f86e19366559629464f6c94fe703e3f9d6154c1
956
py
Python
lessons/terminal.report.py
thepros847/python_programiing
d177f79d0d1f21df434bf3f8663ae6469fcf8357
[ "MIT" ]
null
null
null
lessons/terminal.report.py
thepros847/python_programiing
d177f79d0d1f21df434bf3f8663ae6469fcf8357
[ "MIT" ]
null
null
null
lessons/terminal.report.py
thepros847/python_programiing
d177f79d0d1f21df434bf3f8663ae6469fcf8357
[ "MIT" ]
null
null
null
#students exams data entries for terminal report card print("Westside Educational Complex--End Of second Terminal Report--Class-KKJA--Name:Theodora Obaa Yaa Gyarbeng") while True: student_score = float(input ("Enter the student score:")) if student_score >= 1.0 and student_score <= 39.9: print("student_score is F9", "fail") elif student_score >= 40 and student_score <= 49.9: print("student_score is E8", "pass" ) elif student_score >= 50 and student_score <= 59.9: print("student_score is D7", "credit") elif student_score >= 60 and student_score <= 69.9: print("student_score is C4", "good") elif student_score >= 70 and student_score <= 79.9: print("student_score is B2", "very_good") elif student_score >= 80 and student_score <= 100: print("student_score is A1", "excellent") else: print("student_score is invalid entry") student = []
39.833333
113
0.654812
133
956
4.548872
0.473684
0.416529
0.196694
0.219835
0.165289
0
0
0
0
0
0
0.049046
0.232218
956
23
114
41.565217
0.775204
0.054393
0
0
0
0
0.341463
0.036585
0
0
0
0
0
1
0
false
0.055556
0
0
0
0.444444
0
0
0
null
1
1
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
null
0
0
0
0
0
0
0
1
0
0
0
1
0
5
6fc09d38fc6e352436484c44be3ed1f477d458b5
109
py
Python
servermn/core/__init__.py
masterhung0112/servermn
d518f2fa394bb3e22c29e74802357c2aa054f392
[ "Unlicense" ]
null
null
null
servermn/core/__init__.py
masterhung0112/servermn
d518f2fa394bb3e22c29e74802357c2aa054f392
[ "Unlicense" ]
null
null
null
servermn/core/__init__.py
masterhung0112/servermn
d518f2fa394bb3e22c29e74802357c2aa054f392
[ "Unlicense" ]
null
null
null
def init(): # Set locale environment # Set config # Set user and group # init logger pass
18.166667
28
0.59633
14
109
4.642857
0.785714
0
0
0
0
0
0
0
0
0
0
0
0.33945
109
6
29
18.166667
0.902778
0.587156
0
0
0
0
0
0
0
0
0
0
0
1
0.5
true
0.5
0
0
0.5
0
1
0
0
null
0
0
0
0
0
0
0
0
0
0
0
0
0
1
0
0
0
0
0
0
0
0
0
0
null
0
0
0
0
0
1
1
1
0
0
0
0
0
5
6ff24a30aea978a6baf63da8c2c0d8819e5f801c
19
py
Python
beeline/version.py
noam-stein/beeline-python
a5ae7b30d9abebc681524f1087c404fb2e2b915f
[ "Apache-2.0" ]
null
null
null
beeline/version.py
noam-stein/beeline-python
a5ae7b30d9abebc681524f1087c404fb2e2b915f
[ "Apache-2.0" ]
null
null
null
beeline/version.py
noam-stein/beeline-python
a5ae7b30d9abebc681524f1087c404fb2e2b915f
[ "Apache-2.0" ]
null
null
null
VERSION = '2.11.2'
9.5
18
0.578947
4
19
2.75
0.75
0
0
0
0
0
0
0
0
0
0
0.25
0.157895
19
1
19
19
0.4375
0
0
0
0
0
0.315789
0
0
0
0
0
0
1
0
false
0
0
0
0
0
1
1
0
null
0
0
0
0
0
0
0
0
0
0
1
0
0
1
0
0
1
0
0
0
0
0
0
0
null
0
0
0
0
0
0
0
0
0
0
0
0
0
5
b512b2de6527126b947a320b79c117609580ec75
114
py
Python
pyquil/__init__.py
ftripier/pyquil
573d5ae64bbc594917ad46885fca0d8f5f3fe0e9
[ "Apache-2.0" ]
null
null
null
pyquil/__init__.py
ftripier/pyquil
573d5ae64bbc594917ad46885fca0d8f5f3fe0e9
[ "Apache-2.0" ]
null
null
null
pyquil/__init__.py
ftripier/pyquil
573d5ae64bbc594917ad46885fca0d8f5f3fe0e9
[ "Apache-2.0" ]
null
null
null
__version__ = "2.1.0.dev0" from pyquil.quil import Program from pyquil.api import list_quantum_computers, get_qc
22.8
53
0.807018
19
114
4.473684
0.842105
0.235294
0
0
0
0
0
0
0
0
0
0.039604
0.114035
114
4
54
28.5
0.80198
0
0
0
0
0
0.087719
0
0
0
0
0
0
1
0
false
0
0.666667
0
0.666667
0
1
0
0
null
1
0
0
0
0
0
0
0
0
0
0
0
0
1
0
0
0
0
0
0
0
0
0
0
null
0
0
0
0
0
0
0
0
1
0
1
0
0
5
82ff0515b3da6ec57b02cf613a0fd6672311351d
150
py
Python
src/posts/templatetags/urlify.py
thunderoy/blogger
8102d11c04fbc98a31298ebfdb75023e9207109f
[ "MIT" ]
null
null
null
src/posts/templatetags/urlify.py
thunderoy/blogger
8102d11c04fbc98a31298ebfdb75023e9207109f
[ "MIT" ]
null
null
null
src/posts/templatetags/urlify.py
thunderoy/blogger
8102d11c04fbc98a31298ebfdb75023e9207109f
[ "MIT" ]
null
null
null
from urllib.parse import quote from django import template register = template.Library() @register.filter def urlify(value): return quote(value)
18.75
30
0.78
20
150
5.85
0.7
0
0
0
0
0
0
0
0
0
0
0
0.14
150
8
31
18.75
0.906977
0
0
0
0
0
0
0
0
0
0
0
0
1
0.166667
false
0
0.333333
0.166667
0.666667
0
1
0
0
null
0
0
0
0
0
0
0
0
0
0
0
0
0
1
0
0
0
0
0
0
0
0
0
0
null
0
0
0
0
0
0
0
0
1
1
1
0
0
5
d2025b2a20a97cda599aa94a7ddf6c498a1acbae
121
py
Python
treeviz_test.py
larsga/sprake
32598651b2fb514b18aab4f82ffba89d606a7b74
[ "Apache-2.0" ]
1
2022-01-26T08:50:33.000Z
2022-01-26T08:50:33.000Z
treeviz_test.py
larsga/sprake
32598651b2fb514b18aab4f82ffba89d606a7b74
[ "Apache-2.0" ]
null
null
null
treeviz_test.py
larsga/sprake
32598651b2fb514b18aab4f82ffba89d606a7b74
[ "Apache-2.0" ]
null
null
null
from sprake import treeviz # we don't actually have any meaningful tests that we can do, but at least # we can do this
20.166667
74
0.752066
23
121
3.956522
0.826087
0.10989
0.153846
0
0
0
0
0
0
0
0
0
0.214876
121
5
75
24.2
0.957895
0.719008
0
0
0
0
0
0
0
0
0
0
0
1
0
true
0
1
0
1
0
1
0
0
null
0
0
0
0
0
0
0
0
0
0
0
0
0
1
0
0
0
0
0
0
0
0
0
0
null
0
0
0
0
0
0
1
0
1
0
1
0
0
5
d2045b61e5e8006918d4654b503671b6d4cfdf28
303
py
Python
source/bluetooth/test_search_serial_port.py
Takahiro55555/CameraSystem
53a77b7a7bd0c34b486d73af8ef2a49201a0bdaa
[ "MIT" ]
1
2019-12-03T05:28:35.000Z
2019-12-03T05:28:35.000Z
source/bluetooth/test_search_serial_port.py
Takahiro55555/CameraSystem
53a77b7a7bd0c34b486d73af8ef2a49201a0bdaa
[ "MIT" ]
88
2019-07-01T09:11:35.000Z
2021-09-08T01:13:16.000Z
source/bluetooth/test_search_serial_port.py
Takahiro55555/CameraSystem
53a77b7a7bd0c34b486d73af8ef2a49201a0bdaa
[ "MIT" ]
5
2019-05-22T06:44:38.000Z
2019-09-18T05:20:30.000Z
""" @file: test_search_serial_port.py @author: Futa HIRAKOBA @brief: search_serial_port.pyのをテストするプログラム """ from search_serial_port import search_com_ports, search_enabled_com_port def test_search_com_ports(): search_com_ports() def test_search_enabled_com_port(): search_enabled_com_port()
18.9375
72
0.808581
44
303
5.022727
0.386364
0.135747
0.217195
0.271493
0
0
0
0
0
0
0
0
0.108911
303
15
73
20.2
0.818519
0.323432
0
0
0
0
0
0
0
0
0
0
0
1
0.4
true
0
0.2
0
0.6
0
0
0
0
null
0
1
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
null
0
0
0
0
0
1
1
0
0
0
1
0
0
5
d22021e322a81ec24f4d2957e1994d21c7ec3963
52
py
Python
interrogatio/shortcuts/__init__.py
ffaraone/interrogatio
8b66e7fe73d14bfda38cc2eb3aecb3291e4afda1
[ "BSD-3-Clause" ]
5
2019-02-19T13:10:39.000Z
2022-03-04T19:11:04.000Z
interrogatio/shortcuts/__init__.py
ffaraone/interrogatio
8b66e7fe73d14bfda38cc2eb3aecb3291e4afda1
[ "BSD-3-Clause" ]
11
2020-03-24T16:58:41.000Z
2021-12-14T10:19:17.000Z
interrogatio/shortcuts/__init__.py
ffaraone/interrogatio
8b66e7fe73d14bfda38cc2eb3aecb3291e4afda1
[ "BSD-3-Clause" ]
2
2019-05-31T08:36:26.000Z
2020-12-18T17:58:50.000Z
from interrogatio.shortcuts.dialogs import * # noqa
52
52
0.807692
6
52
7
1
0
0
0
0
0
0
0
0
0
0
0
0.115385
52
1
52
52
0.913043
0.076923
0
0
0
0
0
0
0
0
0
0
0
1
0
true
0
1
0
1
0
1
0
0
null
0
0
0
0
0
0
0
0
0
0
0
0
0
1
0
0
0
0
0
0
0
0
0
0
null
0
0
0
0
0
0
1
0
1
0
1
0
0
5
d2213ea96c7a47974d92d29c00540c2195a53bed
69
py
Python
vivid/__init__.py
blacktanktop/vivid
e85837bcd86575f8a275517250dd026aac3e451f
[ "BSD-2-Clause-FreeBSD" ]
39
2020-05-13T18:13:25.000Z
2022-03-02T10:46:53.000Z
vivid/__init__.py
blacktanktop/vivid
e85837bcd86575f8a275517250dd026aac3e451f
[ "BSD-2-Clause-FreeBSD" ]
29
2020-05-13T18:04:09.000Z
2022-02-27T04:43:18.000Z
vivid/__init__.py
blacktanktop/vivid
e85837bcd86575f8a275517250dd026aac3e451f
[ "BSD-2-Clause-FreeBSD" ]
3
2020-05-13T19:17:01.000Z
2020-10-28T21:29:42.000Z
from .core import BaseBlock from .runner import Runner, create_runner
34.5
41
0.84058
10
69
5.7
0.6
0
0
0
0
0
0
0
0
0
0
0
0.115942
69
2
41
34.5
0.934426
0
0
0
0
0
0
0
0
0
0
0
0
1
0
true
0
1
0
1
0
1
0
0
null
0
0
0
0
0
0
0
0
0
0
0
0
0
1
0
0
0
0
0
0
0
0
0
0
null
0
0
0
0
0
0
1
0
1
0
1
0
0
5
d25543f2eb84e1a829ecf2a781633ed4850daa4c
599
py
Python
examples/ec2/tests/config.py
dabble-of-devops-biodeploy/terraform-aws-batch
9d075163821f81f33d6be767820d1db20b45eb8e
[ "Apache-2.0" ]
3
2021-12-07T18:10:16.000Z
2022-02-04T09:15:31.000Z
examples/ec2/tests/config.py
dabble-of-devops-biodeploy/terraform-aws-batch
9d075163821f81f33d6be767820d1db20b45eb8e
[ "Apache-2.0" ]
null
null
null
examples/ec2/tests/config.py
dabble-of-devops-biodeploy/terraform-aws-batch
9d075163821f81f33d6be767820d1db20b45eb8e
[ "Apache-2.0" ]
1
2022-02-22T01:48:38.000Z
2022-02-22T01:48:38.000Z
DATA_S3 = "bioanalyze-ec2-test-nf-rnaseq-06o3qdtm7v" JOB_S3 = DATA_S3 # These come from the terraform code in auto-deployment/terraform ECR = "dabbleofdevops/nextflow-rnaseq-tutorial" COMPUTE_ENVIRONMENT = "bioanalyze-ec2-test-nf-rnaseq" JOB_DEF_NAME = "bioanalyze-ec2-test-nf-rnaseq" JOB_QUEUE_NAME = "bioanalyze-ec2-test-nf-rnaseq-default-job-queue" JOB_ROLE = "arn:aws:iam::018835827632:role/bioanalyze-ec2-test-nf-rnaseq-batch_execution_role" SECRET_NAME = "bioanalyze-ec2-test-nf-rnaseq" SECRET_ARN = "arn:aws:secretsmanager:us-east-1:018835827632:secret:bioanalyze-ec2-test-nf-rnaseq-Zg7kMY"
49.916667
104
0.806344
91
599
5.164835
0.450549
0.193617
0.253191
0.282979
0.410638
0.251064
0
0
0
0
0
0.071174
0.06177
599
12
104
49.916667
0.765125
0.105175
0
0
0
0.222222
0.715888
0.715888
0
0
0
0
0
1
0
false
0
0
0
0
0
0
0
0
null
0
1
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
1
1
null
0
0
0
0
0
0
0
0
0
0
0
0
0
5
963e0a388ab593079d1ff2e77544ecf12fa56919
112
py
Python
reqto/__init__.py
DovaX/reqto
4d3cc03535297fb0d5c946632e9de6a3a1ec5420
[ "MIT" ]
null
null
null
reqto/__init__.py
DovaX/reqto
4d3cc03535297fb0d5c946632e9de6a3a1ec5420
[ "MIT" ]
null
null
null
reqto/__init__.py
DovaX/reqto
4d3cc03535297fb0d5c946632e9de6a3a1ec5420
[ "MIT" ]
null
null
null
from reqto.core.reqto import get, post, delete, put, patch, head __all__=[get, post, delete, put, patch, head]
28
64
0.723214
18
112
4.277778
0.611111
0.181818
0.337662
0.415584
0.649351
0.649351
0
0
0
0
0
0
0.142857
112
4
65
28
0.802083
0
0
0
0
0
0
0
0
0
0
0
0
1
0
false
0
0.5
0
0.5
0
1
0
0
null
0
1
1
0
0
0
0
0
0
0
0
0
0
1
0
0
0
0
0
0
0
0
0
0
null
0
0
0
0
0
0
0
0
1
0
0
0
0
5
967705c9e8a9fd17fb6a029cb268db7aef64d726
198
py
Python
treasurehunt/views.py
code-haven/Django-treasurehunt-demo
c22aa88486d57fa97363d9d57dbbb7bc68a8ddd4
[ "MIT" ]
1
2017-04-30T05:46:40.000Z
2017-04-30T05:46:40.000Z
treasurehunt/views.py
code-haven/Django-treasurehunt-demo
c22aa88486d57fa97363d9d57dbbb7bc68a8ddd4
[ "MIT" ]
null
null
null
treasurehunt/views.py
code-haven/Django-treasurehunt-demo
c22aa88486d57fa97363d9d57dbbb7bc68a8ddd4
[ "MIT" ]
null
null
null
from django.views.generic import View from django.http import HttpResponse from django.shortcuts import render def index(request): return render(request, 'treasurehunt/treasurehunt_index.html')
33
66
0.823232
26
198
6.230769
0.615385
0.185185
0
0
0
0
0
0
0
0
0
0
0.106061
198
6
66
33
0.915254
0
0
0
0
0
0.180905
0.180905
0
0
0
0
0
1
0.2
false
0
0.6
0.2
1
0
1
0
0
null
0
0
0
0
0
0
0
0
0
0
0
0
0
1
0
0
0
0
0
0
0
0
0
0
null
0
0
0
0
0
0
0
0
1
1
1
0
0
5
96929dbf83193019e408fa5ab401d32d84324a98
104
py
Python
python/torch_mlir/eager_mode/__init__.py
burntfalafel/torch-mlir-internal
d3ef58450fc94e9337dc0434fa3af6dd7b54b37f
[ "Apache-2.0" ]
2
2022-02-16T21:56:00.000Z
2022-02-20T17:34:47.000Z
python/torch_mlir/eager_mode/__init__.py
burntfalafel/torch-mlir-internal
d3ef58450fc94e9337dc0434fa3af6dd7b54b37f
[ "Apache-2.0" ]
null
null
null
python/torch_mlir/eager_mode/__init__.py
burntfalafel/torch-mlir-internal
d3ef58450fc94e9337dc0434fa3af6dd7b54b37f
[ "Apache-2.0" ]
null
null
null
import os EAGER_MODE_DEBUG = os.environ.get("EAGER_MODE_DEBUG", 'False').lower() in ('true', '1', 't')
26
92
0.673077
17
104
3.882353
0.764706
0.272727
0.424242
0
0
0
0
0
0
0
0
0.010753
0.105769
104
3
93
34.666667
0.698925
0
0
0
0
0
0.259615
0
0
0
0
0
0
1
0
false
0
0.5
0
0.5
0
1
0
0
null
1
1
0
0
0
0
0
0
0
0
0
0
0
1
0
0
0
0
0
0
0
0
0
0
null
0
0
0
0
0
0
0
0
1
0
0
0
0
5
96be495bd3261e63c1a53206e1ecae309a118594
387
py
Python
container_service_extension/pksclient/api/__init__.py
tschoergez/container-service-extension
e1fbaf7e9c242a416d3f580880c1051286847cfd
[ "BSD-2-Clause", "BSD-3-Clause" ]
null
null
null
container_service_extension/pksclient/api/__init__.py
tschoergez/container-service-extension
e1fbaf7e9c242a416d3f580880c1051286847cfd
[ "BSD-2-Clause", "BSD-3-Clause" ]
null
null
null
container_service_extension/pksclient/api/__init__.py
tschoergez/container-service-extension
e1fbaf7e9c242a416d3f580880c1051286847cfd
[ "BSD-2-Clause", "BSD-3-Clause" ]
null
null
null
from __future__ import absolute_import # flake8: noqa # import apis into api package from container_service_extension.pksclient.api.cluster_api import ClusterApi from container_service_extension.pksclient.api.plans_api import PlansApi from container_service_extension.pksclient.api.profile_api import ProfileApi from container_service_extension.pksclient.api.users_api import UsersApi
38.7
76
0.881137
52
387
6.230769
0.423077
0.160494
0.246914
0.358025
0.506173
0.506173
0
0
0
0
0
0.002809
0.080103
387
9
77
43
0.907303
0.105943
0
0
0
0
0
0
0
0
0
0
0
1
0
true
0
1
0
1
0
0
0
0
null
0
1
1
0
0
0
0
0
0
0
0
0
0
1
0
0
0
0
0
0
0
0
0
0
null
0
0
0
0
0
0
1
0
1
0
0
0
0
5
738a85e82da68aa322a25cf87d2adf64e784db74
2,056
py
Python
data/kbqa/parse_kbqa.py
UKPLab/TWEAC-qa-agent-selection
ed4f0cafa87aefd4820cca0d7f4881d2de99a9f0
[ "MIT" ]
9
2021-04-16T12:45:45.000Z
2022-01-29T10:52:52.000Z
data/kbqa/parse_kbqa.py
UKPLab/TWEAC-qa-agent-selection
ed4f0cafa87aefd4820cca0d7f4881d2de99a9f0
[ "MIT" ]
1
2021-11-25T04:16:25.000Z
2021-11-25T09:54:29.000Z
data/kbqa/parse_kbqa.py
UKPLab/TWEAC-qa-agent-selection
ed4f0cafa87aefd4820cca0d7f4881d2de99a9f0
[ "MIT" ]
3
2021-04-16T12:43:41.000Z
2021-11-25T04:21:43.000Z
import json import os def qald(in_folder, out_folder): train = json.load(open(os.path.join(in_folder, "qald-7-train-en-wikidata.json"))) test = json.load(open(os.path.join(in_folder, "qald-7-test-en-wikidata-withoutanswers.json"))) train_q = [] test_q = [] for qs in train["questions"]: for q in qs["question"]: train_q.append(q["string"]) split_idx = int(len(train_q)*0.75) dev_q = train_q[split_idx:] train_q = train_q[:split_idx] for qs in test["questions"]: for q in qs["question"]: test_q.append(q["string"]) for qs, split in zip([train_q, dev_q, test_q], ["train", "dev", "test"]): os.makedirs(os.path.join(out_folder, split), exist_ok=True) with open(os.path.join(out_folder, split, "qald-7.txt"), "w", encoding="utf-8") as f: for q in qs: f.write(q+"\n") def websqp(in_folder, out_folder): train = json.load(open(os.path.join(in_folder, "WebQSP.train.json"), encoding="utf-8")) test = json.load(open(os.path.join(in_folder, "WebQSP.test.json"), encoding="utf-8")) train_q = [] test_q = [] for q in train["Questions"]: train_q.append(q["RawQuestion"]) split_idx = int(len(train_q)*0.75) dev_q = train_q[split_idx:] train_q = train_q[:split_idx] for q in test["Questions"]: test_q.append(q["RawQuestion"]) for qs, split in zip([train_q, dev_q, test_q], ["train", "dev", "test"]): os.makedirs(os.path.join(out_folder, split), exist_ok=True) with open(os.path.join(out_folder, split, "webqsp.txt"), "w", encoding="utf-8") as f: for q in qs: f.write(q+"\n") if __name__ == "__main__": qald(r"C:\Users\Gregor\Documents\Programming\square-skill-selector\data\kbqa\qald", r"C:\Users\Gregor\Documents\Programming\square-skill-selector\data\kbqa") websqp(r"C:\Users\Gregor\Documents\Programming\square-skill-selector\data\kbqa\WebQSP\data", r"C:\Users\Gregor\Documents\Programming\square-skill-selector\data\kbqa")
38.792453
170
0.634728
326
2,056
3.843558
0.196319
0.067039
0.063847
0.067039
0.762969
0.740623
0.700718
0.700718
0.700718
0.660814
0
0.007798
0.189202
2,056
53
170
38.792453
0.743851
0
0
0.487805
0
0.04878
0.273213
0.177443
0
0
0
0
0
1
0.04878
false
0
0.04878
0
0.097561
0
0
0
0
null
0
0
0
0
1
1
1
1
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
null
0
0
0
0
0
0
0
0
0
0
0
0
0
5
73c590592e5f6c7d80e9e638ac61992cbf513263
49
py
Python
test/fixtures/python/analysis/main1.py
matsubara0507/semantic
67899f701abc0f1f0cb4374d8d3c249afc33a272
[ "MIT" ]
8,844
2019-05-31T15:47:12.000Z
2022-03-31T18:33:51.000Z
test/fixtures/python/analysis/main1.py
matsubara0507/semantic
67899f701abc0f1f0cb4374d8d3c249afc33a272
[ "MIT" ]
401
2019-05-31T18:30:26.000Z
2022-03-31T16:32:29.000Z
test/fixtures/python/analysis/main1.py
matsubara0507/semantic
67899f701abc0f1f0cb4374d8d3c249afc33a272
[ "MIT" ]
504
2019-05-31T17:55:03.000Z
2022-03-30T04:15:04.000Z
import a as b import b.c as e b.foo(1) e.baz(1)
8.166667
15
0.632653
15
49
2.066667
0.6
0
0
0
0
0
0
0
0
0
0
0.052632
0.22449
49
5
16
9.8
0.763158
0
0
0
0
0
0
0
0
0
0
0
0
1
0
true
0
0.5
0
0.5
0
1
1
0
null
0
0
0
0
0
0
0
0
0
0
0
0
0
1
0
0
0
0
0
0
0
0
0
0
null
0
0
0
0
0
0
1
0
1
0
0
0
0
5
fb4743a6ee0568d1f98e6dec89a2138670b26a6f
9,921
py
Python
aqme/qdesc.py
patonlab/aqme
080d8e85ee905718ddf78f7fdee2ee308a293ad1
[ "MIT" ]
null
null
null
aqme/qdesc.py
patonlab/aqme
080d8e85ee905718ddf78f7fdee2ee308a293ad1
[ "MIT" ]
null
null
null
aqme/qdesc.py
patonlab/aqme
080d8e85ee905718ddf78f7fdee2ee308a293ad1
[ "MIT" ]
null
null
null
#####################################################. # This file stores all the functions # # used for genrating all parameters # #####################################################. from rdkit.Chem import AllChem as Chem from rdkit.Chem import rdMolTransforms import os import pandas as pd from aqme.csearch import getDihedralMatches def get_data(rdkit_mols,min_mols,dft_mols,lot,bs,name_mol,args,type_csearch,type_min,w_dir_initial): geom_data = pd.DataFrame() for j, mol_j in enumerate(rdkit_mols): name = mol_j.GetProp('_Name') name_dft= '_'.join(mol_j.GetProp('_Name').split())+'_'+type_min geom_data.at[j,'Name'] = name if len(args.dihedral) != 0: for d,dh in enumerate(args.dihedral): dihedral_rdkit = rdMolTransforms.GetDihedralDeg(mol_j.GetConformer(),dh[0],dh[1],dh[2],dh[3]) geom_data.at[j,args.geom_par_name+'-Dihedral-'+type_csearch+'-'+str(dh[0])+'-'+str(dh[1])+'-'+str(dh[2])+'-'+str(dh[3])] = dihedral_rdkit if len(args.angle) != 0: for a,an in enumerate(args.angle): angle_rdkit = rdMolTransforms.GetAngleDeg(mol_j.GetConformer(),an[0],an[1],an[2]) geom_data.at[j,args.geom_par_name+'-Angle-'+type_csearch+'-'+str(an[0])+'-'+str(an[1])+'-'+str(an[2])] = angle_rdkit if len(args.bond) != 0: for b,bd in enumerate(args.angle): bond_rdkit = rdMolTransforms.GetBondLength(mol_j.GetConformer(),bd[0],bd[1]) geom_data.at[j,args.geom_par_name+'-Bond-'+type_csearch+'-'+str(bd[0])+'-'+str(bd[1])] = bond_rdkit if min_mols is not None: if type_min =='ani' or type_min=='xtb': for i, mol_i in enumerate(min_mols): if mol_i.GetProp('_Name') == name+' '+type_min: if len(args.dihedral) != 0: for d,dh in enumerate(args.dihedral): dihedral_min = rdMolTransforms.GetDihedralDeg(mol_i.GetConformer(),dh[0],dh[1],dh[2],dh[3]) geom_data.at[j,args.geom_par_name+'-Dihedral-'+type_min+'-'+str(dh[0])+'-'+str(dh[1])+'-'+str(dh[2])+'-'+str(dh[3])] = dihedral_min if len(args.angle) != 0: for a,an in enumerate(args.angle): angle_min = rdMolTransforms.GetAngleDeg(mol_i.GetConformer(),an[0],an[1],an[2]) geom_data.at[j,args.geom_par_name+'-Angle-'+type_min+'-'+str(an[0])+'-'+str(an[1])+'-'+str(an[2])] = angle_min if len(args.bond) != 0: for b,bd in enumerate(args.angle): bond_min = rdMolTransforms.GetBondLength(mol_i.GetConformer(),bd[0],bd[1]) if dft_mols is not None: if type_min =='ani' or type_min=='xtb': for i, mol_i in enumerate(dft_mols): if mol_i.GetProp('_Name').split('/')[-1].split('.log')[0] == name_dft: if len(args.dihedral) != 0: for d,dh in enumerate(args.dihedral): dihedral_min = rdMolTransforms.GetDihedralDeg(mol_i.GetConformer(),dh[0],dh[1],dh[2],dh[3]) geom_data.at[j,args.geom_par_name+'-Dihedral-'+lot+'-'+bs+'-'+str(dh[0])+'-'+str(dh[1])+'-'+str(dh[2])+'-'+str(dh[3])] = dihedral_min if len(args.angle) != 0: for a,an in enumerate(args.angle): angle_min = rdMolTransforms.GetAngleDeg(mol_i.GetConformer(),an[0],an[1],an[2]) geom_data.at[j,args.geom_par_name+'-Angle-'+lot+'-'+bs+'-'+str(an[0])+'-'+str(an[1])+'-'+str(an[2])] = angle_min if len(args.bond) != 0: for b,bd in enumerate(args.angle): bond_min = rdMolTransforms.GetBondLength(mol_i.GetConformer(),bd[0],bd[1]) geom_data.at[j,args.geom_par_name+'-Bond-'+lot+'-'+bs+'-'+str(bd[0])+'-'+str(bd[1])] = bond_min return geom_data def calculate_parameters(sdf_rdkit,sdf_ani,sdf_xtb,qm_files,args,log,w_dir_initial,name_mol,lot,bs): #creating folder for all molecules to write geom parameter folder = w_dir_initial + '/QSTAT/geom_parameters' try: os.makedirs(folder) os.chdir(folder) except OSError: if os.path.isdir(folder): os.chdir(folder) else: raise #get mol objects dft_mols= [] rdkit_mols = Chem.SDMolSupplier(sdf_rdkit, removeHs=False) if args.rot_dihedral: args.dihedral = getDihedralMatches(rdkit_mols[0], args.heavyonly,log) if sdf_ani is not None: ani_mols = Chem.SDMolSupplier(sdf_ani, removeHs=False) if sdf_xtb is not None: xtb_mols = Chem.SDMolSupplier(sdf_xtb, removeHs=False) ob_compat = True try: import openbabel as ob except (ModuleNotFoundError,AttributeError): ob_compat = False log.write('\nx Open Babel is not installed correctly, it is not possible to get molecular descriptors') if ob_compat: obConversion = ob.OBConversion() obConversion.SetInAndOutFormats("log", "mol") ob_mol = ob.OBMol() for file in qm_files: if str(bs).find('/') > -1: obConversion.ReadFile(ob_mol, args.path + str(lot) + '-' + str(bs).split('/')[0] +'/success/output_files/'+file) obConversion.WriteFile(ob_mol, args.path + str(lot) + '-' + str(bs).split('/')[0] +'/success/output_files/'+file.split('.')[0]+'.mol') obConversion.CloseOutFile() dft_mols.append(Chem.MolFromMolFile(args.path + str(lot) + '-' + str(bs).split('/')[0] +'/success/output_files/'+file.split('.')[0]+'.mol', removeHs=False)) else: obConversion.ReadFile(ob_mol, args.path + str(lot) + '-' + str(bs) +'/success/output_files/'+file) obConversion.WriteFile(ob_mol, args.path + str(lot) + '-' + str(bs) +'/success/output_files/'+file.split('.')[0]+'.mol') obConversion.CloseOutFile() dft_mols.append(Chem.MolFromMolFile(args.path + str(lot) + '-' + str(bs) +'/success/output_files/'+file.split('.')[0]+'.mol', removeHs=False)) if os.path.exists(w_dir_initial+'/CSEARCH/xtb/'+name_mol+'_xtb.sdf') and os.path.exists(w_dir_initial+'/CSEARCH/rdkit/'+name_mol+'_rdkit.sdf'): geom_data = get_data(rdkit_mols,xtb_mols,dft_mols,lot,bs,name_mol,args,'rdkit','xtb',w_dir_initial) geom_data.to_csv(name_mol+'-all-geom-data-with-rdkit-xtb.csv',index=False) if os.path.exists(w_dir_initial+'/CSEARCH/ani/'+name_mol+'_ani.sdf') and os.path.exists(w_dir_initial+'/CSEARCH/rdkit/'+name_mol+'_rdkit.sdf'): geom_data = get_data(rdkit_mols,ani_mols,dft_mols,lot,bs,name_mol,args,'rdkit','ani',w_dir_initial) geom_data.to_csv(name_mol+'-all-geom-data-with-rdkit-ani.csv',index=False) ########## if os.path.exists(w_dir_initial+'/CSEARCH/xtb/'+name_mol+'_xtb.sdf') and os.path.exists(w_dir_initial+'/CSEARCH/summ/'+name_mol+'_summ.sdf'): geom_data = get_data(rdkit_mols,xtb_mols,dft_mols,lot,bs,name_mol,args,'summ','xtb',w_dir_initial) geom_data.to_csv(name_mol+'-all-geom-data-with-summ-xtb.csv',index=False) if os.path.exists(w_dir_initial+'/CSEARCH/ani/'+name_mol+'_ani.sdf') and os.path.exists(w_dir_initial+'/CSEARCH/summ/'+name_mol+'_summ.sdf'): geom_data = get_data(rdkit_mols,ani_mols,dft_mols,lot,bs,name_mol,args,'summ','ani',w_dir_initial) geom_data.to_csv(name_mol+'-all-geom-data-with-summ-ani.csv',index=False) ############# if os.path.exists(w_dir_initial+'/CSEARCH/xtb/'+name_mol+'_xtb.sdf') and os.path.exists(w_dir_initial+'/CSEARCH/fullmonte/'+name_mol+'_fullmonte.sdf'): geom_data = get_data(rdkit_mols,xtb_mols,dft_mols,lot,bs,name_mol,args,'fullmonte','xtb',w_dir_initial) geom_data.to_csv(name_mol+'-all-geom-data-with-fullmonte-xtb.csv',index=False) if os.path.exists(w_dir_initial+'/CSEARCH/ani/'+name_mol+'_ani.sdf') and os.path.exists(w_dir_initial+'/CSEARCH/fullmonte/'+name_mol+'_fullmonte.sdf'): geom_data = get_data(rdkit_mols,ani_mols,dft_mols,lot,bs,name_mol,args,'fullmonte','ani',w_dir_initial) geom_data.to_csv(name_mol+'-all-geom-data-with-fullmonte-ani.csv',index=False) ############ if os.path.exists(w_dir_initial+'/CSEARCH/summ/'+name_mol+'_summ.sdf') and not os.path.exists(w_dir_initial+'/CSEARCH/xtb/'+name_mol+'_xtb.sdf') and not os.path.exists(w_dir_initial+'/CSEARCH/ani/'+name_mol+'_ani.sdf'): geom_data = get_data(rdkit_mols,None,dft_mols,lot,bs,name_mol,args,'summ',None,w_dir_initial) geom_data.to_csv(name_mol+'-all-geom-data-with-summ.csv',index=False) if os.path.exists(w_dir_initial+'/CSEARCH/rdkit/'+name_mol+'_rdkit.sdf') and not os.path.exists(w_dir_initial+'/CSEARCH/xtb/'+name_mol+'_xtb.sdf') and not os.path.exists(w_dir_initial+'/CSEARCH/ani/'+name_mol+'_ani.sdf') : geom_data = get_data(rdkit_mols,None,dft_mols,lot,bs,name_mol,args,'rdkit',None,w_dir_initial) geom_data.to_csv(name_mol+'-all-geom-data-with-rdkit.csv',index=False) if os.path.exists(w_dir_initial+'/CSEARCH/fullmonte/'+name_mol+'_fullmonte.sdf') and not os.path.exists(w_dir_initial+'/CSEARCH/xtb/'+name_mol+'_xtb.sdf') and not os.path.exists(w_dir_initial+'/CSEARCH/ani/'+name_mol+'_ani.sdf') : geom_data = get_data(rdkit_mols,None,dft_mols,lot,bs,name_mol,args,'rdkit',None,w_dir_initial) geom_data.to_csv(name_mol+'-all-geom-data-with-fullmonte.csv',index=False)
65.269737
238
0.603467
1,424
9,921
3.985253
0.095506
0.051806
0.063965
0.048106
0.755771
0.752423
0.745022
0.739383
0.733921
0.723877
0
0.00928
0.217922
9,921
151
239
65.701987
0.722129
0.01774
0
0.297521
0
0
0.132632
0.046676
0
0
0
0
0
1
0.016529
false
0
0.049587
0
0.07438
0
0
0
0
null
0
0
0
0
1
1
1
1
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
null
0
0
0
0
0
0
0
0
0
0
0
0
0
5
fb5ffc354d2d854524531b1d4f70227336db8f87
238
py
Python
src/ikazuchi/errors.py
t2y/ikazuchi
7023111e92fa47360c50cfefd1398c554475f2c6
[ "Apache-2.0" ]
null
null
null
src/ikazuchi/errors.py
t2y/ikazuchi
7023111e92fa47360c50cfefd1398c554475f2c6
[ "Apache-2.0" ]
null
null
null
src/ikazuchi/errors.py
t2y/ikazuchi
7023111e92fa47360c50cfefd1398c554475f2c6
[ "Apache-2.0" ]
null
null
null
# -*- coding: utf-8 -*- class IkazuchiError(Exception): """ ikazuchi root exception """ pass class TranslatorError(IkazuchiError): """ ikazuchi translator exception """ pass class NeedApiKeyError(TranslatorError): pass
19.833333
44
0.693277
21
238
7.857143
0.571429
0.157576
0.218182
0
0
0
0
0
0
0
0
0.005128
0.180672
238
11
45
21.636364
0.841026
0.327731
0
0.4
0
0
0
0
0
0
0
0
0
1
0
true
0.6
0
0
0.6
0
1
0
0
null
0
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
null
0
0
0
0
0
0
1
1
0
0
1
0
0
5
fb7be7756110402e4a2ea628f2c6bc51fd0dd0f4
139
py
Python
manager.py
thangbk2209/pretraining_auto_scaling_ng
0b98b311c75ec4b87b3e8168f93eeb53ed0d16f5
[ "MIT" ]
null
null
null
manager.py
thangbk2209/pretraining_auto_scaling_ng
0b98b311c75ec4b87b3e8168f93eeb53ed0d16f5
[ "MIT" ]
null
null
null
manager.py
thangbk2209/pretraining_auto_scaling_ng
0b98b311c75ec4b87b3e8168f93eeb53ed0d16f5
[ "MIT" ]
null
null
null
""" Author: bkc@data_analysis Project: autoencoder_ng Created: 7/29/20 10:51 Purpose: START SCRIPT FOR AUTOENCODER_NG PROJECT """
19.857143
50
0.726619
20
139
4.9
0.85
0.265306
0
0
0
0
0
0
0
0
0
0.078261
0.172662
139
6
51
23.166667
0.773913
0.877698
0
null
0
null
0
0
null
0
0
0
null
1
null
true
0
0
null
null
null
1
0
0
null
1
0
0
0
0
0
0
0
0
0
0
0
0
1
0
0
0
1
0
0
0
0
0
0
null
0
0
0
0
0
0
1
0
0
0
0
0
0
5
fb89161fb05f2325ee9a0854f9561e3db343bc07
89
py
Python
cwl_airflow_parser/operators/__init__.py
lrodri29/cwl-airflow-parser
3854022fc7a5c62cfd92e93fdb7a97d528918239
[ "Apache-2.0" ]
14
2018-05-01T01:31:07.000Z
2019-09-02T15:41:06.000Z
cwl_airflow_parser/operators/__init__.py
lrodri29/cwl-airflow-parser
3854022fc7a5c62cfd92e93fdb7a97d528918239
[ "Apache-2.0" ]
1
2018-08-06T17:28:51.000Z
2018-08-27T16:05:10.000Z
cwl_airflow_parser/operators/__init__.py
lrodri29/cwl-airflow-parser
3854022fc7a5c62cfd92e93fdb7a97d528918239
[ "Apache-2.0" ]
8
2018-08-06T16:47:31.000Z
2020-05-12T20:21:01.000Z
from .cwljobdispatcher import CWLJobDispatcher from .cwljobgatherer import CWLJobGatherer
44.5
46
0.898876
8
89
10
0.5
0
0
0
0
0
0
0
0
0
0
0
0.078652
89
2
47
44.5
0.97561
0
0
0
0
0
0
0
0
0
0
0
0
1
0
true
0
1
0
1
0
1
0
0
null
0
0
0
0
0
0
0
0
0
0
0
0
0
1
0
0
0
0
0
0
0
0
0
0
null
0
0
0
0
0
0
1
0
1
0
1
0
0
5
fb9503385f519e775914f1b2f2d3dd6a4f2477ad
15,037
py
Python
Machine Learning Summer School 2019 (London, UK)/tutorials/mcmc/2 - markov_chain_monte_carlo.py
xuedong/rlss2019
d7468c2fcf269d8afd6fb0f44993aa9797867944
[ "MIT" ]
null
null
null
Machine Learning Summer School 2019 (London, UK)/tutorials/mcmc/2 - markov_chain_monte_carlo.py
xuedong/rlss2019
d7468c2fcf269d8afd6fb0f44993aa9797867944
[ "MIT" ]
null
null
null
Machine Learning Summer School 2019 (London, UK)/tutorials/mcmc/2 - markov_chain_monte_carlo.py
xuedong/rlss2019
d7468c2fcf269d8afd6fb0f44993aa9797867944
[ "MIT" ]
null
null
null
############################################################ # Copyright 2019 Michael Betancourt # Licensed under the new BSD (3-clause) license: # # https://opensource.org/licenses/BSD-3-Clause ############################################################ ############################################################ # # Initial setup # ############################################################ import matplotlib.pyplot as plot import scipy.stats as stats import numpy import math light = "#DCBCBC" light_highlight = "#C79999" mid = "#B97C7C" mid_highlight = "#A25050" dark = "#8F2727" dark_highlight = "#7C0000" green = "#00FF00" # To facilitate the computation of Markov chain Monte Carlo estimators # let's define a _Welford accumulator_ that computes empirical summaries # of a sample in a single pass def welford_summary(x, L = 100): summary = [0] * (L + 1) for n in range(len(x)): delta = x[n] - summary[0] summary[0] += delta / (n + 1) for l in range(L): if n > l: summary[l + 1] += delta * (x[n - l] - summary[0]) norm = 1.0 / (len(x) - 1) for l in range(L): summary[l + 1] *= norm return summary # We can then use the Welford accumulator output to compute the # Markov chain Monte Carlo estimators and their properties def compute_mcmc_stats(x, L = 20): summary = welford_summary(x, L) mean = summary[0] var = summary[1] acov = summary[1:(L + 1)] # Compute the effective sample size rho_hat_s = [0] * L rho_hat_s[1] = acov[1] / var # First we transform our autocovariances into Geyer's initial positive sequence max_s = 1 for s in [ 2 * i + 1 for i in range((L - 1) / 2) ]: rho_hat_even = acov[s + 1] / var rho_hat_odd = acov[s + 2] / var; max_s = s + 2 if rho_hat_even + rho_hat_odd > 0: rho_hat_s[s + 1] = rho_hat_even rho_hat_s[s + 2] = rho_hat_odd else: break # Then we transform this output into Geyer's initial monotone sequence for s in [ 2 * i + 3 for i in range((max_s - 2)/ 2) ]: if rho_hat_s[s + 1] + rho_hat_s[s + 2] > rho_hat_s[s - 1] + rho_hat_s[s]: rho_hat_s[s + 1] = 0.5 * (rho_hat_s[s - 1] + rho_hat_s[s]) rho_hat_s[s + 2] = rho_hat_s[s + 1] ess = len(x) / (1.0 + 2 * sum(rho_hat_s)) return [mean, math.sqrt(var / ess), math.sqrt(var), ess] # To generate our samples we'll use numpy's pseudo random number # generator which needs to be seeded to achieve reproducible # results numpy.random.seed(seed=8675309) # To ensure accurate results let's generate pretty large samples N = 10000 # To see how results scale with dimension we'll consider # behavior one thorugh ten dimensions Ds = [ n + 1 for n in range(10) ] idxs = [ idx for idx in range(Ds[-1]) for r in range(2) ] plot_Ds = [ D + delta for D in Ds for delta in [-0.5, 0.5]] ############################################################ # # How does the Random Walk Metropolis algorithm perform # on a target distribution with a two-dimensional Gaussian # density function? # ############################################################ # Target density def target_lpdf(x): return - 0.5 * ( (x[0] - 1)**2 + (x[1] + 1)**2 ) \ - 0.5 * 2 * math.log(6.283185307179586) # Tune proposal density sigma = 1.4 # A place to store our Markov chain # D columns for the parameters and one extra column # for the Metropolis acceptance probability D = 2 mcmc_samples = [[0] * (D + 1) for _ in range(N)] # Randomly seed the initial state mcmc_samples[0][0] = stats.norm.rvs(0, 3) mcmc_samples[0][1] = stats.norm.rvs(0, 3) mcmc_samples[0][2] = 1 for n in range(1, N): x0 = [ mcmc_samples[n - 1][0], mcmc_samples[n - 1][1]] xp = [ stats.norm.rvs(x0[0], sigma), stats.norm.rvs(x0[1], sigma) ] # Compute acceptance probability accept_prob = 1 if target_lpdf(xp) < target_lpdf(x0): accept_prob = math.exp(target_lpdf(xp) - target_lpdf(x0)) mcmc_samples[n][D] = accept_prob # Apply Metropolis correction u = stats.uniform.rvs(0, 1) if accept_prob > u: mcmc_samples[n][0] = xp[0] mcmc_samples[n][1] = xp[1] else: mcmc_samples[n][0] = x0[0] mcmc_samples[n][1] = x0[1] # Compute MCMC estimator statistics, leaving # out the first 100 samples as warmup compute_mcmc_stats([ s[0] for s in mcmc_samples[100:] ]) compute_mcmc_stats([ s[1] for s in mcmc_samples[100:] ]) # Plot convergence of MCMC estimators for each parameter stride = 250 M = N / stride iters = [ stride * (i + 1) for i in range(N / stride) ] x1_mean = [0] * M x1_se = [0] * M x2_mean = [0] * M x2_se = [0] * M for m in range(M): running_samples = [ s[0] for s in mcmc_samples[100:iters[m]] ] mcmc_stats = compute_mcmc_stats(running_samples) x1_mean[m] = mcmc_stats[0] x1_se[m] = mcmc_stats[1] running_samples = [ s[1] for s in mcmc_samples[100:iters[m]] ] mcmc_stats = compute_mcmc_stats(running_samples) x2_mean[m] = mcmc_stats[0] x2_se[m] = mcmc_stats[1] plot.fill_between(iters, [ x1_mean[m] - 2 * x1_se[m] for m in range(M) ], [ x1_mean[m] + 2 * x1_se[m] for m in range(M) ], facecolor=light, color=light) plot.plot(iters, x1_mean, color=dark) plot.plot([iters[0], iters[-1]], [1, 1], color='grey', linestyle='--') plot.gca().set_xlim([0, N]) plot.gca().set_xlabel("Iteration") plot.gca().set_ylim([-2, 2]) plot.gca().set_ylabel("Monte Carlo Estimator") plot.show() plot.fill_between(iters, [ x2_mean[m] - 2 * x2_se[m] for m in range(M) ], [ x2_mean[m] + 2 * x2_se[m] for m in range(M) ], facecolor=light, color=light) plot.plot(iters, x2_mean, color=dark) plot.plot([iters[0], iters[-1]], [-1, -1], color='grey', linestyle='--') plot.gca().set_xlim([0, N]) plot.gca().set_xlabel("Iteration") plot.gca().set_ylim([-2, 2]) plot.gca().set_ylabel("Monte Carlo Estimator") plot.show() ############################################################ # # How does the Random Walk Metropolis algorithm perform # on a target distribution with a funnel density function? # ############################################################ # Target density def target_lpdf(x): return - 0.5 * ( x[0]**2 + x[1]**2 + ( (x[2] - x[0]) / math.exp(x[1]) )**2 ) \ - 0.5 * 3 * math.log(6.283185307179586) - 0.5 * x[2] # Tune proposal density sigma = 1.4 # A place to store our Markov chain # D columns for the parameters and one extra column # for the Metropolis acceptance probability D = 3 mcmc_samples = [[0] * (D + 1) for _ in range(N)] # Randomly seed the initial state mcmc_samples[0][0] = stats.norm.rvs(0, 3) mcmc_samples[0][1] = stats.norm.rvs(0, 3) mcmc_samples[0][2] = stats.norm.rvs(0, 3) mcmc_samples[0][3] = 1 for n in range(1, N): x0 = [ mcmc_samples[n - 1][0], mcmc_samples[n - 1][1], mcmc_samples[n - 1][2]] xp = [ stats.norm.rvs(x0[0], sigma), stats.norm.rvs(x0[1], sigma), stats.norm.rvs(x0[2], sigma) ] # Compute acceptance probability accept_prob = 1 if target_lpdf(xp) < target_lpdf(x0): accept_prob = math.exp(target_lpdf(xp) - target_lpdf(x0)) mcmc_samples[n][D] = accept_prob # Apply Metropolis correction u = stats.uniform.rvs(0, 1) if accept_prob > u: mcmc_samples[n][0] = xp[0] mcmc_samples[n][1] = xp[1] mcmc_samples[n][2] = xp[2] else: mcmc_samples[n][0] = x0[0] mcmc_samples[n][1] = x0[1] mcmc_samples[n][2] = x0[2] # Compute MCMC estimator statistics, leaving # out the first 100 samples as warmup compute_mcmc_stats([ s[0] for s in mcmc_samples[100:] ]) compute_mcmc_stats([ s[1] for s in mcmc_samples[100:] ]) compute_mcmc_stats([ s[2] for s in mcmc_samples[100:] ]) # Plot convergence of MCMC estimators for each parameter stride = 250 M = N / stride iters = [ stride * (i + 1) for i in range(N / stride) ] mu_mean = [0] * M mu_se = [0] * M log_tau_mean = [0] * M log_tau_se = [0] * M for m in range(M): running_samples = [ s[0] for s in mcmc_samples[100:iters[m]] ] mcmc_stats = compute_mcmc_stats(running_samples) mu_mean[m] = mcmc_stats[0] mu_se[m] = mcmc_stats[1] running_samples = [ s[1] for s in mcmc_samples[100:iters[m]] ] mcmc_stats = compute_mcmc_stats(running_samples) log_tau_mean[m] = mcmc_stats[0] log_tau_se[m] = mcmc_stats[1] plot.fill_between(iters, [ mu_mean[m] - 2 * mu_se[m] for m in range(M) ], [ mu_mean[m] + 2 * mu_se[m] for m in range(M) ], facecolor=light, color=light) plot.plot(iters, mu_mean, color=dark) plot.plot([iters[0], iters[-1]], [0, 0], color='grey', linestyle='--') plot.gca().set_xlim([0, N]) plot.gca().set_xlabel("Iteration") plot.gca().set_ylim([-1, 1]) plot.gca().set_ylabel("Monte Carlo Estimator") plot.show() plot.fill_between(iters, [ log_tau_mean[m] - 2 * log_tau_se[m] for m in range(M) ], [ log_tau_mean[m] + 2 * log_tau_se[m] for m in range(M) ], facecolor=light, color=light) plot.plot(iters, log_tau_mean, color=dark) plot.plot([iters[0], iters[-1]], [0, 0], color='grey', linestyle='--') plot.gca().set_xlim([0, N]) plot.gca().set_xlabel("Iteration") plot.gca().set_ylim([-1, 8]) plot.gca().set_ylabel("Monte Carlo Estimator") plot.show() ############################################################ # # How does the effective sample size of a Random Walk # Metropolis Markov chain vary with the dimension of # the target distribution? # ############################################################ def target_lpdf(x): return - 0.5 * sum([ x_n**2 for x_n in x ]) \ - 0.5 * len(x) * math.log(6.283185307179586) ############################################################ # First let's use a constant Markov transition ############################################################ accept_prob_means = [0] * len(Ds) accept_prob_ses = [0] * len(Ds) ave_eff_sample_sizes = [0] * len(Ds) # Tune proposal density sigma = 1.4 for D in Ds: # A place to store our Markov chain # D columns for the parameters and one extra column # for the Metropolis acceptance probability mcmc_samples = [[0] * (D + 1) for _ in range(N)] # Seeding the initial state with an exact sample # from the target distribution ensures that we # start in the typical set and avoid having to # worry about warmup. for d in range(D): mcmc_samples[0][d] = stats.norm.rvs(0, 3) mcmc_samples[0][D] = 1 for n in range(1, N): x0 = [ mcmc_samples[n - 1][d] for d in range(D) ] xp = [ stats.norm.rvs(x0[d], sigma) for d in range(D) ] # Compute acceptance probability accept_prob = 1 if target_lpdf(xp) < target_lpdf(x0): accept_prob = math.exp(target_lpdf(xp) - target_lpdf(x0)) mcmc_samples[n][D] = accept_prob # Apply Metropolis correction u = stats.uniform.rvs(0, 1) if accept_prob > u: mcmc_samples[n][0:D] = xp else: mcmc_samples[n][0:D] = x0 # Estimate average acceptance probability # Compute MCMC estimator statistics mcmc_stats = compute_mcmc_stats([ s[D] for s in mcmc_samples]) accept_prob_means[D - 1] = mcmc_stats[0] accept_prob_ses[D - 1] = mcmc_stats[1] # Estimate effective sample size eff_sample_sizes = [ compute_mcmc_stats([ s[d] for s in mcmc_samples])[3] \ for d in range(D) ] ave_eff_sample_sizes[D - 1] = sum(eff_sample_sizes) / D f, axarr = plot.subplots(1, 2) axarr[0].set_title("") axarr[0].fill_between(plot_Ds, [ accept_prob_means[idx] - 2 * accept_prob_ses[idx] for idx in idxs ], [ accept_prob_means[idx] + 2 * accept_prob_ses[idx] for idx in idxs ], facecolor=dark, color=dark) axarr[0].plot(plot_Ds, [ accept_prob_means[idx] for idx in idxs], color=dark_highlight) axarr[0].set_xlim([Ds[0], Ds[-1]]) axarr[0].set_xlabel("Dimension") axarr[0].set_ylim([0, 1]) axarr[0].set_ylabel("Average Acceptance Probability") axarr[1].set_title("") axarr[1].plot(plot_Ds, [ ave_eff_sample_sizes[idx] / N for idx in idxs], color=dark_highlight) axarr[1].set_xlim([Ds[0], Ds[-1]]) axarr[1].set_xlabel("Dimension") axarr[1].set_ylim([0, 0.3]) axarr[1].set_ylabel("Average Effective Sample Size Per Iteration") plot.show() ############################################################ # Now let's use an (approximately) optimally tuned Markov # transition for each dimension ############################################################ accept_prob_means = [0] * len(Ds) accept_prob_ses = [0] * len(Ds) ave_eff_sample_sizes = [0] * len(Ds) # Approximately optimal proposal tuning opt_sigmas = [2.5, 1.75, 1.5, 1.2, 1.15, 1.0, 0.95, 0.85, 0.8, 0.75] # Tune proposal density sigma = 1.4 for D in Ds: # A place to store our Markov chain # D columns for the parameters and one extra column # for the Metropolis acceptance probability mcmc_samples = [[0] * (D + 1) for _ in range(N)] # Seeding the initial state with an exact sample # from the target distribution ensures that we # start in the typical set and avoid having to # worry about warmup. for d in range(D): mcmc_samples[0][d] = stats.norm.rvs(0, 3) mcmc_samples[0][D] = 1 for n in range(1, N): x0 = [ mcmc_samples[n - 1][d] for d in range(D) ] xp = [ stats.norm.rvs(x0[d], opt_sigmas[D - 1]) for d in range(D) ] # Compute acceptance probability accept_prob = 1 if target_lpdf(xp) < target_lpdf(x0): accept_prob = math.exp(target_lpdf(xp) - target_lpdf(x0)) mcmc_samples[n][D] = accept_prob # Apply Metropolis correction u = stats.uniform.rvs(0, 1) if accept_prob > u: mcmc_samples[n][0:D] = xp else: mcmc_samples[n][0:D] = x0 # Estimate average acceptance probability # Compute MCMC estimator statistics mcmc_stats = compute_mcmc_stats([ s[D] for s in mcmc_samples]) accept_prob_means[D - 1] = mcmc_stats[0] accept_prob_ses[D - 1] = mcmc_stats[1] # Estimate effective sample size eff_sample_sizes = [ compute_mcmc_stats([ s[d] for s in mcmc_samples])[3] \ for d in range(D) ] ave_eff_sample_sizes[D - 1] = sum(eff_sample_sizes) / D f, axarr = plot.subplots(1, 2) axarr[0].set_title("") axarr[0].fill_between(plot_Ds, [ accept_prob_means[idx] - 2 * accept_prob_ses[idx] for idx in idxs ], [ accept_prob_means[idx] + 2 * accept_prob_ses[idx] for idx in idxs ], facecolor=dark, color=dark) axarr[0].plot(plot_Ds, [ accept_prob_means[idx] for idx in idxs], color=dark_highlight) axarr[0].set_xlim([Ds[0], Ds[-1]]) axarr[0].set_xlabel("Dimension") axarr[0].set_ylim([0, 1]) axarr[0].set_ylabel("Average Acceptance Probability") axarr[1].set_title("") axarr[1].plot(plot_Ds, [ ave_eff_sample_sizes[idx] / N for idx in idxs], color=dark_highlight) axarr[1].set_xlim([Ds[0], Ds[-1]]) axarr[1].set_xlabel("Dimension") axarr[1].set_ylim([0, 0.3]) axarr[1].set_ylabel("Average Effective Sample Size Per Iteration") plot.show()
31.524109
92
0.608499
2,404
15,037
3.656406
0.111065
0.066325
0.03413
0.01479
0.783845
0.758362
0.753925
0.747895
0.744937
0.736405
0
0.044709
0.201237
15,037
476
93
31.590336
0.68712
0.209084
0
0.621429
0
0
0.0342
0
0
0
0
0
0
1
0.017857
false
0
0.014286
0.010714
0.05
0
0
0
0
null
0
0
0
0
1
1
1
1
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
null
0
0
0
0
0
0
0
0
0
0
0
0
0
5
fb99379467ad51c39cd5405a13aedf9d925212e0
40
py
Python
test.py
probot1511/test_repo
9dee2d2eb1c44c09d04d91861b3f9bd2b63c4e0f
[ "MIT" ]
null
null
null
test.py
probot1511/test_repo
9dee2d2eb1c44c09d04d91861b3f9bd2b63c4e0f
[ "MIT" ]
null
null
null
test.py
probot1511/test_repo
9dee2d2eb1c44c09d04d91861b3f9bd2b63c4e0f
[ "MIT" ]
1
2022-01-31T19:24:49.000Z
2022-01-31T19:24:49.000Z
print("RUnning!!!") print("Updated!!!")
13.333333
19
0.6
4
40
6
0.75
0
0
0
0
0
0
0
0
0
0
0
0.05
40
2
20
20
0.631579
0
0
0
0
0
0.5
0
0
0
0
0
0
1
0
true
0
0
0
0
1
1
1
0
null
0
0
0
0
0
0
0
0
0
0
0
0
0
1
0
0
0
0
0
0
0
0
0
0
null
0
0
0
0
0
0
1
0
0
0
0
1
0
5
83b0ae650bd55397213c23d819dd2927624d8665
121
py
Python
common/utils/__init__.py
jl1990/alpha-zero-general
6a1549f9cd1b2ebdffee30f8de1be9cbefecd5f4
[ "MIT" ]
null
null
null
common/utils/__init__.py
jl1990/alpha-zero-general
6a1549f9cd1b2ebdffee30f8de1be9cbefecd5f4
[ "MIT" ]
null
null
null
common/utils/__init__.py
jl1990/alpha-zero-general
6a1549f9cd1b2ebdffee30f8de1be9cbefecd5f4
[ "MIT" ]
null
null
null
"""Useful utils """ from .eval import * from .misc import * # progress bar from .progress.progress.bar import Bar as Bar
17.285714
45
0.719008
18
121
4.833333
0.5
0.252874
0
0
0
0
0
0
0
0
0
0
0.165289
121
6
46
20.166667
0.861386
0.214876
0
0
0
0
0
0
0
0
0
0
0
1
0
true
0
1
0
1
0
1
0
0
null
1
0
0
0
0
0
0
0
0
0
0
0
0
1
0
0
0
0
0
0
0
0
0
0
null
0
0
0
0
0
0
1
0
1
0
0
0
0
5
860369b74b7a50328a72400a0fc52d3fc97e9d16
80
py
Python
route/link.py
moluwole/Bast_skeleton
9e58c1c0da3085b377896aab1e3007689c328c1c
[ "MIT" ]
3
2018-08-04T21:11:35.000Z
2018-08-24T04:47:16.000Z
route/link.py
moluwole/Bast_skeleton
9e58c1c0da3085b377896aab1e3007689c328c1c
[ "MIT" ]
1
2018-08-24T20:57:36.000Z
2018-08-24T20:57:36.000Z
route/link.py
moluwole/Bast_skeleton
9e58c1c0da3085b377896aab1e3007689c328c1c
[ "MIT" ]
2
2018-08-05T19:14:16.000Z
2018-08-15T08:13:50.000Z
from bast import Route route = Route() route.get('/', 'HelloController.index')
16
39
0.7125
10
80
5.7
0.7
0.526316
0.526316
0
0
0
0
0
0
0
0
0
0.125
80
4
40
20
0.814286
0
0
0
0
0
0.275
0.2625
0
0
0
0
0
1
0
false
0
0.333333
0
0.333333
0
1
0
0
null
1
1
0
0
0
0
0
0
0
0
0
0
0
1
0
0
0
0
0
0
0
0
0
0
null
0
0
0
0
0
0
0
0
1
0
0
0
0
5
f7af8bb0d4f3220811a9ca15ffd7c866a271a05f
24
py
Python
opensecrets/__init__.py
ndanielsen/py-opensecrets
b362d993fdcff6fc6a0d33ec2db75fb1da418a84
[ "MIT" ]
1
2018-02-15T03:59:13.000Z
2018-02-15T03:59:13.000Z
opensecrets/__init__.py
ndanielsen/py-opensecrets
b362d993fdcff6fc6a0d33ec2db75fb1da418a84
[ "MIT" ]
11
2018-02-14T16:23:17.000Z
2018-04-05T16:14:49.000Z
opensecrets/__init__.py
ndanielsen/py-opensecrets
b362d993fdcff6fc6a0d33ec2db75fb1da418a84
[ "MIT" ]
null
null
null
from .crpapi import CRP
12
23
0.791667
4
24
4.75
1
0
0
0
0
0
0
0
0
0
0
0
0.166667
24
1
24
24
0.95
0
0
0
0
0
0
0
0
0
0
0
0
1
0
true
0
1
0
1
0
1
1
0
null
0
0
0
0
0
0
0
0
0
0
0
0
0
1
0
0
0
0
0
0
0
0
0
0
null
0
0
0
0
0
0
1
0
1
0
0
0
0
5
f7b55905ea97e096b70cfda1b4ce991e067b06eb
151
py
Python
data/windows/dr16/mask.py
dnidever/apogee
83ad7496a0b4193df9e2c01b06dc36cb879ea6c1
[ "BSD-3-Clause" ]
5
2019-04-11T13:35:24.000Z
2019-11-14T06:12:51.000Z
data/windows/dr16/mask.py
dnidever/apogee
83ad7496a0b4193df9e2c01b06dc36cb879ea6c1
[ "BSD-3-Clause" ]
null
null
null
data/windows/dr16/mask.py
dnidever/apogee
83ad7496a0b4193df9e2c01b06dc36cb879ea6c1
[ "BSD-3-Clause" ]
5
2018-09-20T22:07:43.000Z
2021-01-15T07:13:38.000Z
from apogee.aspcap import aspcap from apogee.aspcap import mask els=aspcap.elems() for el in els[0]: mask.mkmask(el,globalmask='mask_v02_aspcap.txt')
25.166667
66
0.788079
26
151
4.5
0.576923
0.17094
0.273504
0.376068
0
0
0
0
0
0
0
0.022059
0.099338
151
5
67
30.2
0.838235
0
0
0
0
0
0.125828
0
0
0
0
0
0
1
0
false
0
0.5
0
0.5
0
1
0
0
null
0
1
1
0
0
0
0
0
0
0
0
0
0
1
0
0
0
0
0
0
0
0
0
0
null
0
0
0
0
0
0
0
0
1
0
0
0
0
5
f7bde64d861ea84f6a0483cdddf17127e95c800d
67
py
Python
keras_retinanet/backend/__init__.py
mj-haghighi/keras-retinanet
644c2f8da799889a2a3f6cc833478256cbe32c23
[ "Apache-2.0" ]
null
null
null
keras_retinanet/backend/__init__.py
mj-haghighi/keras-retinanet
644c2f8da799889a2a3f6cc833478256cbe32c23
[ "Apache-2.0" ]
null
null
null
keras_retinanet/backend/__init__.py
mj-haghighi/keras-retinanet
644c2f8da799889a2a3f6cc833478256cbe32c23
[ "Apache-2.0" ]
null
null
null
# from .backend import * # noqa: F401,F403 from .sbackend import *
33.5
43
0.701493
9
67
5.222222
0.777778
0
0
0
0
0
0
0
0
0
0
0.109091
0.179104
67
2
44
33.5
0.745455
0.597015
0
0
0
0
0
0
0
0
0
0
0
1
0
true
0
1
0
1
0
1
0
0
null
0
0
0
0
0
0
0
0
0
0
0
0
0
1
0
0
0
0
0
0
0
0
0
0
null
0
0
0
0
0
0
1
0
1
0
1
0
0
5
f7c31602d3ba09f1a3970f8ce071305eb086135d
74
py
Python
Crypto-hardRSA/flag.py
JSW2020/hsctf-2019-freshmen
5282d6d51153aadd62f42673aa3d487f8d7ef45b
[ "MIT" ]
16
2019-12-09T15:53:08.000Z
2021-12-07T00:34:30.000Z
Crypto-hardRSA/flag.py
JSW2020/hsctf-2019-freshmen
5282d6d51153aadd62f42673aa3d487f8d7ef45b
[ "MIT" ]
null
null
null
Crypto-hardRSA/flag.py
JSW2020/hsctf-2019-freshmen
5282d6d51153aadd62f42673aa3d487f8d7ef45b
[ "MIT" ]
7
2019-12-09T11:53:52.000Z
2021-11-14T04:09:04.000Z
flag = "flag{b3453333-9da9-49ae-b4ed-0017c392d58e}" e1 = 65537 e2 = 368273
24.666667
51
0.743243
11
74
5
0.909091
0
0
0
0
0
0
0
0
0
0
0.515152
0.108108
74
3
52
24.666667
0.318182
0
0
0
0
0
0.56
0.56
0
0
0
0
0
1
0
false
0
0
0
0
0
1
0
0
null
0
0
0
0
0
0
0
0
0
0
1
0
0
1
0
0
1
0
0
0
0
0
0
1
null
0
0
0
0
0
0
0
0
0
0
0
0
0
5
f7dd193790b7ae7797daf8c7c2f3ca9a0623ed89
405
py
Python
tests/test_plugins/pytester_example_dir/test_file_1.py
MORSECorp/snappiershot
acb6a8d01d4496abe0f2fe83c7e7af9cf77aac8e
[ "Apache-2.0" ]
27
2020-10-15T18:36:25.000Z
2022-03-02T19:11:44.000Z
tests/test_plugins/pytester_example_dir/test_file_1.py
MORSECorp/snappiershot
acb6a8d01d4496abe0f2fe83c7e7af9cf77aac8e
[ "Apache-2.0" ]
33
2020-10-15T15:03:37.000Z
2022-03-24T21:00:34.000Z
tests/test_plugins/pytester_example_dir/test_file_1.py
MORSECorp/snappiershot
acb6a8d01d4496abe0f2fe83c7e7af9cf77aac8e
[ "Apache-2.0" ]
5
2020-10-15T16:30:00.000Z
2022-03-30T15:07:28.000Z
""" This is a test file used for testing the pytest plugin. """ def test_function_passed(snapshot): """ The snapshot for this function is expected to exist. """ snapshot.assert_match(3 + 4j) def test_function_new(snapshot): """ The snapshot for this function is expected to exist, but only one assertion is expected. """ snapshot.assert_match(3 + 4j) snapshot.assert_match(3 + 4j)
31.153846
100
0.708642
60
405
4.666667
0.45
0.107143
0.203571
0.214286
0.6
0.364286
0.364286
0.364286
0.364286
0.364286
0
0.018349
0.192593
405
12
101
33.75
0.83792
0.491358
0
0.6
0
0
0
0
0
0
0
0
0.6
1
0.4
false
0.2
0
0
0.4
0
0
0
0
null
0
1
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
null
0
0
0
1
0
1
0
1
0
0
0
0
0
5
7912e94c22f794944d84a76c7ea337e0f1d42d27
83
py
Python
maths2.py
tavleensasan/Tav
7d9d041cf0ed13c2fe581dc8e40c93721ae4de73
[ "MIT" ]
null
null
null
maths2.py
tavleensasan/Tav
7d9d041cf0ed13c2fe581dc8e40c93721ae4de73
[ "MIT" ]
null
null
null
maths2.py
tavleensasan/Tav
7d9d041cf0ed13c2fe581dc8e40c93721ae4de73
[ "MIT" ]
null
null
null
def multiple(first,second): return first * second def add(x,y): return x+y
16.6
27
0.662651
14
83
3.928571
0.571429
0.4
0
0
0
0
0
0
0
0
0
0
0.216867
83
4
28
20.75
0.846154
0
0
0
0
0
0
0
0
0
0
0
0
1
0.5
false
0
0
0.5
1
0
1
0
0
null
1
0
0
0
0
0
0
0
0
0
0
0
0
1
0
0
0
0
0
0
0
0
0
0
null
0
0
0
0
0
1
0
0
0
1
0
0
0
5
791a74027f2dc3fbe44b27f9c9f0523352b4d029
149
py
Python
datahub/activity_feed/apps.py
Staberinde/data-hub-api
3d0467dbceaf62a47158eea412a3dba827073300
[ "MIT" ]
6
2019-12-02T16:11:24.000Z
2022-03-18T10:02:02.000Z
datahub/activity_feed/apps.py
Staberinde/data-hub-api
3d0467dbceaf62a47158eea412a3dba827073300
[ "MIT" ]
1,696
2019-10-31T14:08:37.000Z
2022-03-29T12:35:57.000Z
datahub/activity_feed/apps.py
Staberinde/data-hub-api
3d0467dbceaf62a47158eea412a3dba827073300
[ "MIT" ]
9
2019-11-22T12:42:03.000Z
2021-09-03T14:25:05.000Z
from django.apps import AppConfig class ActivityFeedConfig(AppConfig): """App config for activity_feed.""" name = 'datahub.activity_feed'
18.625
39
0.738255
17
149
6.352941
0.823529
0.222222
0
0
0
0
0
0
0
0
0
0
0.161074
149
7
40
21.285714
0.864
0.194631
0
0
0
0
0.184211
0.184211
0
0
0
0
0
1
0
false
0
0.333333
0
1
0
1
0
0
null
1
0
0
0
0
0
0
0
0
0
0
0
0
1
0
0
0
0
0
0
0
0
0
0
null
0
0
0
0
0
0
0
0
1
0
1
0
0
5
f719f32c0de53ae35c0223c63678dbad415c2f11
22
py
Python
__init__.py
andy-96/GFPGAN
0ed1214760170cc27fdfd60da1f64a0699a28cf4
[ "BSD-3-Clause" ]
null
null
null
__init__.py
andy-96/GFPGAN
0ed1214760170cc27fdfd60da1f64a0699a28cf4
[ "BSD-3-Clause" ]
null
null
null
__init__.py
andy-96/GFPGAN
0ed1214760170cc27fdfd60da1f64a0699a28cf4
[ "BSD-3-Clause" ]
null
null
null
from .gfpgan import *
11
21
0.727273
3
22
5.333333
1
0
0
0
0
0
0
0
0
0
0
0
0.181818
22
1
22
22
0.888889
0
0
0
0
0
0
0
0
0
0
0
0
1
0
true
0
1
0
1
0
1
1
0
null
0
0
0
0
0
0
0
0
0
0
0
0
0
1
0
0
0
0
0
0
0
0
0
0
null
0
0
0
0
0
0
1
0
1
0
0
0
0
5
f72f3f991d29cfcde8c404665347a2b2067bd01a
3,145
py
Python
tests/test_game_map.py
brittleshinpass/mossbread
6a225e5d11fdf1957d1bfe74c5a76d105561e12e
[ "MIT" ]
1
2020-05-30T19:45:58.000Z
2020-05-30T19:45:58.000Z
tests/test_game_map.py
brittleshinpass/mossbread
6a225e5d11fdf1957d1bfe74c5a76d105561e12e
[ "MIT" ]
null
null
null
tests/test_game_map.py
brittleshinpass/mossbread
6a225e5d11fdf1957d1bfe74c5a76d105561e12e
[ "MIT" ]
null
null
null
import pytest from array import array from game_map import GameMap from tests.conftest import get_relative_path sample_map_data = tuple( reversed( ( array("I", (0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0)), array("I", (0, 1, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0)), array("I", (1, 1, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 1, 1)), array("I", (1, 0, 0, 0, 0, 1, 1, 0, 0, 0, 1, 0, 0, 1, 1, 1, 1, 1, 0, 0, 1)), array("I", (1, 0, 1, 0, 1, 0, 0, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1)), array("I", (1, 0, 0, 0, 0, 0, 0, 1, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1)), array("I", (1, 1, 1, 1, 0, 1, 0, 1, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1)), array("I", (1, 0, 0, 0, 1, 1, 0, 1, 1, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1)), array("I", (1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1)), array("I", (1, 0, 0, 0, 1, 1, 0, 1, 1, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1)), array("I", (1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1)), array("I", (1, 0, 0, 0, 1, 1, 0, 1, 1, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1)), array("I", (1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1)), array("I", (1, 0, 0, 0, 1, 1, 0, 1, 1, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1)), array("I", (1, 1, 1, 1, 0, 1, 0, 1, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1)), array("I", (1, 0, 0, 0, 0, 0, 0, 1, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1)), array("I", (1, 0, 1, 0, 1, 0, 0, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1)), array("I", (1, 0, 0, 0, 0, 1, 1, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1)), array("I", (1, 1, 0, 0, 1, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1)), array("I", (0, 1, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0)), array("I", (0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0)), ) ) ) def test_game_map_from_file(sample_game_map, sample_tiles): assert sample_game_map.map_data == sample_map_data assert sample_game_map.width == 21 assert sample_game_map.height == 21 assert sample_game_map.tile_data == sample_tiles # Assert map is read right-up assert sample_game_map.get(16, 2) == 0 assert sample_game_map.get(16, 18) == 1 def test_game_map_get_out_of_bounds(sample_game_map): with pytest.raises(AssertionError): sample_game_map.get(-1, 0) sample_game_map.get(0, -1) sample_game_map.get(-1, -1) sample_game_map.get(21, 0) sample_game_map.get(0, 21) sample_game_map.get(21, 21) def test_game_map_load_mapfile_nonrectangular(): with pytest.raises(AssertionError): GameMap.load_mapfile(get_relative_path("fixtures/map_nonrectangular.csv")) def test_game_map_traversable(sample_game_map): assert sample_game_map.traversable(2, 2) assert not sample_game_map.traversable(1, 1) assert sample_game_map.traversable(16, 2) assert not sample_game_map.traversable(16, 18)
46.25
88
0.475994
678
3,145
2.103245
0.070796
0.280505
0.315568
0.322581
0.629032
0.504208
0.445302
0.396914
0.391304
0.388499
0
0.219334
0.302703
3,145
67
89
46.940299
0.430917
0.008585
0
0.333333
0
0
0.016688
0.009949
0
0
0
0
0.222222
1
0.074074
false
0
0.074074
0
0.148148
0
0
0
0
null
1
1
1
0
0
0
0
0
0
0
1
0
0
0
0
0
1
0
0
0
0
0
0
0
null
0
0
0
0
0
0
0
0
0
0
0
0
0
5
f7309823f58463b82e823f3fd4ecc77467f835fd
11,759
py
Python
pml/engineer_tests.py
gatapia/py_ml_utils
844d8b62a7c5cc0a80f4f62c0bfda092aac57ade
[ "MIT" ]
183
2015-01-11T13:01:01.000Z
2022-02-08T04:45:33.000Z
pml/engineer_tests.py
gatapia/py_ml_utils
844d8b62a7c5cc0a80f4f62c0bfda092aac57ade
[ "MIT" ]
13
2015-05-12T17:39:42.000Z
2018-07-29T18:01:38.000Z
pml/engineer_tests.py
gatapia/py_ml_utils
844d8b62a7c5cc0a80f4f62c0bfda092aac57ade
[ "MIT" ]
166
2015-01-28T18:05:55.000Z
2022-02-08T04:45:34.000Z
from __future__ import print_function, absolute_import import unittest, math import pandas as pd import numpy as np from . import * class T(base_pandas_extensions_tester.BasePandasExtensionsTester): def test_concat(self): df = pd.DataFrame({'c_1':['a', 'b', 'c'], 'c_2': ['d', 'e', 'f']}) df.engineer('concat(c_1, c_2)') self.assertTrue(np.array_equal(df['c_concat(c_1,c_2)'].values, np.array(['ad', 'be', 'cf'], 'object'))) def test_concat_3_cols(self): df = pd.DataFrame({'c_1':['a', 'b', 'c'], 'c_2': ['d', 'e', 'f'], 'c_3': ['h', 'i', 'j']}) df.engineer('concat(c_3, c_1, c_2)') self.assertTrue(np.array_equal(df['c_concat(c_3,c_1,c_2)'].values, np.array(['had', 'ibe', 'jcf'], 'object'))) def test_concat_with_numerical_col(self): df = pd.DataFrame({'c_1':['a', 'b', 'c'], 'n_2': [1, 2, 3]}) df.engineer('concat(c_1,n_2)') self.assertTrue(np.array_equal(df['c_concat(c_1,n_2)'].values, np.array(['a1', 'b2', 'c3'], 'object'))) def test_concat_with_numerical_col_3_cols(self): df = pd.DataFrame({'c_1':['a', 'b', 'c'], 'n_2': [1, 2, 3], 'n_3': [4, 5, 6]}) df.engineer('concat(n_3,c_1,n_2)') self.assertTrue(np.array_equal(df['c_concat(n_3,c_1,n_2)'].values, np.array(['4a1', '5b2', '6c3'], 'object'))) def test_multiplication(self): df = pd.DataFrame({'c_1':['a', 'b', 'c'], 'n_2': [1, 2, 3], 'n_3': [4, 5, 6], 'n_4': [7, 8, 9]}) df.engineer('mult(n_2, n_3)') self.assertTrue(np.array_equal(df['n_mult(n_2,n_3)'].values, np.array([4, 10, 18], long))) def test_multiplication_3_cols(self): df = pd.DataFrame({'c_1':['a', 'b', 'c'], 'n_2': [1, 2, 3], 'n_3': [4, 5, 6], 'n_4': [7, 8, 9]}) df.engineer('mult(n_2, n_3, n_4)') self.assertTrue(np.array_equal(df['n_mult(n_2,n_3,n_4)'].values, np.array([4*7, 80, 18*9], long))) def test_square_on_whole_data_frame(self): df = pd.DataFrame({'c_1':['a', 'b', 'c'], 'n_2': [1, 2, 3], 'n_3': [4, 5, 6], 'n_4': [7, 8, 9]}) df.engineer('pow(2)') np.testing.assert_array_equal(df.values, np.array([ ['a', 1, 4, 7, 1*1, 4*4, 7*7], ['b', 2, 5, 8, 2*2, 5*5, 8*8], ['c', 3, 6, 9, 3*3, 6*6, 9*9], ], 'object')) def test_square_on_cols(self): df = pd.DataFrame({'c_1':['a', 'b', 'c'], 'n_2': [1, 2, 3], 'n_3': [4, 5, 6], 'n_4': [7, 8, 9]}) df.engineer('pow(n_3, 2)') np.testing.assert_array_equal(df.values, np.array([ ['a', 1, 4, 7, 4*4], ['b', 2, 5, 8, 5*5], ['c', 3, 6, 9, 6*6], ], 'object')) def test_log_on_whole_data_frame(self): df = pd.DataFrame({'c_1':['a', 'b', 'c'], 'n_2': [1, 2, 3], 'n_3': [4, 5, 6], 'n_4': [7, 8, 9]}) df.engineer('lg()') self.assertTrue(np.array_equal(df.values, np.array([ ['a', 1, 4, 7, math.log(1), math.log(4), math.log(7)], ['b', 2, 5, 8, math.log(2), math.log(5), math.log(8)], ['c', 3, 6, 9, math.log(3), math.log(6), math.log(9)], ], 'object'))) def test_log_on_cols(self): df = pd.DataFrame({'c_1':['a', 'b', 'c'], 'n_2': [1, 2, 3], 'n_3': [4, 5, 6], 'n_4': [7, 8, 9]}) df.engineer('lg(n_3)') self.assertTrue(np.array_equal(df.values, np.array([ ['a', 1, 4, 7, math.log(4)], ['b', 2, 5, 8, math.log(5)], ['c', 3, 6, 9, math.log(6)], ], 'object'))) def test_sqrt_on_whole_data_frame(self): df = pd.DataFrame({'c_1':['a', 'b', 'c'], 'n_2': [1, 2, 3], 'n_3': [4, 5, 6], 'n_4': [7, 8, 9]}) df.engineer('sqrt()') self.assertTrue(np.array_equal(df.values, np.array([ ['a', 1, 4, 7, math.sqrt(1), math.sqrt(4), math.sqrt(7)], ['b', 2, 5, 8, math.sqrt(2), math.sqrt(5), math.sqrt(8)], ['c', 3, 6, 9, math.sqrt(3), math.sqrt(6), math.sqrt(9)], ], 'object'))) def test_sqrt_on_cols(self): df = pd.DataFrame({'c_1':['a', 'b', 'c'], 'n_2': [1, 2, 3], 'n_3': [4, 5, 6], 'n_4': [7, 8, 9]}) df.engineer('sqrt(n_3)') self.assertTrue(np.array_equal(df.values, np.array([ ['a', 1, 4, 7, math.sqrt(4)], ['b', 2, 5, 8, math.sqrt(5)], ['c', 3, 6, 9, math.sqrt(6)], ], 'object'))) def test_rolling_sum_on_single_col(self): df = pd.DataFrame({'n_1': [10, 12, 13, 15, 2, 12, 34]}) col = 'rolling_sum(n_1,3)' df.engineer(col) np.testing.assert_array_equal([np.nan, np.nan, 35, 40, 30, 29, 48], df['n_' + col]) def test_rolling_mean_on_single_col(self): df = pd.DataFrame({'n_1': [10, 12, 13, 15, 2, 12, 34]}) col = 'rolling_mean(n_1,3)' df.engineer(col) np.testing.assert_allclose([np.nan, np.nan, 11.66, 13.33, 10, 9.66, 16], df['n_' + col], rtol=1e-3) def test_rolling_median_on_single_col(self): df = pd.DataFrame({'n_1': [10, 12, 13, 15, 2, 12, 34]}) col = 'rolling_median(n_1,3)' df.engineer(col) np.testing.assert_array_equal([np.nan, np.nan, 12, 13, 13, 12, 12], df['n_' + col]) def test_rolling_min_on_single_col(self): df = pd.DataFrame({'n_1': [10, 12, 13, 15, 2, 12, 34]}) col = 'rolling_min(n_1,3)' df.engineer(col) np.testing.assert_array_equal([np.nan, np.nan, 10, 12, 2, 2, 2], df['n_' + col]) def test_rolling_max_on_single_col(self): df = pd.DataFrame({'n_1': [10, 12, 13, 15, 2, 12, 34]}) col = 'rolling_max(n_1,3)' df.engineer(col) np.testing.assert_array_equal([np.nan, np.nan, 13, 15, 15, 15, 34], df['n_' + col]) def test_rolling_std_on_single_col(self): df = pd.DataFrame({'n_1': [10, 12, 13, 15, 2, 12, 34]}) col = 'rolling_std(n_1,3)' df.engineer(col) np.testing.assert_allclose([np.nan, np.nan, 1.528, 1.528, 7, 6.807, 16.371], df['n_' + col], rtol=1e-3) def test_rolling_var_on_single_col(self): df = pd.DataFrame({'n_1': [10, 12, 13, 15, 2, 12, 34]}) col = 'rolling_var(n_1,3)' df.engineer(col) np.testing.assert_allclose([np.nan, np.nan, 2.333, 2.333, 49, 46.333, 268], df['n_' + col], rtol=1e-3) # Multiple Columns def test_rolling_sum_on_multi_cols(self): df = pd.DataFrame({'n_1': [10, 12, 13, 15, 2, 12, 34], 'n_2': [1, 2, 3, 5, 2, 2, 4]}) col = 'rolling_sum(3)' df.engineer(col) np.testing.assert_array_equal([np.nan, np.nan, 35, 40, 30, 29, 48], df['n_rolling_sum(n_1,3)']) np.testing.assert_array_equal([np.nan, np.nan, 6, 10, 10, 9, 8], df['n_rolling_sum(n_2,3)']) def test_rolling_mean_on_multi_cols(self): df = pd.DataFrame({'n_1': [10, 12, 13, 15, 2, 12, 34], 'n_2': [1, 2, 3, 5, 2, 2, 4]}) col = 'rolling_mean(3)' df.engineer(col) np.testing.assert_allclose([np.nan, np.nan, 11.66, 13.33, 10, 9.66, 16], df['n_rolling_mean(n_1,3)'], rtol=1e-3) np.testing.assert_allclose([np.nan, np.nan, 2, 3.333, 3.333, 3, 2.666], df['n_rolling_mean(n_2,3)'], rtol=1e-3) def test_rolling_median_on_multi_cols(self): df = pd.DataFrame({'n_1': [10, 12, 13, 15, 2, 12, 34], 'n_2': [1, 2, 3, 5, 2, 2, 4]}) col = 'rolling_median(3)' df.engineer(col) np.testing.assert_array_equal([np.nan, np.nan, 12, 13, 13, 12, 12], df['n_rolling_median(n_1,3)']) np.testing.assert_array_equal([np.nan, np.nan, 2, 3, 3, 2, 2], df['n_rolling_median(n_2,3)']) def test_rolling_min_on_multi_cols(self): df = pd.DataFrame({'n_1': [10, 12, 13, 15, 2, 12, 34], 'n_2': [1, 2, 3, 5, 2, 2, 4]}) col = 'rolling_min(3)' df.engineer(col) np.testing.assert_array_equal([np.nan, np.nan, 10, 12, 2, 2, 2], df['n_rolling_min(n_1,3)']) np.testing.assert_array_equal([np.nan, np.nan, 1, 2, 2, 2, 2], df['n_rolling_min(n_2,3)']) def test_rolling_max_on_multi_cols(self): df = pd.DataFrame({'n_1': [10, 12, 13, 15, 2, 12, 34], 'n_2': [1, 2, 3, 5, 2, 2, 4]}) col = 'rolling_max(3)' df.engineer(col) np.testing.assert_array_equal([np.nan, np.nan, 13, 15, 15, 15, 34], df['n_rolling_max(n_1,3)']) np.testing.assert_array_equal([np.nan, np.nan, 3, 5, 5, 5, 4], df['n_rolling_max(n_2,3)']) def test_rolling_std_on_multi_cols(self): df = pd.DataFrame({'n_1': [10, 12, 13, 15, 2, 12, 34], 'n_2': [1, 2, 3, 5, 2, 2, 4]}) col = 'rolling_std(3)' df.engineer(col) np.testing.assert_allclose([np.nan, np.nan, 1.528, 1.528, 7, 6.807, 16.371], df['n_rolling_std(n_1,3)'], rtol=1e-3) np.testing.assert_allclose([np.nan, np.nan, 1, 1.528, 1.528, 1.732, 1.1547], df['n_rolling_std(n_2,3)'], rtol=1e-3) def test_rolling_var_on_multi_cols(self): df = pd.DataFrame({'n_1': [10, 12, 13, 15, 2, 12, 34], 'n_2': [1, 2, 3, 5, 2, 2, 4]}) col = 'rolling_var(3)' df.engineer(col) np.testing.assert_allclose([np.nan, np.nan, 2.333, 2.333, 49, 46.333, 268], df['n_rolling_var(n_1,3)'], rtol=1e-3) np.testing.assert_allclose([np.nan, np.nan, 1, 2.333, 2.333, 3, 1.333], df['n_rolling_var(n_2,3)'], rtol=1e-3) def test_method_chaining(self): df = pd.DataFrame({'c_1':['a', 'b', 'c'], 'c_2':['d', 'e', 'f'], 'n_2': [1, 2, 3], 'n_3': [4, 5, 6], 'n_4': [7, 8, 9]}) df.\ engineer('concat(c_1, c_2)').\ engineer('concat(c_1, n_2)').\ engineer('mult(n_2, n_3)').\ engineer('lg(n_2)').\ engineer('pow(n_3, 2)') self.assertTrue(np.array_equal(df.values, np.array([ ['a', 'd', 1, 4, 7, 'ad', 'a1', 4, math.log(1), 4*4], ['b', 'e', 2, 5, 8, 'be', 'b2', 10, math.log(2), 5*5], ['c', 'f', 3, 6, 9, 'cf', 'c3', 18, math.log(3), 6*6] ], 'object'))) def test_chaining_single_call_semi_col_sep(self): df = pd.DataFrame({'c_1':['a', 'b', 'c'], 'c_2':['d', 'e', 'f'], 'n_2': [1, 2, 3], 'n_3': [4, 5, 6], 'n_4': [7, 8, 9]}) df.engineer('concat(c_1, c_2);concat(c_1, n_2);mult(n_2, n_3);lg(n_2);pow(n_3, 2)') self.assertTrue(np.array_equal(df.values, np.array([ ['a', 'd', 1, 4, 7, 'ad', 'a1', 4, math.log(1), 4*4], ['b', 'e', 2, 5, 8, 'be', 'b2', 10, math.log(2), 5*5], ['c', 'f', 3, 6, 9, 'cf', 'c3', 18, math.log(3), 6*6] ], 'object'))) def test_chaining_single_with_arr_arg(self): df = pd.DataFrame({'c_1':['a', 'b', 'c'], 'c_2':['d', 'e', 'f'], 'n_2': [1, 2, 3], 'n_3': [4, 5, 6], 'n_4': [7, 8, 9]}) df.engineer('concat(c_1, c_2);concat(c_1, n_2);mult(n_2, n_3);lg(n_2);pow(n_3, 2)'.split(';')) self.assertTrue(np.array_equal(df.values, np.array([ ['a', 'd', 1, 4, 7, 'ad', 'a1', 4, math.log(1), 4*4], ['b', 'e', 2, 5, 8, 'be', 'b2', 10, math.log(2), 5*5], ['c', 'f', 3, 6, 9, 'cf', 'c3', 18, math.log(3), 6*6] ], 'object'))) def test_long_method_chains(self): df1 = pd.DataFrame({'n_1': [1, 2, 3], 'n_2': [4, 5, 6]}) df2 = pd.DataFrame({'n_1': [1, 2, 3], 'n_2': [4, 5, 6]}) df1.engineer('mult(lg(mult(n_1, n_2)), lg(pow(n_1, 3)))') df2.engineer('mult(n_1,n_2);pow(n_1,3)') df2.engineer('lg(pow(n_1,3));lg(mult(n_1, n_2))') df2.engineer('mult(lg(mult(n_1,n_2)),lg(pow(n_1, 3)))') np.testing.assert_array_equal(df1.columns.values.sort(), df2.columns.values.sort()); np.testing.assert_array_equal(df1['n_mult(n_1,n_2)'].values, df2['n_mult(n_1,n_2)'].values); np.testing.assert_array_equal(df1['n_pow(n_1,3)'], df2['n_pow(n_1,3)']); np.testing.assert_array_equal(df1['n_lg(pow(n_1,3))'], df2['n_lg(pow(n_1,3))']); np.testing.assert_array_equal(df1['n_lg(mult(n_1,n_2))'], df2['n_lg(mult(n_1,n_2))']); np.testing.assert_array_equal(df1['n_mult(lg(mult(n_1,n_2)),lg(pow(n_1,3)))'], df2['n_mult(lg(mult(n_1,n_2)),lg(pow(n_1,3)))']);
46.478261
133
0.541628
2,231
11,759
2.651277
0.060063
0.018935
0.039222
0.083347
0.878107
0.819104
0.762637
0.716653
0.695858
0.679459
0
0.114777
0.208691
11,759
252
134
46.662698
0.520903
0.001361
0
0.362791
0
0.009302
0.158586
0.03116
0
0
0
0
0.195349
1
0.139535
false
0
0.023256
0
0.167442
0.004651
0
0
0
null
0
0
0
1
1
1
1
0
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
null
0
0
0
0
0
0
0
0
0
0
0
0
0
5
f732fdf1128b31b7b49d386c93aa86199f8cc84f
109
py
Python
examples/etcc.py
t-pimpisa/pythainlp17
cc6bc4991dfffd68953dcdb26fd99c22d60a4c1f
[ "Apache-2.0" ]
null
null
null
examples/etcc.py
t-pimpisa/pythainlp17
cc6bc4991dfffd68953dcdb26fd99c22d60a4c1f
[ "Apache-2.0" ]
null
null
null
examples/etcc.py
t-pimpisa/pythainlp17
cc6bc4991dfffd68953dcdb26fd99c22d60a4c1f
[ "Apache-2.0" ]
null
null
null
# -*- coding: utf-8 -*- from pythainlp.tokenize import etcc print(etcc.etcc("คืนความสุข")) # /คืน/ความสุข
18.166667
46
0.642202
22
109
3.363636
0.727273
0.054054
0
0
0
0
0
0
0
0
0
0.010638
0.137615
109
5
47
21.8
0.734043
0.311927
0
0
0
0
0.138889
0
0
0
0
0
0
1
0
true
0
0.5
0
0.5
0.5
1
0
0
null
0
0
0
0
0
0
0
0
0
0
0
0
0
1
0
0
0
0
0
0
0
0
0
0
null
0
0
0
0
0
0
1
0
1
0
0
1
0
5
f78b62473ace335a7a8a2b3f902ea2441941d851
26,116
py
Python
python/dgllife/model/pretrain/__init__.py
VIGNESHinZONE/dgl-lifesci
9a892fd0935a7d8ab125530f54ce1e2a38b2377a
[ "Apache-2.0" ]
null
null
null
python/dgllife/model/pretrain/__init__.py
VIGNESHinZONE/dgl-lifesci
9a892fd0935a7d8ab125530f54ce1e2a38b2377a
[ "Apache-2.0" ]
null
null
null
python/dgllife/model/pretrain/__init__.py
VIGNESHinZONE/dgl-lifesci
9a892fd0935a7d8ab125530f54ce1e2a38b2377a
[ "Apache-2.0" ]
null
null
null
# -*- coding: utf-8 -*- # # Copyright Amazon.com, Inc. or its affiliates. All Rights Reserved. # SPDX-License-Identifier: Apache-2.0 # # pylint: disable= no-member, arguments-differ, invalid-name # # Utilities for using pre-trained models. import torch from dgl.data.utils import _get_dgl_url, download from .moleculenet import * from .generative_models import * from .property_prediction import * from .reaction import * __all__ = ['load_pretrained'] url = {**moleculenet_url, **generative_url, **property_url, **reaction_url} def download_and_load_checkpoint(model_name, model, model_postfix, local_pretrained_path='pre_trained.pth', log=True): """Download pretrained model checkpoint The model will be loaded to CPU. Parameters ---------- model_name : str Name of the model model : nn.Module Instantiated model instance model_postfix : str Postfix for pretrained model checkpoint local_pretrained_path : str Local name for the downloaded model checkpoint log : bool Whether to print progress for model loading Returns ------- model : nn.Module Pretrained model """ url_to_pretrained = _get_dgl_url(model_postfix) local_pretrained_path = '_'.join([model_name, local_pretrained_path]) download(url_to_pretrained, path=local_pretrained_path, log=log) checkpoint = torch.load(local_pretrained_path, map_location='cpu') model.load_state_dict(checkpoint['model_state_dict']) if log: print('Pretrained model loaded') return model # pylint: disable=I1101 def load_pretrained(model_name, log=True): """Load a pretrained model Parameters ---------- model_name : str Currently supported options include * ``'GCN_Tox21'``: A GCN-based model for molecular property prediction on Tox21 * ``'GAT_Tox21'``: A GAT-based model for molecular property prediction on Tox21 * ``'Weave_Tox21'``: A Weave model for molecular property prediction on Tox21 * ``'AttentiveFP_Aromaticity'``: An AttentiveFP model for predicting number of aromatic atoms on a subset of Pubmed * ``'DGMG_ChEMBL_canonical'``: A DGMG model trained on ChEMBL with a canonical atom order * ``'DGMG_ChEMBL_random'``: A DGMG model trained on ChEMBL for molecule generation with a random atom order * ``'DGMG_ZINC_canonical'``: A DGMG model trained on ZINC for molecule generation with a canonical atom order * ``'DGMG_ZINC_random'``: A DGMG model pre-trained on ZINC for molecule generation with a random atom order * ``'JTNN_ZINC'``: A JTNN model pre-trained on ZINC for molecule generation * ``'wln_center_uspto'``: A WLN model pre-trained on USPTO for reaction prediction * ``'wln_rank_uspto'``: A WLN model pre-trained on USPTO for candidate product ranking * ``'gin_supervised_contextpred'``: A GIN model pre-trained with supervised learning and context prediction * ``'gin_supervised_infomax'``: A GIN model pre-trained with supervised learning and deep graph infomax * ``'gin_supervised_edgepred'``: A GIN model pre-trained with supervised learning and edge prediction * ``'gin_supervised_masking'``: A GIN model pre-trained with supervised learning and attribute masking * ``'GCN_canonical_BACE'``: A GCN model trained on BACE with canonical featurization for atoms * ``'GCN_attentivefp_BACE'``: A GCN model trained on BACE with attentivefp featurization for atoms * ``'GAT_canonical_BACE'``: A GAT model trained on BACE with canonical featurization for atoms * ``'GAT_attentivefp_BACE'``: A GAT model trained on BACE with attentivefp featurization for atoms * ``'Weave_canonical_BACE'``: A Weave model trained on BACE with canonical featurization for atoms and bonds * ``'Weave_attentivefp_BACE'``: A Weave model trained on BACE with attentivefp featurization for atoms and bonds * ``'MPNN_canonical_BACE'``: An MPNN model trained on BACE with canonical featurization for atoms and bonds * ``'MPNN_attentivefp_BACE'``: An MPNN model trained on BACE with attentivefp featurization for atoms and bonds * ``'AttentiveFP_canonical_BACE'``: An AttentiveFP model trained on BACE with canonical featurization for atoms and bonds * ``'AttentiveFP_attentivefp_BACE'``: An AttentiveFP model trained on BACE with attentivefp featurization for atoms and bonds * ``'gin_supervised_contextpred_BACE'``: A GIN model pre-trained with supervised learning and context prediction, and fine-tuned on BACE * ``'gin_supervised_infomax_BACE'``: A GIN model pre-trained with supervised learning and infomax, and fine-tuned on BACE * ``'gin_supervised_edgepred_BACE'``: A GIN model pre-trained with supervised learning and edge prediction, and fine-tuned on BACE * ``'gin_supervised_masking_BACE'``: A GIN model pre-trained with supervised learning and masking, and fine-tuned on BACE * ``'NF_canonical_BACE'``: An NF model trained on BACE with canonical featurization for atoms * ``'GCN_canonical_BBBP'``: A GCN model trained on BBBP with canonical featurization for atoms * ``'GCN_attentivefp_BBBP'``: A GCN model trained on BBBP with attentivefp featurization for atoms * ``'GAT_canonical_BBBP'``: A GAT model trained on BBBP with canonical featurization for atoms * ``'GAT_attentivefp_BBBP'``: A GAT model trained on BBBP with attentivefp featurization for atoms * ``'Weave_canonical_BBBP'``: A Weave model trained on BBBP with canonical featurization for atoms and bonds * ``'Weave_attentivefp_BBBP'``: A Weave model trained on BBBP with attentivefp featurization for atoms and bonds * ``'MPNN_canonical_BBBP'``: An MPNN model trained on BBBP with canonical featurization for atoms and bonds * ``'MPNN_attentivefp_BBBP'``: An MPNN model trained on BBBP with attentivefp featurization for atoms and bonds * ``'AttentiveFP_canonical_BBBP'``: An AttentiveFP model trained on BBBP with canonical featurization for atoms and bonds * ``'AttentiveFP_attentivefp_BBBP'``: An AttentiveFP model trained on BBBP with attentivefp featurization for atoms and bonds * ``'gin_supervised_contextpred_BBBP'``: A GIN model pre-trained with supervised learning and context prediction, and fine-tuned on BBBP * ``'gin_supervised_infomax_BBBP'``: A GIN model pre-trained with supervised learning and infomax, and fine-tuned on BBBP * ``'gin_supervised_edgepred_BBBP'``: A GIN model pre-trained with supervised learning and edge prediction, and fine-tuned on BBBP * ``'gin_supervised_masking_BBBP'``: A GIN model pre-trained with supervised learning and masking, and fine-tuned on BBBP * ``'NF_canonical_BBBP'``: An NF model pre-trained on BBBP with canonical featurization for atoms * ``'GCN_canonical_ClinTox'``: A GCN model trained on ClinTox with canonical featurization for atoms * ``'GCN_attentivefp_ClinTox'``: A GCN model trained on ClinTox with attentivefp featurization for atoms * ``'GAT_canonical_ClinTox'``: A GAT model trained on ClinTox with canonical featurization for atoms * ``'GAT_attentivefp_ClinTox'``: A GAT model trained on ClinTox with attentivefp featurization for atoms * ``'Weave_canonical_ClinTox'``: A Weave model trained on ClinTox with canonical featurization for atoms and bonds * ``'Weave_attentivefp_ClinTox'``: A Weave model trained on ClinTox with attentivefp featurization for atoms and bonds * ``'MPNN_canonical_ClinTox'``: An MPNN model trained on ClinTox with canonical featurization for atoms and bonds * ``'MPNN_attentivefp_ClinTox'``: An MPNN model trained on ClinTox with attentivefp featurization for atoms and bonds * ``'AttentiveFP_canonical_ClinTox'``: An AttentiveFP model trained on ClinTox with canonical featurization for atoms and bonds * ``'AttentiveFP_attentivefp_BACE'``: An AttentiveFP model trained on ClinTox with attentivefp featurization for atoms and bonds * ``'GCN_canonical_ESOL'``: A GCN model trained on ESOL with canonical featurization for atoms * ``'GCN_attentivefp_ESOL'``: A GCN model trained on ESOL with attentivefp featurization for atoms * ``'GAT_canonical_ESOL'``: A GAT model trained on ESOL with canonical featurization for atoms * ``'GAT_attentivefp_ESOL'``: A GAT model trained on ESOL with attentivefp featurization for atoms * ``'Weave_canonical_ESOL'``: A Weave model trained on ESOL with canonical featurization for atoms and bonds * ``'Weave_attentivefp_ESOL'``: A Weave model trained on ESOL with attentivefp featurization for atoms and bonds * ``'MPNN_canonical_ESOL'``: An MPNN model trained on ESOL with canonical featurization for atoms and bonds * ``'MPNN_attentivefp_ESOL'``: An MPNN model trained on ESOL with attentivefp featurization for atoms and bonds * ``'AttentiveFP_canonical_ESOL'``: An AttentiveFP model trained on ESOL with canonical featurization for atoms and bonds * ``'AttentiveFP_attentivefp_ESOL'``: An AttentiveFP model trained on ESOL with attentivefp featurization for atoms and bonds * ``'gin_supervised_contextpred_ESOL'``: A GIN model pre-trained with supervised learning and context prediction, and fine-tuned on ESOL * ``'gin_supervised_infomax_ESOL'``: A GIN model pre-trained with supervised learning and infomax, and fine-tuned on ESOL * ``'gin_supervised_edgepred_ESOL'``: A GIN model pre-trained with supervised learning and edge prediction, and fine-tuned on ESOL * ``'gin_supervised_masking_ESOL'``: A GIN model pre-trained with supervised learning and masking, and fine-tuned on ESOL * ``'GCN_canonical_FreeSolv'``: A GCN model trained on FreeSolv with canonical featurization for atoms * ``'GCN_attentivefp_FreeSolv'``: A GCN model trained on FreeSolv with attentivefp featurization for atoms * ``'GAT_canonical_FreeSolv'``: A GAT model trained on FreeSolv with canonical featurization for atoms * ``'GAT_attentivefp_FreeSolv'``: A GAT model trained on FreeSolv with attentivefp featurization for atoms * ``'Weave_canonical_FreeSolv'``: A Weave model trained on FreeSolv with canonical featurization for atoms and bonds * ``'Weave_attentivefp_FreeSolv'``: A Weave model trained on FreeSolv with attentivefp featurization for atoms and bonds * ``'MPNN_canonical_FreeSolv'``: An MPNN model trained on FreeSolv with canonical featurization for atoms and bonds * ``'MPNN_attentivefp_FreeSolv'``: An MPNN model trained on FreeSolv with attentivefp featurization for atoms and bonds * ``'AttentiveFP_canonical_FreeSolv'``: An AttentiveFP model trained on FreeSolv with canonical featurization for atoms and bonds * ``'AttentiveFP_attentivefp_FreeSolv'``: An AttentiveFP model trained on FreeSolv with attentivefp featurization for atoms and bonds * ``'gin_supervised_contextpred_FreeSolv'``: A GIN model pre-trained with supervised learning and context prediction, and fine-tuned on FreeSolv * ``'gin_supervised_infomax_FreeSolv'``: A GIN model pre-trained with supervised learning and infomax, and fine-tuned on FreeSolv * ``'gin_supervised_edgepred_FreeSolv'``: A GIN model pre-trained with supervised learning and edge prediction, and fine-tuned on FreeSolv * ``'gin_supervised_masking_FreeSolv'``: A GIN model pre-trained with supervised learning and masking, and fine-tuned on FreeSolv * ``'GCN_canonical_HIV'``: A GCN model trained on HIV with canonical featurization for atoms * ``'GCN_attentivefp_HIV'``: A GCN model trained on HIV with attentivefp featurization for atoms * ``'GAT_canonical_HIV'``: A GAT model trained on BACE with canonical featurization for atoms * ``'GAT_attentivefp_HIV'``: A GAT model trained on BACE with attentivefp featurization for atoms * ``'Weave_canonical_HIV'``: A Weave model trained on HIV with canonical featurization for atoms and bonds * ``'Weave_attentivefp_HIV'``: A Weave model trained on HIV with attentivefp featurization for atoms and bonds * ``'MPNN_canonical_HIV'``: An MPNN model trained on HIV with canonical featurization for atoms and bonds * ``'MPNN_attentivefp_HIV'``: An MPNN model trained on HIV with attentivefp featurization for atoms and bonds * ``'AttentiveFP_canonical_HIV'``: An AttentiveFP model trained on HIV with canonical featurization for atoms and bonds * ``'AttentiveFP_attentivefp_HIV'``: An AttentiveFP model trained on HIV with attentivefp featurization for atoms and bonds * ``'gin_supervised_contextpred_HIV'``: A GIN model pre-trained with supervised learning and context prediction, and fine-tuned on HIV * ``'gin_supervised_infomax_HIV'``: A GIN model pre-trained with supervised learning and infomax, and fine-tuned on HIV * ``'gin_supervised_edgepred_HIV'``: A GIN model pre-trained with supervised learning and edge prediction, and fine-tuned on HIV * ``'gin_supervised_masking_HIV'``: A GIN model pre-trained with supervised learning and masking, and fine-tuned on HIV * ``'NF_canonical_HIV'``: An NF model trained on HIV with canonical featurization for atoms * ``'GCN_canonical_Lipophilicity'``: A GCN model trained on Lipophilicity with canonical featurization for atoms * ``'GCN_attentivefp_Lipophilicity'``: A GCN model trained on Lipophilicity with attentivefp featurization for atoms * ``'GAT_canonical_Lipophilicity'``: A GAT model trained on Lipophilicity with canonical featurization for atoms * ``'GAT_attentivefp_Lipophilicity'``: A GAT model trained on Lipophilicity with attentivefp featurization for atoms * ``'Weave_canonical_Lipophilicity'``: A Weave model trained on Lipophilicity with canonical featurization for atoms and bonds * ``'Weave_attentivefp_Lipophilicity'``: A Weave model trained on Lipophilicity with attentivefp featurization for atoms and bonds * ``'MPNN_canonical_Lipophilicity'``: An MPNN model trained on Lipophilicity with canonical featurization for atoms and bonds * ``'MPNN_attentivefp_Lipophilicity'``: An MPNN model trained on Lipophilicity with attentivefp featurization for atoms and bonds * ``'AttentiveFP_canonical_Lipophilicity'``: An AttentiveFP model trained on Lipophilicity with canonical featurization for atoms and bonds * ``'AttentiveFP_attentivefp_Lipophilicity'``: An AttentiveFP model trained on Lipophilicity with attentivefp featurization for atoms and bonds * ``'gin_supervised_contextpred_Lipophilicity'``: A GIN model pre-trained with supervised learning and context prediction, and fine-tuned on Lipophilicity * ``'gin_supervised_infomax_Lipophilicity'``: A GIN model pre-trained with supervised learning and infomax, and fine-tuned on Lipophilicity * ``'gin_supervised_edgepred_Lipophilicity'``: A GIN model pre-trained with supervised learning and edge prediction, and fine-tuned on Lipophilicity * ``'gin_supervised_masking_Lipophilicity'``: A GIN model pre-trained with supervised learning and masking, and fine-tuned on Lipophilicity * ``'GCN_canonical_MUV'``: A GCN model trained on MUV with canonical featurization for atoms * ``'GCN_attentivefp_MUV'``: A GCN model trained on MUV with attentivefp featurization for atoms * ``'GAT_canonical_MUV'``: A GAT model trained on MUV with canonical featurization for atoms * ``'GAT_attentivefp_MUV'``: A GAT model trained on MUV with attentivefp featurization for atoms * ``'Weave_canonical_MUV'``: A Weave model trained on MUV with canonical featurization for atoms and bonds * ``'Weave_attentivefp_MUV'``: A Weave model trained on MUV with attentivefp featurization for atoms and bonds * ``'MPNN_canonical_MUV'``: An MPNN model trained on MUV with canonical featurization for atoms and bonds * ``'MPNN_attentivefp_MUV'``: An MPNN model trained on MUV with attentivefp featurization for atoms and bonds * ``'AttentiveFP_canonical_MUV'``: An AttentiveFP model trained on MUV with canonical featurization for atoms and bonds * ``'AttentiveFP_attentivefp_MUV'``: An AttentiveFP model trained on MUV with attentivefp featurization for atoms and bonds * ``'gin_supervised_contextpred_MUV'``: A GIN model pre-trained with supervised learning and context prediction, and fine-tuned on MUV * ``'gin_supervised_infomax_MUV'``: A GIN model pre-trained with supervised learning and infomax, and fine-tuned on MUV * ``'gin_supervised_edgepred_MUV'``: A GIN model pre-trained with supervised learning and edge prediction, and fine-tuned on MUV * ``'gin_supervised_masking_MUV'``: A GIN model pre-trained with supervised learning and masking, and fine-tuned on MUV * ``'GCN_canonical_PCBA'``: A GCN model trained on PCBA with canonical featurization for atoms * ``'GCN_attentivefp_PCBA'``: A GCN model trained on PCBA with attentivefp featurization for atoms * ``'GAT_canonical_PCBA'``: A GAT model trained on PCBA with canonical featurization for atoms * ``'GAT_attentivefp_PCBA'``: A GAT model trained on PCBA with attentivefp featurization for atoms * ``'Weave_canonical_PCBA'``: A Weave model trained on PCBA with canonical featurization for atoms and bonds * ``'Weave_attentivefp_PCBA'``: A Weave model trained on PCBA with attentivefp featurization for atoms and bonds * ``'MPNN_canonical_PCBA'``: An MPNN model trained on PCBA with canonical featurization for atoms and bonds * ``'MPNN_attentivefp_PCBA'``: An MPNN model trained on PCBA with attentivefp featurization for atoms and bonds * ``'AttentiveFP_canonical_PCBA'``: An AttentiveFP model trained on PCBA with canonical featurization for atoms and bonds * ``'AttentiveFP_attentivefp_PCBA'``: An AttentiveFP model trained on PCBA with attentivefp featurization for atoms and bonds * ``'GCN_canonical_SIDER'``: A GCN model trained on SIDER with canonical featurization for atoms * ``'GCN_attentivefp_SIDER'``: A GCN model trained on SIDER with attentivefp featurization for atoms * ``'GAT_canonical_SIDER'``: A GAT model trained on SIDER with canonical featurization for atoms * ``'GAT_attentivefp_SIDER'``: A GAT model trained on SIDER with attentivefp featurization for atoms * ``'Weave_canonical_SIDER'``: A Weave model trained on SIDER with canonical featurization for atoms and bonds * ``'Weave_attentivefp_SIDER'``: A Weave model trained on SIDER with attentivefp featurization for atoms and bonds * ``'MPNN_canonical_SIDER'``: An MPNN model trained on SIDER with canonical featurization for atoms and bonds * ``'MPNN_attentivefp_SIDER'``: An MPNN model trained on SIDER with attentivefp featurization for atoms and bonds * ``'AttentiveFP_canonical_SIDER'``: An AttentiveFP model trained on SIDER with canonical featurization for atoms and bonds * ``'AttentiveFP_attentivefp_SIDER'``: An AttentiveFP model trained on SIDER with attentivefp featurization for atoms and bonds * ``'gin_supervised_contextpred_SIDER'``: A GIN model pre-trained with supervised learning and context prediction, and fine-tuned on SIDER * ``'gin_supervised_infomax_SIDER'``: A GIN model pre-trained with supervised learning and infomax, and fine-tuned on SIDER * ``'gin_supervised_edgepred_SIDER'``: A GIN model pre-trained with supervised learning and edge prediction, and fine-tuned on SIDER * ``'gin_supervised_masking_SIDER'``: A GIN model pre-trained with supervised learning and masking, and fine-tuned on SIDER * ``'NF_canonical_SIDER'``: An NF model trained on SIDER with canonical featurization for atoms * ``'GCN_canonical_Tox21'``: A GCN model trained on Tox21 with canonical featurization for atoms * ``'GCN_attentivefp_Tox21'``: A GCN model trained on Tox21 with attentivefp featurization for atoms * ``'GAT_canonical_Tox21'``: A GAT model trained on Tox21 with canonical featurization for atoms * ``'GAT_attentivefp_Tox21'``: A GAT model trained on Tox21 with attentivefp featurization for atoms * ``'Weave_canonical_Tox21'``: A Weave model trained on Tox21 with canonical featurization for atoms and bonds * ``'Weave_attentivefp_Tox21'``: A Weave model trained on Tox21 with attentivefp featurization for atoms and bonds * ``'MPNN_canonical_Tox21'``: An MPNN model trained on Tox21 with canonical featurization for atoms and bonds * ``'MPNN_attentivefp_Tox21'``: An MPNN model trained on Tox21 with attentivefp featurization for atoms and bonds * ``'AttentiveFP_canonical_Tox21'``: An AttentiveFP model trained on Tox21 with canonical featurization for atoms and bonds * ``'AttentiveFP_attentivefp_Tox21'``: An AttentiveFP model trained on Tox21 with attentivefp featurization for atoms and bonds * ``'gin_supervised_contextpred_Tox21'``: A GIN model pre-trained with supervised learning and context prediction, and fine-tuned on Tox21 * ``'gin_supervised_infomax_Tox21'``: A GIN model pre-trained with supervised learning and infomax, and fine-tuned on Tox21 * ``'gin_supervised_edgepred_Tox21'``: A GIN model pre-trained with supervised learning and edge prediction, and fine-tuned on Tox21 * ``'gin_supervised_masking_Tox21'``: A GIN model pre-trained with supervised learning and masking, and fine-tuned on Tox21 * ``'NF_canonical_Tox21'``: An NF model trained on Tox21 with canonical featurization for atoms * ``'GCN_canonical_ToxCast'``: A GCN model trained on ToxCast with canonical featurization for atoms * ``'GCN_attentivefp_ToxCast'``: A GCN model trained on ToxCast with attentivefp featurization for atoms * ``'GAT_canonical_ToxCast'``: A GAT model trained on ToxCast with canonical featurization for atoms * ``'GAT_attentivefp_ToxCast'``: A GAT model trained on ToxCast with attentivefp featurization for atoms * ``'Weave_canonical_ToxCast'``: A Weave model trained on ToxCast with canonical featurization for atoms and bonds * ``'Weave_attentivefp_ToxCast'``: A Weave model trained on ToxCast with attentivefp featurization for atoms and bonds * ``'MPNN_canonical_ToxCast'``: An MPNN model trained on ToxCast with canonical featurization for atoms and bonds * ``'MPNN_attentivefp_ToxCast'``: An MPNN model trained on ToxCast with attentivefp featurization for atoms and bonds * ``'AttentiveFP_canonical_ToxCast'``: An AttentiveFP model trained on ToxCast with canonical featurization for atoms and bonds * ``'AttentiveFP_attentivefp_ToxCast'``: An AttentiveFP model trained on ToxCast with attentivefp featurization for atoms and bonds * ``'gin_supervised_contextpred_ToxCast'``: A GIN model pre-trained with supervised learning and context prediction, and fine-tuned on ToxCast * ``'gin_supervised_infomax_ToxCast'``: A GIN model pre-trained with supervised learning and infomax, and fine-tuned on ToxCast * ``'gin_supervised_edgepred_ToxCast'``: A GIN model pre-trained with supervised learning and edge prediction, and fine-tuned on ToxCast * ``'gin_supervised_masking_ToxCast'``: A GIN model pre-trained with supervised learning and masking, and fine-tuned on ToxCast * ``'NF_canonical_ToxCast'``: An NF model trained on ToxCast with canonical featurization for atoms and bonds log : bool Whether to print progress for model loading Returns ------- model """ if model_name not in url: raise RuntimeError("Cannot find a pretrained model with name {}".format(model_name)) for func in [create_moleculenet_model, create_generative_model, create_property_model, create_reaction_model]: model = func(model_name) if model is not None: break return download_and_load_checkpoint(model_name, model, url[model_name], log=log)
59.219955
98
0.689501
3,192
26,116
5.495614
0.052318
0.068236
0.102155
0.099875
0.883879
0.876012
0.868772
0.815129
0.698894
0.503819
0
0.003991
0.242074
26,116
440
99
59.354545
0.882237
0.889531
0
0
0
0
0.087349
0
0
0
0
0
0
1
0.074074
false
0
0.222222
0
0.37037
0.037037
0
0
0
null
0
0
0
1
1
1
1
0
0
0
0
0
0
0
0
0
0
1
0
0
0
0
0
0
null
0
0
0
0
0
0
0
0
0
0
0
0
0
5
f797e5f31f0f4940006d8b4a1e545eb141db847d
10,703
py
Python
tests/sentry/integrations/cloudflare/test_webhook.py
jianyuan/sentry
ceb8389c54d29f80b27703bb76c3880d923a3a5a
[ "BSD-3-Clause" ]
1
2017-10-18T19:40:14.000Z
2017-10-18T19:40:14.000Z
tests/sentry/integrations/cloudflare/test_webhook.py
Munyola/sentry
ab8923b2801d7d72d6903e0d9180584817bb1b9a
[ "BSD-3-Clause" ]
1
2021-02-24T04:32:19.000Z
2021-02-24T04:32:19.000Z
tests/sentry/integrations/cloudflare/test_webhook.py
Munyola/sentry
ab8923b2801d7d72d6903e0d9180584817bb1b9a
[ "BSD-3-Clause" ]
2
2021-01-26T09:53:39.000Z
2022-03-22T09:01:47.000Z
from __future__ import absolute_import from hashlib import sha256 import hmac import json import six from sentry import options from sentry.models import ApiToken, ProjectKey from sentry.testutils import TestCase UNSET = object() class BaseWebhookTest(TestCase): def setUp(self): super(BaseWebhookTest, self).setUp() self.user = self.create_user(is_superuser=False) self.org = self.create_organization(owner=None) self.team = self.create_team(organization=self.org) self.create_member(organization=self.org, user=self.user, role='owner', teams=[self.team]) self.project = self.create_project(name='a', team=self.team) self.token = ApiToken.objects.create( user=self.user, token='55838c83b3ec4e3ebc24c10c7bd071ffb1dc91161d3d49aeaedd9bd35d84bbe2', ) self.key = ProjectKey.objects.get_or_create(project=self.project)[0] def post_webhook(self, data, signature=UNSET, variant=UNSET, key=None): if key is None: key = options.get('cloudflare.secret-key') if not isinstance(data, six.string_types): body = json.dumps(data) else: body = data if signature is UNSET: signature = hmac.new( key=key.encode('utf-8'), msg=body.encode('utf-8'), digestmod=sha256, ).hexdigest() if variant is UNSET: variant = '1' headers = { 'HTTP_X_SIGNATURE_HMAC_SHA256_HEX': signature, 'HTTP_X_SIGNATURE_KEY_VARIANT': variant, } return self.client.post( '/extensions/cloudflare/webhook/', body, content_type='application/json', **headers ) class CloudflareWebhookTest(BaseWebhookTest): def test_missing_signature(self): resp = self.post_webhook( {'event': 'test'}, signature=None, ) assert resp.status_code == 400 def test_invalid_signature(self): resp = self.post_webhook( {'event': 'test'}, signature='a' * 40, ) assert resp.status_code == 400 def test_invalid_json(self): resp = self.post_webhook('a') assert resp.status_code == 400 def test_missing_variant(self): resp = self.post_webhook( {'event': 'test'}, variant=None, ) assert resp.status_code == 400 def test_invalid_variant(self): resp = self.post_webhook( {'event': 'test'}, variant='fizzbuz', ) assert resp.status_code == 400 def test_invalid_signature_with_test_variant(self): resp = self.post_webhook( {'event': 'test'}, variant='test', ) assert resp.status_code == 400 def test_invalid_app_id_test_variant(self): resp = self.post_webhook( {'event': 'test', 'app': {'id': 'buzz'}}, variant='test', key='test-key', ) assert resp.status_code == 400 def test_valid_test_variant(self): resp = self.post_webhook( {'event': 'test', 'app': {'id': 'local'}, 'install': {}}, variant='test', key='test-key', ) assert resp.status_code == 200 class PreviewWebhookTest(BaseWebhookTest): def test_empty(self): webhook_data = json.loads(self.load_fixture('cloudflare/preview-webhook.json')) resp = self.post_webhook(webhook_data) assert resp.status_code == 200, resp.content assert resp.data == { 'install': webhook_data['install'], 'proceed': True, } def test_prefills_data(self): webhook_data = json.loads(self.load_fixture( 'cloudflare/preview-webhook-authenticated.json')) webhook_data['install']['options']['organization'] = six.text_type(self.org.id) resp = self.post_webhook(data=webhook_data) assert resp.status_code == 200, resp.content assert resp.data['proceed'] assert resp.data['install']['schema']['properties']['organization']['enum'] == [ six.text_type(self.org.id)] assert resp.data['install']['schema']['properties']['organization']['enumNames'] == { six.text_type(self.org.id): self.org.slug, } assert resp.data['install']['options']['organization'] == six.text_type(self.org.id) assert resp.data['install']['schema']['properties']['project']['enum'] == [ six.text_type(self.project.id)] assert resp.data['install']['schema']['properties']['project']['enumNames'] == { six.text_type(self.project.id): self.project.slug, } assert resp.data['install']['options']['project'] == six.text_type(self.project.id) assert resp.data['install']['schema']['properties']['dsn']['enum'] == [ self.key.get_dsn(public=True)] assert resp.data['install']['options']['dsn'] == six.text_type( self.key.get_dsn(public=True)) def test_multiple_projects(self): project2 = self.create_project(name='b', team=self.team) webhook_data = json.loads(self.load_fixture( 'cloudflare/preview-webhook-authenticated.json')) webhook_data['install']['options']['organization'] = six.text_type(self.org.id) resp = self.post_webhook(webhook_data) assert resp.status_code == 200, resp.content assert resp.data['proceed'] assert resp.data['install']['schema']['properties']['organization']['enum'] == [ six.text_type(self.org.id)] assert resp.data['install']['options']['organization'] == six.text_type(self.org.id) assert resp.data['install']['schema']['properties']['project']['enum'] == [ six.text_type(self.project.id), six.text_type(project2.id)] assert resp.data['install']['options']['project'] == six.text_type(self.project.id) assert resp.data['install']['schema']['properties']['dsn']['enum'] == [ self.key.get_dsn(public=True)] assert resp.data['install']['options']['dsn'] == six.text_type( self.key.get_dsn(public=True)) def test_no_projects(self): self.project.delete() webhook_data = json.loads(self.load_fixture( 'cloudflare/preview-webhook-authenticated.json')) webhook_data['install']['options']['organization'] = six.text_type(self.org.id) resp = self.post_webhook(webhook_data) assert resp.status_code == 200, resp.content assert resp.data['proceed'] assert resp.data['install']['schema']['properties']['organization']['enum'] == [ six.text_type(self.org.id)] assert resp.data['install']['options']['organization'] == six.text_type(self.org.id) assert resp.data['install']['schema']['properties']['project']['enum'] == [] assert 'dsn' not in resp.data['install']['schema']['properties'] class OptionChangeAccountWebhookTest(BaseWebhookTest): def test_without_authentication(self): webhook_data = json.loads(self.load_fixture( 'cloudflare/option-change-account-webhook.json')) del webhook_data['authentications'] resp = self.post_webhook(webhook_data) assert resp.status_code == 401, resp.content def test_prefills_data(self): webhook_data = json.loads(self.load_fixture( 'cloudflare/option-change-account-webhook.json')) resp = self.post_webhook(webhook_data) assert resp.status_code == 200, resp.content assert resp.data['proceed'] assert resp.data['install']['schema']['properties']['organization']['enum'] == [ six.text_type(self.org.id)] assert resp.data['install']['options']['organization'] == six.text_type(self.org.id) assert resp.data['install']['schema']['properties']['project']['enum'] == [ six.text_type(self.project.id)] assert resp.data['install']['options']['project'] == six.text_type(self.project.id) assert resp.data['install']['schema']['properties']['dsn']['enum'] == [ self.key.get_dsn(public=True)] assert resp.data['install']['options']['dsn'] == six.text_type( self.key.get_dsn(public=True)) def test_with_invalid_organization_selected(self): webhook_data = json.loads(self.load_fixture( 'cloudflare/option-change-account-webhook.json')) webhook_data['install']['options']['organization'] = -1 resp = self.post_webhook(webhook_data) assert resp.status_code == 200, resp.content assert resp.data['proceed'] assert resp.data['install']['schema']['properties']['organization']['enum'] == [ six.text_type(self.org.id)] assert resp.data['install']['options']['organization'] == six.text_type(self.org.id) assert resp.data['install']['schema']['properties']['project']['enum'] == [ six.text_type(self.project.id)] assert resp.data['install']['options']['project'] == six.text_type(self.project.id) assert resp.data['install']['schema']['properties']['dsn']['enum'] == [ self.key.get_dsn(public=True)] assert resp.data['install']['options']['dsn'] == six.text_type( self.key.get_dsn(public=True)) def test_with_existing_project_selected_and_no_keys(self): project2 = self.create_project(name='b', team=self.team) # kill the automatically generated keys ProjectKey.objects.filter(project=project2).delete() webhook_data = json.loads(self.load_fixture( 'cloudflare/option-change-account-webhook.json')) webhook_data['install']['options']['organization'] = six.text_type(self.org.id) webhook_data['install']['options']['project'] = six.text_type(project2.id) resp = self.post_webhook(webhook_data) assert resp.status_code == 200, resp.content assert resp.data['proceed'] assert resp.data['install']['schema']['properties']['organization']['enum'] == [ six.text_type(self.org.id)] assert resp.data['install']['options']['organization'] == six.text_type(self.org.id) assert resp.data['install']['schema']['properties']['project']['enum'] == [ six.text_type(self.project.id), six.text_type(project2.id)] assert resp.data['install']['options']['project'] == six.text_type(project2.id) assert resp.data['install']['schema']['properties']['dsn']['enum'] == [] assert 'dsn' not in resp.data['install']['options']
41.484496
98
0.613566
1,226
10,703
5.21044
0.116639
0.08923
0.089856
0.115059
0.747495
0.738103
0.729962
0.721822
0.700063
0.612085
0
0.012589
0.22816
10,703
257
99
41.645914
0.760683
0.003457
0
0.527778
0
0
0.183327
0.04895
0
0
0
0
0.273148
1
0.083333
false
0
0.037037
0
0.143519
0
0
0
0
null
0
0
0
0
1
1
1
1
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
null
0
0
0
0
0
0
0
0
0
0
0
0
0
5
e3aa556fa11d4a3e0d7e99f07a6cd0ab4a4331f6
7,607
py
Python
test/integration/test_build.py
DahlitzFlorian/wily
069c26bff9741b49420e3cfd7b0954ac9b88cc3f
[ "Apache-2.0" ]
null
null
null
test/integration/test_build.py
DahlitzFlorian/wily
069c26bff9741b49420e3cfd7b0954ac9b88cc3f
[ "Apache-2.0" ]
null
null
null
test/integration/test_build.py
DahlitzFlorian/wily
069c26bff9741b49420e3cfd7b0954ac9b88cc3f
[ "Apache-2.0" ]
null
null
null
""" Tests for the wily build command. All of the following tests will use a click CLI runner to fully simulate the CLI. Many of the tests will depend on a "builddir" fixture which is a compiled wily cache. TODO : Test build + build with extra operator """ import pathlib import pytest from click.testing import CliRunner from git import Repo, Actor from mock import patch import wily.__main__ as main from wily.archivers import ALL_ARCHIVERS def test_build_not_git_repo(tmpdir): """ Test that build defaults to filesystem in a non-git directory """ with patch("wily.logger") as logger: runner = CliRunner() result = runner.invoke(main.cli, ["--path", tmpdir, "build", "test.py"]) assert result.exit_code == 0, result.stdout cache_path = tmpdir / ".wily" assert cache_path.exists() index_path = tmpdir / ".wily" / "filesystem" / "index.json" assert index_path.exists() def test_build_invalid_path(tmpdir): """ Test that build fails with a garbage path """ with patch("wily.logger") as logger: runner = CliRunner() result = runner.invoke(main.cli, ["--path", "/fo/v/a", "build", "test.py"]) assert result.exit_code == 1, result.stdout def test_build_no_target(tmpdir): """ Test that build fails with no target """ with patch("wily.logger") as logger: runner = CliRunner() result = runner.invoke(main.cli, ["--path", tmpdir, "build"]) assert result.exit_code == 2, result.stdout def test_build_crash(tmpdir): """ Test that build works in a basic repository. """ repo = Repo.init(path=tmpdir) tmppath = pathlib.Path(tmpdir) # Write a test file to the repo with open(tmppath / "test.py", "w") as test_txt: test_txt.write("import abc") with open(tmppath / ".gitignore", "w") as test_txt: test_txt.write(".wily/") index = repo.index index.add(["test.py", ".gitignore"]) author = Actor("An author", "[email protected]") committer = Actor("A committer", "[email protected]") index.commit("basic test", author=author, committer=committer) import wily.commands.build with patch.object( wily.commands.build.Bar, "finish", side_effect=RuntimeError("arggh") ) as bar_finish: runner = CliRunner() result = runner.invoke(main.cli, ["--path", tmpdir, "build", "test.py"]) assert bar_finish.called_once assert result.exit_code == 1, result.stdout with patch("wily.commands.build.logger") as logger: logger.level = "DEBUG" with patch.object( wily.commands.build.Bar, "finish", side_effect=RuntimeError("arggh") ) as bar_finish: runner = CliRunner() result = runner.invoke( main.cli, ["--debug", "--path", tmpdir, "build", "test.py"] ) assert bar_finish.called_once assert result.exit_code == 1, result.stdout def test_build(tmpdir): """ Test that build works in a basic repository. """ repo = Repo.init(path=tmpdir) tmppath = pathlib.Path(tmpdir) # Write a test file to the repo with open(tmppath / "test.py", "w") as test_txt: test_txt.write("import abc") with open(tmppath / ".gitignore", "w") as test_txt: test_txt.write(".wily/") index = repo.index index.add(["test.py", ".gitignore"]) author = Actor("An author", "[email protected]") committer = Actor("A committer", "[email protected]") commit = index.commit("basic test", author=author, committer=committer) with patch("wily.logger") as logger: runner = CliRunner() result = runner.invoke( main.cli, ["--debug", "--path", tmpdir, "build", "test.py"] ) assert result.exit_code == 0, result.stdout cache_path = tmpdir / ".wily" assert cache_path.exists() index_path = tmpdir / ".wily" / "git" / "index.json" assert index_path.exists() rev_path = tmpdir / ".wily" / "git" / commit.name_rev.split(" ")[0] + ".json" assert rev_path.exists() def test_build_twice(tmpdir): """ Test that build works when run twice. """ repo = Repo.init(path=tmpdir) tmppath = pathlib.Path(tmpdir) # Write a test file to the repo with open(tmppath / "test.py", "w") as test_txt: test_txt.write("import abc") with open(tmppath / ".gitignore", "w") as test_txt: test_txt.write(".wily/") index = repo.index index.add(["test.py", ".gitignore"]) author = Actor("An author", "[email protected]") committer = Actor("A committer", "[email protected]") commit = index.commit("basic test", author=author, committer=committer) runner = CliRunner() result = runner.invoke(main.cli, ["--debug", "--path", tmpdir, "build", "test.py"]) assert result.exit_code == 0, result.stdout cache_path = tmpdir / ".wily" assert cache_path.exists() index_path = tmpdir / ".wily" / "git" / "index.json" assert index_path.exists() rev_path = tmpdir / ".wily" / "git" / commit.name_rev.split(" ")[0] + ".json" assert rev_path.exists() # Write a test file to the repo with open(tmppath / "test.py", "w") as test_txt: test_txt.write("import abc\nfoo = 1") index.add(["test.py"]) commit2 = index.commit("basic test", author=author, committer=committer) result = runner.invoke(main.cli, ["--debug", "--path", tmpdir, "build", "test.py"]) assert result.exit_code == 0, result.stdout cache_path = tmpdir / ".wily" assert cache_path.exists() index_path = tmpdir / ".wily" / "git" / "index.json" assert index_path.exists() rev_path = tmpdir / ".wily" / "git" / commit.name_rev.split(" ")[0] + ".json" assert rev_path.exists() rev_path2 = tmpdir / ".wily" / "git" / commit2.name_rev.split(" ")[0] + ".json" assert rev_path2.exists() def test_build_no_commits(tmpdir): """ Test that build fails cleanly with no commits """ repo = Repo.init(path=tmpdir) runner = CliRunner() result = runner.invoke( main.cli, ["--debug", "--path", tmpdir, "build", tmpdir, "--skip-ignore-check"] ) assert result.exit_code == 1, result.stdout def test_build_dirty_repo(builddir): """ Test that build fails cleanly with a dirty repo """ tmppath = pathlib.Path(builddir) with open(tmppath / "test.py", "w") as test_txt: test_txt.write("import abc\nfoo = 1") runner = CliRunner() result = runner.invoke(main.cli, ["--debug", "--path", builddir, "build", builddir]) assert result.exit_code == 1, result.stdout def test_build_no_git_history(tmpdir): repo = Repo.init(path=tmpdir) with patch("wily.logger") as logger: runner = CliRunner() result = runner.invoke(main.cli, ["--path", tmpdir, "build", "src/test.py"]) assert result.exit_code == 1, result.stdout archivers = {name for name in ALL_ARCHIVERS.keys()} @pytest.mark.parametrize("archiver", archivers) def test_build_archiver(gitdir, archiver): """ Test the build against each type of archiver """ with patch("wily.logger") as logger: runner = CliRunner() result = runner.invoke( main.cli, ["--path", gitdir, "build", "src/test.py", "-a", archiver] ) assert result.exit_code == 0, result.stdout cache_path = gitdir / ".wily" assert cache_path.exists() index_path = gitdir / ".wily" / archiver / "index.json" assert index_path.exists()
31.962185
88
0.625739
986
7,607
4.725152
0.135903
0.062245
0.046362
0.056665
0.784932
0.758747
0.721399
0.707448
0.685984
0.656793
0
0.003749
0.228474
7,607
237
89
32.097046
0.790083
0.102274
0
0.718121
0
0
0.15098
0.013317
0
0
0
0.004219
0.187919
1
0.067114
false
0
0.087248
0
0.154362
0
0
0
0
null
0
0
0
0
1
1
1
0
1
0
0
0
0
0
0
0
0
0
0
1
0
0
0
0
null
0
0
0
0
0
0
0
0
0
0
0
0
0
5
e3f8f7b3257c5bd12d8d3490e725fe8a7a51ecb9
388
py
Python
frappe/patches/v7_0/desktop_icons_hidden_by_admin_as_blocked.py
anandpdoshi/frappe
b3546f1ebcac3480eccf5d19371ca534e7ce79bb
[ "MIT" ]
null
null
null
frappe/patches/v7_0/desktop_icons_hidden_by_admin_as_blocked.py
anandpdoshi/frappe
b3546f1ebcac3480eccf5d19371ca534e7ce79bb
[ "MIT" ]
null
null
null
frappe/patches/v7_0/desktop_icons_hidden_by_admin_as_blocked.py
anandpdoshi/frappe
b3546f1ebcac3480eccf5d19371ca534e7ce79bb
[ "MIT" ]
5
2016-06-20T08:48:11.000Z
2018-12-12T09:42:31.000Z
import frappe def execute(): # all icons hidden in standard are "blocked" # this is for the use case where the admin wants to remove icon for everyone # in 7.0, icons may be hidden by default, but still can be shown to the user # e.g. Accounts, Stock etc, so we need a new property for blocked frappe.db.sql('update `tabDesktop Icon` set blocked = 1 where standard=1 and hidden=1')
43.111111
88
0.737113
71
388
4.028169
0.746479
0
0
0
0
0
0
0
0
0
0
0.015974
0.193299
388
9
88
43.111111
0.897764
0.659794
0
0
0
0
0.546875
0
0
0
0
0
0
1
0.333333
true
0
0.333333
0
0.666667
0
0
0
0
null
0
0
0
0
0
0
0
0
0
0
0
0
0
1
0
0
0
0
0
0
0
0
0
0
null
0
0
0
0
0
1
1
0
1
0
1
0
0
5
540b37aa828992718d326e40cc3e8c5c7baaf141
67
py
Python
nadl/__init__.py
siAyush/nadl
8aa698231e1d198bf823a58c84f139f6f93bc7df
[ "MIT" ]
7
2021-05-18T11:16:49.000Z
2021-05-30T20:25:12.000Z
nadl/__init__.py
siAyush/nadl
8aa698231e1d198bf823a58c84f139f6f93bc7df
[ "MIT" ]
null
null
null
nadl/__init__.py
siAyush/nadl
8aa698231e1d198bf823a58c84f139f6f93bc7df
[ "MIT" ]
1
2022-03-02T19:52:25.000Z
2022-03-02T19:52:25.000Z
from nadl.tensor import Tensor from nadl.parameter import Parameter
33.5
36
0.865672
10
67
5.8
0.5
0.275862
0
0
0
0
0
0
0
0
0
0
0.104478
67
2
36
33.5
0.966667
0
0
0
0
0
0
0
0
0
0
0
0
1
0
true
0
1
0
1
0
1
0
0
null
1
0
0
0
0
0
0
0
0
0
0
0
0
1
0
0
0
0
0
0
0
0
0
0
null
0
0
0
0
0
0
1
0
1
0
0
0
0
5
583a4439342b3be3a1f5a61fbbd79630bf4f80cd
409
py
Python
cords/selectionstrategies/SL/__init__.py
krishnatejakk/AUTOMATA
fd0cf58058e39660f88d9d6b4101e30a497f6ce2
[ "MIT" ]
null
null
null
cords/selectionstrategies/SL/__init__.py
krishnatejakk/AUTOMATA
fd0cf58058e39660f88d9d6b4101e30a497f6ce2
[ "MIT" ]
null
null
null
cords/selectionstrategies/SL/__init__.py
krishnatejakk/AUTOMATA
fd0cf58058e39660f88d9d6b4101e30a497f6ce2
[ "MIT" ]
1
2022-03-16T05:55:12.000Z
2022-03-16T05:55:12.000Z
from .craigstrategy import CRAIGStrategy from .dataselectionstrategy import DataSelectionStrategy from .glisterstrategy import GLISTERStrategy from .randomstrategy import RandomStrategy from .submodularselectionstrategy import SubmodularSelectionStrategy from .gradmatchstrategy import GradMatchStrategy from .fixedweightstrategy import FixedWeightStrategy from .adapweightsstrategy import AdapWeightsStrategy
51.125
68
0.904645
32
409
11.5625
0.3125
0
0
0
0
0
0
0
0
0
0
0
0.075795
409
8
69
51.125
0.978836
0
0
0
0
0
0
0
0
0
0
0
0
1
0
true
0
1
0
1
0
0
0
1
null
0
0
0
0
0
0
0
0
0
0
0
0
0
1
0
0
0
0
0
0
0
0
0
0
null
0
0
0
0
0
0
1
0
1
0
1
0
0
5
58672ac219aa158da24cd5ab42129bffccff6013
2,429
py
Python
tests/fixtures/test_abstracts/content_03_expected.py
elifesciences/elife-tools
ee345bf0e6703ef0f7e718355e85730abbdfd117
[ "MIT" ]
9
2015-04-16T08:13:31.000Z
2020-05-18T14:03:06.000Z
tests/fixtures/test_abstracts/content_03_expected.py
elifesciences/elife-tools
ee345bf0e6703ef0f7e718355e85730abbdfd117
[ "MIT" ]
310
2015-02-11T00:30:09.000Z
2021-07-14T23:58:50.000Z
tests/fixtures/test_abstracts/content_03_expected.py
elifesciences/elife-tools
ee345bf0e6703ef0f7e718355e85730abbdfd117
[ "MIT" ]
9
2015-02-04T01:21:28.000Z
2021-06-15T12:50:47.000Z
expected = [ { "abstract_type": None, "content": "RET can be activated in cis or trans by its co-receptors and ligands in vitro, but the physiological roles of trans signaling are unclear. Rapidly adapting (RA) mechanoreceptors in dorsal root ganglia (DRGs) express Ret and the co-receptor Gfr\u03b12 and depend on Ret for survival and central projection growth. Here, we show that Ret and Gfr\u03b12 null mice display comparable early central projection deficits, but Gfr\u03b12 null RA mechanoreceptors recover later. Loss of Gfr\u03b11, the co-receptor implicated in activating RET in trans, causes no significant central projection or cell survival deficit, but Gfr\u03b11;Gfr\u03b12 double nulls phenocopy Ret nulls. Finally, we demonstrate that GFR\u03b11 produced by neighboring DRG neurons activates RET in RA mechanoreceptors. Taken together, our results suggest that trans and cis RET signaling could function in the same developmental process and that the availability of both forms of activation likely enhances but not diversifies outcomes of RET signaling.", "full_content": "<p>RET can be activated in <italic>cis</italic> or <italic>trans</italic> by its co-receptors and ligands <italic>in vitro</italic>, but the physiological roles of <italic>trans</italic> signaling are unclear. Rapidly adapting (RA) mechanoreceptors in dorsal root ganglia (DRGs) express <italic>Ret</italic> and the co-receptor <italic>Gfr\u03b12</italic> and depend on <italic>Ret</italic> for survival and central projection growth. Here, we show that <italic>Ret</italic> and <italic>Gfr\u03b12</italic> null mice display comparable early central projection deficits, but <italic>Gfr\u03b12</italic> null RA mechanoreceptors recover later. Loss of <italic>Gfr\u03b11</italic>, the co-receptor implicated in activating RET <italic>in trans</italic>, causes no significant central projection or cell survival deficit, but <italic>Gfr\u03b11;Gfr\u03b12</italic> double nulls phenocopy <italic>Ret</italic> nulls. Finally, we demonstrate that GFR\u03b11 produced by neighboring DRG neurons activates RET in RA mechanoreceptors. Taken together, our results suggest that <italic>trans</italic> and <italic>cis</italic> RET signaling could function in the same developmental process and that the availability of both forms of activation likely enhances but not diversifies outcomes of RET signaling.</p>", }, ]
303.625
1,326
0.792096
361
2,429
5.3241
0.277008
0.037461
0.027055
0.032778
0.736733
0.668054
0.640999
0.559834
0.559834
0.49948
0
0.026807
0.139975
2,429
7
1,327
347
0.89325
0
0
0
0
0.285714
0.967888
0.096336
0
0
0
0
0
1
0
false
0
0
0
0
0
0
0
0
null
0
0
0
0
0
0
0
0
0
0
0
0
0
1
1
1
0
0
0
0
0
1
1
0
null
0
0
0
0
0
0
0
0
0
0
0
0
0
5
5871c92a8c31f58780367e72dd645d194490519d
266
py
Python
HalleyComet/bit/models.py
ryanduan/Halley_Comet
bd3263e4575c820dd14c265c2c0d4b6b44197682
[ "Apache-2.0" ]
null
null
null
HalleyComet/bit/models.py
ryanduan/Halley_Comet
bd3263e4575c820dd14c265c2c0d4b6b44197682
[ "Apache-2.0" ]
null
null
null
HalleyComet/bit/models.py
ryanduan/Halley_Comet
bd3263e4575c820dd14c265c2c0d4b6b44197682
[ "Apache-2.0" ]
null
null
null
from django.db import models class Url(models.Model): long_url = models.CharField(max_length=200) short_url = models.CharField(max_length=100) visit_time = models.DateTimeField(auto_now_add=True) def __unicode__(self): return self.long_url
26.6
56
0.740602
38
266
4.868421
0.684211
0.145946
0.194595
0.227027
0.291892
0
0
0
0
0
0
0.027149
0.169173
266
9
57
29.555556
0.809955
0
0
0
0
0
0
0
0
0
0
0
0
1
0.142857
false
0
0.142857
0.142857
1
0
0
0
0
null
0
1
1
0
0
0
0
0
0
0
0
0
0
1
0
0
0
0
0
0
0
0
0
0
null
0
0
0
0
0
0
0
0
0
1
1
0
0
5
587a404ecb9909eff07171e4499fcb5702d3abd5
78
py
Python
samples/ast/test.py
Ryoich/python_zero
fe4a5fd8b11c8c059d82b797cd1668f96d54e541
[ "CC-BY-4.0" ]
203
2018-12-14T10:16:33.000Z
2022-03-10T07:23:34.000Z
samples/ast/test.py
Ryoich/python_zero
fe4a5fd8b11c8c059d82b797cd1668f96d54e541
[ "CC-BY-4.0" ]
39
2019-06-21T12:28:03.000Z
2022-01-17T10:41:53.000Z
samples/ast/test.py
Ryoich/python_zero
fe4a5fd8b11c8c059d82b797cd1668f96d54e541
[ "CC-BY-4.0" ]
29
2018-12-30T06:48:59.000Z
2022-03-10T07:43:42.000Z
def func(a, b): return a + b def func2(a): print(a) print("Hello")
8.666667
16
0.538462
14
78
3
0.571429
0.095238
0
0
0
0
0
0
0
0
0
0.017857
0.282051
78
8
17
9.75
0.732143
0
0
0
0
0
0.064103
0
0
0
0
0
0
1
0.4
false
0
0
0.2
0.6
0.4
1
0
0
null
0
0
0
0
0
0
0
0
0
0
0
0
0
1
0
0
0
0
0
0
0
0
0
0
null
0
0
0
0
0
1
0
0
0
1
1
0
0
5
545268aad6cd438a8b86741579655c5f5b28ba41
249
py
Python
test/test_i18n.py
timgates42/uliweb
80c0459c5e5d257b665eb2e1d0b5f68ad55c42f1
[ "BSD-2-Clause" ]
202
2015-01-12T08:10:48.000Z
2021-11-08T09:04:32.000Z
test/test_i18n.py
timgates42/uliweb
80c0459c5e5d257b665eb2e1d0b5f68ad55c42f1
[ "BSD-2-Clause" ]
30
2015-01-01T09:07:17.000Z
2021-06-03T12:58:45.000Z
test/test_i18n.py
timgates42/uliweb
80c0459c5e5d257b665eb2e1d0b5f68ad55c42f1
[ "BSD-2-Clause" ]
58
2015-01-12T03:28:54.000Z
2022-01-14T01:58:08.000Z
from uliweb.i18n import ugettext_lazy as _ def test_1(): """ >>> x = _('Hello') >>> print repr(x) ugettext_lazy('Hello') """ def test_1(): """ >>> x = _('Hello {0}') >>> print x.format('name') Hello name """
16.6
42
0.48996
30
249
3.833333
0.566667
0.208696
0.13913
0.156522
0.243478
0
0
0
0
0
0
0.028409
0.293173
249
15
43
16.6
0.625
0.481928
0
0.666667
0
0
0
0
0
0
0
0
0
1
0.666667
true
0
0.333333
0
1
0
0
0
0
null
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
null
0
0
0
0
0
1
1
0
1
0
1
0
0
5
54607def7c2c2dd5026968fee33155a24a8770a7
155
py
Python
satyrus/sat/types/__init__.py
lucasvg/Satyrus3-FinalProject-EspTopsOTM
024785752abdc46e3463d8c94df7c3da873c354d
[ "MIT" ]
null
null
null
satyrus/sat/types/__init__.py
lucasvg/Satyrus3-FinalProject-EspTopsOTM
024785752abdc46e3463d8c94df7c3da873c354d
[ "MIT" ]
null
null
null
satyrus/sat/types/__init__.py
lucasvg/Satyrus3-FinalProject-EspTopsOTM
024785752abdc46e3463d8c94df7c3da873c354d
[ "MIT" ]
null
null
null
from .array import Array from .string import String from .problem import Constraint, Loop from .main import SatType, Var, Number from .expr import Expr
31
39
0.780645
23
155
5.26087
0.521739
0
0
0
0
0
0
0
0
0
0
0
0.167742
155
5
40
31
0.937985
0
0
0
0
0
0
0
0
0
0
0
0
1
0
true
0
1
0
1
0
1
0
0
null
0
0
0
0
0
0
0
0
0
0
0
0
0
1
0
0
0
0
0
0
0
0
0
0
null
0
0
0
0
0
0
1
0
1
0
1
0
0
5
547f16545ac590cbce83d8fc70ff6fbb32f028e2
16,628
py
Python
code/python/FactSetFunds/v1/fds/sdk/FactSetFunds/model/classifications.py
factset/enterprise-sdk
3fd4d1360756c515c9737a0c9a992c7451d7de7e
[ "Apache-2.0" ]
6
2022-02-07T16:34:18.000Z
2022-03-30T08:04:57.000Z
code/python/FactSetFunds/v1/fds/sdk/FactSetFunds/model/classifications.py
factset/enterprise-sdk
3fd4d1360756c515c9737a0c9a992c7451d7de7e
[ "Apache-2.0" ]
2
2022-02-07T05:25:57.000Z
2022-03-07T14:18:04.000Z
code/python/FactSetFunds/v1/fds/sdk/FactSetFunds/model/classifications.py
factset/enterprise-sdk
3fd4d1360756c515c9737a0c9a992c7451d7de7e
[ "Apache-2.0" ]
null
null
null
""" FactSet Funds API FactSet Mutual Funds data offers over 50 fund- and share class-specific data points for mutual funds listed in the United States. <p>FactSet Mutual Funds Reference provides fund-specific reference information as well as FactSet's proprietary classification system. It includes but is not limited to the following coverage * Fund descriptions * A seven-tier classification system * Leverage information * Fees and expenses * Portfolio managers FactSet Mutual Funds Time Series provides quantitative data items on a historical basis. It includes but is not limited to the following coverage * Net asset value * Fund flows * Assets under management * Total return # noqa: E501 The version of the OpenAPI document: 1.0.0 Contact: [email protected] Generated by: https://openapi-generator.tech """ import re # noqa: F401 import sys # noqa: F401 from fds.sdk.FactSetFunds.model_utils import ( # noqa: F401 ApiTypeError, ModelComposed, ModelNormal, ModelSimple, cached_property, change_keys_js_to_python, convert_js_args_to_python_args, date, datetime, file_type, none_type, validate_get_composed_info, OpenApiModel ) from fds.sdk.FactSetFunds.exceptions import ApiAttributeError class Classifications(ModelNormal): """NOTE: This class is auto generated by OpenAPI Generator. Ref: https://openapi-generator.tech Do not edit the class manually. Attributes: allowed_values (dict): The key is the tuple path to the attribute and the for var_name this is (var_name,). The value is a dict with a capitalized key describing the allowed value and an allowed value. These dicts store the allowed enum values. attribute_map (dict): The key is attribute name and the value is json key in definition. discriminator_value_class_map (dict): A dict to go from the discriminator variable value to the discriminator class name. validations (dict): The key is the tuple path to the attribute and the for var_name this is (var_name,). The value is a dict that stores validations for max_length, min_length, max_items, min_items, exclusive_maximum, inclusive_maximum, exclusive_minimum, inclusive_minimum, and regex. additional_properties_type (tuple): A tuple of classes accepted as additional properties values. """ allowed_values = { } validations = { } @cached_property def additional_properties_type(): """ This must be a method because a model may have properties that are of type self, this must run after the class is loaded """ return (bool, date, datetime, dict, float, int, list, str, none_type,) # noqa: E501 _nullable = False @cached_property def openapi_types(): """ This must be a method because a model may have properties that are of type self, this must run after the class is loaded Returns openapi_types (dict): The key is attribute name and the value is attribute type. """ return { 'fsym_id': (str,), # noqa: E501 'request_id': (str,), # noqa: E501 'asset_class': (str,), # noqa: E501 'category_class': (str,), # noqa: E501 'economic_development_class': (str,), # noqa: E501 'focus_class': (str,), # noqa: E501 'geographic_class': (str,), # noqa: E501 'niche_class': (str,), # noqa: E501 'region_class': (str,), # noqa: E501 } @cached_property def discriminator(): return None attribute_map = { 'fsym_id': 'fsymId', # noqa: E501 'request_id': 'requestId', # noqa: E501 'asset_class': 'assetClass', # noqa: E501 'category_class': 'categoryClass', # noqa: E501 'economic_development_class': 'economicDevelopmentClass', # noqa: E501 'focus_class': 'focusClass', # noqa: E501 'geographic_class': 'geographicClass', # noqa: E501 'niche_class': 'nicheClass', # noqa: E501 'region_class': 'regionClass', # noqa: E501 } read_only_vars = { } _composed_schemas = {} @classmethod @convert_js_args_to_python_args def _from_openapi_data(cls, *args, **kwargs): # noqa: E501 """Classifications - a model defined in OpenAPI Keyword Args: _check_type (bool): if True, values for parameters in openapi_types will be type checked and a TypeError will be raised if the wrong type is input. Defaults to True _path_to_item (tuple/list): This is a list of keys or values to drill down to the model in received_data when deserializing a response _spec_property_naming (bool): True if the variable names in the input data are serialized names, as specified in the OpenAPI document. False if the variable names in the input data are pythonic names, e.g. snake case (default) _configuration (Configuration): the instance to use when deserializing a file_type parameter. If passed, type conversion is attempted If omitted no type conversion is done. _visited_composed_classes (tuple): This stores a tuple of classes that we have traveled through so that if we see that class again we will not use its discriminator again. When traveling through a discriminator, the composed schema that is is traveled through is added to this set. For example if Animal has a discriminator petType and we pass in "Dog", and the class Dog allOf includes Animal, we move through Animal once using the discriminator, and pick Dog. Then in Dog, we will make an instance of the Animal class but this time we won't travel through its discriminator because we passed in _visited_composed_classes = (Animal,) fsym_id (str): FactSet Security Identifier. Six alpha-numeric characters, excluding vowels, with a -S suffix (XXXXXX-S), resolved from the requestId of the Fund requested.. [optional] # noqa: E501 request_id (str): The requested Id sent as input.. [optional] # noqa: E501 asset_class (str): Returns the asset class description from FactSet's fund classification system. Asset class designates the fund's underlying holding type, e.g. equity, fixed-income, etc.. [optional] # noqa: E501 category_class (str): Returns the asset class category description from FactSet's fund classification system. The asset class category is the first-tier subcategory within the fund's asset class, e.g. size & style, sector, precious metals, etc.. [optional] # noqa: E501 economic_development_class (str): Returns the fund's economic development description from FactSet's fund classification system. This description refers to the development level for the fund's geographic region of focus, e.g. developed, emerging, etc.. [optional] # noqa: E501 focus_class (str): Returns the fund's focus description from FactSet's fund classification system. The fund's focus is the second-tier subcategory within the fund's asset class, e.g. small cap, energy, etc.. [optional] # noqa: E501 geographic_class (str): Returns the fund's specific geography description from FactSet's fund classification system. Specific geography refers to the fund's particular geographic focus within the region, e.g. Chile, BRICs, etc.. [optional] # noqa: E501 niche_class (str): Returns the fund's niche description from FactSet's fund classification system. The fund's niche is the third-tier subcategory with the fund's asset class, e.g. growth, coal, etc.. [optional] # noqa: E501 region_class (str): Returns the fund's region description from FactSet's fund classification system. Refers to the broad regional exposure of the fund's holdings, e.g. Latin America, Asia-Pacific, etc.. [optional] # noqa: E501 """ _check_type = kwargs.pop('_check_type', True) _spec_property_naming = kwargs.pop('_spec_property_naming', False) _path_to_item = kwargs.pop('_path_to_item', ()) _configuration = kwargs.pop('_configuration', None) _visited_composed_classes = kwargs.pop('_visited_composed_classes', ()) self = super(OpenApiModel, cls).__new__(cls) if args: raise ApiTypeError( "Invalid positional arguments=%s passed to %s. Remove those invalid positional arguments." % ( args, self.__class__.__name__, ), path_to_item=_path_to_item, valid_classes=(self.__class__,), ) self._data_store = {} self._check_type = _check_type self._spec_property_naming = _spec_property_naming self._path_to_item = _path_to_item self._configuration = _configuration self._visited_composed_classes = _visited_composed_classes + (self.__class__,) for var_name, var_value in kwargs.items(): if var_name not in self.attribute_map and \ self._configuration is not None and \ self._configuration.discard_unknown_keys and \ self.additional_properties_type is None: # discard variable. continue setattr(self, var_name, var_value) return self required_properties = set([ '_data_store', '_check_type', '_spec_property_naming', '_path_to_item', '_configuration', '_visited_composed_classes', ]) @convert_js_args_to_python_args def __init__(self, *args, **kwargs): # noqa: E501 """Classifications - a model defined in OpenAPI Keyword Args: _check_type (bool): if True, values for parameters in openapi_types will be type checked and a TypeError will be raised if the wrong type is input. Defaults to True _path_to_item (tuple/list): This is a list of keys or values to drill down to the model in received_data when deserializing a response _spec_property_naming (bool): True if the variable names in the input data are serialized names, as specified in the OpenAPI document. False if the variable names in the input data are pythonic names, e.g. snake case (default) _configuration (Configuration): the instance to use when deserializing a file_type parameter. If passed, type conversion is attempted If omitted no type conversion is done. _visited_composed_classes (tuple): This stores a tuple of classes that we have traveled through so that if we see that class again we will not use its discriminator again. When traveling through a discriminator, the composed schema that is is traveled through is added to this set. For example if Animal has a discriminator petType and we pass in "Dog", and the class Dog allOf includes Animal, we move through Animal once using the discriminator, and pick Dog. Then in Dog, we will make an instance of the Animal class but this time we won't travel through its discriminator because we passed in _visited_composed_classes = (Animal,) fsym_id (str): FactSet Security Identifier. Six alpha-numeric characters, excluding vowels, with a -S suffix (XXXXXX-S), resolved from the requestId of the Fund requested.. [optional] # noqa: E501 request_id (str): The requested Id sent as input.. [optional] # noqa: E501 asset_class (str): Returns the asset class description from FactSet's fund classification system. Asset class designates the fund's underlying holding type, e.g. equity, fixed-income, etc.. [optional] # noqa: E501 category_class (str): Returns the asset class category description from FactSet's fund classification system. The asset class category is the first-tier subcategory within the fund's asset class, e.g. size & style, sector, precious metals, etc.. [optional] # noqa: E501 economic_development_class (str): Returns the fund's economic development description from FactSet's fund classification system. This description refers to the development level for the fund's geographic region of focus, e.g. developed, emerging, etc.. [optional] # noqa: E501 focus_class (str): Returns the fund's focus description from FactSet's fund classification system. The fund's focus is the second-tier subcategory within the fund's asset class, e.g. small cap, energy, etc.. [optional] # noqa: E501 geographic_class (str): Returns the fund's specific geography description from FactSet's fund classification system. Specific geography refers to the fund's particular geographic focus within the region, e.g. Chile, BRICs, etc.. [optional] # noqa: E501 niche_class (str): Returns the fund's niche description from FactSet's fund classification system. The fund's niche is the third-tier subcategory with the fund's asset class, e.g. growth, coal, etc.. [optional] # noqa: E501 region_class (str): Returns the fund's region description from FactSet's fund classification system. Refers to the broad regional exposure of the fund's holdings, e.g. Latin America, Asia-Pacific, etc.. [optional] # noqa: E501 """ _check_type = kwargs.pop('_check_type', True) _spec_property_naming = kwargs.pop('_spec_property_naming', False) _path_to_item = kwargs.pop('_path_to_item', ()) _configuration = kwargs.pop('_configuration', None) _visited_composed_classes = kwargs.pop('_visited_composed_classes', ()) if args: raise ApiTypeError( "Invalid positional arguments=%s passed to %s. Remove those invalid positional arguments." % ( args, self.__class__.__name__, ), path_to_item=_path_to_item, valid_classes=(self.__class__,), ) self._data_store = {} self._check_type = _check_type self._spec_property_naming = _spec_property_naming self._path_to_item = _path_to_item self._configuration = _configuration self._visited_composed_classes = _visited_composed_classes + (self.__class__,) for var_name, var_value in kwargs.items(): if var_name not in self.attribute_map and \ self._configuration is not None and \ self._configuration.discard_unknown_keys and \ self.additional_properties_type is None: # discard variable. continue setattr(self, var_name, var_value) if var_name in self.read_only_vars: raise ApiAttributeError(f"`{var_name}` is a read-only attribute. Use `from_openapi_data` to instantiate " f"class with read only attributes.")
57.536332
709
0.619016
1,991
16,628
5.001005
0.174787
0.032138
0.022497
0.025309
0.768404
0.749623
0.743597
0.737973
0.737973
0.737973
0
0.011829
0.318739
16,628
288
710
57.736111
0.867143
0.636817
0
0.44186
0
0
0.173398
0.041553
0
0
0
0
0
1
0.03876
false
0.015504
0.031008
0.007752
0.162791
0
0
0
0
null
0
0
0
0
1
1
1
1
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
null
0
0
0
0
0
0
0
0
0
0
0
0
0
5
49b0052d2675e4f9dc69452f3b5d084691e4a664
19,202
py
Python
tests/tests/test_api_management.py
MaciejTe/useradm
4962000db94bc7d9e80b81c4389f6f769d0d062a
[ "Apache-2.0" ]
8
2017-02-27T08:58:08.000Z
2020-05-25T14:37:24.000Z
tests/tests/test_api_management.py
MaciejTe/useradm
4962000db94bc7d9e80b81c4389f6f769d0d062a
[ "Apache-2.0" ]
263
2016-11-17T15:02:26.000Z
2022-03-31T10:04:09.000Z
tests/tests/test_api_management.py
MaciejTe/useradm
4962000db94bc7d9e80b81c4389f6f769d0d062a
[ "Apache-2.0" ]
25
2016-11-16T15:45:38.000Z
2020-12-19T09:56:16.000Z
#!/usr/bin/python # Copyright 2021 Northern.tech AS # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from common import ( init_users, init_users_f, init_users_mt, init_users_mt_f, cli, api_client_mgmt, mongo, make_auth, ) import bravado import pytest import tenantadm class TestManagementApiPostUsersBase: def _do_test_ok(self, api_client_mgmt, init_users, new_user, tenant_id=None): auth = None if tenant_id is not None: auth = make_auth("foo", tenant_id) _, r = api_client_mgmt.create_user(new_user, auth) assert r.status_code == 201 users = api_client_mgmt.get_users(auth) assert len(users) == len(init_users) + 1 found_user = [u for u in users if u.email == new_user["email"]] assert len(found_user) == 1 found_user = found_user[0] def _do_test_fail_unprocessable_entity( self, api_client_mgmt, init_users, new_user, tenant_id=None ): auth = None if tenant_id is not None: auth = make_auth("foo", tenant_id) try: api_client_mgmt.create_user(new_user, auth) except bravado.exception.HTTPError as e: assert e.response.status_code == 422 class TestManagementApiPostUsers(TestManagementApiPostUsersBase): def test_ok(self, api_client_mgmt, init_users): new_user = {"email": "[email protected]", "password": "asdf1234zxcv"} self._do_test_ok(api_client_mgmt, init_users, new_user) def test_fail_malformed_body(self, api_client_mgmt): new_user = {"foo": "bar"} try: api_client_mgmt.create_user(new_user) except bravado.exception.HTTPError as e: assert e.response.status_code == 400 def test_fail_no_password(self, api_client_mgmt): new_user = {"email": "foobar"} try: api_client_mgmt.create_user(new_user) except bravado.exception.HTTPError as e: assert e.response.status_code == 400 def test_fail_no_email(self, api_client_mgmt): new_user = {"password": "asdf1234zxcv"} try: api_client_mgmt.create_user(new_user) except bravado.exception.HTTPError as e: assert e.response.status_code == 400 def test_fail_not_an_email(self, api_client_mgmt): new_user = {"email": "foobar", "password": "asdf1234zxcv"} try: api_client_mgmt.create_user(new_user) except bravado.exception.HTTPError as e: assert e.response.status_code == 400 def test_fail_pwd_too_short(self, api_client_mgmt): new_user = {"email": "[email protected]", "password": "asdf"} try: api_client_mgmt.create_user(new_user) except bravado.exception.HTTPError as e: assert e.response.status_code == 422 def test_fail_duplicate_email(self, api_client_mgmt, init_users): new_user = {"email": "[email protected]", "password": "asdf"} self._do_test_fail_unprocessable_entity(api_client_mgmt, init_users, new_user) class TestManagementApiPostUsersEnterprise(TestManagementApiPostUsersBase): @pytest.mark.parametrize("tenant_id", ["tenant1id", "tenant2id"]) def test_ok(self, tenant_id, api_client_mgmt, init_users_mt): new_user = {"email": "[email protected]", "password": "asdf1234zxcv"} with tenantadm.run_fake_create_user(new_user): self._do_test_ok( api_client_mgmt, init_users_mt[tenant_id], new_user, tenant_id ) @pytest.mark.parametrize("tenant_id", ["tenant1id", "tenant2id"]) def test_fail_duplicate_email(self, tenant_id, api_client_mgmt, init_users_mt): new_user = {"email": "[email protected]", "password": "asdf1234zxcv"} with tenantadm.run_fake_create_user(new_user, 422): self._do_test_fail_unprocessable_entity( api_client_mgmt, init_users_mt[tenant_id], new_user, tenant_id ) class TestManagementApiGetUserBase: def _do_test_ok(self, api_client_mgmt, init_users, tenant_id=None): auth = None if tenant_id is not None: auth = make_auth("foo", tenant_id) for u in init_users: found = api_client_mgmt.get_user(u.id, auth) assert found.id == u.id assert found.email == u.email assert found.created_ts == u.created_ts assert found.updated_ts == u.updated_ts def _do_test_fail_not_found(self, api_client_mgmt, init_users, tenant_id=None): auth = None if tenant_id is not None: auth = make_auth("foo", tenant_id) try: not_found = api_client_mgmt.get_user("madeupid", auth) except bravado.exception.HTTPError as e: assert e.response.status_code == 404 class TestManagementApiGetUser(TestManagementApiGetUserBase): def test_ok(self, api_client_mgmt, init_users): self._do_test_ok(api_client_mgmt, init_users) def test_fail_not_found(self, api_client_mgmt, init_users): self._do_test_fail_not_found(api_client_mgmt, init_users) class TestManagementApiGetUserEnterprise(TestManagementApiGetUserBase): @pytest.mark.parametrize("tenant_id", ["tenant1id", "tenant2id"]) def test_ok(self, tenant_id, api_client_mgmt, init_users_mt): self._do_test_ok(api_client_mgmt, init_users_mt[tenant_id], tenant_id) @pytest.mark.parametrize("tenant_id", ["tenant1id", "tenant2id"]) def test_fail_not_found(self, tenant_id, api_client_mgmt, init_users_mt): self._do_test_fail_not_found( api_client_mgmt, init_users_mt[tenant_id], tenant_id ) class TestManagementApiGetUsersBase: def _do_test_ok(self, api_client_mgmt, init_users, tenant_id=None): auth = None if tenant_id is not None: auth = make_auth("foo", tenant_id) users = api_client_mgmt.get_users(auth) assert len(users) == len(init_users) def _do_test_no_users(self, api_client_mgmt, tenant_id=None): auth = None if tenant_id is not None: auth = make_auth("foo", tenant_id) users = api_client_mgmt.get_users(auth) assert len(users) == 0 class TestManagementApiGetUsersOk(TestManagementApiGetUsersBase): def test_ok(self, api_client_mgmt, init_users): self._do_test_ok(api_client_mgmt, init_users) class TestManagementApiGetUsersNoUsers(TestManagementApiGetUsersBase): def test_no_users(self, api_client_mgmt): self._do_test_no_users(api_client_mgmt) class TestManagementApiGetUsersEnterprise(TestManagementApiGetUsersBase): @pytest.mark.parametrize("tenant_id", ["tenant1id", "tenant2id"]) def test_ok(self, tenant_id, api_client_mgmt, init_users_mt): self._do_test_ok(api_client_mgmt, init_users_mt[tenant_id], tenant_id) @pytest.mark.parametrize("tenant_id", ["tenant1id", "tenant2id"]) def test_no_users(self, tenant_id, api_client_mgmt, init_users_mt): self._do_test_no_users(api_client_mgmt, "non_existing_tenant_id") class TestManagementApiDeleteUserBase: def _do_test_ok(self, api_client_mgmt, init_users, tenant_id=None): auth = None if tenant_id is not None: auth = make_auth("foo", tenant_id) rsp = api_client_mgmt.delete_user(init_users[0]["id"], auth) assert rsp.status_code == 204 users = api_client_mgmt.get_users(auth) assert len(users) == len(init_users) - 1 found = [u for u in users if u.id == init_users[0]["id"]] assert len(found) == 0 def _do_test_not_found(self, api_client_mgmt, tenant_id=None): auth = None if tenant_id is not None: auth = make_auth("foo", tenant_id) rsp = api_client_mgmt.delete_user("nonexistent_id", auth) assert rsp.status_code == 204 class TestManagementApiDeleteUser(TestManagementApiDeleteUserBase): def test_ok(self, api_client_mgmt, init_users): self._do_test_ok(api_client_mgmt, init_users) def test_not_found(self, api_client_mgmt, init_users): self._do_test_not_found(api_client_mgmt) class TestManagementApiDeleteUserEnterprise(TestManagementApiDeleteUserBase): @pytest.mark.parametrize("tenant_id", ["tenant1id", "tenant2id"]) def test_ok(self, tenant_id, api_client_mgmt, init_users_mt): with tenantadm.run_fake_delete_user( tenant_id, init_users_mt[tenant_id][0]["id"] ): self._do_test_ok(api_client_mgmt, init_users_mt[tenant_id], tenant_id) @pytest.mark.parametrize("tenant_id", ["tenant1id", "tenant2id"]) def test_not_found(self, tenant_id, api_client_mgmt): with tenantadm.run_fake_delete_user(): self._do_test_not_found(api_client_mgmt, tenant_id) class TestManagementApiPutUserBase: def _do_test_ok_email( self, api_client_mgmt, init_users, user, update, tenant_id=None ): _, r = api_client_mgmt.login(user.email, "correcthorsebatterystaple") assert r.status_code == 200 token = r.text auth = {"Authorization": "Bearer " + token} # test update _, r = api_client_mgmt.update_user(user.id, update, auth) assert r.status_code == 204 # get/verify users users = api_client_mgmt.get_users(auth) assert len(users) == len(init_users) found = [u for u in users if u.email == update["email"]] assert len(found) == 1 def _do_test_ok_email_or_pass( self, api_client_mgmt, init_users, user, update, tenant_id=None ): _, r = api_client_mgmt.login(user.email, "correcthorsebatterystaple") assert r.status_code == 200 token = r.text auth = {"Authorization": "Bearer " + token} # test update _, r = api_client_mgmt.update_user(user.id, update, auth) assert r.status_code == 204 # get/verify users users = api_client_mgmt.get_users(auth) assert len(users) == len(init_users) # find the user via (new?) email email = user.email new_email = update.get("email", None) if new_email != None and new_email != user.email: email = new_email found = [u for u in users if u.email == email] assert len(found) == 1 # try if login still works _, r = api_client_mgmt.login(email, update["password"]) assert r.status_code == 200 def _do_test_fail_not_found( self, api_client_mgmt, init_users, update, tenant_id=None ): _, r = api_client_mgmt.login(init_users[0].email, "correcthorsebatterystaple") assert r.status_code == 200 token = r.text auth = {"Authorization": "Bearer " + token} try: _, r = api_client_mgmt.update_user("madeupid", update, auth) except bravado.exception.HTTPError as e: assert e.response.status_code == 404 def _do_test_fail_bad_update(self, api_client_mgmt, init_users, tenant_id=None): try: _, r = api_client_mgmt.update_user(init_users[0].id, {"foo": "bar"}) except bravado.exception.HTTPError as e: assert e.response.status_code == 400 def _do_test_fail_unprocessable_entity( self, api_client_mgmt, init_users, user, update, tenant_id=None ): _, r = api_client_mgmt.login(user.email, "correcthorsebatterystaple") assert r.status_code == 200 token = r.text auth = {"Authorization": "Bearer " + token} try: _, r = api_client_mgmt.update_user(user.id, update, auth) except bravado.exception.HTTPError as e: assert e.response.status_code == 422 class TestManagementApiPutUser(TestManagementApiPutUserBase): def test_ok_email(self, api_client_mgmt, init_users_f): update = {"email": "[email protected]"} self._do_test_ok_email(api_client_mgmt, init_users_f, init_users_f[0], update) def test_ok_pass(self, api_client_mgmt, init_users_f): update = { "current_password": "correcthorsebatterystaple", "password": "secretpassword123", } self._do_test_ok_email_or_pass( api_client_mgmt, init_users_f, init_users_f[0], update ) def test_ok_email_and_pass(self, api_client_mgmt, init_users_f): update = { "email": "[email protected]", "current_password": "correcthorsebatterystaple", "password": "secretpassword123", } self._do_test_ok_email_or_pass( api_client_mgmt, init_users_f, init_users_f[0], update ) def test_fail_password_mismatch(self, api_client_mgmt, init_users_f): update = {"current_password": "dummy", "password": "secretpassword123"} self._do_test_fail_unprocessable_entity( api_client_mgmt, init_users_f, init_users_f[0], update ) def test_fail_not_found(self, api_client_mgmt, init_users_f): update = {"email": "[email protected]", "password": "secretpassword123"} self._do_test_fail_not_found(api_client_mgmt, init_users_f, update) def test_fail_bad_update(self, api_client_mgmt, init_users_f): self._do_test_fail_bad_update(api_client_mgmt, init_users_f) def test_fail_duplicate_email(self, api_client_mgmt, init_users_f): update = {"email": init_users_f[1].email, "password": "secretpassword123"} self._do_test_fail_unprocessable_entity( api_client_mgmt, init_users_f, init_users_f[0], update ) class TestManagementApiPutUserEnterprise(TestManagementApiPutUserBase): @pytest.mark.parametrize("tenant_id", ["tenant1id", "tenant2id"]) def test_ok_email(self, api_client_mgmt, init_users_mt_f, tenant_id): user = init_users_mt_f[tenant_id][0] update = {"email": "[email protected]"} with tenantadm.run_fake_update_user(tenant_id, user.id, update): self._do_test_ok_email( api_client_mgmt, init_users_mt_f[tenant_id], user, update, tenant_id ) @pytest.mark.parametrize("tenant_id", ["tenant1id", "tenant2id"]) def test_ok_pass(self, api_client_mgmt, init_users_mt_f, tenant_id): user = init_users_mt_f[tenant_id][1] with tenantadm.run_fake_get_tenants(tenant_id): update = { "password": "secretpassword123", "current_password": "correcthorsebatterystaple", } self._do_test_ok_email_or_pass( api_client_mgmt, init_users_mt_f[tenant_id], user, update, tenant_id ) @pytest.mark.parametrize("tenant_id", ["tenant1id", "tenant2id"]) def test_ok_email_and_pass(self, api_client_mgmt, init_users_mt_f, tenant_id): user = init_users_mt_f[tenant_id][2] update = { "email": "[email protected]", "current_password": "correcthorsebatterystaple", "password": "secretpassword123", } with tenantadm.run_fake_update_user(tenant_id, user.id, update): self._do_test_ok_email_or_pass( api_client_mgmt, init_users_mt_f[tenant_id], user, update, tenant_id ) @pytest.mark.parametrize("tenant_id", ["tenant1id", "tenant2id"]) def test_fail_not_found(self, api_client_mgmt, init_users_mt_f, tenant_id): user = init_users_mt_f[tenant_id][3] update = { "email": "[email protected]", "current_password": "correcthorsebatterystaple", "password": "secretpassword123", } with tenantadm.run_fake_update_user(tenant_id, user.id, update, 404): self._do_test_fail_not_found( api_client_mgmt, init_users_mt_f[tenant_id], update, tenant_id ) @pytest.mark.parametrize("tenant_id", ["tenant1id", "tenant2id"]) def test_fail_bad_update(self, api_client_mgmt, init_users_mt_f, tenant_id): self._do_test_fail_bad_update(api_client_mgmt, init_users_mt_f[tenant_id]) @pytest.mark.parametrize("tenant_id", ["tenant1id", "tenant2id"]) def test_fail_duplicate_email(self, api_client_mgmt, init_users_mt_f, tenant_id): user = init_users_mt_f[tenant_id][0] update = { "email": init_users_mt_f[tenant_id][1].email, "password": "secretpassword123", } with tenantadm.run_fake_update_user(tenant_id, user.id, update, 422): self._do_test_fail_unprocessable_entity( api_client_mgmt, init_users_mt_f[tenant_id], user, update, tenant_id ) class TestManagementApiSettingsBase: def _do_test_ok(self, api_client_mgmt, tenant_id=None): auth = None if tenant_id is not None: auth = make_auth("foo", tenant_id) # nonempty self._set_and_verify( {"foo": "foo-val", "bar": "bar-val"}, api_client_mgmt, auth ) # empty self._set_and_verify({}, api_client_mgmt, auth) def _do_test_no_settings(self, api_client_mgmt, tenant_id=None): auth = None if tenant_id is not None: auth = make_auth("foo", tenant_id) found = api_client_mgmt.get_settings(auth) assert found.json() == {} def _set_and_verify(self, settings, api_client_mgmt, auth): r = api_client_mgmt.post_settings(settings, auth) assert r.status_code == 201 found = api_client_mgmt.get_settings(auth) assert found.json() == settings def _do_test_fail_bad_request(self, api_client_mgmt, tenant_id=None): auth = None if tenant_id is not None: auth = make_auth("foo", tenant_id) try: r = api_client_mgmt.post_settings("asdf", auth) except bravado.exception.HTTPError as e: assert e.response.status_code == 400 class TestManagementApiSettings(TestManagementApiSettingsBase): def test_ok(self, api_client_mgmt): self._do_test_ok(api_client_mgmt) def test_no_settings(self, api_client_mgmt): self._do_test_no_settings(api_client_mgmt) def test_bad_request(self, api_client_mgmt): self._do_test_fail_bad_request(api_client_mgmt) class TestManagementApiSettingsEnterprise(TestManagementApiSettingsBase): @pytest.mark.parametrize("tenant_id", ["tenant1id", "tenant2id"]) def test_ok(self, api_client_mgmt, init_users_mt_f, tenant_id): self._do_test_ok(api_client_mgmt, tenant_id) @pytest.mark.parametrize("tenant_id", ["tenant1id", "tenant2id"]) def test_bad_request(self, api_client_mgmt, tenant_id): self._do_test_fail_bad_request(api_client_mgmt, tenant_id)
38.327345
86
0.672638
2,538
19,202
4.701734
0.078014
0.093522
0.135088
0.091176
0.797871
0.775916
0.752367
0.727646
0.685243
0.664628
0
0.012778
0.229716
19,202
500
87
38.404
0.793996
0.037809
0
0.541333
0
0
0.085564
0.015986
0
0
0
0
0.101333
1
0.149333
false
0.088
0.010667
0
0.210667
0
0
0
0
null
0
0
0
0
1
1
1
0
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
null
0
0
0
0
0
0
0
1
0
0
0
0
0
5
49b03158777693b6348d205c910ad771b55e53ea
1,167
py
Python
scripts/convert_to_bed.py
Lila14/multimds
e54642e0ae47592321352f931f534881ca57d888
[ "MIT" ]
1
2019-10-29T12:33:57.000Z
2019-10-29T12:33:57.000Z
scripts/convert_to_bed.py
Lila14/multimds
e54642e0ae47592321352f931f534881ca57d888
[ "MIT" ]
null
null
null
scripts/convert_to_bed.py
Lila14/multimds
e54642e0ae47592321352f931f534881ca57d888
[ "MIT" ]
null
null
null
import os chrom_bins = {} with open("GSE88952_Sc_Su.32000.bed") as in_file: for line in in_file: line = line.strip().split() chrom_bins[line[3]] = "{}\t{}\t{}".format(line[0], line[1], line[2]) in_file.close() if not os.path.isfile("ctrl_32kb.bed"): with open("ctrl_32kb.bed", "w") as out_file: with open("ctrl_32kb_matrix.txt") as in_file: for line in in_file: line = line.strip().split() bin1 = line[0] chrom_string1 = chrom_bins[bin1] bin2 = line[1] chrom_string2 = chrom_bins[bin2] if float(line[3]) != 0: out_file.write("\t".join((chrom_string1, chrom_string2, line[3]))) out_file.write("\n") in_file.close() out_file.close() if not os.path.isfile("galactose_32kb.bed"): with open("galactose_32kb.bed", "w") as out_file: with open("galactose_32kb_matrix.txt") as in_file: for line in in_file: line = line.strip().split() bin1 = line[0] chrom_string1 = chrom_bins[bin1] bin2 = line[1] chrom_string2 = chrom_bins[bin2] if float(line[3]) != 0: out_file.write("\t".join((chrom_string1, chrom_string2, line[3]))) out_file.write("\n") in_file.close() out_file.close()
29.175
71
0.652956
193
1,167
3.735751
0.227979
0.074896
0.094313
0.04577
0.787795
0.787795
0.787795
0.728155
0.658807
0.658807
0
0.053998
0.174807
1,167
39
72
29.923077
0.694704
0
0
0.714286
0
0
0.129392
0.041988
0
0
0
0
0
1
0
false
0
0.028571
0
0.028571
0
0
0
0
null
0
0
0
0
1
1
1
0
1
0
0
0
0
0
0
0
0
0
0
1
0
0
0
0
null
0
0
0
0
0
0
0
0
0
0
0
0
0
5
49bc8549c7944e60a8f4b2d3ccdc16b4d5329c4f
890
py
Python
SwitchTracer/universal/exceptions/__init__.py
IzayoiRin/VirtualVeyonST
d0c4035dba81d02135ad54f4c5a5d463e95f7925
[ "MIT" ]
null
null
null
SwitchTracer/universal/exceptions/__init__.py
IzayoiRin/VirtualVeyonST
d0c4035dba81d02135ad54f4c5a5d463e95f7925
[ "MIT" ]
null
null
null
SwitchTracer/universal/exceptions/__init__.py
IzayoiRin/VirtualVeyonST
d0c4035dba81d02135ad54f4c5a5d463e95f7925
[ "MIT" ]
null
null
null
class UniErrors(Exception): pass class SetupErrors(UniErrors): pass class SettingErrors(UniErrors): pass class ConfigureSyntaxErrors(UniErrors): pass class NoLocationErrors(UniErrors): pass class ImportedErrors(UniErrors): pass class KernelWaresSettingsErrors(UniErrors): pass class RegisterErrors(UniErrors): pass class ResoluterErrors(UniErrors): pass class VolumeErrors(UniErrors): pass class ConnectionErrors(UniErrors): pass class RedisOperationErrors(UniErrors): pass class SerializerSettingErrors(UniErrors): pass class SerializerValidationErrors(UniErrors): pass class ParserSettingErrors(UniErrors): pass class ContentTypeErrors(UniErrors): pass class IllegalParametersErrors(UniErrors): pass class CodingErrors(UniErrors): pass class AppRuntimeErrors(UniErrors): pass
11.866667
44
0.746067
76
890
8.736842
0.289474
0.243976
0.460843
0
0
0
0
0
0
0
0
0
0.189888
890
74
45
12.027027
0.920943
0
0
0.5
0
0
0
0
0
0
0
0
0
1
0
true
0.5
0.026316
0
0.526316
0
0
0
0
null
1
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
null
0
0
0
0
0
0
1
1
0
0
1
0
0
5
49ee2e293e1b411f588dd752ab4762901a62db20
7,801
py
Python
src/tools/nuscenes-devkit/prediction/tests/test_mtp_loss.py
jie311/TraDeS
896491a159abe65f61c6ad05662cda6e28d137a6
[ "MIT" ]
475
2021-03-13T16:33:36.000Z
2022-03-30T06:00:39.000Z
src/tools/nuscenes-devkit/prediction/tests/test_mtp_loss.py
jie311/TraDeS
896491a159abe65f61c6ad05662cda6e28d137a6
[ "MIT" ]
50
2021-03-17T04:48:20.000Z
2022-03-08T13:55:32.000Z
src/tools/nuscenes-devkit/prediction/tests/test_mtp_loss.py
jie311/TraDeS
896491a159abe65f61c6ad05662cda6e28d137a6
[ "MIT" ]
98
2021-03-14T12:12:49.000Z
2022-03-19T16:19:13.000Z
import math import unittest import torch from nuscenes.prediction.models import mtp class TestMTPLoss(unittest.TestCase): """ Test each component of MTPLoss as well as the __call__ method. """ def test_get_trajectories_and_modes(self): loss_n_modes_5 = mtp.MTPLoss(5, 0, 0) loss_n_modes_1 = mtp.MTPLoss(1, 0, 0) xy_pred = torch.arange(60).view(1, -1).repeat(1, 5).view(-1, 60) mode_pred = torch.arange(5).view(1, -1) prediction_bs_1 = torch.cat([xy_pred.reshape(1, -1), mode_pred], dim=1) prediction_bs_2 = prediction_bs_1.repeat(2, 1) # Testing many modes with batch size 1. traj, modes = loss_n_modes_5._get_trajectory_and_modes(prediction_bs_1) self.assertTrue(torch.allclose(traj, xy_pred.unsqueeze(0).reshape(1, 5, 30, 2))) self.assertTrue(torch.allclose(modes, mode_pred)) # Testing many modes with batch size > 1. traj, modes = loss_n_modes_5._get_trajectory_and_modes(prediction_bs_2) self.assertTrue(torch.allclose(traj, xy_pred.repeat(1, 2).unsqueeze(0).reshape(2, 5, 30, 2))) self.assertTrue(torch.allclose(modes, mode_pred.repeat(2, 1))) xy_pred = torch.arange(60).view(1, -1).repeat(1, 1).view(-1, 60) mode_pred = torch.arange(1).view(1, -1) prediction_bs_1 = torch.cat([xy_pred.reshape(1, -1), mode_pred], dim=1) prediction_bs_2 = prediction_bs_1.repeat(2, 1) # Testing one mode with batch size 1. traj, modes = loss_n_modes_1._get_trajectory_and_modes(prediction_bs_1) self.assertTrue(torch.allclose(traj, xy_pred.unsqueeze(0).reshape(1, 1, 30, 2))) self.assertTrue(torch.allclose(modes, mode_pred)) # Testing one mode with batch size > 1. traj, modes = loss_n_modes_1._get_trajectory_and_modes(prediction_bs_2) self.assertTrue(torch.allclose(traj, xy_pred.repeat(1, 2).unsqueeze(0).reshape(2, 1, 30, 2))) self.assertTrue(torch.allclose(modes, mode_pred.repeat(2, 1))) def test_angle_between_trajectories(self): def make_trajectory(last_point): traj = torch.zeros((12, 2)) traj[-1] = torch.Tensor(last_point) return traj loss = mtp.MTPLoss(0, 0, 0) # test angle is 0. self.assertEqual(loss._angle_between(make_trajectory([0, 0]), make_trajectory([0, 0])), 0.) self.assertEqual(loss._angle_between(make_trajectory([15, 15]), make_trajectory([15, 15])), 0.) # test angle is 15. self.assertAlmostEqual(loss._angle_between(make_trajectory([1, 1]), make_trajectory([math.sqrt(3)/2, 0.5])), 15., places=4) # test angle is 30. self.assertAlmostEqual(loss._angle_between(make_trajectory([1, 0]), make_trajectory([math.sqrt(3)/2, 0.5])), 30., places=4) # test angle is 45. self.assertAlmostEqual(loss._angle_between(make_trajectory([1, 1]), make_trajectory([0, 1])), 45., places=4) # test angle is 90. self.assertAlmostEqual(loss._angle_between(make_trajectory([1, 1]), make_trajectory([-1, 1])), 90., places=4) self.assertAlmostEqual(loss._angle_between(make_trajectory([1, 0]), make_trajectory([0, 1])), 90., places=4) # test angle is 180. self.assertAlmostEqual(loss._angle_between(make_trajectory([1, 0]), make_trajectory([-1, 0])), 180., places=4) self.assertAlmostEqual(loss._angle_between(make_trajectory([0, 1]), make_trajectory([0, -1])), 180., places=4) self.assertAlmostEqual(loss._angle_between(make_trajectory([3, 1]), make_trajectory([-3, -1])), 180., places=4) def test_compute_best_mode_nothing_below_threshold(self): angles = [(90, 0), (80, 1), (70, 2)] target = None traj = None loss = mtp.MTPLoss(3, 0, 5) self.assertTrue(loss._compute_best_mode(angles, target, traj) in {0, 1, 2}) loss = mtp.MTPLoss(3, 0, 65) self.assertTrue(loss._compute_best_mode(angles, target, traj) in {0, 1, 2}) def test_compute_best_mode_only_one_below_threshold(self): angles = [(30, 1), (3, 0), (25, 2)] target = torch.ones((1, 6, 2)) trajectory = torch.zeros((3, 6, 2)) loss = mtp.MTPLoss(3, 0, 5) self.assertEqual(loss._compute_best_mode(angles, target, trajectory), 0) def test_compute_best_mode_multiple_below_threshold(self): angles = [(2, 2), (4, 1), (10, 0)] target = torch.ones((1, 6, 2)) trajectory = torch.zeros((3, 6, 2)) trajectory[1] = 1 loss = mtp.MTPLoss(3, 0, 5) self.assertEqual(loss._compute_best_mode(angles, target, trajectory), 1) def test_compute_best_mode_only_one_mode(self): angles = [(25, 0)] target = torch.ones((1, 6, 2)) trajectory = torch.zeros((1, 6, 2)) loss = mtp.MTPLoss(1, 0, 5) self.assertEqual(loss._compute_best_mode(angles, target, trajectory), 0) trajectory[0] = 1 self.assertEqual(loss._compute_best_mode(angles, target, trajectory), 0) def test_loss_single_mode(self): targets = torch.zeros((16, 1, 30, 2)) targets[:, :, :, 1] = torch.arange(start=0, end=3, step=0.1) predictions = torch.ones((16, 61)) predictions[:, :60] = targets[0, 0, :, :].reshape(-1, 60) predictions[:, 60] = 1/10 loss = mtp.MTPLoss(1, 1, angle_threshold_degrees=20) # Only regression loss in single mode case. self.assertAlmostEqual(float(loss(predictions, targets).detach().numpy()), 0, places=4) # Now the best mode differs by 1 from the ground truth. # Smooth l1 loss subtracts 0.5 from l1 norm if diff >= 1. predictions[:, :60] += 1 self.assertAlmostEqual(float(loss(predictions, targets).detach().numpy()), 0.5, places=4) # In this case, one element has perfect regression, the others are off by 1. predictions[1, :60] -= 1 self.assertAlmostEqual(float(loss(predictions, targets).detach().numpy()), (15/16)*0.5, places=4) def test_loss_many_modes(self): targets = torch.zeros((16, 1, 30, 2)) targets[:, :, :, 1] = torch.arange(start=0, end=3, step=0.1) predictions = torch.ones((16, 610)) predictions[:, 540:600] = targets[0, 0, :, :].reshape(-1, 60) predictions[:, -10:] = 1/10 loss = mtp.MTPLoss(10, 1, angle_threshold_degrees=20) # Since one mode exactly matches gt, loss should only be classification error. self.assertAlmostEqual(float(loss(predictions, targets).detach().numpy()), -math.log(1/10), places=4) # Now the best mode differs by 1 from the ground truth. # Smooth l1 loss subtracts 0.5 from l1 norm if diff >= 1. predictions[:, 540:600] += 1 self.assertAlmostEqual(float(loss(predictions, targets).detach().numpy()), -math.log(1/10) + 0.5, places=4) # In this case, one element has perfect regression, the others are off by 1. predictions[1, 540:600] -= 1 self.assertAlmostEqual(float(loss(predictions, targets).detach().numpy()), -math.log(1/10) + (15/16)*0.5, places=4)
42.396739
106
0.58313
1,034
7,801
4.22824
0.135397
0.067246
0.036597
0.045746
0.810156
0.758463
0.748399
0.705627
0.679094
0.663769
0
0.071326
0.282912
7,801
183
107
42.628415
0.710225
0.104089
0
0.350877
0
0
0
0
0
0
0
0
0.263158
1
0.078947
false
0
0.035088
0
0.131579
0
0
0
0
null
0
0
0
1
1
1
1
0
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
null
0
0
0
0
0
0
0
0
0
0
0
0
0
5
3f978f4cb297bf98d9722f54f27227c0fe655e28
120,882
py
Python
tests/parsers/test_pwscf.py
jgaff/pif-dft
0fcc136560973f0f99cd257108cdfbc497207e4f
[ "Apache-2.0" ]
null
null
null
tests/parsers/test_pwscf.py
jgaff/pif-dft
0fcc136560973f0f99cd257108cdfbc497207e4f
[ "Apache-2.0" ]
null
null
null
tests/parsers/test_pwscf.py
jgaff/pif-dft
0fcc136560973f0f99cd257108cdfbc497207e4f
[ "Apache-2.0" ]
null
null
null
import unittest from dfttopif.parsers.pwscf import PwscfParser from ..test_pif import unpack_example, delete_example from pypif.obj.common.value import Value import os import shutil class TestPWSCFParser(unittest.TestCase): def get_parser(self,name): '''Get a PwscfParser for a certain test''' unpack_example(os.path.join('examples', 'pwscf', name+'.tar.gz')) return PwscfParser.generate_from_directory(name) def test_Au_nscf(self): """Test that a NSCF calculation is even parseable""" # Parse the results parser = self.get_parser('Au.nscf') # Test the settings self.assertEquals('PWSCF', parser.get_name()) def test_NaF(self): # Parse the results parser = self.get_parser('NaF.scf') # Test the settings self.assertEquals('PWSCF', parser.get_name()) strc = parser.get_output_structure() self.assertEquals(2.2713025676424632, strc.cell[0][2]) self.assertEquals(['F', 'Na'], strc.get_chemical_symbols()) self.assertEquals('FNa', parser.get_composition()) # Test the density self.assertAlmostEqual(2.975233747, parser.get_density().scalars[0].value) self.assertEqual("g/(cm^3)", parser.get_density().units) cutoff = parser.get_cutoff_energy() self.assertEquals(50.0, cutoff.scalars[0].value) self.assertEquals('Ry', cutoff.units) self.assertTrue(parser.is_converged().scalars[0].value) energy = parser.get_total_energy() self.assertEquals(-143.96084355, energy.scalars[0].value) self.assertEquals('Ry', energy.units) self.assertEquals(-83.49879681, parser.get_one_electron_energy_contribution().scalars[0].value) self.assertEquals(48.83409529, parser.get_hartree_energy_contribution().scalars[0].value) self.assertEquals(-23.86775310, parser.get_xc_energy_contribution().scalars[0].value) self.assertEquals(-85.42838893, parser.get_ewald_energy_contribution().scalars[0].value) self.assertEquals(None, parser.uses_SOC()) self.assertEquals(None, parser.is_relaxed()) self.assertEquals('SLA PW PBE PBE', parser.get_xc_functional().scalars[0].value) self.assertEquals(['f_pbe_v1.4.uspp.F.UPF','Na_pbe_v1.uspp.F.UPF'], list(map(lambda x: x.value, parser.get_pp_name().scalars))) self.assertEquals(3456, parser.get_KPPRA().scalars[0].value) self.assertEquals('5.4.0', parser.get_version_number()) self.assertEquals(None, parser.get_U_settings()) self.assertEquals(None, parser.get_vdW_settings()) self.assertEquals(None, parser.get_pressure()) self.assertEquals(None, parser.get_stresses()) self.assertEquals(None, parser.get_band_gap()) self.assertEquals(None, parser.get_dos()) # Delete the data delete_example('NaF.scf') def test_TiO2(self): # Parse the results parser = self.get_parser('TiO2.vcrelax') # Test the settings self.assertEquals('PWSCF', parser.get_name()) strc = parser.get_output_structure() self.assertEquals(3.7373367889445048, strc.cell[0][0]) self.assertEquals(['Ti', 'Ti', 'Ti', 'Ti', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O'], strc.get_chemical_symbols()) self.assertEquals('O8Ti4', parser.get_composition()) cutoff = parser.get_cutoff_energy() self.assertEquals(50.0, cutoff.scalars[0].value) self.assertEquals('Ry', cutoff.units) self.assertTrue(parser.is_converged().scalars[0].value) energy = parser.get_total_energy() self.assertAlmostEqual(-724.67999404, energy.scalars[0].value) self.assertEquals('Ry', energy.units) self.assertEquals(None, parser.uses_SOC()) self.assertTrue(isinstance(parser.is_relaxed(), Value)) self.assertEquals('SLA PZ NOGX NOGC', parser.get_xc_functional().scalars[0].value) self.assertEquals(['Ti.pz-sp-van_ak.UPF', 'O.pz-van_ak.UPF'], list(map(lambda x: x.value, parser.get_pp_name().scalars))) self.assertEquals(4800, parser.get_KPPRA().scalars[0].value) self.assertEquals('4.3.2', parser.get_version_number()) self.assertEquals(None, parser.get_U_settings()) self.assertEquals(None, parser.get_vdW_settings()) pressure = parser.get_pressure() self.assertEquals(-2.34, pressure.scalars[0].value) self.assertEquals('kbar', pressure.units) stresses = parser.get_stresses() self.assertEquals([[-2.32, 0.0, 0.0], [0.0, -2.32, 0.0], [0.0, 0.0, -2.36]], list(map(lambda x: list(map(lambda y: y.value, x)), stresses.matrices[0]))) self.assertEquals('kbar', stresses.units) self.assertEquals(None, parser.get_band_gap()) self.assertAlmostEqual(0.000141, parser.get_total_force().scalars[0].value) self.assertAlmostEqual(0.00005032, parser.get_forces().vectors[11][2].value) # Test energy contribution terms (from the end of the calculation) self.assertAlmostEqual(-317.64355286, parser.get_one_electron_energy_contribution().scalars[0].value) self.assertAlmostEqual(200.00443558, parser.get_hartree_energy_contribution().scalars[0].value) self.assertAlmostEqual(-112.62810014, parser.get_xc_energy_contribution().scalars[0].value) self.assertAlmostEqual(-494.41277661, parser.get_ewald_energy_contribution().scalars[0].value) # Delete the data delete_example('TiO2.vcrelax') def test_VS2(self): # Parse the results parser = self.get_parser('VS2.scf') # Test the settings self.assertEquals('PWSCF', parser.get_name()) strc = parser.get_output_structure() self.assertEquals(1.5862881841690908, strc.cell[0][0]) self.assertEquals(2.7475322138658069, strc.cell[1][1]) self.assertEquals(39.999449897411992, strc.cell[2][2]) self.assertEquals(['V', 'S', 'S'], strc.get_chemical_symbols()) self.assertEquals('S2V', parser.get_composition()) cutoff = parser.get_cutoff_energy() self.assertEquals(56.0, cutoff.scalars[0].value) self.assertEquals('Ry', cutoff.units) self.assertTrue(parser.is_converged().scalars[0].value) energy = parser.get_total_energy() self.assertEquals(-68.80612326, energy.scalars[0].value) self.assertEquals('Ry', energy.units) self.assertEquals(None, parser.uses_SOC()) self.assertEquals(None, parser.is_relaxed()) self.assertEquals('SLA PW PBE PBE', parser.get_xc_functional().scalars[0].value) self.assertEquals(['V.pbe-n-van.UPF', 'S.pbe-van_bm.UPF'], list(map(lambda x: x.value, parser.get_pp_name().scalars))) self.assertEquals(768, parser.get_KPPRA().scalars[0].value) self.assertEquals('4.3.2', parser.get_version_number()) self.assertEquals(None, parser.get_U_settings()) self.assertEquals(None, parser.get_vdW_settings()) self.assertEquals(None, parser.get_pressure()) self.assertEquals(None, parser.get_stresses()) self.assertEquals(0, parser.get_band_gap().scalars[0].value) dos = parser.get_dos() self.assertEquals([-14.3248, -14.3198, -14.314799999999998, -14.3098, -14.3048, -14.299800000000001, -14.294799999999999, -14.2898, -14.2848, -14.279799999999998, -14.274799999999999, -14.2698, -14.264800000000001, -14.259799999999998, -14.2548, -14.2498, -14.244799999999998, -14.239799999999999, -14.2348, -14.229800000000001, -14.224799999999998, -14.2198, -14.2148, -14.209800000000001, -14.204799999999999, -14.1998, -14.1948, -14.189799999999998, -14.1848, -14.1798, -14.174800000000001, -14.169799999999999, -14.1648, -14.1598, -14.154799999999998, -14.149799999999999, -14.1448, -14.139800000000001, -14.134799999999998, -14.1298, -14.1248, -14.119799999999998, -14.114799999999999, -14.1098, -14.104800000000001, -14.099799999999998, -14.0948, -14.0898, -14.084800000000001, -14.079799999999999, -14.0748, -14.0698, -14.064799999999998, -14.0598, -14.0548, -14.049800000000001, -14.044799999999999, -14.0398, -14.0348, -14.029799999999998, -14.024799999999999, -14.0198, -14.014800000000001, -14.009799999999998, -14.0048, -13.9998, -13.994799999999998, -13.989799999999999, -13.9848, -13.979800000000001, -13.974799999999998, -13.9698, -13.9648, -13.959800000000001, -13.954799999999999, -13.9498, -13.9448, -13.939799999999998, -13.9348, -13.9298, -13.924800000000001, -13.919799999999999, -13.9148, -13.9098, -13.904799999999998, -13.899799999999999, -13.8948, -13.889800000000001, -13.884799999999998, -13.8798, -13.8748, -13.869799999999998, -13.864799999999999, -13.8598, -13.854800000000001, -13.849799999999998, -13.8448, -13.8398, -13.834800000000001, -13.829799999999999, -13.8248, -13.8198, -13.814799999999998, -13.8098, -13.8048, -13.799800000000001, -13.794799999999999, -13.7898, -13.7848, -13.779799999999998, -13.774799999999999, -13.7698, -13.764800000000001, -13.759799999999998, -13.7548, -13.7498, -13.744799999999998, -13.739799999999999, -13.7348, -13.729800000000001, -13.724799999999998, -13.7198, -13.7148, -13.709800000000001, -13.704799999999999, -13.6998, -13.6948, -13.689799999999998, -13.6848, -13.6798, -13.674800000000001, -13.669799999999999, -13.6648, -13.6598, -13.654799999999998, -13.649799999999999, -13.6448, -13.639800000000001, -13.634799999999998, -13.6298, -13.6248, -13.619799999999998, -13.614799999999999, -13.6098, -13.604800000000001, -13.599799999999998, -13.5948, -13.5898, -13.584800000000001, -13.579799999999999, -13.5748, -13.5698, -13.564799999999998, -13.5598, -13.5548, -13.549800000000001, -13.544799999999999, -13.5398, -13.5348, -13.529799999999998, -13.524799999999999, -13.5198, -13.514800000000001, -13.509799999999998, -13.5048, -13.4998, -13.494799999999998, -13.489799999999999, -13.4848, -13.479800000000001, -13.474799999999998, -13.4698, -13.4648, -13.459800000000001, -13.454799999999999, -13.4498, -13.4448, -13.439799999999998, -13.4348, -13.4298, -13.424800000000001, -13.419799999999999, -13.4148, -13.4098, -13.404799999999998, -13.399799999999999, -13.3948, -13.389800000000001, -13.384799999999998, -13.3798, -13.3748, -13.369799999999998, -13.364799999999999, -13.3598, -13.354800000000001, -13.349799999999998, -13.3448, -13.3398, -13.334800000000001, -13.329799999999999, -13.3248, -13.3198, -13.314799999999998, -13.3098, -13.3048, -13.299800000000001, -13.294799999999999, -13.2898, -13.2848, -13.279799999999998, -13.274799999999999, -13.2698, -13.264800000000001, -13.259799999999998, -13.2548, -13.2498, -13.244799999999998, -13.239799999999999, -13.2348, -13.229800000000001, -13.224799999999998, -13.2198, -13.2148, -13.209800000000001, -13.204799999999999, -13.1998, -13.1948, -13.189799999999998, -13.1848, -13.1798, -13.174800000000001, -13.169799999999999, -13.1648, -13.1598, -13.154799999999998, -13.149799999999999, -13.1448, -13.139800000000001, -13.134799999999998, -13.1298, -13.1248, -13.119799999999998, -13.114799999999999, -13.1098, -13.104800000000001, -13.099799999999998, -13.0948, -13.0898, -13.084800000000001, -13.079799999999999, -13.0748, -13.0698, -13.064799999999998, -13.0598, -13.0548, -13.049800000000001, -13.044799999999999, -13.0398, -13.0348, -13.029799999999998, -13.024799999999999, -13.0198, -13.014800000000001, -13.009799999999998, -13.0048, -12.9998, -12.994799999999998, -12.989799999999999, -12.9848, -12.979800000000001, -12.974799999999998, -12.9698, -12.9648, -12.959800000000001, -12.954799999999999, -12.9498, -12.9448, -12.939799999999998, -12.9348, -12.9298, -12.924800000000001, -12.919799999999999, -12.9148, -12.9098, -12.904799999999998, -12.899799999999999, -12.8948, -12.889800000000001, -12.884799999999998, -12.8798, -12.8748, -12.869799999999998, -12.864799999999999, -12.8598, -12.854800000000001, -12.849799999999998, -12.8448, -12.8398, -12.834800000000001, -12.829799999999999, -12.8248, -12.8198, -12.814799999999998, -12.8098, -12.8048, -12.799800000000001, -12.794799999999999, -12.7898, -12.7848, -12.779799999999998, -12.774799999999999, -12.7698, -12.764800000000001, -12.759799999999998, -12.7548, -12.7498, -12.744799999999998, -12.739799999999999, -12.7348, -12.729800000000001, -12.724799999999998, -12.7198, -12.7148, -12.709800000000001, -12.704799999999999, -12.6998, -12.6948, -12.689799999999998, -12.6848, -12.6798, -12.674800000000001, -12.669799999999999, -12.6648, -12.6598, -12.654799999999998, -12.649799999999999, -12.6448, -12.639800000000001, -12.634799999999998, -12.6298, -12.6248, -12.619799999999998, -12.614799999999999, -12.6098, -12.604800000000001, -12.599799999999998, -12.5948, -12.5898, -12.584800000000001, -12.579799999999999, -12.5748, -12.5698, -12.564799999999998, -12.5598, -12.5548, -12.549800000000001, -12.544799999999999, -12.5398, -12.5348, -12.529799999999998, -12.524799999999999, -12.5198, -12.514800000000001, -12.509799999999998, -12.5048, -12.4998, -12.494799999999998, -12.489799999999999, -12.4848, -12.479800000000001, -12.474799999999998, -12.4698, -12.4648, -12.459800000000001, -12.454799999999999, -12.4498, -12.4448, -12.439799999999998, -12.4348, -12.4298, -12.424800000000001, -12.419799999999999, -12.4148, -12.4098, -12.404799999999998, -12.399799999999999, -12.3948, -12.389800000000001, -12.384799999999998, -12.3798, -12.3748, -12.369799999999998, -12.364799999999999, -12.3598, -12.354800000000001, -12.349799999999998, -12.3448, -12.3398, -12.334800000000001, -12.329799999999999, -12.3248, -12.3198, -12.314799999999998, -12.3098, -12.3048, -12.299800000000001, -12.294799999999999, -12.2898, -12.2848, -12.279799999999998, -12.274799999999999, -12.2698, -12.264800000000001, -12.259799999999998, -12.2548, -12.2498, -12.244799999999998, -12.239799999999999, -12.2348, -12.229800000000001, -12.224799999999998, -12.2198, -12.2148, -12.209800000000001, -12.204799999999999, -12.1998, -12.1948, -12.189799999999998, -12.1848, -12.1798, -12.174800000000001, -12.169799999999999, -12.1648, -12.1598, -12.154799999999998, -12.149799999999999, -12.1448, -12.139800000000001, -12.134799999999998, -12.1298, -12.1248, -12.119799999999998, -12.114799999999999, -12.1098, -12.104800000000001, -12.099799999999998, -12.0948, -12.0898, -12.084800000000001, -12.079799999999999, -12.0748, -12.0698, -12.064799999999998, -12.0598, -12.0548, -12.049800000000001, -12.044799999999999, -12.0398, -12.034799999999999, -12.0298, -12.024799999999999, -12.0198, -12.0148, -12.0098, -12.0048, -11.9998, -11.9948, -11.989799999999999, -11.9848, -11.9798, -11.9748, -11.9698, -11.9648, -11.9598, -11.954799999999999, -11.9498, -11.944799999999999, -11.9398, -11.9348, -11.9298, -11.9248, -11.9198, -11.9148, -11.909799999999999, -11.9048, -11.899799999999999, -11.8948, -11.8898, -11.8848, -11.8798, -11.8748, -11.8698, -11.864799999999999, -11.8598, -11.8548, -11.8498, -11.8448, -11.8398, -11.8348, -11.829799999999999, -11.8248, -11.819799999999999, -11.8148, -11.8098, -11.8048, -11.7998, -11.7948, -11.7898, -11.784799999999999, -11.7798, -11.774799999999999, -11.7698, -11.7648, -11.7598, -11.7548, -11.7498, -11.7448, -11.739799999999999, -11.7348, -11.7298, -11.7248, -11.7198, -11.7148, -11.7098, -11.704799999999999, -11.6998, -11.694799999999999, -11.6898, -11.6848, -11.6798, -11.6748, -11.6698, -11.6648, -11.659799999999999, -11.6548, -11.649799999999999, -11.6448, -11.6398, -11.6348, -11.6298, -11.6248, -11.6198, -11.614799999999999, -11.6098, -11.6048, -11.5998, -11.5948, -11.5898, -11.5848, -11.579799999999999, -11.5748, -11.569799999999999, -11.5648, -11.5598, -11.5548, -11.5498, -11.5448, -11.5398, -11.534799999999999, -11.5298, -11.524799999999999, -11.5198, -11.5148, -11.5098, -11.5048, -11.4998, -11.4948, -11.489799999999999, -11.4848, -11.4798, -11.4748, -11.4698, -11.4648, -11.4598, -11.454799999999999, -11.4498, -11.444799999999999, -11.4398, -11.4348, -11.4298, -11.4248, -11.4198, -11.4148, -11.409799999999999, -11.4048, -11.399799999999999, -11.3948, -11.3898, -11.3848, -11.3798, -11.3748, -11.3698, -11.364799999999999, -11.3598, -11.3548, -11.3498, -11.3448, -11.3398, -11.3348, -11.329799999999999, -11.3248, -11.319799999999999, -11.3148, -11.3098, -11.3048, -11.2998, -11.2948, -11.2898, -11.284799999999999, -11.2798, -11.274799999999999, -11.2698, -11.2648, -11.2598, -11.2548, -11.2498, -11.2448, -11.239799999999999, -11.2348, -11.2298, -11.2248, -11.2198, -11.2148, -11.2098, -11.204799999999999, -11.1998, -11.194799999999999, -11.1898, -11.1848, -11.1798, -11.1748, -11.1698, -11.1648, -11.159799999999999, -11.1548, -11.149799999999999, -11.1448, -11.1398, -11.1348, -11.1298, -11.1248, -11.1198, -11.114799999999999, -11.1098, -11.1048, -11.0998, -11.0948, -11.0898, -11.0848, -11.079799999999999, -11.0748, -11.069799999999999, -11.0648, -11.0598, -11.0548, -11.0498, -11.0448, -11.0398, -11.034799999999999, -11.0298, -11.024799999999999, -11.0198, -11.0148, -11.0098, -11.0048, -10.9998, -10.9948, -10.989799999999999, -10.9848, -10.9798, -10.9748, -10.9698, -10.9648, -10.9598, -10.954799999999999, -10.9498, -10.944799999999999, -10.9398, -10.9348, -10.9298, -10.9248, -10.9198, -10.9148, -10.909799999999999, -10.9048, -10.899799999999999, -10.8948, -10.8898, -10.8848, -10.8798, -10.8748, -10.8698, -10.864799999999999, -10.8598, -10.8548, -10.8498, -10.8448, -10.8398, -10.8348, -10.829799999999999, -10.8248, -10.819799999999999, -10.8148, -10.8098, -10.8048, -10.7998, -10.7948, -10.7898, -10.784799999999999, -10.7798, -10.774799999999999, -10.7698, -10.7648, -10.7598, -10.7548, -10.7498, -10.7448, -10.739799999999999, -10.7348, -10.7298, -10.7248, -10.7198, -10.7148, -10.7098, -10.704799999999999, -10.6998, -10.694799999999999, -10.6898, -10.6848, -10.6798, -10.6748, -10.6698, -10.6648, -10.659799999999999, -10.6548, -10.649799999999999, -10.6448, -10.6398, -10.6348, -10.6298, -10.6248, -10.6198, -10.614799999999999, -10.6098, -10.6048, -10.5998, -10.5948, -10.5898, -10.5848, -10.579799999999999, -10.5748, -10.569799999999999, -10.5648, -10.5598, -10.5548, -10.5498, -10.5448, -10.5398, -10.534799999999999, -10.5298, -10.524799999999999, -10.5198, -10.5148, -10.5098, -10.5048, -10.4998, -10.4948, -10.489799999999999, -10.4848, -10.4798, -10.4748, -10.4698, -10.4648, -10.4598, -10.454799999999999, -10.4498, -10.444799999999999, -10.4398, -10.4348, -10.4298, -10.4248, -10.4198, -10.4148, -10.409799999999999, -10.4048, -10.399799999999999, -10.3948, -10.3898, -10.3848, -10.3798, -10.3748, -10.3698, -10.364799999999999, -10.3598, -10.3548, -10.3498, -10.3448, -10.3398, -10.3348, -10.329799999999999, -10.3248, -10.319799999999999, -10.3148, -10.3098, -10.3048, -10.2998, -10.2948, -10.2898, -10.284799999999999, -10.2798, -10.274799999999999, -10.2698, -10.2648, -10.2598, -10.2548, -10.2498, -10.2448, -10.239799999999999, -10.2348, -10.2298, -10.2248, -10.2198, -10.2148, -10.2098, -10.204799999999999, -10.1998, -10.194799999999999, -10.1898, -10.1848, -10.1798, -10.1748, -10.1698, -10.1648, -10.159799999999999, -10.1548, -10.149799999999999, -10.1448, -10.1398, -10.1348, -10.1298, -10.1248, -10.1198, -10.114799999999999, -10.1098, -10.1048, -10.0998, -10.0948, -10.0898, -10.0848, -10.079799999999999, -10.0748, -10.069799999999999, -10.0648, -10.0598, -10.0548, -10.0498, -10.0448, -10.0398, -10.034799999999999, -10.0298, -10.024799999999999, -10.0198, -10.0148, -10.0098, -10.0048, -9.9998, -9.9948, -9.989799999999999, -9.9848, -9.9798, -9.9748, -9.9698, -9.9648, -9.9598, -9.954799999999999, -9.9498, -9.944799999999999, -9.9398, -9.9348, -9.9298, -9.9248, -9.9198, -9.9148, -9.909799999999999, -9.9048, -9.899799999999999, -9.8948, -9.8898, -9.8848, -9.8798, -9.8748, -9.8698, -9.864799999999999, -9.8598, -9.8548, -9.8498, -9.8448, -9.8398, -9.8348, -9.829799999999999, -9.8248, -9.819799999999999, -9.8148, -9.8098, -9.8048, -9.7998, -9.7948, -9.7898, -9.784799999999999, -9.7798, -9.774799999999999, -9.7698, -9.7648, -9.7598, -9.7548, -9.7498, -9.7448, -9.739799999999999, -9.7348, -9.7298, -9.7248, -9.7198, -9.7148, -9.7098, -9.704799999999999, -9.6998, -9.694799999999999, -9.6898, -9.6848, -9.6798, -9.6748, -9.6698, -9.6648, -9.659799999999999, -9.6548, -9.649799999999999, -9.6448, -9.6398, -9.6348, -9.6298, -9.6248, -9.6198, -9.614799999999999, -9.6098, -9.6048, -9.5998, -9.5948, -9.5898, -9.5848, -9.579799999999999, -9.5748, -9.569799999999999, -9.5648, -9.5598, -9.5548, -9.5498, -9.5448, -9.5398, -9.534799999999999, -9.5298, -9.524799999999999, -9.5198, -9.5148, -9.5098, -9.5048, -9.4998, -9.4948, -9.489799999999999, -9.4848, -9.4798, -9.4748, -9.4698, -9.4648, -9.4598, -9.454799999999999, -9.4498, -9.444799999999999, -9.4398, -9.4348, -9.4298, -9.4248, -9.4198, -9.4148, -9.409799999999999, -9.4048, -9.399799999999999, -9.3948, -9.3898, -9.3848, -9.3798, -9.3748, -9.3698, -9.364799999999999, -9.3598, -9.3548, -9.3498, -9.3448, -9.3398, -9.3348, -9.329799999999999, -9.3248, -9.319799999999999, -9.3148, -9.3098, -9.3048, -9.2998, -9.2948, -9.2898, -9.284799999999999, -9.2798, -9.274799999999999, -9.2698, -9.2648, -9.2598, -9.2548, -9.2498, -9.2448, -9.239799999999999, -9.2348, -9.2298, -9.2248, -9.2198, -9.2148, -9.2098, -9.204799999999999, -9.1998, -9.194799999999999, -9.1898, -9.1848, -9.1798, -9.1748, -9.1698, -9.1648, -9.159799999999999, -9.1548, -9.149799999999999, -9.1448, -9.1398, -9.1348, -9.1298, -9.1248, -9.1198, -9.114799999999999, -9.1098, -9.1048, -9.0998, -9.0948, -9.0898, -9.0848, -9.079799999999999, -9.0748, -9.069799999999999, -9.0648, -9.0598, -9.0548, -9.0498, -9.0448, -9.0398, -9.034799999999999, -9.0298, -9.024799999999999, -9.0198, -9.0148, -9.0098, -9.0048, -8.9998, -8.9948, -8.989799999999999, -8.9848, -8.9798, -8.9748, -8.9698, -8.9648, -8.9598, -8.954799999999999, -8.9498, -8.944799999999999, -8.9398, -8.9348, -8.9298, -8.9248, -8.9198, -8.9148, -8.909799999999999, -8.9048, -8.899799999999999, -8.8948, -8.8898, -8.8848, -8.8798, -8.8748, -8.8698, -8.864799999999999, -8.8598, -8.8548, -8.8498, -8.8448, -8.8398, -8.8348, -8.829799999999999, -8.8248, -8.819799999999999, -8.8148, -8.8098, -8.8048, -8.7998, -8.7948, -8.7898, -8.784799999999999, -8.7798, -8.774799999999999, -8.7698, -8.7648, -8.7598, -8.7548, -8.7498, -8.7448, -8.739799999999999, -8.7348, -8.7298, -8.7248, -8.7198, -8.7148, -8.7098, -8.704799999999999, -8.6998, -8.694799999999999, -8.6898, -8.6848, -8.6798, -8.6748, -8.6698, -8.6648, -8.659799999999999, -8.6548, -8.649799999999999, -8.6448, -8.6398, -8.6348, -8.6298, -8.6248, -8.6198, -8.614799999999999, -8.6098, -8.6048, -8.5998, -8.5948, -8.5898, -8.5848, -8.579799999999999, -8.5748, -8.569799999999999, -8.5648, -8.5598, -8.5548, -8.5498, -8.5448, -8.5398, -8.534799999999999, -8.5298, -8.524799999999999, -8.5198, -8.5148, -8.5098, -8.5048, -8.4998, -8.4948, -8.489799999999999, -8.4848, -8.4798, -8.4748, -8.4698, -8.4648, -8.4598, -8.454799999999999, -8.4498, -8.444799999999999, -8.4398, -8.4348, -8.4298, -8.4248, -8.4198, -8.4148, -8.409799999999999, -8.4048, -8.399799999999999, -8.3948, -8.3898, -8.3848, -8.3798, -8.3748, -8.3698, -8.364799999999999, -8.3598, -8.3548, -8.3498, -8.3448, -8.3398, -8.3348, -8.329799999999999, -8.3248, -8.319799999999999, -8.3148, -8.3098, -8.3048, -8.2998, -8.2948, -8.2898, -8.284799999999999, -8.2798, -8.274799999999999, -8.2698, -8.2648, -8.2598, -8.2548, -8.2498, -8.2448, -8.239799999999999, -8.2348, -8.2298, -8.2248, -8.2198, -8.2148, -8.2098, -8.204799999999999, -8.1998, -8.194799999999999, -8.1898, -8.1848, -8.1798, -8.1748, -8.1698, -8.1648, -8.159799999999999, -8.1548, -8.149799999999999, -8.1448, -8.1398, -8.1348, -8.1298, -8.1248, -8.1198, -8.114799999999999, -8.1098, -8.1048, -8.0998, -8.0948, -8.0898, -8.0848, -8.079799999999999, -8.0748, -8.069799999999999, -8.0648, -8.0598, -8.0548, -8.0498, -8.0448, -8.0398, -8.034799999999999, -8.0298, -8.024799999999999, -8.0198, -8.0148, -8.0098, -8.0048, -7.9998000000000005, -7.9948, -7.989799999999999, -7.9848, -7.979799999999999, -7.9748, -7.969799999999999, -7.9648, -7.9597999999999995, -7.954799999999999, -7.9498, -7.944799999999999, -7.9398, -7.934799999999999, -7.9298, -7.924799999999999, -7.9198, -7.9148, -7.909799999999999, -7.9048, -7.899799999999999, -7.8948, -7.889799999999999, -7.8848, -7.8797999999999995, -7.8748000000000005, -7.8698, -7.864799999999999, -7.8598, -7.854799999999999, -7.8498, -7.844799999999999, -7.8398, -7.8347999999999995, -7.829799999999999, -7.8248, -7.819799999999999, -7.8148, -7.809799999999999, -7.8048, -7.799799999999999, -7.7948, -7.7898, -7.784799999999999, -7.7798, -7.774799999999999, -7.7698, -7.764799999999999, -7.7598, -7.7547999999999995, -7.7498000000000005, -7.7448, -7.739799999999999, -7.7348, -7.729799999999999, -7.7248, -7.719799999999999, -7.7148, -7.7097999999999995, -7.704799999999999, -7.6998, -7.694799999999999, -7.6898, -7.684799999999999, -7.6798, -7.674799999999999, -7.6698, -7.6648, -7.659799999999999, -7.6548, -7.649799999999999, -7.6448, -7.639799999999999, -7.6348, -7.6297999999999995, -7.6248000000000005, -7.6198, -7.614799999999999, -7.6098, -7.604799999999999, -7.5998, -7.594799999999999, -7.5898, -7.5847999999999995, -7.579799999999999, -7.5748, -7.569799999999999, -7.5648, -7.559799999999999, -7.5548, -7.549799999999999, -7.5448, -7.5398, -7.534799999999999, -7.5298, -7.524799999999999, -7.5198, -7.514799999999999, -7.5098, -7.5047999999999995, -7.4998000000000005, -7.4948, -7.489799999999999, -7.4848, -7.479799999999999, -7.4748, -7.469799999999999, -7.4648, -7.4597999999999995, -7.454799999999999, -7.4498, -7.444799999999999, -7.4398, -7.434799999999999, -7.4298, -7.424799999999999, -7.4198, -7.4148, -7.409799999999999, -7.4048, -7.399799999999999, -7.3948, -7.389799999999999, -7.3848, -7.3797999999999995, -7.3748000000000005, -7.3698, -7.364799999999999, -7.3598, -7.354799999999999, -7.3498, -7.344799999999999, -7.3398, -7.3347999999999995, -7.329799999999999, -7.3248, -7.319799999999999, -7.3148, -7.309799999999999, -7.3048, -7.299799999999999, -7.2948, -7.2898, -7.284799999999999, -7.2798, -7.274799999999999, -7.2698, -7.264799999999999, -7.2598, -7.2547999999999995, -7.2498000000000005, -7.2448, -7.239799999999999, -7.2348, -7.229799999999999, -7.2248, -7.219799999999999, -7.2148, -7.2097999999999995, -7.204799999999999, -7.1998, -7.194799999999999, -7.1898, -7.184799999999999, -7.1798, -7.174799999999999, -7.1698, -7.1648, -7.159799999999999, -7.1548, -7.149799999999999, -7.1448, -7.139799999999999, -7.1348, -7.1297999999999995, -7.1248000000000005, -7.1198, -7.114799999999999, -7.1098, -7.104799999999999, -7.0998, -7.094799999999999, -7.0898, -7.0847999999999995, -7.079799999999999, -7.0748, -7.069799999999999, -7.0648, -7.059799999999999, -7.0548, -7.049799999999999, -7.0448, -7.0398, -7.034799999999999, -7.0298, -7.024799999999999, -7.0198, -7.014799999999999, -7.0098, -7.0047999999999995, -6.9998000000000005, -6.9948, -6.989799999999999, -6.9848, -6.979799999999999, -6.9748, -6.969799999999999, -6.9648, -6.9597999999999995, -6.954799999999999, -6.9498, -6.944799999999999, -6.9398, -6.934799999999999, -6.9298, -6.924799999999999, -6.9198, -6.9148, -6.909799999999999, -6.9048, -6.899799999999999, -6.8948, -6.889799999999999, -6.8848, -6.8797999999999995, -6.8748000000000005, -6.8698, -6.864799999999999, -6.8598, -6.854799999999999, -6.8498, -6.844799999999999, -6.8398, -6.8347999999999995, -6.829799999999999, -6.8248, -6.819799999999999, -6.8148, -6.809799999999999, -6.8048, -6.799799999999999, -6.7948, -6.7898, -6.784799999999999, -6.7798, -6.774799999999999, -6.7698, -6.764799999999999, -6.7598, -6.7547999999999995, -6.7498000000000005, -6.7448, -6.739799999999999, -6.7348, -6.729799999999999, -6.7248, -6.719799999999999, -6.7148, -6.7097999999999995, -6.704799999999999, -6.6998, -6.694799999999999, -6.6898, -6.684799999999999, -6.6798, -6.674799999999999, -6.6698, -6.6648, -6.659799999999999, -6.6548, -6.649799999999999, -6.6448, -6.639799999999999, -6.6348, -6.6297999999999995, -6.6248000000000005, -6.6198, -6.614799999999999, -6.6098, -6.604799999999999, -6.5998, -6.594799999999999, -6.5898, -6.5847999999999995, -6.579799999999999, -6.5748, -6.569799999999999, -6.5648, -6.559799999999999, -6.5548, -6.549799999999999, -6.5448, -6.5398, -6.534799999999999, -6.5298, -6.524799999999999, -6.5198, -6.514799999999999, -6.5098, -6.5047999999999995, -6.4998000000000005, -6.4948, -6.489799999999999, -6.4848, -6.479799999999999, -6.4748, -6.469799999999999, -6.4648, -6.4597999999999995, -6.454799999999999, -6.4498, -6.444799999999999, -6.4398, -6.434799999999999, -6.4298, -6.424799999999999, -6.4198, -6.4148, -6.409799999999999, -6.4048, -6.399799999999999, -6.3948, -6.389799999999999, -6.3848, -6.3797999999999995, -6.3748000000000005, -6.3698, -6.364799999999999, -6.3598, -6.354799999999999, -6.3498, -6.344799999999999, -6.3398, -6.3347999999999995, -6.329799999999999, -6.3248, -6.319799999999999, -6.3148, -6.309799999999999, -6.3048, -6.299799999999999, -6.2948, -6.2898, -6.284799999999999, -6.2798, -6.274799999999999, -6.2698, -6.264799999999999, -6.2598, -6.2547999999999995, -6.2498000000000005, -6.2448, -6.239799999999999, -6.2348, -6.229799999999999, -6.2248, -6.219799999999999, -6.2148, -6.2097999999999995, -6.204799999999999, -6.1998, -6.194799999999999, -6.1898, -6.184799999999999, -6.1798, -6.174799999999999, -6.1698, -6.1648, -6.159799999999999, -6.1548, -6.149799999999999, -6.1448, -6.139799999999999, -6.1348, -6.1297999999999995, -6.1248000000000005, -6.1198, -6.114799999999999, -6.1098, -6.104799999999999, -6.0998, -6.094799999999999, -6.0898, -6.0847999999999995, -6.079799999999999, -6.0748, -6.069799999999999, -6.0648, -6.059799999999999, -6.0548, -6.049799999999999, -6.0448, -6.0398, -6.034799999999999, -6.0298, -6.024799999999999, -6.0198, -6.014799999999999, -6.0098, -6.0047999999999995, -5.9998000000000005, -5.9948, -5.989799999999999, -5.9848, -5.979799999999999, -5.9748, -5.969799999999999, -5.9648, -5.9597999999999995, -5.954799999999999, -5.9498, -5.944799999999999, -5.9398, -5.934799999999999, -5.9298, -5.924799999999999, -5.9198, -5.9148, -5.909799999999999, -5.9048, -5.899799999999999, -5.8948, -5.889799999999999, -5.8848, -5.8797999999999995, -5.8748000000000005, -5.8698, -5.864799999999999, -5.8598, -5.854799999999999, -5.8498, -5.844799999999999, -5.8398, -5.8347999999999995, -5.829799999999999, -5.8248, -5.819799999999999, -5.8148, -5.809799999999999, -5.8048, -5.799799999999999, -5.7948, -5.7898, -5.784799999999999, -5.7798, -5.774799999999999, -5.7698, -5.764799999999999, -5.7598, -5.7547999999999995, -5.7498000000000005, -5.7448, -5.739799999999999, -5.7348, -5.729799999999999, -5.7248, -5.719799999999999, -5.7148, -5.7097999999999995, -5.704799999999999, -5.6998, -5.694799999999999, -5.6898, -5.684799999999999, -5.6798, -5.674799999999999, -5.6698, -5.6648, -5.659799999999999, -5.6548, -5.649799999999999, -5.6448, -5.639799999999999, -5.6348, -5.6297999999999995, -5.6248000000000005, -5.6198, -5.614799999999999, -5.6098, -5.604799999999999, -5.5998, -5.594799999999999, -5.5898, -5.5847999999999995, -5.579799999999999, -5.5748, -5.569799999999999, -5.5648, -5.559799999999999, -5.5548, -5.549799999999999, -5.5448, -5.5398, -5.534799999999999, -5.5298, -5.524799999999999, -5.5198, -5.514799999999999, -5.5098, -5.5047999999999995, -5.4998000000000005, -5.4948, -5.489799999999999, -5.4848, -5.479799999999999, -5.4748, -5.469799999999999, -5.4648, -5.4597999999999995, -5.454799999999999, -5.4498, -5.444799999999999, -5.4398, -5.434799999999999, -5.4298, -5.424799999999999, -5.4198, -5.4148, -5.409799999999999, -5.4048, -5.399799999999999, -5.3948, -5.389799999999999, -5.3848, -5.3797999999999995, -5.3748000000000005, -5.3698, -5.364799999999999, -5.3598, -5.354799999999999, -5.3498, -5.344799999999999, -5.3398, -5.3347999999999995, -5.329799999999999, -5.3248, -5.319799999999999, -5.3148, -5.309799999999999, -5.3048, -5.299799999999999, -5.2948, -5.2898, -5.284799999999999, -5.2798, -5.274799999999999, -5.2698, -5.264799999999999, -5.2598, -5.2547999999999995, -5.2498000000000005, -5.2448, -5.239799999999999, -5.2348, -5.229799999999999, -5.2248, -5.219799999999999, -5.2148, -5.2097999999999995, -5.204799999999999, -5.1998, -5.194799999999999, -5.1898, -5.184799999999999, -5.1798, -5.174799999999999, -5.1698, -5.1648, -5.159799999999999, -5.1548, -5.149799999999999, -5.1448, -5.139799999999999, -5.1348, -5.1297999999999995, -5.1248000000000005, -5.1198, -5.114799999999999, -5.1098, -5.104799999999999, -5.0998, -5.094799999999999, -5.0898, -5.0847999999999995, -5.079799999999999, -5.0748, -5.069799999999999, -5.0648, -5.059799999999999, -5.0548, -5.049799999999999, -5.0448, -5.0398, -5.034799999999999, -5.0298, -5.024799999999999, -5.0198, -5.014799999999999, -5.0098, -5.0047999999999995, -4.9998000000000005, -4.9948, -4.989799999999999, -4.9848, -4.979799999999999, -4.9748, -4.969799999999999, -4.9648, -4.9597999999999995, -4.954799999999999, -4.9498, -4.944799999999999, -4.9398, -4.934799999999999, -4.9298, -4.924799999999999, -4.9198, -4.9148, -4.909799999999999, -4.9048, -4.899799999999999, -4.8948, -4.889799999999999, -4.8848, -4.8797999999999995, -4.8748000000000005, -4.8698, -4.864799999999999, -4.8598, -4.854799999999999, -4.8498, -4.844799999999999, -4.8398, -4.8347999999999995, -4.829799999999999, -4.8248, -4.819799999999999, -4.8148, -4.809799999999999, -4.8048, -4.799799999999999, -4.7948, -4.7898, -4.784799999999999, -4.7798, -4.774799999999999, -4.7698, -4.764799999999999, -4.7598, -4.7547999999999995, -4.7498000000000005, -4.7448, -4.739799999999999, -4.7348, -4.729799999999999, -4.7248, -4.719799999999999, -4.7148, -4.7097999999999995, -4.704799999999999, -4.6998, -4.694799999999999, -4.6898, -4.684799999999999, -4.6798, -4.674799999999999, -4.6698, -4.6648, -4.659799999999999, -4.6548, -4.649799999999999, -4.6448, -4.639799999999999, -4.6348, -4.6297999999999995, -4.6248000000000005, -4.6198, -4.614799999999999, -4.6098, -4.604799999999999, -4.5998, -4.594799999999999, -4.5898, -4.5847999999999995, -4.579799999999999, -4.5748, -4.569799999999999, -4.5648, -4.559799999999999, -4.5548, -4.549799999999999, -4.5448, -4.5398, -4.534799999999999, -4.5298, -4.524799999999999, -4.5198, -4.514799999999999, -4.5098, -4.5047999999999995, -4.4998000000000005, -4.4948, -4.489799999999999, -4.4848, -4.479799999999999, -4.4748, -4.469799999999999, -4.4648, -4.4597999999999995, -4.454799999999999, -4.4498, -4.444799999999999, -4.4398, -4.434799999999999, -4.4298, -4.424799999999999, -4.4198, -4.4148, -4.409799999999999, -4.4048, -4.399799999999999, -4.3948, -4.389799999999999, -4.3848, -4.3797999999999995, -4.3748000000000005, -4.3698, -4.364799999999999, -4.3598, -4.354799999999999, -4.3498, -4.344799999999999, -4.3398, -4.3347999999999995, -4.329799999999999, -4.3248, -4.319799999999999, -4.3148, -4.309799999999999, -4.3048, -4.299799999999999, -4.2948, -4.2898, -4.284799999999999, -4.2798, -4.274799999999999, -4.2698, -4.264799999999999, -4.2598, -4.2547999999999995, -4.2498000000000005, -4.2448, -4.239799999999999, -4.2348, -4.229799999999999, -4.2248, -4.219799999999999, -4.2148, -4.2097999999999995, -4.204799999999999, -4.1998, -4.194799999999999, -4.1898, -4.184799999999999, -4.1798, -4.174799999999999, -4.1698, -4.1648, -4.159799999999999, -4.1548, -4.149799999999999, -4.1448, -4.139799999999999, -4.1348, -4.1297999999999995, -4.1248000000000005, -4.1198, -4.114799999999999, -4.1098, -4.104799999999999, -4.0998, -4.094799999999999, -4.0898, -4.0847999999999995, -4.079799999999999, -4.0748, -4.069799999999999, -4.0648, -4.059799999999999, -4.0548, -4.049799999999999, -4.0448, -4.0398, -4.034800000000001, -4.0298, -4.024800000000001, -4.0198, -4.014799999999999, -4.0098, -4.0047999999999995, -3.9998, -3.9948, -3.9898000000000002, -3.9848000000000003, -3.9798000000000004, -3.9747999999999997, -3.9697999999999998, -3.9648, -3.9598, -3.9548, -3.9498, -3.9448000000000003, -3.9398000000000004, -3.9347999999999996, -3.9297999999999997, -3.9248, -3.9198, -3.9148, -3.9098, -3.9048000000000003, -3.8998000000000004, -3.8948000000000005, -3.8897999999999997, -3.8848, -3.8798, -3.8748, -3.8698, -3.8648000000000002, -3.8598000000000003, -3.8548000000000004, -3.8497999999999997, -3.8447999999999998, -3.8398, -3.8348, -3.8298, -3.8248, -3.8198000000000003, -3.8148000000000004, -3.8097999999999996, -3.8047999999999997, -3.7998, -3.7948, -3.7898, -3.7848, -3.7798000000000003, -3.7748000000000004, -3.7698000000000005, -3.7647999999999997, -3.7598, -3.7548, -3.7498, -3.7448, -3.7398000000000002, -3.7348000000000003, -3.7298000000000004, -3.7247999999999997, -3.7197999999999998, -3.7148, -3.7098, -3.7048, -3.6998, -3.6948000000000003, -3.6898000000000004, -3.6847999999999996, -3.6797999999999997, -3.6748, -3.6698, -3.6648, -3.6598, -3.6548000000000003, -3.6498000000000004, -3.6448000000000005, -3.6397999999999997, -3.6348, -3.6298, -3.6248, -3.6198, -3.6148000000000002, -3.6098000000000003, -3.6048000000000004, -3.5997999999999997, -3.5947999999999998, -3.5898, -3.5848, -3.5798, -3.5748, -3.5698000000000003, -3.5648000000000004, -3.5597999999999996, -3.5547999999999997, -3.5498, -3.5448, -3.5398, -3.5348, -3.5298000000000003, -3.5248000000000004, -3.5198000000000005, -3.5147999999999997, -3.5098, -3.5048, -3.4998, -3.4948, -3.4898000000000002, -3.4848000000000003, -3.4798000000000004, -3.4747999999999997, -3.4697999999999998, -3.4648, -3.4598, -3.4548, -3.4498, -3.4448000000000003, -3.4398000000000004, -3.4347999999999996, -3.4297999999999997, -3.4248, -3.4198, -3.4148, -3.4098, -3.4048000000000003, -3.3998000000000004, -3.3948000000000005, -3.3897999999999997, -3.3848, -3.3798, -3.3748, -3.3698, -3.3648000000000002, -3.3598000000000003, -3.3548000000000004, -3.3497999999999997, -3.3447999999999998, -3.3398, -3.3348, -3.3298, -3.3248, -3.3198000000000003, -3.3148000000000004, -3.3097999999999996, -3.3047999999999997, -3.2998, -3.2948, -3.2898, -3.2848, -3.2798000000000003, -3.2748000000000004, -3.2698000000000005, -3.2647999999999997, -3.2598, -3.2548, -3.2498, -3.2448, -3.2398000000000002, -3.2348000000000003, -3.2298000000000004, -3.2247999999999997, -3.2197999999999998, -3.2148, -3.2098, -3.2048, -3.1998, -3.1948000000000003, -3.1898000000000004, -3.1847999999999996, -3.1797999999999997, -3.1748, -3.1698, -3.1648, -3.1598, -3.1548000000000003, -3.1498000000000004, -3.1448000000000005, -3.1397999999999997, -3.1348, -3.1298, -3.1248, -3.1198, -3.1148000000000002, -3.1098000000000003, -3.1048000000000004, -3.0997999999999997, -3.0947999999999998, -3.0898, -3.0848, -3.0798, -3.0748, -3.0698000000000003, -3.0648000000000004, -3.0597999999999996, -3.0547999999999997, -3.0498, -3.0448, -3.0398, -3.0348, -3.0298000000000003, -3.0248000000000004, -3.0198000000000005, -3.0147999999999997, -3.0098, -3.0048, -2.9998, -2.9948, -2.9898000000000002, -2.9848000000000003, -2.9798000000000004, -2.9747999999999997, -2.9697999999999998, -2.9648, -2.9598, -2.9548, -2.9498, -2.9448000000000003, -2.9398000000000004, -2.9347999999999996, -2.9297999999999997, -2.9248, -2.9198, -2.9148, -2.9098, -2.9048000000000003, -2.8998000000000004, -2.8948000000000005, -2.8897999999999997, -2.8848, -2.8798, -2.8748, -2.8698, -2.8648000000000002, -2.8598000000000003, -2.8548000000000004, -2.8497999999999997, -2.8447999999999998, -2.8398, -2.8348, -2.8298, -2.8248, -2.8198000000000003, -2.8148000000000004, -2.8097999999999996, -2.8047999999999997, -2.7998, -2.7948, -2.7898, -2.7848, -2.7798000000000003, -2.7748000000000004, -2.7698000000000005, -2.7647999999999997, -2.7598, -2.7548, -2.7498, -2.7448, -2.7398000000000002, -2.7348000000000003, -2.7298000000000004, -2.7247999999999997, -2.7197999999999998, -2.7148, -2.7098, -2.7048, -2.6998, -2.6948000000000003, -2.6898000000000004, -2.6847999999999996, -2.6797999999999997, -2.6748, -2.6698, -2.6648, -2.6598, -2.6548000000000003, -2.6498000000000004, -2.6448000000000005, -2.6397999999999997, -2.6348, -2.6298, -2.6248, -2.6198, -2.6148000000000002, -2.6098000000000003, -2.6048000000000004, -2.5997999999999997, -2.5947999999999998, -2.5898, -2.5848, -2.5798, -2.5748, -2.5698000000000003, -2.5648000000000004, -2.5597999999999996, -2.5547999999999997, -2.5498, -2.5448, -2.5398, -2.5348, -2.5298000000000003, -2.5248000000000004, -2.5198000000000005, -2.5147999999999997, -2.5098, -2.5048, -2.4998, -2.4948, -2.4898000000000002, -2.4848000000000003, -2.4798000000000004, -2.4747999999999997, -2.4697999999999998, -2.4648, -2.4598, -2.4548, -2.4498, -2.4448000000000003, -2.4398000000000004, -2.4347999999999996, -2.4297999999999997, -2.4248, -2.4198, -2.4148, -2.4098, -2.4048000000000003, -2.3998000000000004, -2.3948000000000005, -2.3897999999999997, -2.3848, -2.3798, -2.3748, -2.3698, -2.3648000000000002, -2.3598000000000003, -2.3548000000000004, -2.3497999999999997, -2.3447999999999998, -2.3398, -2.3348, -2.3298, -2.3248, -2.3198000000000003, -2.3148000000000004, -2.3097999999999996, -2.3047999999999997, -2.2998, -2.2948, -2.2898, -2.2848, -2.2798000000000003, -2.2748000000000004, -2.2698000000000005, -2.2647999999999997, -2.2598, -2.2548, -2.2498, -2.2448, -2.2398000000000002, -2.2348000000000003, -2.2298000000000004, -2.2247999999999997, -2.2197999999999998, -2.2148, -2.2098, -2.2048, -2.1998, -2.1948000000000003, -2.1898000000000004, -2.1847999999999996, -2.1797999999999997, -2.1748, -2.1698, -2.1648, -2.1598, -2.1548000000000003, -2.1498000000000004, -2.1448000000000005, -2.1397999999999997, -2.1348, -2.1298, -2.1248, -2.1198, -2.1148000000000002, -2.1098000000000003, -2.1048000000000004, -2.0997999999999997, -2.0947999999999998, -2.0898, -2.0848, -2.0798, -2.0748, -2.0698000000000003, -2.0648000000000004, -2.0597999999999996, -2.0547999999999997, -2.0498, -2.0448, -2.0398, -2.0348, -2.0298000000000003, -2.0248000000000004, -2.0198000000000005, -2.0147999999999997, -2.0098, -2.0048, -1.9998, -1.9948000000000001, -1.9898000000000002, -1.9848000000000003, -1.9798000000000004, -1.9747999999999997, -1.9697999999999998, -1.9647999999999999, -1.9598, -1.9548, -1.9498000000000002, -1.9448000000000003, -1.9398000000000004, -1.9347999999999996, -1.9297999999999997, -1.9247999999999998, -1.9198, -1.9148, -1.9098000000000002, -1.9048000000000003, -1.8998000000000004, -1.8948000000000005, -1.8897999999999997, -1.8847999999999998, -1.8798, -1.8748, -1.8698000000000001, -1.8648000000000002, -1.8598000000000003, -1.8548000000000004, -1.8497999999999997, -1.8447999999999998, -1.8397999999999999, -1.8348, -1.8298, -1.8248000000000002, -1.8198000000000003, -1.8148000000000004, -1.8097999999999996, -1.8047999999999997, -1.7997999999999998, -1.7948, -1.7898, -1.7848000000000002, -1.7798000000000003, -1.7748000000000004, -1.7698000000000005, -1.7647999999999997, -1.7597999999999998, -1.7548, -1.7498, -1.7448000000000001, -1.7398000000000002, -1.7348000000000003, -1.7298000000000004, -1.7247999999999997, -1.7197999999999998, -1.7147999999999999, -1.7098, -1.7048, -1.6998000000000002, -1.6948000000000003, -1.6898000000000004, -1.6847999999999996, -1.6797999999999997, -1.6747999999999998, -1.6698, -1.6648, -1.6598000000000002, -1.6548000000000003, -1.6498000000000004, -1.6448000000000005, -1.6397999999999997, -1.6347999999999998, -1.6298, -1.6248, -1.6198000000000001, -1.6148000000000002, -1.6098000000000003, -1.6048000000000004, -1.5997999999999997, -1.5947999999999998, -1.5897999999999999, -1.5848, -1.5798, -1.5748000000000002, -1.5698000000000003, -1.5648000000000004, -1.5597999999999996, -1.5547999999999997, -1.5497999999999998, -1.5448, -1.5398, -1.5348000000000002, -1.5298000000000003, -1.5248000000000004, -1.5198000000000005, -1.5147999999999997, -1.5097999999999998, -1.5048, -1.4998, -1.4948000000000001, -1.4898000000000002, -1.4848000000000003, -1.4798000000000004, -1.4747999999999997, -1.4697999999999998, -1.4647999999999999, -1.4598, -1.4548, -1.4498000000000002, -1.4448000000000003, -1.4398000000000004, -1.4347999999999996, -1.4297999999999997, -1.4247999999999998, -1.4198, -1.4148, -1.4098000000000002, -1.4048000000000003, -1.3998000000000004, -1.3948000000000005, -1.3897999999999997, -1.3847999999999998, -1.3798, -1.3748, -1.3698000000000001, -1.3648000000000002, -1.3598000000000003, -1.3548000000000004, -1.3497999999999997, -1.3447999999999998, -1.3397999999999999, -1.3348, -1.3298, -1.3248000000000002, -1.3198000000000003, -1.3148000000000004, -1.3097999999999996, -1.3047999999999997, -1.2997999999999998, -1.2948, -1.2898, -1.2848000000000002, -1.2798000000000003, -1.2748000000000004, -1.2698000000000005, -1.2647999999999997, -1.2597999999999998, -1.2548, -1.2498, -1.2448000000000001, -1.2398000000000002, -1.2348000000000003, -1.2298000000000004, -1.2247999999999997, -1.2197999999999998, -1.2147999999999999, -1.2098, -1.2048, -1.1998000000000002, -1.1948000000000003, -1.1898000000000004, -1.1847999999999996, -1.1797999999999997, -1.1747999999999998, -1.1698, -1.1648, -1.1598000000000002, -1.1548000000000003, -1.1498000000000004, -1.1448000000000005, -1.1397999999999997, -1.1347999999999998, -1.1298, -1.1248, -1.1198000000000001, -1.1148000000000002, -1.1098000000000003, -1.1048000000000004, -1.0997999999999997, -1.0947999999999998, -1.0897999999999999, -1.0848, -1.0798, -1.0748000000000002, -1.0698000000000003, -1.0648000000000004, -1.0597999999999996, -1.0547999999999997, -1.0497999999999998, -1.0448, -1.0398, -1.0348000000000002, -1.0298000000000003, -1.0248000000000004, -1.0198000000000005, -1.0147999999999997, -1.0097999999999998, -1.0048, -0.9998, -0.9948000000000001, -0.9898000000000002, -0.9848000000000003, -0.9798000000000004, -0.9747999999999997, -0.9697999999999998, -0.9647999999999999, -0.9598, -0.9548000000000001, -0.9498000000000002, -0.9448000000000003, -0.9398000000000004, -0.9347999999999996, -0.9297999999999997, -0.9247999999999998, -0.9198, -0.9148000000000001, -0.9098000000000002, -0.9048000000000003, -0.8998000000000004, -0.8948000000000005, -0.8897999999999997, -0.8847999999999998, -0.8797999999999999, -0.8748, -0.8698000000000001, -0.8648000000000002, -0.8598000000000003, -0.8548000000000004, -0.8497999999999997, -0.8447999999999998, -0.8397999999999999, -0.8348, -0.8298000000000001, -0.8248000000000002, -0.8198000000000003, -0.8148000000000004, -0.8097999999999996, -0.8047999999999997, -0.7997999999999998, -0.7948, -0.7898000000000001, -0.7848000000000002, -0.7798000000000003, -0.7748000000000004, -0.7698000000000005, -0.7647999999999997, -0.7597999999999998, -0.7547999999999999, -0.7498, -0.7448000000000001, -0.7398000000000002, -0.7348000000000003, -0.7298000000000004, -0.7247999999999997, -0.7197999999999998, -0.7147999999999999, -0.7098, -0.7048000000000001, -0.6998000000000002, -0.6948000000000003, -0.6898000000000004, -0.6847999999999996, -0.6797999999999997, -0.6747999999999998, -0.6698, -0.6648000000000001, -0.6598000000000002, -0.6548000000000003, -0.6498000000000004, -0.6448000000000005, -0.6397999999999997, -0.6347999999999998, -0.6297999999999999, -0.6248, -0.6198000000000001, -0.6148000000000002, -0.6098000000000003, -0.6048000000000004, -0.5997999999999997, -0.5947999999999998, -0.5897999999999999, -0.5848, -0.5798000000000001, -0.5748000000000002, -0.5698000000000003, -0.5648000000000004, -0.5597999999999996, -0.5547999999999997, -0.5497999999999998, -0.5448, -0.5398000000000001, -0.5348000000000002, -0.5298000000000003, -0.5248000000000004, -0.5198000000000005, -0.5147999999999997, -0.5097999999999998, -0.5047999999999999, -0.4998, -0.49480000000000013, -0.48980000000000024, -0.48480000000000034, -0.47980000000000045, -0.47479999999999967, -0.4697999999999998, -0.4647999999999999, -0.4598, -0.4548000000000001, -0.4498000000000002, -0.4448000000000003, -0.4398000000000004, -0.43479999999999963, -0.42979999999999974, -0.42479999999999984, -0.41979999999999995, -0.41480000000000006, -0.40980000000000016, -0.40480000000000027, -0.3998000000000004, -0.3948000000000005, -0.3897999999999997, -0.3847999999999998, -0.3797999999999999, -0.3748, -0.36980000000000013, -0.36480000000000024, -0.35980000000000034, -0.35480000000000045, -0.34979999999999967, -0.3447999999999998, -0.3397999999999999, -0.3348, -0.3298000000000001, -0.3248000000000002, -0.3198000000000003, -0.3148000000000004, -0.30979999999999963, -0.30479999999999974, -0.29979999999999984, -0.29479999999999995, -0.28980000000000006, -0.28480000000000016, -0.27980000000000027, -0.2748000000000004, -0.2698000000000005, -0.2647999999999997, -0.2597999999999998, -0.2547999999999999, -0.24980000000000002, -0.24480000000000013, -0.23980000000000024, -0.23480000000000034, -0.22980000000000045, -0.22479999999999967, -0.21979999999999977, -0.21479999999999988, -0.2098, -0.2048000000000001, -0.1998000000000002, -0.1948000000000003, -0.1898000000000004, -0.18479999999999963, -0.17979999999999974, -0.17479999999999984, -0.16979999999999995, -0.16480000000000006, -0.15980000000000016, -0.15480000000000027, -0.14980000000000038, -0.14480000000000048, -0.1397999999999997, -0.1347999999999998, -0.12979999999999992, -0.12480000000000002, -0.11980000000000013, -0.11480000000000024, -0.10980000000000034, -0.10480000000000045, -0.09979999999999967, -0.09479999999999977, -0.08979999999999988, -0.08479999999999999, -0.0798000000000001, -0.0748000000000002, -0.0698000000000003, -0.06480000000000041, -0.05979999999999963, -0.05479999999999974, -0.049799999999999844, -0.04479999999999995, -0.03980000000000006, -0.034800000000000164, -0.02980000000000027, -0.024799999999999933, -0.01980000000000004, -0.014800000000000146, -0.009800000000000253, -0.0047999999999999154, 0.00019999999999997797, 0.005199999999999871, 0.010199999999999765, 0.015200000000000102, 0.020199999999999996, 0.02519999999999989, 0.030199999999999783, 0.03520000000000012, 0.040200000000000014, 0.04519999999999991, 0.0501999999999998, 0.05520000000000014, 0.06020000000000003, 0.06519999999999992, 0.07019999999999982, 0.07520000000000016, 0.08020000000000005, 0.08519999999999994, 0.09019999999999984, 0.09519999999999973, 0.10020000000000007, 0.10519999999999996, 0.11019999999999985, 0.11519999999999975, 0.12020000000000008, 0.12519999999999998, 0.13019999999999987, 0.13519999999999976, 0.1402000000000001, 0.1452, 0.1501999999999999, 0.15519999999999978, 0.16020000000000012, 0.1652, 0.1701999999999999, 0.1751999999999998, 0.18020000000000014, 0.18520000000000003, 0.19019999999999992, 0.19519999999999982, 0.20020000000000016, 0.20520000000000005, 0.21019999999999994, 0.21519999999999984, 0.22019999999999973, 0.22520000000000007, 0.23019999999999996, 0.23519999999999985, 0.24019999999999975, 0.24520000000000008, 0.2502, 0.25519999999999987, 0.26019999999999976, 0.2652000000000001, 0.2702, 0.2751999999999999, 0.2801999999999998, 0.2852000000000001, 0.2902, 0.2951999999999999, 0.3001999999999998, 0.30520000000000014, 0.31020000000000003, 0.3151999999999999, 0.3201999999999998, 0.32520000000000016, 0.33020000000000005, 0.33519999999999994, 0.34019999999999984, 0.34519999999999973, 0.35020000000000007, 0.35519999999999996, 0.36019999999999985, 0.36519999999999975, 0.3702000000000001, 0.3752, 0.38019999999999987, 0.38519999999999976, 0.3902000000000001, 0.3952, 0.4001999999999999, 0.4051999999999998, 0.4102000000000001, 0.4152, 0.4201999999999999, 0.4251999999999998, 0.43020000000000014, 0.43520000000000003, 0.4401999999999999, 0.4451999999999998, 0.45020000000000016, 0.45520000000000005, 0.46019999999999994, 0.46519999999999984, 0.47019999999999973, 0.47520000000000007, 0.48019999999999996, 0.48519999999999985, 0.49019999999999975, 0.4952000000000001, 0.5002, 0.5051999999999999, 0.5101999999999998, 0.5152000000000001, 0.5202, 0.5251999999999999, 0.5301999999999998, 0.5352000000000001, 0.5402, 0.5451999999999999, 0.5501999999999998, 0.5552000000000001, 0.5602, 0.5651999999999999, 0.5701999999999998, 0.5752000000000002, 0.5802, 0.5851999999999999, 0.5901999999999998, 0.5951999999999997, 0.6002000000000001, 0.6052, 0.6101999999999999, 0.6151999999999997, 0.6202000000000001, 0.6252, 0.6301999999999999, 0.6351999999999998, 0.6402000000000001, 0.6452, 0.6501999999999999, 0.6551999999999998, 0.6602000000000001, 0.6652, 0.6701999999999999, 0.6751999999999998, 0.6802000000000001, 0.6852, 0.6901999999999999, 0.6951999999999998, 0.7002000000000002, 0.7052, 0.7101999999999999, 0.7151999999999998, 0.7201999999999997, 0.7252000000000001, 0.7302, 0.7351999999999999, 0.7401999999999997, 0.7452000000000001, 0.7502, 0.7551999999999999, 0.7601999999999998, 0.7652000000000001, 0.7702, 0.7751999999999999, 0.7801999999999998, 0.7852000000000001, 0.7902, 0.7951999999999999, 0.8001999999999998, 0.8052000000000001, 0.8102, 0.8151999999999999, 0.8201999999999998, 0.8252000000000002, 0.8302, 0.8351999999999999, 0.8401999999999998, 0.8451999999999997, 0.8502000000000001, 0.8552, 0.8601999999999999, 0.8651999999999997, 0.8702000000000001, 0.8752, 0.8801999999999999, 0.8851999999999998, 0.8902000000000001, 0.8952, 0.9001999999999999, 0.9051999999999998, 0.9102000000000001, 0.9152, 0.9201999999999999, 0.9251999999999998, 0.9302000000000001, 0.9352, 0.9401999999999999, 0.9451999999999998, 0.9502000000000002, 0.9552, 0.9601999999999999, 0.9651999999999998, 0.9701999999999997, 0.9752000000000001, 0.9802, 0.9851999999999999, 0.9901999999999997, 0.9952000000000001, 1.0002, 1.0051999999999999, 1.0101999999999998, 1.0152, 1.0202, 1.0252, 1.0301999999999998, 1.0352000000000001, 1.0402, 1.0452, 1.0501999999999998, 1.0552000000000001, 1.0602, 1.0652, 1.0701999999999998, 1.0752000000000002, 1.0802, 1.0852, 1.0901999999999998, 1.0951999999999997, 1.1002, 1.1052, 1.1101999999999999, 1.1151999999999997, 1.1202, 1.1252, 1.1301999999999999, 1.1351999999999998, 1.1402, 1.1452, 1.1502, 1.1551999999999998, 1.1602000000000001, 1.1652, 1.1702, 1.1751999999999998, 1.1802000000000001, 1.1852, 1.1902, 1.1951999999999998, 1.2002000000000002, 1.2052, 1.2102, 1.2151999999999998, 1.2201999999999997, 1.2252, 1.2302, 1.2351999999999999, 1.2401999999999997, 1.2452, 1.2502, 1.2551999999999999, 1.2601999999999998, 1.2652, 1.2702, 1.2752, 1.2801999999999998, 1.2852000000000001, 1.2902, 1.2952, 1.3001999999999998, 1.3052000000000001, 1.3102, 1.3152, 1.3201999999999998, 1.3252000000000002, 1.3302, 1.3352, 1.3401999999999998, 1.3451999999999997, 1.3502, 1.3552, 1.3601999999999999, 1.3651999999999997, 1.3702, 1.3752, 1.3801999999999999, 1.3851999999999998, 1.3902, 1.3952, 1.4002, 1.4051999999999998, 1.4102000000000001, 1.4152, 1.4202, 1.4251999999999998, 1.4302000000000001, 1.4352, 1.4402, 1.4451999999999998, 1.4502000000000002, 1.4552, 1.4602, 1.4651999999999998, 1.4701999999999997, 1.4752, 1.4802, 1.4851999999999999, 1.4901999999999997, 1.4952, 1.5002, 1.5051999999999999, 1.5101999999999998, 1.5152, 1.5202, 1.5252, 1.5301999999999998, 1.5352000000000001, 1.5402, 1.5452, 1.5501999999999998, 1.5552000000000001, 1.5602, 1.5652, 1.5701999999999998, 1.5752000000000002, 1.5802, 1.5852, 1.5901999999999998, 1.5951999999999997, 1.6002, 1.6052, 1.6101999999999999, 1.6151999999999997, 1.6202, 1.6252, 1.6301999999999999, 1.6351999999999998, 1.6402, 1.6452, 1.6502, 1.6551999999999998, 1.6602000000000001, 1.6652, 1.6702, 1.6751999999999998, 1.6802000000000001, 1.6852, 1.6902, 1.6951999999999998, 1.7002000000000002, 1.7052, 1.7102, 1.7151999999999998, 1.7201999999999997, 1.7252, 1.7302, 1.7351999999999999, 1.7401999999999997, 1.7452, 1.7502, 1.7551999999999999, 1.7601999999999998, 1.7652, 1.7702, 1.7752, 1.7801999999999998, 1.7852000000000001, 1.7902, 1.7952, 1.8001999999999998, 1.8052000000000001, 1.8102, 1.8152, 1.8201999999999998, 1.8252000000000002, 1.8302, 1.8352, 1.8401999999999998, 1.8451999999999997, 1.8502, 1.8552, 1.8601999999999999, 1.8651999999999997, 1.8702, 1.8752, 1.8801999999999999, 1.8851999999999998, 1.8902, 1.8952, 1.9002, 1.9051999999999998, 1.9102000000000001, 1.9152, 1.9202, 1.9251999999999998, 1.9302000000000001, 1.9352, 1.9402, 1.9451999999999998, 1.9502000000000002, 1.9552, 1.9602, 1.9651999999999998, 1.9702, 1.9751999999999998, 1.9802, 1.9851999999999999, 1.9902, 1.9951999999999999, 2.0002, 2.0052, 2.0102, 2.0152, 2.0202, 2.0252, 2.0302, 2.0351999999999997, 2.0402, 2.0452, 2.0502000000000002, 2.0552, 2.0602, 2.0652, 2.0702, 2.0751999999999997, 2.0802, 2.0852, 2.0902, 2.0952, 2.1002, 2.1052, 2.1102, 2.1151999999999997, 2.1201999999999996, 2.1252, 2.1302, 2.1352, 2.1402, 2.1452, 2.1502, 2.1552, 2.1601999999999997, 2.1652, 2.1702, 2.1752000000000002, 2.1802, 2.1852, 2.1902, 2.1952, 2.2001999999999997, 2.2052, 2.2102, 2.2152, 2.2202, 2.2252, 2.2302, 2.2352, 2.2401999999999997, 2.2451999999999996, 2.2502, 2.2552, 2.2602, 2.2652, 2.2702, 2.2752, 2.2802, 2.2851999999999997, 2.2902, 2.2952, 2.3002000000000002, 2.3052, 2.3102, 2.3152, 2.3202, 2.3251999999999997, 2.3302, 2.3352, 2.3402, 2.3452, 2.3502, 2.3552, 2.3602, 2.3651999999999997, 2.3701999999999996, 2.3752, 2.3802, 2.3852, 2.3902, 2.3952, 2.4002, 2.4052, 2.4101999999999997, 2.4152, 2.4202, 2.4252000000000002, 2.4302, 2.4352, 2.4402, 2.4452, 2.4501999999999997, 2.4552, 2.4602, 2.4652, 2.4702, 2.4752, 2.4802, 2.4852, 2.4901999999999997, 2.4951999999999996, 2.5002, 2.5052, 2.5102, 2.5152, 2.5202, 2.5252, 2.5302, 2.5351999999999997, 2.5402, 2.5452, 2.5502000000000002, 2.5552, 2.5602, 2.5652, 2.5702, 2.5751999999999997, 2.5802, 2.5852, 2.5902, 2.5952, 2.6002, 2.6052, 2.6102, 2.6151999999999997, 2.6201999999999996, 2.6252, 2.6302, 2.6352, 2.6402, 2.6452, 2.6502, 2.6552, 2.6601999999999997, 2.6652, 2.6702, 2.6752000000000002, 2.6802, 2.6852, 2.6902, 2.6952, 2.7001999999999997, 2.7052, 2.7102, 2.7152, 2.7202, 2.7252, 2.7302, 2.7352, 2.7401999999999997, 2.7451999999999996, 2.7502, 2.7552, 2.7602, 2.7652, 2.7702, 2.7752, 2.7802, 2.7851999999999997, 2.7902, 2.7952, 2.8002000000000002, 2.8052, 2.8102, 2.8152, 2.8202, 2.8251999999999997, 2.8302, 2.8352, 2.8402, 2.8452, 2.8502, 2.8552, 2.8602, 2.8651999999999997, 2.8701999999999996, 2.8752, 2.8802, 2.8852, 2.8902, 2.8952, 2.9002, 2.9052, 2.9101999999999997, 2.9152, 2.9202, 2.9252000000000002, 2.9302, 2.9352, 2.9402, 2.9452, 2.9501999999999997, 2.9552, 2.9602, 2.9652, 2.9702, 2.9752, 2.9802, 2.9852, 2.9901999999999997, 2.9952, 3.0002, 3.0052, 3.0102, 3.0152, 3.0202, 3.0252, 3.0302, 3.0351999999999997, 3.0402, 3.0452, 3.0502, 3.0552, 3.0602, 3.0652, 3.0702, 3.0751999999999997, 3.0802, 3.0852, 3.0902, 3.0952, 3.1002, 3.1052, 3.1102, 3.1151999999999997, 3.1202, 3.1252, 3.1302, 3.1352, 3.1402, 3.1452, 3.1502, 3.1552, 3.1601999999999997, 3.1652, 3.1702, 3.1752, 3.1802, 3.1852, 3.1902, 3.1952, 3.2001999999999997, 3.2052, 3.2102, 3.2152, 3.2202, 3.2252, 3.2302, 3.2352, 3.2401999999999997, 3.2452, 3.2502, 3.2552, 3.2602, 3.2652, 3.2702, 3.2752, 3.2802, 3.2851999999999997, 3.2902, 3.2952, 3.3002, 3.3052, 3.3102, 3.3152, 3.3202, 3.3251999999999997, 3.3302, 3.3352, 3.3402, 3.3452, 3.3502, 3.3552, 3.3602, 3.3651999999999997, 3.3702, 3.3752, 3.3802, 3.3852, 3.3902, 3.3952, 3.4002, 3.4052, 3.4101999999999997, 3.4152, 3.4202, 3.4252, 3.4302, 3.4352, 3.4402, 3.4452, 3.4501999999999997, 3.4552, 3.4602, 3.4652, 3.4702, 3.4752, 3.4802, 3.4852, 3.4901999999999997, 3.4952, 3.5002, 3.5052, 3.5101999999999998, 3.5152, 3.5202, 3.5252, 3.5302, 3.5352, 3.5402, 3.5452, 3.5502, 3.5552, 3.5602, 3.5652, 3.5702, 3.5751999999999997, 3.5802, 3.5852, 3.5902, 3.5952, 3.6002, 3.6052, 3.6102, 3.6151999999999997, 3.6202, 3.6252, 3.6302, 3.6351999999999998, 3.6402, 3.6452, 3.6502, 3.6552, 3.6602, 3.6652, 3.6702, 3.6752, 3.6802, 3.6852, 3.6902, 3.6952, 3.7001999999999997, 3.7052, 3.7102, 3.7152, 3.7202, 3.7252, 3.7302, 3.7352, 3.7401999999999997, 3.7452, 3.7502, 3.7552, 3.7601999999999998, 3.7652, 3.7702, 3.7752, 3.7802, 3.7852, 3.7902, 3.7952, 3.8002, 3.8052, 3.8102, 3.8152, 3.8202, 3.8251999999999997, 3.8302, 3.8352, 3.8402, 3.8451999999999997, 3.8502, 3.8552, 3.8602, 3.8651999999999997, 3.8702, 3.8752, 3.8802, 3.8851999999999998, 3.8902, 3.8952, 3.9002, 3.9052, 3.9102, 3.9152, 3.9202, 3.9252, 3.9302, 3.9352, 3.9402, 3.9452, 3.9502, 3.9552, 3.9602, 3.9652, 3.9701999999999997, 3.9752, 3.9802, 3.9852, 3.9901999999999997, 3.9952, 4.0001999999999995, 4.0052, 4.0102, 4.0152, 4.0202, 4.0252, 4.0302, 4.0352, 4.0402, 4.0452, 4.0502, 4.0552, 4.0602, 4.0652, 4.0702, 4.0752, 4.0802, 4.0852, 4.0902, 4.0952, 4.1002, 4.1052, 4.1102, 4.1152, 4.1202, 4.1251999999999995, 4.1302, 4.1352, 4.1402, 4.1452, 4.1502, 4.1552, 4.1602, 4.1652, 4.1702, 4.1752, 4.1802, 4.1852, 4.1902, 4.1952, 4.2002, 4.2052, 4.2102, 4.2152, 4.2202, 4.2252, 4.2302, 4.2352, 4.2402, 4.2452, 4.2501999999999995, 4.2552, 4.2602, 4.2652, 4.2702, 4.2752, 4.2802, 4.2852, 4.2902, 4.2952, 4.3002, 4.3052, 4.3102, 4.3152, 4.3202, 4.3252, 4.3302, 4.3352, 4.3402, 4.3452, 4.3502, 4.3552, 4.3602, 4.3652, 4.3702, 4.3751999999999995, 4.3802, 4.3852, 4.3902, 4.3952, 4.4002, 4.4052, 4.4102, 4.4152, 4.4202, 4.4252, 4.4302, 4.4352, 4.4402, 4.4452, 4.4502, 4.4552, 4.4602, 4.4652, 4.4702, 4.4752, 4.4802, 4.4852, 4.4902, 4.4952, 4.5001999999999995, 4.5052, 4.5102, 4.5152, 4.5202, 4.5252, 4.5302, 4.5352, 4.5402, 4.5451999999999995, 4.5502, 4.5552, 4.5602, 4.5652, 4.5702, 4.5752, 4.5802, 4.5852, 4.5902, 4.5952, 4.6002, 4.6052, 4.6102, 4.6152, 4.6202, 4.6251999999999995, 4.6302, 4.6352, 4.6402, 4.6452, 4.6502, 4.6552, 4.6602, 4.6652, 4.6701999999999995, 4.6752, 4.6802, 4.6852, 4.6902, 4.6952, 4.7002, 4.7052, 4.7102, 4.7152, 4.7202, 4.7252, 4.7302, 4.7352, 4.7402, 4.7452, 4.7501999999999995, 4.7552, 4.7602, 4.7652, 4.7702, 4.7752, 4.7802, 4.7852, 4.7902, 4.7951999999999995, 4.8002, 4.8052, 4.8102, 4.8152, 4.8202, 4.8252, 4.8302, 4.8352, 4.8402, 4.8452, 4.8502, 4.8552, 4.8602, 4.8652, 4.8702, 4.8751999999999995, 4.8802, 4.8852, 4.8902, 4.8952, 4.9002, 4.9052, 4.9102, 4.9152, 4.9201999999999995, 4.9252, 4.9302, 4.9352, 4.9402, 4.9452, 4.9502, 4.9552, 4.9602, 4.965199999999999, 4.9702, 4.9752, 4.9802, 4.9852, 4.9902, 4.9952, 5.0001999999999995, 5.0052, 5.0102, 5.0152, 5.0202, 5.0252, 5.0302, 5.0352, 5.0402000000000005, 5.0451999999999995, 5.0502, 5.0552, 5.0602, 5.0652, 5.0702, 5.0752, 5.0802, 5.0852, 5.090199999999999, 5.0952, 5.1002, 5.1052, 5.1102, 5.1152, 5.1202, 5.1251999999999995, 5.1302, 5.1352, 5.1402, 5.1452, 5.1502, 5.1552, 5.1602, 5.1652000000000005, 5.1701999999999995, 5.1752, 5.1802, 5.1852, 5.1902, 5.1952, 5.2002, 5.2052, 5.2102, 5.215199999999999, 5.2202, 5.2252, 5.2302, 5.2352, 5.2402, 5.2452, 5.2501999999999995, 5.2552, 5.2602, 5.2652, 5.2702, 5.2752, 5.2802, 5.2852, 5.2902000000000005, 5.2951999999999995, 5.3002, 5.3052, 5.3102, 5.3152, 5.3202, 5.3252, 5.3302, 5.3352, 5.340199999999999, 5.3452, 5.3502, 5.3552, 5.3602, 5.3652, 5.3702, 5.3751999999999995, 5.3802, 5.3852, 5.3902, 5.3952, 5.4002, 5.4052, 5.4102, 5.4152000000000005, 5.4201999999999995, 5.4252, 5.4302, 5.4352, 5.4402, 5.4452, 5.4502, 5.4552, 5.4602, 5.465199999999999, 5.4702, 5.4752, 5.4802, 5.4852, 5.4902, 5.4952, 5.5001999999999995, 5.5052, 5.5102, 5.5152, 5.5202, 5.5252, 5.5302, 5.5352, 5.5402000000000005, 5.5451999999999995, 5.5502, 5.5552, 5.5602, 5.5652, 5.5702, 5.5752, 5.5802, 5.5852, 5.590199999999999, 5.5952, 5.6002, 5.6052, 5.6102, 5.6152, 5.6202, 5.6251999999999995, 5.6302, 5.6352, 5.6402, 5.6452, 5.6502, 5.6552, 5.6602, 5.6652000000000005, 5.6701999999999995, 5.6752, 5.6802, 5.6852, 5.6902, 5.6952, 5.7002, 5.7052, 5.7102, 5.715199999999999, 5.7202, 5.7252, 5.7302, 5.7352, 5.7402, 5.7452, 5.7501999999999995, 5.7552, 5.7602, 5.7652, 5.7702, 5.7752, 5.7802, 5.7852, 5.7902000000000005, 5.7951999999999995, 5.8002, 5.8052, 5.8102, 5.8152, 5.8202, 5.8252, 5.8302, 5.8352, 5.840199999999999, 5.8452, 5.8502, 5.8552, 5.8602, 5.8652, 5.8702, 5.8751999999999995, 5.8802, 5.8852, 5.8902, 5.8952, 5.9002, 5.9052, 5.9102, 5.9152000000000005, 5.9201999999999995, 5.9252, 5.9302, 5.9352, 5.9402, 5.9452, 5.9502, 5.9552, 5.9602, 5.965199999999999, 5.9702, 5.9752, 5.9802, 5.9852, 5.9902, 5.9952000000000005, 6.0001999999999995, 6.0052, 6.010199999999999, 6.0152, 6.0202, 6.0252, 6.0302, 6.0352, 6.0402000000000005, 6.0451999999999995, 6.0502, 6.0552, 6.0602, 6.0652, 6.0702, 6.075200000000001, 6.0802, 6.0852, 6.090199999999999, 6.0952, 6.1002, 6.1052, 6.1102, 6.1152, 6.1202000000000005, 6.1251999999999995, 6.1302, 6.135199999999999, 6.1402, 6.1452, 6.1502, 6.1552, 6.1602, 6.1652000000000005, 6.1701999999999995, 6.1752, 6.1802, 6.1852, 6.1902, 6.1952, 6.200200000000001, 6.2052, 6.2102, 6.215199999999999, 6.2202, 6.2252, 6.2302, 6.2352, 6.2402, 6.2452000000000005, 6.2501999999999995, 6.2552, 6.260199999999999, 6.2652, 6.2702, 6.2752, 6.2802, 6.2852, 6.2902000000000005, 6.2951999999999995, 6.3002, 6.3052, 6.3102, 6.3152, 6.3202, 6.325200000000001, 6.3302, 6.3352, 6.340199999999999, 6.3452, 6.3502, 6.3552, 6.3602, 6.3652, 6.3702000000000005, 6.3751999999999995, 6.3802, 6.385199999999999, 6.3902, 6.3952, 6.4002, 6.4052, 6.4102, 6.4152000000000005, 6.4201999999999995, 6.4252, 6.4302, 6.4352, 6.4402, 6.4452, 6.450200000000001, 6.4552, 6.4602, 6.465199999999999, 6.4702, 6.4752, 6.4802, 6.4852, 6.4902, 6.4952000000000005, 6.5001999999999995, 6.5052, 6.510199999999999, 6.5152, 6.5202, 6.5252, 6.5302, 6.5352, 6.5402000000000005, 6.5451999999999995, 6.5502, 6.5552, 6.5602, 6.5652, 6.5702, 6.575200000000001, 6.5802, 6.5852, 6.590199999999999, 6.5952, 6.6002, 6.6052, 6.6102, 6.6152, 6.6202000000000005, 6.6251999999999995, 6.6302, 6.635199999999999, 6.6402, 6.6452, 6.6502, 6.6552, 6.6602, 6.6652000000000005, 6.6701999999999995, 6.6752, 6.6802, 6.6852, 6.6902, 6.6952, 6.700200000000001, 6.7052, 6.7102, 6.715199999999999, 6.7202, 6.7252, 6.7302, 6.7352, 6.7402, 6.7452000000000005, 6.7501999999999995, 6.7552, 6.760199999999999, 6.7652, 6.7702, 6.7752, 6.7802, 6.7852, 6.7902000000000005, 6.7951999999999995, 6.8002, 6.8052, 6.8102, 6.8152, 6.8202, 6.825200000000001, 6.8302, 6.8352, 6.840199999999999, 6.8452, 6.8502, 6.8552, 6.8602, 6.8652, 6.8702000000000005, 6.8751999999999995, 6.8802, 6.885199999999999, 6.8902, 6.8952, 6.9002, 6.9052, 6.9102, 6.9152000000000005, 6.9201999999999995, 6.9252, 6.9302, 6.9352, 6.9402, 6.9452, 6.950200000000001, 6.9552, 6.9602, 6.965199999999999, 6.9702, 6.9752, 6.9802, 6.9852, 6.9902, 6.9952000000000005, 7.0001999999999995, 7.0052, 7.010199999999999, 7.0152, 7.0202, 7.0252, 7.0302, 7.0352, 7.0402000000000005, 7.0451999999999995, 7.0502, 7.0552, 7.0602, 7.0652, 7.0702, 7.075200000000001, 7.0802, 7.0852, 7.090199999999999, 7.0952, 7.1002, 7.1052, 7.1102, 7.1152, 7.1202000000000005, 7.1251999999999995, 7.1302, 7.135199999999999, 7.1402, 7.1452, 7.1502, 7.1552, 7.1602, 7.1652000000000005, 7.1701999999999995, 7.1752, 7.1802, 7.1852, 7.1902, 7.1952, 7.200200000000001, 7.2052, 7.2102, 7.215199999999999, 7.2202, 7.2252, 7.2302, 7.2352, 7.2402, 7.2452000000000005, 7.2501999999999995, 7.2552, 7.260199999999999, 7.2652, 7.2702, 7.2752, 7.2802, 7.2852, 7.2902000000000005, 7.2951999999999995, 7.3002, 7.3052, 7.3102, 7.3152, 7.3202, 7.325200000000001, 7.3302, 7.3352, 7.340199999999999, 7.3452, 7.3502, 7.3552, 7.3602, 7.3652, 7.3702000000000005, 7.3751999999999995, 7.3802, 7.385199999999999, 7.3902, 7.3952, 7.4002, 7.4052, 7.4102, 7.4152000000000005, 7.4201999999999995, 7.4252, 7.4302, 7.4352, 7.4402, 7.4452, 7.450200000000001, 7.4552, 7.4602, 7.465199999999999, 7.4702, 7.4752, 7.4802, 7.4852, 7.4902, 7.4952000000000005, 7.5001999999999995, 7.5052, 7.510199999999999, 7.5152, 7.5202, 7.5252, 7.5302, 7.5352, 7.5402000000000005, 7.5451999999999995, 7.5502, 7.5552, 7.5602, 7.5652, 7.5702, 7.575200000000001, 7.5802, 7.5852, 7.590199999999999, 7.5952, 7.6002, 7.6052, 7.6102, 7.6152, 7.6202000000000005, 7.6251999999999995, 7.6302, 7.635199999999999, 7.6402, 7.6452, 7.6502, 7.6552, 7.6602, 7.6652000000000005, 7.6701999999999995, 7.6752, 7.6802, 7.6852, 7.6902, 7.6952, 7.700200000000001, 7.7052, 7.7102, 7.715199999999999, 7.7202, 7.7252, 7.7302, 7.7352, 7.7402, 7.7452000000000005, 7.7501999999999995, 7.7552, 7.760199999999999, 7.7652, 7.7702, 7.7752, 7.7802, 7.7852, 7.7902000000000005, 7.7951999999999995, 7.8002, 7.8052, 7.8102, 7.8152, 7.8202, 7.825200000000001, 7.8302, 7.8352, 7.840199999999999, 7.8452, 7.8502, 7.8552, 7.8602, 7.8652, 7.8702000000000005, 7.8751999999999995, 7.8802, 7.885199999999999, 7.8902, 7.8952, 7.9002, 7.9052, 7.9102, 7.9152000000000005, 7.9201999999999995, 7.9252, 7.9302, 7.9352, 7.9402, 7.9452, 7.950200000000001, 7.9552, 7.9602, 7.965199999999999, 7.9702, 7.975199999999999, 7.9802, 7.985200000000001, 7.9902, 7.9952000000000005, 8.0002, 8.0052, 8.0102, 8.0152, 8.020199999999999, 8.0252, 8.0302, 8.0352, 8.0402, 8.0452, 8.0502, 8.0552, 8.0602, 8.0652, 8.0702, 8.0752, 8.0802, 8.0852, 8.0902, 8.0952, 8.1002, 8.1052, 8.1102, 8.1152, 8.1202, 8.1252, 8.1302, 8.1352, 8.1402, 8.145199999999999, 8.1502, 8.1552, 8.1602, 8.1652, 8.1702, 8.1752, 8.1802, 8.1852, 8.1902, 8.1952, 8.2002, 8.2052, 8.2102, 8.2152, 8.2202, 8.2252, 8.2302, 8.2352, 8.2402, 8.2452, 8.2502, 8.2552, 8.2602, 8.2652, 8.270199999999999, 8.2752, 8.2802, 8.2852, 8.2902, 8.2952, 8.3002, 8.3052, 8.3102, 8.3152, 8.3202, 8.3252, 8.3302, 8.3352, 8.3402, 8.3452, 8.3502, 8.3552, 8.3602, 8.3652, 8.3702, 8.3752, 8.3802, 8.3852, 8.3902, 8.395199999999999, 8.4002, 8.4052, 8.4102, 8.4152, 8.4202, 8.4252, 8.4302, 8.4352, 8.4402, 8.4452, 8.4502, 8.4552, 8.4602, 8.4652, 8.4702, 8.4752, 8.4802, 8.4852, 8.4902, 8.4952, 8.5002, 8.5052, 8.5102, 8.5152, 8.520199999999999, 8.5252, 8.5302, 8.5352, 8.5402, 8.5452, 8.5502, 8.5552, 8.5602, 8.5652, 8.5702, 8.5752, 8.5802, 8.5852, 8.5902, 8.5952, 8.6002, 8.6052, 8.6102, 8.6152, 8.6202, 8.6252, 8.6302, 8.6352, 8.6402, 8.645199999999999, 8.6502, 8.6552, 8.6602, 8.6652, 8.6702, 8.6752, 8.6802, 8.6852, 8.6902, 8.6952, 8.7002, 8.7052, 8.7102, 8.7152, 8.7202, 8.7252, 8.7302, 8.7352, 8.7402, 8.7452, 8.7502, 8.7552, 8.7602, 8.7652, 8.770199999999999, 8.7752, 8.7802, 8.7852, 8.7902, 8.7952, 8.8002, 8.8052, 8.8102, 8.8152, 8.8202, 8.8252, 8.8302, 8.8352, 8.8402, 8.8452, 8.8502, 8.8552, 8.8602, 8.8652, 8.8702, 8.8752, 8.8802, 8.8852, 8.8902, 8.895199999999999, 8.9002, 8.9052, 8.9102, 8.9152, 8.9202, 8.9252, 8.9302, 8.9352, 8.9402, 8.9452, 8.9502, 8.9552, 8.9602, 8.9652, 8.9702, 8.9752, 8.9802, 8.9852, 8.9902, 8.9952, 9.0002, 9.0052, 9.0102, 9.0152, 9.020199999999999, 9.0252, 9.0302, 9.0352, 9.0402, 9.0452, 9.0502, 9.0552, 9.0602, 9.0652, 9.0702, 9.0752, 9.0802, 9.0852, 9.0902, 9.0952, 9.1002, 9.1052, 9.1102, 9.1152, 9.1202, 9.1252, 9.1302, 9.1352, 9.1402, 9.145199999999999, 9.1502, 9.1552, 9.1602, 9.1652, 9.1702, 9.1752, 9.1802, 9.1852, 9.1902, 9.1952, 9.2002, 9.2052, 9.2102, 9.2152, 9.2202, 9.2252, 9.2302, 9.2352, 9.2402, 9.2452, 9.2502, 9.2552, 9.2602, 9.2652, 9.270199999999999, 9.2752, 9.2802, 9.2852, 9.2902, 9.2952, 9.3002, 9.3052, 9.3102, 9.3152, 9.3202, 9.3252, 9.3302, 9.3352, 9.3402, 9.3452, 9.3502, 9.3552, 9.3602, 9.3652, 9.3702, 9.3752, 9.3802, 9.3852, 9.3902, 9.395199999999999, 9.4002, 9.4052, 9.4102, 9.4152, 9.4202, 9.4252, 9.4302, 9.4352, 9.4402, 9.4452, 9.4502, 9.4552, 9.4602, 9.4652, 9.4702, 9.4752, 9.4802, 9.4852, 9.4902, 9.4952, 9.5002, 9.5052, 9.5102, 9.5152, 9.520199999999999, 9.5252, 9.5302, 9.5352, 9.5402, 9.5452, 9.5502, 9.5552, 9.5602, 9.5652, 9.5702, 9.5752, 9.5802, 9.5852, 9.5902, 9.5952, 9.6002, 9.6052, 9.6102, 9.6152, 9.6202, 9.6252, 9.6302, 9.6352, 9.6402, 9.645199999999999, 9.6502, 9.6552, 9.6602, 9.6652, 9.6702, 9.6752, 9.6802, 9.6852, 9.6902, 9.6952, 9.7002, 9.7052, 9.7102, 9.7152, 9.7202, 9.7252, 9.7302, 9.7352, 9.7402, 9.7452, 9.7502, 9.7552, 9.7602, 9.7652, 9.770199999999999, 9.7752, 9.7802, 9.7852, 9.7902, 9.7952, 9.8002, 9.8052, 9.8102, 9.8152, 9.8202, 9.8252, 9.8302, 9.8352, 9.8402, 9.8452, 9.8502, 9.8552, 9.8602, 9.8652, 9.8702, 9.8752, 9.8802, 9.8852, 9.8902, 9.895199999999999, 9.9002, 9.9052, 9.9102, 9.9152, 9.9202, 9.9252, 9.9302, 9.9352, 9.9402, 9.9452, 9.9502, 9.9552, 9.9602, 9.9652, 9.9702, 9.9752, 9.9802, 9.9852, 9.9902, 9.9952, 10.0002, 10.0052, 10.0102, 10.0152, 10.020199999999999, 10.0252, 10.0302, 10.0352, 10.0402, 10.0452, 10.0502, 10.0552, 10.0602, 10.0652, 10.0702, 10.0752, 10.0802, 10.0852, 10.0902, 10.0952, 10.1002, 10.1052, 10.1102, 10.1152, 10.1202, 10.1252, 10.1302, 10.1352, 10.1402, 10.145199999999999, 10.1502, 10.1552, 10.1602, 10.1652, 10.1702, 10.1752, 10.1802, 10.1852, 10.1902, 10.1952, 10.2002, 10.2052, 10.2102, 10.2152, 10.2202, 10.2252, 10.2302, 10.2352, 10.2402, 10.2452, 10.2502, 10.2552, 10.2602, 10.2652, 10.270199999999999, 10.2752, 10.2802, 10.2852, 10.2902, 10.2952, 10.3002, 10.3052, 10.3102, 10.3152, 10.3202, 10.3252, 10.3302, 10.3352, 10.3402, 10.3452, 10.3502, 10.3552, 10.3602, 10.3652, 10.3702, 10.3752, 10.3802, 10.3852, 10.3902, 10.395199999999999, 10.4002, 10.4052, 10.4102, 10.4152, 10.4202, 10.4252, 10.4302, 10.4352, 10.4402, 10.4452, 10.4502, 10.4552, 10.4602, 10.4652, 10.4702, 10.4752, 10.4802, 10.4852, 10.4902, 10.4952, 10.5002, 10.5052, 10.5102, 10.5152, 10.520199999999999, 10.5252, 10.5302, 10.5352, 10.5402, 10.5452, 10.5502], list(map(lambda x: x.value, dos.conditions.scalars))) self.assertEquals([-4.957e-05, -8.501e-05, -0.0001428, -0.0002347, -0.0003778, -0.0005949, -0.0009164, -0.00138, -0.002032, -0.002921, -0.004097, -0.005601, -0.007451, -0.009628, -0.01205, -0.01455, -0.01686, -0.01856, -0.01913, -0.01787, -0.01402, -0.006742, 0.004777, 0.02122, 0.04303, 0.07032, 0.1028, 0.1397, 0.1798, 0.2217, 0.2637, 0.3041, 0.3417, 0.3754, 0.405, 0.4307, 0.4535, 0.4743, 0.4945, 0.5149, 0.536, 0.5575, 0.5781, 0.5962, 0.6094, 0.6155, 0.6125, 0.5994, 0.5763, 0.5447, 0.5074, 0.4682, 0.4316, 0.4025, 0.3849, 0.3817, 0.3946, 0.423, 0.4649, 0.5165, 0.5728, 0.6285, 0.6783, 0.7177, 0.7433, 0.7534, 0.7473, 0.7259, 0.6912, 0.6457, 0.5923, 0.5341, 0.4742, 0.4156, 0.3613, 0.3144, 0.2781, 0.2553, 0.2487, 0.2603, 0.2912, 0.3412, 0.4083, 0.4891, 0.5786, 0.6705, 0.758, 0.8342, 0.8928, 0.9293, 0.9407, 0.9267, 0.889, 0.8315, 0.7597, 0.68, 0.5986, 0.5214, 0.4528, 0.3957, 0.3512, 0.3189, 0.2974, 0.2847, 0.2787, 0.2781, 0.2822, 0.2912, 0.3061, 0.3283, 0.3593, 0.4, 0.4506, 0.5102, 0.5769, 0.648, 0.7202, 0.7898, 0.8534, 0.908, 0.9508, 0.98, 0.994, 0.992, 0.9734, 0.9384, 0.8878, 0.823, 0.7463, 0.6609, 0.5707, 0.4802, 0.394, 0.3165, 0.2515, 0.202, 0.1696, 0.1545, 0.1561, 0.1725, 0.2015, 0.2405, 0.2875, 0.3405, 0.3984, 0.4602, 0.5254, 0.5934, 0.6629, 0.7323, 0.799, 0.8599, 0.9116, 0.9506, 0.9745, 0.9819, 0.973, 0.9499, 0.9159, 0.8756, 0.8341, 0.7957, 0.764, 0.7407, 0.7254, 0.7162, 0.7093, 0.7002, 0.6843, 0.6577, 0.618, 0.5646, 0.4987, 0.4236, 0.3438, 0.265, 0.1931, 0.1338, 0.09214, 0.0719, 0.0756, 0.1042, 0.1572, 0.2324, 0.3267, 0.4356, 0.5538, 0.6757, 0.7955, 0.9078, 1.008, 1.092, 1.156, 1.2, 1.221, 1.222, 1.201, 1.161, 1.104, 1.033, 0.9513, 0.8631, 0.7732, 0.6866, 0.6085, 0.5437, 0.4961, 0.4679, 0.4598, 0.4701, 0.495, 0.5292, 0.5661, 0.5985, 0.6201, 0.6255, 0.6116, 0.5776, 0.5251, 0.4584, 0.3835, 0.3081, 0.2402, 0.1879, 0.1582, 0.1568, 0.1871, 0.25, 0.3439, 0.4643, 0.6047, 0.7564, 0.9099, 1.055, 1.184, 1.287, 1.361, 1.403, 1.413, 1.394, 1.351, 1.291, 1.218, 1.138, 1.054, 0.9707, 0.8876, 0.8058, 0.7255, 0.6472, 0.5724, 0.5031, 0.4424, 0.3935, 0.3597, 0.3433, 0.3451, 0.3641, 0.3975, 0.4405, 0.4875, 0.5322, 0.5689, 0.5931, 0.6025, 0.5971, 0.5795, 0.5544, 0.5283, 0.5083, 0.5012, 0.5127, 0.5467, 0.6046, 0.6849, 0.7838, 0.8953, 1.012, 1.126, 1.229, 1.316, 1.38, 1.421, 1.437, 1.431, 1.408, 1.374, 1.334, 1.295, 1.262, 1.236, 1.221, 1.213, 1.212, 1.213, 1.214, 1.211, 1.202, 1.188, 1.169, 1.149, 1.13, 1.117, 1.112, 1.119, 1.139, 1.172, 1.218, 1.276, 1.344, 1.42, 1.501, 1.585, 1.67, 1.752, 1.83, 1.902, 1.965, 2.019, 2.062, 2.096, 2.12, 2.137, 2.149, 2.158, 2.166, 2.176, 2.186, 2.198, 2.208, 2.215, 2.213, 2.2, 2.171, 2.124, 2.057, 1.969, 1.863, 1.741, 1.61, 1.475, 1.345, 1.228, 1.132, 1.066, 1.035, 1.043, 1.094, 1.184, 1.312, 1.471, 1.653, 1.848, 2.046, 2.237, 2.412, 2.562, 2.682, 2.768, 2.818, 2.834, 2.819, 2.777, 2.713, 2.635, 2.549, 2.462, 2.379, 2.305, 2.242, 2.193, 2.158, 2.135, 2.122, 2.115, 2.112, 2.11, 2.105, 2.096, 2.083, 2.067, 2.052, 2.041, 2.04, 2.056, 2.095, 2.163, 2.262, 2.396, 2.563, 2.76, 2.98, 3.213, 3.448, 3.674, 3.877, 4.046, 4.17, 4.243, 4.261, 4.223, 4.133, 3.998, 3.829, 3.639, 3.441, 3.25, 3.079, 2.94, 2.843, 2.791, 2.786, 2.824, 2.897, 2.993, 3.095, 3.189, 3.257, 3.286, 3.267, 3.196, 3.074, 2.911, 2.72, 2.52, 2.332, 2.175, 2.066, 2.015, 2.029, 2.104, 2.232, 2.398, 2.584, 2.769, 2.936, 3.068, 3.153, 3.185, 3.164, 3.094, 2.983, 2.842, 2.684, 2.519, 2.358, 2.208, 2.072, 1.952, 1.846, 1.751, 1.664, 1.583, 1.505, 1.433, 1.368, 1.316, 1.281, 1.268, 1.278, 1.313, 1.37, 1.443, 1.526, 1.607, 1.68, 1.734, 1.763, 1.763, 1.733, 1.673, 1.589, 1.485, 1.368, 1.247, 1.127, 1.017, 0.9197, 0.8411, 0.784, 0.75, 0.7399, 0.7538, 0.7907, 0.8497, 0.929, 1.027, 1.14, 1.266, 1.401, 1.539, 1.674, 1.801, 1.913, 2.002, 2.064, 2.094, 2.091, 2.054, 1.985, 1.89, 1.773, 1.643, 1.508, 1.374, 1.251, 1.145, 1.062, 1.007, 0.9842, 0.9966, 1.045, 1.13, 1.249, 1.399, 1.573, 1.764, 1.963, 2.157, 2.337, 2.49, 2.608, 2.681, 2.705, 2.68, 2.608, 2.496, 2.354, 2.195, 2.036, 1.892, 1.781, 1.717, 1.716, 1.784, 1.928, 2.144, 2.425, 2.753, 3.108, 3.463, 3.789, 4.061, 4.255, 4.355, 4.354, 4.255, 4.071, 3.824, 3.538, 3.242, 2.964, 2.724, 2.539, 2.415, 2.351, 2.339, 2.365, 2.412, 2.464, 2.504, 2.522, 2.511, 2.47, 2.401, 2.313, 2.215, 2.117, 2.028, 1.956, 1.903, 1.871, 1.858, 1.859, 1.866, 1.875, 1.877, 1.868, 1.843, 1.8, 1.738, 1.656, 1.556, 1.441, 1.313, 1.175, 1.03, 0.8835, 0.7382, 0.5983, 0.4675, 0.3488, 0.2447, 0.1566, 0.08505, 0.0298, -0.01035, -0.03718, -0.05286, -0.05977, -0.0602, -0.05627, -0.04975, -0.04206, -0.03422, -0.02691, -0.02052, -0.0152, -0.01095, -0.007687, -0.005262, -0.003515, -0.002293, -0.001461, -0.0009103, -0.0005545, -0.0003303, -0.0001925, -0.0001098, -6.128e-05, -3.349e-05, -1.792e-05, -9.385e-06, -4.815e-06, -2.419e-06, -1.191e-06, -5.741e-07, -2.712e-07, -1.255e-07, -5.688e-08, -2.527e-08, -1.1e-08, -4.691e-09, -1.96e-09, -8.028e-10, -3.222e-10, -1.267e-10, -4.884e-11, -1.845e-11, -6.829e-12, -2.477e-12, -8.807e-13, -3.069e-13, -1.048e-13, -3.507e-14, -1.15e-14, -3.696e-15, -1.164e-15, -3.595e-16, -1.088e-16, -3.225e-17, -9.372e-18, -2.669e-18, -7.451e-19, -2.038e-19, -5.464e-20, -1.435e-20, -3.696e-21, -9.327e-22, -2.307e-22, -5.59e-23, -1.328e-23, -3.091e-24, -7.052e-25, -1.577e-25, -3.454e-26, -7.417e-27, -1.561e-27, -3.219e-28, -6.506e-29, -1.289e-29, -2.502e-30, -4.759e-31, -8.874e-32, -1.621e-32, -2.903e-33, -5.095e-34, -8.763e-35, -1.477e-35, -2.44e-36, -3.95e-37, -6.266e-38, -9.743e-39, -1.485e-39, -2.217e-40, -3.245e-41, -4.654e-42, -6.542e-43, -9.013e-44, -1.217e-44, -1.61e-45, -2.088e-46, -2.654e-47, -3.305e-48, -4.035e-49, -4.827e-50, -5.66e-51, -6.504e-52, -7.324e-53, -8.084e-54, -8.745e-55, -9.271e-56, -9.632e-57, -9.808e-58, -9.789e-59, -9.574e-60, -9.178e-61, -8.623e-62, -7.94e-63, -7.165e-64, -6.337e-65, -5.493e-66, -4.667e-67, -3.886e-68, -3.171e-69, -2.536e-70, -1.988e-71, -1.527e-72, -1.15e-73, -8.486e-75, -6.138e-76, -4.354e-77, -3.05e-78, -2.329e-79, -4.083e-80, -2.797e-80, -2.711e-80, -2.704e-80, -2.701e-80, -2.699e-80, -2.697e-80, -2.695e-80, -2.693e-80, -2.691e-80, -2.689e-80, -2.687e-80, -2.685e-80, -2.683e-80, -2.681e-80, -2.679e-80, -2.677e-80, -2.675e-80, -2.673e-80, -2.671e-80, -2.669e-80, -2.667e-80, -2.666e-80, -2.664e-80, -2.662e-80, -2.66e-80, -2.658e-80, -2.656e-80, -2.654e-80, -2.652e-80, -2.65e-80, -2.648e-80, -2.646e-80, -2.644e-80, -2.642e-80, -2.64e-80, -2.638e-80, -2.636e-80, -2.634e-80, -2.632e-80, -2.63e-80, -2.628e-80, -2.626e-80, -2.624e-80, -2.622e-80, -2.62e-80, -2.618e-80, -2.616e-80, -2.614e-80, -2.612e-80, -2.61e-80, -2.608e-80, -2.606e-80, -2.604e-80, -2.602e-80, -2.6e-80, -2.599e-80, -2.597e-80, -2.595e-80, -2.593e-80, -2.591e-80, -2.589e-80, -2.587e-80, -2.585e-80, -2.583e-80, -2.581e-80, -2.579e-80, -2.577e-80, -2.575e-80, -2.573e-80, -2.571e-80, -2.569e-80, -2.567e-80, -2.565e-80, -2.564e-80, -2.562e-80, -2.56e-80, -2.558e-80, -2.556e-80, -2.554e-80, -2.552e-80, -2.55e-80, -2.548e-80, -2.546e-80, -2.544e-80, -2.542e-80, -2.54e-80, -2.538e-80, -2.537e-80, -2.535e-80, -2.533e-80, -2.531e-80, -2.529e-80, -2.527e-80, -2.525e-80, -2.523e-80, -2.521e-80, -2.519e-80, -2.517e-80, -2.515e-80, -2.514e-80, -2.512e-80, -2.51e-80, -2.508e-80, -2.506e-80, -2.504e-80, -2.502e-80, -2.5e-80, -2.498e-80, -2.496e-80, -2.495e-80, -2.493e-80, -2.491e-80, -2.489e-80, -2.487e-80, -2.485e-80, -2.483e-80, -2.481e-80, -2.479e-80, -2.477e-80, -2.476e-80, -2.474e-80, -2.472e-80, -2.47e-80, -2.468e-80, -2.466e-80, -2.464e-80, -2.462e-80, -2.461e-80, -2.459e-80, -2.457e-80, -2.455e-80, -2.453e-80, -2.451e-80, -2.449e-80, -2.447e-80, -2.446e-80, -2.444e-80, -2.442e-80, -2.44e-80, -2.438e-80, -2.436e-80, -2.434e-80, -2.432e-80, -2.431e-80, -2.429e-80, -2.427e-80, -2.425e-80, -2.423e-80, -2.421e-80, -2.419e-80, -2.418e-80, -2.416e-80, -2.414e-80, -2.412e-80, -2.41e-80, -2.408e-80, -2.406e-80, -2.405e-80, -2.403e-80, -2.401e-80, -2.399e-80, -2.397e-80, -2.395e-80, -2.393e-80, -2.392e-80, -2.39e-80, -2.388e-80, -2.386e-80, -2.384e-80, -2.382e-80, -2.381e-80, -2.379e-80, -2.377e-80, -2.375e-80, -2.373e-80, -2.371e-80, -2.37e-80, -2.368e-80, -2.366e-80, -2.364e-80, -2.362e-80, -2.36e-80, -2.359e-80, -2.357e-80, -2.355e-80, -2.353e-80, -2.351e-80, -2.349e-80, -2.348e-80, -2.346e-80, -2.344e-80, -2.342e-80, -2.34e-80, -2.339e-80, -2.337e-80, -2.335e-80, -2.333e-80, -2.331e-80, -2.33e-80, -2.328e-80, -2.326e-80, -2.324e-80, -2.322e-80, -2.32e-80, -2.319e-80, -2.317e-80, -2.315e-80, -2.313e-80, -2.311e-80, -2.31e-80, -2.308e-80, -2.306e-80, -2.304e-80, -2.302e-80, -2.301e-80, -2.299e-80, -2.297e-80, -2.295e-80, -2.294e-80, -2.292e-80, -2.29e-80, -2.288e-80, -2.286e-80, -2.285e-80, -2.283e-80, -2.281e-80, -2.279e-80, -2.277e-80, -2.276e-80, -2.274e-80, -2.272e-80, -2.27e-80, -2.269e-80, -2.267e-80, -2.265e-80, -2.263e-80, -2.261e-80, -2.26e-80, -2.258e-80, -2.256e-80, -2.254e-80, -2.253e-80, -2.251e-80, -2.249e-80, -2.247e-80, -2.246e-80, -2.244e-80, -2.242e-80, -2.24e-80, -2.238e-80, -2.237e-80, -2.235e-80, -2.233e-80, -2.231e-80, -2.23e-80, -2.228e-80, -2.226e-80, -2.224e-80, -2.223e-80, -2.221e-80, -2.219e-80, -2.217e-80, -2.216e-80, -2.214e-80, -2.212e-80, -2.21e-80, -2.209e-80, -2.207e-80, -2.205e-80, -2.204e-80, -2.202e-80, -2.2e-80, -2.198e-80, -2.197e-80, -2.195e-80, -2.193e-80, -2.191e-80, -2.19e-80, -2.188e-80, -2.186e-80, -2.184e-80, -2.183e-80, -2.181e-80, -2.179e-80, -2.178e-80, -2.176e-80, -2.174e-80, -2.172e-80, -2.171e-80, -2.169e-80, -2.167e-80, -2.166e-80, -2.164e-80, -2.162e-80, -2.16e-80, -2.159e-80, -2.157e-80, -2.155e-80, -2.154e-80, -2.152e-80, -2.15e-80, -2.148e-80, -2.147e-80, -2.145e-80, -2.143e-80, -2.142e-80, -2.14e-80, -2.138e-80, -2.136e-80, -2.135e-80, -2.133e-80, -2.131e-80, -2.13e-80, -2.128e-80, -2.126e-80, -2.125e-80, -2.123e-80, -2.121e-80, -2.12e-80, -2.118e-80, -2.116e-80, -2.114e-80, -2.113e-80, -2.111e-80, -2.109e-80, -2.108e-80, -2.106e-80, -2.104e-80, -2.103e-80, -2.101e-80, -2.099e-80, -2.098e-80, -2.096e-80, -2.094e-80, -2.093e-80, -2.091e-80, -2.089e-80, -2.088e-80, -2.086e-80, -2.084e-80, -2.083e-80, -2.081e-80, -2.079e-80, -2.078e-80, -2.076e-80, -2.074e-80, -2.073e-80, -2.071e-80, -2.069e-80, -2.068e-80, -2.066e-80, -2.064e-80, -2.063e-80, -2.061e-80, -2.059e-80, -2.058e-80, -2.056e-80, -2.054e-80, -2.053e-80, -2.051e-80, -2.049e-80, -2.048e-80, -2.046e-80, -2.044e-80, -2.043e-80, -2.041e-80, -2.04e-80, -2.038e-80, -2.036e-80, -2.035e-80, -2.033e-80, -2.031e-80, -2.03e-80, -2.028e-80, -2.026e-80, -2.025e-80, -2.023e-80, -2.022e-80, -2.02e-80, -2.018e-80, -2.017e-80, -2.015e-80, -2.013e-80, -2.012e-80, -2.01e-80, -2.009e-80, -2.007e-80, -2.005e-80, -2.004e-80, -2.002e-80, -2e-80, -1.999e-80, -1.997e-80, -1.996e-80, -1.994e-80, -1.992e-80, -1.991e-80, -1.989e-80, -1.988e-80, -1.986e-80, -1.984e-80, -1.983e-80, -1.981e-80, -1.979e-80, -1.978e-80, -1.976e-80, -1.975e-80, -1.973e-80, -1.971e-80, -1.97e-80, -1.968e-80, -1.967e-80, -1.965e-80, -1.963e-80, -1.962e-80, -1.96e-80, -1.959e-80, -1.957e-80, -1.956e-80, -1.954e-80, -1.952e-80, -1.951e-80, -1.949e-80, -1.948e-80, -1.946e-80, -1.944e-80, -1.943e-80, -1.941e-80, -1.94e-80, -1.938e-80, -1.936e-80, -1.935e-80, -1.933e-80, -1.932e-80, -1.93e-80, -1.929e-80, -1.927e-80, -1.925e-80, -1.924e-80, -1.922e-80, -1.921e-80, -1.919e-80, -1.918e-80, -1.916e-80, -1.915e-80, -1.913e-80, -1.911e-80, -1.91e-80, -1.908e-80, -1.907e-80, -1.905e-80, -1.904e-80, -1.902e-80, -1.9e-80, -1.899e-80, -1.897e-80, -1.896e-80, -1.894e-80, -1.893e-80, -1.891e-80, -1.89e-80, -1.888e-80, -1.887e-80, -1.885e-80, -1.883e-80, -1.882e-80, -1.88e-80, -1.879e-80, -1.877e-80, -1.876e-80, -1.874e-80, -1.873e-80, -1.871e-80, -1.87e-80, -1.868e-80, -1.866e-80, -1.865e-80, -1.863e-80, -1.862e-80, -1.86e-80, -1.859e-80, -1.857e-80, -1.856e-80, -1.854e-80, -1.853e-80, -1.851e-80, -1.85e-80, -1.848e-80, -1.847e-80, -1.845e-80, -1.844e-80, -1.842e-80, -1.841e-80, -1.839e-80, -1.838e-80, -1.836e-80, -1.835e-80, -1.833e-80, -1.832e-80, -1.83e-80, -1.828e-80, -1.827e-80, -1.825e-80, -1.824e-80, -1.822e-80, -1.821e-80, -1.819e-80, -1.818e-80, -1.816e-80, -1.815e-80, -1.813e-80, -1.812e-80, -1.81e-80, -1.809e-80, -1.807e-80, -1.806e-80, -1.804e-80, -1.803e-80, -1.801e-80, -1.8e-80, -1.799e-80, -1.797e-80, -1.796e-80, -1.794e-80, -1.793e-80, -1.791e-80, -1.79e-80, -1.788e-80, -1.787e-80, -1.785e-80, -1.784e-80, -1.782e-80, -1.781e-80, -1.779e-80, -1.778e-80, -1.776e-80, -1.775e-80, -1.773e-80, -1.772e-80, -1.77e-80, -1.769e-80, -1.767e-80, -1.766e-80, -1.765e-80, -1.763e-80, -1.762e-80, -1.76e-80, -1.759e-80, -1.757e-80, -1.756e-80, -1.754e-80, -1.753e-80, -1.751e-80, -1.75e-80, -1.749e-80, -1.747e-80, -1.746e-80, -1.744e-80, -1.743e-80, -1.741e-80, -1.74e-80, -1.738e-80, -1.737e-80, -1.735e-80, -1.734e-80, -1.733e-80, -1.731e-80, -1.73e-80, -1.728e-80, -1.727e-80, -1.725e-80, -1.724e-80, -1.722e-80, -1.721e-80, -1.72e-80, -1.718e-80, -1.717e-80, -1.715e-80, -1.714e-80, -1.712e-80, -1.711e-80, -1.71e-80, -1.708e-80, -1.707e-80, -1.705e-80, -1.704e-80, -1.702e-80, -1.701e-80, -1.7e-80, -1.698e-80, -1.697e-80, -1.695e-80, -1.694e-80, -1.693e-80, -1.691e-80, -1.69e-80, -1.688e-80, -1.687e-80, -1.685e-80, -1.684e-80, -1.683e-80, -1.681e-80, -1.68e-80, -1.678e-80, -1.677e-80, -1.676e-80, -1.674e-80, -1.673e-80, -1.671e-80, -1.67e-80, -1.669e-80, -1.667e-80, -1.666e-80, -1.664e-80, -1.663e-80, -1.662e-80, -1.66e-80, -1.659e-80, -1.657e-80, -1.656e-80, -1.655e-80, -1.653e-80, -1.652e-80, -1.651e-80, -1.649e-80, -1.648e-80, -1.646e-80, -1.645e-80, -1.644e-80, -1.642e-80, -1.641e-80, -1.639e-80, -1.638e-80, -1.637e-80, -1.635e-80, -1.634e-80, -1.633e-80, -1.631e-80, -1.63e-80, -1.629e-80, -1.627e-80, -1.626e-80, -1.624e-80, -1.623e-80, -1.622e-80, -1.62e-80, -1.619e-80, -1.618e-80, -1.616e-80, -1.615e-80, -1.614e-80, -1.612e-80, -1.611e-80, -1.609e-80, -1.608e-80, -1.607e-80, -1.605e-80, -1.604e-80, -1.603e-80, -1.601e-80, -1.6e-80, -1.599e-80, -1.597e-80, -1.596e-80, -1.595e-80, -1.593e-80, -1.592e-80, -1.591e-80, -1.589e-80, -1.588e-80, -1.587e-80, -1.585e-80, -1.584e-80, -1.583e-80, -1.581e-80, -1.58e-80, -1.579e-80, -1.577e-80, -1.576e-80, -1.575e-80, -1.573e-80, -1.572e-80, -1.571e-80, -1.569e-80, -1.568e-80, -1.567e-80, -1.565e-80, -1.564e-80, -1.563e-80, -1.561e-80, -1.56e-80, -1.559e-80, -1.557e-80, -1.556e-80, -1.555e-80, -1.553e-80, -1.552e-80, -1.551e-80, -1.549e-80, -1.548e-80, -1.547e-80, -1.546e-80, -1.544e-80, -1.543e-80, -1.542e-80, -1.54e-80, -1.539e-80, -1.538e-80, -1.536e-80, -1.535e-80, -1.534e-80, -1.533e-80, -1.531e-80, -1.53e-80, -1.529e-80, -1.527e-80, -1.526e-80, -1.525e-80, -1.523e-80, -1.522e-80, -1.521e-80, -1.52e-80, -1.518e-80, -1.517e-80, -1.516e-80, -1.514e-80, -1.513e-80, -1.512e-80, -1.511e-80, -1.509e-80, -1.508e-80, -1.507e-80, -1.505e-80, -1.504e-80, -1.503e-80, -1.502e-80, -1.5e-80, -1.499e-80, -1.498e-80, -1.497e-80, -1.495e-80, -1.494e-80, -1.493e-80, -1.492e-80, -1.49e-80, -1.489e-80, -1.488e-80, -1.486e-80, -1.485e-80, -1.484e-80, -1.483e-80, -1.481e-80, -1.48e-80, -1.479e-80, -1.478e-80, -1.476e-80, -1.475e-80, -1.474e-80, -1.473e-80, -1.471e-80, -1.47e-80, -1.469e-80, -1.468e-80, -1.466e-80, -1.465e-80, -1.464e-80, -1.463e-80, -1.461e-80, -1.46e-80, -1.459e-80, -1.458e-80, -1.456e-80, -1.455e-80, -1.454e-80, -1.453e-80, -1.452e-80, -1.45e-80, -1.449e-80, -1.448e-80, -1.447e-80, -1.445e-80, -1.444e-80, -1.443e-80, -1.442e-80, -1.44e-80, -1.439e-80, -1.438e-80, -1.437e-80, -1.436e-80, -1.434e-80, -1.433e-80, -1.432e-80, -1.431e-80, -1.43e-80, -1.428e-80, -1.427e-80, -1.426e-80, -1.425e-80, -1.423e-80, -1.422e-80, -1.421e-80, -1.42e-80, -1.419e-80, -1.417e-80, -1.416e-80, -1.415e-80, -1.414e-80, -1.413e-80, -1.411e-80, -1.41e-80, -1.409e-80, -1.408e-80, -1.407e-80, -1.405e-80, -1.404e-80, -1.403e-80, -1.402e-80, -1.401e-80, -1.399e-80, -1.398e-80, -1.397e-80, -1.396e-80, -1.395e-80, -1.393e-80, -1.392e-80, -1.391e-80, -1.39e-80, -1.389e-80, -1.388e-80, -1.386e-80, -1.385e-80, -1.384e-80, -1.383e-80, -1.382e-80, -1.381e-80, -1.379e-80, -1.378e-80, -1.377e-80, -1.376e-80, -1.375e-80, -1.373e-80, -1.372e-80, -1.371e-80, -1.37e-80, -1.369e-80, -1.368e-80, -1.366e-80, -1.365e-80, -1.364e-80, -1.363e-80, -1.362e-80, -1.361e-80, -1.36e-80, -1.358e-80, -1.357e-80, -1.356e-80, -1.355e-80, -1.354e-80, -1.353e-80, -1.351e-80, -1.35e-80, -1.349e-80, -1.348e-80, -1.347e-80, -1.346e-80, -1.346e-80, -1.365e-80, -1.684e-80, -6.522e-80, -7.844e-79, -1.126e-77, -1.607e-76, -2.252e-75, -3.092e-74, -4.16e-73, -5.487e-72, -7.092e-71, -8.985e-70, -1.116e-68, -1.358e-67, -1.619e-66, -1.892e-65, -2.168e-64, -2.434e-63, -2.678e-62, -2.888e-61, -3.052e-60, -3.162e-59, -3.209e-58, -3.193e-57, -3.113e-56, -2.975e-55, -2.786e-54, -2.557e-53, -2.3e-52, -2.028e-51, -1.752e-50, -1.483e-49, -1.231e-48, -1.001e-47, -7.975e-47, -6.228e-46, -4.767e-45, -3.576e-44, -2.628e-43, -1.893e-42, -1.337e-41, -9.247e-41, -6.269e-40, -4.165e-39, -2.712e-38, -1.73e-37, -1.082e-36, -6.63e-36, -3.981e-35, -2.342e-34, -1.351e-33, -7.631e-33, -4.225e-32, -2.292e-31, -1.219e-30, -6.35e-30, -3.242e-29, -1.622e-28, -7.949e-28, -3.818e-27, -1.797e-26, -8.287e-26, -3.745e-25, -1.658e-24, -7.193e-24, -3.058e-23, -1.273e-22, -5.196e-22, -2.078e-21, -8.138e-21, -3.123e-20, -1.174e-19, -4.327e-19, -1.562e-18, -5.521e-18, -1.913e-17, -6.49e-17, -2.158e-16, -7.027e-16, -2.242e-15, -7.005e-15, -2.144e-14, -6.429e-14, -1.888e-13, -5.432e-13, -1.53e-12, -4.223e-12, -1.141e-11, -3.02e-11, -7.828e-11, -1.987e-10, -4.938e-10, -1.202e-09, -2.863e-09, -6.68e-09, -1.526e-08, -3.411e-08, -7.465e-08, -1.599e-07, -3.353e-07, -6.881e-07, -1.382e-06, -2.715e-06, -5.22e-06, -9.817e-06, -1.806e-05, -3.249e-05, -5.717e-05, -9.836e-05, -0.0001654, -0.000272, -0.0004369, -0.0006857, -0.001051, -0.001574, -0.0023, -0.003279, -0.004559, -0.006178, -0.008153, -0.01047, -0.01306, -0.01579, -0.01845, -0.02076, -0.0223, -0.02258, -0.02101, -0.01689, -0.009437, 0.002204, 0.01896, 0.04179, 0.07166, 0.1095, 0.1559, 0.2115, 0.2764, 0.3499, 0.4311, 0.518, 0.6082, 0.6983, 0.7847, 0.8636, 0.9313, 0.9842, 1.02, 1.037, 1.034, 1.012, 0.9718, 0.917, 0.8509, 0.7777, 0.7026, 0.6312, 0.5693, 0.5226, 0.4963, 0.4945, 0.5195, 0.5717, 0.6489, 0.7464, 0.8576, 0.974, 1.086, 1.186, 1.265, 1.318, 1.343, 1.34, 1.313, 1.267, 1.209, 1.145, 1.083, 1.025, 0.9755, 0.9333, 0.897, 0.8639, 0.8302, 0.7928, 0.7492, 0.6981, 0.6403, 0.5782, 0.5157, 0.4583, 0.4121, 0.3835, 0.3781, 0.4006, 0.4531, 0.5354, 0.6444, 0.7741, 0.9158, 1.06, 1.195, 1.311, 1.4, 1.458, 1.482, 1.477, 1.447, 1.402, 1.352, 1.307, 1.275, 1.261, 1.268, 1.293, 1.33, 1.371, 1.407, 1.428, 1.427, 1.397, 1.338, 1.251, 1.141, 1.014, 0.8786, 0.7445, 0.6202, 0.5137, 0.4318, 0.3802, 0.3635, 0.3852, 0.4475, 0.5511, 0.695, 0.8757, 1.087, 1.322, 1.567, 1.811, 2.04, 2.242, 2.405, 2.524, 2.596, 2.621, 2.606, 2.561, 2.496, 2.425, 2.356, 2.298, 2.255, 2.227, 2.21, 2.197, 2.179, 2.147, 2.093, 2.011, 1.899, 1.758, 1.593, 1.414, 1.232, 1.06, 0.9099, 0.7955, 0.7268, 0.7111, 0.7523, 0.8499, 0.9994, 1.192, 1.417, 1.659, 1.904, 2.138, 2.35, 2.53, 2.675, 2.786, 2.866, 2.923, 2.966, 3.004, 3.041, 3.082, 3.125, 3.165, 3.197, 3.21, 3.196, 3.148, 3.061, 2.937, 2.778, 2.591, 2.388, 2.181, 1.983, 1.806, 1.661, 1.556, 1.498, 1.487, 1.524, 1.605, 1.721, 1.865, 2.024, 2.188, 2.342, 2.475, 2.576, 2.635, 2.647, 2.608, 2.519, 2.384, 2.21, 2.007, 1.785, 1.558, 1.338, 1.136, 0.9631, 0.8271, 0.7345, 0.6898, 0.696, 0.754, 0.8638, 1.024, 1.231, 1.48, 1.765, 2.077, 2.407, 2.744, 3.077, 3.396, 3.693, 3.962, 4.202, 4.413, 4.599, 4.767, 4.926, 5.083, 5.247, 5.421, 5.609, 5.809, 6.018, 6.229, 6.431, 6.612, 6.759, 6.861, 6.907, 6.888, 6.802, 6.649, 6.437, 6.176, 5.88, 5.566, 5.251, 4.95, 4.674, 4.432, 4.222, 4.042, 3.881, 3.728, 3.568, 3.39, 3.184, 2.946, 2.676, 2.38, 2.069, 1.76, 1.468, 1.212, 1.006, 0.8621, 0.7864, 0.7796, 0.8357, 0.9436, 1.087, 1.247, 1.404, 1.54, 1.639, 1.69, 1.69, 1.639, 1.544, 1.418, 1.272, 1.123, 0.985, 0.8685, 0.7822, 0.7309, 0.7156, 0.7348, 0.7847, 0.8604, 0.9562, 1.067, 1.186, 1.308, 1.428, 1.538, 1.633, 1.705, 1.748, 1.757, 1.728, 1.66, 1.555, 1.416, 1.25, 1.066, 0.8744, 0.684, 0.5048, 0.3451, 0.2116, 0.109, 0.04035, 0.006949, 0.008612, 0.04391, 0.1104, 0.2046, 0.3223, 0.4585, 0.6076, 0.7634, 0.9195, 1.069, 1.207, 1.327, 1.425, 1.497, 1.544, 1.563, 1.558, 1.531, 1.484, 1.422, 1.347, 1.263, 1.171, 1.074, 0.9715, 0.8648, 0.7544, 0.6415, 0.5279, 0.4159, 0.3087, 0.2101, 0.1244, 0.05606, 0.009524, -0.01119, -0.002733, 0.03728, 0.1099, 0.2146, 0.3489, 0.5085, 0.6869, 0.876, 1.066, 1.247, 1.409, 1.542, 1.637, 1.691, 1.699, 1.664, 1.589, 1.48, 1.349, 1.207, 1.066, 0.9394, 0.8386, 0.7734, 0.7506, 0.7738, 0.8426, 0.9535, 1.1, 1.273, 1.462, 1.66, 1.856, 2.046, 2.226, 2.394, 2.554, 2.706, 2.855, 3.004, 3.154, 3.306, 3.458, 3.608, 3.749, 3.879, 3.994, 4.09, 4.165, 4.222, 4.26, 4.283, 4.294, 4.295, 4.287, 4.27, 4.244, 4.207, 4.157, 4.095, 4.022, 3.943, 3.866, 3.801, 3.759, 3.751, 3.787, 3.874, 4.017, 4.215, 4.465, 4.758, 5.086, 5.436, 5.796, 6.155, 6.502, 6.824, 7.113, 7.36, 7.557, 7.696, 7.773, 7.782, 7.722, 7.592, 7.396, 7.139, 6.828, 6.473, 6.087, 5.681, 5.269, 4.862, 4.47, 4.101, 3.762, 3.454, 3.178, 2.934, 2.719, 2.531, 2.365, 2.222, 2.099, 1.996, 1.913, 1.847, 1.799, 1.765, 1.742, 1.725, 1.71, 1.691, 1.666, 1.63, 1.585, 1.532, 1.472, 1.412, 1.356, 1.308, 1.272, 1.251, 1.245, 1.254, 1.274, 1.302, 1.335, 1.368, 1.398, 1.422, 1.437, 1.441, 1.434, 1.414, 1.383, 1.34, 1.286, 1.225, 1.159, 1.09, 1.024, 0.9631, 0.9135, 0.8796, 0.8664, 0.8785, 0.9197, 0.9928, 1.098, 1.235, 1.399, 1.585, 1.782, 1.982, 2.173, 2.345, 2.489, 2.597, 2.666, 2.692, 2.678, 2.626, 2.54, 2.424, 2.285, 2.128, 1.957, 1.777, 1.594, 1.41, 1.23, 1.057, 0.8923, 0.7392, 0.5985, 0.4711, 0.3576, 0.2586, 0.1753, 0.109, 0.06212, 0.03718, 0.03715, 0.06469, 0.1217, 0.2089, 0.3252, 0.4674, 0.6307, 0.8085, 0.9937, 1.179, 1.357, 1.525, 1.678, 1.817, 1.944, 2.062, 2.174, 2.282, 2.389, 2.492, 2.589, 2.674, 2.742, 2.787, 2.808, 2.802, 2.776, 2.734, 2.687, 2.646, 2.622, 2.624, 2.658, 2.725, 2.821, 2.94, 3.068, 3.194, 3.303, 3.385, 3.431, 3.437, 3.403, 3.334, 3.238, 3.124, 3.005, 2.889, 2.786, 2.702, 2.641, 2.604, 2.59, 2.597, 2.622, 2.663, 2.716, 2.779, 2.847, 2.917, 2.986, 3.049, 3.1, 3.135, 3.148, 3.134, 3.089, 3.01, 2.898, 2.757, 2.59, 2.408, 2.22, 2.04, 1.881, 1.754, 1.67, 1.633, 1.647, 1.706, 1.804, 1.928, 2.065, 2.201, 2.323, 2.424, 2.497, 2.544, 2.568, 2.578, 2.582, 2.589, 2.607, 2.639, 2.687, 2.746, 2.812, 2.876, 2.93, 2.968, 2.984, 2.977, 2.948, 2.9, 2.84, 2.774, 2.709, 2.653, 2.608, 2.58, 2.568, 2.571, 2.587, 2.614, 2.647, 2.685, 2.725, 2.768, 2.815, 2.868, 2.929, 3.002, 3.087, 3.185, 3.293, 3.408, 3.524, 3.635, 3.733, 3.813, 3.872, 3.909, 3.925, 3.926, 3.918, 3.906, 3.896, 3.892, 3.893, 3.896, 3.892, 3.872, 3.825, 3.739, 3.607, 3.424, 3.192, 2.92, 2.621, 2.314, 2.018, 1.758, 1.552, 1.417, 1.363, 1.394, 1.505, 1.686, 1.92, 2.187, 2.465, 2.731, 2.966, 3.153, 3.281, 3.341, 3.333, 3.256, 3.118, 2.925, 2.69, 2.423, 2.14, 1.854, 1.579, 1.33, 1.117, 0.9523, 0.8413, 0.7885, 0.7945, 0.8567, 0.9699, 1.126, 1.317, 1.531, 1.758, 1.986, 2.204, 2.402, 2.568, 2.693, 2.769, 2.789, 2.751, 2.654, 2.502, 2.301, 2.063, 1.801, 1.529, 1.264, 1.018, 0.8062, 0.6374, 0.5183, 0.4525, 0.4396, 0.4765, 0.5575, 0.6749, 0.8196, 0.9823, 1.154, 1.326, 1.494, 1.654, 1.806, 1.951, 2.096, 2.245, 2.403, 2.574, 2.759, 2.952, 3.147, 3.331, 3.492, 3.615, 3.688, 3.705, 3.66, 3.558, 3.407, 3.222, 3.019, 2.818, 2.635, 2.485, 2.379, 2.322, 2.314, 2.349, 2.418, 2.509, 2.609, 2.706, 2.788, 2.848, 2.881, 2.886, 2.863, 2.816, 2.751, 2.673, 2.588, 2.501, 2.416, 2.334, 2.257, 2.187, 2.125, 2.072, 2.031, 2.007, 2.003, 2.025, 2.077, 2.159, 2.273, 2.414, 2.576, 2.752, 2.932, 3.104, 3.261, 3.396, 3.503, 3.581, 3.63, 3.654, 3.654, 3.633, 3.594, 3.536, 3.457, 3.357, 3.232, 3.082, 2.908, 2.712, 2.503, 2.289, 2.082, 1.895, 1.743, 1.638, 1.588, 1.603, 1.683, 1.828, 2.033, 2.288, 2.579, 2.891, 3.205, 3.501, 3.761, 3.967, 4.105, 4.166, 4.146, 4.049, 3.884, 3.667, 3.418, 3.162, 2.922, 2.72, 2.574, 2.494, 2.485, 2.542, 2.654, 2.804, 2.972, 3.137, 3.279, 3.38, 3.431, 3.427, 3.37, 3.271, 3.147, 3.019, 2.913, 2.854, 2.867, 2.972, 3.183, 3.505, 3.931, 4.445, 5.021, 5.624, 6.215, 6.753, 7.204, 7.538, 7.739, 7.801, 7.731, 7.55, 7.283, 6.963, 6.625, 6.298, 6.009, 5.776, 5.608, 5.506, 5.463, 5.465, 5.495, 5.532, 5.555, 5.548, 5.498, 5.398, 5.248, 5.057, 4.838, 4.609, 4.39, 4.201, 4.056, 3.966, 3.934, 3.955, 4.017, 4.105, 4.197, 4.274, 4.317, 4.313, 4.253, 4.136, 3.968, 3.76, 3.528, 3.289, 3.063, 2.865, 2.707, 2.597, 2.536, 2.523, 2.55, 2.608, 2.686, 2.771, 2.855, 2.928, 2.984, 3.021, 3.036, 3.031, 3.008, 2.968, 2.916, 2.854, 2.786, 2.714, 2.64, 2.566, 2.495, 2.427, 2.365, 2.311, 2.269, 2.24, 2.226, 2.228, 2.247, 2.282, 2.329, 2.384, 2.445, 2.505, 2.561, 2.609, 2.649, 2.679, 2.703, 2.723, 2.744, 2.771, 2.808, 2.859, 2.925, 3.006, 3.099, 3.2, 3.299, 3.39, 3.462, 3.508, 3.519, 3.493, 3.427, 3.323, 3.185, 3.019, 2.831, 2.628, 2.416, 2.198, 1.979, 1.761, 1.545, 1.332, 1.125, 0.9264, 0.7384, 0.5648, 0.4089, 0.2735, 0.1603, 0.06997, 0.001972, -0.04549, -0.07507, -0.09001, -0.09374, -0.08958, -0.08047, -0.06882, -0.05647, -0.04467, -0.03419, -0.02537, -0.01829, -0.01283, -0.008758, -0.005829, -0.003784, -0.002397, -0.001482, -0.0008956, -0.0005286, -0.000305, -0.000172, -9.488e-05, -5.123e-05, -2.713e-05, -1.422e-05, -7.628e-06, -4.697e-06, -4.152e-06, -5.703e-06, -9.914e-06, -1.834e-05, -3.393e-05, -6.175e-05, -0.0001101, -0.000192, -0.0003274, -0.0005461, -0.0008902, -0.001418, -0.002207, -0.003355, -0.004979, -0.007208, -0.01018, -0.014, -0.01875, -0.02441, -0.03086, -0.03777, -0.04463, -0.05067, -0.05484, -0.05584, -0.05213, -0.04199, -0.02361, 0.004872, 0.04526, 0.09923, 0.1683, 0.2537, 0.3565, 0.4771, 0.6156, 0.7714, 0.9427, 1.127, 1.319, 1.515, 1.707, 1.889, 2.053, 2.193, 2.304, 2.386, 2.439, 2.467, 2.477, 2.479, 2.481, 2.492, 2.518, 2.564, 2.628, 2.708, 2.797, 2.888, 2.972, 3.043, 3.096, 3.131, 3.149, 3.157, 3.162, 3.174, 3.202, 3.253, 3.333, 3.446, 3.591, 3.764, 3.962, 4.175, 4.395, 4.611, 4.81, 4.982, 5.114, 5.198, 5.225, 5.193, 5.101, 4.956, 4.768, 4.551, 4.319, 4.09, 3.876, 3.688, 3.533, 3.411, 3.317, 3.247, 3.19, 3.138, 3.086, 3.03, 2.969, 2.907, 2.847, 2.795, 2.757, 2.735, 2.73, 2.74, 2.758, 2.778, 2.792, 2.79, 2.766, 2.716, 2.639, 2.539, 2.422, 2.296, 2.171, 2.06, 1.972, 1.914, 1.891, 1.904, 1.95, 2.024, 2.117, 2.22, 2.32, 2.408, 2.474, 2.512, 2.515, 2.483, 2.417, 2.32, 2.199, 2.062, 1.919, 1.78, 1.651, 1.542, 1.456, 1.396, 1.363, 1.355, 1.368, 1.399, 1.444, 1.499, 1.56, 1.626, 1.693, 1.76, 1.823, 1.88, 1.926, 1.957, 1.97, 1.96, 1.926, 1.867, 1.785, 1.683, 1.566, 1.443, 1.32, 1.209, 1.115, 1.049, 1.013, 1.013, 1.048, 1.113, 1.203, 1.308, 1.416, 1.515, 1.594, 1.643, 1.657, 1.633, 1.572, 1.481, 1.368, 1.243, 1.118, 1.0, 0.9005, 0.8231, 0.771, 0.7437, 0.7386, 0.7511, 0.7758, 0.8069, 0.8394, 0.8692, 0.8938, 0.9123, 0.9249, 0.9329, 0.9383, 0.9428, 0.9478, 0.9536, 0.9597, 0.9647, 0.9662, 0.9615, 0.9478, 0.9229, 0.8853, 0.8344, 0.7711, 0.6969, 0.6146, 0.5274, 0.4389, 0.3526, 0.2715, 0.1983, 0.1348, 0.082, 0.04007, 0.00858, -0.01347, -0.02744, -0.03487, -0.03733, -0.03628, -0.03301, -0.02855, -0.02367, -0.01893, -0.01465, -0.011, -0.008027, -0.005703, -0.003948, -0.002666, -0.001757, -0.00113, -0.0007106, -0.0004365, -0.0002622, -0.000154, -8.843e-05, -4.969e-05, -2.732e-05, -1.47e-05, -7.74e-06, -3.99e-06, -2.013e-06, -9.948e-07, -4.813e-07, -2.28e-07, -1.058e-07, -4.807e-08, -2.139e-08, -9.326e-09, -3.983e-09, -1.666e-09, -6.828e-10, -2.741e-10, -1.078e-10, -4.156e-11, -1.569e-11, -5.807e-12, -2.105e-12, -7.48e-13, -2.604e-13, -8.883e-14, -2.97e-14, -9.729e-15, -3.123e-15, -9.828e-16, -3.03e-16, -9.157e-17, -2.712e-17, -7.872e-18, -2.239e-18, -6.243e-19, -1.706e-19, -4.568e-20, -1.199e-20, -3.085e-21, -7.777e-22, -1.922e-22, -4.655e-23, -1.105e-23, -2.571e-24, -5.863e-25, -1.31e-25, -2.87e-26, -6.163e-27, -1.297e-27, -2.677e-28, -5.503e-29, -1.563e-29, -2.714e-29, -1.255e-28, -6.122e-28, -2.935e-27, -1.379e-26, -6.346e-26, -2.862e-25, -1.265e-24, -5.477e-24, -2.324e-23, -9.661e-23, -3.935e-22, -1.57e-21, -6.14e-21, -2.352e-20, -8.827e-20, -3.246e-19, -1.169e-18, -4.127e-18, -1.427e-17, -4.832e-17, -1.603e-16, -5.212e-16, -1.66e-15, -5.176e-15, -1.581e-14, -4.732e-14, -1.387e-13, -3.983e-13, -1.12e-12, -3.084e-12, -8.319e-12, -2.197e-11, -5.684e-11, -1.44e-10, -3.571e-10, -8.672e-10, -2.062e-09, -4.8e-09, -1.094e-08, -2.441e-08, -5.33e-08, -1.139e-07, -2.383e-07, -4.879e-07, -9.774e-07, -1.916e-06, -3.674e-06, -6.891e-06, -1.264e-05, -2.269e-05, -3.98e-05, -6.827e-05, -0.0001145, -0.0001876, -0.0003004, -0.0004698, -0.0007178, -0.001071, -0.001559, -0.002216, -0.003072, -0.004151, -0.005467, -0.00701, -0.008744, -0.01059, -0.01244, -0.01412, -0.01539, -0.01597, -0.01549, -0.01351, -0.00949, -0.002779, 0.007389, 0.0219, 0.04172, 0.06784, 0.1012, 0.1424, 0.1918, 0.2489, 0.3126, 0.3809, 0.4507, 0.5185, 0.5801, 0.6315, 0.6691, 0.6903, 0.6942, 0.6816, 0.6551, 0.6188, 0.5782, 0.5395, 0.5086, 0.4908, 0.4899, 0.5082, 0.5456, 0.6006, 0.6694, 0.7473, 0.8285, 0.907, 0.9772, 1.034, 1.075, 1.096, 1.099, 1.084, 1.054, 1.012, 0.9627, 0.9094, 0.8558, 0.8045, 0.7577, 0.717, 0.6839, 0.6601, 0.6483, 0.6518, 0.6747, 0.722, 0.7984, 0.908, 1.054, 1.237, 1.456, 1.708, 1.987, 2.285, 2.593, 2.903, 3.204, 3.486, 3.742, 3.965, 4.15, 4.293, 4.397, 4.463, 4.497, 4.508, 4.504, 4.493, 4.483, 4.479, 4.48, 4.486, 4.49, 4.483, 4.457, 4.405, 4.323, 4.211, 4.076, 3.93, 3.787, 3.666, 3.585, 3.562, 3.608, 3.73, 3.925, 4.187, 4.499, 4.841, 5.187, 5.513, 5.793, 6.004, 6.129, 6.158, 6.085, 5.913, 5.651, 5.309, 4.906, 4.458, 3.983, 3.499, 3.023, 2.57, 2.155, 1.79, 1.489, 1.264, 1.128, 1.091, 1.167, 1.364, 1.692, 2.156, 2.758, 3.495, 4.359, 5.333, 6.395, 7.514, 8.649, 9.757, 10.79, 11.7, 12.43, 12.97, 13.27, 13.33, 13.15, 12.77, 12.2, 11.5, 10.72, 9.895, 9.074, 8.291, 7.571, 6.929, 6.372, 5.899, 5.504, 5.181, 4.918, 4.707, 4.537, 4.398, 4.281, 4.178, 4.079, 3.976, 3.864, 3.738, 3.597, 3.441, 3.274, 3.102, 2.933, 2.775, 2.637, 2.526, 2.449, 2.411, 2.413, 2.458, 2.543, 2.667, 2.824, 3.009, 3.215, 3.432, 3.652, 3.863, 4.054, 4.217, 4.344, 4.432, 4.481, 4.495, 4.482, 4.452, 4.416, 4.384, 4.364, 4.359, 4.367, 4.384, 4.4, 4.407, 4.396, 4.363, 4.308, 4.234, 4.154, 4.08, 4.028, 4.012, 4.041, 4.119, 4.245, 4.407, 4.591, 4.776, 4.94, 5.063, 5.126, 5.118, 5.032, 4.869, 4.634, 4.339, 3.999, 3.632, 3.255, 2.885, 2.537, 2.222, 1.952, 1.731, 1.565, 1.453, 1.396, 1.393, 1.444, 1.548, 1.706, 1.918, 2.184, 2.503, 2.871, 3.28, 3.717, 4.162, 4.593, 4.983, 5.306, 5.536, 5.652, 5.642, 5.503, 5.241, 4.873, 4.424, 3.926, 3.413, 2.918, 2.473, 2.102, 1.823, 1.646, 1.575, 1.603, 1.722, 1.917, 2.173, 2.471, 2.796, 3.131, 3.462, 3.776, 4.063, 4.316, 4.528, 4.695, 4.817, 4.895, 4.93, 4.929, 4.895, 4.835, 4.754, 4.658, 4.548, 4.428, 4.297, 4.156, 4.004, 3.841, 3.669, 3.489, 3.306, 3.123, 2.947, 2.781, 2.629, 2.494, 2.374, 2.27, 2.176, 2.091, 2.009, 1.928, 1.846, 1.765, 1.688, 1.619, 1.566, 1.535, 1.533, 1.566, 1.637, 1.745, 1.888, 2.058, 2.246, 2.441, 2.63, 2.801, 2.944, 3.05, 3.116, 3.139, 3.122, 3.068, 2.983, 2.874, 2.748, 2.61, 2.467, 2.324, 2.184, 2.051, 1.929, 1.821, 1.729, 1.656, 1.602, 1.567, 1.549, 1.545, 1.549, 1.555, 1.557, 1.547, 1.52, 1.472, 1.4, 1.305, 1.188, 1.058, 0.9221, 0.7926, 0.6826, 0.6055, 0.5744, 0.6001, 0.69, 0.8468, 1.068, 1.345, 1.665, 2.008, 2.355, 2.682, 2.969, 3.195, 3.346, 3.413, 3.394, 3.291, 3.111, 2.869, 2.577, 2.252, 1.911, 1.569, 1.24, 0.9372, 0.6706, 0.45, 0.2836, 0.1781, 0.1388, 0.1689, 0.2691, 0.4368, 0.6657, 0.9454, 1.262, 1.597, 1.931, 2.245, 2.519, 2.737, 2.888, 2.966, 2.971, 2.909, 2.79, 2.627, 2.434, 2.228, 2.024, 1.833, 1.668, 1.537, 1.447, 1.403, 1.408, 1.46, 1.557, 1.692, 1.856, 2.037, 2.22, 2.391, 2.536, 2.643, 2.704, 2.718, 2.684, 2.612, 2.511, 2.395, 2.28, 2.179, 2.104, 2.063, 2.058, 2.089, 2.147, 2.223, 2.304, 2.379, 2.437, 2.471, 2.48, 2.468, 2.446, 2.429, 2.436, 2.486, 2.599, 2.79, 3.07, 3.441, 3.898, 4.43, 5.017, 5.631, 6.245, 6.827, 7.346, 7.778, 8.101, 8.302, 8.377, 8.328, 8.167, 7.91, 7.58, 7.201, 6.794, 6.383, 5.985, 5.612, 5.272, 4.97, 4.703, 4.47, 4.264, 4.082, 3.918, 3.769, 3.634, 3.51, 3.396, 3.293, 3.198, 3.109, 3.026, 2.946, 2.867, 2.789, 2.712, 2.635, 2.559, 2.486, 2.415, 2.347, 2.28, 2.211, 2.139, 2.059, 1.969, 1.867, 1.751, 1.62, 1.475, 1.32, 1.157, 0.9912, 0.8264, 0.6676, 0.5194, 0.3853, 0.2682, 0.1696, 0.08998, 0.02888, -0.0152, -0.04439, -0.06122, -0.06837, -0.06842, -0.06372, -0.05623, -0.04749, -0.03864, -0.0304, -0.02319, -0.01719, -0.01241, -0.008723, -0.005981, -0.004003, -0.002616, -0.00167, -0.001042, -0.0006359, -0.0003795, -0.0002215, -0.0001265, -7.074e-05, -3.871e-05, -2.074e-05, -1.088e-05, -5.587e-06, -2.81e-06, -1.384e-06, -6.681e-07, -3.158e-07, -1.462e-07, -6.633e-08, -2.948e-08, -1.284e-08, -5.478e-09, -2.29e-09, -9.383e-10, -3.767e-10, -1.482e-10, -5.713e-11, -2.158e-11, -7.992e-12, -2.9e-12, -1.031e-12, -3.594e-13, -1.227e-13, -4.108e-14, -1.348e-14, -4.333e-15, -1.365e-15, -4.217e-16, -1.276e-16, -3.786e-17, -1.101e-17, -3.136e-18, -8.757e-19, -2.397e-19, -6.428e-20, -1.69e-20, -4.354e-21, -1.099e-21, -2.721e-22, -6.599e-23, -1.569e-23, -3.654e-24, -8.344e-25, -1.867e-25, -4.095e-26, -8.801e-27, -1.854e-27, -3.827e-28, -7.744e-29, -1.536e-29, -2.984e-30, -5.684e-31, -1.061e-31, -1.941e-32, -3.48e-33, -6.115e-34, -1.053e-34, -1.777e-35, -2.94e-36, -4.765e-37, -7.571e-38, -1.179e-38, -1.799e-39, -2.69e-40, -3.944e-41, -5.665e-42, -7.975e-43, -1.1e-43, -1.488e-44, -1.972e-45, -2.562e-46, -3.261e-47, -4.068e-48, -4.974e-49, -5.961e-50, -7.001e-51, -8.058e-52, -9.09e-53, -1.005e-53, -1.089e-54, -1.156e-55, -1.204e-56, -1.228e-57, -1.228e-58, -1.203e-59, -1.155e-60, -1.087e-61, -1.003e-62, -9.065e-64, -8.032e-65, -6.975e-66, -5.936e-67, -4.952e-68, -4.048e-69, -3.244e-70, -2.547e-71, -1.961e-72, -1.479e-73, -1.093e-74, -7.923e-76, -5.628e-77, -3.929e-78, -2.793e-79, -2.999e-80, -1.33e-80, -1.222e-80, -1.216e-80, -1.216e-80, -1.217e-80, -1.218e-80, -1.22e-80, -1.221e-80, -1.222e-80, -1.223e-80, -1.224e-80, -1.225e-80, -1.226e-80, -1.227e-80, -1.228e-80, -1.229e-80, -1.23e-80, -1.231e-80, -1.232e-80, -1.233e-80, -1.234e-80, -1.235e-80, -1.236e-80, -1.237e-80, -1.238e-80, -1.239e-80, -1.24e-80, -1.241e-80, -1.242e-80, -1.243e-80, -1.244e-80, -1.246e-80, -1.247e-80, -1.248e-80, -1.249e-80, -1.259e-80, -1.39e-80, -3.364e-80, -3.263e-79, -4.582e-78, -6.523e-77, -9.124e-76, -1.251e-74, -1.681e-73, -2.213e-72, -2.857e-71, -3.614e-70, -4.48e-69, -5.444e-68, -6.482e-67, -7.566e-66, -8.654e-65, -9.701e-64, -1.066e-62, -1.148e-61, -1.211e-60, -1.253e-59, -1.27e-58, -1.261e-57, -1.228e-56, -1.172e-55, -1.096e-54, -1.004e-53, -9.019e-53, -7.938e-52, -6.848e-51, -5.789e-50, -4.796e-49, -3.894e-48, -3.099e-47, -2.417e-46, -1.847e-45, -1.383e-44, -1.015e-43, -7.302e-43, -5.147e-42, -3.556e-41, -2.407e-40, -1.597e-39, -1.038e-38, -6.614e-38, -4.129e-37, -2.526e-36, -1.515e-35, -8.899e-35, -5.123e-34, -2.89e-33, -1.598e-32, -8.657e-32, -4.596e-31, -2.391e-30, -1.219e-29, -6.087e-29, -2.979e-28, -1.429e-27, -6.715e-27, -3.092e-26, -1.395e-25, -6.167e-25, -2.672e-24, -1.134e-23, -4.715e-23, -1.921e-22, -7.67e-22, -3e-21, -1.15e-20, -4.316e-20, -1.588e-19, -5.721e-19, -2.02e-18, -6.986e-18, -2.367e-17, -7.857e-17, -2.555e-16, -8.138e-16, -2.539e-15, -7.761e-15, -2.324e-14, -6.814e-14, -1.957e-13, -5.505e-13, -1.517e-12, -4.093e-12, -1.082e-11, -2.799e-11, -7.094e-11, -1.761e-10, -4.278e-10, -1.018e-09, -2.371e-09, -5.408e-09, -1.207e-08, -2.639e-08, -5.647e-08, -1.182e-07, -2.424e-07, -4.861e-07, -9.542e-07, -1.833e-06, -3.444e-06, -6.332e-06, -1.139e-05, -2.003e-05, -3.447e-05, -5.8e-05, -9.542e-05, -0.0001535, -0.0002414, -0.000371, -0.0005574, -0.0008181, -0.001173, -0.001643, -0.002246, -0.002998, -0.003901, -0.004946, -0.006102, -0.007308, -0.00847, -0.009448, -0.01005, -0.01002, -0.009034, -0.006701, -0.002549, 0.003953, 0.01337, 0.02628, 0.04317, 0.06439, 0.09004, 0.1199, 0.1532, 0.189, 0.2255, 0.2607, 0.2925, 0.3186, 0.3371, 0.3466, 0.3465, 0.3372, 0.3201, 0.2975, 0.2724, 0.2482, 0.2283, 0.2157, 0.2126, 0.2202, 0.2388, 0.2675, 0.3044, 0.3473, 0.3933, 0.4397, 0.4837, 0.5234, 0.5569, 0.5832, 0.6017, 0.6122, 0.615, 0.6103, 0.5987, 0.5809, 0.5577, 0.5304, 0.5003, 0.4696, 0.4407, 0.4167, 0.401, 0.3971, 0.4081, 0.4365, 0.4832, 0.5478, 0.6278, 0.7189, 0.8155, 0.9109, 0.9983, 1.072, 1.126, 1.159, 1.169, 1.159, 1.132, 1.091, 1.043, 0.9923, 0.9418, 0.8943, 0.8509, 0.8115, 0.7753, 0.7408, 0.7073, 0.6745, 0.6434, 0.6159, 0.5952, 0.5847, 0.5882, 0.6087, 0.6483, 0.7074, 0.7852, 0.879, 0.9851, 1.099, 1.216, 1.332, 1.443, 1.545, 1.636, 1.715, 1.777, 1.822, 1.847, 1.85, 1.828, 1.782, 1.71, 1.617, 1.507, 1.387, 1.267, 1.155, 1.064, 1.001, 0.9751, 0.9904, 1.049, 1.148, 1.282, 1.443, 1.62, 1.801, 1.973, 2.125, 2.247, 2.331, 2.372, 2.37, 2.328, 2.25, 2.144, 2.021, 1.89, 1.762, 1.647, 1.554, 1.488, 1.455, 1.456, 1.49, 1.553, 1.641, 1.747, 1.863, 1.981, 2.096, 2.202, 2.295, 2.373, 2.437, 2.487, 2.524, 2.549, 2.563, 2.566, 2.556, 2.531, 2.489, 2.429, 2.351, 2.256, 2.145, 2.021, 1.89, 1.755, 1.621, 1.492, 1.374, 1.27, 1.183, 1.116, 1.073, 1.057, 1.07, 1.115, 1.195, 1.312, 1.465, 1.653, 1.872, 2.113, 2.368, 2.623, 2.863, 3.074, 3.24, 3.35, 3.397, 3.379, 3.299, 3.168, 2.999, 2.808, 2.613, 2.429, 2.269, 2.141, 2.046, 1.983, 1.947, 1.929, 1.922, 1.918, 1.915, 1.911, 1.909, 1.915, 1.935, 1.976, 2.043, 2.14, 2.264, 2.413, 2.578, 2.751, 2.92, 3.075, 3.206, 3.307, 3.374, 3.404, 3.399, 3.362, 3.298, 3.211, 3.108, 2.995, 2.878, 2.76, 2.646, 2.537, 2.436, 2.34, 2.247, 2.154, 2.056, 1.948, 1.829, 1.695, 1.548, 1.392, 1.232, 1.079, 0.943, 0.8366, 0.7714, 0.7573, 0.8014, 0.9067, 1.071, 1.289, 1.549, 1.835, 2.13, 2.415, 2.671, 2.88, 3.029, 3.107, 3.108, 3.032, 2.883, 2.671, 2.407, 2.109, 1.793, 1.477, 1.18, 0.9186, 0.7056, 0.5517, 0.4634, 0.443, 0.4883, 0.5931, 0.748, 0.9407, 1.157, 1.383, 1.605, 1.81, 1.987, 2.129, 2.232, 2.292, 2.31, 2.29, 2.237, 2.157, 2.058, 1.949, 1.84, 1.74, 1.66, 1.607, 1.588, 1.608, 1.666, 1.761, 1.886, 2.03, 2.181, 2.324, 2.447, 2.538, 2.588, 2.595, 2.56, 2.49, 2.396, 2.291, 2.191, 2.108, 2.056, 2.045, 2.079, 2.161, 2.289, 2.456, 2.656, 2.876, 3.106, 3.332, 3.541, 3.72, 3.859, 3.947, 3.979, 3.951, 3.865, 3.722, 3.532, 3.303, 3.047, 2.776, 2.503, 2.238, 1.99, 1.765, 1.566, 1.395, 1.25, 1.126, 1.02, 0.9264, 0.8412, 0.7613, 0.6856, 0.6145, 0.5503, 0.4965, 0.4573, 0.4371, 0.4395, 0.4672, 0.5212, 0.6013, 0.7055, 0.831, 0.9743, 1.131, 1.298, 1.47, 1.643, 1.815, 1.98, 2.134, 2.275, 2.397, 2.498, 2.577, 2.632, 2.666, 2.68, 2.678, 2.665, 2.644, 2.62, 2.594, 2.567, 2.537, 2.5, 2.453, 2.39, 2.306, 2.198, 2.064, 1.902, 1.715, 1.509, 1.289, 1.063, 0.8417, 0.633, 0.4455, 0.2863, 0.1607, 0.07235, 0.02281, 0.01208, 0.03882, 0.1007, 0.1947, 0.3173, 0.4649, 0.6332, 0.8176, 1.013, 1.212, 1.408, 1.592, 1.755, 1.887, 1.979, 2.025, 2.019, 1.959, 1.848, 1.692, 1.499, 1.282, 1.054, 0.8306, 0.6239, 0.4457, 0.305, 0.2073, 0.1551, 0.1473, 0.1803, 0.248, 0.3428, 0.4558, 0.5781, 0.7009, 0.816, 0.9169, 0.9987, 1.059, 1.096, 1.112, 1.111, 1.097, 1.077, 1.056, 1.041, 1.035, 1.04, 1.055, 1.077, 1.102, 1.123, 1.133, 1.126, 1.098, 1.049, 0.9806, 0.8971, 0.8065, 0.7183, 0.6422, 0.5873, 0.5611, 0.5681, 0.6098, 0.6842, 0.7866, 0.9097, 1.045, 1.182, 1.311, 1.425, 1.515, 1.576, 1.606, 1.602, 1.566, 1.501, 1.411, 1.301, 1.179, 1.052, 0.9281, 0.8141, 0.7175, 0.6443, 0.5996, 0.5866, 0.6068, 0.6597, 0.7425, 0.8505, 0.977, 1.114, 1.254, 1.387, 1.508, 1.612, 1.697, 1.765, 1.822, 1.874, 1.932, 2.003, 2.096, 2.215, 2.359, 2.526, 2.706, 2.89, 3.063, 3.213, 3.33, 3.405, 3.435, 3.42, 3.363, 3.271, 3.152, 3.015, 2.867, 2.714, 2.561, 2.41, 2.264, 2.125, 1.997, 1.883, 1.791, 1.726, 1.698, 1.715, 1.78, 1.898, 2.066, 2.278, 2.522, 2.782, 3.042, 3.282, 3.485, 3.636, 3.726, 3.751, 3.716, 3.629, 3.504, 3.359, 3.211, 3.077, 2.971, 2.901, 2.871, 2.878, 2.915, 2.972, 3.034, 3.089, 3.123, 3.127, 3.092, 3.016, 2.898, 2.74, 2.548, 2.327, 2.085, 1.831, 1.57, 1.312, 1.062, 0.8253, 0.6081, 0.4144, 0.2477, 0.1108, 0.006002, -0.06491, -0.1006, -0.09997, -0.06241, 0.01236, 0.124, 0.2713, 0.4518, 0.6617, 0.8953, 1.145, 1.403, 1.659, 1.902, 2.123, 2.312, 2.463, 2.572, 2.639, 2.665, 2.657, 2.621, 2.567, 2.503, 2.438, 2.379, 2.33, 2.294, 2.272, 2.262, 2.261, 2.265, 2.272, 2.277, 2.278, 2.275, 2.268, 2.259, 2.254, 2.256, 2.273, 2.308, 2.365, 2.447, 2.55, 2.67, 2.796, 2.918, 3.02, 3.09, 3.114, 3.083, 2.99, 2.835, 2.622, 2.361, 2.065, 1.749, 1.428, 1.117, 0.8307, 0.5771, 0.3629, 0.1904, 0.0588, -0.0352, -0.09684, -0.1323, -0.1481, -0.1501, -0.1436, -0.1326, -0.1199, -0.1072, -0.09487, -0.08233, -0.06827, -0.05085, -0.02798, 0.002317, 0.04163, 0.09078, 0.1496, 0.2169, 0.2902, 0.3662, 0.4408, 0.51, 0.57, 0.6185, 0.6543, 0.6783, 0.6932, 0.7033, 0.7141, 0.7315, 0.7609, 0.8065, 0.8709, 0.954, 1.054, 1.165, 1.282, 1.396, 1.5, 1.586, 1.647, 1.68, 1.682, 1.653, 1.598, 1.52, 1.427, 1.324, 1.22, 1.118, 1.025, 0.9407, 0.8674, 0.8047, 0.7516, 0.7071, 0.6703, 0.6411, 0.6195, 0.606, 0.6005, 0.6025, 0.6107, 0.6227, 0.6353, 0.6453, 0.6494, 0.6457, 0.6332, 0.613, 0.5875, 0.5605, 0.5366, 0.5201, 0.5145, 0.522, 0.5427, 0.575, 0.6156, 0.66, 0.7032, 0.7403, 0.7672, 0.7811, 0.7804, 0.7648, 0.7354, 0.6939, 0.6427, 0.5844, 0.5214, 0.4559, 0.3902, 0.326, 0.2647, 0.2078, 0.1564, 0.1111, 0.07267, 0.04117, 0.01652, -0.001692, -0.01414, -0.0217, -0.02531, -0.02596, -0.02457, -0.02192, -0.01866, -0.01528, -0.0121, -0.009342, -0.007099, -0.005414, -0.004286, -0.003704, -0.00366, -0.004163, -0.005239, -0.006925, -0.009256, -0.01224, -0.01585, -0.01994, -0.02425, -0.02836, -0.03164, -0.03323, -0.03209, -0.02693, -0.01639, 0.0009908, 0.02657, 0.06153, 0.1067, 0.1624, 0.2283, 0.3034, 0.386, 0.4734, 0.5624, 0.6491, 0.7291, 0.7981, 0.8519, 0.887, 0.9007, 0.8915, 0.8597, 0.8066, 0.7353, 0.6499, 0.5553, 0.4566, 0.359, 0.2668, 0.1835, 0.1114, 0.05165, 0.004201, -0.03173, -0.05747, -0.07452, -0.08424, -0.08756, -0.08477, -0.07553, -0.05886, -0.03336, 0.002578, 0.05037, 0.1109, 0.1843, 0.2695, 0.3642, 0.4648, 0.5667, 0.6648, 0.7534, 0.8273, 0.8818, 0.9138, 0.9212, 0.9039, 0.8631, 0.8017, 0.7234, 0.6327, 0.5344, 0.4332, 0.3337, 0.2397, 0.1547, 0.08163, 0.02285, -0.01946, -0.04335, -0.04704, -0.02897, 0.01207, 0.07668, 0.1646, 0.2741, 0.4023, 0.5445, 0.6943, 0.8441, 0.9854, 1.109, 1.208, 1.275, 1.305, 1.297, 1.25, 1.169, 1.06, 0.9299, 0.7873, 0.641, 0.4988, 0.3674, 0.2516, 0.1545, 0.07729, 0.01941, -0.02084, -0.04602, -0.05912, -0.06318, -0.06104, -0.05513, -0.04739, -0.03928, -0.03178, -0.02553, -0.02088, -0.01796, -0.01681, -0.01737, -0.01948, -0.0229, -0.02724, -0.03193, -0.03611, -0.03864, -0.03803, -0.03254, -0.02023, 0.0008609, 0.03244, 0.07569, 0.131, 0.1977, 0.2738, 0.356, 0.44, 0.5206, 0.5922, 0.6495, 0.6879, 0.7044, 0.6975, 0.6677, 0.6174, 0.5504, 0.4718, 0.3869, 0.301, 0.2188, 0.1439, 0.07879, 0.02484, -0.01761, -0.04891, -0.06969, -0.08063, -0.08208, -0.07399, -0.05585, -0.02682, 0.01406, 0.06754, 0.1338, 0.2123, 0.3012, 0.3977, 0.4979, 0.5971, 0.69, 0.7715, 0.8367, 0.882, 0.9049, 0.9043, 0.8808, 0.8364, 0.7742, 0.6982, 0.6129, 0.5227, 0.4319, 0.3442, 0.2628, 0.1897, 0.1265, 0.07369, 0.03123, -0.001444, -0.02522, -0.04114, -0.05019, -0.05319, -0.05069, -0.04294, -0.02991, -0.01145, 0.01264, 0.04237, 0.07739, 0.1169, 0.1594, 0.2031, 0.2454, 0.2838, 0.3156, 0.3384, 0.3505, 0.3509, 0.3396, 0.3176, 0.2866, 0.2489, 0.2072, 0.1641, 0.1221, 0.08303, 0.04831, 0.01865, -0.005761, -0.0251, -0.03974, -0.05001, -0.05602, -0.05751, -0.05375, -0.04361, -0.02563, 0.001723, 0.03982, 0.08947, 0.1507, 0.2223, 0.302, 0.3861, 0.4699, 0.548, 0.6151, 0.666, 0.6966, 0.7046, 0.6891, 0.6516, 0.5949, 0.5235, 0.4427, 0.358, 0.2747, 0.1973, 0.1292, 0.07248, 0.02814, -0.003917, -0.02454, -0.0351, -0.0372, -0.03248, -0.02249, -0.008625, 0.007888, 0.02594, 0.0445, 0.06259, 0.07925, 0.09359, 0.1048, 0.1124, 0.1158, 0.115, 0.1102, 0.102, 0.09092, 0.07801, 0.06416, 0.05029, 0.0372, 0.0255, 0.0156, 0.007694, 0.001772, -0.002319, -0.004839, -0.006102, -0.006431, -0.006129, -0.00545, -0.004594, -0.003706, -0.002877, -0.002158, -0.001568, -0.001106, -0.000758, -0.0005059, -0.0003289, -0.0002085, -0.000129, -7.784e-05], list(map(lambda x: x.value, dos.scalars))) # Delete the data delete_example('VS2.scf') def test_pw_vdw(self): # Parse the results parser = self.get_parser('pw_vdw') # Test the settings self.assertEquals('PWSCF', parser.get_name()) strc = parser.get_output_structure() self.assertEquals(2.46596598034, strc.cell[0][0]) self.assertEquals(2.1355881881239482, strc.cell[1][1]) self.assertEquals(6.4115115488840004, strc.cell[2][2]) self.assertEquals(['C', 'C', 'C', 'C'], strc.get_chemical_symbols()) self.assertEquals('C4', parser.get_composition()) cutoff = parser.get_cutoff_energy() self.assertEquals(45.0, cutoff.scalars[0].value) self.assertEquals('Ry', cutoff.units) self.assertTrue(parser.is_converged().scalars[0].value) energy = parser.get_total_energy() self.assertEquals(-44.61813252, energy.scalars[0].value) self.assertEquals('Ry', energy.units) self.assertEquals(None, parser.uses_SOC()) self.assertEquals(None, parser.is_relaxed()) self.assertEquals('SLA PW PBX PBC', parser.get_xc_functional().scalars[0].value) self.assertEquals(['C.pbe-mt_gipaw.UPF'], list(map(lambda x: x.value, parser.get_pp_name().scalars))) self.assertEquals(4, parser.get_KPPRA().scalars[0].value) self.assertEquals('6.0', parser.get_version_number()) self.assertEquals(None, parser.get_U_settings()) self.assertEquals('Tkatchenko-Scheffler', parser.get_vdW_settings().scalars[0].value) pressure = parser.get_pressure() self.assertEquals(188.77, pressure.scalars[0].value) self.assertEquals('kbar', pressure.units) stresses = parser.get_stresses() self.assertEquals([[185.91, -1.88, 0.0], [-1.88, 183.74, 0.0], [0.0, 0.0, 196.65]], list(map(lambda x: list(map(lambda y: y.value, x)), stresses.matrices[0]))) self.assertEquals('kbar', stresses.units) self.assertEquals(None, parser.get_band_gap()) # Delete the data delete_example('pw_vdw') def test_pw_ldaU(self): # Parse the results parser = self.get_parser('pw_lda+U') # Test the settings self.assertEquals('PWSCF', parser.get_name()) strc = parser.get_output_structure() self.assertEquals(2.1669808346549999, strc.cell[0][0]) self.assertEquals(4.3339616693099998, strc.cell[1][1]) self.assertEquals(['O', 'O', 'Fe', 'Fe'], strc.get_chemical_symbols()) self.assertEquals('Fe2O2', parser.get_composition()) cutoff = parser.get_cutoff_energy() self.assertEquals(30.0, cutoff.scalars[0].value) self.assertEquals('Ry', cutoff.units) self.assertTrue(parser.is_converged().scalars[0].value) energy = parser.get_total_energy() self.assertEquals(-174.47156021, energy.scalars[0].value) self.assertEquals('Ry', energy.units) self.assertEquals(None, parser.uses_SOC()) self.assertEquals(None, parser.is_relaxed()) self.assertEquals('SLA PZ NOGX NOGC', parser.get_xc_functional().scalars[0].value) self.assertEquals(['O.pz-rrkjus.UPF', 'Fe.pz-nd-rrkjus.UPF', 'Fe.pz-nd-rrkjus.UPF'], list(map(lambda x: x.value, parser.get_pp_name().scalars))) self.assertEquals(32, parser.get_KPPRA().scalars[0].value) self.assertEquals('6.0', parser.get_version_number()) U_settings = parser.get_U_settings() self.assertEquals('Simplified', U_settings.Type) self.assertEquals({'Fe2': {'J': 0.0, 'U': 4.3, 'L': 2.0}, 'Fe1': {'J': 0.0, 'U': 4.3, 'L': 2.0}}, U_settings.Values) self.assertEquals(None, parser.get_vdW_settings()) self.assertEquals(None, parser.get_pressure()) self.assertEquals(None, parser.get_stresses()) self.assertEquals(None, parser.get_band_gap()) # Delete the data delete_example('pw_lda+U') if __name__ == '__main__': unittest.main()
470.357977
65,484
0.668983
22,823
120,882
3.533453
0.184507
0.019121
0.006287
0.006535
0.072305
0.069342
0.063216
0.05993
0.056768
0.051684
0
0.666697
0.101843
120,882
256
65,485
472.195313
0.076079
0.003822
0
0.463687
0
0
0.004593
0.000174
0
0
0
0
0.703911
1
0.039106
false
0
0.03352
0
0.083799
0
0
0
0
null
0
0
0
0
0
0
0
0
0
0
1
0
0
0
1
1
1
0
0
0
0
0
0
0
null
0
0
0
1
0
0
0
0
0
0
0
0
0
5
3fe105950fe7c097a0cf82f9fd41aa14438e8996
66
py
Python
qymel/core/__init__.py
hal1932/QyMEL
4fdf2409aaa34516f021a37aac0f011fe6ea6073
[ "MIT" ]
6
2019-12-23T05:20:29.000Z
2021-01-30T21:17:32.000Z
qymel/core/__init__.py
hal1932/QyMEL
4fdf2409aaa34516f021a37aac0f011fe6ea6073
[ "MIT" ]
null
null
null
qymel/core/__init__.py
hal1932/QyMEL
4fdf2409aaa34516f021a37aac0f011fe6ea6073
[ "MIT" ]
1
2020-03-05T08:17:44.000Z
2020-03-05T08:17:44.000Z
# coding: utf-8 from .force_reload import * from .scopes import *
16.5
27
0.727273
10
66
4.7
0.8
0
0
0
0
0
0
0
0
0
0
0.018182
0.166667
66
3
28
22
0.836364
0.19697
0
0
0
0
0
0
0
0
0
0
0
1
0
true
0
1
0
1
0
1
0
0
null
0
0
0
0
0
0
0
0
0
0
0
0
0
1
0
0
0
0
0
0
0
0
0
0
null
0
0
0
0
0
0
1
0
1
0
1
0
0
5
3fe5513bca482d43a59c15049895c9303427b971
85
py
Python
engines/__init__.py
mukeran/simple_sandbox
a2a97d13d814548f313871f0bd5c48f65b1a6180
[ "MIT" ]
null
null
null
engines/__init__.py
mukeran/simple_sandbox
a2a97d13d814548f313871f0bd5c48f65b1a6180
[ "MIT" ]
null
null
null
engines/__init__.py
mukeran/simple_sandbox
a2a97d13d814548f313871f0bd5c48f65b1a6180
[ "MIT" ]
null
null
null
from .watcher import FileWatcher from .fpm_sniffer import FPMSniffer, FPMSnifferMode
28.333333
51
0.858824
10
85
7.2
0.8
0
0
0
0
0
0
0
0
0
0
0
0.105882
85
2
52
42.5
0.947368
0
0
0
0
0
0
0
0
0
0
0
0
1
0
true
0
1
0
1
0
1
0
0
null
0
0
0
0
0
0
0
0
0
0
0
0
0
1
0
0
0
0
0
0
0
0
0
0
null
0
0
0
0
0
0
1
0
1
0
1
0
0
5
3ff942a422edefd4743417af8a01150a5a71f98a
10,122
py
Python
scripts/create_fluseverity_figs_v2/export_zOR_classif_swap.py
eclee25/flu-SDI-exploratory-age
2f5a4d97b84d2116e179e85fe334edf4556aa946
[ "MIT" ]
3
2018-03-29T23:02:43.000Z
2020-08-10T12:01:50.000Z
scripts/create_fluseverity_figs_v2/export_zOR_classif_swap.py
eclee25/flu-SDI-exploratory-age
2f5a4d97b84d2116e179e85fe334edf4556aa946
[ "MIT" ]
null
null
null
scripts/create_fluseverity_figs_v2/export_zOR_classif_swap.py
eclee25/flu-SDI-exploratory-age
2f5a4d97b84d2116e179e85fe334edf4556aa946
[ "MIT" ]
null
null
null
#!/usr/bin/python ############################################## ###Python template ###Author: Elizabeth Lee ###Date: 10/14/14 ###Function: Export zOR retrospective and early warning classifications into csv file format (SDI and ILINet, national and regional for SDI) ### Use nation-level peak-based retrospective classification for SDI region analysis # 10/14/14 swap OR age groups ###Import data: R_export/OR_zip3_week_outpatient_cl.csv, R_export/allpopstat_zip3_season_cl.csv #### These data were cleaned with data_extraction/clean_OR_hhsreg_week_outpatient.R and exported with OR_zip3_week.sql #### allpopstat_zip3_season_cl.csv includes child, adult, and other populations; popstat_zip3_season_cl.csv includes only child and adult populations ###Command Line: python export_zOR_classif_swap.py ############################################## ### notes ### # Incidence per 100,000 is normalized by total population by second calendar year of the flu season ### packages/modules ### import csv ## local modules ## import functions_v2 as fxn ### data structures ### ### called/local plotting parameters ### nw = fxn.gp_normweeks # number of normalization weeks in baseline period ### functions ### def print_dict_to_file(dic, filename): with open(filename, 'w+') as fwriter: fwriter.write("season,mn_retro,mn_early\n") for key, value in dic.items(): fwriter.write("%s,%s,%s\n" % (key, value[0], value[1])) def print_dict_to_file2(dic, filename): with open(filename, 'w+') as fwriter: fwriter.write("season,region,mn_retro,mn_early\n") for key, value in dic.items(): fwriter.write("%s,%s,%s,%s\n" % (key[0], key[1], value[0], value[1])) def print_dict_to_file3(dic, filename): with open(filename, 'w+') as fwriter: fwriter.write('season,state,mn_retro,mn_early\n') for key, value in dic.items(): fwriter.write("%s,%s,%s,%s\n" % (key[0], key[1], value[0], value[1])) ############################################## # SDI NATIONAL # national files incidin = open('/home/elee/Dropbox/Elizabeth_Bansal_Lab/SDI_Data/explore/SQL_export/OR_allweeks_outpatient.csv','r') incid = csv.reader(incidin, delimiter=',') popin = open('/home/elee/Dropbox/Elizabeth_Bansal_Lab/SDI_Data/explore/SQL_export/totalpop_age.csv', 'r') pop = csv.reader(popin, delimiter=',') thanksin=open('/home/elee/Dropbox/My_Bansal_Lab/Clean_Data_for_Import/ThanksgivingWeekData_cl.csv', 'r') thanksin.readline() # remove header thanks=csv.reader(thanksin, delimiter=',') # dict_wk[week] = seasonnum, dict_incid[week] = ILI cases per 10,000 in US population in second calendar year of flu season, dict_OR[week] = OR d_wk, d_incid, d_OR = fxn.week_OR_processing(incid, pop) d_zOR = fxn.week_zOR_processing(d_wk, d_OR) # d_incid53ls[seasonnum] = [ILI wk 40 per 100000, ILI wk 41 per 100000,...], d_OR53ls[seasonnum] = [OR wk 40, OR wk 41, ...], d_zOR53ls[seasonnum] = [zOR wk 40, zOR wk 41, ...] d_incid53ls, d_OR53ls, d_zOR53ls = fxn.week_plotting_dicts(d_wk, d_incid, d_OR, d_zOR) # d_classifzOR[seasonnum] = (mean retrospective zOR, mean early warning zOR) d_classifzOR = fxn.classif_zOR_processing(d_wk, d_incid53ls, d_zOR53ls, thanks) # ############################################## # # ILINet NATIONAL # # national files # incidin = open('/home/elee/Dropbox/Elizabeth_Bansal_Lab/CDC_Source/Import_Data/all_cdc_source_data.csv','r') # incidin.readline() # remove header # incid = csv.reader(incidin, delimiter=',') # popin = open('/home/elee/Dropbox/Elizabeth_Bansal_Lab/Census/Import_Data/totalpop_age_Census_98-14.csv', 'r') # pop = csv.reader(popin, delimiter=',') # thanksin=open('/home/elee/Dropbox/My_Bansal_Lab/Clean_Data_for_Import/ThanksgivingWeekData_cl.csv', 'r') # thanksin.readline() # remove header # thanks=csv.reader(thanksin, delimiter=',') # # dict_wk[week] = seasonnum, dict_incid[week] = ILI cases per 10,000 in US population in second calendar year of flu season, dict_OR[week] = OR # d_wk, d_incid, d_OR = fxn.ILINet_week_OR_processing(incid, pop) # d_zOR = fxn.week_zOR_processing(d_wk, d_OR) # # d_incid53ls[seasonnum] = [ILI wk 40 per 100000, ILI wk 41 per 100000,...], d_OR53ls[seasonnum] = [OR wk 40, OR wk 41, ...], d_zOR53ls[seasonnum] = [zOR wk 40, zOR wk 41, ...] # d_incid53ls, d_OR53ls, d_zOR53ls = fxn.week_plotting_dicts(d_wk, d_incid, d_OR, d_zOR) # # d_ILINet_classifzOR[seasonnum] = (mean retrospective zOR, mean early warning zOR) # d_ILINet_classifzOR = fxn.classif_zOR_processing(d_wk, d_incid53ls, d_zOR53ls, thanks) ############################################## # SDI REGION: region-level peak-basesd retrospective classification # regional files reg_incidin = open('/home/elee/Dropbox/Elizabeth_Bansal_Lab/SDI_Data/explore/R_export/OR_zip3_week_outpatient_cl.csv', 'r') reg_incidin.readline() regincid = csv.reader(reg_incidin, delimiter=',') reg_popin = open('/home/elee/Dropbox/Elizabeth_Bansal_Lab/SDI_Data/explore/R_export/allpopstat_zip3_season_cl.csv','r') reg_popin.readline() regpop = csv.reader(reg_popin, delimiter=',') # national files incidin = open('/home/elee/Dropbox/Elizabeth_Bansal_Lab/SDI_Data/explore/SQL_export/OR_allweeks_outpatient.csv','r') incid = csv.reader(incidin, delimiter=',') popin = open('/home/elee/Dropbox/Elizabeth_Bansal_Lab/SDI_Data/explore/SQL_export/totalpop_age.csv', 'r') pop = csv.reader(popin, delimiter=',') thanksin=open('/home/elee/Dropbox/My_Bansal_Lab/Clean_Data_for_Import/ThanksgivingWeekData_cl.csv', 'r') thanksin.readline() # remove header thanks=csv.reader(thanksin, delimiter=',') # dict_wk[week] = seasonnum, dict_incid[week] = ILI cases per 10,000 in US population in second calendar year of flu season, dict_OR[week] = OR d_wk, d_incid, d_OR = fxn.week_OR_processing(incid, pop) d_zOR = fxn.week_zOR_processing(d_wk, d_OR) # d_incid53ls[seasonnum] = [ILI wk 40 per 100000, ILI wk 41 per 100000,...], d_OR53ls[seasonnum] = [OR wk 40, OR wk 41, ...], d_zOR53ls[seasonnum] = [zOR wk 40, zOR wk 41, ...] d_incid53ls, d_OR53ls, d_zOR53ls = fxn.week_plotting_dicts(d_wk, d_incid, d_OR, d_zOR) _, d_zip3_reg, d_incid_reg, d_OR_reg = fxn.week_OR_processing_region(regincid, regpop) # dict_zOR_reg[(week, hhsreg)] = zOR d_zOR_reg = fxn.week_zOR_processing_region(d_wk, d_OR_reg) # dict_incid53ls_reg[(seasonnum, region)] = [ILI wk 40, ILI wk 41,...], dict_OR53ls_reg[(seasonnum, region)] = [OR wk 40, OR wk 41, ...], dict_zOR53ls_reg[(seasonnum, region)] = [zOR wk 40, zOR wk 41, ...] d_incid53ls_reg, d_OR53ls_reg, d_zOR53ls_reg = fxn.week_plotting_dicts_region(d_wk, d_incid_reg, d_OR_reg, d_zOR_reg) # dict_classifindex[seasonnum] = (index of first retro period week, index of first early warning period week) d_classifindex = fxn.classif_zOR_index(d_wk, d_incid53ls, d_incid53ls_reg, 'region', thanks) # d_classifzOR_reg[(seasonnum, region)] = (mean retrospective zOR, mean early warning zOR) d_classifzOR_reg = fxn.classif_zOR_region_processing(d_classifindex, d_wk, d_zOR53ls_reg) ############################################## # SDI STATE: state-level peak-basesd retrospective classification # import same files as regional files reg_incidin = open('/home/elee/Dropbox/Elizabeth_Bansal_Lab/SDI_Data/explore/R_export/OR_zip3_week_outpatient_cl.csv', 'r') reg_incidin.readline() regincid = csv.reader(reg_incidin, delimiter=',') reg_popin = open('/home/elee/Dropbox/Elizabeth_Bansal_Lab/SDI_Data/explore/R_export/allpopstat_zip3_season_cl.csv','r') reg_popin.readline() regpop = csv.reader(reg_popin, delimiter=',') # national files incidin = open('/home/elee/Dropbox/Elizabeth_Bansal_Lab/SDI_Data/explore/SQL_export/OR_allweeks_outpatient.csv','r') incid = csv.reader(incidin, delimiter=',') popin = open('/home/elee/Dropbox/Elizabeth_Bansal_Lab/SDI_Data/explore/SQL_export/totalpop_age.csv', 'r') pop = csv.reader(popin, delimiter=',') thanksin=open('/home/elee/Dropbox/My_Bansal_Lab/Clean_Data_for_Import/ThanksgivingWeekData_cl.csv', 'r') thanksin.readline() # remove header thanks=csv.reader(thanksin, delimiter=',') # dict_wk[week] = seasonnum, dict_incid[week] = ILI cases per 10,000 in US population in second calendar year of flu season, dict_OR[week] = OR d_wk, d_incid, d_OR = fxn.week_OR_processing(incid, pop) d_zOR = fxn.week_zOR_processing(d_wk, d_OR) # d_incid53ls[seasonnum] = [ILI wk 40 per 100000, ILI wk 41 per 100000,...], d_OR53ls[seasonnum] = [OR wk 40, OR wk 41, ...], d_zOR53ls[seasonnum] = [zOR wk 40, zOR wk 41, ...] d_incid53ls, d_OR53ls, d_zOR53ls = fxn.week_plotting_dicts(d_wk, d_incid, d_OR, d_zOR) _, d_zip3_reg, d_incid_state, d_OR_state = fxn.week_OR_processing_state(regincid, regpop) # dict_zOR_state[(week, state)] = zOR d_zOR_state = fxn.week_zOR_processing_state(d_wk, d_OR_state) # dict_incid53ls_state[(seasonnum, state)] = [ILI wk 40, ILI wk 41,...], dict_OR53ls_reg[(seasonnum, state)] = [OR wk 40, OR wk 41, ...], dict_zOR53ls_state[(seasonnum, state)] = [zOR wk 40, zOR wk 41, ...] d_incid53ls_state, d_OR53ls_state, d_zOR53ls_state = fxn.week_plotting_dicts_state(d_wk, d_incid_state, d_OR_state, d_zOR_state) # dict_classifindex[seasonnum] = (index of first retro period week, index of first early warning period week) d_classifindex = fxn.classif_zOR_index_state(d_wk, d_incid53ls, d_incid53ls_state, 'state', thanks) # d_classifzOR_state[(seasonnum, state)] = (mean retrospective zOR, mean early warning zOR) d_classifzOR_state = fxn.classif_zOR_state_processing(d_classifindex, d_wk, d_zOR53ls_state) ############################################## print d_classifzOR print d_classifzOR_reg fn1 = '/home/elee/Dropbox/Elizabeth_Bansal_Lab/SDI_Data/explore/Py_export/SDI_national_classifications_%s_swap.csv' %(nw) print_dict_to_file(d_classifzOR, fn1) # fn2 = '/home/elee/Dropbox/Elizabeth_Bansal_Lab/SDI_Data/explore/Py_export/ILINet_national_classifications_%s_swap.csv' %(nw) # print_dict_to_file(d_ILINet_classifzOR, fn2) fn3 = '/home/elee/Dropbox/Elizabeth_Bansal_Lab/SDI_Data/explore/Py_export/SDI_regional_classifications_%sreg_swap.csv' %(nw) print_dict_to_file2(d_classifzOR_reg, fn3) fn4 = '/home/elee/Dropbox/Elizabeth_Bansal_Lab/SDI_Data/explore/Py_export/SDI_state_classifications_%sst_swap.csv' %(nw) print_dict_to_file3(d_classifzOR_state, fn4)
59.893491
206
0.742936
1,581
10,122
4.473118
0.11575
0.009333
0.012443
0.042986
0.757919
0.737557
0.717477
0.703479
0.684531
0.665724
0
0.031479
0.096127
10,122
169
207
59.893491
0.741502
0.449318
0
0.632911
0
0
0.322424
0.307033
0
0
0
0
0
0
null
null
0
0.063291
null
null
0.101266
0
0
0
null
0
0
0
0
1
1
1
0
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
null
0
0
0
0
1
0
0
0
0
0
0
0
0
5
b79b4b3441162b8ce9025428d639fcec36693cf3
42
py
Python
tests/__init__.py
chasefinch/amp-renderer
a226140d8a8a6f8c21c073e394b672cf75c8671e
[ "Apache-2.0" ]
13
2020-08-19T18:37:01.000Z
2021-12-10T17:33:14.000Z
tests/__init__.py
chasefinch/amp-renderer
a226140d8a8a6f8c21c073e394b672cf75c8671e
[ "Apache-2.0" ]
5
2020-08-24T18:31:12.000Z
2022-02-07T17:36:59.000Z
tests/__init__.py
chasefinch/amp-renderer
a226140d8a8a6f8c21c073e394b672cf75c8671e
[ "Apache-2.0" ]
null
null
null
"""Tests for the AMP Renderer project."""
21
41
0.690476
6
42
4.833333
1
0
0
0
0
0
0
0
0
0
0
0
0.142857
42
1
42
42
0.805556
0.833333
0
null
0
null
0
0
null
0
0
0
null
1
null
true
0
0
null
null
null
1
1
0
null
0
0
0
0
0
0
0
0
0
0
0
0
0
1
0
0
0
1
0
0
0
0
0
0
null
0
0
0
0
0
0
1
0
0
0
0
0
0
5
b7a964ee74b74803fefa91500045e19a16c2244a
85,945
py
Python
regions.py
greggy/python-ipgeobase
593e4dc7e55e0c90a1979e586f03c013f6ac057a
[ "BSD-3-Clause" ]
1
2017-11-12T11:26:25.000Z
2017-11-12T11:26:25.000Z
regions.py
greggy/python-ipgeobase
593e4dc7e55e0c90a1979e586f03c013f6ac057a
[ "BSD-3-Clause" ]
null
null
null
regions.py
greggy/python-ipgeobase
593e4dc7e55e0c90a1979e586f03c013f6ac057a
[ "BSD-3-Clause" ]
null
null
null
# -*- coding: utf-8 -*- REGIONS = {'USRI': 'Rhode Island', 'UY02': 'Canelones', 'KR21': 'Ulsan-gwangyoksi', 'KR20': 'Kyongsang-namdo', 'KM02': 'Grande Comore', 'KM03': 'Moheli', 'CO22': 'Putumayo', 'BN18': 'Zou', 'BN17': 'Plateau', 'BN16': 'Oueme', 'BN15': 'Tutong', 'BN14': 'Littoral', 'BN13': 'Donga', 'BN12': 'Kouffo', 'BN11': 'Collines', 'BN10': 'Temburong', 'KP09': 'Kangwon-do', 'KP08': 'Kaesong-si', 'KP07': 'Hwanghae-bukto', 'KP06': 'Hwanghae-namdo', 'KP01': 'Chagang-do', 'KP03': 'Hamgyong-namdo', 'IS40': 'Norourland Eystra', 'CO28': 'Tolima', 'TH77': 'Amnat Charoen', 'CO29': 'Valle del Cauca', 'TH76': 'Udon Thani', 'IS44': 'Vestfiroir', 'IS45': 'Vesturland', 'MK80': 'Plasnica', 'MK81': 'Podares', 'MK82': 'Prilep', 'MK83': 'Probistip', 'MK84': 'Radovis', 'MK85': 'Rankovce', 'MK86': 'Resen', 'MK87': 'Rosoman', 'MK88': 'Rostusa', 'MK89': 'Samokov', 'NG23': 'Kaduna', 'NG22': 'Cross River', 'SZ05': 'Praslin', 'SZ04': 'Shiselweni', 'SZ03': 'Manzini', 'SZ02': 'Lubombo', 'SZ01': 'Hhohho', 'NG26': 'Benue', 'BG41': 'Gabrovo', 'BG40': 'Dobrich', 'BG43': 'Khaskovo', 'BG42': 'Grad Sofiya', 'BG45': 'Kyustendil', 'BG44': 'Kurdzhali', 'BG47': 'Montana', 'BG46': 'Lovech', 'BG49': 'Pernik', 'BG48': 'Pazardzhik', 'NG24': 'Katsina', 'DO19': 'Salcedo', 'KH18': 'Svay Rieng', 'KH19': 'Takeo', 'KH12': 'Pursat', 'KH13': 'Preah Vihear', 'KH10': 'Mondulkiri', 'KH11': 'Phnum Penh', 'KH16': 'Siem Reap', 'KH17': 'Stung Treng', 'KH14': 'Prey Veng', 'KH15': 'Ratanakiri Kiri', 'GN15': 'Kerouane', 'GN16': 'Kindia', 'GN17': 'Kissidougou', 'GN10': 'Forecariah', 'GN11': 'Fria', 'GN12': 'Gaoual', 'GN13': 'Gueckedou', 'GN18': 'Koundara', 'GN19': 'Kouroussa', 'GBR1': 'Ballymoney', 'GBR3': 'Belfast', 'GBR2': 'Banbridge', 'GBR5': 'Castlereagh', 'GBR4': 'Carrickfergus', 'GBR7': 'Cookstown', 'GBR6': 'Coleraine', 'GBR9': 'Down', 'GBR8': 'Craigavon', 'CZ87': 'Plzensky kraj', 'CZ86': 'Pardubicky kraj', 'CZ85': 'Moravskoslezsky kraj', 'CZ84': 'Olomoucky kraj', 'CZ83': 'Liberecky kraj', 'CZ82': 'Kralovehradecky kraj', 'CZ81': 'Karlovarsky kraj', 'CZ80': 'Vysocina', 'CZ89': 'Ustecky kraj', 'CZ88': 'Stredocesky kraj', 'MD87': 'Soroca', 'MD86': 'Soldanesti', 'MD85': 'Singerei', 'MD84': 'Riscani', 'MD83': 'Rezina', 'MD81': 'Ocnita', 'MD80': 'Nisporeni', 'VN55': 'Binh Thuan', 'MD89': 'Straseni', 'MD88': 'Stefan-Voda', 'CN09': 'Henan', 'CN08': 'Heilongjiang', 'CN03': 'Jiangxi', 'CN02': 'Zhejiang', 'CN01': 'Anhui', 'CN07': 'Fujian', 'CN06': 'Qinghai', 'CN05': 'Jilin', 'CN04': 'Jiangsu', 'DE04': 'Hamburg', 'VN50': 'Vinh Phu', 'PE09': 'Huancavelica', 'PE08': 'Cusco', 'PE01': 'Amazonas', 'PE03': 'Apurimac', 'PE02': 'Ancash', 'PE05': 'Ayacucho', 'PE04': 'Arequipa', 'PE07': 'Callao', 'PE06': 'Cajamarca', 'AE02': 'Ajman', 'DE08': 'Rheinland-Pfalz', 'AE01': 'Abu Dhabi', 'AE06': 'Sharjah', 'AE07': 'Umm Al Quwain', 'GY19': 'Upper Takutu-Upper Essequibo', 'GY18': 'Upper Demerara-Berbice', 'AE04': 'Fujairah', 'AF08': 'Ghazni', 'GY13': 'East Berbice-Corentyne', 'GY12': 'Demerara-Mahaica', 'GY11': 'Cuyuni-Mazaruni', 'GY10': 'Barima-Waini', 'GY17': 'Potaro-Siparuni', 'GY16': 'Pomeroon-Supenaam', 'GY15': 'Mahaica-Berbice', 'GY14': 'Essequibo Islands-West Demerara', 'BI10': 'Bururi', 'BI11': 'Cankuzo', 'BI12': 'Cibitoke', 'BI13': 'Gitega', 'BI14': 'Karuzi', 'BI15': 'Kayanza', 'BI16': 'Kirundo', 'BI17': 'Makamba', 'BI18': 'Muyinga', 'BI19': 'Ngozi', 'IE02': 'Cavan', 'USSC': 'South Carolina', 'AF02': 'Badghis', 'USSD': 'South Dakota', 'IE06': 'Donegal', 'IE04': 'Cork', 'MK93': 'Sopotnica', 'MK92': 'Sopiste', 'MK91': 'Sipkovica', 'MK90': 'Saraj', 'MK97': 'Staro Nagoricane', 'MK96': 'Star Dojran', 'MK95': 'Staravina', 'MK94': 'Srbinovo', 'MK99': 'Struga', 'MK98': 'Stip', 'CD01': 'Bandundu', 'KG01': 'Bishkek', 'CD05': 'Katanga', 'CD04': 'Kasai-Oriental', 'CD06': 'Kinshasa', 'SD32': 'Bahr al Ghazal', 'LB02': 'Al Janub', 'LB03': 'Liban-Nord', 'LB01': 'Beqaa', 'LB06': 'Liban-Sud', 'LB07': 'Nabatiye', 'LB04': 'Beyrouth', 'LB05': 'Mont-Liban', 'LB08': 'Beqaa', 'LB09': 'Liban-Nord', 'KH05': 'Kampong Thum', 'KH04': 'Kampong Speu', 'KH07': 'Kandal', 'KH06': 'Kampot', 'KH01': 'Batdambang', 'KH03': 'Kampong Chhnang', 'KH02': 'Kampong Cham', 'KH09': 'Kracheh', 'KH08': 'Koh Kong', 'PT02': 'Aveiro', 'PT03': 'Beja', 'PT04': 'Braga', 'PT05': 'Braganca', 'PT06': 'Castelo Branco', 'PT07': 'Coimbra', 'PT08': 'Evora', 'PT09': 'Faro', 'GN07': 'Dinguiraye', 'GN06': 'Dalaba', 'GN05': 'Dabola', 'GN04': 'Conakry', 'GN03': 'Boke', 'GN02': 'Boffa', 'GN01': 'Beyla', 'GN09': 'Faranah', 'SI17': 'Crnomelj', 'SI16': 'Crna na Koroskem', 'SK06': 'Trencin', 'SK07': 'Trnava', 'SK04': 'Nitra', 'SK05': 'Presov', 'SK02': 'Bratislava', 'SK03': 'Kosice', 'SK01': 'Banska Bystrica', 'SK08': 'Zilina', 'GBW5': 'South Lanarkshire', 'MX27': 'Tabasco', 'CN32': 'Sichuan', 'CN33': 'Chongqing', 'CN30': 'Guangdong', 'CN31': 'Hainan', 'BH17': 'Al Janubiyah', 'VE18': 'Portuguesa', 'VE19': 'Sucre', 'VE11': 'Falcon', 'VE12': 'Guarico', 'VE13': 'Lara', 'VE14': 'Merida', 'VE15': 'Miranda', 'VE16': 'Monagas', 'VE17': 'Nueva Esparta', 'BH16': 'Al Asimah', 'NE07': 'Zinder', 'MX10': 'Durango', 'MX11': 'Guanajuato', 'MX12': 'Guerrero', 'MX13': 'Hidalgo', 'MX14': 'Jalisco', 'MX15': 'Mexico', 'MX16': 'Michoacan de Ocampo', 'MX17': 'Morelos', 'MX18': 'Nayarit', 'MX19': 'Nuevo Leon', 'DZ55': 'Tipaza', 'BI02': 'Bujumbura', 'BI09': 'Bubanza', 'CV10': 'Sao Nicolau', 'CV11': 'Sao Vicente', 'CV13': 'Mosteiros', 'CV14': 'Praia', 'CV15': 'Santa Catarina', 'CV16': 'Santa Cruz', 'CV17': 'Sao Domingos', 'CV18': 'Sao Filipe', 'CV19': 'Sao Miguel', 'PHB8': 'Cotabato', 'PHB9': 'Dagupan', 'PHB3': 'Calbayog', 'ER01': 'Anseba', 'ER03': "Debubawi K'eyih Bahri", 'ER02': 'Debub', 'ER05': "Ma'akel", 'ER04': 'Gash Barka', 'ER06': "Semenawi K'eyih Bahri", 'NE08': 'Niamey', 'TH80': 'Sa Kaeo', 'PHB5': 'Canlaon', 'TD08': 'Logone Occidental', 'TD09': 'Logone Oriental', 'TD04': 'Chari-Baguirmi', 'TD05': 'Guera', 'TD06': 'Kanem', 'TD07': 'Lac', 'TD01': 'Batha', 'TD02': 'Biltine', 'TD03': 'Borkou-Ennedi-Tibesti', 'LB11': 'Baalbek-Hermel', 'LB10': 'Aakk', 'PT13': 'Leiria', 'PT11': 'Guarda', 'PT10': 'Madeira', 'PT17': 'Porto', 'PT16': 'Portalegre', 'PT14': 'Lisboa', 'PT19': 'Setubal', 'PT18': 'Santarem', 'GN32': 'Kankan', 'GN33': 'Koubia', 'GN30': 'Coyah', 'GN31': 'Dubreka', 'GN36': 'Lola', 'GN37': 'Mandiana', 'GN34': 'Labe', 'GN35': 'Lelouma', 'GN38': 'Nzerekore', 'GN39': 'Siguiri', 'MW22': 'Salima', 'ES56': 'Catalonia', 'ES55': 'Castilla y Leon', 'JM14': 'Saint Thomas', 'ES54': 'Castilla-La Mancha', 'JP47': 'Okinawa', 'MW26': 'Balaka', 'JM16': 'Westmoreland', 'ES52': 'Aragon', 'CN21': 'Ningxia', 'CN20': 'Nei Mongol', 'CN23': 'Shanghai', 'CN22': 'Beijing', 'CN25': 'Shandong', 'CN24': 'Shanxi', 'CN26': 'Shaanxi', 'CN29': 'Yunnan', 'CN28': 'Tianjin', 'JM11': 'Saint Elizabeth', 'LT59': 'Marijampoles Apskritis', 'LT58': 'Klaipedos Apskritis', 'JM12': 'Saint James', 'VE03': 'Apure', 'VE02': 'Anzoategui', 'VE01': 'Amazonas', 'JP41': 'Tottori', 'LT57': 'Kauno Apskritis', 'LT56': 'Alytaus Apskritis', 'VE05': 'Barinas', 'VE04': 'Aragua', 'FRB2': 'Lorraine', 'FRB1': 'Limousin', 'VN54': 'Binh Dinh', 'FRB6': 'Picardie', 'FRB7': 'Poitou-Charentes', 'EC08': 'El Oro', 'EC09': 'Esmeraldas', 'FRB4': 'Nord-Pas-de-Calais', 'EC01': 'Galapagos', 'EC02': 'Azuay', 'EC03': 'Bolivar', 'EC04': 'Canar', 'EC05': 'Carchi', 'EC06': 'Chimborazo', 'EC07': 'Cotopaxi', 'MX03': 'Baja California Sur', 'MX02': 'Baja California', 'MX01': 'Aguascalientes', 'MX07': 'Coahuila de Zaragoza', 'MX06': 'Chihuahua', 'MX05': 'Chiapas', 'MX04': 'Campeche', 'CAPE': 'Prince Edward Island', 'MX09': 'Distrito Federal', 'MX08': 'Colima', 'SI66': 'Loski Potok', 'SI64': 'Logatec', 'ZM07': 'Southern', 'ZM06': 'North-Western', 'SI62': 'Ljubno', 'ZM05': 'Northern', 'PA06': 'Herrera', 'PA01': 'Bocas del Toro', 'UG90': 'Mukono', 'CV02': 'Brava', 'CV01': 'Boa Vista', 'KY08': 'Western', 'ZM01': 'Western', 'CV05': 'Paul', 'CV04': 'Maio', 'KY04': 'South Town', 'KY05': 'Spot Bay', 'KY06': 'Stake Bay', 'CV08': 'Sal', 'KY01': 'Creek', 'KY02': 'Eastern', 'KY03': 'Midland', 'US44': 'Rhode Island', 'MZ03': 'Inhambane', 'US47': 'Tennessee', 'US40': 'Oklahoma', 'US41': 'Oregon', 'US42': 'Pennsylvania', 'IQ08': 'Dahuk', 'IQ09': 'Dhi Qar', 'IQ06': 'Babil', 'IQ07': 'Baghdad', 'IQ04': 'Al Qadisiyah', 'IQ05': 'As Sulaymaniyah', 'IQ02': 'Al Basrah', 'LA14': 'Xiangkhoang', 'IQ01': 'Al Anbar', 'TD14': 'Tandjile', 'TD13': 'Salamat', 'TD12': 'Ouaddai', 'TD11': 'Moyen-Chari', 'TD10': 'Mayo-Kebbi', 'GT22': 'Zacapa', 'GT21': 'Totonicapan', 'GT20': 'Suchitepequez', 'GBA8': 'Blackburn with Darwen', 'GBA9': 'Blackpool', 'PT22': 'Viseu', 'PT23': 'Azores', 'PT20': 'Viana do Castelo', 'PT21': 'Vila Real', 'GN29': 'Yomou', 'GN28': 'Tougue', 'EE10': 'Parnu', 'GN25': 'Pita', 'GN27': 'Telimele', 'GN21': 'Macenta', 'GBA2': 'Barnet', 'GN23': 'Mamou', 'GN22': 'Mali', 'GR47': 'Dhodhekanisos', 'GBA3': 'Barnsley', 'GR46': 'Lasithi', 'GBA4': 'Bath and North East Somerset', 'GBA5': 'Bedfordshire', 'GR44': 'Rethimni', 'GBA6': 'Bexley', 'GBA7': 'Birmingham', 'AD08': 'Escaldes-Engordany', 'AD03': 'Encamp', 'AD02': 'Canillo', 'AD07': 'Andorra la Vella', 'AD06': 'Sant Julia de Loria', 'AD05': 'Ordino', 'AD04': 'La Massana', 'CG08': 'Plateaux', 'LY57': 'Gharyan', 'CG01': 'Bouenza', 'CG06': 'Likouala', 'CG07': 'Niari', 'CG04': 'Kouilou', 'CG05': 'Lekoumou', 'VN44': 'Dac Lac', 'VN45': 'Dong Nai', 'LT64': 'Utenos Apskritis', 'LT65': 'Vilniaus Apskritis', 'LT62': 'Taurages Apskritis', 'LT63': 'Telsiu Apskritis', 'LT60': 'Panevezio Apskritis', 'LT61': 'Siauliu Apskritis', 'VN49': 'Song Be', 'JP28': 'Nara', 'JP29': 'Niigata', 'JP24': 'Miyagi', 'JP25': 'Miyazaki', 'JP26': 'Nagano', 'JP27': 'Nagasaki', 'JP20': 'Kochi', 'JP21': 'Kumamoto', 'JP22': 'Kyoto', 'JP23': 'Mie', 'EC19': 'Tungurahua', 'EC18': 'Pichincha', 'EC13': 'Los Rios', 'EC12': 'Loja', 'EC11': 'Imbabura', 'EC10': 'Guayas', 'EC17': 'Pastaza', 'EC15': 'Morona-Santiago', 'EC14': 'Manabi', 'SI04': 'Bohinj', 'SI05': 'Borovnica', 'SI06': 'Bovec', 'SI07': 'Brda', 'SI01': 'Ajdovscina', 'SI02': 'Beltinci', 'SI03': 'Bled', 'MX32': 'Zacatecas', 'SI09': 'Brezovica', 'MX30': 'Veracruz-Llave', 'MX31': 'Yucatan', 'DO18': 'Puerto Plata', 'PHA9': 'Cabanatuan', 'PHA8': 'Butuan', 'PHA7': 'Batangas City', 'PHA6': 'Basilan City', 'PHA5': 'Bais', 'PHA4': 'Baguio', 'PHA3': 'Bago', 'PHA2': 'Bacolod', 'PHA1': 'Angeles', 'JP42': 'Toyama', 'BI21': 'Ruyigi', 'BI20': 'Rutana', 'BI23': 'Mwaro', 'BI22': 'Muramvya', 'PA10': 'Veraguas', 'MZ10': 'Manica', 'MZ11': 'Maputo', 'IQ18': 'Salah ad Din', 'PH29': 'Ilocos Sur', 'IQ11': 'Arbil', 'IQ10': 'Diyala', 'IQ13': "At Ta'mim", 'IQ12': "Karbala'", 'IQ15': 'Ninawa', 'IQ14': 'Maysan', 'IQ17': 'An Najaf', 'IQ16': 'Wasit', 'TJ02': 'Khatlon', 'TJ03': 'Sughd', 'TJ01': 'Kuhistoni Badakhshon', 'GT12': 'Peten', 'GT13': 'Quetzaltenango', 'GT10': 'Jalapa', 'GT11': 'Jutiapa', 'GT16': 'Sacatepequez', 'GT17': 'San Marcos', 'GT14': 'Quiche', 'GT15': 'Retalhuleu', 'GT18': 'Santa Rosa', 'GT19': 'Solola', 'PSWE': 'West Bank', 'PY23': 'Alto Paraguay', 'PY21': 'Nueva Asuncion', 'PY20': 'Chaco', 'QA06': 'Ar Rayyan', 'QA04': 'Al Khawr', 'QA05': 'Al Wakrah Municipality', 'QA02': 'Al Ghuwariyah', 'QA03': 'Al Jumaliyah', 'QA01': 'Ad Dawhah', 'QA08': 'Madinat ach Shamal', 'QA09': 'Umm Salal', 'GBU5': 'East Dunbartonshire', 'UY03': 'Cerro Largo', 'UY01': 'Artigas', 'UY06': 'Flores', 'UY07': 'Florida', 'UY04': 'Colonia', 'UY05': 'Durazno', 'UY08': 'Lavalleja', 'UY09': 'Maldonado', 'CH10': 'Inner-Rhoden', 'GBU6': 'East Lothian', 'CH11': 'Luzern', 'CG14': 'Cuvette-Ouest', 'CG11': 'Pool', 'CG10': 'Sangha', 'CG13': 'Cuvette', 'CG12': 'Brazzaville', 'UA24': "Volyns'ka Oblast'", 'UA25': "Zakarpats'ka Oblast'", 'UA26': "Zaporiz'ka Oblast'", 'UA27': "Zhytomyrs'ka Oblast'", 'UA20': "Sevastopol'", 'UA21': "Sums'ka Oblast'", 'UA22': "Ternopil's'ka Oblast'", 'UA23': "Vinnyts'ka Oblast'", 'IT20': 'Veneto', 'US11': 'District of Columbia', 'VE21': 'Trujillo', 'VE20': 'Tachira', 'VE23': 'Zulia', 'VE22': 'Yaracuy', 'VE25': 'Distrito Federal', 'VN52': 'Ho Chi Minh', 'VN51': 'Ha Noi', 'VE26': 'Vargas', 'VN59': 'Ha Tay', 'VN58': 'Ha Giang', 'LY62': 'Yafran', 'JP39': 'Tokushima', 'JP38': 'Tochigi', 'JP37': 'Shizuoka', 'JP36': 'Shimane', 'JP35': 'Shiga', 'JP34': 'Saitama', 'JP33': 'Saga', 'JP32': 'Osaka', 'JP31': 'Okayama', 'JP30': 'Oita', 'MX29': 'Tlaxcala', 'MX28': 'Tamaulipas', 'SI15': 'Crensovci', 'SI14': 'Cerkno', 'SI13': 'Cerknica', 'SI12': 'Cerklje na Gorenjskem', 'SI11': 'Celje', 'MX21': 'Puebla', 'MX20': 'Oaxaca', 'MX23': 'Quintana Roo', 'MX22': 'Queretaro de Arteaga', 'MX25': 'Sinaloa', 'MX24': 'San Luis Potosi', 'SI19': 'Divaca', 'MX26': 'Sonora', 'LY60': 'Surt', 'MD61': 'Basarabeasca', 'MD60': 'Balti', 'MD63': 'Briceni', 'KN10': 'Saint Paul Charlestown', 'KN11': 'Saint Peter Basseterre', 'KN12': 'Saint Thomas Lowland', 'MD62': 'Bender', 'KN15': 'Trinity Palmetto Point', 'PHB2': 'Cagayan de Oro', 'MD65': 'Cantemir', 'PHB1': 'Cadiz', 'PHB6': 'Cavite City', 'PHB7': 'Cebu City', 'PHB4': 'Caloocan', 'MD64': 'Cahul', 'CI75': 'Bafing', 'CI74': 'Agneby', 'CI77': 'Denguele', 'CI76': 'Bas-Sassandra', 'CI79': 'Fromager', 'CI78': 'Dix-Huit Montagnes', 'FRB5': 'Pays de la Loire', 'EC24': 'Orellana', 'EC22': 'Sucumbios', 'EC23': 'Napo', 'EC20': 'Zamora-Chinchipe', 'CV20': 'Tarrafal', 'KW02': 'Al Kuwayt', 'KW01': 'Al Ahmadi', 'KW07': 'Al Farwaniyah', 'KW05': 'Al Jahra', 'CH19': 'Thurgau', 'KW08': 'Hawalli', 'KW09': 'Mubarak al Kabir', 'PA09': 'San Blas', 'PA08': 'Panama', 'ZM09': 'Lusaka', 'ZM08': 'Copperbelt', 'PA05': 'Darien', 'PA04': 'Colon', 'PA07': 'Los Santos', 'ZM04': 'Luapula', 'ZM03': 'Eastern', 'ZM02': 'Central', 'PA03': 'Cocle', 'PA02': 'Chiriqui', 'MZ01': 'Cabo Delgado', 'US45': 'South Carolina', 'US46': 'South Dakota', 'MZ02': 'Gaza', 'MZ05': 'Sofala', 'MZ04': 'Maputo', 'MZ07': 'Niassa', 'MZ06': 'Nampula', 'MZ09': 'Zambezia', 'MZ08': 'Tete', 'US48': 'Texas', 'US49': 'Utah', 'GD05': 'Saint Mark', 'GD04': 'Saint John', 'GD06': 'Saint Patrick', 'GD01': 'Saint Andrew', 'GD03': 'Saint George', 'GD02': 'Saint David', 'IS09': 'Eyjafjardarsysla', 'IS05': 'Austur-Hunavatnssysla', 'IS06': 'Austur-Skaftafellssysla', 'IS07': 'Borgarfjardarsysla', 'IS03': 'Arnessysla', 'AU02': 'New South Wales', 'AU03': 'Northern Territory', 'AU01': 'Australian Capital Territory', 'AU06': 'Tasmania', 'AU07': 'Victoria', 'AU04': 'Queensland', 'AU05': 'South Australia', 'AU08': 'Western Australia', 'BO09': 'Tarija', 'BM10': 'Southampton', 'BM11': 'Warwick', 'GT09': 'Izabal', 'GT08': 'Huehuetenango', 'GT05': 'El Progreso', 'GT04': 'Chiquimula', 'GT07': 'Guatemala', 'GT06': 'Escuintla', 'GT01': 'Alta Verapaz', 'GT03': 'Chimaltenango', 'GT02': 'Baja Verapaz', 'PY19': 'Canindeyu', 'PY12': 'Misiones', 'PY13': 'Neembucu', 'PY10': 'Guaira', 'PY11': 'Itapua', 'PY16': 'Presidente Hayes', 'PY17': 'San Pedro', 'PY15': 'Paraguari', 'QA11': 'Jariyan al Batnah', 'QA10': 'Al Wakrah', 'QA12': "Umm Sa'id", 'AF41': 'Daykondi', 'AF40': 'Parvan', 'AF42': 'Panjshir', 'GBY1': 'Flintshire', 'GBY2': 'Gwynedd', 'GBY3': 'Merthyr Tydfil', 'GBY4': 'Monmouthshire', 'GBY5': 'Neath Port Talbot', 'GBY6': 'Newport', 'GBY7': 'Pembrokeshire', 'GBY8': 'Powys', 'GBY9': 'Rhondda Cynon Taff', 'UY19': 'Treinta y Tres', 'UY18': 'Tacuarembo', 'UY15': 'Salto', 'UY14': 'Rocha', 'UY17': 'Soriano', 'UY16': 'San Jose', 'UY11': 'Paysandu', 'UY10': 'Montevideo', 'UY13': 'Rivera', 'UY12': 'Rio Negro', 'CL16': 'Arica y Parinacota', 'CL17': 'Los Rios', 'CL14': 'Los Lagos', 'CL15': 'Tarapaca', 'SN14': 'Saint-Louis', 'SN15': 'Matam', 'CL10': 'Magallanes y de la Antartica Chilena', 'CL11': 'Maule', 'BZ01': 'Belize', 'BZ02': 'Cayo', 'BZ03': 'Corozal', 'BZ04': 'Orange Walk', 'BZ05': 'Stann Creek', 'BZ06': 'Toledo', 'CASK': 'Saskatchewan', 'RU87': 'Yamal-Nenets', 'RU86': 'Voronezh', 'RU85': 'Vologda', 'RU84': 'Volgograd', 'RU83': 'Vladimir', 'VN67': 'Ninh Binh', 'VN64': 'Quang Tri', 'VN65': 'Nam Ha', 'VN68': 'Ninh Thuan', 'VN69': 'Phu Yen', 'RU89': 'Yevrey', 'RU88': "Yaroslavl'", 'JP08': 'Fukushima', 'JP09': 'Gifu', 'JP02': 'Akita', 'JP03': 'Aomori', 'JP01': 'Aichi', 'JP06': 'Fukui', 'JP07': 'Fukuoka', 'JP04': 'Chiba', 'JP05': 'Ehime', 'SI22': 'Dol pri Ljubljani', 'SI20': 'Dobrepolje', 'SI26': 'Duplek', 'SI27': 'Gorenja Vas-Poljane', 'SI24': 'Dornava', 'SI25': 'Dravograd', 'SI28': 'Gorisnica', 'SI29': 'Gornja Radgona', 'GBE4': 'Essex', 'GBE5': 'Gateshead', 'GBE6': 'Gloucestershire', 'GBE7': 'Greenwich', 'GBE1': 'East Riding of Yorkshire', 'GBE2': 'East Sussex', 'GBE3': 'Enfield', 'GBE8': 'Hackney', 'GBE9': 'Halton', 'KN03': 'Saint George Basseterre', 'KN02': 'Saint Anne Sandy Point', 'KN01': 'Christ Church Nichola Town', 'KN07': 'Saint John Figtree', 'KN06': 'Saint John Capisterre', 'KN05': 'Saint James Windward', 'KN04': 'Saint George Gingerland', 'KN09': 'Saint Paul Capisterre', 'KN08': 'Saint Mary Cayon', 'CI88': 'Sud-Bandama', 'CI89': 'Sud-Comoe', 'CI84': 'Moyen-Cavally', 'CI85': 'Moyen-Comoe', 'CI86': "N'zi-Comoe", 'CI87': 'Savanes', 'CI80': 'Haut-Sassandra', 'CI81': 'Lacs', 'CI82': 'Lagunes', 'CI83': 'Marahoue', 'NG16': 'Ogun', 'AZ18': 'Fuzuli', 'AZ19': 'Gadabay', 'NG11': 'Federal Capital Territory', 'US56': 'Wyoming', 'US55': 'Wisconsin', 'US54': 'West Virginia', 'US53': 'Washington', 'US51': 'Virginia', 'US50': 'Vermont', 'PHC5': 'Dumaguete', 'PHC4': 'Dipolog', 'PHC7': 'Gingoog', 'PHC6': 'General Santos', 'PHC1': 'Danao', 'PHC3': 'Davao City', 'PHC2': 'Dapitan', 'CO38': 'Magdalena', 'PHC9': 'Iloilo City', 'SN12': 'Ziguinchor', 'SN13': 'Louga', 'TH48': 'Chanthaburi', 'TH49': 'Trat', 'TH44': 'Chachoengsao', 'TH45': 'Prachin Buri', 'IS15': 'Kjosarsysla', 'TH47': 'Rayong', 'TH40': 'Krung Thep', 'TH41': 'Phayao', 'TH42': 'Samut Prakan', 'IS10': 'Gullbringusysla', 'BM07': "Saint George's", 'BM06': 'Saint George', 'BM05': 'Pembroke', 'BM04': 'Paget', 'BM03': 'Hamilton', 'BM02': 'Hamilton', 'BM01': 'Devonshire', 'BM09': 'Smiths', 'BM08': 'Sandys', 'SIK5': 'Preddvor', 'USDC': 'District of Columbia', 'PY05': 'Caazapa', 'PY04': 'Caaguazu', 'PY07': 'Concepcion', 'PY06': 'Central', 'PY01': 'Alto Parana', 'PY03': 'Boqueron', 'PY02': 'Amambay', 'PY08': 'Cordillera', 'AF30': 'Balkh', 'AF31': 'Jowzjan', 'AF32': 'Samangan', 'AF33': 'Sar-e Pol', 'AF34': 'Konar', 'AF35': 'Laghman', 'AF36': 'Paktia', 'AF37': 'Khowst', 'AF38': 'Nurestan', 'AF39': 'Oruzgan', 'GBX3': 'Bridgend', 'GBX2': 'Blaenau Gwent', 'GBX1': 'Isle of Anglesey', 'ML10': 'Kidal', 'GBX6': 'Ceredigion', 'GBX5': 'Cardiff', 'GBX4': 'Caerphilly', 'GBX9': 'Denbighshire', 'GBX8': 'Conwy', 'AM08': "Syunik'", 'AM09': 'Tavush', 'AM02': 'Ararat', 'AM03': 'Armavir', 'AM01': 'Aragatsotn', 'AM06': 'Lorri', 'AM07': 'Shirak', 'AM04': "Geghark'unik'", 'AM05': "Kotayk'", 'CL09': 'Los Lagos', 'CL08': "Libertador General Bernardo O'Higgins", 'SN09': 'Fatick', 'SN03': 'Diourbel', 'SN01': 'Dakar', 'CL02': 'Aisen del General Carlos Ibanez del Campo', 'SN07': 'Thies', 'CL04': 'Araucania', 'SN05': 'Tambacounda', 'CL06': 'Bio-Bio', 'SN10': 'Kaolack', 'UA08': "Khersons'ka Oblast'", 'UA09': "Khmel'nyts'ka Oblast'", 'USMN': 'Minnesota', 'UA02': "Chernihivs'ka Oblast'", 'UA03': "Chernivets'ka Oblast'", 'UA01': "Cherkas'ka Oblast'", 'UA06': "Ivano-Frankivs'ka Oblast'", 'UA07': "Kharkivs'ka Oblast'", 'UA04': "Dnipropetrovs'ka Oblast'", 'UA05': "Donets'ka Oblast'", 'SN11': 'Kolda', 'VN62': 'Khanh Hoa', 'VN79': 'Hai Duong', 'VN78': 'Da Nang', 'VN63': 'Kon Tum', 'VN75': 'Tra Vinh', 'VN74': 'Thua Thien', 'VN77': 'Vinh Long', 'VN76': 'Tuyen Quang', 'VN71': 'Quang Ngai', 'VN60': 'Ha Tinh', 'VN73': 'Soc Trang', 'VN72': 'Quang Tri', 'VN61': 'Hoa Binh', 'VN66': 'Nghe An', 'RU82': 'Ust-Orda Buryat', 'JP15': 'Ishikawa', 'JP14': 'Ibaraki', 'JP17': 'Kagawa', 'JP16': 'Iwate', 'JP11': 'Hiroshima', 'RU81': "Ul'yanovsk", 'JP13': 'Hyogo', 'JP12': 'Hokkaido', 'IL03': 'HaZafon', 'IL02': 'HaMerkaz', 'IL01': 'HaDarom', 'RU80': 'Udmurt', 'JP19': 'Kanagawa', 'JP18': 'Kagoshima', 'IL05': 'Tel Aviv', 'IL04': 'Hefa', 'SI39': 'Ivancna Gorica', 'SI38': 'Ilirska Bistrica', 'SI35': 'Hrpelje-Kozina', 'SI34': 'Hrastnik', 'SI37': 'Ig', 'SI36': 'Idrija', 'SI31': 'Gornji Petrovci', 'SI30': 'Gornji Grad', 'SI32': 'Grosuplje', 'EE20': 'Viljandimaa', 'GBD6': 'Dorset', 'GBD5': 'Doncaster', 'GBD4': 'Devon', 'GBD3': 'Derbyshire', 'GBD2': 'Derby', 'GBD1': 'Darlington', 'GBD9': 'Ealing', 'GBD8': 'Durham', 'BR01': 'Acre', 'BR02': 'Alagoas', 'BR03': 'Amapa', 'BR04': 'Amazonas', 'BR05': 'Bahia', 'BR06': 'Ceara', 'BR07': 'Distrito Federal', 'BR08': 'Espirito Santo', 'CI92': 'Zanzan', 'CI91': 'Worodougou', 'CI90': 'Vallee du Bandama', 'PK03': 'North-West Frontier', 'PK02': 'Balochistan', 'IT10': 'Marche', 'IT11': 'Molise', 'IT12': 'Piemonte', 'IT13': 'Puglia', 'IT14': 'Sardegna', 'IT15': 'Sicilia', 'IT16': 'Toscana', 'IT17': 'Trentino-Alto Adige', 'IT18': 'Umbria', 'IT19': "Valle d'Aosta", 'PHD1': 'Iriga', 'PHD2': 'La Carlota', 'PHD3': 'Laoag', 'PHD4': 'Lapu-Lapu', 'PHD5': 'Legaspi', 'PHD6': 'Lipa', 'PHD7': 'Lucena', 'PHD8': 'Mandaue', 'PHD9': 'Manila', 'PK08': 'Islamabad', 'BB01': 'Christ Church', 'IS28': 'Skagafjardarsysla', 'IS29': 'Snafellsnes- og Hnappadalssysla', 'BB04': 'Saint James', 'BB05': 'Saint John', 'TH59': 'Ranong', 'TH58': 'Chumphon', 'TH57': 'Prachuap Khiri Khan', 'IS23': 'Rangarvallasysla', 'TH55': 'Samut Sakhon', 'TH54': 'Samut Songkhram', 'TH53': 'Nakhon Pathom', 'TH52': 'Ratchaburi', 'TH51': 'Suphan Buri', 'TH50': 'Kanchanaburi', 'BT20': 'Thimphu', 'BT21': 'Tongsa', 'BT22': 'Wangdi Phodrang', 'CR07': 'Puntarenas', 'CR06': 'Limon', 'CR04': 'Heredia', 'CR03': 'Guanacaste', 'CR02': 'Cartago', 'CR01': 'Alajuela', 'CR08': 'San Jose', 'HN02': 'Choluteca', 'HN03': 'Colon', 'HN01': 'Atlantida', 'HN06': 'Cortes', 'HN07': 'El Paraiso', 'HN04': 'Comayagua', 'HN05': 'Copan', 'HN08': 'Francisco Morazan', 'HN09': 'Gracias a Dios', 'GL01': 'Nordgronland', 'GL03': 'Vestgronland', 'GL02': 'Ostgronland', 'ET50': 'Hareri Hizb', 'ET51': 'Oromiya', 'ET52': 'Sumale', 'ET53': 'Tigray', 'ET54': 'YeDebub Biheroch Bihereseboch na Hizboch', 'AF23': 'Kandahar', 'AF27': 'Vardak', 'IE29': 'Westmeath', 'AF24': 'Kondoz', 'IE24': 'Roscommon', 'IE25': 'Sligo', 'IE26': 'Tipperary', 'IE27': 'Waterford', 'IE20': 'Mayo', 'IE21': 'Meath', 'IE22': 'Monaghan', 'IE23': 'Offaly', 'ML07': 'Koulikoro', 'ML06': 'Sikasso', 'ML05': 'Segou', 'ML04': 'Mopti', 'ML03': 'Kayes', 'AM10': "Vayots' Dzor", 'ML01': 'Bamako', 'ML09': 'Gao', 'ML08': 'Tombouctou', 'UA15': "L'vivs'ka Oblast'", 'UA14': "Luhans'ka Oblast'", 'UA17': "Odes'ka Oblast'", 'UA16': "Mykolayivs'ka Oblast'", 'UA11': 'Krym', 'UA10': "Kirovohrads'ka Oblast'", 'UA13': "Kyyivs'ka Oblast'", 'UA12': 'Kyyiv', 'GBV9': 'Orkney', 'UA19': "Rivnens'ka Oblast'", 'UA18': "Poltavs'ka Oblast'", 'GBV8': 'North Lanarkshire', 'GBV5': 'Midlothian', 'GBV4': 'Inverclyde', 'VN09': 'Dong Thap', 'VN01': 'An Giang', 'VN03': 'Ben Tre', 'VN05': 'Cao Bang', 'NG56': 'Nassarawa', 'MV41': 'Meemu', 'MV40': 'Maale', 'MV43': 'Noonu', 'PL80': 'Podkarpackie', 'SI49': 'Komen', 'PL82': 'Pomorskie', 'MV42': 'Gnaviyani', 'PL84': 'Swietokrzyskie', 'PL85': 'Warminsko-Mazurskie', 'PL86': 'Wielkopolskie', 'PL87': 'Zachodniopomorskie', 'SI40': 'Izola-Isola', 'MV45': 'Shaviyani', 'SI42': 'Jursinci', 'SI44': 'Kanal', 'SI45': 'Kidricevo', 'SI46': 'Kobarid', 'MV44': 'Raa', 'MV47': 'Vaavu', 'MV46': 'Thaa', 'GBG2': 'Isle of Wight', 'GBG3': 'Islington', 'GBG1': 'Hounslow', 'GBG6': 'Kingston upon Hull', 'GBG7': 'Kingston upon Thames', 'GBG4': 'Kensington and Chelsea', 'GBG5': 'Kent', 'GBG8': 'Kirklees', 'GBG9': 'Knowsley', 'MKC3': 'Zelino', 'BR13': 'Maranhao', 'BR11': 'Mato Grosso do Sul', 'MKC2': 'Zelenikovo', 'BR17': 'Paraiba', 'BR16': 'Para', 'BR15': 'Minas Gerais', 'BR14': 'Mato Grosso', 'FJ04': 'Rotuma', 'FJ05': 'Western', 'BR18': 'Parana', 'FJ01': 'Central', 'FJ02': 'Eastern', 'FJ03': 'Northern', 'MKC6': 'Zrnovci', 'PH08': 'Batanes', 'PH09': 'Batangas', 'PH04': 'Aklan', 'PH05': 'Albay', 'PH06': 'Antique', 'PH07': 'Bataan', 'PH01': 'Abra', 'PH02': 'Agusan del Norte', 'PH03': 'Agusan del Sur', 'IT03': 'Calabria', 'IT02': 'Basilicata', 'IT01': 'Abruzzi', 'IT07': 'Lazio', 'IT06': 'Friuli-Venezia Giulia', 'IT05': 'Emilia-Romagna', 'IT04': 'Campania', 'IT09': 'Lombardia', 'IT08': 'Liguria', 'PHE3': 'Olongapo', 'PHE2': 'Naga', 'PHE1': 'Marawi', 'PHE7': 'Pagadian', 'PHE6': 'Ozamis', 'PHE5': 'Oroquieta', 'PHE4': 'Ormoc', 'PHE9': 'Pasay', 'PHE8': 'Palayan', 'TH68': 'Songkhla', 'TH69': 'Pattani', 'TH62': 'Phuket', 'TH63': 'Krabi', 'TH60': 'Surat Thani', 'TH61': 'Phangnga', 'TH66': 'Phatthalung', 'TH67': 'Satun', 'TH64': 'Nakhon Si Thammarat', 'TH65': 'Trang', 'MS01': 'Saint Anthony', 'MS02': 'Saint Georges', 'MS03': 'Saint Peter', 'VE24': 'Dependencias Federales', 'SIB3': 'Sentilj', 'DE12': 'Mecklenburg-Vorpommern', 'DE13': 'Sachsen', 'DE10': 'Schleswig-Holstein', 'DE11': 'Brandenburg', 'DE16': 'Berlin', 'DE14': 'Sachsen-Anhalt', 'DE15': 'Thuringen', 'MU20': 'Savanne', 'MU21': 'Agalega Islands', 'MU22': 'Cargados Carajos', 'MU23': 'Rodrigues', 'HN18': 'Yoro', 'HN15': 'Olancho', 'HN14': 'Ocotepeque', 'HN17': 'Valle', 'HN16': 'Santa Barbara', 'HN11': 'Islas de la Bahia', 'HN10': 'Intibuca', 'HN13': 'Lempira', 'HN12': 'La Paz', 'IS35': 'Vestur-Hunavatnssysla', 'IS34': 'Vestur-Bardastrandarsysla', 'IS37': 'Vestur-Skaftafellssysla', 'IS36': 'Vestur-Isafjardarsysla', 'IS31': 'Sudur-Mulasysla', 'IS30': 'Strandasysla', 'IS32': 'Sudur-Tingeyjarsysla', 'HT03': 'Nord-Ouest', 'USFL': 'Florida', 'USFM': 'Federated States of Micronesia', 'ET49': 'Gambela Hizboch', 'ET48': 'Dire Dawa', 'ZW10': 'Harare', 'ET47': 'Binshangul Gumuz', 'ET46': 'Amara', 'ET45': 'Afar', 'ET44': 'Adis Abeba', 'AF18': 'Nangarhar', 'AF19': 'Nimruz', 'AF17': 'Lowgar', 'AF14': 'Kapisa', 'AF13': 'Kabol', 'AF10': 'Helmand', 'AF11': 'Herat', 'GBZ1': 'Swansea', 'GBZ3': 'Vale of Glamorgan', 'GBZ2': 'Torfaen', 'GBZ4': 'Wrexham', 'AO08': 'Huambo', 'AO09': 'Huila', 'AO01': 'Benguela', 'AO02': 'Bie', 'AO03': 'Cabinda', 'AO04': 'Cuando Cubango', 'AO05': 'Cuanza Norte', 'AO06': 'Cuanza Sul', 'AO07': 'Cunene', 'TO03': 'Vava', 'NP08': 'Lumbini', 'NP09': 'Mahakali', 'NP06': 'Karnali', 'NP07': 'Kosi', 'NP04': 'Gandaki', 'NP05': 'Janakpur', 'NP02': 'Bheri', 'NP03': 'Dhawalagiri', 'NP01': 'Bagmati', 'VN13': 'Hai Phong', 'UG84': 'Kitgum', 'UG85': 'Kyenjojo', 'UG86': 'Mayuge', 'UG87': 'Mbale', 'UG80': 'Kaberamaido', 'UG81': 'Kamwenge', 'UG82': 'Kanungu', 'UG83': 'Kayunga', 'UG88': 'Moroto', 'UG89': 'Mpigi', 'SI53': 'Kranjska Gora', 'SI52': 'Kranj', 'SI51': 'Kozje', 'SI50': 'Koper-Capodistria', 'SI57': 'Lasko', 'SI55': 'Kungota', 'SI54': 'Krsko', 'GBF9': 'Hillingdon', 'GBF8': 'Hertford', 'EE08': 'Laane-Virumaa', 'EE09': 'Narva', 'GBF5': 'Hartlepool', 'GBF4': 'Harrow', 'GBF7': 'Herefordshire', 'GBF6': 'Havering', 'GBF1': 'Hammersmith and Fulham', 'EE03': 'Ida-Virumaa', 'GBF3': 'Haringey', 'GBF2': 'Hampshire', 'BR28': 'Sergipe', 'BR29': 'Goias', 'BR26': 'Santa Catarina', 'BR27': 'Sao Paulo', 'BR24': 'Rondonia', 'BR25': 'Roraima', 'BR22': 'Rio Grande do Norte', 'BR23': 'Rio Grande do Sul', 'BR20': 'Piaui', 'BR21': 'Rio de Janeiro', 'SI76': 'Mislinja', 'PH19': 'Catanduanes', 'PH18': 'Capiz', 'PH17': 'Camiguin', 'PH16': 'Camarines Sur', 'PH15': 'Camarines Norte', 'PH14': 'Cagayan', 'PH13': 'Bulacan', 'PH12': 'Bukidnon', 'PH11': 'Bohol', 'PH10': 'Benguet', 'US08': 'Colorado', 'US09': 'Connecticut', 'CH25': 'Zurich', 'CH24': 'Zug', 'CH23': 'Vaud', 'CH22': 'Valais', 'CH21': 'Uri', 'CH20': 'Ticino', 'US01': 'Alabama', 'US02': 'Alaska', 'US04': 'Arizona', 'US05': 'Arkansas', 'US06': 'California', 'NA25': 'Kavango', 'PHF8': 'Silay', 'PHF9': 'Surigao', 'PHF6': 'San Jose', 'PHF7': 'San Pablo', 'PHF4': 'San Carlos', 'PHF5': 'San Carlos', 'PHF2': 'Quezon City', 'PHF3': 'Roxas', 'PHF1': 'Puerto Princesa', 'LA02': 'Champasak', 'NA21': 'Windhoek', 'USGA': 'Georgia', 'NA20': 'Karasburg', 'NA23': 'Hereroland Oos', 'USGU': 'Guam', 'BT06': 'Chhukha', 'BT07': 'Chirang', 'BT05': 'Bumthang', 'BT08': 'Daga', 'BT09': 'Geylegphug', 'KZ14': 'Qyzylorda', 'KZ15': 'East Kazakhstan', 'KZ16': 'North Kazakhstan', 'KZ17': 'Zhambyl', 'KZ10': 'South Kazakhstan', 'KZ11': 'Pavlodar', 'KZ12': 'Qaraghandy', 'KZ13': 'Qostanay', 'LU02': 'Grevenmacher', 'PHC8': 'Iligan', 'TH75': 'Ubon Ratchathani', 'IS41': 'Norourland Vestra', 'IS42': 'Suourland', 'IS43': 'Suournes', 'TH71': 'Ubon Ratchathani', 'TH70': 'Yala', 'TH73': 'Nakhon Phanom', 'TH72': 'Yasothon', 'TH79': 'Nong Bua Lamphu', 'TH78': 'Mukdahan', 'ZW05': 'Mashonaland West', 'ZW04': 'Mashonaland East', 'ZW07': 'Matabeleland South', 'ZW06': 'Matabeleland North', 'ZW01': 'Manicaland', 'ZW03': 'Mashonaland Central', 'ZW02': 'Midlands', 'ZW09': 'Bulawayo', 'ZW08': 'Masvingo', 'FM02': 'Pohnpei', 'FM01': 'Kosrae', 'DE05': 'Hessen', 'IS17': 'Myrasysla', 'DE07': 'Nordrhein-Westfalen', 'DE06': 'Niedersachsen', 'DE01': 'Baden-Wurttemberg', 'DE03': 'Bremen', 'DE02': 'Bayern', 'NR08': 'Denigomodu', 'DE09': 'Saarland', 'TH46': 'Chon Buri', 'NR09': 'Ewa', 'AF09': 'Ghowr', 'SC20': 'Pointe La Rue', 'SC21': 'Port Glaud', 'AF01': 'Badakhshan', 'IE03': 'Clare', 'AF03': 'Baghlan', 'IE01': 'Carlow', 'AF05': 'Bamian', 'IE07': 'Dublin', 'AF07': 'Faryab', 'AF06': 'Farah', 'VN39': 'Lang Son', 'TH43': 'Nakhon Nayok', 'AO19': 'Bengo', 'AO18': 'Lunda Sul', 'AO13': 'Namibe', 'AO12': 'Malanje', 'AO17': 'Lunda Norte', 'AO16': 'Zaire', 'AO15': 'Uige', 'AO14': 'Moxico', 'TW04': "T'ai-wan", 'TW03': "T'ai-pei", 'TW02': 'Kao-hsiung', 'TW01': 'Fu-chien', 'NP11': 'Narayani', 'NP10': 'Mechi', 'NP13': 'Sagarmatha', 'NP12': 'Rapti', 'NP14': 'Seti', 'EG05': 'Al Gharbiyah', 'SIA7': 'Rogaska Slatina', 'SIA6': 'Rogasovci', 'SIA3': 'Radovljica', 'SIA2': 'Radlje ob Dravi', 'SIA1': 'Radenci', 'SIA8': 'Rogatec', 'CAMB': 'Manitoba', 'EG03': 'Al Buhayrah', 'JP46': 'Yamanashi', 'JM15': 'Trelawny', 'JP44': 'Yamagata', 'JP45': 'Yamaguchi', 'JM10': 'Saint Catherine', 'JP43': 'Wakayama', 'JP40': 'Tokyo', 'JM13': 'Saint Mary', 'UG97': 'Yumbe', 'UG96': 'Wakiso', 'UG95': 'Soroti', 'UG94': 'Sironko', 'UG93': 'Rukungiri', 'UG92': 'Pader', 'UG91': 'Nakapiripirit', 'SI61': 'Ljubljana', 'SI68': 'Lukovica', 'EE19': 'Valgamaa', 'EE18': 'Tartumaa', 'VN24': 'Long An', 'VN23': 'Lam Dong', 'VN20': 'Ho Chi Minh', 'VN21': 'Kien Giang', 'EE11': 'Parnumaa', 'GBA1': 'Barking and Dagenham', 'EE13': 'Raplamaa', 'EE12': 'Polvamaa', 'EE15': 'Sillamae', 'EE14': 'Saaremaa', 'EE17': 'Tartu', 'EE16': 'Tallinn', 'BR31': 'Tocantins', 'BR30': 'Pernambuco', 'IR43': 'Khorasan-e Shemali', 'PH28': 'Ilocos Norte', 'RUCI': 'Chechnya Republic', 'PH22': 'Basilan', 'PH23': 'Eastern Samar', 'PH20': 'Cavite', 'PH21': 'Cebu', 'PH26': 'Davao Oriental', 'PH27': 'Ifugao', 'PH24': 'Davao', 'PH25': 'Davao del Sur', 'CH12': 'Neuchatel', 'CH13': 'Nidwalden', 'US19': 'Iowa', 'US18': 'Indiana', 'CH16': 'Schaffhausen', 'CH17': 'Schwyz', 'CH14': 'Obwalden', 'CH15': 'Sankt Gallen', 'US13': 'Georgia', 'US12': 'Florida', 'CH18': 'Solothurn', 'US10': 'Delaware', 'US17': 'Illinois', 'US16': 'Idaho', 'US15': 'Hawaii', 'PHG8': 'Aurora', 'PHG1': 'Tacloban', 'PHG3': 'Tagbilaran', 'PHG2': 'Tagaytay', 'PHG5': 'Toledo', 'PHG4': 'Tangub', 'PHG7': 'Zamboanga', 'PHG6': 'Trece Martires', 'BT11': 'Lhuntshi', 'BT10': 'Ha', 'BT13': 'Paro', 'BT12': 'Mongar', 'BT15': 'Punakha', 'BT14': 'Pemagatsel', 'BT17': 'Samdrup', 'BT16': 'Samchi', 'BT19': 'Tashigang', 'BT18': 'Shemgang', 'KZ07': 'West Kazakhstan', 'KZ06': 'Atyrau', 'KZ05': 'Astana', 'KZ04': 'Aqtobe', 'KZ03': 'Aqmola', 'KZ02': 'Almaty City', 'KZ01': 'Almaty', 'KZ09': 'Mangghystau', 'KZ08': 'Bayqonyr', 'KR19': 'Taejon-jikhalsi', 'TH01': 'Mae Hong Son', 'TH02': 'Chiang Mai', 'TH03': 'Chiang Rai', 'TH04': 'Nan', 'TH05': 'Lamphun', 'TH06': 'Lampang', 'TH07': 'Phrae', 'TH08': 'Tak', 'TH09': 'Sukhothai', 'FM04': 'Yap', 'TN28': 'Madanin', 'TN29': 'Gabes', 'TN22': 'Siliana', 'TN23': 'Sousse', 'TN27': 'Ben Arous', 'UG52': 'Mbarara', 'DK18': 'Midtjylland', 'DK19': 'Nordjylland', 'DK17': 'Hovedstaden', 'UG50': 'Masindi', 'DZ24': 'Jijel', 'DZ25': 'Laghouat', 'NG50': 'Rivers', 'NG51': 'Sokoto', 'DZ20': 'Blida', 'CH08': 'Glarus', 'NG54': 'Ekiti', 'NG55': 'Gombe', 'IE15': 'Laois', 'IE14': 'Leitrim', 'IE16': 'Limerick', 'IE11': 'Kerry', 'IE10': 'Galway', 'IE13': 'Kilkenny', 'IE12': 'Kildare', 'IE19': 'Louth', 'IE18': 'Longford', 'SIB2': 'Sencur', 'HT09': 'Nord', 'SIB1': 'Semic', 'SIB6': 'Sevnica', 'SIB7': 'Sezana', 'SIB4': 'Sentjernej', 'USDE': 'Delaware', 'SIB8': 'Skocjan', 'SIB9': 'Skofja Loka', 'HT06': 'Artibonite', 'HT07': 'Centre', 'LR21': 'Gbarpolu', 'JM09': 'Saint Ann', 'JM08': 'Saint Andrew', 'JM07': 'Portland', 'JM04': 'Manchester', 'JM02': 'Hanover', 'JM01': 'Clarendon', 'AO20': 'Luanda', 'SI71': 'Medvode', 'VN80': 'Ha Nam', 'SI73': 'Metlika', 'SI72': 'Menges', 'SI74': 'Mezica', 'SI77': 'Moravce', 'VN81': 'Hung Yen', 'SI79': 'Mozirje', 'SI78': 'Moravske Toplice', 'VN82': 'Nam Dinh', 'GBO9': 'Waltham Forest', 'VN84': 'Quang Nam', 'LU01': 'Diekirch', 'LU03': 'Luxembourg', 'VN85': 'Thai Nguyen', 'VN86': 'Vinh Puc Province', 'VN87': 'Can Tho', 'FM03': 'Chuuk', 'VN30': 'Quang Ninh', 'VN33': 'Tay Ninh', 'VN32': 'Son La', 'VN35': 'Thai Binh', 'VN34': 'Thanh Hoa', 'VN37': 'Tien Giang', 'VN89': 'Lai Chau', 'NR04': 'Anibare', 'NR05': 'Baiti', 'NR06': 'Boe', 'NR07': 'Buada', 'NR01': 'Aiwo', 'NR02': 'Anabar', 'NR03': 'Anetan', 'EG08': 'Al Jizah', 'EG09': 'Al Minufiyah', 'EG04': 'Al Fayyum', 'GBO6': 'Trafford', 'EG06': 'Al Iskandariyah', 'EG07': "Al Isma'iliyah", 'EG01': 'Ad Daqahliyah', 'EG02': 'Al Bahr al Ahmar', 'GBO7': 'Wakefield', 'PH35': 'Lanao del Sur', 'PH34': 'Lanao del Norte', 'PH37': 'Leyte', 'PH36': 'La Union', 'PH31': 'Isabela', 'PH30': 'Iloilo', 'PH33': 'Laguna', 'PH32': 'Kalinga-Apayao', 'PH39': 'Masbate', 'PH38': 'Marinduque', 'US26': 'Michigan', 'US27': 'Minnesota', 'US24': 'Maryland', 'US25': 'Massachusetts', 'US22': 'Louisiana', 'US23': 'Maine', 'US20': 'Kansas', 'US21': 'Kentucky', 'US28': 'Mississippi', 'US29': 'Missouri', 'NG52': 'Bayelsa', 'NG53': 'Ebonyi', 'DZ26': 'Mascara', 'DZ27': "M'sila", 'CH09': 'Graubunden', 'DZ21': 'Bouira', 'DZ22': 'Djelfa', 'DZ23': 'Guelma', 'CH05': 'Bern', 'CH04': 'Basel-Stadt', 'CH07': 'Geneve', 'CH06': 'Fribourg', 'CH01': 'Aargau', 'DZ29': 'Oum el Bouaghi', 'CH03': 'Basel-Landschaft', 'CH02': 'Ausser-Rhoden', 'VE08': 'Cojedes', 'USAK': 'Alaska', 'USAL': 'Alabama', 'USAA': 'Armed Forces Americas', 'USAE': 'Armed Forces Europe', 'USAZ': 'Arizona', 'USAS': 'American Samoa', 'USAR': 'Arkansas', 'USAP': 'Armed Forces Pacific', 'ES51': 'Andalucia', 'MU13': 'Flacq', 'MU12': 'Black River', 'MU15': 'Moka', 'MU14': 'Grand Port', 'MU17': 'Plaines Wilhems', 'MU16': 'Pamplemousses', 'MU19': 'Riviere du Rempart', 'MU18': 'Port Louis', 'TH13': 'Phichit', 'TH12': 'Phitsanulok', 'TH11': 'Kamphaeng Phet', 'TH10': 'Uttaradit', 'TH17': 'Nong Khai', 'TH16': 'Nakhon Sawan', 'TH15': 'Uthai Thani', 'TH14': 'Phetchabun', 'TH18': 'Loei', 'TN39': 'Manouba', 'TN38': 'Aiana', 'TN33': 'Sidi Bou Zid', 'TN32': 'Sfax', 'TN31': 'Kebili', 'TN37': 'Zaghouan', 'TN36': 'Tunis', 'TN35': 'Tozeur', 'TN34': 'Tataouine', 'TG25': 'Plateaux', 'TG24': 'Maritime', 'TG26': 'Savanes', 'TG23': 'Kara', 'TG22': 'Centrale', 'NG25': 'Anambra', 'YE24': 'Lahij', 'YE25': 'Ta', 'YE20': "Al Bayda'", 'YE21': 'Al Jawf', 'YE22': 'Hajjah', 'YE23': 'Ibb', 'TR58': 'Sivas', 'CZ52': 'Hlavni mesto Praha', 'MM08': 'Mandalay', 'MM09': 'Pegu', 'MM06': 'Kayah State', 'MM07': 'Magwe', 'MM04': 'Kachin State', 'MM05': 'Karan State', 'MM02': 'Chin State', 'MM03': 'Irrawaddy', 'MM01': 'Rakhine State', 'VE06': 'Bolivar', 'RS01': 'Kosovo', 'RS02': 'Vojvodina', 'SIC9': 'Store', 'SIC8': 'Starse', 'SIC5': 'Smarje pri Jelsah', 'SIC4': 'Slovenske Konjice', 'SIC7': 'Sostanj', 'SIC6': 'Smartno ob Paki', 'SIC1': 'Skofljica', 'HT15': 'Nippes', 'TR54': 'Sakarya', 'TO01': 'Ha', 'GBX7': 'Carmarthenshire', 'SE08': 'Jonkopings Lan', 'SE09': 'Kalmar Lan', 'AR24': 'Tucuman', 'AR23': 'Tierra del Fuego', 'AR22': 'Santiago del Estero', 'AR21': 'Santa Fe', 'AR20': 'Santa Cruz', 'SE02': 'Blekinge Lan', 'SE03': 'Gavleborgs Lan', 'SE05': 'Gotlands Lan', 'SE06': 'Hallands Lan', 'SE07': 'Jamtlands Lan', 'SI88': 'Osilnica', 'SI89': 'Pesnica', 'SI84': 'Nova Gorica', 'SI86': 'Odranci', 'SI87': 'Ormoz', 'SI80': 'Murska Sobota', 'SI81': 'Muta', 'SI82': 'Naklo', 'SI83': 'Nazarje', 'GBC6': 'Cornwall', 'GBC7': 'Coventry', 'GBC4': 'Camden', 'GBC5': 'Cheshire', 'GBC2': 'Calderdale', 'GBC3': 'Cambridgeshire', 'GBC1': 'Bury', 'MD58': 'Stinga Nistrului', 'MD59': 'Anenii Noi', 'GBC8': 'Croydon', 'GBC9': 'Cumbria', 'NR14': 'Yaren', 'NR13': 'Uaboe', 'NR12': 'Nibok', 'NR11': 'Meneng', 'NR10': 'Ijuw', 'EG19': "Bur Sa'id", 'EG18': 'Bani Suwayf', 'EG17': 'Asyut', 'EG16': 'Aswan', 'EG15': 'As Suways', 'EG14': 'Ash Sharqiyah', 'EG13': 'Al Wadi al Jadid', 'EG12': 'Al Qalyubiyah', 'EG11': 'Al Qahirah', 'EG10': 'Al Minya', 'ZA10': 'North-West', 'PH41': 'Mindoro Oriental', 'PH42': 'Misamis Occidental', 'PH43': 'Misamis Oriental', 'PH44': 'Mountain', 'PH45': 'Negros Occidental', 'PH46': 'Negros Oriental', 'PH47': 'Nueva Ecija', 'PH48': 'Nueva Vizcaya', 'PH49': 'Palawan', 'JO12': 'At Tafilah', 'JO13': 'Az Zarqa', 'JO10': 'Al Mafraq', 'JO11': 'Amman Governorate', 'JO16': 'Amman', 'JO14': 'Irbid', 'NG05': 'Lagos', 'US31': 'Nebraska', 'US30': 'Montana', 'US33': 'New Hampshire', 'US32': 'Nevada', 'US35': 'New Mexico', 'US34': 'New Jersey', 'US37': 'North Carolina', 'US36': 'New York', 'US39': 'Ohio', 'US38': 'North Dakota', 'DZ37': 'Annaba', 'DZ36': 'Ain Temouchent', 'DZ35': 'Ain Defla', 'DZ34': 'Adrar', 'DZ33': 'Tebessa', 'NG48': 'Ondo', 'DZ31': 'Skikda', 'DZ30': 'Sidi Bel Abbes', 'NG45': 'Abia', 'NG44': 'Yobe', 'NG47': 'Enugu', 'NG46': 'Bauchi', 'NG41': 'Kogi', 'NG40': 'Kebbi', 'DZ39': 'Bordj Bou Arreridj', 'DZ38': 'Bechar', 'CL01': 'Valparaiso', 'CL03': 'Antofagasta', 'CL05': 'Atacama', 'CL07': 'Coquimbo', 'AE05': 'Ras Al Khaimah', 'BO05': 'Oruro', 'BO04': 'La Paz', 'BO07': 'Potosi', 'BO06': 'Pando', 'BO01': 'Chuquisaca', 'TH28': 'Buriram', 'TH29': 'Surin', 'TH26': 'Chaiyaphum', 'TH27': 'Nakhon Ratchasima', 'TH24': 'Maha Sarakham', 'TH25': 'Roi Et', 'TH22': 'Khon Kaen', 'TH23': 'Kalasin', 'TH20': 'Sakon Nakhon', 'TH21': 'Nakhon Phanom', 'TN06': 'Jendouba', 'TN02': 'Kasserine', 'TN03': 'Kairouan', 'SIL3': 'Ruse', 'NA27': 'Namaland', 'MV37': 'Haa Dhaalu', 'MW04': 'Chitipa', 'MW05': 'Thyolo', 'MW06': 'Dedza', 'MW07': 'Dowa', 'MW02': 'Chikwawa', 'MW03': 'Chiradzulu', 'MW08': 'Karonga', 'MW09': 'Kasungu', 'TR82': 'Cankiri', 'TR83': 'Gaziantep', 'TR80': 'Sirnak', 'TR81': 'Adana', 'TR86': 'Ardahan', 'TR87': 'Bartin', 'TR84': 'Kars', 'TR85': 'Zonguldak', 'TR88': 'Igdir', 'TR89': 'Karabuk', 'SD44': 'Central Equatoria State', 'MM11': 'Shan State', 'MM10': 'Sagaing', 'MM13': 'Mon State', 'MM12': 'Tenasserim', 'MM14': 'Rangoon', 'MM17': 'Yangon', 'BF15': 'Bam', 'BF19': 'Boulkiemde', 'NG37': 'Edo', 'SL01': 'Eastern', 'SL03': 'Southern', 'SL02': 'Northern', 'SL04': 'Western Area', 'SID8': 'Velike Lasce', 'SID1': 'Sveti Jurij', 'SID2': 'Tolmin', 'SID3': 'Trbovlje', 'SID4': 'Trebnje', 'SID5': 'Trzic', 'SID6': 'Turnisce', 'SID7': 'Velenje', 'DZ51': 'Relizane', 'AR12': 'La Rioja', 'AR13': 'Mendoza', 'AR10': 'Jujuy', 'AR11': 'La Pampa', 'AR16': 'Rio Negro', 'AR17': 'Salta', 'LY61': 'Tarabulus', 'AR15': 'Neuquen', 'SE12': 'Kronobergs Lan', 'AR18': 'San Juan', 'AR19': 'San Luis', 'SE16': 'Ostergotlands Lan', 'SE15': 'Orebro Lan', 'SE14': 'Norrbottens Lan', 'SI99': 'Radece', 'SI98': 'Racam', 'SI97': 'Puconci', 'SI94': 'Postojna', 'SI92': 'Podcetrtek', 'SI91': 'Pivka', 'VN70': 'Quang Binh', 'GBB1': 'Bolton', 'GBB3': 'Bracknell Forest', 'GBB2': 'Bournemouth', 'GBB5': 'Brent', 'GBB4': 'Bradford', 'GBB7': 'Bristol', 'GBB6': 'Brighton and Hove', 'GBB9': 'Buckinghamshire', 'GBB8': 'Bromley', 'RU18': 'Evenk', 'RU19': 'Ingush', 'RU14': 'Chita', 'RU15': 'Chukot', 'RU16': 'Chuvashia', 'RU17': 'Dagestan', 'RU10': 'Bryansk', 'RU11': 'Buryat', 'RU12': 'Chechnya', 'RU13': 'Chelyabinsk', 'EG22': 'Matruh', 'EG23': 'Qina', 'EG20': 'Dumyat', 'EG21': 'Kafr ash Shaykh', 'EG26': "Janub Sina'", 'EG27': "Shamal Sina'", 'EG24': 'Suhaj', 'ZA03': 'Free State', 'ZA02': 'KwaZulu-Natal', 'ZA01': 'North-Western Province', 'PH50': 'Pampanga', 'PH57': 'North Cotabato', 'PH56': 'Maguindanao', 'PH55': 'Samar', 'PH54': 'Romblon', 'ZA09': 'Limpopo', 'ZA08': 'Northern Cape', 'JO09': 'Al Karak', 'JO07': 'Ma', 'JO02': "Al Balqa'", 'TZ22': 'Zanzibar North', 'RO28': 'Neamt', 'AZ38': 'Qabala', 'AZ39': 'Qax', 'AZ34': 'Naftalan', 'AZ35': 'Naxcivan', 'AZ36': 'Neftcala', 'AZ37': 'Oguz', 'AZ30': 'Lankaran', 'AZ31': 'Lerik', 'AZ32': 'Masalli', 'JP10': 'Gumma', 'DZ03': 'Batna', 'DZ01': 'Alger', 'DZ06': 'Medea', 'DZ07': 'Mostaganem', 'DZ04': 'Constantine', 'VC05': 'Saint Patrick', 'VC04': 'Saint George', 'NG32': 'Oyo', 'VC06': 'Grenadines', 'VC01': 'Charlotte', 'NG35': 'Adamawa', 'VC03': 'Saint David', 'VC02': 'Saint Andrew', 'USCT': 'Connecticut', 'IL06': 'Yerushalayim', 'USCA': 'California', 'USCO': 'Colorado', 'ZA07': 'Mpumalanga', 'ZA06': 'Gauteng', 'ZA05': 'Eastern Cape', 'TH39': 'Pathum Thani', 'TH38': 'Nonthaburi', 'TH31': 'Narathiwat', 'TH30': 'Sisaket', 'TH33': 'Sing Buri', 'TH32': 'Chai Nat', 'TH35': 'Ang Thong', 'TH34': 'Lop Buri', 'TH37': 'Saraburi', 'TH36': 'Phra Nakhon Si Ayutthaya', 'TN10': 'Qafsah', 'TN15': 'Al Mahdia', 'VN53': 'Ba Ria-Vung Tau', 'TN17': 'Bajah', 'TN16': 'Al Munastir', 'TN19': 'Nabeul', 'TN18': 'Bizerte', 'LC10': 'Vieux-Fort', 'LC11': 'Praslin', 'DK21': 'Syddanmark', 'DK20': 'Sjelland', 'MW17': 'Nkhata Bay', 'MW16': 'Ntcheu', 'MW15': 'Mzimba', 'MW13': 'Mchinji', 'MW12': 'Mangochi', 'MW11': 'Lilongwe', 'MW19': 'Nsanje', 'MW18': 'Nkhotakota', 'TR91': 'Osmaniye', 'TR90': 'Kilis', 'TR93': 'Duzce', 'TR92': 'Yalova', 'YE08': 'Al Hudaydah', 'YE02': 'Adan', 'YE03': 'Al Mahrah', 'YE01': 'Abyan', 'YE06': 'Al Ghaydah', 'YE04': 'Hadramawt', 'YE05': 'Shabwah', 'CZ78': 'Jihomoravsky kraj', 'CZ79': 'Jihocesky kraj', 'BF20': 'Ganzourgou', 'BF21': 'Gnagna', 'BF28': 'Kouritenga', 'GBQ1': 'Wirral', 'SIE9': 'Zavrc', 'SIE3': 'Vodice', 'SIE2': 'Vitanje', 'SIE1': 'Vipava', 'SIE7': 'Zagorje ob Savi', 'SIE6': 'Vuzenica', 'SIE5': 'Vrhnika', 'SE26': 'Stockholms Lan', 'SE27': 'Skane Lan', 'SE24': 'Vasternorrlands Lan', 'SE25': 'Vastmanlands Lan', 'SE22': 'Varmlands Lan', 'SE23': 'Vasterbottens Lan', 'SE21': 'Uppsala Lan', 'SE28': 'Vastra Gotaland', 'LY52': 'Awbari', 'LY53': 'Az Zawiyah', 'LY50': 'Al Khums', 'LY51': 'An Nuqat al Khams', 'AR09': 'Formosa', 'AR08': 'Entre Rios', 'LY54': 'Banghazi', 'LY55': 'Darnah', 'AR05': 'Cordoba', 'AR04': 'Chubut', 'AR07': 'Distrito Federal', 'AR06': 'Corrientes', 'AR01': 'Buenos Aires', 'AR03': 'Chaco', 'AR02': 'Catamarca', 'NE03': 'Dosso', 'NE02': 'Diffa', 'NE01': 'Agadez', 'CA08': 'Ontario', 'CA09': 'Prince Edward Island', 'LR22': 'River Gee', 'NE04': 'Maradi', 'CA04': 'New Brunswick', 'CA05': 'Newfoundland and Labrador', 'CA07': 'Nova Scotia', 'CA01': 'Alberta', 'CA02': 'British Columbia', 'CA03': 'Manitoba', 'GBD7': 'Dudley', 'GBM8': 'Southwark', 'GBM9': 'Staffordshire', 'MD78': 'Ialoveni', 'EE21': 'Vorumaa', 'GBM4': 'Southampton', 'GBM5': 'Southend-on-Sea', 'GBM6': 'South Gloucestershire', 'GBM7': 'South Tyneside', 'MD72': 'Dubasari', 'GBM1': 'Slough', 'GBM2': 'Solihull', 'GBM3': 'Somerset', 'RU09': 'Belgorod', 'RU08': 'Bashkortostan', 'RU07': "Astrakhan'", 'RU06': "Arkhangel'sk", 'RU05': 'Amur', 'RU04': 'Altaisky krai', 'RU03': 'Gorno-Altay', 'RU02': 'Aginsky Buryatsky AO', 'RU01': 'Adygeya', 'PH68': 'Quirino', 'PH69': 'Siquijor', 'PH66': 'Zamboanga del Sur', 'PH67': 'Northern Samar', 'PH64': 'Zambales', 'PH65': 'Zamboanga del Norte', 'PH62': 'Surigao del Sur', 'PH63': 'Tarlac', 'PH60': 'Sulu', 'PH61': 'Surigao del Norte', 'CO24': 'Risaralda', 'CO25': 'San Andres y Providencia', 'CO26': 'Santander', 'CO27': 'Sucre', 'CO20': 'Narino', 'CO21': 'Norte de Santander', 'AZ29': 'Lankaran', 'AZ28': 'Lacin', 'AZ27': 'Kurdamir', 'AZ26': 'Kalbacar', 'AZ25': 'Ismayilli', 'AZ24': 'Imisli', 'AZ23': 'Haciqabul', 'AZ22': 'Goycay', 'AZ21': 'Goranboy', 'AZ20': 'Ganca', 'NG29': 'Kano', 'NG28': 'Imo', 'DZ19': 'Biskra', 'DZ18': 'Bejaia', 'DZ15': 'Tlemcen', 'DZ14': 'Tizi Ouzou', 'NG21': 'Akwa Ibom', 'NG27': 'Borno', 'DZ10': 'Saida', 'DZ13': 'Tiaret', 'DZ12': 'Setif', 'NA05': 'Grootfontein', 'FI14': 'Eastern Finland', 'FI15': 'Western Finland', 'FI13': 'Southern Finland', 'VU10': 'Malakula', 'VU11': 'Paama', 'VU12': 'Pentecote', 'VU13': 'Sanma', 'VU14': 'Shepherd', 'VU15': 'Tafea', 'VU16': 'Malampa', 'VU17': 'Penama', 'NG57': 'Zamfara', 'HT13': 'Sud-Est', 'HT12': 'Sud', 'HT11': 'Ouest', 'HT10': 'Nord-Est', 'BA02': 'Republika Srpska', 'BA01': 'Federation of Bosnia and Herzegovina', 'SIC2': 'Slovenj Gradec', 'USLA': 'Louisiana', 'LC09': 'Soufriere', 'LC08': 'Micoud', 'LC03': 'Castries', 'LC02': 'Dauphin', 'LC01': 'Anse-la-Raye', 'LC07': 'Laborie', 'LC06': 'Gros-Islet', 'LC05': 'Dennery', 'LC04': 'Choiseul', 'ES57': 'Extremadura', 'MW23': 'Zomba', 'MW20': 'Ntchisi', 'MW21': 'Rumphi', 'ES53': 'Canarias', 'MW27': 'Likoma', 'MW24': 'Blantyre', 'MW25': 'Mwanza', 'MW28': 'Machinga', 'MW29': 'Mulanje', 'ES59': 'Pais Vasco', 'ES58': 'Galicia', 'YE15': 'Sa', 'YE14': "Ma'rib", 'YE16': 'San', 'YE11': 'Dhamar', 'YE10': 'Al Mahwit', 'MN19': 'Uvs', 'UG29': 'Bushenyi', 'BF34': 'Passore', 'BF36': 'Sanguie', 'BF33': 'Oudalan', 'MN13': 'Hovsgol', 'AL50': 'Tirane', 'AL51': 'Vlore', 'HR20': 'Zagrebacka', 'HR21': 'Grad Zagreb', 'LY49': 'Al Jabal al Akhdar', 'LY48': 'Al Fatih', 'LY45': 'Zlitan', 'LY47': 'Ajdabiya', 'LY41': 'Tarhunah', 'LY42': 'Tubruq', 'CA14': 'Nunavut', 'CA13': 'Northwest Territories', 'CA12': 'Yukon Territory', 'CA11': 'Saskatchewan', 'CA10': 'Quebec', 'FR99': 'Basse-Normandie', 'FR98': 'Auvergne', 'FR97': 'Aquitaine', 'MD69': 'Criuleni', 'MD68': 'Cimislia', 'GBL9': 'Sheffield', 'GBL8': 'Sefton', 'GBL7': 'Sandwell', 'GBL6': 'Shropshire', 'GBL5': 'Salford', 'GBL4': 'Rutland', 'GBL3': 'Rotherham', 'GBL2': 'Rochdale', 'GBL1': 'Richmond upon Thames', 'MD66': 'Calarasi', 'RU38': 'Krasnodar', 'RU39': 'Krasnoyarsk', 'SIF2': 'Ziri', 'SIF3': 'Zrece', 'SIF1': 'Zelezniki', 'RU32': 'Khanty-Mansiy', 'RU33': 'Kirov', 'RU30': 'Khabarovsk', 'RU31': 'Khakass', 'RU36': 'Koryak', 'RU37': 'Kostroma', 'RU34': 'Komi', 'RU35': 'Komi-Permyak', 'RW12': 'Kigali', 'RW13': 'Nord', 'RW11': 'Est', 'RW14': 'Ouest', 'RW15': 'Sud', 'BO08': 'Santa Cruz', 'MO01': 'Ilhas', 'PH71': 'Sultan Kudarat', 'PH70': 'South Cotabato', 'PH72': 'Tawitawi', 'CO37': 'Caldas', 'CO36': 'Boyaca', 'CO35': 'Bolivar', 'CO34': 'Distrito Especial', 'CO33': 'Cundinamarca', 'CO32': 'Casanare', 'CO31': 'Vichada', 'CO30': 'Vaupes', 'AZ12': 'Beylaqan', 'AZ13': 'Bilasuvar', 'AZ10': 'Balakan', 'AZ11': 'Barda', 'AZ16': 'Daskasan', 'AZ17': 'Davaci', 'AZ14': 'Cabrayil', 'AZ15': 'Calilabad', 'WS02': 'Aiga-i-le-Tai', 'WS03': 'Atua', 'WS06': 'Va', 'WS07': 'Gagaifomauga', 'WS04': 'Fa', 'WS05': 'Gaga', 'WS08': 'Palauli', 'WS09': 'Satupa', 'USMT': 'Montana', 'USMS': 'Mississippi', 'USMP': 'Northern Mariana Islands', 'USMO': 'Missouri', 'FI06': 'Lapland', 'FI01': 'Aland', 'USMH': 'Marshall Islands', 'USME': 'Maine', 'USMD': 'Maryland', 'USMA': 'Massachusetts', 'FI08': 'Oulu', 'PK07': 'Northern Areas', 'PK06': 'Azad Kashmir', 'PK05': 'Sindh', 'PK04': 'Punjab', 'RO38': 'Vaslui', 'RO39': 'Valcea', 'PK01': 'Federally Administered Tribal Areas', 'RO34': 'Suceava', 'RO35': 'Teleorman', 'RO36': 'Timis', 'RO37': 'Tulcea', 'RO30': 'Prahova', 'RO31': 'Salaj', 'RO32': 'Satu Mare', 'RO33': 'Sibiu', 'IR38': 'Qazvin', 'IR39': 'Qom', 'MD51': 'Gagauzia', 'IR34': 'Markazi', 'IR35': 'Mazandaran', 'IR36': 'Zanjan', 'IR37': 'Golestan', 'IR30': 'Khorasan', 'IR31': 'Yazd', 'IR32': 'Ardabil', 'IR33': 'East Azarbaijan', 'MD57': 'Chisinau', 'BB02': 'Saint Andrew', 'BB03': 'Saint George', 'NO20': 'Vestfold', 'BB06': 'Saint Joseph', 'BB07': 'Saint Lucy', 'BB08': 'Saint Michael', 'BB09': 'Saint Peter', 'IS20': 'Nordur-Mulasysla', 'IS21': 'Nordur-Tingeyjarsysla', 'BF59': 'Koulpelogo', 'ES60': 'Comunidad Valenciana', 'MK47': 'Konce', 'MW30': 'Phalombe', 'MK48': 'Kondovo', 'MK49': 'Konopiste', 'BF48': 'Bougouriba', 'BF49': 'Boulgou', 'SC22': 'Saint Louis', 'SC23': 'Takamaka', 'BF40': 'Soum', 'BF42': 'Tapoa', 'BF44': 'Zoundweogo', 'BF45': 'Bale', 'BF46': 'Banwa', 'BF47': 'Bazega', 'AL49': 'Shkoder', 'AL48': 'Lezhe', 'AL47': 'Kukes', 'AL46': 'Korce', 'AL45': 'Gjirokaster', 'AL44': 'Fier', 'AL43': 'Elbasan', 'AL42': 'Durres', 'AL41': 'Diber', 'AL40': 'Berat', 'LK10': 'Kandy', 'LK11': 'Kegalla', 'LK12': 'Kurunegala', 'LK14': 'Matale', 'LK15': 'Matara', 'LK16': 'Moneragala', 'LK17': 'Nuwara Eliya', 'LK18': 'Polonnaruwa', 'LK19': 'Puttalam', 'LV18': 'Limbazu', 'CF11': 'Ouaka', 'CF12': 'Ouham', 'CF13': 'Ouham-Pende', 'CF14': 'Cuvette-Ouest', 'CF15': 'Nana-Grebizi', 'CF16': 'Sangha-Mbaere', 'CF17': 'Ombella-Mpoko', 'CF18': 'Bangui', 'LY30': 'Murzuq', 'LY34': 'Sabha', 'LR01': 'Bong', 'LR06': 'Maryland', 'LR07': 'Monrovia', 'LR04': 'Grand Cape Mount', 'LR05': 'Lofa', 'LR09': 'Nimba', 'CANB': 'New Brunswick', 'RU25': 'Kaluga', 'RU24': 'Kalmyk', 'GBO8': 'Walsall', 'VN83': 'Phu Tho', 'RU21': 'Ivanovo', 'RU20': 'Irkutsk', 'RU23': 'Kaliningrad', 'RU22': 'Kabardin-Balkar', 'GBO2': 'Telford and Wrekin', 'GBO3': 'Thurrock', 'GBO1': 'Tameside', 'RU29': 'Kemerovo', 'RU28': 'Karelia', 'GBO4': 'Torbay', 'GBO5': 'Tower Hamlets', 'SIG4': 'Dobrova-Horjul-Polhov Gradec', 'SIG7': 'Domzale', 'CANL': 'Newfoundland', 'PH40': 'Mindoro Occidental', 'RW09': 'Kigali', 'ZA11': 'Western Cape', 'RW07': 'Kibungo', 'RW06': 'Gitarama', 'RW01': 'Butare', 'GA01': 'Estuaire', 'GA02': 'Haut-Ogooue', 'GA03': 'Moyen-Ogooue', 'GA04': 'Ngounie', 'GA05': 'Nyanga', 'GA06': 'Ogooue-Ivindo', 'GA07': 'Ogooue-Lolo', 'GA08': 'Ogooue-Maritime', 'GA09': 'Woleu-Ntem', 'TT08': 'Saint George', 'TT09': 'Saint Patrick', 'TT04': 'Nariva', 'TT05': 'Port-of-Spain', 'TT06': 'Saint Andrew', 'TT07': 'Saint David', 'TT01': 'Arima', 'TT02': 'Caroni', 'TT03': 'Mayaro', 'CANS': 'Nova Scotia', 'AZ05': 'Agstafa', 'AZ04': 'Agdas', 'AZ07': 'Ali Bayramli', 'AZ06': 'Agsu', 'AZ01': 'Abseron', 'AZ03': 'Agdam', 'AZ02': 'Agcabadi', 'AZ09': 'Baki', 'AZ08': 'Astara', 'CO02': 'Antioquia', 'CO03': 'Arauca', 'CO01': 'Amazonas', 'CO06': 'Boyaca Department', 'CO07': 'Caldas Department', 'CO04': 'Atlantico', 'CO05': 'Bolivar Department', 'CO08': 'Caqueta', 'CO09': 'Cauca', 'WS11': 'Vaisigano', 'WS10': 'Tuamasaga', 'GQ03': 'Annobon', 'GQ04': 'Bioko Norte', 'GQ05': 'Bioko Sur', 'GQ06': 'Centro Sur', 'GQ07': 'Kie-Ntem', 'GQ08': 'Litoral', 'GQ09': 'Wele-Nzas', 'TZ24': 'Rukwa', 'TZ25': 'Zanzibar Urban', 'TZ26': 'Arusha', 'TZ27': 'Manyara', 'TZ20': 'Pemba South', 'TZ21': 'Zanzibar Central', 'RO29': 'Olt', 'TZ23': 'Dar es Salaam', 'RO27': 'Mures', 'RO26': 'Mehedinti', 'RO25': 'Maramures', 'RO23': 'Iasi', 'RO22': 'Ialomita', 'RO21': 'Hunedoara', 'RO20': 'Harghita', 'IR29': 'Kerman', 'IR28': 'Esfahan', 'IR27': 'Zanjan', 'IR26': 'Tehran', 'IR25': 'Semnan', 'IR24': 'Markazi', 'IR23': 'Lorestan', 'IR22': 'Bushehr', 'IR21': 'Zanjan', 'LY56': 'Ghadamis', 'USNY': 'New York', 'USNV': 'Nevada', 'USNJ': 'New Jersey', 'USNH': 'New Hampshire', 'USNM': 'New Mexico', 'USNC': 'North Carolina', 'USND': 'North Dakota', 'USNE': 'Nebraska', 'VU18': 'Shefa', 'NO18': 'Troms', 'NO19': 'Vest-Agder', 'NO16': 'Sor-Trondelag', 'NO17': 'Telemark', 'NO14': 'Rogaland', 'NO15': 'Sogn og Fjordane', 'NO12': 'Oslo', 'NO13': 'Ostfold', 'NO10': 'Nord-Trondelag', 'NO11': 'Oppland', 'NG49': 'Plateau', 'MK44': 'Kisela Voda', 'MK45': 'Klecevce', 'MK46': 'Kocani', 'BF58': 'Kossi', 'MK40': 'Karbinci', 'MK41': 'Karpos', 'MK42': 'Kavadarci', 'MK43': 'Kicevo', 'BF53': 'Kadiogo', 'BF52': 'Ioba', 'BF51': 'Houet', 'BF50': 'Gourma', 'BF57': 'Kompienga', 'BF56': 'Komondjari', 'BF55': 'Komoe', 'BF54': 'Kenedougou', 'BY03': "Hrodzyenskaya Voblasts'", 'BY02': "Homyel'skaya Voblasts'", 'BY01': "Brestskaya Voblasts'", 'BY07': "Vitsyebskaya Voblasts'", 'BY06': "Mahilyowskaya Voblasts'", 'BY05': "Minskaya Voblasts'", 'BY04': 'Minsk', 'LK03': 'Badulla', 'LK02': 'Anuradhapura', 'LK01': 'Amparai', 'LK07': 'Hambantota', 'LK06': 'Galle', 'LK04': 'Batticaloa', 'LK09': 'Kalutara', 'CANT': 'Northwest Territories', 'CANU': 'Nunavut', 'PSGZ': 'Gaza', 'NG43': 'Taraba', 'NG42': 'Osun', 'CF03': 'Haute-Kotto', 'CF02': 'Basse-Kotto', 'CF01': 'Bamingui-Bangoran', 'CF07': 'Lobaye', 'CF06': 'Kemo', 'CF05': 'Haut-Mbomou', 'CF04': 'Mambere-Kadei', 'CF09': 'Nana-Mambere', 'CF08': 'Mbomou', 'KI01': 'Gilbert Islands', 'KI02': 'Line Islands', 'KI03': 'Phoenix Islands', 'HR08': 'Licko-Senjska', 'HR09': 'Medimurska', 'HR06': 'Koprivnicko-Krizevacka', 'HR07': 'Krapinsko-Zagorska', 'HR04': 'Istarska', 'HR05': 'Karlovacka', 'HR02': 'Brodsko-Posavska', 'HR03': 'Dubrovacko-Neretvanska', 'HR01': 'Bjelovarsko-Bilogorska', 'RU50': 'Nenets', 'LR19': 'Grand Gedeh', 'LR18': 'River Cess', 'VN92': 'Dien Bien', 'LR14': 'Montserrado', 'LR17': 'Margibi', 'LR11': 'Grand Bassa', 'LR10': 'Sino', 'LR13': 'Maryland', 'LR12': 'Grand Cape Mount', 'GBN5': 'Suffolk', 'GBN4': 'Stoke-on-Trent', 'GBN7': 'Surrey', 'GBN6': 'Sunderland', 'GBN1': 'St. Helens', 'GBN3': 'Stockton-on-Tees', 'GBN2': 'Stockport', 'GBN9': 'Swindon', 'GBN8': 'Sutton', 'VN93': 'Hau Giang', 'RU51': 'Nizhegorod', 'VN91': 'Dak Nong', 'VN90': 'Lao Cai', 'RU54': 'Omsk', 'RU55': 'Orenburg', 'RU56': 'Orel', 'RU57': 'Penza', 'RU58': "Perm'", 'RU59': "Primor'ye", 'SIH4': 'Jesenice', 'SIH6': 'Kamnik', 'SIH7': 'Kocevje', 'SH01': 'Ascension', 'SH03': 'Tristan da Cunha', 'SH02': 'Saint Helena', 'LI22': 'River Gee', 'LI21': 'Gbarpolu', 'TT12': 'Victoria', 'TT11': 'Tobago', 'TT10': 'San Fernando', 'AZ70': 'Zaqatala', 'AZ71': 'Zardab', 'BS30': 'Kemps Bay', 'BS31': 'Marsh Harbour', 'BS32': 'Nichollstown and Berry Islands', 'BS33': 'Rock Sound', 'CO19': 'Meta', 'DZ43': 'El Oued', 'DZ40': 'Boumerdes', 'DZ41': 'Chlef', 'CO15': 'Guainia', 'CO14': 'Guaviare', 'CO17': 'La Guajira', 'CO16': 'Huila', 'CO11': 'Choco', 'CO10': 'Cesar', 'DZ48': 'Mila', 'DZ49': 'Naama', 'USOH': 'Ohio', 'USOK': 'Oklahoma', 'RO18': 'Galati', 'RO19': 'Gorj', 'USOR': 'Oregon', 'RO12': 'Caras-Severin', 'RO13': 'Cluj', 'RO10': 'Bucuresti', 'RO11': 'Buzau', 'RO16': 'Dambovita', 'RO17': 'Dolj', 'RO14': 'Constanta', 'RO15': 'Covasna', 'IR18': 'Semnan Province', 'IR19': 'Markazi', 'IR12': 'Kerman', 'IR13': 'Bakhtaran', 'IR10': 'Ilam', 'IR11': 'Hormozgan', 'IR16': 'Kordestan', 'IR17': 'Mazandaran', 'IR15': 'Khuzestan', 'NA14': 'Outjo', 'NA15': 'Owambo', 'NA16': 'Rehoboth', 'NA17': 'Swakopmund', 'NA10': 'Maltahohe', 'NA11': 'Okahandja', 'NA12': 'Omaruru', 'NA13': 'Otjiwarongo', 'NA18': 'Tsumeb', 'VE09': 'Delta Amacuro', 'BH08': 'Al Mintaqah al Gharbiyah', 'BH09': 'Mintaqat Juzur Hawar', 'BH02': 'Al Manamah', 'BH01': 'Al Hadd', 'BH06': 'Sitrah', 'BH05': 'Jidd Hafs', 'BD86': 'Sylhet', 'BD84': 'Chittagong', 'BD85': 'Barisal', 'BD82': 'Khulna', 'BD83': 'Rajshahi', 'BD81': 'Dhaka', 'AF26': 'Takhar', 'NO09': 'Nordland', 'NO08': 'More og Romsdal', 'VU09': 'Epi', 'VU08': 'Efate', 'NO01': 'Akershus', 'VE07': 'Carabobo', 'NO02': 'Aust-Agder', 'NO05': 'Finnmark', 'NO04': 'Buskerud', 'NO07': 'Hordaland', 'NO06': 'Hedmark', 'KN13': 'Saint Thomas Middle Island', 'AF29': 'Paktika', 'AF28': 'Zabol', 'ES07': 'Islas Baleares', 'SY04': 'Ar Raqqah', 'SY05': "As Suwayda'", 'SY06': 'Dar', 'SY07': 'Dayr az Zawr', 'SY01': 'Al Hasakah', 'SY02': 'Al Ladhiqiyah', 'SY03': 'Al Qunaytirah', 'SY08': 'Rif Dimashq', 'SY09': 'Halab', 'BF66': 'Nayala', 'BF67': 'Noumbiel', 'BF64': 'Namentenga', 'BF65': 'Naouri', 'BF62': 'Loroum', 'BF63': 'Mouhoun', 'BF60': 'Kourweogo', 'BF61': 'Leraba', 'BF68': 'Oubritenga', 'BF69': 'Poni', 'MK57': 'Kumanovo', 'MK56': 'Kukurecani', 'MK55': 'Kuklis', 'MK54': 'Krusevo', 'MK53': 'Krivogastani', 'MK52': 'Kriva Palanka', 'MK51': 'Kratovo', 'SC09': 'Bel Air', 'SC06': 'Baie Lazare', 'SC07': 'Baie Sainte Anne', 'SC04': 'Anse Louis', 'SC05': 'Anse Royale', 'SC02': 'Anse Boileau', 'SC03': 'Anse Etoile', 'MK59': 'Lipkovo', 'MK58': 'Labunista', 'LK36': 'Western', 'LK34': 'Southern', 'LK35': 'Uva', 'LK32': 'North Western', 'LK33': 'Sabaragamuwa', 'LK30': 'North Central', 'LK31': 'Northern', 'AM11': 'Yerevan', 'LY13': "Ash Shati'", 'HR19': 'Zadarska', 'HR18': 'Vukovarsko-Srijemska', 'HR11': 'Pozesko-Slavonska', 'HR10': 'Osjecko-Baranjska', 'HR13': 'Sibensko-Kninska', 'HR12': 'Primorsko-Goranska', 'HR15': 'Splitsko-Dalmatinska', 'HR14': 'Sisacko-Moslavacka', 'HR17': 'Viroviticko-Podravska', 'HR16': 'Varazdinska', 'GBI1': 'Luton', 'GBI2': 'Manchester', 'GBI3': 'Medway', 'GBI4': 'Merton', 'GBI5': 'Middlesbrough', 'GBI6': 'Milton Keynes', 'GBI7': 'Newcastle upon Tyne', 'GBI8': 'Newham', 'GBI9': 'Norfolk', 'RU43': 'Lipetsk', 'ID10': 'Yogyakarta', 'RU41': 'Kursk', 'RU40': 'Kurgan', 'RU47': 'Moskva', 'RU46': 'Mordovia', 'RU45': 'Mariy-El', 'RU44': 'Magadan', 'RU49': 'Murmansk', 'RU48': 'Moscow City', 'ID12': 'Kalimantan Selatan', 'ID13': 'Kalimantan Tengah', 'SII9': 'Luce', 'SII7': 'Loska Dolina', 'SII6': 'Ljutomer', 'SII5': 'Litija', 'SII3': 'Lenart', 'SII2': 'Kuzma', 'CAON': 'Ontario', 'LI10': 'Triesenberg', 'LI11': 'Vaduz', 'DZ46': 'Illizi', 'DZ47': 'Khenchela', 'DZ44': 'El Tarf', 'DZ45': 'Ghardaia', 'CD12': 'Sud-Kivu', 'CD10': 'Maniema', 'CD11': 'Nord-Kivu', 'DZ42': 'El Bayadh', 'BS35': 'San Salvador and Rum Cay', 'AZ63': 'Xizi', 'SV10': 'San Salvador', 'AZ61': 'Xankandi', 'AZ60': 'Xacmaz', 'AZ67': 'Yevlax', 'AZ66': 'Yardimli', 'AZ65': 'Xocavand', 'AZ64': 'Xocali', 'AZ69': 'Zangilan', 'AZ68': 'Yevlax', 'SV12': 'San Vicente', 'BS23': 'New Providence', 'BS22': 'Harbour Island', 'DZ53': 'Tamanghasset', 'DZ52': 'Souk Ahras', 'BS27': "Governor's Harbour", 'BS26': 'Fresh Creek', 'BS25': 'Freeport', 'BS24': 'Acklins and Crooked Islands', 'BS29': 'High Rock', 'BS28': 'Green Turtle Cay', 'CO12': 'Cordoba', 'BO03': 'El Beni', 'GBU8': 'Edinburgh', 'BO02': 'Cochabamba', 'GBU9': 'Falkirk', 'RO05': 'Bihor', 'RO04': 'Bacau', 'RO07': 'Botosani', 'MY09': 'Pulau Pinang', 'RO01': 'Alba', 'RO03': 'Arges', 'RO02': 'Arad', 'MY02': 'Kedah', 'MY03': 'Kelantan', 'MY01': 'Johor', 'MY06': 'Pahang', 'MY07': 'Perak', 'MY04': 'Melaka', 'MY05': 'Negeri Sembilan', 'TZ02': 'Pwani', 'TZ03': 'Dodoma', 'TZ06': 'Kilimanjaro', 'TZ07': 'Lindi', 'TZ04': 'Iringa', 'TZ05': 'Kigoma', 'TZ08': 'Mara', 'TZ09': 'Mbeya', 'BH15': 'Al Muharraq', 'NA06': 'Kaokoland', 'AT09': 'Wien', 'NA04': 'Gobabis', 'BH11': 'Al Mintaqah al Wusta', 'BH10': 'Al Mintaqah ash Shamaliyah', 'NA01': 'Bethanien', 'BH12': 'Madinat', 'AT03': 'Niederosterreich', 'AT02': 'Karnten', 'AT01': 'Burgenland', 'BH19': 'Al Wusta', 'BH18': 'Ash Shamaliyah', 'AT05': 'Salzburg', 'NA08': 'Keetmanshoop', 'GW06': 'Cacheu', 'GW07': 'Tombali', 'GW04': 'Oio', 'GW05': 'Bolama', 'GR50': 'Khios', 'GR51': 'Lesvos', 'GW01': 'Bafata', 'USHI': 'Hawaii', 'IR05': 'Kohkiluyeh va Buyer Ahmadi', 'IR04': 'Sistan va Baluchestan', 'IR07': 'Fars', 'IR01': 'Azarbayjan-e Bakhtari', 'IR03': 'Chahar Mahall va Bakhtiari', 'IR09': 'Hamadan', 'IR08': 'Gilan', 'TR28': 'Giresun', 'TR24': 'Erzincan', 'TR25': 'Erzurum', 'TR26': 'Eskisehir', 'TR20': 'Denizli', 'TR21': 'Diyarbakir', 'TR22': 'Edirne', 'TR23': 'Elazig', 'SI47': 'Kobilje', 'SY14': 'Tartus', 'SY13': 'Dimashq', 'SY12': 'Idlib', 'SY11': 'Hims', 'SY10': 'Hamah', 'ID41': 'Sulawesi Barat', 'ID40': 'Kepulauan Riau', 'BF71': 'Seno', 'BF70': 'Sanmatenga', 'BF73': 'Sourou', 'BF72': 'Sissili', 'BF75': 'Yagha', 'BF74': 'Tuy', 'BF77': 'Ziro', 'BF76': 'Yatenga', 'DO14': 'Maria Trinidad Sanchez', 'DO15': 'Monte Cristi', 'DO16': 'Pedernales', 'DO17': 'Peravia', 'DO10': 'La Altagracia', 'DO11': 'Elias Pina', 'DO12': 'La Romana', 'MK62': 'Makedonska Kamenica', 'MK63': 'Makedonski Brod', 'MK60': 'Lozovo', 'MK61': 'Lukovo', 'MK66': 'Miravci', 'MK67': 'Mogila', 'MK64': 'Mavrovi Anovi', 'MK65': 'Meseista', 'SC11': 'Cascade', 'SC10': 'Bel Ombre', 'MK68': 'Murtino', 'MK69': 'Negotino', 'SC15': 'La Digue', 'SC14': "Grand' Anse", 'SC17': 'Mont Buxton', 'SC16': 'La Riviere Anglaise', 'NI18': 'Region Autonoma Atlantico Sur', 'NI14': 'Rio San Juan', 'NI15': 'Rivas', 'NI16': 'Zelaya', 'NI17': 'Autonoma Atlantico Norte', 'NI10': 'Managua', 'NI11': 'Masaya', 'NI12': 'Matagalpa', 'NI13': 'Nueva Segovia', 'LK29': 'Central', 'LK28': 'Vavuniya', 'LK21': 'Trincomalee', 'LK20': 'Ratnapura', 'LK23': 'Colombo', 'LK25': 'Jaffna', 'LK24': 'Gampaha', 'LK27': 'Mullaittivu', 'LK26': 'Mannar', 'CM04': 'Est', 'CM05': 'Littoral', 'LY03': 'Al Aziziyah', 'LY05': 'Al Jufrah', 'LY08': 'Al Kufrah', 'SO05': 'Galguduud', 'GBH3': 'Leeds', 'GBH2': 'Lancashire', 'GBH1': 'Lambeth', 'GBH7': 'Lincolnshire', 'GBH6': 'Lewisham', 'GBH5': 'Leicestershire', 'GBH4': 'Leicester', 'GBH9': 'London', 'GBH8': 'Liverpool', 'RU78': "Tyumen'", 'RU79': 'Tuva', 'RU76': 'Tula', 'RU77': "Tver'", 'RU74': 'Taymyr', 'RU75': 'Tomsk', 'RU72': 'Tambovskaya oblast', 'RU73': 'Tatarstan', 'RU70': "Stavropol'", 'RU71': 'Sverdlovsk', 'SIJ9': 'Piran', 'SIJ2': 'Maribor', 'SIJ1': 'Majsperk', 'SIJ7': 'Novo Mesto', 'SIJ5': 'Miren-Kostanjevica', 'LI01': 'Balzers', 'AE03': 'Dubai', 'LI03': 'Gamprin', 'LI02': 'Eschen', 'LI05': 'Planken', 'LI04': 'Mauren', 'LI07': 'Schaan', 'LI06': 'Ruggell', 'LI09': 'Triesen', 'LI08': 'Schellenberg', 'KG02': 'Chuy', 'KG03': 'Jalal-Abad', 'UG28': 'Bundibugyo', 'CD02': 'Equateur', 'KG06': 'Talas', 'KG07': 'Ysyk-Kol', 'KG04': 'Naryn', 'KG05': 'Osh', 'CD09': 'Orientale', 'CD08': 'Bas-Congo', 'KG08': 'Osh', 'KG09': 'Batken', 'UG26': 'Apac', 'AZ58': 'Tovuz', 'AZ59': 'Ucar', 'AZ56': 'Susa', 'AZ57': 'Tartar', 'AZ54': 'Sumqayit', 'AZ55': 'Susa', 'AZ52': 'Samux', 'AZ53': 'Siyazan', 'AZ50': 'Samaxi', 'AZ51': 'Samkir', 'MC03': 'Monte-Carlo', 'BS18': 'Ragged Island', 'BS16': 'Mayaguana', 'BS15': 'Long Island', 'BS13': 'Inagua', 'BS10': 'Exuma', 'KY07': 'West End', 'MO02': 'Macau', 'MY15': 'Labuan', 'MY14': 'Kuala Lumpur', 'MY17': 'Putrajaya', 'MY16': 'Sabah', 'MY11': 'Sarawak', 'MY13': 'Terengganu', 'MY12': 'Selangor', 'USIA': 'Iowa', 'USID': 'Idaho', 'USIN': 'Indiana', 'USIL': 'Illinois', 'PH53': 'Rizal', 'TZ19': 'Kagera', 'TZ18': 'Tanga', 'TZ15': 'Shinyanga', 'TZ14': 'Ruvuma', 'TZ17': 'Tabora', 'TZ16': 'Singida', 'TZ11': 'Mtwara', 'TZ10': 'Morogoro', 'TZ13': 'Pemba North', 'TZ12': 'Mwanza', 'NA32': 'Kunene', 'NA33': 'Ohangwena', 'NA30': 'Hardap', 'NA31': 'Karas', 'NA36': 'Omusati', 'NA37': 'Oshana', 'NA34': 'Okavango', 'NA35': 'Omaheke', 'LA17': 'Louangphrabang', 'NA38': 'Oshikoto', 'NA39': 'Otjozondjupa', 'LA13': 'Xaignabouri', 'LA10': 'Savannakhet', 'LA11': 'Vientiane', 'BJ08': 'Atakora', 'BJ09': 'Atlanyique', 'BJ07': 'Alibori', 'GW11': 'Bissau', 'GW10': 'Gabu', 'GR45': 'Iraklion', 'GW12': 'Biombo', 'GR43': 'Khania', 'GR42': 'Lakonia', 'GR41': 'Arkadhia', 'GR40': 'Messinia', 'GR49': 'Kikladhes', 'GR48': 'Samos', 'USVI': 'Virgin Islands', 'CO18': 'Magdalena Department', 'ES27': 'La Rioja', 'ES29': 'Madrid', 'TR39': 'Kirklareli', 'TR38': 'Kayseri', 'TR37': 'Kastamonu', 'TR35': 'Izmir', 'TR34': 'Istanbul', 'TR33': 'Isparta', 'TR32': 'Mersin', 'TR31': 'Hatay', 'PL81': 'Podlaskie', 'PL83': 'Slaskie', 'NZE9': 'Canterbury', 'NZE8': 'Bay of Plenty', 'NZE7': 'Auckland', 'DO09': 'Independencia', 'DO08': 'Espaillat', 'TH56': 'Phetchaburi', 'DO06': 'Duarte', 'DO05': 'Distrito Nacional', 'DO04': 'Dajabon', 'DO03': 'Barahona', 'DO02': 'Baoruco', 'DO01': 'Azua', 'MK79': 'Petrovec', 'MK78': 'Pehcevo', 'MK75': 'Orasac', 'MK74': 'Ohrid', 'MK77': 'Oslomej', 'MK76': 'Orizari', 'MK71': 'Novaci', 'MK70': 'Negotino-Polosko', 'MK73': 'Oblesevo', 'MK72': 'Novo Selo', 'RU52': 'Novgorod', 'NI09': 'Madriz', 'NI08': 'Leon', 'NI07': 'Jinotega', 'NI06': 'Granada', 'NI05': 'Esteli', 'NI04': 'Chontales', 'NI03': 'Chinandega', 'NI02': 'Carazo', 'NI01': 'Boaco', 'RU53': 'Novosibirsk', 'IQ03': 'Al Muthanna', 'HU41': 'Salgotarjan', 'HU40': 'Zalaegerszeg', 'HU43': 'Erd', 'HU42': 'Szekszard', 'GBK8': 'Redbridge', 'GBK9': 'Redcar and Cleveland', 'GBK6': 'Portsmouth', 'GBK7': 'Reading', 'GBK4': 'Plymouth', 'GBK5': 'Poole', 'GBK2': 'Oxfordshire', 'GBK3': 'Peterborough', 'GBK1': 'Oldham', 'RU69': 'Smolensk', 'RU68': 'North Ossetia', 'SIK7': 'Ptuj', 'RU61': 'Rostov', 'RU60': 'Pskov', 'RU63': 'Sakha', 'RU62': "Ryazan'", 'RU65': 'Samara', 'RU64': 'Sakhalin', 'RU67': 'Saratov', 'RU66': 'Saint Petersburg City', 'SA08': 'Al Qasim', 'SA09': 'Al Qurayyat', 'SA05': 'Al Madinah', 'SA06': 'Ash Sharqiyah', 'SA02': 'Al Bahah', 'SA03': 'Al Jawf', 'SO20': 'Woqooyi Galbeed', 'SO21': 'Awdal', 'SO22': 'Sool', 'CAAB': 'Alberta', 'UG37': 'Kampala', 'UG36': 'Kalangala', 'UG31': 'Hoima', 'UG30': 'Gulu', 'UG33': 'Jinja', 'UG39': 'Kapchorwa', 'UG38': 'Kamuli', 'AZ49': 'Salyan', 'AZ48': 'Saki', 'AZ41': 'Qobustan', 'AZ40': 'Qazax', 'AZ43': 'Qubadli', 'AZ42': 'Quba', 'AZ45': 'Saatli', 'AZ44': 'Qusar', 'AZ47': 'Saki', 'AZ46': 'Sabirabad', 'BS05': 'Bimini', 'BS06': 'Cat Island', 'MA46': 'Fes-Boulemane', 'MA47': 'Marrakech-Tensift-Al Haouz', 'MA45': 'Grand Casablanca', 'MA48': 'Meknes-Tafilalet', 'MA49': 'Rabat-Sale-Zemmour-Zaer', 'VU07': 'Torba', 'VU06': 'Aoba', 'VU05': 'Ambrym', 'LA09': 'Saravan', 'LA08': 'Phongsali', 'NA29': 'Erongo', 'NA28': 'Caprivi', 'LA01': 'Attapu', 'NA24': 'Hereroland Wes', 'LA03': 'Houaphan', 'NA26': 'Mariental', 'LA05': 'Louang Namtha', 'LA04': 'Khammouan', 'LA07': 'Oudomxai', 'NA22': 'Damaraland', 'MR12': 'Inchiri', 'MR10': 'Guidimaka', 'MR11': 'Tiris Zemmour', 'BJ18': 'Zou', 'BJ13': 'Donga', 'BJ12': 'Kouffo', 'BJ11': 'Collines', 'BJ10': 'Borgou', 'BJ17': 'Plateau', 'BJ16': 'Oueme', 'BJ15': 'Mono', 'BJ14': 'Littoral', 'CU08': 'Cienfuegos', 'CU09': 'Granma', 'CU01': 'Pinar del Rio', 'CU02': 'Ciudad de la Habana', 'CU03': 'Matanzas', 'CU04': 'Isla de la Juventud', 'CU05': 'Camaguey', 'CU07': 'Ciego de Avila', 'GE04': 'Ajaria', 'GE05': 'Akhalgoris Raioni', 'GE06': "Akhalk'alak'is Raioni", 'GE07': "Akhalts'ikhis Raioni", 'GE01': 'Abashis Raioni', 'GE02': 'Abkhazia', 'GE03': 'Adigenis Raioni', 'GE08': 'Akhmetis Raioni', 'GE09': 'Ambrolauris Raioni', 'ES31': 'Murcia', 'ES32': 'Navarra', 'ES34': 'Asturias', 'ES39': 'Cantabria', 'TR08': 'Artvin', 'TR09': 'Aydin', 'TR02': 'Adiyaman', 'TR03': 'Afyonkarahisar', 'TR07': 'Antalya', 'TR04': 'Agri', 'TR05': 'Amasya', 'USMI': 'Michigan', 'DO32': 'Monte Plata', 'DO33': 'San Cristobal', 'DO30': 'La Vega', 'DO31': 'Monsenor Nouel', 'DO36': 'San Jose de Ocoa', 'DO37': 'Santo Domingo', 'DO34': 'Distrito Nacional', 'DO35': 'Peravia', 'MK08': 'Bogdanci', 'MK09': 'Bogomila', 'MK01': 'Aracinovo', 'MK02': 'Bac', 'MK03': 'Belcista', 'MK04': 'Berovo', 'MK05': 'Bistrica', 'MK06': 'Bitola', 'MK07': 'Blatec', 'CABC': 'British Columbia', 'RU27': 'Karachay-Cherkess', 'NZF6': 'Northland', 'NZF7': 'Otago', 'NZF4': 'Marlborough', 'NZF5': 'Nelson', 'NZF2': "Hawke's Bay", 'NZF3': 'Manawatu-Wanganui', 'NZF1': 'Gisborne', 'VN46': 'Dong Thap', 'NZF8': 'Southland', 'NZF9': 'Taranaki', 'HU38': 'Tatabanya', 'HU39': 'Veszprem', 'AR14': 'Misiones', 'HU30': 'Kaposvar', 'HU31': 'Kecskemet', 'HU32': 'Nagykanizsa', 'HU33': 'Nyiregyhaza', 'HU34': 'Sopron', 'HU35': 'Szekesfehervar', 'HU36': 'Szolnok', 'HU37': 'Szombathely', 'GBJ9': 'Nottinghamshire', 'GBJ8': 'Nottingham', 'GBJ1': 'Northamptonshire', 'GBJ3': 'North Lincolnshire', 'GBJ2': 'North East Lincolnshire', 'GBJ5': 'North Tyneside', 'GBJ4': 'North Somerset', 'GBJ7': 'North Yorkshire', 'GBJ6': 'Northumberland', 'SIL1': 'Ribnica', 'DM10': 'Saint Paul', 'DM11': 'Saint Peter', 'SIL7': 'Sentjur pri Celju', 'SIL8': 'Slovenska Bistrica', 'SA19': 'Tabuk', 'SA17': 'Jizan', 'SA16': 'Najran', 'SA15': 'Al Hudud ash Shamaliyah', 'SA14': 'Makkah', 'SA13': "Ha'il", 'SD40': 'Al Wahadah State', 'SA10': 'Ar Riyad', 'UG40': 'Kasese', 'UG41': 'Kibale', 'UG42': 'Kiboga', 'UG43': 'Kisoro', 'UG45': 'Kotido', 'UG46': 'Kumi', 'UG47': 'Lira', 'CL12': 'Region Metropolitana', 'MA51': 'Doukkala-Abda', 'MA50': 'Chaouia-Ouardigha', 'MA53': 'Guelmim-Es Smara', 'MA52': 'Gharb-Chrarda-Beni Hssen', 'MA55': 'Souss-Massa-Dr', 'MA54': 'Oriental', 'MA57': 'Tanger-Tetouan', 'MA56': 'Tadla-Azilal', 'MA59': 'La', 'MA58': 'Taza-Al Hoceima-Taounate', 'CL13': 'Tarapaca', 'USKY': 'Kentucky', 'USKS': 'Kansas', 'MR09': 'Tagant', 'MR08': 'Dakhlet Nouadhibou', 'MR01': 'Hodh Ech Chargui', 'MR03': 'Assaba', 'MR02': 'Hodh El Gharbi', 'MR05': 'Brakna', 'MR04': 'Gorgol', 'MR07': 'Adrar', 'MR06': 'Trarza', 'BB11': 'Saint Thomas', 'BB10': 'Saint Philip', 'CU13': 'Las Tunas', 'CU12': 'Holguin', 'CU11': 'La Habana', 'CU10': 'Guantanamo', 'CU16': 'Villa Clara', 'CU15': 'Santiago de Cuba', 'CU14': 'Sancti Spiritus', 'GE17': "Dedop'listsqaros Raioni", 'GE16': "Ch'okhatauris Raioni", 'GE15': "Ch'khorotsqus Raioni", 'GE14': "Chiat'ura", 'GE13': 'Borjomis Raioni', 'GE12': 'Bolnisis Raioni', 'GE11': "Baghdat'is Raioni", 'GE10': 'Aspindzis Raioni', 'GE19': "Dushet'is Raioni", 'GE18': 'Dmanisis Raioni', 'TR15': 'Burdur', 'TR14': 'Bolu', 'TR17': 'Canakkale', 'TR16': 'Bursa', 'TR11': 'Bilecik', 'TR10': 'Balikesir', 'TR13': 'Bitlis', 'TR12': 'Bingol', 'TR19': 'Corum', 'BE10': 'Brabant Wallon', 'BE11': 'Brussels Hoofdstedelijk Gewest', 'BE12': 'Vlaams-Brabant', 'SC08': 'Beau Vallon', 'USTN': 'Tennessee', 'MK50': 'Kosel', 'DO25': 'Santiago', 'DO24': 'San Pedro De Macoris', 'DO27': 'Valverde', 'DO26': 'Santiago Rodriguez', 'DO21': 'Sanchez Ramirez', 'DO20': 'Samana', 'DO23': 'San Juan', 'DO29': 'Hato Mayor', 'DO28': 'El Seibo', 'SC01': 'Anse aux Pins', 'MK19': 'Cesinovo', 'MK18': 'Centar Zupa', 'MK13': 'Cair', 'MK12': 'Brvenica', 'MK11': 'Bosilovo', 'MK10': 'Bogovinje', 'MK17': 'Centar', 'MK16': 'Cegrane', 'MK15': 'Caska', 'MK14': 'Capari', 'BG33': 'Mikhaylovgrad', 'BG38': 'Blagoevgrad', 'BG39': 'Burgas', 'NZG1': 'Waikato', 'ID11': 'Kalimantan Barat', 'NZG3': 'West Coast', 'NZG2': 'Wellington', 'ID14': 'Kalimantan Timur', 'ID15': 'Lampung', 'ID16': 'Maluku', 'ID17': 'Nusa Tenggara Barat', 'ID18': 'Nusa Tenggara Timur', 'ID19': 'Riau', 'GBU4': 'East Ayrshire', 'SV11': 'Santa Ana', 'HU29': 'Hodmezovasarhely', 'SV13': 'Sonsonate', 'SV14': 'Usulutan', 'GBU1': 'Clackmannanshire', 'GBU2': 'Dumfries and Galloway', 'GBU3': 'Dundee City', 'HU23': 'Veszprem', 'HU22': 'Vas', 'HU21': 'Tolna', 'HU20': 'Jasz-Nagykun-Szolnok', 'HU27': 'Dunaujvaros', 'HU26': 'Bekescsaba', 'HU25': 'Gyor', 'HU24': 'Zala', 'MKC4': 'Zitose', 'DM09': 'Saint Patrick', 'DM08': 'Saint Mark', 'DM05': 'Saint John', 'DM04': 'Saint George', 'DM07': 'Saint Luke', 'DM06': 'Saint Joseph', 'DM03': 'Saint David', 'DM02': 'Saint Andrew', 'SD30': 'Ash Shamaliyah', 'SD31': 'Ash Sharqiyah', 'SA20': 'Al Jawf', 'SD33': 'Darfur', 'SD34': 'Kurdufan', 'SD35': 'Upper Nile', 'SO02': 'Banaadir', 'SO03': 'Bari', 'SO01': 'Bakool', 'SO06': 'Gedo', 'SO07': 'Hiiraan', 'SO04': 'Bay', 'CM07': 'Nord-Ouest', 'CM08': 'Ouest', 'CM09': 'Sud-Ouest', 'SO08': 'Jubbada Dhexe', 'SO09': 'Jubbada Hoose', 'PH51': 'Pangasinan', 'LV28': 'Talsu', 'LV29': 'Tukuma', 'LV20': 'Madonas', 'LV21': 'Ogres', 'LV22': 'Preilu', 'LV23': 'Rezekne', 'LV24': 'Rezeknes', 'LV25': 'Riga', 'LV26': 'Rigas', 'LV27': 'Saldus', 'MC01': 'La Condamine', 'MC02': 'Monaco', 'IR42': 'Khorasan-e Razavi', 'UG56': 'Mubende', 'UG59': 'Ntungamo', 'UG58': 'Nebbi', 'PH59': 'Southern Leyte', 'PH58': 'Sorsogon', 'PG18': 'Sandaun', 'PG19': 'Enga', 'PG10': 'East New Britain', 'PG11': 'East Sepik', 'PG12': 'Madang', 'PG13': 'Manus', 'PG14': 'Morobe', 'PG15': 'New Ireland', 'PG16': 'Western Highlands', 'PG17': 'West New Britain', 'RO41': 'Calarasi', 'RO40': 'Vrancea', 'RO43': 'Ilfov', 'RO42': 'Giurgiu', 'GR18': 'Thesprotia', 'GR19': 'Preveza', 'GR10': 'Grevena', 'GR11': 'Kozani', 'GR12': 'Imathia', 'GR13': 'Thessaloniki', 'GR14': 'Kavala', 'GR15': 'Khalkidhiki', 'GR16': 'Pieria', 'GR17': 'Ioannina', 'USTX': 'Texas', 'GE22': 'Goris Raioni', 'GE23': 'Gurjaanis Raioni', 'GE20': 'Gardabanis Raioni', 'GE21': 'Gori', 'GE26': 'Kaspis Raioni', 'GE27': 'Kharagaulis Raioni', 'GE24': 'Javis Raioni', 'GE25': "K'arelis Raioni", 'IR41': 'Khorasan-e Janubi', 'IR40': 'Yazd', 'GE28': 'Khashuris Raioni', 'GE29': 'Khobis Raioni', 'TR60': 'Tokat', 'TR61': 'Trabzon', 'TR62': 'Tunceli', 'TR63': 'Sanliurfa', 'TR64': 'Usak', 'TR65': 'Van', 'TR66': 'Yozgat', 'TR68': 'Ankara', 'TR69': 'Gumushane', 'BE09': 'West-Vlaanderen', 'BE08': 'Oost-Vlaanderen', 'BE07': 'Namur', 'BE06': 'Luxembourg', 'BE05': 'Limburg', 'BE04': 'Liege', 'BE03': 'Hainaut', 'BE01': 'Antwerpen', 'UZ14': 'Toshkent', 'UZ12': 'Surkhondaryo', 'UZ13': 'Toshkent', 'UZ10': 'Samarqand', 'UZ11': 'Sirdaryo', 'AZ33': 'Mingacevir', 'NG39': 'Jigawa', 'MK26': 'Dobrusevo', 'MK27': 'Dolna Banjica', 'MK24': 'Demir Hisar', 'MK25': 'Demir Kapija', 'MK22': 'Delcevo', 'MK23': 'Delogozdi', 'MK20': 'Cucer-Sandevo', 'MK21': 'Debar', 'MV38': 'Kaafu', 'MV39': 'Lhaviyani', 'MK28': 'Dolneni', 'MK29': 'Dorce Petrov', 'NG30': 'Kwara', 'NG31': 'Niger', 'DZ09': 'Oran', 'NG36': 'Delta', 'GM04': 'Upper River', 'GM05': 'Western', 'GM07': 'North Bank', 'GM01': 'Banjul', 'GM02': 'Lower River', 'GM03': 'Central River', 'CAQC': 'Quebec', 'ID03': 'Bengkulu', 'ID02': 'Bali', 'ID01': 'Aceh', 'ID07': 'Jawa Tengah', 'ID06': 'Jawa Barat', 'ID05': 'Jambi', 'ID04': 'Jakarta Raya', 'CO23': 'Quindio', 'ID09': 'Papua', 'ID08': 'Jawa Timur', 'SV03': 'Chalatenango', 'GBT6': 'Aberdeenshire', 'GBT5': 'Aberdeen City', 'GBT4': 'Strabane', 'GBT3': 'Omagh', 'GBT2': 'North Down', 'GBT1': 'Newtownabbey', 'RU42': 'Leningrad', 'SV09': 'San Miguel', 'SV08': 'Morazan', 'GBT9': 'Scottish Borders', 'GBT8': 'Argyll and Bute', 'MV34': 'Gaafu Alifu', 'MV35': 'Gaafu Dhaalu', 'SIN5': 'Zalec', 'SIN2': 'Videm', 'SIN3': 'Vojnik', 'MKA9': 'Vasilevo', 'SD28': "Al Istiwa'iyah", 'MKA3': 'Suto Orizari', 'MKA2': 'Studenicani', 'MKA1': 'Strumica', 'MKA7': 'Topolcani', 'MKA6': 'Tetovo', 'MKA5': 'Tearce', 'MKA4': 'Sveti Nikole', 'CM13': 'Nord', 'CM12': 'Extreme-Nord', 'CM11': 'Centre', 'CM10': 'Adamaoua', 'SO19': 'Togdheer', 'SO18': 'Nugaal', 'CM14': 'Sud', 'SO14': 'Shabeellaha Hoose', 'SO16': 'Woqooyi Galbeed', 'SO11': 'Nugaal', 'SO10': 'Mudug', 'SO13': 'Shabeellaha Dhexe', 'SO12': 'Sanaag', 'LV33': 'Ventspils', 'LV32': 'Ventspils', 'LV31': 'Valmieras', 'LV30': 'Valkas', 'UG69': 'Katakwi', 'UG66': 'Bugiri', 'UG67': 'Busia', 'UG65': 'Adjumani', 'UG60': 'Pallisa', 'UG61': 'Rakai', 'FRA7': 'Haute-Normandie', 'FRA6': 'Franche-Comte', 'FRA5': 'Corse', 'FRA4': 'Champagne-Ardenne', 'FRA3': 'Centre', 'FRA2': 'Bretagne', 'HU10': 'Hajdu-Bihar', 'HU11': 'Heves', 'FRA9': 'Languedoc-Roussillon', 'FRA8': 'Ile-de-France', 'PG09': 'Eastern Highlands', 'PG08': 'Chimbu', 'PG03': 'Milne Bay', 'PG02': 'Gulf', 'PG01': 'Central', 'PG07': 'North Solomons', 'PG06': 'Western', 'PG05': 'Southern Highlands', 'PG04': 'Northern', 'IN30': 'Arunachal Pradesh', 'IN31': 'Mizoram', 'IN32': 'Daman and Diu', 'VN47': 'Kien Giang', 'IN34': 'Bihar', 'IN35': 'Madhya Pradesh', 'IN36': 'Uttar Pradesh', 'IN37': 'Chhattisgarh', 'IN38': 'Jharkhand', 'IN39': 'Uttarakhand', 'USUT': 'Utah', 'VN43': 'An Giang', 'MD67': 'Causeni', 'OM04': 'Ash Sharqiyah', 'OM05': 'Az Zahirah', 'OM06': 'Masqat', 'OM07': 'Musandam', 'OM01': 'Ad Dakhiliyah', 'OM02': 'Al Batinah', 'OM03': 'Al Wusta', 'OM08': 'Zufar', 'GR09': 'Kastoria', 'GR08': 'Florina', 'PHH2': 'Quezon', 'PHH3': 'Negros Occidental', 'GR03': 'Xanthi', 'GR02': 'Rodhopi', 'GR01': 'Evros', 'GR07': 'Pella', 'GR06': 'Kilkis', 'GR05': 'Serrai', 'GR04': 'Drama', 'GE39': 'Ninotsmindis Raioni', 'GE38': "Mts'khet'is Raioni", 'GE35': 'Marneulis Raioni', 'GE34': 'Lentekhis Raioni', 'GE37': 'Mestiis Raioni', 'GE36': 'Martvilis Raioni', 'GE31': "K'ut'aisi", 'GE30': 'Khonis Raioni', 'GE33': "Lanch'khut'is Raioni", 'GE32': 'Lagodekhis Raioni', 'TR73': 'Nigde', 'TR72': 'Mardin', 'TR71': 'Konya', 'TR70': 'Hakkari', 'TR77': 'Bayburt', 'TR76': 'Batman', 'TR75': 'Aksaray', 'TR74': 'Siirt', 'TR79': 'Kirikkale', 'TR78': 'Karaman', 'IE31': 'Wicklow', 'IE30': 'Wexford', 'UZ09': 'Qoraqalpoghiston', 'UZ08': 'Qashqadaryo', 'UZ01': 'Andijon', 'KM01': 'Anjouan', 'UZ03': 'Farghona', 'UZ02': 'Bukhoro', 'UZ05': 'Khorazm', 'UZ04': 'Jizzakh', 'UZ07': 'Nawoiy', 'UZ06': 'Namangan', 'BW10': 'Southern', 'BW11': 'North-West', 'MK31': 'Dzepciste', 'MK30': 'Drugovo', 'MK33': 'Gevgelija', 'MK32': 'Gazi Baba', 'MK35': 'Gradsko', 'MK34': 'Gostivar', 'MK37': 'Izvor', 'MK36': 'Ilinden', 'MK39': 'Kamenjane', 'MK38': 'Jegunovce', 'RU26': 'Kamchatka', 'ID38': 'Sulawesi Selatan', 'ID39': 'Irian Jaya Barat', 'ID36': 'Papua', 'ID37': 'Riau', 'ID34': 'Gorontalo', 'ID35': 'Kepulauan Bangka Belitung', 'ID32': 'Sumatera Selatan', 'ID33': 'Banten', 'ID30': 'Jawa Barat', 'ID31': 'Sulawesi Utara', 'GBW2': 'Renfrewshire', 'GBW3': 'Shetland Islands', 'GBW1': 'Perth and Kinross', 'GBW6': 'Stirling', 'GBW7': 'West Dunbartonshire', 'GBW4': 'South Ayrshire', 'AZ62': 'Xanlar', 'GBW8': 'Eilean Siar', 'GBW9': 'West Lothian', 'MKB6': 'Vranestica', 'MKB7': 'Vrapciste', 'MKB4': 'Vinica', 'MKB5': 'Vitoliste', 'MKB2': 'Velesta', 'MKB3': 'Vevcani', 'MKB1': 'Veles', 'MKB8': 'Vratnica', 'MKB9': 'Vrutok', 'LV06': 'Daugavpils', 'LV07': 'Daugavpils', 'LV04': 'Bauskas', 'LV05': 'Cesu', 'LV02': 'Aluksnes', 'LV03': 'Balvu', 'LV01': 'Aizkraukles', 'LV08': 'Dobeles', 'LV09': 'Gulbenes', 'UG79': 'Kabarole', 'UG78': 'Iganga', 'DZ50': 'Ouargla', 'UG71': 'Masaka', 'UG70': 'Luwero', 'UG73': 'Nakasongola', 'UG72': 'Moyo', 'UG74': 'Sembabule', 'UG77': 'Arua', 'UG76': 'Tororo', 'HU01': 'Bacs-Kiskun', 'FRB3': 'Midi-Pyrenees', 'HU03': 'Bekes', 'HU02': 'Baranya', 'HU05': 'Budapest', 'HU04': 'Borsod-Abauj-Zemplen', 'HU07': 'Debrecen', 'HU06': 'Csongrad', 'HU09': 'Gyor-Moson-Sopron', 'HU08': 'Fejer', 'FRB8': "Provence-Alpes-Cote d'Azur", 'FRB9': 'Rhone-Alpes', 'DZ54': 'Tindouf', 'GBT7': 'Angus', 'SV02': 'Cabanas', 'DZ56': 'Tissemsilt', 'SV01': 'Ahuachapan', 'CAYT': 'Yukon Territory', 'SV07': 'La Union', 'SV06': 'La Paz', 'SV05': 'La Libertad', 'SI08': 'Brezice', 'SV04': 'Cuscatlan', 'IN23': 'Punjab', 'IN22': 'Puducherry', 'IN21': 'Orissa', 'IN20': 'Nagaland', 'IN26': 'Tripura', 'IN25': 'Tamil Nadu', 'IN24': 'Rajasthan', 'IN29': 'Sikkim', 'IN28': 'West Bengal', 'NZ10': 'Chatham Islands', 'TN14': 'El Kef', 'GR36': 'Argolis', 'GR37': 'Korinthia', 'GR34': 'Evvoia', 'GR35': 'Attiki', 'GR32': 'Fokis', 'GR33': 'Voiotia', 'GR30': 'Evritania', 'GR31': 'Aitolia kai Akarnania', 'GR38': 'Akhaia', 'GR39': 'Ilia', 'USVT': 'Vermont', 'GE48': 'Samtrediis Raioni', 'GE49': 'Senakis Raioni', 'USVA': 'Virginia', 'GE40': 'Onis Raioni', 'GE41': "Ozurget'is Raioni", 'GE42': "P'ot'i", 'GE43': 'Qazbegis Raioni', 'GE44': 'Qvarlis Raioni', 'GE45': "Rust'avi", 'GE46': "Sach'kheris Raioni", 'GE47': 'Sagarejos Raioni', 'TR48': 'Mugla', 'TR49': 'Mus', 'TR46': 'Kahramanmaras', 'TR44': 'Malatya', 'TR45': 'Manisa', 'TR43': 'Kutahya', 'TR40': 'Kirsehir', 'TR41': 'Kocaeli', 'SD29': 'Al Khartum', 'MKA8': 'Valandovo', 'BW09': 'South-East', 'BW08': 'North-East', 'BW05': 'Kgatleng', 'BW04': 'Kgalagadi', 'BW06': 'Kweneng', 'BW01': 'Central', 'BW03': 'Ghanzi', 'VN88': 'Dak Lak', 'SD27': 'Al Wusta', 'ID29': 'Maluku Utara', 'ID28': 'Maluku', 'ID21': 'Sulawesi Tengah', 'ID20': 'Sulawesi Selatan', 'ID23': 'Sulawesi Utara', 'ID22': 'Sulawesi Tenggara', 'ID25': 'Sumatera Selatan', 'ID24': 'Sumatera Barat', 'ID26': 'Sumatera Utara', 'AG01': 'Barbuda', 'AG03': 'Saint George', 'AG04': 'Saint John', 'AG05': 'Saint Mary', 'AG06': 'Saint Paul', 'AG07': 'Saint Peter', 'AG08': 'Saint Philip', 'AG09': 'Redonda', 'GBV7': 'North Ayrshire', 'GBV6': 'Moray', 'GBV1': 'Fife', 'MY08': 'Perlis', 'GBV3': 'Highland', 'GBV2': 'Glasgow City', 'RO06': 'Bistrita-Nasaud', 'CV07': 'Ribeira Grande', 'MKC1': 'Zajas', 'KE01': 'Central', 'KE02': 'Coast', 'KE03': 'Eastern', 'MKC5': 'Zletovo', 'KE05': 'Nairobi Area', 'KE06': 'North-Eastern', 'KE07': 'Nyanza', 'KE08': 'Rift Valley', 'KE09': 'Western', 'LV11': 'Jelgava', 'LV10': 'Jekabpils', 'LV13': 'Jurmala', 'LV12': 'Jelgavas', 'LV15': 'Kuldigas', 'LV14': 'Kraslavas', 'LV17': 'Liepajas', 'LV16': 'Liepaja', 'LV19': 'Ludzas', 'RO09': 'Brasov', 'RO08': 'Braila', 'MN25': 'Orhon', 'MN24': 'Govisumber', 'MN23': 'Darhan-Uul', 'MN22': 'Erdenet', 'MN21': 'Bulgan', 'MN20': 'Ulaanbaatar', 'FRC1': 'Alsace', 'ST01': 'Principe', 'ST02': 'Sao Tome', 'BG50': 'Pleven', 'IN18': 'Meghalaya', 'IN19': 'Karnataka', 'IN16': 'Maharashtra', 'IN17': 'Manipur', 'IN14': 'Lakshadweep', 'IN12': 'Jammu and Kashmir', 'IN13': 'Kerala', 'IN10': 'Haryana', 'IN11': 'Himachal Pradesh', 'HU16': 'Pest', 'USWY': 'Wyoming', 'HU17': 'Somogy', 'USWV': 'West Virginia', 'HU14': 'Nograd', 'HU15': 'Pecs', 'USWI': 'Wisconsin', 'BG58': 'Sofiya', 'HU12': 'Komarom-Esztergom', 'TM02': 'Balkan', 'USWA': 'Washington', 'HU13': 'Miskolc', 'KR18': 'Kwangju-jikhalsi', 'FRA1': 'Bourgogne', 'KR14': 'Kyongsang-bukto', 'KR15': 'Taegu-jikhalsi', 'KR16': 'Cholla-namdo', 'KR17': "Ch'ungch'ong-namdo", 'KR10': 'Pusan-jikhalsi', 'KR11': "Seoul-t'ukpyolsi", 'KR12': "Inch'on-jikhalsi", 'KR13': 'Kyonggi-do', 'PG20': 'National Capital', 'HU18': 'Szabolcs-Szatmar-Bereg', 'HU19': 'Szeged', 'GR21': 'Larisa', 'GR20': 'Arta', 'GR23': 'Kardhitsa', 'GR22': 'Trikala', 'GR25': 'Kerkira', 'GR24': 'Magnisia', 'GR27': 'Kefallinia', 'GR26': 'Levkas', 'GR29': 'Fthiotis', 'GR28': 'Zakinthos', 'GE59': 'Tsalkis Raioni', 'GE58': 'Tsalenjikhis Raioni', 'GE53': "T'erjolis Raioni", 'GE52': "T'elavis Raioni", 'GE51': "T'bilisi", 'GE50': 'Sighnaghis Raioni', 'GE57': "Ts'ageris Raioni", 'GE56': 'Tqibuli', 'GE55': "T'ianet'is Raioni", 'GE54': "T'et'ritsqaros Raioni", 'TR59': 'Tekirdag', 'NA07': 'Karibib', 'BH14': 'Madinat Hamad', 'TR50': 'Nevsehir', 'TR53': 'Rize', 'TR52': 'Ordu', 'TR55': 'Samsun', 'TO02': 'Tongatapu', 'TR57': 'Sinop', 'AT08': 'Vorarlberg', 'NA03': 'Boesmanland', 'NA02': 'Caprivi Oos', 'BH13': 'Ar Rifa', 'AT07': 'Tirol', 'AT06': 'Steiermark', 'NA09': 'Luderitz', 'MV05': 'Laamu', 'AT04': 'Oberosterreich', 'MV01': 'Seenu', 'GBQ8': 'Armagh', 'GBQ9': 'Ballymena', 'GBU7': 'East Renfrewshire', 'GBQ2': 'Wokingham', 'GBQ3': 'Wolverhampton', 'GBQ4': 'Worcestershire', 'GBQ5': 'York', 'GBQ6': 'Antrim', 'GBQ7': 'Ards', 'EE06': 'Kohtla-Jarve', 'EE07': 'Laanemaa', 'EE04': 'Jarvamaa', 'MN18': 'Tov', 'EE05': 'Jogevamaa', 'MN12': 'Hovd', 'EE02': 'Hiiumaa', 'MN10': 'Govi-Altay', 'MN11': 'Hentiy', 'MN16': 'Selenge', 'MN17': 'Suhbaatar', 'MN14': 'Omnogovi', 'MN15': 'Ovorhangay', 'GW02': 'Quinara', 'EE01': 'Harjumaa', 'SB10': 'Central', 'SB11': 'Western', 'SB12': 'Choiseul', 'SB13': 'Rennell and Bellona', 'MV36': 'Haa Alifu', 'IN09': 'Gujarat', 'IN01': 'Andaman and Nicobar Islands', 'IN03': 'Assam', 'IN02': 'Andhra Pradesh', 'IN05': 'Chandigarh', 'BS34': 'Sandy Point', 'IN07': 'Delhi', 'IN06': 'Dadra and Nagar Haveli', 'CY04': 'Nicosia', 'CY05': 'Limassol', 'CY06': 'Paphos', 'IN33': 'Goa', 'CY01': 'Famagusta', 'CY02': 'Kyrenia', 'CY03': 'Larnaca', 'MV30': 'Alifu', 'MG04': 'Toamasina', 'MG05': 'Antananarivo', 'MG06': 'Toliara', 'MG01': 'Antsiranana', 'MG02': 'Fianarantsoa', 'MG03': 'Mahajanga', 'KR06': 'Kangwon-do', 'KR05': "Ch'ungch'ong-bukto", 'KR03': 'Cholla-bukto', 'KR01': 'Cheju-do', 'MV31': 'Baa', 'SR14': 'Nickerie', 'SR15': 'Para', 'SR16': 'Paramaribo', 'SR17': 'Saramacca', 'SR10': 'Brokopondo', 'SR11': 'Commewijne', 'SR12': 'Coronie', 'SR13': 'Marowijne', 'SR18': 'Sipaliwini', 'SR19': 'Wanica', 'MV32': 'Dhaalu', 'MV33': 'Faafu ', 'GE64': 'Zugdidis Raioni', 'GE62': "Zestap'onis Raioni", 'GE63': 'Zugdidi', 'GE60': 'Tsqaltubo', 'GE61': 'Vanis Raioni', 'USPR': 'Puerto Rico', 'USPW': 'Palau', 'USPA': 'Pennsylvania', 'GH10': 'Upper East', 'GH11': 'Upper West', 'GBS7': 'Magherafelt', 'BG63': 'Vidin', 'BG62': 'Veliko Turnovo', 'BG61': 'Varna', 'BG60': 'Turgovishte', 'GBS4': 'Limavady', 'BG65': 'Yambol', 'BG64': 'Vratsa', 'GBS5': 'Lisburn', 'SM04': 'Faetano', 'SM05': 'Fiorentino', 'GBP9': 'Windsor and Maidenhead', 'GBP8': 'Wiltshire', 'GBP3': 'Warwickshire', 'GBP2': 'Warrington', 'GBP1': 'Wandsworth', 'GBS1': 'Dungannon', 'GBP7': 'Wigan', 'GBP6': 'West Sussex', 'GBP5': 'Westminster', 'GBP4': 'West Berkshire', 'DJ01': 'Ali Sabieh', 'DJ06': 'Dikhil', 'DJ07': 'Djibouti', 'DJ04': 'Obock', 'DJ05': 'Tadjoura', 'DJ08': 'Arta', 'LY58': 'Misratah', 'LY59': 'Sawfajjin', 'KH30': 'Pailin', 'NL02': 'Friesland', 'NL03': 'Gelderland', 'NL01': 'Drenthe', 'NL06': 'Noord-Brabant', 'NL07': 'Noord-Holland', 'NL04': 'Groningen', 'NL05': 'Limburg', 'NL08': 'Overijssel', 'NL09': 'Utrecht', 'MN05': 'Darhan', 'MN07': 'Dornogovi', 'MN06': 'Dornod', 'MN01': 'Arhangay', 'MN03': 'Bayan-Olgiy', 'MN02': 'Bayanhongor', 'LR20': 'Lofa', 'MN09': 'Dzavhan', 'MN08': 'Dundgovi', 'NE06': 'Tahoua', 'NE05': 'Niamey', 'JM17': 'Kingston', 'CH26': 'Jura', 'SB07': 'Isabel', 'SB06': 'Guadalcanal', 'SB03': 'Malaita', 'SB09': 'Temotu', 'SB08': 'Makira', 'PE23': 'Tacna', 'PE22': 'San Martin', 'PE21': 'Puno', 'PE20': 'Piura', 'PE25': 'Ucayali', 'PE24': 'Tumbes', 'MD79': 'Leova', 'MD76': 'Glodeni', 'PL79': 'Opolskie', 'PL78': 'Mazowieckie', 'MD77': 'Hincesti', 'PL75': 'Lubelskie', 'PL74': 'Lodzkie', 'PL77': 'Malopolskie', 'PL76': 'Lubuskie', 'MD74': 'Falesti', 'PL73': 'Kujawsko-Pomorskie', 'PL72': 'Dolnoslaskie', 'MD75': 'Floresti', 'MD73': 'Edinet', 'MD70': 'Donduseni', 'BF78': 'Zondoma', 'MD71': 'Drochia', 'SC19': 'Plaisance', 'BN08': 'Belait', 'BN09': 'Brunei and Muara', 'SC18': 'Mont Fleuri', 'BN07': 'Alibori', 'KP12': "P'yongyang-si", 'KP13': 'Yanggang-do', 'KP11': "P'yongan-bukto", 'KP17': 'Hamgyong-bukto', 'KP14': "Namp'o-si", 'KP15': "P'yongan-namdo", 'KP18': 'Najin Sonbong-si', 'SC13': "Grand' Anse", 'SC12': 'Glacis', 'GH01': 'Greater Accra', 'GH03': 'Brong-Ahafo', 'GH02': 'Ashanti', 'GH05': 'Eastern', 'GH04': 'Central', 'GH06': 'Northern', 'GH09': 'Western', 'GH08': 'Volta', 'BG56': 'Sliven', 'BG57': 'Smolyan', 'BG54': 'Shumen', 'BG55': 'Silistra', 'BG52': 'Razgrad', 'BG53': 'Ruse', 'RU90': 'Permskiy Kray', 'BG51': 'Plovdiv', 'TM05': 'Mary', 'TM04': 'Lebap', 'TM01': 'Ahal', 'TM03': 'Dashoguz', 'BG59': 'Stara Zagora', 'SE18': 'Sodermanlands Lan', 'HU28': 'Eger', 'RU91': 'Krasnoyarskiy Kray', 'CN11': 'Hunan', 'HT14': "Grand' Anse", 'KH29': 'Batdambang', 'KH25': 'Banteay Meanchey', 'NL15': 'Overijssel', 'NL16': 'Flevoland', 'NL11': 'Zuid-Holland', 'NL10': 'Zeeland', 'LS18': 'Quthing', 'LS19': 'Thaba-Tseka', 'LS10': 'Berea', 'LS11': 'Butha-Buthe', 'LS12': 'Leribe', 'LS13': 'Mafeteng', 'LS14': 'Maseru', 'LS15': 'Mohales Hoek', 'LS16': 'Mokhotlong', 'LS17': 'Qachas Nek', 'GBS6': 'Derry', 'SM01': 'Acquaviva', 'SM02': 'Chiesanuova', 'SM03': 'Domagnano', 'GBS2': 'Fermanagh', 'GBS3': 'Larne', 'SM06': 'Borgo Maggiore', 'SM07': 'San Marino', 'SM08': 'Monte Giardino', 'SM09': 'Serravalle', 'GBS8': 'Moyle', 'GBS9': 'Newry and Mourne', 'CZ90': 'Zlinsky kraj', 'MD90': 'Taraclia', 'MD91': 'Telenesti', 'MD92': 'Ungheni', 'CN18': 'Guizhou', 'CN19': 'Liaoning', 'CN10': 'Hebei', 'SE10': 'Dalarnas Lan', 'CN12': 'Hubei', 'CN13': 'Xinjiang', 'CN14': 'Xizang', 'CN15': 'Gansu', 'CN16': 'Guangxi', 'PE18': 'Moquegua', 'PE19': 'Pasco', 'PE16': 'Loreto', 'PE17': 'Madre de Dios', 'PE14': 'Lambayeque', 'PE15': 'Lima', 'PE12': 'Junin', 'PE13': 'La Libertad', 'PE10': 'Huanuco', 'PE11': 'Ica'}
21,486.25
85,919
0.602339
9,765
85,945
5.301382
0.841065
0.003709
0.000386
0
0
0
0
0
0
0
0
0.09857
0.109617
85,945
3
85,920
28,648.333333
0.577923
0.000244
0
0
0
0
0.622111
0.004097
0
0
0
0
0
1
0
false
1
0
0
0
0
0
0
0
null
0
0
0
0
0
0
0
0
0
0
0
0
0
1
1
1
0
0
0
0
0
0
1
0
null
0
0
0
0
0
0
0
1
0
0
0
0
0
5
b7b6ad2f30eeeef89f8be32e1b423aba5b40b98c
51
py
Python
src/deep_dialog/usersims/__init__.py
Yuqing2018/tcbot_python3
583ce1b670f7c67669ff437e69eb09832e784da6
[ "MIT" ]
null
null
null
src/deep_dialog/usersims/__init__.py
Yuqing2018/tcbot_python3
583ce1b670f7c67669ff437e69eb09832e784da6
[ "MIT" ]
null
null
null
src/deep_dialog/usersims/__init__.py
Yuqing2018/tcbot_python3
583ce1b670f7c67669ff437e69eb09832e784da6
[ "MIT" ]
null
null
null
from .usersim_rule import * from .realUser import *
25.5
27
0.784314
7
51
5.571429
0.714286
0
0
0
0
0
0
0
0
0
0
0
0.137255
51
2
28
25.5
0.886364
0
0
0
0
0
0
0
0
0
0
0
0
1
0
true
0
1
0
1
0
1
0
0
null
0
0
0
0
0
0
0
0
0
0
0
0
0
1
0
0
0
0
0
0
0
0
0
0
null
0
0
0
0
0
0
1
0
1
0
1
0
0
5
4d054d1c9024db142794eb18e583cbea3e61dd43
125
py
Python
apps/work_order/admin.py
joewen85/devops_study
6bbfbac7e70f295ef6068393bd9cf7d418ab4417
[ "Apache-2.0" ]
null
null
null
apps/work_order/admin.py
joewen85/devops_study
6bbfbac7e70f295ef6068393bd9cf7d418ab4417
[ "Apache-2.0" ]
null
null
null
apps/work_order/admin.py
joewen85/devops_study
6bbfbac7e70f295ef6068393bd9cf7d418ab4417
[ "Apache-2.0" ]
1
2020-10-28T09:12:47.000Z
2020-10-28T09:12:47.000Z
from django.contrib import admin # Register your models here. from .models import WorkOrder admin.site.register(WorkOrder)
17.857143
32
0.808
17
125
5.941176
0.647059
0
0
0
0
0
0
0
0
0
0
0
0.128
125
6
33
20.833333
0.926606
0.208
0
0
0
0
0
0
0
0
0
0
0
1
0
true
0
0.666667
0
0.666667
0
1
0
0
null
0
0
0
0
0
0
0
0
0
0
0
0
0
1
0
0
0
0
0
0
0
0
0
0
null
0
0
0
0
0
0
1
0
1
0
1
0
0
5
4d26e4038ffff6b5c711d810347580c7c6e22de3
44
py
Python
Python/Tutorial - 2/strings.py
JC2295/FCC_Tutorial_Projects
990e1221b2177acb9e4db0264adab518620404a0
[ "MIT" ]
null
null
null
Python/Tutorial - 2/strings.py
JC2295/FCC_Tutorial_Projects
990e1221b2177acb9e4db0264adab518620404a0
[ "MIT" ]
null
null
null
Python/Tutorial - 2/strings.py
JC2295/FCC_Tutorial_Projects
990e1221b2177acb9e4db0264adab518620404a0
[ "MIT" ]
null
null
null
print("One") print("Two") print("Three")
6.285714
14
0.590909
6
44
4.333333
0.666667
0
0
0
0
0
0
0
0
0
0
0
0.136364
44
6
15
7.333333
0.684211
0
0
0
0
0
0.255814
0
0
0
0
0
0
1
0
true
0
0
0
0
1
1
1
0
null
0
0
0
0
0
0
0
0
0
0
0
0
0
1
0
0
0
0
0
0
0
0
0
0
null
0
0
0
0
0
0
1
0
0
0
0
1
0
5
4d360ecaf65d937ea0be727ba4568099673793e8
41
py
Python
eyap/utils/ghtools/__init__.py
emin63/eyap
783bdede298e63bbafee81b50cd1e899c43f5847
[ "BSD-3-Clause" ]
null
null
null
eyap/utils/ghtools/__init__.py
emin63/eyap
783bdede298e63bbafee81b50cd1e899c43f5847
[ "BSD-3-Clause" ]
2
2017-07-17T03:50:32.000Z
2017-08-05T02:39:36.000Z
eyap/utils/ghtools/__init__.py
emin63/eyap
783bdede298e63bbafee81b50cd1e899c43f5847
[ "BSD-3-Clause" ]
null
null
null
"""Additional GitHub specific tools. """
13.666667
36
0.707317
4
41
7.25
1
0
0
0
0
0
0
0
0
0
0
0
0.121951
41
2
37
20.5
0.805556
0.804878
0
null
0
null
0
0
null
0
0
0
null
1
null
true
0
0
null
null
null
1
1
0
null
0
0
0
0
0
0
0
0
0
0
0
0
0
1
0
0
0
1
0
0
0
0
0
0
null
0
0
0
0
0
0
1
0
0
0
0
0
0
5
4d4284d5a0b58c47616dd4e99223550ab8085447
166
py
Python
src/core/command.py
cfmcdonald-78/Hexcrawler
79ca4ab9327abf08de1743612c23eb89aa53a2b9
[ "MIT" ]
null
null
null
src/core/command.py
cfmcdonald-78/Hexcrawler
79ca4ab9327abf08de1743612c23eb89aa53a2b9
[ "MIT" ]
null
null
null
src/core/command.py
cfmcdonald-78/Hexcrawler
79ca4ab9327abf08de1743612c23eb89aa53a2b9
[ "MIT" ]
1
2021-12-01T01:38:12.000Z
2021-12-01T01:38:12.000Z
''' Created on Jul 19, 2012 @author: Chris ''' class Command(object): def validate(self, game): pass def execute(self, game): pass
12.769231
29
0.554217
20
166
4.6
0.8
0.173913
0.26087
0
0
0
0
0
0
0
0
0.053571
0.325301
166
13
30
12.769231
0.767857
0.23494
0
0.4
0
0
0
0
0
0
0
0
0
1
0.4
false
0.4
0
0
0.6
0
1
0
0
null
0
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
null
0
0
0
0
0
1
0
1
0
0
1
0
0
5
4d5f2fae7694343130816ebc7bceb8f26a914a6d
79
py
Python
The Core/At the Crossroads/willYou.py
shanemichaelarcaro/codesignal
69b0460dbc163091dc115634bbb730da5caf65a9
[ "MIT" ]
null
null
null
The Core/At the Crossroads/willYou.py
shanemichaelarcaro/codesignal
69b0460dbc163091dc115634bbb730da5caf65a9
[ "MIT" ]
null
null
null
The Core/At the Crossroads/willYou.py
shanemichaelarcaro/codesignal
69b0460dbc163091dc115634bbb730da5caf65a9
[ "MIT" ]
null
null
null
def willYou(young, beautiful, loved): return loved != (young and beautiful)
39.5
41
0.721519
10
79
5.7
0.7
0
0
0
0
0
0
0
0
0
0
0
0.164557
79
2
41
39.5
0.863636
0
0
0
0
0
0
0
0
0
0
0
0
1
0.5
false
0
0
0.5
1
0
1
0
0
null
0
0
0
0
0
0
0
0
0
0
0
0
0
1
0
0
0
0
0
0
0
0
0
0
null
0
0
0
0
0
1
0
0
0
1
1
0
0
5
4da96c829ebc724feb06739ebe6a1d31d5dda9bf
49
py
Python
while.py
egriswol/astr-119-hw-1
e290355de8f48b9def3fdacf4779ac4a3c51a003
[ "MIT" ]
null
null
null
while.py
egriswol/astr-119-hw-1
e290355de8f48b9def3fdacf4779ac4a3c51a003
[ "MIT" ]
1
2018-10-18T17:49:41.000Z
2018-10-18T17:49:41.000Z
while.py
egriswol/astr-119-hw-1
e290355de8f48b9def3fdacf4779ac4a3c51a003
[ "MIT" ]
1
2018-10-18T01:31:32.000Z
2018-10-18T01:31:32.000Z
i = 0 while (i<119): print(i) i+=10
7
14
0.408163
9
49
2.222222
0.666667
0
0
0
0
0
0
0
0
0
0
0.206897
0.408163
49
6
15
8.166667
0.482759
0
0
0
0
0
0
0
0
0
0
0
0
1
0
false
0
0
0
0
0.25
1
1
0
null
0
0
0
0
0
0
0
0
0
0
1
0
0
1
0
0
1
0
0
0
0
0
0
0
null
0
0
0
0
0
0
0
0
0
0
0
0
0
5
4de518de130a1d423998bfe32aad3a8e89b7b784
171
py
Python
rllib/algorithms/maddpg/__init__.py
willfrey/ray
288a81b42ef0186ab4db33b30191614a7bdb69f6
[ "Apache-2.0" ]
null
null
null
rllib/algorithms/maddpg/__init__.py
willfrey/ray
288a81b42ef0186ab4db33b30191614a7bdb69f6
[ "Apache-2.0" ]
null
null
null
rllib/algorithms/maddpg/__init__.py
willfrey/ray
288a81b42ef0186ab4db33b30191614a7bdb69f6
[ "Apache-2.0" ]
1
2019-09-24T16:24:49.000Z
2019-09-24T16:24:49.000Z
from ray.rllib.algorithms.maddpg.maddpg import ( MADDPGConfig, MADDPGTrainer, DEFAULT_CONFIG, ) __all__ = ["MADDPGConfig", "MADDPGTrainer", "DEFAULT_CONFIG"]
21.375
61
0.730994
16
171
7.4375
0.6875
0.420168
0.537815
0.638655
0
0
0
0
0
0
0
0
0.152047
171
7
62
24.428571
0.82069
0
0
0
0
0
0.22807
0
0
0
0
0
0
1
0
false
0
0.166667
0
0.166667
0
1
0
0
null
1
1
1
0
0
0
0
0
0
0
0
0
0
1
0
0
0
0
0
0
0
0
0
0
null
0
0
0
0
0
0
0
0
0
0
0
0
0
5
1289e9a1e3edba91a08623829d6f72757cbc5c8d
136
py
Python
example/geometry/admin.py
emelianovss-yandex-praktikum/07_pyplus_django_2
09bda00f9c8e9fd1ff0f3a483ecb210041d19a48
[ "MIT" ]
null
null
null
example/geometry/admin.py
emelianovss-yandex-praktikum/07_pyplus_django_2
09bda00f9c8e9fd1ff0f3a483ecb210041d19a48
[ "MIT" ]
null
null
null
example/geometry/admin.py
emelianovss-yandex-praktikum/07_pyplus_django_2
09bda00f9c8e9fd1ff0f3a483ecb210041d19a48
[ "MIT" ]
2
2021-11-27T08:06:35.000Z
2021-11-27T13:52:41.000Z
from django.contrib import admin from geometry.models import Shape @admin.register(Shape) class AdminShape(admin.ModelAdmin): ...
17
35
0.772059
17
136
6.176471
0.705882
0
0
0
0
0
0
0
0
0
0
0
0.132353
136
7
36
19.428571
0.889831
0
0
0
0
0
0
0
0
0
0
0
0
1
0
true
0
0.4
0
0.6
0
1
0
0
null
0
0
0
0
0
0
0
0
0
0
0
0
0
1
0
0
0
0
0
0
0
0
0
0
null
0
0
0
0
0
0
1
0
1
0
1
0
0
5
128e53da4b600437f498e3a40b34bc75e174bc07
117
py
Python
marshmallow_helpers/__init__.py
hilearn/marsh-enum
2003ed850b076cd9d29a340ee44abe1c73aadc66
[ "MIT" ]
null
null
null
marshmallow_helpers/__init__.py
hilearn/marsh-enum
2003ed850b076cd9d29a340ee44abe1c73aadc66
[ "MIT" ]
null
null
null
marshmallow_helpers/__init__.py
hilearn/marsh-enum
2003ed850b076cd9d29a340ee44abe1c73aadc66
[ "MIT" ]
null
null
null
from .enum_field import EnumField, RegisteredEnum # noqa from .marsh_schema import attr_with_schema, derive # noqa
39
58
0.811966
16
117
5.6875
0.75
0
0
0
0
0
0
0
0
0
0
0
0.136752
117
2
59
58.5
0.90099
0.076923
0
0
0
0
0
0
0
0
0
0
0
1
0
true
0
1
0
1
0
1
0
0
null
0
0
0
0
0
0
0
0
0
0
0
0
0
1
0
0
0
0
0
0
0
0
0
0
null
0
0
0
0
0
0
1
0
1
0
1
0
0
5
12932d615b9cdc4848ccdf491cf3ec6f30e667d0
6,968
py
Python
creel_portal/api/filters/FN024_Filter.py
AdamCottrill/CreelPortal
5ec867c4f11b4231c112e8209116b6b96c2830ec
[ "MIT" ]
null
null
null
creel_portal/api/filters/FN024_Filter.py
AdamCottrill/CreelPortal
5ec867c4f11b4231c112e8209116b6b96c2830ec
[ "MIT" ]
null
null
null
creel_portal/api/filters/FN024_Filter.py
AdamCottrill/CreelPortal
5ec867c4f11b4231c112e8209116b6b96c2830ec
[ "MIT" ]
null
null
null
import django_filters from ...models import FN024 from .filter_utils import NumberInFilter, ValueInFilter class FN024SubFilter(django_filters.FilterSet): """A fitlerset that allows us to select subsets of net set objects by net set attributes.""" prd = ValueInFilter(field_name="prd") prd__not = ValueInFilter(field_name="prd", exclude=True) prdtm0 = django_filters.TimeFilter(field_name="prdtm0", help_text="format: HH:MM") prdtm0__gte = django_filters.TimeFilter( field_name="prdtm0", lookup_expr="gte", help_text="format: HH:MM" ) prdtm0__lte = django_filters.TimeFilter( field_name="prdtm0", lookup_expr="lte", help_text="format: HH:MM" ) prdtm1 = django_filters.TimeFilter(field_name="prdtm1", help_text="format: HH:MM") prdtm1__gte = django_filters.TimeFilter( field_name="prdtm1", lookup_expr="gte", help_text="format: HH:MM" ) prdtm1__lte = django_filters.TimeFilter( field_name="prdtm1", lookup_expr="lte", help_text="format: HH:MM" ) prd_dur__gte = django_filters.NumberFilter(field_name="prd_dur", lookup_expr="gte") prd_dur__lte = django_filters.NumberFilter(field_name="prd_dur", lookup_expr="lte") class Meta: model = FN024 fields = [ "prd", "prdtm0", "prdtm1", "prd_dur", ] class FN024Filter(FN024SubFilter): """Extends the FN024SubFilter to include additional fields that are associated with parent objects. """ # FN011 ATTRIBUTES year = django_filters.CharFilter( field_name="daytype__season__creel__year", lookup_expr="exact" ) year__gte = django_filters.NumberFilter( field_name="daytype__season__creel__year", lookup_expr="gte" ) year__lte = django_filters.NumberFilter( field_name="daytype__season__creel__year", lookup_expr="lte" ) year__gt = django_filters.NumberFilter( field_name="daytype__season__creel__year", lookup_expr="gt" ) year__lt = django_filters.NumberFilter( field_name="daytype__season__creel__year", lookup_expr="lt" ) prj_date0 = django_filters.DateFilter( field_name="daytype__season__creel__prj_date0", help_text="format: yyyy-mm-dd" ) prj_date0__gte = django_filters.DateFilter( field_name="daytype__season__creel__prj_date0", lookup_expr="gte", help_text="format: yyyy-mm-dd", ) prj_date0__lte = django_filters.DateFilter( field_name="daytype__season__creel__prj_date0", lookup_expr="lte", help_text="format: yyyy-mm-dd", ) prj_date1 = django_filters.DateFilter( field_name="daytype__season__creel__prj_date1", help_text="format: yyyy-mm-dd" ) prj_date1__gte = django_filters.DateFilter( field_name="daytype__season__creel__prj_date1", lookup_expr="gte", help_text="format: yyyy-mm-dd", ) prj_date1__lte = django_filters.DateFilter( field_name="daytype__season__creel__prj_date1", lookup_expr="lte", help_text="format: yyyy-mm-dd", ) prj_cd = ValueInFilter(field_name="daytype__season__creel__prj_cd") prj_cd__not = ValueInFilter( field_name="daytype__season__creel__prj_cd", exclude=True ) prj_cd__like = django_filters.CharFilter( field_name="daytype__season__creel__prj_cd", lookup_expr="icontains" ) prj_cd__not_like = django_filters.CharFilter( field_name="daytype__season__creel__prj_cd", lookup_expr="icontains", exclude=True, ) prj_cd__endswith = django_filters.CharFilter( field_name="daytype__season__creel__prj_cd", lookup_expr="endswith" ) prj_cd__not_endswith = django_filters.CharFilter( field_name="daytype__season__creel__prj_cd", lookup_expr="endswith", exclude=True, ) prj_nm__like = django_filters.CharFilter( field_name="daytype__season__creel__prj_nm", lookup_expr="icontains" ) prj_nm__not_like = django_filters.CharFilter( field_name="daytype__season__creel__prj_nm", lookup_expr="icontains", exclude=True, ) prj_ldr = django_filters.CharFilter( field_name="daytype__season__creel__prj_ldr__username", lookup_expr="iexact" ) contmeth = ValueInFilter(field_name="daytype__season__creel__contmeth") contmeth__not = ValueInFilter( field_name="daytype__season__creel__contmeth", exclude=True ) lake = ValueInFilter(field_name="daytype__season__creel__lake__abbrev") lake__not = ValueInFilter( field_name="daytype__season__creel__lake__abbrev", exclude=True ) ssn_date0 = django_filters.DateFilter( field_name="daytype__season__ssn_date0", help_text="format: yyyy-mm-dd" ) ssn_date0__gte = django_filters.DateFilter( field_name="daytype__season__ssn_date0", lookup_expr="gte", help_text="format: yyyy-mm-dd", ) ssn_date0__lte = django_filters.DateFilter( field_name="daytype__season__ssn_date0", lookup_expr="lte", help_text="format: yyyy-mm-dd", ) ssn_date1 = django_filters.DateFilter( field_name="daytype__season__ssn_date1", help_text="format: yyyy-mm-dd" ) ssn_date1__gte = django_filters.DateFilter( field_name="daytype__season__ssn_date1", lookup_expr="gte", help_text="format: yyyy-mm-dd", ) ssn_date1__lte = django_filters.DateFilter( field_name="daytype__season__ssn_date1", lookup_expr="lte", help_text="format: yyyy-mm-dd", ) ssn = ValueInFilter(field_name="daytype__season__ssn") ssn__not = ValueInFilter(field_name="daytype__season__ssn", exclude=True) ssn__like = django_filters.CharFilter( field_name="daytype__season__ssn", lookup_expr="icontains" ) ssn__not_like = django_filters.CharFilter( field_name="daytype__season__ssn", lookup_expr="icontains", exclude=True ) ssn_des = ValueInFilter(field_name="daytype__season__ssn_des") ssn_des__not = ValueInFilter(field_name="daytype__season__ssn_des", exclude=True) ssn_des__like = django_filters.CharFilter( field_name="daytype__season__ssn_des", lookup_expr="icontains" ) ssn_des__not_like = django_filters.CharFilter( field_name="daytype__season__ssn_des", lookup_expr="icontains", exclude=True ) dtp = ValueInFilter(field_name="daytype__dtp") dtp__not = ValueInFilter(field_name="daytype__dtp", exclude=True) dtp_nm__like = django_filters.CharFilter( field_name="daytype__dtp_nm", lookup_expr="icontains" ) dtp_nm__not_like = django_filters.CharFilter( field_name="daytype__dtp_nm", lookup_expr="icontains", exclude=True ) class Meta: model = FN024 fields = [ "prd", "prdtm0", "prdtm1", "prd_dur", ]
33.180952
87
0.695896
840
6,968
5.180952
0.104762
0.107537
0.154412
0.192096
0.844899
0.824449
0.768612
0.715533
0.565257
0.492188
0
0.011542
0.204219
6,968
209
88
33.339713
0.773309
0.028846
0
0.266272
0
0
0.252707
0.14934
0
0
0
0
0
1
0
false
0
0.017751
0
0.349112
0
0
0
0
null
0
0
1
1
1
1
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
null
0
0
0
0
0
0
0
0
0
0
0
0
0
5
12c35e34c837e4d87b7e6155a3d32986c86a463f
88
py
Python
__init__.py
sbalen/TrafficSignsDataset
39ae40a0d307ee83af57f70eed43c38bc5d25233
[ "Apache-2.0" ]
1
2021-05-05T14:23:34.000Z
2021-05-05T14:23:34.000Z
__init__.py
sbalen/TrafficSignsDataset
39ae40a0d307ee83af57f70eed43c38bc5d25233
[ "Apache-2.0" ]
null
null
null
__init__.py
sbalen/TrafficSignsDataset
39ae40a0d307ee83af57f70eed43c38bc5d25233
[ "Apache-2.0" ]
null
null
null
"""TrafficSignDataset dataset.""" from .TrafficSignsDataset import Trafficsignsdataset
22
52
0.829545
6
88
12.166667
0.833333
0
0
0
0
0
0
0
0
0
0
0
0.079545
88
3
53
29.333333
0.901235
0.306818
0
0
0
0
0
0
0
0
0
0
0
1
0
true
0
1
0
1
0
1
0
1
null
0
0
0
0
0
0
0
0
0
0
0
0
0
1
0
0
0
0
0
0
0
0
0
0
null
0
0
0
0
0
0
1
0
1
0
0
0
0
5
12f7704aea2bda946e46a42c6fdb1b32ab8e104a
39
py
Python
pixiv_spider/__init__.py
Uzukidd/Pixiv-spider
10d21bf8f1e0ec0b0792383ae9e8ae55e77efd17
[ "MIT" ]
1
2021-11-12T19:16:56.000Z
2021-11-12T19:16:56.000Z
pixiv_spider/__init__.py
Uzukidd/Pixiv-web-crawler
10d21bf8f1e0ec0b0792383ae9e8ae55e77efd17
[ "MIT" ]
null
null
null
pixiv_spider/__init__.py
Uzukidd/Pixiv-web-crawler
10d21bf8f1e0ec0b0792383ae9e8ae55e77efd17
[ "MIT" ]
null
null
null
# from pixiv_web_crawler import Getters
39
39
0.871795
6
39
5.333333
1
0
0
0
0
0
0
0
0
0
0
0
0.102564
39
1
39
39
0.914286
0.948718
0
null
0
null
0
0
null
0
0
0
null
1
null
true
0
0
null
null
null
1
1
0
null
0
0
0
0
0
0
0
0
0
0
0
0
0
1
0
0
0
1
0
0
0
0
0
0
null
0
0
0
0
0
0
1
0
0
0
0
0
0
5
4201d4e01f67d6a8af781c7b4dac4cc684c59e89
117
py
Python
src/iranlowo/corpus/__init__.py
Niger-Volta-LTI/iranlowo
0046b61105ffadfff21dd8b37754b9d95177fbf8
[ "MIT" ]
17
2019-07-05T20:30:35.000Z
2022-02-28T10:00:24.000Z
src/iranlowo/corpus/__init__.py
Olamyy/iranlowo
1feb123988a8afac3ac53c7acfb72df862c4bc18
[ "MIT" ]
17
2019-07-06T09:10:10.000Z
2020-11-13T08:30:37.000Z
src/iranlowo/corpus/__init__.py
ruohoruotsi/iranlowo
0046b61105ffadfff21dd8b37754b9d95177fbf8
[ "MIT" ]
7
2019-07-01T01:59:07.000Z
2020-11-27T17:12:46.000Z
from .corpus import Corpus, DirectoryCorpus from .loaders import OweLoader, YorubaBlogCorpus, BBCCorpus, BibeliCorpus
58.5
73
0.854701
12
117
8.333333
0.75
0
0
0
0
0
0
0
0
0
0
0
0.094017
117
2
73
58.5
0.943396
0
0
0
0
0
0
0
0
0
0
0
0
1
0
true
0
1
0
1
0
1
0
0
null
0
0
0
0
0
0
0
0
0
0
0
0
0
1
0
0
0
0
0
0
0
0
0
0
null
0
0
0
0
0
0
1
0
1
0
1
0
0
5
420b2687d1f426ed1eefef8109dac3c6ae18bab7
261
py
Python
workshop/serializers.py
shivammaniharsahu/django_api
6ffb3d9f70f30f5fd3ae06ec00a6dd7c7783a797
[ "bzip2-1.0.6" ]
null
null
null
workshop/serializers.py
shivammaniharsahu/django_api
6ffb3d9f70f30f5fd3ae06ec00a6dd7c7783a797
[ "bzip2-1.0.6" ]
null
null
null
workshop/serializers.py
shivammaniharsahu/django_api
6ffb3d9f70f30f5fd3ae06ec00a6dd7c7783a797
[ "bzip2-1.0.6" ]
null
null
null
from rest_framework import serializers from .models import Register class RegisterSerializer(serializers.HyperlinkedModelSerializer): class Meta: model = Register fields = ('id', 'name', 'email', 'contact', 'password', 'confirm_password')
29
83
0.724138
25
261
7.48
0.76
0
0
0
0
0
0
0
0
0
0
0
0.172414
261
8
84
32.625
0.865741
0
0
0
0
0
0.16092
0
0
0
0
0
0
1
0
false
0.166667
0.333333
0
0.666667
0
1
0
0
null
0
0
0
0
0
0
0
0
0
0
0
0
0
1
0
0
0
0
0
0
0
0
0
0
null
0
0
0
0
0
0
0
1
1
0
1
0
0
5
422b18d573ebb1cb612e410eb429acc8c41c02ef
224
py
Python
btc_tracker_engine/helper_functions.py
metalerk/4btc
ee9ec1a6fcea1b489bd8afa9c3a25c025e022cb0
[ "MIT" ]
null
null
null
btc_tracker_engine/helper_functions.py
metalerk/4btc
ee9ec1a6fcea1b489bd8afa9c3a25c025e022cb0
[ "MIT" ]
null
null
null
btc_tracker_engine/helper_functions.py
metalerk/4btc
ee9ec1a6fcea1b489bd8afa9c3a25c025e022cb0
[ "MIT" ]
null
null
null
def rate_diff_percentage(previous_rate, current_rate, percentage=False): diff_percentage = (current_rate - previous_rate) / previous_rate if percentage: return diff_percentage * 100 return diff_percentage
44.8
72
0.772321
27
224
6.037037
0.37037
0.343558
0.196319
0
0
0
0
0
0
0
0
0.016129
0.169643
224
5
73
44.8
0.860215
0
0
0
0
0
0
0
0
0
0
0
0
1
0.2
false
0
0
0
0.6
0
1
0
0
null
1
1
0
0
0
0
0
0
0
0
0
0
0
1
0
0
0
0
0
0
0
0
0
0
null
0
0
0
0
0
0
0
0
0
0
1
0
0
5
422b4572706867cc810fb195c7e12772e8a93c86
324
py
Python
nngeometry/object/__init__.py
amyami187/nngeometry
cb516da3f7a019e148f48ff3ef3bed0cdae0d184
[ "MIT" ]
103
2020-03-19T08:47:29.000Z
2022-03-29T00:54:38.000Z
nngeometry/object/__init__.py
amyami187/nngeometry
cb516da3f7a019e148f48ff3ef3bed0cdae0d184
[ "MIT" ]
29
2021-01-07T13:39:20.000Z
2022-03-29T14:52:21.000Z
nngeometry/object/__init__.py
amyami187/nngeometry
cb516da3f7a019e148f48ff3ef3bed0cdae0d184
[ "MIT" ]
11
2020-11-09T01:07:12.000Z
2022-03-29T00:54:41.000Z
from .pspace import (PMatDense, PMatBlockDiag, PMatDiag, PMatLowRank, PMatImplicit, PMatKFAC, PMatEKFAC, PMatQuasiDiag) from .vector import (PVector, FVector) from .fspace import (FMatDense,) from .map import (PushForwardDense, PushForwardImplicit, PullBackDense)
40.5
56
0.66358
26
324
8.269231
0.769231
0
0
0
0
0
0
0
0
0
0
0
0.265432
324
7
57
46.285714
0.903361
0
0
0
0
0
0
0
0
0
0
0
0
1
0
true
0
0.571429
0
0.571429
0
1
0
0
null
0
0
0
0
0
0
0
0
0
0
0
0
0
1
0
0
0
0
0
0
0
0
0
0
null
0
0
0
0
0
0
1
0
1
0
1
0
0
5
4248c96a6cf8583046ad1cd239d37aa7ac5e5d96
740
py
Python
terrascript/resource/ddelnano/mikrotik.py
mjuenema/python-terrascript
6d8bb0273a14bfeb8ff8e950fe36f97f7c6e7b1d
[ "BSD-2-Clause" ]
507
2017-07-26T02:58:38.000Z
2022-01-21T12:35:13.000Z
terrascript/resource/ddelnano/mikrotik.py
mjuenema/python-terrascript
6d8bb0273a14bfeb8ff8e950fe36f97f7c6e7b1d
[ "BSD-2-Clause" ]
135
2017-07-20T12:01:59.000Z
2021-10-04T22:25:40.000Z
terrascript/resource/ddelnano/mikrotik.py
mjuenema/python-terrascript
6d8bb0273a14bfeb8ff8e950fe36f97f7c6e7b1d
[ "BSD-2-Clause" ]
81
2018-02-20T17:55:28.000Z
2022-01-31T07:08:40.000Z
# terrascript/resource/ddelnano/mikrotik.py # Automatically generated by tools/makecode.py (24-Sep-2021 15:21:43 UTC) import terrascript class mikrotik_bgp_instance(terrascript.Resource): pass class mikrotik_bgp_peer(terrascript.Resource): pass class mikrotik_dhcp_lease(terrascript.Resource): pass class mikrotik_dns_record(terrascript.Resource): pass class mikrotik_pool(terrascript.Resource): pass class mikrotik_scheduler(terrascript.Resource): pass class mikrotik_script(terrascript.Resource): pass __all__ = [ "mikrotik_bgp_instance", "mikrotik_bgp_peer", "mikrotik_dhcp_lease", "mikrotik_dns_record", "mikrotik_pool", "mikrotik_scheduler", "mikrotik_script", ]
17.209302
73
0.754054
85
740
6.258824
0.364706
0.285714
0.302632
0.315789
0.406015
0
0
0
0
0
0
0.019231
0.156757
740
42
74
17.619048
0.833333
0.152703
0
0.291667
1
0
0.195513
0.033654
0
0
0
0
0
1
0
false
0.291667
0.041667
0
0.333333
0
0
0
0
null
1
1
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
0
0
0
null
0
0
0
0
0
0
0
1
0
0
0
0
0
5
426e9a71b5a0425ef77735be32bb8398f28a2e1e
45
py
Python
ceefax/fonts/size7extracondensed/__init__.py
mscroggs/CEEFAX
8e7a075de1809064b77360da24ebbbaa409c3bf2
[ "MIT" ]
1
2020-03-28T15:53:22.000Z
2020-03-28T15:53:22.000Z
ceefax/fonts/size7extracondensed/__init__.py
mscroggs/CEEFAX
8e7a075de1809064b77360da24ebbbaa409c3bf2
[ "MIT" ]
1
2021-02-05T13:43:52.000Z
2021-02-05T13:43:52.000Z
ceefax/fonts/size7extracondensed/__init__.py
mscroggs/CEEFAX
8e7a075de1809064b77360da24ebbbaa409c3bf2
[ "MIT" ]
null
null
null
from .default import size7extracondensedfont
22.5
44
0.888889
4
45
10
1
0
0
0
0
0
0
0
0
0
0
0.02439
0.088889
45
1
45
45
0.95122
0
0
0
0
0
0
0
0
0
0
0
0
1
0
true
0
1
0
1
0
1
1
0
null
0
0
0
0
0
0
0
0
0
0
0
0
0
1
0
0
0
0
0
0
0
0
0
0
null
0
0
0
0
0
0
1
0
1
0
0
0
0
5
427b0f2bb086452498a9bfd3a4dc95c14c7879d6
127
py
Python
src/tarski/fstrips/contingent/__init__.py
phoeft670/tarski
7d955e535fbbca012bfd1a12402b97febc6b35b9
[ "Apache-2.0" ]
29
2018-11-26T20:31:04.000Z
2021-12-29T11:08:40.000Z
src/tarski/fstrips/contingent/__init__.py
phoeft670/tarski
7d955e535fbbca012bfd1a12402b97febc6b35b9
[ "Apache-2.0" ]
101
2018-06-07T13:10:01.000Z
2022-03-11T11:54:00.000Z
src/tarski/fstrips/contingent/__init__.py
phoeft670/tarski
7d955e535fbbca012bfd1a12402b97febc6b35b9
[ "Apache-2.0" ]
18
2018-11-01T22:44:39.000Z
2022-02-28T04:57:15.000Z
from .problem import ContingentProblem as Problem from .. action import Action from .sensor import Sensor from . import errors
25.4
49
0.811024
17
127
6.058824
0.470588
0
0
0
0
0
0
0
0
0
0
0
0.149606
127
4
50
31.75
0.953704
0
0
0
0
0
0
0
0
0
0
0
0
1
0
true
0
1
0
1
0
1
0
0
null
0
0
0
0
0
0
0
0
0
0
0
0
0
1
0
0
0
0
0
0
0
0
0
0
null
0
0
0
0
0
0
1
0
1
0
1
0
0
5
42abdb34b5121a34132a5ff61f5b37cf1ca828bc
53
py
Python
scripts/rnn/gru/__init__.py
bfeng/CryptoGRU
65f6fe9eba981fea65fc665ff16938bf3a593001
[ "MIT" ]
1
2022-01-12T03:18:55.000Z
2022-01-12T03:18:55.000Z
scripts/rnn/gru/__init__.py
bfeng/CryptoGRU
65f6fe9eba981fea65fc665ff16938bf3a593001
[ "MIT" ]
null
null
null
scripts/rnn/gru/__init__.py
bfeng/CryptoGRU
65f6fe9eba981fea65fc665ff16938bf3a593001
[ "MIT" ]
null
null
null
from .grucell import MyGRUCell from .gru import MyGRU
26.5
30
0.830189
8
53
5.5
0.75
0
0
0
0
0
0
0
0
0
0
0
0.132075
53
2
31
26.5
0.956522
0
0
0
0
0
0
0
0
0
0
0
0
1
0
true
0
1
0
1
0
1
0
0
null
0
0
0
0
0
0
0
0
0
0
0
0
0
1
0
0
0
0
0
0
0
0
0
0
null
0
0
0
0
0
0
1
0
1
0
1
0
0
5
35fbe8e8b4f1e1aa102f85306945ce878960b4de
52
py
Python
tests/conftest.py
grintor/Hello-Wolrd-CI
1f1b8c40f55d0b35cd73601ed90567a84abf03db
[ "Apache-2.0" ]
null
null
null
tests/conftest.py
grintor/Hello-Wolrd-CI
1f1b8c40f55d0b35cd73601ed90567a84abf03db
[ "Apache-2.0" ]
null
null
null
tests/conftest.py
grintor/Hello-Wolrd-CI
1f1b8c40f55d0b35cd73601ed90567a84abf03db
[ "Apache-2.0" ]
null
null
null
# see: https://stackoverflow.com/a/34520971/3238695
26
51
0.769231
7
52
5.714286
1
0
0
0
0
0
0
0
0
0
0
0.306122
0.057692
52
1
52
52
0.510204
0.942308
0
null
0
null
0
0
null
0
0
0
null
1
null
true
0
0
null
null
null
1
0
0
null
0
0
0
0
0
0
0
0
0
0
1
0
0
1
0
0
0
1
0
0
0
0
0
0
null
0
0
0
0
0
0
1
0
0
0
0
0
0
5
c40ce4ea8967938d11ba63e971d617289f172e0d
22
py
Python
Python/SCRIPT PYTHON/Hello.py
guimaraesalves/material-python
d56b6b24ae35a67d394b43cb1ef4420805c7bd9b
[ "MIT" ]
null
null
null
Python/SCRIPT PYTHON/Hello.py
guimaraesalves/material-python
d56b6b24ae35a67d394b43cb1ef4420805c7bd9b
[ "MIT" ]
null
null
null
Python/SCRIPT PYTHON/Hello.py
guimaraesalves/material-python
d56b6b24ae35a67d394b43cb1ef4420805c7bd9b
[ "MIT" ]
null
null
null
print ("Hello Word!")
11
21
0.636364
3
22
4.666667
1
0
0
0
0
0
0
0
0
0
0
0
0.136364
22
1
22
22
0.736842
0
0
0
0
0
0.5
0
0
0
0
0
0
1
0
true
0
0
0
0
1
1
1
0
null
0
0
0
0
0
0
0
0
0
0
0
0
0
1
0
0
0
0
0
0
0
0
0
0
null
0
0
0
0
0
0
1
0
0
0
0
1
0
5
6748094d5dca0ac93c047a1471d4c4dfa641d3ad
112
py
Python
0702 In-Place Move Zeros to End of List.py
ansabgillani/binarysearchcomproblems
12fe8632f8cbb5058c91a55bae53afa813a3247e
[ "MIT" ]
1
2020-12-29T21:17:26.000Z
2020-12-29T21:17:26.000Z
0702 In-Place Move Zeros to End of List.py
ansabgillani/binarysearchcomproblems
12fe8632f8cbb5058c91a55bae53afa813a3247e
[ "MIT" ]
null
null
null
0702 In-Place Move Zeros to End of List.py
ansabgillani/binarysearchcomproblems
12fe8632f8cbb5058c91a55bae53afa813a3247e
[ "MIT" ]
4
2021-09-09T17:42:43.000Z
2022-03-18T04:54:03.000Z
class Solution: def solve(self, nums): return [num for num in nums if num != 0] + [0]*nums.count(0)
28
68
0.598214
19
112
3.526316
0.684211
0
0
0
0
0
0
0
0
0
0
0.036145
0.258929
112
3
69
37.333333
0.771084
0
0
0
0
0
0
0
0
0
0
0
0
1
0.333333
false
0
0
0.333333
1
0
1
0
0
null
0
0
0
0
0
0
0
0
0
0
0
0
0
1
0
0
0
0
0
0
0
0
0
0
null
0
0
0
0
0
1
0
0
0
1
1
0
0
5
67525ed3e9b1efee9050769baa49e34f54d058e4
7,215
py
Python
tests/st/fallback/control_flow/test_fallback_010_if_in_if.py
httpsgithu/mindspore
c29d6bb764e233b427319cb89ba79e420f1e2c64
[ "Apache-2.0" ]
1
2022-02-23T09:13:43.000Z
2022-02-23T09:13:43.000Z
tests/st/fallback/control_flow/test_fallback_010_if_in_if.py
949144093/mindspore
c29d6bb764e233b427319cb89ba79e420f1e2c64
[ "Apache-2.0" ]
null
null
null
tests/st/fallback/control_flow/test_fallback_010_if_in_if.py
949144093/mindspore
c29d6bb764e233b427319cb89ba79e420f1e2c64
[ "Apache-2.0" ]
null
null
null
# Copyright 2022 Huawei Technologies Co., Ltd # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================ """ test graph fallback control flow if in if scenario""" import pytest import numpy as np from mindspore import Tensor, ms_function, context context.set_context(mode=context.GRAPH_MODE) @pytest.mark.level0 @pytest.mark.platform_x86_gpu_training @pytest.mark.platform_arm_ascend_training @pytest.mark.platform_x86_ascend_training @pytest.mark.env_onecard def test_if_in_if_1(): """ Feature: JIT Fallback Description: Test fallback with control flow. Expectation: No exception. """ @ms_function def control_flow_if_in_if(): x = Tensor(1) y = Tensor(2) if x > Tensor(0): if y > Tensor(1): return y + 1 return x + 1 return x + y res = control_flow_if_in_if() assert res == 3 @pytest.mark.level0 @pytest.mark.platform_x86_gpu_training @pytest.mark.platform_arm_ascend_training @pytest.mark.platform_x86_ascend_training @pytest.mark.env_onecard def test_if_in_if_2(): """ Feature: JIT Fallback Description: Test fallback with control flow. Expectation: No exception. """ @ms_function def control_flow_if_in_if(): x = Tensor(1) y = Tensor(0) if x > Tensor(0): if y > Tensor(1): return y + 1 return x + 1 return x + y res = control_flow_if_in_if() assert res == 2 @pytest.mark.level0 @pytest.mark.platform_x86_gpu_training @pytest.mark.platform_arm_ascend_training @pytest.mark.platform_x86_ascend_training @pytest.mark.env_onecard def test_if_in_if_3(): """ Feature: JIT Fallback Description: Test fallback with control flow. Expectation: No exception. """ @ms_function def control_flow_if_in_if(): x = Tensor(-2) y = Tensor(-3) if x > Tensor(0): if y > Tensor(1): return y + 1 return x + 1 return x + y res = control_flow_if_in_if() assert res == -5 @pytest.mark.level0 @pytest.mark.platform_x86_gpu_training @pytest.mark.platform_arm_ascend_training @pytest.mark.platform_x86_ascend_training @pytest.mark.env_onecard def test_if_in_if_4(): """ Feature: JIT Fallback Description: Test fallback with control flow. Expectation: No exception. """ @ms_function def control_flow_if_in_if(): x = np.array([1, 2, 3, 4, 5]) y = x % 2 z = Tensor(y) if (x >= y).all(): if sum(z) > Tensor(2): z = Tensor(x) + 1 return z res = control_flow_if_in_if() assert np.all(res.asnumpy() == np.array([2, 3, 4, 5, 6])) @pytest.mark.level0 @pytest.mark.platform_x86_gpu_training @pytest.mark.platform_arm_ascend_training @pytest.mark.platform_x86_ascend_training @pytest.mark.env_onecard def test_if_in_if_5(): """ Feature: JIT Fallback Description: Test fallback with control flow. Expectation: No exception. """ @ms_function def control_flow_if_in_if(): x = list([1, 2, 3, 4]) if max(x) >= 4: y = Tensor(sum(x) + max(x)) if y < Tensor(10): return y return y - 10 return x res = control_flow_if_in_if() assert res == 4 @pytest.mark.level0 @pytest.mark.platform_x86_gpu_training @pytest.mark.platform_arm_ascend_training @pytest.mark.platform_x86_ascend_training @pytest.mark.env_onecard def test_if_else_in_if_else_1(): """ Feature: JIT Fallback Description: Test fallback with control flow. Expectation: No exception. """ @ms_function def control_flow_if_in_if(): x = Tensor(10) y = Tensor(7) if x - y > Tensor(np.array([0])): x = x - Tensor(3) if x - y > Tensor(0): x = x - Tensor(4) else: x = x + Tensor(4) x = x * 2 return x - 1 res = control_flow_if_in_if() assert res == 21 @pytest.mark.level0 @pytest.mark.platform_x86_gpu_training @pytest.mark.platform_arm_ascend_training @pytest.mark.platform_x86_ascend_training @pytest.mark.env_onecard def test_if_else_in_if_else_2(): """ Feature: JIT Fallback Description: Test fallback with control flow. Expectation: No exception. """ @ms_function def control_flow_if_in_if(): x = Tensor(10) y = Tensor(7) if x - y > Tensor(np.array([10])): x = x - Tensor(3) if x - y > Tensor(0): x = x - Tensor(4) else: x = x + Tensor(4) x = x * 2 else: if x > Tensor(15): m = np.array([1, 2, 3, 4, 5]) elif x < Tensor(-10): return Tensor(sum(np.array([5, 4, 3, 2, 1]))) else: m = np.array([-1, -2, -3, -4, -5]) x = Tensor(sum(m)) return x - 1 res = control_flow_if_in_if() assert res == -16 @pytest.mark.level0 @pytest.mark.platform_x86_gpu_training @pytest.mark.platform_arm_ascend_training @pytest.mark.platform_x86_ascend_training @pytest.mark.env_onecard def test_if_in_if_multi_conds(): """ Feature: JIT Fallback Description: Test fallback with control flow. Expectation: No exception. """ @ms_function def control_flow_if_in_if(): x = np.array([1, 2, 3, 4]) y = np.array([4, 5, 6]) if max(x) <= min(y) and sum(x) == 10: x += 3 if max(x) <= max(y): m = Tensor(10) elif min(x) != max(y) or x.size > y.size: m = Tensor(20) else: m = Tensor(0) else: m = Tensor(1) return m res = control_flow_if_in_if() assert res == 20 @pytest.mark.level0 @pytest.mark.platform_x86_gpu_training @pytest.mark.platform_arm_ascend_training @pytest.mark.platform_x86_ascend_training @pytest.mark.env_onecard def test_if_in_if_multi_conds_2(): """ Feature: JIT Fallback Description: Test fallback with control flow. Expectation: No exception. """ @ms_function def control_flow_if_in_if(): x = Tensor(10) y = Tensor(2) if x > y and x % y == Tensor(0): x -= Tensor(3) if x < y: m = Tensor(10) elif x > y or x % y == Tensor(0): m = Tensor(20) else: m = x + y else: m = Tensor(0) return m res = control_flow_if_in_if() assert res == 20
27.43346
78
0.595981
1,015
7,215
4.02266
0.129064
0.110213
0.11903
0.069802
0.773206
0.752143
0.749204
0.742591
0.729121
0.729121
0
0.035101
0.289258
7,215
262
79
27.538168
0.761115
0.214137
0
0.688525
0
0
0
0
0
0
0
0
0.04918
1
0.098361
false
0
0.016393
0
0.213115
0
0
0
0
null
0
0
0
0
1
1
1
1
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
null
0
0
0
0
0
0
0
0
0
0
0
0
0
5
675926d38ebca3605bde9778baaa7d1ff647176f
95
py
Python
pickle_storage/tests/__init__.py
PyUnchained/pickle_storage
c0a978701ae59a9feeb3e14026ff0b2353b2e7f5
[ "MIT" ]
null
null
null
pickle_storage/tests/__init__.py
PyUnchained/pickle_storage
c0a978701ae59a9feeb3e14026ff0b2353b2e7f5
[ "MIT" ]
null
null
null
pickle_storage/tests/__init__.py
PyUnchained/pickle_storage
c0a978701ae59a9feeb3e14026ff0b2353b2e7f5
[ "MIT" ]
null
null
null
# import os # os.environ.setdefault('PICKLE_STORAGE_SETTINGS', 'pickle_storage.tests.settings')
47.5
83
0.810526
12
95
6.166667
0.666667
0.351351
0
0
0
0
0
0
0
0
0
0
0.052632
95
2
83
47.5
0.822222
0.957895
0
null
0
null
0
0
null
0
0
0
null
1
null
true
0
0
null
null
null
1
0
0
null
1
0
0
0
0
0
0
0
0
0
0
0
0
1
0
0
0
1
0
0
0
0
0
0
null
0
0
0
0
0
0
1
0
0
0
0
0
0
5
67607806f4f757a440672ca409795cb6fc24a8c8
97
py
Python
src/__init__.py
PY-GZKY/fconversion
f1da069ac258444c8a6b2a5fe77d0e1295a0d4e4
[ "Apache-2.0" ]
1
2022-02-11T09:39:08.000Z
2022-02-11T09:39:08.000Z
src/__init__.py
PY-GZKY/fconversion
f1da069ac258444c8a6b2a5fe77d0e1295a0d4e4
[ "Apache-2.0" ]
null
null
null
src/__init__.py
PY-GZKY/fconversion
f1da069ac258444c8a6b2a5fe77d0e1295a0d4e4
[ "Apache-2.0" ]
null
null
null
from .file_core import FileEngine from src.utils.utils import * from .version import __version__
24.25
33
0.824742
14
97
5.357143
0.571429
0
0
0
0
0
0
0
0
0
0
0
0.123711
97
3
34
32.333333
0.882353
0
0
0
0
0
0
0
0
0
0
0
0
1
0
true
0
1
0
1
0
1
0
0
null
0
0
0
0
0
0
0
0
0
0
0
0
0
1
0
0
0
0
0
0
0
0
0
0
null
0
0
0
0
0
0
1
0
1
0
1
0
0
5
6785ebdaa0a0f8a5a088b840a1b64f1e5c59a6a9
6,046
py
Python
src/config/svc-monitor/svc_monitor/tests/test_port_tuple.py
UbuntuEvangelist/contrail-controller
4e8a992230f8f8e91e4f753e19b5442d9e1b446d
[ "Apache-2.0" ]
null
null
null
src/config/svc-monitor/svc_monitor/tests/test_port_tuple.py
UbuntuEvangelist/contrail-controller
4e8a992230f8f8e91e4f753e19b5442d9e1b446d
[ "Apache-2.0" ]
null
null
null
src/config/svc-monitor/svc_monitor/tests/test_port_tuple.py
UbuntuEvangelist/contrail-controller
4e8a992230f8f8e91e4f753e19b5442d9e1b446d
[ "Apache-2.0" ]
18
2017-01-12T09:28:44.000Z
2019-04-18T20:47:42.000Z
import mock from mock import patch import unittest from vnc_api.vnc_api import * from svc_monitor.port_tuple import PortTupleAgent from svc_monitor.config_db import * import test_common_utils as test_utils class PortTupleTest(unittest.TestCase): def setUp(self): InstanceIpSM._cassandra = mock.MagicMock() InstanceIpSM._cassandra.object_read = test_utils.iip_db_read ServiceInstanceSM._cassandra = mock.MagicMock() ServiceInstanceSM._cassandra.object_read = test_utils.si_db_read VirtualMachineInterfaceSM._cassandra = mock.MagicMock() VirtualMachineInterfaceSM._cassandra.object_read = test_utils.vmi_db_read self.mocked_vnc = mock.MagicMock() self.mocked_vnc.fq_name_to_id = test_utils.get_vn_id_for_fq_name self.mocked_vnc.instance_ip_create = test_utils.iip_create self.pt_agent = PortTupleAgent( svc_mon=mock.MagicMock(), vnc_lib=self.mocked_vnc, cassandra=mock.MagicMock(), config_section=mock.MagicMock(), logger=mock.MagicMock()) def tearDown(self): ServiceTemplateSM.reset() ServiceInstanceSM.reset() InstanceIpSM.reset() del InstanceIpSM._cassandra ServiceInstanceSM.reset() del ServiceInstanceSM._cassandra VirtualMachineInterfaceSM.reset() del VirtualMachineInterfaceSM._cassandra def test_single_vm_port_tuple_create(self): test_utils.create_test_project('fake-domain:fake-project') test_utils.create_test_virtual_network('fake-domain:fake-project:public-vn') test_utils.create_test_virtual_network('fake-domain:fake-project:fake-vn-uuid') st = test_utils.create_test_st(name='fake-st-uuid', intf_list=[['right', True], ['left', True]], version='2') si = test_utils.create_test_si(name='fake-si-uuid', count=1, intf_list=['public-vn', 'fake-vn-uuid']) si.service_template = 'fake-st-uuid' pt = test_utils.create_test_port_tuple( 'fake-domain:fake-project:fake-si-uuid:fake-port-tuple', 'fake-si-uuid') vmi = test_utils.create_test_vmi('fake-domain:fake-project:fake-vmi-uuid-left', pt) vmi.params = {} vmi.params['service_interface_type'] = 'left' vmi = test_utils.create_test_vmi('fake-domain:fake-project:fake-vmi-uuid-right', pt) vmi.params = {} vmi.params['service_interface_type'] = 'right' self.pt_agent.update_port_tuple(pt_id='fake-port-tuple') self.mocked_vnc.ref_update.assert_any_call('instance-ip', 'fake-iip-uuid', 'virtual-machine-interface', 'fake-vmi-uuid-left', None, 'ADD') self.mocked_vnc.ref_update.assert_any_call('instance-ip', 'fake-iip-uuid', 'virtual-machine-interface', 'fake-vmi-uuid-right', None, 'ADD') self.mocked_vnc.ref_update.assert_any_call('service-instance', 'fake-si-uuid', 'instance-ip', 'fake-iip-uuid', None, 'ADD', ServiceInterfaceTag('left')) self.mocked_vnc.ref_update.assert_any_call('service-instance', 'fake-si-uuid', 'instance-ip', 'fake-iip-uuid', None, 'ADD', ServiceInterfaceTag('right')) def test_two_vm_port_tuple_create(self): test_utils.create_test_project('fake-domain:fake-project') test_utils.create_test_virtual_network('fake-domain:fake-project:public-vn') test_utils.create_test_virtual_network('fake-domain:fake-project:fake-vn-uuid') st = test_utils.create_test_st(name='fake-st-uuid', intf_list=[['right', True], ['left', True]], version='2') si = test_utils.create_test_si(name='fake-si-uuid', count=1, intf_list=['public-vn', 'fake-vn-uuid']) si.service_template = 'fake-st-uuid' pt = test_utils.create_test_port_tuple( 'fake-domain:fake-project:fake-si-uuid:fake-port-tuple1', 'fake-si-uuid') vmi = test_utils.create_test_vmi('fake-domain:fake-project:fake-vmi-uuid-left1', pt) vmi.params = {} vmi.params['service_interface_type'] = 'left' vmi = test_utils.create_test_vmi('fake-domain:fake-project:fake-vmi-uuid-right1', pt) vmi.params = {} vmi.params['service_interface_type'] = 'right' self.pt_agent.update_port_tuple(pt_id='fake-port-tuple1') si.service_template = 'fake-st-uuid' pt = test_utils.create_test_port_tuple( 'fake-domain:fake-project:fake-si-uuid:fake-port-tuple2', 'fake-si-uuid') vmi = test_utils.create_test_vmi('fake-domain:fake-project:fake-vmi-uuid-left2', pt) vmi.params = {} vmi.params['service_interface_type'] = 'left' vmi = test_utils.create_test_vmi('fake-domain:fake-project:fake-vmi-uuid-right2', pt) vmi.params = {} vmi.params['service_interface_type'] = 'right' self.pt_agent.update_port_tuple(pt_id='fake-port-tuple2') self.mocked_vnc.ref_update.assert_any_call('instance-ip', 'fake-iip-uuid', 'virtual-machine-interface', 'fake-vmi-uuid-left1', None, 'ADD') self.mocked_vnc.ref_update.assert_any_call('instance-ip', 'fake-iip-uuid', 'virtual-machine-interface', 'fake-vmi-uuid-right1', None, 'ADD') self.mocked_vnc.ref_update.assert_any_call('instance-ip', 'fake-iip-uuid', 'virtual-machine-interface', 'fake-vmi-uuid-left2', None, 'ADD') self.mocked_vnc.ref_update.assert_any_call('instance-ip', 'fake-iip-uuid', 'virtual-machine-interface', 'fake-vmi-uuid-right2', None, 'ADD') self.mocked_vnc.ref_update.assert_any_call('service-instance', 'fake-si-uuid', 'instance-ip', 'fake-iip-uuid', None, 'ADD', ServiceInterfaceTag('left')) self.mocked_vnc.ref_update.assert_any_call('service-instance', 'fake-si-uuid', 'instance-ip', 'fake-iip-uuid', None, 'ADD', ServiceInterfaceTag('right'))
48.368
93
0.664406
782
6,046
4.886189
0.121483
0.058885
0.074588
0.094478
0.737765
0.715781
0.715781
0.715781
0.715781
0.715781
0
0.003309
0.200298
6,046
124
94
48.758065
0.78697
0
0
0.554545
0
0
0.27605
0.148528
0
0
0
0
0.090909
1
0.036364
false
0
0.063636
0
0.109091
0
0
0
0
null
0
0
0
0
1
1
1
1
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
null
0
0
0
0
0
0
0
0
0
0
0
0
0
5
67a4b479d6f75f2f17d3b85691a149733addfde8
7,560
py
Python
tests/test_data_gateway/test_dummy_serial.py
aerosense-ai/data-gateway
019b8e4a114e16d363a3167171a457cefdbf004f
[ "Apache-2.0" ]
null
null
null
tests/test_data_gateway/test_dummy_serial.py
aerosense-ai/data-gateway
019b8e4a114e16d363a3167171a457cefdbf004f
[ "Apache-2.0" ]
34
2021-12-20T14:51:57.000Z
2022-03-30T16:47:04.000Z
tests/test_data_gateway/test_dummy_serial.py
aerosense-ai/data-gateway
019b8e4a114e16d363a3167171a457cefdbf004f
[ "Apache-2.0" ]
null
null
null
import random import unittest from serial.serialutil import SerialException from data_gateway.dummy_serial import DummySerial, constants, exceptions, random_bytes, random_string from tests.base import BaseTestCase class DummySerialTest(BaseTestCase): def setUp(self): """Set up the test environment: 1. Create a random serial port name. 2. Create a random baud rate. """ self.random_serial_port = random_string() self.random_baudrate = random_string(5, constants.NUMBERS) def test_write_closed_port(self): """Tests writing-to a closed DummySerial port.""" rand_write_len1 = random.randint(0, 1024) rand_write_len2 = random.randint(0, 1024) rand_write_str1 = random_string(rand_write_len1).encode() rand_write_str2 = random_string(rand_write_len2).encode() ds_instance = DummySerial( port=self.random_serial_port, baudrate=self.random_baudrate, responses={rand_write_str1: rand_write_str2} ) self.assertTrue(ds_instance._isOpen) # pylint: disable=W0212 ds_instance.close() self.assertFalse(ds_instance._isOpen) # pylint: disable=W0212 with self.assertRaises(SerialException): ds_instance.write(rand_write_str1) self.assertFalse(ds_instance._isOpen) # pylint: disable=W0212 def test_write_and_read_to_closed_port(self): """Tests writing-to and reading-from a closed DummySerial port.""" rand_write_len1 = random.randint(0, 1024) rand_write_len2 = random.randint(0, 1024) rand_write_str1 = random_string(rand_write_len1).encode() rand_write_str2 = random_string(rand_write_len2).encode() ds_instance = DummySerial( port=self.random_serial_port, baudrate=self.random_baudrate, responses={rand_write_str1: rand_write_str2} ) self.assertTrue(ds_instance._isOpen) # pylint: disable=W0212 ds_instance.write(rand_write_str1) ds_instance.close() self.assertFalse(ds_instance._isOpen) # pylint: disable=W0212 with self.assertRaises(SerialException): ds_instance.read(rand_write_len2) self.assertFalse(ds_instance._isOpen) # pylint: disable=W0212 def test_repr_port(self): """Tests describing a DummySerial port.""" rand_write_len1 = random.randint(0, 1024) rand_write_len2 = random.randint(0, 1024) rand_write_str1 = random_string(rand_write_len1).encode() rand_write_str2 = random_string(rand_write_len2).encode() ds_instance = DummySerial( port=self.random_serial_port, baudrate=self.random_baudrate, responses={rand_write_str1: rand_write_str2} ) self.assertTrue(self.random_serial_port in str(ds_instance)) def test_open_port(self): """Tests opening an already-open DummySerial port.""" rand_write_len1 = random.randint(0, 1024) rand_write_len2 = random.randint(0, 1024) rand_write_str1 = random_string(rand_write_len1).encode() rand_write_str2 = random_string(rand_write_len2).encode() ds_instance = DummySerial( port=self.random_serial_port, baudrate=self.random_baudrate, responses={rand_write_str1: rand_write_str2} ) self.assertTrue(ds_instance._isOpen) # pylint: disable=W0212 with self.assertRaises(SerialException): ds_instance.open() ds_instance.close() self.assertFalse(ds_instance._isOpen) # pylint: disable=W0212 ds_instance.open() self.assertTrue(ds_instance._isOpen) # pylint: disable=W0212 def test_close(self): """Tests closing a DummySerial port.""" rand_write_len1 = random.randint(0, 1024) rand_write_len2 = random.randint(0, 1024) rand_write_str1 = random_string(rand_write_len1).encode() rand_write_str2 = random_string(rand_write_len2).encode() ds_instance = DummySerial( port=self.random_serial_port, baudrate=self.random_baudrate, responses={rand_write_str1: rand_write_str2} ) self.assertTrue(ds_instance._isOpen) # pylint: disable=W0212 self.assertFalse(ds_instance.close()) self.assertFalse(ds_instance._isOpen) # pylint: disable=W0212 def test_write_and_read_no_data_present(self): # pylint: disable=C0103 """Tests writing and reading with an unspecified response.""" rand_write_len1 = random.randint(256, 1024) rand_read_len2 = random.randint(1, 16) # give it some order of magnitudes less rand_write_bytes1 = random_bytes(rand_write_len1) ds_instance = DummySerial(port=self.random_serial_port, baudrate=self.random_baudrate) ds_instance.write(rand_write_bytes1) while 1: ds_instance.read(rand_read_len2) # discard this data if not ds_instance.in_waiting: empty_data = ds_instance.read(rand_read_len2) break self.assertEqual(constants.NO_DATA_PRESENT, empty_data) def test_writing_non_bytes_data_raises_type_error(self): """Ensures that errors are raised if attempting to write non-bytes data""" rand_write_len = random.randint(256, 1024) rand_write_string = random_string(rand_write_len) ds = DummySerial(port=self.random_serial_port, baudrate=self.random_baudrate) with self.assertRaises(TypeError): ds.write(rand_write_string) def test_negative_read_size(self): """Ensures that errors are raised if attempting to access more or less data than in the buffer""" rand_write_len = random.randint(256, 1024) rand_write_bytes = random_bytes(rand_write_len) ds = DummySerial(port=self.random_serial_port, baudrate=self.random_baudrate) ds.write(rand_write_bytes) with self.assertRaises(exceptions.DSIOError): ds.read(-1) def test_timeout_with_large_read_size(self): """Ensures that errors are raised if attempting to access more or less data than in the buffer""" rand_write_len = random.randint(256, 1024) rand_write_bytes = random_bytes(rand_write_len) ds = DummySerial( port=self.random_serial_port, baudrate=self.random_baudrate, responses={rand_write_bytes: rand_write_bytes} ) ds.write(rand_write_bytes) result = ds.read(rand_write_len + 2) self.assertEqual(len(result), rand_write_len) def test_partial_read(self): """Ensures that errors are raised if attempting to access more or less data than in the buffer""" rand_write_len = random.randint(256, 1024) rand_write_bytes = random_bytes(rand_write_len) ds = DummySerial( port=self.random_serial_port, baudrate=self.random_baudrate, responses={rand_write_bytes: rand_write_bytes} ) ds.write(rand_write_bytes) result = ds.read(rand_write_len - 2) self.assertEqual(len(result), rand_write_len - 2) self.assertEqual(ds.in_waiting, 2) def test_write_bytearray(self): """Ensures that errors are raised if attempting to access more or less data than in the buffer""" rand_write_len = random.randint(256, 1024) rand_write_bytearray = bytearray(random_bytes(rand_write_len)) ds = DummySerial( port=self.random_serial_port, baudrate=self.random_baudrate, ) ds.write(rand_write_bytearray) if __name__ == "__main__": unittest.main()
41.538462
119
0.694577
968
7,560
5.103306
0.130165
0.13664
0.039474
0.052632
0.762753
0.749798
0.717409
0.717409
0.704251
0.687045
0
0.034261
0.220106
7,560
181
120
41.767956
0.803596
0.15
0
0.543307
0
0
0.001264
0
0
0
0
0
0.173228
1
0.094488
false
0
0.03937
0
0.141732
0
0
0
0
null
0
0
0
0
1
1
1
1
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
null
0
0
0
0
0
0
0
0
0
0
0
0
0
5
67da024b54f0853f0965d1f566e700aad7c2a74c
152
py
Python
pbt/population/__init__.py
automl/HPO_for_RL
d82c7ddd6fe19834c088137570530f11761d9390
[ "Apache-2.0" ]
9
2021-06-22T08:54:19.000Z
2022-03-28T09:10:59.000Z
pbt/population/__init__.py
automl/HPO_for_RL
d82c7ddd6fe19834c088137570530f11761d9390
[ "Apache-2.0" ]
null
null
null
pbt/population/__init__.py
automl/HPO_for_RL
d82c7ddd6fe19834c088137570530f11761d9390
[ "Apache-2.0" ]
null
null
null
from .trial import Trial, NoTrial from .member import Member from .population import Population __all__ = ['Trial', 'NoTrial', 'Member', 'Population']
25.333333
54
0.75
18
152
6.111111
0.388889
0.218182
0
0
0
0
0
0
0
0
0
0
0.131579
152
5
55
30.4
0.833333
0
0
0
0
0
0.184211
0
0
0
0
0
0
1
0
false
0
0.75
0
0.75
0
1
0
0
null
1
0
0
0
0
0
0
0
0
0
0
0
0
1
0
0
0
0
0
0
0
0
0
0
null
0
0
0
0
0
0
0
0
1
0
1
0
0
5
db2cccb8706be958cee0c18ee9e554aac314a720
348
py
Python
grpr2-ch/maci/policies/__init__.py
saarcohen30/GrPR2-CH
ba8c32f5b4caeebfc93ca30fa1fcc8223176183f
[ "MIT" ]
null
null
null
grpr2-ch/maci/policies/__init__.py
saarcohen30/GrPR2-CH
ba8c32f5b4caeebfc93ca30fa1fcc8223176183f
[ "MIT" ]
null
null
null
grpr2-ch/maci/policies/__init__.py
saarcohen30/GrPR2-CH
ba8c32f5b4caeebfc93ca30fa1fcc8223176183f
[ "MIT" ]
null
null
null
from .nn_policy import NNPolicy # from .gmm import GMMPolicy # from .latent_space_policy import LatentSpacePolicy from .uniform_policy import UniformPolicy # from .gaussian_policy import GaussianPolicy from .stochastic_policy import StochasticNNPolicy, StochasticNNConditionalPolicy from .deterministic_policy import DeterministicNNPolicy
38.666667
81
0.850575
36
348
8.027778
0.527778
0.249135
0
0
0
0
0
0
0
0
0
0
0.117816
348
8
82
43.5
0.941368
0.347701
0
0
0
0
0
0
0
0
0
0
0
1
0
true
0
1
0
1
0
0
0
0
null
1
0
0
0
0
0
0
0
0
0
0
0
0
1
0
0
0
0
0
0
0
0
0
0
null
0
0
0
0
0
0
1
0
1
0
1
0
0
5
e1f30a4f4d1925bf5687b7cf412adf4bd33cee9b
84
py
Python
docs/ResearchSession/manage.py
VoIlAlex/pytorchresearch
c4f08cd0ec6b78788e682005c099aef4582640cb
[ "MIT" ]
1
2020-12-13T20:25:27.000Z
2020-12-13T20:25:27.000Z
docs/ResearchSession/manage.py
VoIlAlex/pytorchresearch
c4f08cd0ec6b78788e682005c099aef4582640cb
[ "MIT" ]
null
null
null
docs/ResearchSession/manage.py
VoIlAlex/pytorchresearch
c4f08cd0ec6b78788e682005c099aef4582640cb
[ "MIT" ]
null
null
null
from backbone import entry_point if __name__ == '__main__': entry_point.main()
16.8
32
0.738095
11
84
4.727273
0.727273
0.384615
0
0
0
0
0
0
0
0
0
0
0.166667
84
4
33
21
0.742857
0
0
0
0
0
0.095238
0
0
0
0
0
0
1
0
true
0
0.333333
0
0.333333
0
1
0
0
null
1
0
0
0
0
0
0
0
0
0
0
0
0
1
0
0
0
0
0
0
0
0
0
0
null
0
0
0
0
0
0
1
0
1
0
0
0
0
5