irplag_graphcodebert_ep30_bs16_lr1e-05_l512_s42_ppn_loss
This model is a fine-tuned version of microsoft/graphcodebert-base on an unknown dataset. It achieves the following results on the evaluation set:
- Loss: 0.0476
- Accuracy: 0.9710
- Recall: 0.9636
- Precision: 1.0
- F1: 0.9815
- F Beta Score: 0.9745
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- num_epochs: 30
Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy | Recall | Precision | F1 | F Beta Score |
|---|---|---|---|---|---|---|---|---|
| 0.6669 | 1.0 | 21 | 0.6282 | 0.8116 | 0.7636 | 1.0 | 0.8660 | 0.8235 |
| 0.5616 | 2.0 | 42 | 0.4538 | 0.7826 | 0.7636 | 0.9545 | 0.8485 | 0.8137 |
| 0.35 | 3.0 | 63 | 0.2366 | 0.9420 | 0.9273 | 1.0 | 0.9623 | 0.9485 |
| 0.1932 | 4.0 | 84 | 0.1208 | 0.9710 | 0.9636 | 1.0 | 0.9815 | 0.9745 |
| 0.1292 | 5.0 | 105 | 0.1733 | 0.9565 | 0.9818 | 0.9643 | 0.9730 | 0.9764 |
| 0.0714 | 6.0 | 126 | 0.0801 | 0.9565 | 0.9455 | 1.0 | 0.9720 | 0.9616 |
| 0.0792 | 7.0 | 147 | 0.0890 | 0.9565 | 0.9455 | 1.0 | 0.9720 | 0.9616 |
| 0.0668 | 8.0 | 168 | 0.0598 | 0.9710 | 0.9636 | 1.0 | 0.9815 | 0.9745 |
| 0.0706 | 9.0 | 189 | 0.0505 | 0.9710 | 0.9636 | 1.0 | 0.9815 | 0.9745 |
| 0.07 | 10.0 | 210 | 0.0728 | 0.9855 | 0.9818 | 1.0 | 0.9908 | 0.9873 |
| 0.0303 | 11.0 | 231 | 0.0476 | 0.9710 | 0.9636 | 1.0 | 0.9815 | 0.9745 |
| 0.0261 | 12.0 | 252 | 0.0715 | 0.9710 | 0.9636 | 1.0 | 0.9815 | 0.9745 |
| 0.0275 | 13.0 | 273 | 0.0524 | 0.9710 | 0.9636 | 1.0 | 0.9815 | 0.9745 |
| 0.0308 | 14.0 | 294 | 0.0676 | 0.9710 | 0.9636 | 1.0 | 0.9815 | 0.9745 |
Framework versions
- Transformers 4.51.3
- Pytorch 2.8.0+cu128
- Datasets 3.1.0
- Tokenizers 0.21.4
- Downloads last month
- 10
Model tree for buelfhood/irplag_graphcodebert_ep30_bs16_lr1e-05_l512_s42_ppn_loss
Base model
microsoft/graphcodebert-base