sungyub's picture
Update README metadata: fix num_examples to 7861
db590dc verified
metadata
dataset_info:
  features:
    - name: data_source
      dtype: string
    - name: prompt
      list:
        - name: role
          dtype: string
        - name: content
          dtype: string
    - name: ability
      dtype: string
    - name: reward_model
      struct:
        - name: style
          dtype: string
        - name: ground_truth
          dtype: string
    - name: extra_info
      struct:
        - name: index
          dtype: int64
  splits:
    - name: train
      num_bytes: 10737418240
      num_examples: 7861
  download_size: 10737418240
  dataset_size: 10737418240
configs:
  - config_name: default
    data_files:
      - split: train
        path: data/train-*
license: cc-by-4.0
task_categories:
  - reinforcement-learning
  - text-generation
tags:
  - code
  - reasoning
  - rlhf
  - verl

Code Contests Plus (VERL Format)

This dataset contains 8,432 competitive programming problems from the Code-Contests-Plus dataset, converted to VERL format for reinforcement learning applications. Each problem includes test cases validated through sandbox execution.

Source: ByteDance-Seed/Code-Contests-Plus (1x config)

License: MIT

Dataset Structure

The dataset follows the VERL format with the following fields:

  • data_source (string): Dataset source identifier ("code-contests-plus")
  • prompt (list): Chat template format with role/content structure containing the coding problem
  • ability (string): Task category ("code")
  • reward_model (dict): Evaluation information
    • style: Evaluation method ("rule")
    • ground_truth: JSON-encoded test cases with input/output pairs
  • extra_info (dict): Additional metadata
    • index: Example index from original dataset

Test Case Format

Each problem includes test cases in the reward_model.ground_truth field, stored as JSON with the following structure:

{
  "inputs": ["3\n1 2 3\n"],
  "outputs": ["6\n"]
}

The format consists of two parallel arrays:

  • inputs: Array of input strings for each test case
  • outputs: Array of expected output strings corresponding to each input

Each problem typically contains between 1 and 32 test cases, validated through sandbox execution during dataset creation.

Data Processing

The dataset was created through a multi-step processing pipeline:

1. Test Case Extraction

  • Extracted public test cases from the original dataset
  • Validated format and executability
  • Filtered problems without valid test cases

2. Sandbox Validation

  • Each problem's test cases were validated using a sandbox environment
  • Test input/output pairs verified for correctness
  • Only problems with passing validation were included

3. Size Filtering

  • Applied 10MB size limit to test case JSON (encoded)
  • Removed overly large problems to ensure efficient processing
  • Balanced dataset quality and usability

Processing Statistics

  • Total input examples: 11,690
  • Successfully processed: 8,432 (72.1% success rate)
  • Total filtered: 3,258 (27.9%)
    • No test cases: 54 (0.5%)
    • Size filtered (>10MB): 3,204 (27.4%)
  • Processing time: 69 minutes
  • Configuration used: 1x (standard difficulty)

Usage

from datasets import load_dataset
import json

# Load the dataset
dataset = load_dataset("sungyub/code-contests-plus-verl")

# Access an example
example = dataset['train'][0]

# Get the problem description
problem = example['prompt'][0]['content']
print("Problem:", problem)

# Parse test cases
ground_truth = json.loads(example['reward_model']['ground_truth'])
inputs = ground_truth['inputs']
outputs = ground_truth['outputs']

print(f"\nNumber of test cases: {len(inputs)}")
print(f"First input: {repr(inputs[0])}")
print(f"Expected output: {repr(outputs[0])}")

Example Problem

Problem Description:

Twins

square1001 and E869120 are twins, but they are not identical twins...

Test Case:

Input:  ""
Output: "square1001"

Statistics

  • Total examples: 8,432
  • Average test cases per problem: ~10-15
  • Test case range: 1-32 per problem
  • Dataset size: ~10 GB uncompressed, ~10 GB compressed (includes test cases)
  • Format: Parquet (11 shards, ~1GB each)
  • Schema: VERL-compatible

Data Quality

All problems in this dataset have been validated to ensure:

  1. Valid test cases: Each problem has at least one valid test case
  2. Correct input/output pairs: Test cases verified through sandbox execution
  3. Size constraints: Test cases are within reasonable size limits (≤10MB)
  4. Format consistency: All examples follow the same schema structure

Conversion Script

The dataset was created using preprocess_codecontests_verl.py:

# Standard conversion (used for this dataset)
python preprocess_codecontests_verl.py \
  --dataset-id ByteDance-Seed/Code-Contests-Plus \
  --config 1x \
  --output-dir ./codecontests_verl_full \
  --sandbox-url http://localhost:8080/run_code \
  --batch-size 100

# Process with different configuration
python preprocess_codecontests_verl.py \
  --dataset-id ByteDance-Seed/Code-Contests-Plus \
  --config 2x \
  --output-dir ./codecontests_verl_2x \
  --sandbox-url http://localhost:8080/run_code \
  --batch-size 100

# Process limited samples for testing
python preprocess_codecontests_verl.py \
  --dataset-id ByteDance-Seed/Code-Contests-Plus \
  --config 1x \
  --output-dir ./codecontests_test \
  --sandbox-url http://localhost:8080/run_code \
  --max-examples 100

Related Datasets

Additional Information

For more information about VERL format and usage in reinforcement learning, see:

Citation

If you use this dataset, please cite the original Code-Contests-Plus dataset:

@misc{code-contests-plus,
  title={Code-Contests-Plus},
  author={ByteDance-Seed},
  year={2024},
  publisher={HuggingFace},
  url={https://huggingface.co/datasets/ByteDance-Seed/Code-Contests-Plus}
}

License

This dataset is released under the MIT License, following the license of the original Code-Contests-Plus dataset.