Tiny MiniCPM-o-2_6 Model
A minimal, optimized version of MiniCPM-o-2_6 for testing and development purposes.
Model Details
- Model Size: ~54 MB (PyTorch safetensors format)
- Format: PyTorch safetensors (not OpenVINO IR)
- Vocabulary Size: 50,000 tokens (reduced from 151,700)
- Architecture: MiniCPM-o-2_6 with optimized dimensions
Model Configuration
- hidden_size: 128 (reduced from 168)
- intermediate_size: 8 (reduced from 16)
- num_hidden_layers: 2
- num_attention_heads: 2 (reduced from 28)
- query_num: 64
Usage
from transformers import AutoProcessor, AutoModelForCausalLM
from PIL import Image
# Load processor and model
processor = AutoProcessor.from_pretrained("M-Ziyo/tiny-random-MiniCPM-o-2_6-mini", trust_remote_code=True)
model = AutoModelForCausalLM.from_pretrained("M-Ziyo/tiny-random-MiniCPM-o-2_6-mini", trust_remote_code=True)
# Prepare inputs
prompt = "<|im_start|>user\n(<image>./</image>)\nWhat is in the image?<|im_end|>\n<|im_start|>assistant\n"
image = Image.open("your_image.jpg")
inputs = processor([prompt], [image], return_tensors="pt")
# Generate
result = model.generate(**inputs, max_new_tokens=50)
decoded = processor.tokenizer.batch_decode(result[:, inputs["input_ids"].shape[1]:])
print(decoded)
Model Features
- β PyTorch format with safetensors (not OpenVINO IR)
- β Optimized size (~54 MB vs original)
- β Weight copying from original model for better output quality
- β Diverse output (not just repetitive characters)
Notes
- This is a minimal test model for development purposes
- Model weights are copied from the original model for better initialization
- Designed for testing Optimum-Intel integration
Citation
Based on MiniCPM-o-2_6 from OpenBMB.
- Downloads last month
- 109