Datasets:
The dataset viewer is not available for this subset.
Exception: SplitsNotFoundError
Message: The split names could not be parsed from the dataset config.
Traceback: Traceback (most recent call last):
File "/usr/local/lib/python3.12/site-packages/datasets/inspect.py", line 289, in get_dataset_config_info
for split_generator in builder._split_generators(
^^^^^^^^^^^^^^^^^^^^^^^^^^
File "/usr/local/lib/python3.12/site-packages/datasets/packaged_modules/webdataset/webdataset.py", line 81, in _split_generators
first_examples = list(islice(pipeline, self.NUM_EXAMPLES_FOR_FEATURES_INFERENCE))
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
File "/usr/local/lib/python3.12/site-packages/datasets/packaged_modules/webdataset/webdataset.py", line 47, in _get_pipeline_from_tar
extracted_file_path = streaming_download_manager.extract(f"memory://{filename}")
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
File "/usr/local/lib/python3.12/site-packages/datasets/download/streaming_download_manager.py", line 121, in extract
urlpaths = map_nested(self._extract, url_or_urls, map_tuple=True)
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
File "/usr/local/lib/python3.12/site-packages/datasets/utils/py_utils.py", line 493, in map_nested
mapped = function(data_struct)
^^^^^^^^^^^^^^^^^^^^^
File "/usr/local/lib/python3.12/site-packages/datasets/download/streaming_download_manager.py", line 131, in _extract
raise NotImplementedError(
NotImplementedError: Extraction protocol for TAR archives like 'memory://LucaGroup-LucaVirus-OpenVirus-Prot/dataset.tar.gz' is not implemented in streaming mode. Please use `dl_manager.iter_archive` instead.
Example usage:
url = dl_manager.download(url)
tar_archive_iterator = dl_manager.iter_archive(url)
for filename, file in tar_archive_iterator:
...
The above exception was the direct cause of the following exception:
Traceback (most recent call last):
File "/src/services/worker/src/worker/job_runners/config/split_names.py", line 65, in compute_split_names_from_streaming_response
for split in get_dataset_split_names(
^^^^^^^^^^^^^^^^^^^^^^^^
File "/usr/local/lib/python3.12/site-packages/datasets/inspect.py", line 343, in get_dataset_split_names
info = get_dataset_config_info(
^^^^^^^^^^^^^^^^^^^^^^^^
File "/usr/local/lib/python3.12/site-packages/datasets/inspect.py", line 294, in get_dataset_config_info
raise SplitsNotFoundError("The split names could not be parsed from the dataset config.") from err
datasets.inspect.SplitsNotFoundError: The split names could not be parsed from the dataset config.Need help to make the dataset viewer work? Make sure to review how to configure the dataset viewer, and open a discussion for direct support.
Dataset Card for LucaVirus-OpenVirus-Prot
1. Dataset Summary
LucaVirus-OpenVirus-Prot is a large-scale proteomics dataset consisting exclusively of viral protein sequences. It is a specialized subset of the OpenVirus corpus, specifically curated for the pre-training of the LucaVirus-Prot (or LucaVirus-Protein) foundation model.
This dataset provides a comprehensive representation of the viral proteosphere, comprising 5.2 million protein sequences. It is designed to enable biological models to learn the "language of proteins," capturing structural motifs, functional domains, and evolutionary signatures across a vast array of viral families.
2. Dataset Statistics
The dataset focuses strictly on amino acid sequences:
| Feature | Count / Description |
|---|---|
| Total Sequences | 5.2 Million |
| Sequence Type | Protein (Amino Acids) |
obj_type Identifier |
prot (Exclusive) |
| Primary Use | Pre-training for LucaVirus-Prot |
3. Data Structure & Format
3.1 File Organization
The dataset is distributed as a compressed .tar archive. Upon extraction, the data is partitioned into three standard machine-learning subsets:
LucaVirus-OpenVirus-Prot/dataset/v1.0/
├── train/ # Training set (primary corpus for protein pre-training)
├── dev/ # Validation set (for model selection and tuning)
└── test/ # Test set (for final evaluation and benchmarking)
Each directory (train, dev, test) contains one or more CSV files with headers.
3.2 CSV Schema
All CSV files follow a consistent four-column schema:
| Column Name | Description | Details |
|---|---|---|
obj_id |
Sample ID | Unique identifier for each protein sequence. |
obj_type |
Sequence Type | Set to prot for all entries in this dataset. |
obj_seq |
Sequence Content | Raw amino acid string (standard IUPAC codes). |
obj_label |
Annotations | Metadata, taxonomic info, or functional labels associated with the protein (Annotation, Bio Knowledge) |
4. Intended Use
- Protein Foundation Modeling: Building models like LucaVirus-Prot that specialize in understanding protein sequences and their biophysical properties.
- Functional Annotation: Developing tools to predict viral protein functions, domains, and active sites.
- Virus-Host Interaction: Studying how viral proteins interact with host cellular machinery based on sequence patterns.
5. Usage Example
You can extract the archive and load the protein data using the following Python snippet:
import tarfile
import pandas as pd
import os
# 1. Extract the protein dataset
with tarfile.open("LucaVirus-OpenVirus-Prot.tar.gz", "r:gz") as tar:
tar.extractall(path="./LucaVirus-OpenVirus-Prot")
with tarfile.open("LucaVirus-OpenVirus-Prot/dataset.tar.gz", "r:gz") as tar:
tar.extractall(path="./LucaVirus-OpenVirus-Prot/dataset")
# 2. Load a sample from the training set
train_path = "./LucaVirus-OpenVirus-Prot/dataset/v1.0/train"
csv_files = [f for f in os.listdir(train_path) if f.endswith('.csv')]
if csv_files:
# Load the first CSV file
df = pd.read_csv(os.path.join(train_path, csv_files[0]))
# Verify the sequence type
print(f"Loaded {len(df)} protein sequences.")
print(df[['obj_id', 'obj_seq', 'obj_label']].head())
6. Related Resources
This dataset is a core component of the LucaGroup biological modeling ecosystem.
- Full Corpus (Gene + Prot): LucaVirus-OpenVirus-Gene-Prot
- Genomic Subset: LucaVirus-OpenVirus-Gene
- Models: Visit the LucaVirus Collection.
7. Citation
If you use this dataset in your research, please cite:
@article{lucavirus2025,
title={Predicting the Evolutionary and Functional Landscapes of Viruses with a Unified Nucleotide-Protein Language Model: LucaVirus.},
author={Pan, Yuan-Fei* and He, Yong*. et al.},
journal={bioRxiv},
year={2025},
url={https://www.biorxiv.org/content/early/2025/06/20/2025.06.14.659722}
}
8. License
This dataset is released under the MIT License.
9. Contact
For further information, please visit the LucaGroup GitHub, email to: [YongHe: [email protected], [email protected]], or contact the team via the Hugging Face organization profile.
- Downloads last month
- 19