irplag_graphcodebert_ep30_bs16_lr2e-05_l512_s42_ppn_loss
This model is a fine-tuned version of microsoft/graphcodebert-base on an unknown dataset. It achieves the following results on the evaluation set:
- Loss: 0.0294
- Accuracy: 0.9855
- Recall: 0.9818
- Precision: 1.0
- F1: 0.9908
- F Beta Score: 0.9873
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- num_epochs: 30
Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy | Recall | Precision | F1 | F Beta Score |
|---|---|---|---|---|---|---|---|---|
| 0.6361 | 1.0 | 21 | 0.5084 | 0.8551 | 0.8545 | 0.9592 | 0.9038 | 0.8842 |
| 0.3178 | 2.0 | 42 | 0.1907 | 0.9420 | 0.9636 | 0.9636 | 0.9636 | 0.9636 |
| 0.1278 | 3.0 | 63 | 0.0800 | 0.9565 | 0.9455 | 1.0 | 0.9720 | 0.9616 |
| 0.1068 | 4.0 | 84 | 0.0553 | 0.9855 | 0.9818 | 1.0 | 0.9908 | 0.9873 |
| 0.0628 | 5.0 | 105 | 0.0379 | 0.9855 | 0.9818 | 1.0 | 0.9908 | 0.9873 |
| 0.0402 | 6.0 | 126 | 0.0578 | 0.9565 | 0.9455 | 1.0 | 0.9720 | 0.9616 |
| 0.0464 | 7.0 | 147 | 0.0294 | 0.9855 | 0.9818 | 1.0 | 0.9908 | 0.9873 |
| 0.0075 | 8.0 | 168 | 0.2184 | 0.9855 | 1.0 | 0.9821 | 0.9910 | 0.9944 |
| 0.0941 | 9.0 | 189 | 0.0296 | 0.9855 | 0.9818 | 1.0 | 0.9908 | 0.9873 |
| 0.0347 | 10.0 | 210 | 0.1595 | 0.9855 | 1.0 | 0.9821 | 0.9910 | 0.9944 |
Framework versions
- Transformers 4.51.3
- Pytorch 2.8.0+cu128
- Datasets 3.1.0
- Tokenizers 0.21.4
- Downloads last month
- 12
Model tree for buelfhood/irplag_graphcodebert_ep30_bs16_lr2e-05_l512_s42_ppn_loss
Base model
microsoft/graphcodebert-base