Dataset Viewer
Auto-converted to Parquet Duplicate
image
imagewidth (px)
1.02k
1.02k
mask
imagewidth (px)
1.02k
1.02k
scene
stringclasses
155 values
camera
stringclasses
6 values
frame
stringclasses
100 values
ai_017_010
cam_02
frame.0020
ai_008_005
cam_01
frame.0088
ai_003_001
cam_00
frame.0050
ai_003_009
cam_01
frame.0028
ai_016_009
cam_01
frame.0000
ai_013_002
cam_00
frame.0061
ai_018_009
cam_00
frame.0009
ai_007_004
cam_00
frame.0016
ai_002_009
cam_00
frame.0045
ai_010_003
cam_01
frame.0003
ai_003_004
cam_01
frame.0027
ai_018_010
cam_00
frame.0012
ai_008_002
cam_00
frame.0039
ai_009_006
cam_00
frame.0055
ai_014_010
cam_00
frame.0086
ai_011_009
cam_01
frame.0034
ai_008_002
cam_00
frame.0076
ai_017_003
cam_00
frame.0061
ai_011_001
cam_00
frame.0063
ai_006_002
cam_01
frame.0027
ai_017_005
cam_00
frame.0059
ai_016_003
cam_00
frame.0035
ai_016_004
cam_00
frame.0005
ai_018_001
cam_00
frame.0070
ai_017_010
cam_01
frame.0043
ai_008_001
cam_02
frame.0039
ai_004_002
cam_01
frame.0081
ai_010_006
cam_00
frame.0035
ai_011_007
cam_01
frame.0013
ai_008_008
cam_00
frame.0064
ai_006_002
cam_02
frame.0052
ai_008_004
cam_00
frame.0084
ai_016_009
cam_05
frame.0084
ai_016_009
cam_01
frame.0010
ai_018_006
cam_01
frame.0068
ai_007_009
cam_01
frame.0091
ai_016_009
cam_03
frame.0022
ai_010_009
cam_02
frame.0014
ai_006_001
cam_00
frame.0029
ai_006_010
cam_02
frame.0076
ai_010_002
cam_00
frame.0000
ai_007_001
cam_01
frame.0009
ai_005_010
cam_00
frame.0029
ai_002_001
cam_00
frame.0026
ai_004_001
cam_00
frame.0061
ai_013_003
cam_00
frame.0001
ai_003_008
cam_00
frame.0073
ai_002_005
cam_00
frame.0000
ai_014_010
cam_00
frame.0061
ai_007_009
cam_01
frame.0053
ai_018_010
cam_01
frame.0044
ai_009_003
cam_00
frame.0028
ai_006_009
cam_00
frame.0042
ai_003_010
cam_01
frame.0024
ai_001_005
cam_01
frame.0094
ai_017_008
cam_03
frame.0096
ai_003_001
cam_00
frame.0091
ai_013_001
cam_01
frame.0039
ai_001_010
cam_01
frame.0015
ai_001_007
cam_00
frame.0042
ai_017_009
cam_03
frame.0008
ai_017_002
cam_00
frame.0039
ai_014_006
cam_00
frame.0087
ai_005_010
cam_00
frame.0035
ai_002_005
cam_00
frame.0005
ai_013_002
cam_01
frame.0081
ai_007_006
cam_00
frame.0015
ai_017_004
cam_00
frame.0045
ai_012_009
cam_00
frame.0042
ai_002_007
cam_00
frame.0013
ai_004_003
cam_01
frame.0067
ai_007_001
cam_01
frame.0086
ai_016_009
cam_04
frame.0041
ai_001_002
cam_01
frame.0041
ai_010_005
cam_00
frame.0002
ai_003_007
cam_01
frame.0000
ai_017_002
cam_00
frame.0038
ai_005_005
cam_00
frame.0077
ai_002_010
cam_00
frame.0009
ai_018_005
cam_00
frame.0015
ai_011_009
cam_01
frame.0027
ai_014_006
cam_00
frame.0078
ai_002_010
cam_00
frame.0065
ai_013_001
cam_01
frame.0050
ai_007_007
cam_01
frame.0065
ai_009_009
cam_00
frame.0085
ai_004_003
cam_00
frame.0097
ai_010_009
cam_00
frame.0007
ai_018_010
cam_00
frame.0049
ai_006_003
cam_00
frame.0092
ai_018_002
cam_00
frame.0048
ai_011_006
cam_00
frame.0029
ai_008_004
cam_00
frame.0029
ai_009_008
cam_00
frame.0064
ai_006_006
cam_00
frame.0082
ai_009_004
cam_00
frame.0023
ai_001_002
cam_00
frame.0092
ai_016_005
cam_00
frame.0037
ai_012_009
cam_00
frame.0053
ai_008_003
cam_01
frame.0023
End of preview. Expand in Data Studio

Hypersim Minimal (RGB + Semantic Mapped)

This dataset is a minimal extraction from Hypersim:

  • RGB: preview (either preview JPGs or HDR color.hdf5 tonemapped to PNG)
  • Semantic labels: mapped to uint8 PNG using clip40to39

Columns

  • image — RGB image
  • mask — segmentation mask (uint8)
  • scene, camera, frame — identifiers

Splits

  • train
  • validation (ratio: 0.1)

Note: You are responsible for complying with the original Hypersim license/terms.

Downloads last month
13