irplag_graphcodebert_ep30_bs16_lr5e-05_l512_s42_ppn_loss
This model is a fine-tuned version of microsoft/graphcodebert-base on an unknown dataset. It achieves the following results on the evaluation set:
- Loss: 0.0485
- Accuracy: 0.9855
- Recall: 0.9818
- Precision: 1.0
- F1: 0.9908
- F Beta Score: 0.9873
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- num_epochs: 30
Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy | Recall | Precision | F1 | F Beta Score |
|---|---|---|---|---|---|---|---|---|
| 0.4796 | 1.0 | 21 | 0.2678 | 0.9420 | 0.9636 | 0.9636 | 0.9636 | 0.9636 |
| 0.3463 | 2.0 | 42 | 0.0603 | 0.9855 | 0.9818 | 1.0 | 0.9908 | 0.9873 |
| 0.0261 | 3.0 | 63 | 0.0485 | 0.9855 | 0.9818 | 1.0 | 0.9908 | 0.9873 |
| 0.0461 | 4.0 | 84 | 0.0505 | 0.9855 | 0.9818 | 1.0 | 0.9908 | 0.9873 |
| 0.0615 | 5.0 | 105 | 0.0539 | 0.9710 | 0.9818 | 0.9818 | 0.9818 | 0.9818 |
| 0.0425 | 6.0 | 126 | 0.0626 | 0.9710 | 0.9818 | 0.9818 | 0.9818 | 0.9818 |
Framework versions
- Transformers 4.51.3
- Pytorch 2.8.0+cu128
- Datasets 3.1.0
- Tokenizers 0.21.4
- Downloads last month
- 10
Model tree for buelfhood/irplag_graphcodebert_ep30_bs16_lr5e-05_l512_s42_ppn_loss
Base model
microsoft/graphcodebert-base