Dataset Viewer
The dataset viewer is not available for this subset.
Cannot get the split names for the config 'default' of the dataset.
Exception:    SplitsNotFoundError
Message:      The split names could not be parsed from the dataset config.
Traceback:    Traceback (most recent call last):
                File "/usr/local/lib/python3.12/site-packages/datasets/inspect.py", line 289, in get_dataset_config_info
                  for split_generator in builder._split_generators(
                                         ^^^^^^^^^^^^^^^^^^^^^^^^^^
                File "/usr/local/lib/python3.12/site-packages/datasets/packaged_modules/webdataset/webdataset.py", line 81, in _split_generators
                  first_examples = list(islice(pipeline, self.NUM_EXAMPLES_FOR_FEATURES_INFERENCE))
                                   ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
                File "/usr/local/lib/python3.12/site-packages/datasets/packaged_modules/webdataset/webdataset.py", line 47, in _get_pipeline_from_tar
                  extracted_file_path = streaming_download_manager.extract(f"memory://{filename}")
                                        ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
                File "/usr/local/lib/python3.12/site-packages/datasets/download/streaming_download_manager.py", line 121, in extract
                  urlpaths = map_nested(self._extract, url_or_urls, map_tuple=True)
                             ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
                File "/usr/local/lib/python3.12/site-packages/datasets/utils/py_utils.py", line 493, in map_nested
                  mapped = function(data_struct)
                           ^^^^^^^^^^^^^^^^^^^^^
                File "/usr/local/lib/python3.12/site-packages/datasets/download/streaming_download_manager.py", line 131, in _extract
                  raise NotImplementedError(
              NotImplementedError: Extraction protocol for TAR archives like 'memory://LucaGroup-LucaVirus-OpenVirus-Prot/dataset.tar.gz' is not implemented in streaming mode. Please use `dl_manager.iter_archive` instead.
              
              Example usage:
              
              	url = dl_manager.download(url)
              	tar_archive_iterator = dl_manager.iter_archive(url)
              
              	for filename, file in tar_archive_iterator:
              		...
              
              The above exception was the direct cause of the following exception:
              
              Traceback (most recent call last):
                File "/src/services/worker/src/worker/job_runners/config/split_names.py", line 65, in compute_split_names_from_streaming_response
                  for split in get_dataset_split_names(
                               ^^^^^^^^^^^^^^^^^^^^^^^^
                File "/usr/local/lib/python3.12/site-packages/datasets/inspect.py", line 343, in get_dataset_split_names
                  info = get_dataset_config_info(
                         ^^^^^^^^^^^^^^^^^^^^^^^^
                File "/usr/local/lib/python3.12/site-packages/datasets/inspect.py", line 294, in get_dataset_config_info
                  raise SplitsNotFoundError("The split names could not be parsed from the dataset config.") from err
              datasets.inspect.SplitsNotFoundError: The split names could not be parsed from the dataset config.

Need help to make the dataset viewer work? Make sure to review how to configure the dataset viewer, and open a discussion for direct support.

Dataset Card for LucaVirus-OpenVirus-Prot

1. Dataset Summary

LucaVirus-OpenVirus-Prot is a large-scale proteomics dataset consisting exclusively of viral protein sequences. It is a specialized subset of the OpenVirus corpus, specifically curated for the pre-training of the LucaVirus-Prot (or LucaVirus-Protein) foundation model.

This dataset provides a comprehensive representation of the viral proteosphere, comprising 5.2 million protein sequences. It is designed to enable biological models to learn the "language of proteins," capturing structural motifs, functional domains, and evolutionary signatures across a vast array of viral families.

2. Dataset Statistics

The dataset focuses strictly on amino acid sequences:

Feature Count / Description
Total Sequences 5.2 Million
Sequence Type Protein (Amino Acids)
obj_type Identifier prot (Exclusive)
Primary Use Pre-training for LucaVirus-Prot

3. Data Structure & Format

3.1 File Organization

The dataset is distributed as a compressed .tar archive. Upon extraction, the data is partitioned into three standard machine-learning subsets:

LucaVirus-OpenVirus-Prot/dataset/v1.0/
├── train/          # Training set (primary corpus for protein pre-training)
├── dev/            # Validation set (for model selection and tuning)
└── test/           # Test set (for final evaluation and benchmarking)

Each directory (train, dev, test) contains one or more CSV files with headers.

3.2 CSV Schema

All CSV files follow a consistent four-column schema:

Column Name Description Details
obj_id Sample ID Unique identifier for each protein sequence.
obj_type Sequence Type Set to prot for all entries in this dataset.
obj_seq Sequence Content Raw amino acid string (standard IUPAC codes).
obj_label Annotations Metadata, taxonomic info, or functional labels associated with the protein (Annotation, Bio Knowledge)

4. Intended Use

  • Protein Foundation Modeling: Building models like LucaVirus-Prot that specialize in understanding protein sequences and their biophysical properties.
  • Functional Annotation: Developing tools to predict viral protein functions, domains, and active sites.
  • Virus-Host Interaction: Studying how viral proteins interact with host cellular machinery based on sequence patterns.

5. Usage Example

You can extract the archive and load the protein data using the following Python snippet:

import tarfile
import pandas as pd
import os

# 1. Extract the protein dataset
with tarfile.open("LucaVirus-OpenVirus-Prot.tar.gz", "r:gz") as tar:
    tar.extractall(path="./LucaVirus-OpenVirus-Prot")

with tarfile.open("LucaVirus-OpenVirus-Prot/dataset.tar.gz", "r:gz") as tar:
    tar.extractall(path="./LucaVirus-OpenVirus-Prot/dataset")

# 2. Load a sample from the training set
train_path = "./LucaVirus-OpenVirus-Prot/dataset/v1.0/train"
csv_files = [f for f in os.listdir(train_path) if f.endswith('.csv')]

if csv_files:
    # Load the first CSV file
    df = pd.read_csv(os.path.join(train_path, csv_files[0]))
    
    # Verify the sequence type
    print(f"Loaded {len(df)} protein sequences.")
    print(df[['obj_id', 'obj_seq', 'obj_label']].head())

6. Related Resources

This dataset is a core component of the LucaGroup biological modeling ecosystem.

7. Citation

If you use this dataset in your research, please cite:

@article{lucavirus2025,
  title={Predicting the Evolutionary and Functional Landscapes of Viruses with a Unified Nucleotide-Protein Language Model: LucaVirus.},
  author={Pan, Yuan-Fei* and He, Yong*. et al.},
  journal={bioRxiv},
  year={2025},
  url={https://www.biorxiv.org/content/early/2025/06/20/2025.06.14.659722}
}

8. License

This dataset is released under the MIT License.

9. Contact

For further information, please visit the LucaGroup GitHub, email to: [YongHe: [email protected], [email protected]], or contact the team via the Hugging Face organization profile.

Downloads last month
19