conplag1_graphcodebert_ep30_bs16_lr5e-05_l512_s42_ppy_loss
This model is a fine-tuned version of microsoft/graphcodebert-base on an unknown dataset. It achieves the following results on the evaluation set:
- Loss: 0.5137
- Accuracy: 0.8394
- Recall: 0.5
- Precision: 0.8636
- F1: 0.6333
- F Beta Score: 0.5744
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- num_epochs: 30
Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy | Recall | Precision | F1 | F Beta Score |
|---|---|---|---|---|---|---|---|---|
| 0.6312 | 1.0 | 40 | 0.5407 | 0.7518 | 0.6842 | 0.5417 | 0.6047 | 0.6330 |
| 0.5573 | 2.0 | 80 | 0.5137 | 0.8394 | 0.5 | 0.8636 | 0.6333 | 0.5744 |
| 0.4062 | 3.0 | 120 | 0.6449 | 0.8029 | 0.6579 | 0.6410 | 0.6494 | 0.6526 |
| 0.1957 | 4.0 | 160 | 0.7354 | 0.8759 | 0.5789 | 0.9565 | 0.7213 | 0.6590 |
| 0.1589 | 5.0 | 200 | 0.9211 | 0.8613 | 0.6316 | 0.8276 | 0.7164 | 0.6812 |
Framework versions
- Transformers 4.51.3
- Pytorch 2.8.0+cu128
- Datasets 3.1.0
- Tokenizers 0.21.4
- Downloads last month
- 14
Model tree for buelfhood/conplag1_graphcodebert_ep30_bs16_lr5e-05_l512_s42_ppy_loss
Base model
microsoft/graphcodebert-base