Search is not available for this dataset
pdf
pdf |
|---|
End of preview. Expand
in Data Studio
FBI Epstein Files - Embeddings Dataset
Document embeddings and OCR text from the FBI's release of Jeffrey Epstein-related files.
Dataset Structure
embeddings/
all_embeddings.jsonl # 236K chunks with 768-dim embeddings
ocr/
all_ocr.jsonl # Full OCR text for each document
Embedding Format
Each line in all_embeddings.jsonl is a JSON object:
{
"id": "uuid",
"bates_number": "EFTA00000001",
"bates_range": "EFTA00000001-EFTA00000001",
"source_volume": 1,
"source_path": "VOL00001/...",
"doc_type": "typed_memo",
"ocr_confidence": 0.85,
"ocr_engine": "textract",
"page_number": 1,
"total_pages": 3,
"chunk_index": 0,
"total_chunks": 5,
"chunk_text": "...",
"embedding": [0.123, -0.456, ...], // 768 dimensions
"ingested_at": 1703123456
}
Embedding Model
- Model:
nomic-embed-textvia Ollama - Dimensions: 768
- Chunking: 1500 chars with 300 overlap
Statistics
- Documents: 8,150
- Unique with embeddings: 6,618
- Total chunks: 236,174
- Date range: 1990-2020
Usage
from datasets import load_dataset
# Load embeddings
ds = load_dataset("svetfm/epstein-fbi-files", data_files="embeddings/all_embeddings.jsonl")
# Access embeddings
for item in ds['train']:
embedding = item['embedding']
text = item['chunk_text']
bates = item['bates_number']
Visualizations
Interactive visualizations available at: [GitHub Pages site - coming soon]
- UMAP embedding clusters
- Entity network graphs
- Timeline analysis
- Key player networks (Maxwell, Clinton, Trump, etc.)
License
Public domain government documents. Dataset compilation CC-BY-4.0.
- Downloads last month
- 247