Safetensors

FineGrasp: Towards Robust Grasping for Delicate Objects

1. Grasp performance in GraspNet-1Billion dataset.

Method ckpt Camera Seen (AP) Similar (AP) Novel (AP) Average (AP)
FineGrasp finegrasp_pipeline/model.safetensors Realsense 71.67 62.83 27.40 53.97
FineGrasp + CD finegrasp_pipeline/model.safetensors Realsense 73.71 64.56 28.14 55.47
FineGrasp + Simulation Data finegrasp_pipeline_sim/model.safetensors Realsense 70.21 61.98 26.18 52.79

We also provide a grasp-based baseline for Challenge Cup, please refer to this code

Notice: finegrasp_pipeline_sim/model.safetensors is trained for Challenge Cup RoboTwin simulation benchmark.

2. Example Infer Code

import os
import numpy as np
import scipy.io as scio
from PIL import Image
from robo_orchard_lab.models.finegrasp.processor import GraspInput
from huggingface_hub import snapshot_download
from robo_orchard_lab.inference import InferencePipelineMixin

file_path = snapshot_download(
    repo_id="HorizonRobotics/FineGrasp",
    allow_patterns=[
        "finegrasp_pipeline/**",
        "data_example/**"
    ],  
)

loaded_pipeline = InferencePipelineMixin.load(
    os.path.join(file_path, "finegrasp_pipeline")
)

rgb_image_path = os.path.join(file_path, "data_example/0000_rgb.png")
depth_image_path = os.path.join(file_path, "data_example/0000_depth.png")
intrinsic_file = os.path.join(file_path, "data_example/0000.mat")

depth_image = np.array(Image.open(depth_image_path), dtype=np.float32)
rgb_image = np.array(Image.open(rgb_image_path), dtype=np.float32) / 255.0
intrinsic_matrix = scio.loadmat(intrinsic_file)["intrinsic_matrix"]
workspace = [-1, 1, -1, 1, 0.0, 2.0]
depth_scale = 1000.0

input_data = GraspInput(
    rgb_image=rgb_image,
    depth_image=depth_image,
    depth_scale=depth_scale,
    intrinsic_matrix=intrinsic_matrix,
    workspace=workspace,
)

loaded_pipeline.to("cuda")
loaded_pipeline.model.eval()
output = loaded_pipeline(input_data)
print(f"Best grasp pose: {output.grasp_poses[0]}")

Citation

@misc{du2025finegrasp,
    title={FineGrasp: Towards Robust Grasping for Delicate Objects}, 
    author={Yun Du and Mengao Zhao and Tianwei Lin and Yiwei Jin and Chaodong Huang and Zhizhong Su},
    year={2025},
    eprint={2507.05978},
    archivePrefix={arXiv},
    primaryClass={cs.RO},
    url={https://arxiv.org/abs/2507.05978}, 
}
Downloads last month

-

Downloads are not tracked for this model. How to track
Inference Providers NEW
This model isn't deployed by any Inference Provider. 🙋 Ask for provider support

Collection including HorizonRobotics/FineGrasp