Datasets:
Dataset Preview
The full dataset viewer is not available (click to read why). Only showing a preview of the rows.
The information about the size of the dataset is not coherent.
Error code: UnexpectedError
Need help to make the dataset viewer work? Make sure to review how to configure the dataset viewer, and open a discussion for direct support.
movie_id
int64 | scene_index
int64 | bert_median_surprisal
float64 | bert_var_surprisal
float64 | bert_q10_surprisal
float64 | bert_q25_surprisal
float64 | bert_perplexity
float64 | bert_total_surprisal
float64 | bert_mean_log_prob
float64 | bert_skewness
float64 | bert_kurtosis
float64 | bert_num_words
float64 | bert_subword_rate
float64 | bert_first_quarter_mean
float64 | bert_last_quarter_mean
float64 | bert_position_diff
float64 | bert_high_surprisal_ratio
float64 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
|
0
| 1
| 0.645364
| 6.142889
| 0.000871
| 0.011924
| 6.498902
| 239.569052
| -1.871633
| 1.455728
| 1.861981
| 128
| 1.078125
| 3.188031
| 1.812375
| -1.375656
| 0.203125
|
0
| 2
| 0.870584
| 6.240049
| 0.005687
| 0.068247
| 6.992933
| 225.608415
| -1.9449
| 1.478007
| 1.722796
| 116
| 1.077586
| 1.622455
| 1.60701
| -0.015445
| 0.189655
|
0
| 3
| 0.485983
| 8.080882
| 0.001532
| 0.044246
| 8.684715
| 192.379249
| -2.161565
| 1.300309
| 0.531261
| 89
| 1.11236
| 2.196133
| 2.182955
| -0.013178
| 0.157303
|
0
| 4
| 0.435499
| 8.661271
| 0.000613
| 0.016061
| 5.972065
| 230.534972
| -1.787093
| 2.583949
| 7.692843
| 129
| 1.116279
| 2.499634
| 2.530762
| 0.031128
| 0.124031
|
0
| 5
| 0.521632
| 8.934757
| 0.005993
| 0.097018
| 8.390773
| 157.407815
| -2.127133
| 1.839857
| 3.267094
| 74
| 1.108108
| 3.342656
| 1.684434
| -1.658223
| 0.135135
|
0
| 6
| 1.301446
| 7.093069
| 0.002785
| 0.038182
| 8.951849
| 135.895327
| -2.19186
| 1.605262
| 2.554746
| 62
| 1.080645
| 3.149242
| 1.913647
| -1.235595
| 0.16129
|
0
| 7
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
|
0
| 8
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
|
0
| 9
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
|
0
| 10
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
|
0
| 11
| 0.288615
| 8.454793
| 0.000126
| 0.008995
| 5.187442
| 327.601884
| -1.646241
| 2.471252
| 6.120129
| 199
| 1.050251
| 2.941339
| 1.348174
| -1.593165
| 0.110553
|
0
| 12
| 4.330627
| 28.153871
| 0.290191
| 1.337297
| 547.058965
| 75.654679
| -6.304557
| 0.341671
| -1.4605
| 12
| 1.083333
| 5.863097
| 8.6245
| 2.761402
| 0.25
|
0
| 13
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
|
0
| 14
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
|
0
| 15
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
|
0
| 16
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
|
0
| 17
| 0.40798
| 10.81196
| 0.004692
| 0.025161
| 9.167517
| 77.548327
| -2.215666
| 1.733974
| 2.106387
| 35
| 1
| 2.070666
| 0.603727
| -1.466939
| 0.142857
|
0
| 18
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
|
0
| 19
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
|
0
| 20
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
|
0
| 21
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
|
0
| 22
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
|
0
| 23
| 1.715126
| 10.937194
| 0.00176
| 0.223614
| 18.354161
| 84.385833
| -2.909856
| 0.963719
| -0.49239
| 29
| 1.034483
| 4.132376
| 0.170747
| -3.961629
| 0.172414
|
0
| 24
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
|
0
| 25
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
|
0
| 26
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
|
0
| 27
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
|
0
| 28
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
|
0
| 29
| 0.645199
| 10.150212
| 0.001219
| 0.034324
| 9.00834
| 147.276108
| -2.198151
| 1.71419
| 1.887997
| 67
| 1
| 4.683082
| 1.856033
| -2.827049
| 0.149254
|
0
| 30
| 0.25878
| 7.391507
| 0.001252
| 0.007373
| 4.415596
| 255.444547
| -1.485143
| 2.946574
| 10.006745
| 172
| 1.011628
| 2.274134
| 1.186305
| -1.087829
| 0.110465
|
0
| 31
| 0.325885
| 8.223738
| 0.001021
| 0.031938
| 6.089089
| 146.326377
| -1.806498
| 2.022106
| 3.433129
| 81
| 1
| 3.990218
| 1.160704
| -2.829514
| 0.111111
|
0
| 32
| 0.725256
| 8.683256
| 0.005314
| 0.087008
| 9.031735
| 312.50571
| -2.200744
| 1.642217
| 2.063915
| 142
| 1.049296
| 3.148128
| 2.339156
| -0.808972
| 0.161972
|
0
| 33
| 0.318494
| 7.675837
| 0.005508
| 0.050989
| 5.998674
| 121.824614
| -1.791538
| 1.922498
| 2.945613
| 68
| 1.014706
| 1.843479
| 1.168885
| -0.674594
| 0.161765
|
0
| 34
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
|
0
| 35
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
|
0
| 36
| 3.496747
| 21.941407
| 0.306777
| 0.954709
| 78.901434
| 65.522991
| -4.368199
| 1.393037
| 1.007743
| 15
| 1.066667
| 6.130042
| 1.189598
| -4.940444
| 0.133333
|
0
| 37
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
|
0
| 38
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
|
0
| 39
| 0.219056
| 7.416947
| 0.003489
| 0.035059
| 5.394191
| 89.322099
| -1.685323
| 1.965342
| 3.35911
| 53
| 1
| 3.542634
| 0.220725
| -3.321908
| 0.169811
|
0
| 40
| 3.522624
| 10.819277
| 0.514109
| 1.157278
| 52.43528
| 47.514956
| -3.95958
| 0.808798
| -0.412961
| 12
| 1.083333
| 4.391911
| 1.600741
| -2.79117
| 0.166667
|
0
| 41
| 0.256169
| 6.827322
| 0.000082
| 0.007677
| 5.252198
| 106.153382
| -1.658647
| 1.852784
| 3.459012
| 64
| 1.03125
| 2.619178
| 0.971322
| -1.647856
| 0.1875
|
0
| 42
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
|
0
| 43
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
|
0
| 44
| 1.73071
| 10.692079
| 0.059921
| 0.822861
| 25.67976
| 81.142579
| -3.245703
| 0.8884
| -0.487766
| 25
| 1.04
| 4.833475
| 2.163731
| -2.669745
| 0.24
|
0
| 45
| 0.198109
| 10.729411
| 0.002015
| 0.021944
| 8.562877
| 137.43592
| -2.147436
| 1.704068
| 1.960086
| 64
| 1
| 4.1749
| 2.07444
| -2.10046
| 0.15625
|
0
| 46
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
|
0
| 47
| 1.770256
| 10.716013
| 0.087277
| 0.258673
| 17.665286
| 109.120856
| -2.871601
| 1.211802
| 0.570971
| 38
| 1.026316
| 6.530963
| 1.027674
| -5.503289
| 0.157895
|
0
| 48
| 0.37804
| 10.627006
| 0.004388
| 0.024267
| 7.886535
| 202.385376
| -2.065157
| 1.997995
| 3.426536
| 98
| 1.010204
| 2.52484
| 1.572684
| -0.952156
| 0.142857
|
0
| 49
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
|
0
| 50
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
|
0
| 51
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
|
0
| 52
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
|
0
| 53
| 0.074746
| 4.98713
| 0.000117
| 0.004589
| 2.867575
| 83.223885
| -1.053467
| 3.408469
| 13.96978
| 79
| 1.012658
| 1.644668
| 0.967145
| -0.677523
| 0.113924
|
0
| 54
| 2.726902
| 13.942605
| 0.010433
| 0.08992
| 51.648583
| 82.833718
| -3.944463
| 0.645597
| -0.433254
| 21
| 1.095238
| 1.807961
| 3.608134
| 1.800173
| 0.190476
|
0
| 55
| 1.034398
| 9.091174
| 0.010071
| 0.137933
| 11.340766
| 77.708922
| -2.428404
| 1.283395
| 0.623927
| 32
| 1
| 3.097945
| 1.901712
| -1.196233
| 0.1875
|
0
| 56
| 0.50777
| 7.771855
| 0.002937
| 0.033533
| 8.046049
| 189.751489
| -2.085181
| 1.450248
| 1.286248
| 91
| 1.043956
| 2.07485
| 1.890512
| -0.184337
| 0.164835
|
0
| 57
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
|
0
| 58
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
|
0
| 59
| 0.758099
| 8.225605
| 0.004221
| 0.032942
| 5.338576
| 21.774466
| -1.674959
| 2.752841
| 6.422563
| 13
| 1.076923
| 0.760061
| 0.897518
| 0.137457
| 0.076923
|
0
| 60
| 1.26043
| 11.778329
| 0.038373
| 0.438304
| 17.934161
| 43.30061
| -2.886707
| 1.351543
| 0.608245
| 15
| 1.066667
| 4.145783
| 0.361368
| -3.784416
| 0.133333
|
0
| 61
| 0.583348
| 10.945529
| 0.004513
| 0.042762
| 10.669774
| 196.495434
| -2.367415
| 1.407471
| 0.82703
| 83
| 1.060241
| 3.113923
| 1.603192
| -1.510731
| 0.216867
|
0
| 62
| 0.769875
| 15.285503
| 0.009425
| 0.0231
| 15.879007
| 74.654944
| -2.764998
| 1.69264
| 2.236624
| 27
| 1.074074
| 6.780573
| 0.543062
| -6.237511
| 0.222222
|
0
| 63
| 0.585663
| 6.653822
| 0.000901
| 0.028373
| 6.643484
| 83.320006
| -1.893636
| 1.865628
| 3.857571
| 44
| 1.022727
| 3.126896
| 1.419592
| -1.707305
| 0.113636
|
0
| 64
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
|
0
| 65
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
|
0
| 66
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
|
0
| 67
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
|
0
| 68
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
|
0
| 69
| 0.634642
| 9.702735
| 0.004958
| 0.044546
| 8.181488
| 218.594899
| -2.101874
| 1.715416
| 2.006543
| 104
| 1.067308
| 2.854904
| 1.056808
| -1.798096
| 0.163462
|
0
| 70
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
|
0
| 71
| 0.622744
| 5.384512
| 0.001589
| 0.024045
| 5.418475
| 81.111096
| -1.689814
| 1.851889
| 3.385605
| 48
| 1.020833
| 3.121723
| 1.502064
| -1.61966
| 0.166667
|
0
| 72
| 1.58278
| 12.027408
| 0.006922
| 0.152874
| 14.845914
| 113.304436
| -2.697725
| 1.897049
| 3.137362
| 42
| 1
| 5.900823
| 1.872933
| -4.02789
| 0.119048
|
0
| 73
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
|
0
| 74
| 0.123542
| 4.161056
| 0.000394
| 0.004794
| 2.579981
| 53.075787
| -0.947782
| 3.718611
| 16.063778
| 56
| 1
| 1.362565
| 0.542911
| -0.819653
| 0.089286
|
0
| 75
| 0.296536
| 10.075163
| 0.002716
| 0.022484
| 6.863657
| 219.591402
| -1.92624
| 2.055831
| 3.92061
| 114
| 1.017544
| 2.143587
| 2.508081
| 0.364494
| 0.166667
|
0
| 76
| 4.251245
| 28.295525
| 1.029113
| 1.538307
| 183.751275
| 57.349414
| -5.213583
| 1.543751
| 1.337062
| 11
| 1.181818
| 1.412589
| 10.074215
| 8.661626
| 0.181818
|
0
| 77
| 0.648973
| 8.198225
| 0.003255
| 0.075829
| 8.73467
| 238.40302
| -2.1673
| 1.789685
| 3.480985
| 110
| 1.036364
| 2.88311
| 1.445042
| -1.438067
| 0.145455
|
0
| 78
| 0.660287
| 10.614965
| 0.057693
| 0.197006
| 8.735743
| 65.02269
| -2.167423
| 2.214072
| 4.959438
| 30
| 1.033333
| 5.180751
| 1.26451
| -3.916241
| 0.166667
|
0
| 79
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
|
0
| 80
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
|
0
| 81
| 0.157583
| 4.829057
| 0.000212
| 0.002954
| 3.417407
| 253.149723
| -1.228882
| 2.638526
| 8.033627
| 206
| 1.029126
| 1.612445
| 0.930656
| -0.681789
| 0.126214
|
0
| 82
| 0.932697
| 9.629617
| 0.002601
| 0.014898
| 11.976582
| 163.874914
| -2.482953
| 1.269312
| 0.670812
| 66
| 1.015152
| 3.056334
| 1.915947
| -1.140387
| 0.166667
|
0
| 83
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
|
0
| 84
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
|
0
| 85
| 1.26791
| 10.933776
| 0.064051
| 0.517417
| 17.946927
| 57.748379
| -2.887419
| 1.264936
| 0.821059
| 20
| 1.05
| 2.775927
| 1.422791
| -1.353136
| 0.2
|
0
| 86
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
|
0
| 87
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
|
1
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
|
1
| 1
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
|
1
| 2
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
|
1
| 3
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
|
1
| 4
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
|
1
| 5
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
|
1
| 6
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
|
1
| 7
| 0.094327
| 4.274134
| 0.000582
| 0.012658
| 2.84658
| 78.458867
| -1.046118
| 2.979421
| 9.734584
| 75
| 1.093333
| 0.570474
| 0.531703
| -0.038771
| 0.12
|
1
| 8
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
|
1
| 9
| 0.144544
| 6.042348
| 0.000209
| 0.003566
| 3.362689
| 104.295728
| -1.212741
| 2.91209
| 8.376892
| 86
| 1.116279
| 1.541079
| 1.878357
| 0.337277
| 0.116279
|
1
| 10
| 0.68321
| 8.965084
| 0.000236
| 0.011364
| 10.44463
| 68.036552
| -2.346088
| 1.225551
| 0.617977
| 29
| 1.068966
| 2.39987
| 3.259369
| 0.859499
| 0.137931
|
1
| 11
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
|
End of preview.
Screenplay Scene Salience Features
Pre-extracted linguistic and narrative features for screenplay scene salience detection from the MENSA dataset.
Dataset Description
This dataset contains 913 linguistic features extracted from movie screenplays in the MENSA dataset. Features are organized into 24 feature groups covering various aspects of linguistic, narrative, and discourse analysis.
Dataset Statistics
| Split | Samples | Size |
|---|---|---|
| Train | 117,503 | 172.9 MB |
| Validation | 8,052 | 16.1 MB |
| Test | 8,156 | 16.1 MB |
| Total | 133,711 | 140.1 MB |
Feature Groups (24 groups)
basebert_surprisalcharacter_arcsemotionalgc_academicgc_basicgc_char_diversitygc_concretenessgc_dialoguegc_discoursegc_narrativegc_polaritygc_posgc_pronounsgc_punctuationgc_readabilitygc_syntaxgc_temporalngramngram_surprisalplot_shiftsrststructuresurprisal
Usage
Option 1: Load with Hugging Face datasets (Recommended)
from datasets import load_dataset
# Load a single feature group
ds = load_dataset("Ishaank18/screenplay-features", data_files="train/base.parquet")
df = ds['train'].to_pandas()
# Load multiple groups for training
ds = load_dataset("Ishaank18/screenplay-features",
data_files={
"train": ["train/base.parquet", "train/gc_polarity.parquet", "train/emotional.parquet"]
})
df = ds['train'].to_pandas()
# Load all splits for evaluation
ds = load_dataset("Ishaank18/screenplay-features",
data_files={
"train": "train/gc_polarity.parquet",
"validation": "validation/gc_polarity.parquet",
"test": "test/gc_polarity.parquet"
})
Option 2: Load with pandas directly
import pandas as pd
# From HuggingFace URL
df = pd.read_parquet("hf://datasets/Ishaank18/screenplay-features/train/base.parquet")
# Or if you have the repo cloned locally
df = pd.read_parquet("train/base.parquet")
Option 3: Use custom loader (Easiest)
from feature_cache.load_hf import load_groups
# Load features and labels
X, y = load_groups(
groups=["base", "gc_polarity", "emotional", "rst"],
split="train",
hf_repo="Ishaank18/screenplay-features"
)
# Load features only (no labels)
X = load_groups(
groups=["base", "gc_polarity"],
split="test",
include_label=False,
hf_repo="Ishaank18/screenplay-features"
)
Data Structure
Each parquet file contains:
movie_id(string): Unique movie identifierscene_index(int): Scene index within the movie (0-indexed)label(int): Salience label0= Non-salient scene1= Salient scene
- Feature columns: Various linguistic/narrative features (float/int)
Example row structure:
| movie_id | scene_index | label | feature_1 | feature_2 | ... |
|---|---|---|---|---|---|
| tt0111161 | 42 | 1 | 0.85 | 12.3 | ... |
Feature Categories
The features are organized into the following categories:
Base Features
- Basic linguistic statistics (token count, sentence count, etc.)
- Structural position features (act, scene positions)
GenreClassifier (GC) Features
- gc_basic: Basic linguistic metrics
- gc_char_diversity: Character diversity metrics
- gc_concreteness: Concreteness scores
- gc_dialogue: Dialogue-specific features
- gc_discourse: Discourse markers and connectives
- gc_narrative: Narrative structure features
- gc_polarity: Sentiment polarity scores
- gc_pos: Part-of-speech distributions
- gc_pronouns: Pronoun usage patterns
- gc_punctuation: Punctuation statistics
- gc_readability: Readability metrics
- gc_syntax: Syntactic complexity features
- gc_temporal: Temporal expressions
Narrative Features
- character_arcs: Character development metrics
- plot_shifts: Plot progression indicators
- structure: Narrative structure features
- emotional: Emotional arc features
Linguistic Features
- ngram: N-gram diversity metrics
- rst: Rhetorical Structure Theory features
- bert_surprisal: BERT-based surprisal scores
- ngram_surprisal: N-gram-based surprisal
- Downloads last month
- 340