Dataset Viewer
Auto-converted to Parquet Duplicate
id
string
name
string
popularity
int64
null_response
int64
duration_ms
int64
time_signature
int64
key
int64
mode
int64
tempo
float64
danceability
float64
energy
float64
loudness
float64
speechiness
float64
acousticness
float64
instrumentalness
float64
liveness
float64
valence
float64
2Pe9cbhOTvOUTDE4bl7zzl
I dreamt you died
0
0
630,506
4
6
0
87.683
0.279
0.391
-12.054
0.32
0.816
0.737
0.177
0.0299
0wP732NKm8XgXu78XLRWoR
It's Death
0
0
97,216
4
5
1
105.298
0.429
0.318
-11.685
0.0566
0.587
0.782
0.202
0.36
22L6EJdnjx8oIo7GiF9hLe
Preliminary
0
0
75,180
4
0
1
117.657
0.283
0.581
-9.42
0.0555
0.923
0.939
0.106
0.0362
3a519lgQ13JXNi0G73mwMT
Disparage
0
0
149,447
4
5
0
100.685
0.244
0.995
-0.69
0.125
0.78
0.799
0.132
0.0634
27yP7p2lxWYTtnldRN8Kzx
Cut Down
0
0
120,816
4
7
1
123.499
0.313
0.618
0.411
0.073
0.843
0.109
0.126
0.187
0NbgRl9ysfWbkQkvHI0ZTM
Solam de se - Harmonic Mix
0
0
168,986
4
0
0
117.223
0.759
0.256
-10.212
0.0456
0.685
0.000119
0.102
0.0989
1J6qdeHnI3a6IWkXzGEwH4
Mariposa - Amplified Mix
0
0
95,791
4
5
0
101.602
0.883
0.64
-0.878
0.0849
0.242
0.000036
0.089
0.367
5D8e5V1hNhCJPJUovKZbDU
Your Eyes, Your Hair - EP Version
0
0
173,793
3
7
1
76.552
0.325
0.691
-0.127
0.168
0.784
0.0296
0.373
0.0413
5vfGvoiG2Y8Xy0cZTXB4jF
Corvisculism
0
0
265,967
4
11
0
137.822
0.332
0.313
-15.958
0.0407
0.955
0.894
0.0998
0.039
3mW5dgtVIoOliiZ7c2sNIO
The Ends Of The World
0
0
215,786
4
3
0
131.958
0.373
0.373
-12.198
0.0368
0.897
0.792
0.184
0.156
7H1pr8JIb03pNUCnfi4i5g
I'm What Was Left Behind
1
0
478,627
4
1
1
63.483
0.255
0.0823
-12.902
0.0463
0.00401
0.929
0.107
0.0432
6LCEtPyTB7WlIFn0f2AafZ
Häive
1
0
138,133
4
11
1
128.266
0.278
0.0595
-29.42
0.0373
0.8
0.848
0.111
0.0352
1L708hbtzwHxfzfSZQM7pW
Shedding the Skin
2
0
614,960
4
6
0
64.479
0.153
0.571
-10.857
0.0431
0.000164
0.816
0.119
0.157
09pLzGKnnWdpluqXEFbxID
Leech
1
0
374,040
4
2
1
80.033
0.219
0.498
-10.189
0.0322
0.000067
0.825
0.0811
0.0939
0fzp6n1VfTjHfRW2RUOvXR
Tyhjiö
0
0
149,133
4
7
0
205.591
0.121
0.111
-22.535
0.0388
0.632
0.95
0.351
0.0399
6Lz3w4A8OxdeihxFP1MVVB
Null
1
0
428,813
4
11
1
144.161
0.382
0.54
-11.158
0.0315
0.00131
0.846
0.424
0.303
2UUvCF6aGjR1WHQiy0dWJa
Fear of a Thinking Planet
0
0
186,520
4
1
0
150.169
0.235
0.976
-4.705
0.161
0.000007
0.514
0.172
0.143
3tzeocwfjjlikeyFQ8dnFw
New World Error
0
0
169,987
4
11
1
155.228
0.237
0.973
-4.738
0.111
0.000007
0.47
0.277
0.178
5wl0BCoKrGCwiR4I7FdFYd
Loyal to Those Loyal to Us
0
0
162,560
4
1
0
146.376
0.291
0.951
-4.865
0.16
0.000022
0.0333
0.369
0.29
2xZrs11quzC8YLvinl5vWM
Red Blue Eyes
0
0
197,613
4
1
0
89.616
0.329
0.981
-4.768
0.164
0.000008
0.384
0.0641
0.121
0wgwoHXCwQxtrywheSZ7si
No Guide for Life
0
0
171,960
4
1
0
83.906
0.239
0.965
-4.795
0.139
0.000005
0.0755
0.363
0.15
1cVMQJv6lotPHjNzR8k0rA
Blacklist
0
0
216,333
4
1
0
134.356
0.298
0.986
-4.536
0.118
0.000014
0.236
0.216
0.115
6Sv4TPv6V4wi8x46MoZcex
My Domination
0
0
175,307
5
3
0
88.291
0.348
0.967
-4.689
0.12
0.000022
0.112
0.15
0.238
2XfseFqFa7y8fmTRiUjaOa
For My Past
0
0
185,240
4
4
1
77.713
0.23
0.986
-4.648
0.157
0.000026
0.153
0.26
0.108
20m5UXFI2zdKQmeyHPwEro
Iron Age
0
0
148,453
4
1
0
82.814
0.199
0.993
-4.773
0.15
0.000013
0.385
0.345
0.0559
4ZddyyZ8ElsGHIgZwPWR1X
I Was Different
0
0
307,413
4
4
1
119.806
0.311
0.765
-8.954
0.0426
0.000194
0.884
0.0949
0.423
5JW73TU0PW0GWx6AX3kdnE
Real One
0
0
95,608
4
9
1
120.979
0.928
0.416
-11.152
0.0836
0.0823
0
0.187
0.545
2fYXM6bD4pP1MPAOfvfpI2
Crushing On You
0
0
226,720
4
8
1
143.979
0.862
0.335
-12.141
0.164
0.0419
0.000046
0.124
0.19
4QH0yrqNF9USIHaMs573X7
Gangbangin
0
0
127,800
4
5
0
140.099
0.85
0.294
-10.78
0.434
0.000353
0
0.362
0.0379
7BDsVpdtYxLihS3UksQaCb
Fall in love
0
0
167,664
4
1
1
140.058
0.944
0.22
-12.127
0.547
0.00434
0.0126
0.11
0.228
3zNBCOzdCFgMIDRc2eekSX
Paul Walker
0
0
140,088
4
1
1
144.963
0.903
0.685
-8.791
0.42
0.119
0
0.0901
0.432
53HMzuJFlBE7kunqzu6QPy
Sneakylinkin
0
0
116,328
4
11
1
160.31
0.521
0.692
-10.778
0.263
0.186
0
0.263
0.449
2PwWxCnIhcHYUFnfuyojto
Beef
0
0
189,672
4
11
1
76
0.888
0.445
-10.923
0.325
0.0737
0.000013
0.353
0.215
3on5xMELkXm2vBPSxiObJU
I am what i am
0
0
136,992
4
1
1
144.988
0.88
0.321
-11.141
0.479
0.0983
0
0.109
0.196
3bwzEynNyp4wE4JPzRFdiQ
2-4-14
0
0
200,112
4
1
1
129.992
0.689
0.519
-10.116
0.374
0.0524
0
0.229
0.215
7HKb5xH7yDbrJObGr3Ruv9
No krackin treys
0
0
210,120
4
3
0
74.986
0.856
0.309
-13.57
0.159
0.693
0
0.0977
0.249
1r0IlMM8SGbtcc3m8lzpQb
Aint gone play
0
0
200,112
4
1
0
127.015
0.783
0.32
-9.077
0.319
0.0195
0.000161
0.124
0.0973
2xgjRVnjMJNT1LXkjeHTb0
Lovely
0
0
165,140
4
1
1
153.046
0.795
0.548
-9.127
0.102
0.016
0
0.371
0.455
2xkMx0qUroW9BqRj0uofSo
Mob Boss
0
0
180,120
4
1
1
76
0.801
0.591
-10.14
0.112
0.00724
0.000224
0.437
0.0981
6fV4WXTar2iRHXjenXfj4F
6 double O
0
0
201,535
4
0
1
127.966
0.724
0.555
-6.278
0.0305
0.24
0
0.176
0.689
22YSbK6q45RvfsA3GLTJQK
Intro
0
0
134,040
4
10
1
150.096
0.788
0.661
-7.124
0.282
0.146
0.000001
0.163
0.383
7ltCS6GHqH8MWgiXy8Yl4x
How u like me now
0
0
160,224
4
8
0
119.952
0.978
0.508
-8.764
0.0737
0.394
0
0.155
0.654
6Zwo6C9HbSmRyaPGY57mvv
Dondada
0
0
202,824
4
1
1
148.031
0.841
0.607
-8.381
0.245
0.0808
0.00003
0.132
0.22
3X4PVYfyLitj8hlzZDZh2v
U played
0
0
159,576
4
8
0
74.998
0.884
0.551
-8.637
0.323
0.051
0.000001
0.0881
0.479
6u5RvOcOyIUbg2UbbTczIt
I aint playin
0
0
270,120
4
5
0
133.05
0.785
0.669
-8.546
0.131
0.0486
0.000002
0.0873
0.0891
4Vsi0uptrNXboDpp3cSfYD
La familia
0
0
179,072
4
6
1
119.96
0.876
0.409
-10.627
0.0615
0.646
0
0.132
0.749
5l30NKxKacjiDsHbGk1ATs
Poppin Tags
0
0
215,171
4
11
0
144.059
0.748
0.615
-10.289
0.0778
0.421
0
0.0563
0.681
4lLX8atndGVN61okTFhqXq
Glopeezy pt. 2
0
0
132,744
4
5
0
145.07
0.638
0.628
-6.849
0.248
0.0476
0.000008
0.67
0.388
1xuZRlQZFPMmGeatQjj79O
Our Life
0
0
142,560
4
1
1
140.406
0.547
0.725
-8.145
0.588
0.334
0.000024
0.936
0.524
6MIMWL06lDmjIt7Qx6CZmz
Inna Raq
0
0
173,664
5
1
1
98.262
0.671
0.468
-8.924
0.431
0.0486
0.00443
0.167
0.256
3u5GrmBkZaNcjOsKgqpTbY
Wanna Ballout
0
0
93,072
4
1
1
148.412
0.742
0.675
-7.982
0.268
0.16
0.000005
0.105
0.609
23PjjTdWIDdM5MNpBEZjEr
Shoot da klub up
0
0
151,104
3
1
1
108.206
0.574
0.505
-6.774
0.106
0.024
0.000007
0.262
0.0452
4DwdIYwDvnmicdqbQHDhTG
Grand Theft Auto (Gta)
0
0
180,168
4
10
0
150.13
0.819
0.645
-7.47
0.252
0.444
0
0.0637
0.54
1WkqMO3EKlGQicPmk0S2x8
Man Down
0
0
157,617
4
1
1
134.078
0.683
0.849
-7.032
0.0321
0.0427
0
0.0605
0.682
4pVhCtGBgwQ0dp9EU0ThL3
Dondada
0
0
202,824
4
1
1
148.031
0.841
0.607
-8.381
0.245
0.0808
0.00003
0.132
0.22
0kGqyHPK6aIGtWj7Ham2aQ
Obama aka Obeezy - Drillin Time
0
0
200,922
4
8
1
135.012
0.716
0.88
-2.529
0.234
0.118
0
0.251
0.581
7mRrRyGszXVtJk725kOLF9
Outside
0
0
242,296
4
7
1
170.035
0.368
0.927
-7.439
0.0445
0.00125
0.091
0.254
0.517
2sKxk4Eg4nRKQR43AJMf7P
Copied & Pasted
1
0
195,805
4
9
1
130.041
0.57
0.751
-7.386
0.0359
0.0522
0.000168
0.295
0.56
08367ErzRyFbPY8JLk9ISI
Red
0
0
267,520
4
0
1
122.043
0.614
0.807
-7.193
0.0353
0.0213
0.0153
0.102
0.602
0IjfeSwERvlvoFDh3tg2nS
Separate
0
0
227,580
4
4
1
79.984
0.486
0.625
-7.692
0.0284
0.0363
0.000022
0.0664
0.33
4ZnUzLBd1boZxxW1pwqDoA
Out of Sight
0
0
211,498
4
0
1
162.035
0.421
0.734
-7.89
0.0369
0.00315
0.000104
0.0563
0.152
7jqBGNTIgwgSltOzUdaJRY
Separate
1
0
233,806
4
4
1
77.506
0.484
0.657
-6.703
0.0301
0.00555
0.000009
0.0719
0.384
5j1hkdx3EfOoLvoVwfR2Gn
Copied & Pasted
1
0
194,743
4
2
1
130.011
0.545
0.674
-7.763
0.0341
0.00171
0.000026
0.0772
0.515
2d4nr8JsmmV9rMLKHlbzht
Remedy
19
0
131,894
4
8
0
120.067
0.912
0.391
-11.513
0.125
0.0326
0.000002
0.109
0.8
3aGf4j38Jqgg2kBpPkzr6Z
Romeo.
24
0
144,089
4
2
0
125.525
0.809
0.445
-12.241
0.328
0.131
0
0.0984
0.597
1gpQ7gcfnL7yqRYXNaZIKM
Mood
9
0
123,584
4
0
0
140.123
0.736
0.484
-14.616
0.43
0.598
0
0.159
0.256
4Wk7IVsvaIKWiTggH2igbe
Tolier
5
0
140,016
4
2
0
126.827
0.843
0.503
-8.409
0.464
0.227
0.000015
0.122
0.31
1UNhTnvvW2OC5PEfyjLs4O
Baddie mélodie
0
0
109,031
4
1
0
82.027
0.673
0.475
-8.936
0.0505
0.0743
0.00786
0.111
0.378
722AXxn6sa8ERBoGVhvaYZ
Lightskin
1
0
153,429
4
2
0
139.907
0.559
0.305
-11.506
0.035
0.856
0.000006
0.108
0.342
43fro155gn6jvQbpwDFQiT
58 rue mademoiselle
4
0
149,658
3
11
0
172.032
0.55
0.443
-10.84
0.164
0.363
0.000651
0.108
0.0843
2P635Vmz1LfkzxHVsuhEkF
Encore moins Maaj
18
0
129,792
4
0
1
111.011
0.897
0.342
-10.286
0.0715
0.464
0.000008
0.109
0.264
5R7IOFS1y77Gpy9zZKUdEK
Méridien
1
0
177,143
4
2
0
168.002
0.435
0.402
-11.585
0.0643
0.603
0.000207
0.103
0.751
3MU6tEZ01aykLLcCBTLgZM
Fimbulvetr
1
0
173,419
4
6
1
155.052
0.753
0.417
-12.994
0.108
0.705
0.00036
0.125
0.906
1zRPnyXmFwAMmSbMEb7zDm
Kidnapper
1
0
126,316
4
9
0
76.044
0.799
0.257
-11.986
0.18
0.53
0.0218
0.098
0.741
3XqxE9s4oISc65c3ftyNnP
Marineford
2
0
181,895
4
8
0
94.939
0.606
0.376
-14.254
0.104
0.42
0.000028
0.112
0.151
3HMFfU5VyagOXrdVqITgCn
S/o Law
2
0
213,253
4
9
0
122.487
0.569
0.247
-15.644
0.206
0.722
0.00002
0.172
0.406
5ix9WTGlIbFe1NjskVYcjQ
Uni vert
1
0
137,822
5
1
0
64.837
0.554
0.337
-8.153
0.153
0.913
0.0321
0.121
0.388
7slcVSCXH3CGlBqUINW77l
Vents contraires
1
0
204,800
4
10
1
150.107
0.648
0.376
-13.559
0.0841
0.714
0.00128
0.1
0.494
6uQx1BOQQxPziq8yYcVwNq
voilà pourquoi je dors plus
0
0
120,000
4
7
0
87.93
0.754
0.224
-14.953
0.0848
0.883
0.000006
0.312
0.529
4UTzw1PQesnynGPdbJM7lP
Uni vert
1
0
137,822
5
1
0
64.837
0.554
0.337
-8.153
0.153
0.913
0.0321
0.121
0.388
3i73RXsWOpuQOVP3FDA1Yg
Le ciel est noué
11
0
165,355
4
2
0
112.092
0.813
0.325
-13.428
0.0809
0.864
0.000054
0.101
0.649
1XjmYmbCRuXWyAfZqy7jOy
Bandit Mélodie
2
0
163,776
5
8
0
83.281
0.553
0.234
-15.782
0.311
0.825
0
0.226
0.371
6p2gjh8UxcsJwIlSLD9M3F
Coco
0
0
160,000
4
4
0
131.88
0.739
0.361
-10.925
0.0816
0.625
0.0322
0.11
0.381
3mlWhknaViT2MBM593pdAn
J'encaisse
7
0
192,000
4
0
0
100.014
0.753
0.34
-15.54
0.0416
0.711
0.0194
0.114
0.164
4qkOoEEfFka04zrKWYuC95
Kidnapper
4
0
126,316
4
9
0
76.044
0.799
0.257
-11.986
0.18
0.53
0.0218
0.098
0.741
2PsQIiTaV6vuV4Up98pjzA
Fucking Restless
0
0
132,347
4
6
1
117.424
0.289
0.883
-9.222
0.0924
0.000461
0.367
0.306
0.395
0v0elvLqX6sMlK90zsafHS
Covered In Black
0
0
269,267
3
11
1
75.785
0.225
0.914
-4.608
0.0683
0.000111
0.000015
0.166
0.352
5LLIxJJyyoW3ti9O0XzQWh
Liars
0
0
180,107
4
6
1
91.806
0.235
0.958
-4.592
0.0808
0.000147
0
0.195
0.308
1hVjWUZasc1kfvooR5h64M
Under Control
0
0
247,213
4
6
1
87.278
0.275
0.86
-6.294
0.0584
0.000307
0.000115
0.142
0.32
7hTI11krW1WqtUBSWsEbGm
...To The Lions
0
0
226,773
4
6
1
75.11
0.22
0.854
-6.485
0.0485
0.000159
0.000004
0.11
0.398
5RZk0vd5xta3qdknscg7sm
Forcing My Fears
1
0
235,120
4
11
1
140.08
0.261
0.919
-4.837
0.0655
0.000013
0.00113
0.155
0.447
3TfXeY1etO8A08SLozyNbp
Shadows
0
0
163,480
4
11
1
179.909
0.34
0.832
-5.908
0.0495
0.000083
0.000028
0.0934
0.511
6UXUMaKZygHLGxjCcre524
This Bound Can´t Be Crushed
0
0
194,440
4
6
1
90.042
0.344
0.905
-6.356
0.0504
0.000073
0.000036
0.14
0.386
1eyK7JBtoOkTjujVX7BxLE
Chamber Of Torture
0
0
166,653
4
6
1
172.083
0.434
0.884
-3.918
0.0479
0.000163
0
0.068
0.426
1kKRNrlUm7rjAD1hB6P4SH
Blood Of My Enemies
0
0
229,240
4
6
1
95.014
0.247
0.802
-7.186
0.0605
0.000257
0.00104
0.131
0.342
5stm0svH0NpDNcVpL4N1rc
Inner Rage 1998
0
0
206,420
4
5
1
88.307
0.174
0.856
-5.432
0.0429
0.00312
0.923
0.0851
0.203
5O0qprmRRIYUKvDUckA2ib
Blood of my Enemies 1998
0
0
180,062
4
1
1
88.996
0.317
0.839
-4.863
0.046
0.000512
0.875
0.0636
0.44
5BwpqEedsPJ4OxJPIrrWaU
Dawn of a new Breed 1998
0
0
211,513
4
1
1
82.111
0.166
0.912
-4.472
0.0525
0.00218
0.818
0.152
0.395
77Jo8KnRnXvMhFc9i1xO8l
Chamber of Torture 1998
0
0
182,857
4
1
1
89.476
0.379
0.896
-4.981
0.0627
0.00482
0.0674
0.333
0.419
5lZRCQwBOXNjraW0t0M9k5
Leadership 1998
0
0
217,496
4
0
1
182.091
0.144
0.779
-6.297
0.072
0.0061
0.93
0.102
0.0727
End of preview. Expand in Data Studio

Spotify Tracks & Audio Features Dataset

Overview

This dataset contains a comprehensive collection of Spotify tracks, combining rich audio feature analysis with track metadata. It is formatted as a high-performance Parquet dataset (ZStandard compressed), optimized for large-scale tabular analysis, machine learning, and recommender system research.

Data Source

The raw data for this dataset was originally gathered and hosted by Anna's Archive.

This repository serves as a cleaned, merged, and technically optimized version of that raw dump, provided for convenience to researchers who wish to analyze the data without managing the original 100GB+ SQLite files.

Technical Construction

The original release consisted of multiple disjoint SQLite 3 databases. This dataset was constructed using DuckDB to perform an out-of-core merge of two massive tables:

  1. track_metadata.sqlite3 (Table: tracks)
  2. audio_features.sqlite3 (Table: track_audio_features)

Processing Details

  • Merge Key: The tables were joined on the Spotify Track ID (id from metadata and track_id from audio features).
  • Type Safety: The original SQLite files contained weak typing (e.g., floats stored in integer columns). During the merge, all columns were explicitly cast to strict types (BIGINT for counts/enums, DOUBLE for continuous metrics) to ensure schema consistency.
  • Format: The data is stored in Apache Parquet format.
  • Compression: ZStandard (ZSTD) compression was applied to minimize disk usage while maintaining fast read speeds.

Dataset Structure

Audio Features

Official API Documentation: https://developer.spotify.com/documentation/web-api/reference/get-audio-features

  • track_id: The Spotify ID (Base62) for the track.
  • null_response: true if the API returned null for the whole request
  • duration_ms: The duration of the track in milliseconds.
  • time_signature: An estimated time signature. The time signature (meter) is a notational convention to specify how many beats are in each bar (or measure). The time signature ranges from 3 to 7 indicating time signatures of "3/4" to "7/4".
  • tempo: The overall estimated tempo of a track in beats per minute (BPM). In musical terminology, tempo is the speed or pace of a given piece and derives directly from the average beat duration.
  • key: The key the track is in. Integers map to pitches using standard Pitch Class (https://en.wikipedia.org/wiki/Pitch_class) notation. E.g. 0 = C, 1 = C♯/D♭, 2 = D, and so on. If no key was detected, the value is -1.
  • mode: Mode indicates the modality (major or minor) of a track, the type of scale from which its melodic content is derived. Major is represented by 1 and minor is 0.
  • danceability: Danceability describes how suitable a track is for dancing based on a combination of musical elements including tempo, rhythm stability, beat strength, and overall regularity. A value of 0.0 is least danceable and 1.0 is most danceable.
  • energy: Energy is a measure from 0.0 to 1.0 and represents a perceptual measure of intensity and activity. Typically, energetic tracks feel fast, loud, and noisy. For example, death metal has high energy, while a Bach prelude scores low on the scale. Perceptual features contributing to this attribute include dynamic range, perceived loudness, timbre, onset rate, and general entropy.
  • loudness: The overall loudness of a track in decibels (dB). Loudness values are averaged across the entire track and are useful for comparing relative loudness of tracks. Loudness is the quality of a sound that is the primary psychological correlate of physical strength (amplitude). Values typically range between -60 and 0 db.
  • speechiness: Speechiness detects the presence of spoken words in a track. The more exclusively speech-like the recording (e.g. talk show, audio book, poetry), the closer to 1.0 the attribute value. Values above 0.66 describe tracks that are probably made entirely of spoken words. Values between 0.33 and 0.66 describe tracks that may contain both music and speech, either in sections or layered, including such cases as rap music. Values below 0.33 most likely represent music and other non-speech-like tracks.
  • acousticness: A confidence measure from 0.0 to 1.0 of whether the track is acoustic. 1.0 represents high confidence the track is acoustic.
  • instrumentalness: Predicts whether a track contains no vocals. "Ooh" and "aah" sounds are treated as instrumental in this context. Rap or spoken word tracks are clearly "vocal". The closer the instrumentalness value is to 1.0, the greater likelihood the track contains no vocal content. Values above 0.5 are intended to represent instrumental tracks, but confidence is higher as the value approaches 1.0.
  • liveness: Detects the presence of an audience in the recording. Higher liveness values represent an increased probability that the track was performed live. A value above 0.8 provides strong likelihood that the track is live.
  • valence: A measure from 0.0 to 1.0 describing the musical positiveness conveyed by a track. Tracks with high valence sound more positive (e.g. happy, cheerful, euphoric), while tracks with low valence sound more negative (e.g. sad, depressed, angry).

Track Metadata

Official API Documentation: https://developer.spotify.com/documentation/web-api/reference/get-track

  • id: The Spotify ID (Base62) for the track.
  • name: The name of the track.
  • popularity: The popularity of the track. The value will be between 0 and 100, with 100 being the most popular. The popularity of a track is a value between 0 and 100, with 100 being the most popular. The popularity is calculated by algorithm and is based, in the most part, on the total number of plays the track has had and how recent those plays are. Generally speaking, songs that are being played a lot now will have a higher popularity than songs that were played a lot in the past. Duplicate tracks (e.g. the same track from a single and an album) are rated independently. Artist and album popularity is derived mathematically from track popularity. Note: the popularity value may lag actual popularity by a few days: the value is not updated in real time.

Potential Use Cases

This dataset is suitable for large-scale data science projects, including:

  1. Tabular Regression: Predicting a song's popularity based on its audio characteristics (e.g., "Are faster songs more popular?").
  2. Tabular Classification: Predicting the Key, Mode, or Time Signature of a song based on its acoustic profile.
  3. Recommender Systems: Content-based filtering to find "nearest neighbors" for songs. By using features like valence, energy, and danceability as vectors, you can calculate cosine similarity to recommend tracks that "sound" the same.
  4. Music Analysis: Analyzing trends in music production over time (e.g., "Has music become louder or sadder?").

Legal & Disclaimer

License: Unspecified / Proprietary (Research Use Only)

This dataset is a derived work provided for educational and research purposes. While the compilation, cleaning, and format conversion represent a "sweat of the brow" effort to make these files accessible, the underlying data points, ID systems, and acoustic metrics are the intellectual property of Spotify AB.

We make no claim of ownership over the content. This dataset is provided "as-is" for convenience, to save researchers the computational cost of merging the original raw archives. Users should adhere to Spotify's Terms of Use regarding data handling.

Downloads last month
28