Tiny MiniCPM-o-2_6 Model

A minimal, optimized version of MiniCPM-o-2_6 for testing and development purposes.

Model Details

  • Model Size: ~54 MB (PyTorch safetensors format)
  • Format: PyTorch safetensors (not OpenVINO IR)
  • Vocabulary Size: 50,000 tokens (reduced from 151,700)
  • Architecture: MiniCPM-o-2_6 with optimized dimensions

Model Configuration

  • hidden_size: 128 (reduced from 168)
  • intermediate_size: 8 (reduced from 16)
  • num_hidden_layers: 2
  • num_attention_heads: 2 (reduced from 28)
  • query_num: 64

Usage

from transformers import AutoProcessor, AutoModelForCausalLM
from PIL import Image

# Load processor and model
processor = AutoProcessor.from_pretrained("M-Ziyo/tiny-random-MiniCPM-o-2_6-mini", trust_remote_code=True)
model = AutoModelForCausalLM.from_pretrained("M-Ziyo/tiny-random-MiniCPM-o-2_6-mini", trust_remote_code=True)

# Prepare inputs
prompt = "<|im_start|>user\n(<image>./</image>)\nWhat is in the image?<|im_end|>\n<|im_start|>assistant\n"
image = Image.open("your_image.jpg")

inputs = processor([prompt], [image], return_tensors="pt")

# Generate
result = model.generate(**inputs, max_new_tokens=50)
decoded = processor.tokenizer.batch_decode(result[:, inputs["input_ids"].shape[1]:])
print(decoded)

Model Features

  • βœ… PyTorch format with safetensors (not OpenVINO IR)
  • βœ… Optimized size (~54 MB vs original)
  • βœ… Weight copying from original model for better output quality
  • βœ… Diverse output (not just repetitive characters)

Notes

  • This is a minimal test model for development purposes
  • Model weights are copied from the original model for better initialization
  • Designed for testing Optimum-Intel integration

Citation

Based on MiniCPM-o-2_6 from OpenBMB.

Downloads last month
109
Inference Providers NEW
This model isn't deployed by any Inference Provider. πŸ™‹ Ask for provider support