Multilingual base soil embedding model (quantized)
This is a sentence-transformers model finetuned from intfloat/multilingual-e5-small. It maps sentences & paragraphs to a 384-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
Model Details
Model Description
- Model Type: Sentence Transformer
- Base model: intfloat/multilingual-e5-small
- Maximum Sequence Length: 512 tokens
- Output Dimensionality: 384 tokens
- Similarity Function: Cosine Similarity
- Language: multilingual
- License: apache-2.0
Model Sources
- Documentation: Sentence Transformers Documentation
- Repository: Sentence Transformers on GitHub
- Hugging Face: Sentence Transformers on Hugging Face
Full Model Architecture
SentenceTransformer(
(0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: BertModel
(1): Pooling({'word_embedding_dimension': 384, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
(2): Normalize()
)
Usage
Direct Usage (Sentence Transformers)
First install the Sentence Transformers library:
pip install -U sentence-transformers
Then you can load this model and run inference.
from sentence_transformers import SentenceTransformer
# Download from the 🤗 Hub
model = SentenceTransformer("ValentinaKim/Multilingual-base-soil-embedding")
# Run inference
sentences = [
'U-205200',
'올레핀 송유/동력 Nitrogen Section',
'차단기, 스위치류 , 스위치',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 384]
# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]
Evaluation
Metrics
Information Retrieval
- Dataset:
dim_256 - Evaluated with
InformationRetrievalEvaluator
| Metric | Value |
|---|---|
| cosine_accuracy@1 | 0.2442 |
| cosine_accuracy@3 | 0.3101 |
| cosine_accuracy@5 | 0.3643 |
| cosine_accuracy@10 | 0.4109 |
| cosine_precision@1 | 0.2442 |
| cosine_precision@3 | 0.1034 |
| cosine_precision@5 | 0.0729 |
| cosine_precision@10 | 0.0411 |
| cosine_recall@1 | 0.2442 |
| cosine_recall@3 | 0.3101 |
| cosine_recall@5 | 0.3643 |
| cosine_recall@10 | 0.4109 |
| cosine_ndcg@10 | 0.3172 |
| cosine_mrr@10 | 0.2884 |
| cosine_map@100 | 0.3003 |
Information Retrieval
- Dataset:
dim_128 - Evaluated with
InformationRetrievalEvaluator
| Metric | Value |
|---|---|
| cosine_accuracy@1 | 0.2054 |
| cosine_accuracy@3 | 0.2829 |
| cosine_accuracy@5 | 0.3178 |
| cosine_accuracy@10 | 0.3837 |
| cosine_precision@1 | 0.2054 |
| cosine_precision@3 | 0.0943 |
| cosine_precision@5 | 0.0636 |
| cosine_precision@10 | 0.0384 |
| cosine_recall@1 | 0.2054 |
| cosine_recall@3 | 0.2829 |
| cosine_recall@5 | 0.3178 |
| cosine_recall@10 | 0.3837 |
| cosine_ndcg@10 | 0.2851 |
| cosine_mrr@10 | 0.2547 |
| cosine_map@100 | 0.2653 |
Information Retrieval
- Dataset:
dim_64 - Evaluated with
InformationRetrievalEvaluator
| Metric | Value |
|---|---|
| cosine_accuracy@1 | 0.1938 |
| cosine_accuracy@3 | 0.2713 |
| cosine_accuracy@5 | 0.2984 |
| cosine_accuracy@10 | 0.3488 |
| cosine_precision@1 | 0.1938 |
| cosine_precision@3 | 0.0904 |
| cosine_precision@5 | 0.0597 |
| cosine_precision@10 | 0.0349 |
| cosine_recall@1 | 0.1938 |
| cosine_recall@3 | 0.2713 |
| cosine_recall@5 | 0.2984 |
| cosine_recall@10 | 0.3488 |
| cosine_ndcg@10 | 0.2647 |
| cosine_mrr@10 | 0.2385 |
| cosine_map@100 | 0.2482 |
Training Details
Training Dataset
Unnamed Dataset
- Size: 2,320 training samples
- Columns:
anchorandpositive - Approximate statistics based on the first 1000 samples:
anchor positive type string string details - min: 3 tokens
- mean: 6.72 tokens
- max: 16 tokens
- min: 3 tokens
- mean: 35.77 tokens
- max: 408 tokens
- Samples:
anchor positive Deionizer탈이온장치 ; Demineralizer와 동일Sub-CC; sub-contracting
committee외주 계약의 투명성과 공정성을 확보하기 위한 Sub-계약위원회로서 위원 및 위원
장은 CEO가 임명한다. CC이원원 부문장 이상 임원으로 하고 간사는 구매관리팀
장이 한다.In-line Sampler원유 속의 물과 침전물의 함량을 측정하기 위하여 원유하역 Line에 설치해 놓은
시료채취기 - Loss:
MatryoshkaLosswith these parameters:{ "loss": "MultipleNegativesRankingLoss", "matryoshka_dims": [ 256, 128, 64 ], "matryoshka_weights": [ 1, 1, 1 ], "n_dims_per_step": -1 }
Training Hyperparameters
Non-Default Hyperparameters
eval_strategy: epochper_device_train_batch_size: 32per_device_eval_batch_size: 16gradient_accumulation_steps: 16learning_rate: 2e-05num_train_epochs: 10lr_scheduler_type: cosinewarmup_ratio: 0.1tf32: Falseoptim: adamw_torch_fusedbatch_sampler: no_duplicates
All Hyperparameters
Click to expand
overwrite_output_dir: Falsedo_predict: Falseeval_strategy: epochprediction_loss_only: Trueper_device_train_batch_size: 32per_device_eval_batch_size: 16per_gpu_train_batch_size: Noneper_gpu_eval_batch_size: Nonegradient_accumulation_steps: 16eval_accumulation_steps: Nonelearning_rate: 2e-05weight_decay: 0.0adam_beta1: 0.9adam_beta2: 0.999adam_epsilon: 1e-08max_grad_norm: 1.0num_train_epochs: 10max_steps: -1lr_scheduler_type: cosinelr_scheduler_kwargs: {}warmup_ratio: 0.1warmup_steps: 0log_level: passivelog_level_replica: warninglog_on_each_node: Truelogging_nan_inf_filter: Truesave_safetensors: Truesave_on_each_node: Falsesave_only_model: Falserestore_callback_states_from_checkpoint: Falseno_cuda: Falseuse_cpu: Falseuse_mps_device: Falseseed: 42data_seed: Nonejit_mode_eval: Falseuse_ipex: Falsebf16: Falsefp16: Falsefp16_opt_level: O1half_precision_backend: autobf16_full_eval: Falsefp16_full_eval: Falsetf32: Falselocal_rank: 0ddp_backend: Nonetpu_num_cores: Nonetpu_metrics_debug: Falsedebug: []dataloader_drop_last: Falsedataloader_num_workers: 0dataloader_prefetch_factor: Nonepast_index: -1disable_tqdm: Falseremove_unused_columns: Truelabel_names: Noneload_best_model_at_end: Falseignore_data_skip: Falsefsdp: []fsdp_min_num_params: 0fsdp_config: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}fsdp_transformer_layer_cls_to_wrap: Noneaccelerator_config: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}deepspeed: Nonelabel_smoothing_factor: 0.0optim: adamw_torch_fusedoptim_args: Noneadafactor: Falsegroup_by_length: Falselength_column_name: lengthddp_find_unused_parameters: Noneddp_bucket_cap_mb: Noneddp_broadcast_buffers: Falsedataloader_pin_memory: Truedataloader_persistent_workers: Falseskip_memory_metrics: Trueuse_legacy_prediction_loop: Falsepush_to_hub: Falseresume_from_checkpoint: Nonehub_model_id: Nonehub_strategy: every_savehub_private_repo: Falsehub_always_push: Falsegradient_checkpointing: Falsegradient_checkpointing_kwargs: Noneinclude_inputs_for_metrics: Falseeval_do_concat_batches: Truefp16_backend: autopush_to_hub_model_id: Nonepush_to_hub_organization: Nonemp_parameters:auto_find_batch_size: Falsefull_determinism: Falsetorchdynamo: Noneray_scope: lastddp_timeout: 1800torch_compile: Falsetorch_compile_backend: Nonetorch_compile_mode: Nonedispatch_batches: Nonesplit_batches: Noneinclude_tokens_per_second: Falseinclude_num_input_tokens_seen: Falseneftune_noise_alpha: Noneoptim_target_modules: Nonebatch_eval_metrics: Falsebatch_sampler: no_duplicatesmulti_dataset_batch_sampler: proportional
Training Logs
| Epoch | Step | Training Loss | dim_128_cosine_map@100 | dim_256_cosine_map@100 | dim_64_cosine_map@100 |
|---|---|---|---|---|---|
| 0.8767 | 4 | - | 0.2156 | 0.2448 | 0.1831 |
| 1.9726 | 9 | - | 0.2511 | 0.2765 | 0.2154 |
| 2.1918 | 10 | 7.6309 | - | - | - |
| 2.8493 | 13 | - | 0.2531 | 0.2852 | 0.2345 |
| 3.9452 | 18 | - | 0.2617 | 0.2914 | 0.2353 |
| 4.3836 | 20 | 5.3042 | - | - | - |
| 4.8219 | 22 | - | 0.2626 | 0.2946 | 0.2422 |
| 5.9178 | 27 | - | 0.2629 | 0.2987 | 0.2481 |
| 6.5753 | 30 | 4.2433 | - | - | - |
| 6.7945 | 31 | - | 0.2684 | 0.2988 | 0.2495 |
| 7.8904 | 36 | - | 0.2652 | 0.3003 | 0.2488 |
| 8.7671 | 40 | 3.9117 | 0.2653 | 0.3003 | 0.2482 |
Framework Versions
- Python: 3.10.12
- Sentence Transformers: 3.1.1
- Transformers: 4.41.2
- PyTorch: 2.1.2+cu121
- Accelerate: 1.0.0
- Datasets: 2.19.1
- Tokenizers: 0.19.1
Citation
BibTeX
Sentence Transformers
@inproceedings{reimers-2019-sentence-bert,
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
author = "Reimers, Nils and Gurevych, Iryna",
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
month = "11",
year = "2019",
publisher = "Association for Computational Linguistics",
url = "https://arxiv.org/abs/1908.10084",
}
MatryoshkaLoss
@misc{kusupati2024matryoshka,
title={Matryoshka Representation Learning},
author={Aditya Kusupati and Gantavya Bhatt and Aniket Rege and Matthew Wallingford and Aditya Sinha and Vivek Ramanujan and William Howard-Snyder and Kaifeng Chen and Sham Kakade and Prateek Jain and Ali Farhadi},
year={2024},
eprint={2205.13147},
archivePrefix={arXiv},
primaryClass={cs.LG}
}
MultipleNegativesRankingLoss
@misc{henderson2017efficient,
title={Efficient Natural Language Response Suggestion for Smart Reply},
author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
year={2017},
eprint={1705.00652},
archivePrefix={arXiv},
primaryClass={cs.CL}
}
- Downloads last month
- 9
Model tree for ValentinaKim/Multilingual-base-soil-embedding
Base model
intfloat/multilingual-e5-smallEvaluation results
- Cosine Accuracy@1 on dim 256self-reported0.244
- Cosine Accuracy@3 on dim 256self-reported0.310
- Cosine Accuracy@5 on dim 256self-reported0.364
- Cosine Accuracy@10 on dim 256self-reported0.411
- Cosine Precision@1 on dim 256self-reported0.244
- Cosine Precision@3 on dim 256self-reported0.103
- Cosine Precision@5 on dim 256self-reported0.073
- Cosine Precision@10 on dim 256self-reported0.041
- Cosine Recall@1 on dim 256self-reported0.244
- Cosine Recall@3 on dim 256self-reported0.310