Robo_Orchard_Lab
Collection
4 items
•
Updated
•
2
| Method | ckpt | Camera | Seen (AP) | Similar (AP) | Novel (AP) | Average (AP) |
|---|---|---|---|---|---|---|
| FineGrasp | finegrasp_pipeline/model.safetensors | Realsense | 71.67 | 62.83 | 27.40 | 53.97 |
| FineGrasp + CD | finegrasp_pipeline/model.safetensors | Realsense | 73.71 | 64.56 | 28.14 | 55.47 |
| FineGrasp + Simulation Data | finegrasp_pipeline_sim/model.safetensors | Realsense | 70.21 | 61.98 | 26.18 | 52.79 |
We also provide a grasp-based baseline for Challenge Cup, please refer to this code
Notice: finegrasp_pipeline_sim/model.safetensors is trained for Challenge Cup RoboTwin simulation benchmark.
import os
import numpy as np
import scipy.io as scio
from PIL import Image
from robo_orchard_lab.models.finegrasp.processor import GraspInput
from huggingface_hub import snapshot_download
from robo_orchard_lab.inference import InferencePipelineMixin
file_path = snapshot_download(
repo_id="HorizonRobotics/FineGrasp",
allow_patterns=[
"finegrasp_pipeline/**",
"data_example/**"
],
)
loaded_pipeline = InferencePipelineMixin.load(
os.path.join(file_path, "finegrasp_pipeline")
)
rgb_image_path = os.path.join(file_path, "data_example/0000_rgb.png")
depth_image_path = os.path.join(file_path, "data_example/0000_depth.png")
intrinsic_file = os.path.join(file_path, "data_example/0000.mat")
depth_image = np.array(Image.open(depth_image_path), dtype=np.float32)
rgb_image = np.array(Image.open(rgb_image_path), dtype=np.float32) / 255.0
intrinsic_matrix = scio.loadmat(intrinsic_file)["intrinsic_matrix"]
workspace = [-1, 1, -1, 1, 0.0, 2.0]
depth_scale = 1000.0
input_data = GraspInput(
rgb_image=rgb_image,
depth_image=depth_image,
depth_scale=depth_scale,
intrinsic_matrix=intrinsic_matrix,
workspace=workspace,
)
loaded_pipeline.to("cuda")
loaded_pipeline.model.eval()
output = loaded_pipeline(input_data)
print(f"Best grasp pose: {output.grasp_poses[0]}")
@misc{du2025finegrasp,
title={FineGrasp: Towards Robust Grasping for Delicate Objects},
author={Yun Du and Mengao Zhao and Tianwei Lin and Yiwei Jin and Chaodong Huang and Zhizhong Su},
year={2025},
eprint={2507.05978},
archivePrefix={arXiv},
primaryClass={cs.RO},
url={https://arxiv.org/abs/2507.05978},
}