Dataset Preview
Duplicate
The full dataset viewer is not available (click to read why). Only showing a preview of the rows.
The information about the size of the dataset is not coherent.
Error code:   UnexpectedError

Need help to make the dataset viewer work? Make sure to review how to configure the dataset viewer, and open a discussion for direct support.

movie_id
int64
scene_index
int64
bert_median_surprisal
float64
bert_var_surprisal
float64
bert_q10_surprisal
float64
bert_q25_surprisal
float64
bert_perplexity
float64
bert_total_surprisal
float64
bert_mean_log_prob
float64
bert_skewness
float64
bert_kurtosis
float64
bert_num_words
float64
bert_subword_rate
float64
bert_first_quarter_mean
float64
bert_last_quarter_mean
float64
bert_position_diff
float64
bert_high_surprisal_ratio
float64
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
0.645364
6.142889
0.000871
0.011924
6.498902
239.569052
-1.871633
1.455728
1.861981
128
1.078125
3.188031
1.812375
-1.375656
0.203125
0
2
0.870584
6.240049
0.005687
0.068247
6.992933
225.608415
-1.9449
1.478007
1.722796
116
1.077586
1.622455
1.60701
-0.015445
0.189655
0
3
0.485983
8.080882
0.001532
0.044246
8.684715
192.379249
-2.161565
1.300309
0.531261
89
1.11236
2.196133
2.182955
-0.013178
0.157303
0
4
0.435499
8.661271
0.000613
0.016061
5.972065
230.534972
-1.787093
2.583949
7.692843
129
1.116279
2.499634
2.530762
0.031128
0.124031
0
5
0.521632
8.934757
0.005993
0.097018
8.390773
157.407815
-2.127133
1.839857
3.267094
74
1.108108
3.342656
1.684434
-1.658223
0.135135
0
6
1.301446
7.093069
0.002785
0.038182
8.951849
135.895327
-2.19186
1.605262
2.554746
62
1.080645
3.149242
1.913647
-1.235595
0.16129
0
7
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
8
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
9
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
10
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
11
0.288615
8.454793
0.000126
0.008995
5.187442
327.601884
-1.646241
2.471252
6.120129
199
1.050251
2.941339
1.348174
-1.593165
0.110553
0
12
4.330627
28.153871
0.290191
1.337297
547.058965
75.654679
-6.304557
0.341671
-1.4605
12
1.083333
5.863097
8.6245
2.761402
0.25
0
13
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
14
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
15
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
16
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
17
0.40798
10.81196
0.004692
0.025161
9.167517
77.548327
-2.215666
1.733974
2.106387
35
1
2.070666
0.603727
-1.466939
0.142857
0
18
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
19
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
20
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
21
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
22
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
23
1.715126
10.937194
0.00176
0.223614
18.354161
84.385833
-2.909856
0.963719
-0.49239
29
1.034483
4.132376
0.170747
-3.961629
0.172414
0
24
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
25
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
26
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
27
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
28
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
29
0.645199
10.150212
0.001219
0.034324
9.00834
147.276108
-2.198151
1.71419
1.887997
67
1
4.683082
1.856033
-2.827049
0.149254
0
30
0.25878
7.391507
0.001252
0.007373
4.415596
255.444547
-1.485143
2.946574
10.006745
172
1.011628
2.274134
1.186305
-1.087829
0.110465
0
31
0.325885
8.223738
0.001021
0.031938
6.089089
146.326377
-1.806498
2.022106
3.433129
81
1
3.990218
1.160704
-2.829514
0.111111
0
32
0.725256
8.683256
0.005314
0.087008
9.031735
312.50571
-2.200744
1.642217
2.063915
142
1.049296
3.148128
2.339156
-0.808972
0.161972
0
33
0.318494
7.675837
0.005508
0.050989
5.998674
121.824614
-1.791538
1.922498
2.945613
68
1.014706
1.843479
1.168885
-0.674594
0.161765
0
34
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
35
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
36
3.496747
21.941407
0.306777
0.954709
78.901434
65.522991
-4.368199
1.393037
1.007743
15
1.066667
6.130042
1.189598
-4.940444
0.133333
0
37
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
38
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
39
0.219056
7.416947
0.003489
0.035059
5.394191
89.322099
-1.685323
1.965342
3.35911
53
1
3.542634
0.220725
-3.321908
0.169811
0
40
3.522624
10.819277
0.514109
1.157278
52.43528
47.514956
-3.95958
0.808798
-0.412961
12
1.083333
4.391911
1.600741
-2.79117
0.166667
0
41
0.256169
6.827322
0.000082
0.007677
5.252198
106.153382
-1.658647
1.852784
3.459012
64
1.03125
2.619178
0.971322
-1.647856
0.1875
0
42
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
43
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
44
1.73071
10.692079
0.059921
0.822861
25.67976
81.142579
-3.245703
0.8884
-0.487766
25
1.04
4.833475
2.163731
-2.669745
0.24
0
45
0.198109
10.729411
0.002015
0.021944
8.562877
137.43592
-2.147436
1.704068
1.960086
64
1
4.1749
2.07444
-2.10046
0.15625
0
46
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
47
1.770256
10.716013
0.087277
0.258673
17.665286
109.120856
-2.871601
1.211802
0.570971
38
1.026316
6.530963
1.027674
-5.503289
0.157895
0
48
0.37804
10.627006
0.004388
0.024267
7.886535
202.385376
-2.065157
1.997995
3.426536
98
1.010204
2.52484
1.572684
-0.952156
0.142857
0
49
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
50
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
51
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
52
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
53
0.074746
4.98713
0.000117
0.004589
2.867575
83.223885
-1.053467
3.408469
13.96978
79
1.012658
1.644668
0.967145
-0.677523
0.113924
0
54
2.726902
13.942605
0.010433
0.08992
51.648583
82.833718
-3.944463
0.645597
-0.433254
21
1.095238
1.807961
3.608134
1.800173
0.190476
0
55
1.034398
9.091174
0.010071
0.137933
11.340766
77.708922
-2.428404
1.283395
0.623927
32
1
3.097945
1.901712
-1.196233
0.1875
0
56
0.50777
7.771855
0.002937
0.033533
8.046049
189.751489
-2.085181
1.450248
1.286248
91
1.043956
2.07485
1.890512
-0.184337
0.164835
0
57
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
58
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
59
0.758099
8.225605
0.004221
0.032942
5.338576
21.774466
-1.674959
2.752841
6.422563
13
1.076923
0.760061
0.897518
0.137457
0.076923
0
60
1.26043
11.778329
0.038373
0.438304
17.934161
43.30061
-2.886707
1.351543
0.608245
15
1.066667
4.145783
0.361368
-3.784416
0.133333
0
61
0.583348
10.945529
0.004513
0.042762
10.669774
196.495434
-2.367415
1.407471
0.82703
83
1.060241
3.113923
1.603192
-1.510731
0.216867
0
62
0.769875
15.285503
0.009425
0.0231
15.879007
74.654944
-2.764998
1.69264
2.236624
27
1.074074
6.780573
0.543062
-6.237511
0.222222
0
63
0.585663
6.653822
0.000901
0.028373
6.643484
83.320006
-1.893636
1.865628
3.857571
44
1.022727
3.126896
1.419592
-1.707305
0.113636
0
64
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
65
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
66
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
67
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
68
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
69
0.634642
9.702735
0.004958
0.044546
8.181488
218.594899
-2.101874
1.715416
2.006543
104
1.067308
2.854904
1.056808
-1.798096
0.163462
0
70
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
71
0.622744
5.384512
0.001589
0.024045
5.418475
81.111096
-1.689814
1.851889
3.385605
48
1.020833
3.121723
1.502064
-1.61966
0.166667
0
72
1.58278
12.027408
0.006922
0.152874
14.845914
113.304436
-2.697725
1.897049
3.137362
42
1
5.900823
1.872933
-4.02789
0.119048
0
73
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
74
0.123542
4.161056
0.000394
0.004794
2.579981
53.075787
-0.947782
3.718611
16.063778
56
1
1.362565
0.542911
-0.819653
0.089286
0
75
0.296536
10.075163
0.002716
0.022484
6.863657
219.591402
-1.92624
2.055831
3.92061
114
1.017544
2.143587
2.508081
0.364494
0.166667
0
76
4.251245
28.295525
1.029113
1.538307
183.751275
57.349414
-5.213583
1.543751
1.337062
11
1.181818
1.412589
10.074215
8.661626
0.181818
0
77
0.648973
8.198225
0.003255
0.075829
8.73467
238.40302
-2.1673
1.789685
3.480985
110
1.036364
2.88311
1.445042
-1.438067
0.145455
0
78
0.660287
10.614965
0.057693
0.197006
8.735743
65.02269
-2.167423
2.214072
4.959438
30
1.033333
5.180751
1.26451
-3.916241
0.166667
0
79
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
80
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
81
0.157583
4.829057
0.000212
0.002954
3.417407
253.149723
-1.228882
2.638526
8.033627
206
1.029126
1.612445
0.930656
-0.681789
0.126214
0
82
0.932697
9.629617
0.002601
0.014898
11.976582
163.874914
-2.482953
1.269312
0.670812
66
1.015152
3.056334
1.915947
-1.140387
0.166667
0
83
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
84
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
85
1.26791
10.933776
0.064051
0.517417
17.946927
57.748379
-2.887419
1.264936
0.821059
20
1.05
2.775927
1.422791
-1.353136
0.2
0
86
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
87
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
2
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
3
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
4
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
5
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
6
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
7
0.094327
4.274134
0.000582
0.012658
2.84658
78.458867
-1.046118
2.979421
9.734584
75
1.093333
0.570474
0.531703
-0.038771
0.12
1
8
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
9
0.144544
6.042348
0.000209
0.003566
3.362689
104.295728
-1.212741
2.91209
8.376892
86
1.116279
1.541079
1.878357
0.337277
0.116279
1
10
0.68321
8.965084
0.000236
0.011364
10.44463
68.036552
-2.346088
1.225551
0.617977
29
1.068966
2.39987
3.259369
0.859499
0.137931
1
11
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
End of preview.

Screenplay Scene Salience Features

Pre-extracted linguistic and narrative features for screenplay scene salience detection from the MENSA dataset.

Dataset Description

This dataset contains 913 linguistic features extracted from movie screenplays in the MENSA dataset. Features are organized into 24 feature groups covering various aspects of linguistic, narrative, and discourse analysis.

Dataset Statistics

Split Samples Size
Train 117,503 172.9 MB
Validation 8,052 16.1 MB
Test 8,156 16.1 MB
Total 133,711 140.1 MB

Feature Groups (24 groups)

  • base
  • bert_surprisal
  • character_arcs
  • emotional
  • gc_academic
  • gc_basic
  • gc_char_diversity
  • gc_concreteness
  • gc_dialogue
  • gc_discourse
  • gc_narrative
  • gc_polarity
  • gc_pos
  • gc_pronouns
  • gc_punctuation
  • gc_readability
  • gc_syntax
  • gc_temporal
  • ngram
  • ngram_surprisal
  • plot_shifts
  • rst
  • structure
  • surprisal

Usage

Option 1: Load with Hugging Face datasets (Recommended)

from datasets import load_dataset

# Load a single feature group
ds = load_dataset("Ishaank18/screenplay-features", data_files="train/base.parquet")
df = ds['train'].to_pandas()

# Load multiple groups for training
ds = load_dataset("Ishaank18/screenplay-features", 
                  data_files={
                      "train": ["train/base.parquet", "train/gc_polarity.parquet", "train/emotional.parquet"]
                  })
df = ds['train'].to_pandas()

# Load all splits for evaluation
ds = load_dataset("Ishaank18/screenplay-features",
                  data_files={
                      "train": "train/gc_polarity.parquet",
                      "validation": "validation/gc_polarity.parquet",
                      "test": "test/gc_polarity.parquet"
                  })

Option 2: Load with pandas directly

import pandas as pd

# From HuggingFace URL
df = pd.read_parquet("hf://datasets/Ishaank18/screenplay-features/train/base.parquet")

# Or if you have the repo cloned locally
df = pd.read_parquet("train/base.parquet")

Option 3: Use custom loader (Easiest)

from feature_cache.load_hf import load_groups

# Load features and labels
X, y = load_groups(
    groups=["base", "gc_polarity", "emotional", "rst"],
    split="train",
    hf_repo="Ishaank18/screenplay-features"
)

# Load features only (no labels)
X = load_groups(
    groups=["base", "gc_polarity"],
    split="test",
    include_label=False,
    hf_repo="Ishaank18/screenplay-features"
)

Data Structure

Each parquet file contains:

  • movie_id (string): Unique movie identifier
  • scene_index (int): Scene index within the movie (0-indexed)
  • label (int): Salience label
    • 0 = Non-salient scene
    • 1 = Salient scene
  • Feature columns: Various linguistic/narrative features (float/int)

Example row structure:

movie_id scene_index label feature_1 feature_2 ...
tt0111161 42 1 0.85 12.3 ...

Feature Categories

The features are organized into the following categories:

Base Features

  • Basic linguistic statistics (token count, sentence count, etc.)
  • Structural position features (act, scene positions)

GenreClassifier (GC) Features

  • gc_basic: Basic linguistic metrics
  • gc_char_diversity: Character diversity metrics
  • gc_concreteness: Concreteness scores
  • gc_dialogue: Dialogue-specific features
  • gc_discourse: Discourse markers and connectives
  • gc_narrative: Narrative structure features
  • gc_polarity: Sentiment polarity scores
  • gc_pos: Part-of-speech distributions
  • gc_pronouns: Pronoun usage patterns
  • gc_punctuation: Punctuation statistics
  • gc_readability: Readability metrics
  • gc_syntax: Syntactic complexity features
  • gc_temporal: Temporal expressions

Narrative Features

  • character_arcs: Character development metrics
  • plot_shifts: Plot progression indicators
  • structure: Narrative structure features
  • emotional: Emotional arc features

Linguistic Features

  • ngram: N-gram diversity metrics
  • rst: Rhetorical Structure Theory features
  • bert_surprisal: BERT-based surprisal scores
  • ngram_surprisal: N-gram-based surprisal
Downloads last month
340