Improve model card: Add detailed description, sample usage, and update paper link
#1
by
nielsr
HF Staff
- opened
README.md
CHANGED
|
@@ -1,13 +1,13 @@
|
|
| 1 |
---
|
| 2 |
-
license: apache-2.0
|
| 3 |
base_model: Wan-AI/Wan2.1-T2V-14B
|
|
|
|
|
|
|
| 4 |
tags:
|
| 5 |
- text-to-video
|
| 6 |
- diffusion
|
| 7 |
- video-generation
|
| 8 |
- turbodiffusion
|
| 9 |
- wan2.1
|
| 10 |
-
pipeline_tag: text-to-video
|
| 11 |
---
|
| 12 |
|
| 13 |
<p align="center">
|
|
@@ -16,14 +16,31 @@ pipeline_tag: text-to-video
|
|
| 16 |
|
| 17 |
# TurboWan2.1-T2V-14B-480P
|
| 18 |
|
| 19 |
-
|
| 20 |
|
| 21 |
- For RTX 5090 or similar GPUs, please use the `TurboWan2.1-T2V-14B-480P-quant`. For other GPUs with a bigger GPU memory than 40GB, we recommend using `TurboWan2.1-T2V-14B-480P`.
|
| 22 |
|
| 23 |
-
- For usage instructions, please see **https://github.com/thu-ml/TurboDiffusion**
|
|
|
|
|
|
|
| 24 |
|
| 25 |
-
-
|
| 26 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 27 |
|
| 28 |
## Citation
|
| 29 |
```
|
|
@@ -81,5 +98,4 @@ pipeline_tag: text-to-video
|
|
| 81 |
journal={arXiv preprint arXiv:2505.11594},
|
| 82 |
year={2025}
|
| 83 |
}
|
| 84 |
-
```
|
| 85 |
-
|
|
|
|
| 1 |
---
|
|
|
|
| 2 |
base_model: Wan-AI/Wan2.1-T2V-14B
|
| 3 |
+
license: apache-2.0
|
| 4 |
+
pipeline_tag: text-to-video
|
| 5 |
tags:
|
| 6 |
- text-to-video
|
| 7 |
- diffusion
|
| 8 |
- video-generation
|
| 9 |
- turbodiffusion
|
| 10 |
- wan2.1
|
|
|
|
| 11 |
---
|
| 12 |
|
| 13 |
<p align="center">
|
|
|
|
| 16 |
|
| 17 |
# TurboWan2.1-T2V-14B-480P
|
| 18 |
|
| 19 |
+
This repository contains the `TurboWan2.1-T2V-14B-480P` model, part of the **TurboDiffusion** framework presented in [TurboDiffusion: Accelerating Video Diffusion Models by 100-200 Times](https://huggingface.co/papers/2512.16093). TurboDiffusion is a video generation acceleration framework that can speed up end-to-end diffusion generation by 100-200x while maintaining video quality.
|
| 20 |
|
| 21 |
- For RTX 5090 or similar GPUs, please use the `TurboWan2.1-T2V-14B-480P-quant`. For other GPUs with a bigger GPU memory than 40GB, we recommend using `TurboWan2.1-T2V-14B-480P`.
|
| 22 |
|
| 23 |
+
- For usage instructions and more details, please see the official GitHub repository: **https://github.com/thu-ml/TurboDiffusion**
|
| 24 |
+
|
| 25 |
+
## Sample Usage
|
| 26 |
|
| 27 |
+
To run text-to-video inference using the `TurboWan2.1-T2V-1.3B-480P-quant` model, follow these steps. For full instructions, including downloading necessary VAE and text encoder checkpoints, refer to the [GitHub repository](https://github.com/thu-ml/TurboDiffusion#inference).
|
| 28 |
|
| 29 |
+
```bash
|
| 30 |
+
export PYTHONPATH=turbodiffusion
|
| 31 |
+
|
| 32 |
+
# Example for Text-to-Video (T2V) inference
|
| 33 |
+
python turbodiffusion/inference/wan2.1_t2v_infer.py \
|
| 34 |
+
--model Wan2.1-1.3B \
|
| 35 |
+
--dit_path checkpoints/TurboWan2.1-T2V-1.3B-480P-quant.pth \
|
| 36 |
+
--resolution 480p \
|
| 37 |
+
--prompt "A stylish woman walks down a Tokyo street filled with warm glowing neon and animated city signage. She wears a black leather jacket, a long red dress, and black boots, and carries a black purse. She wears sunglasses and red lipstick. She walks confidently and casually. The street is damp and reflective, creating a mirror effect of the colorful lights. Many pedestrians walk about." \
|
| 38 |
+
--num_samples 1 \
|
| 39 |
+
--num_steps 4 \
|
| 40 |
+
--quant_linear \
|
| 41 |
+
--attention_type sagesla \
|
| 42 |
+
--sla_topk 0.1
|
| 43 |
+
```
|
| 44 |
|
| 45 |
## Citation
|
| 46 |
```
|
|
|
|
| 98 |
journal={arXiv preprint arXiv:2505.11594},
|
| 99 |
year={2025}
|
| 100 |
}
|
| 101 |
+
```
|
|
|